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ABSTRACT 

 

Vascular endothelial growth factor (VEGF), a commonly overexpressed oncogene 

in a variety of malignancies including non-small cell lung cancer (NSCLC), is a key 

regulator of angiogenesis promoting tumor survival, growth, and metastasis. The 

promoters of several cancer-related genes, including VEGF, contain disproportionate 

sequences within nuclease hypersensitivity regions capable of forming quadruplex (four-

stranded) DNA. The specific quadruplex forming sequence of interest is the 20 base pair 

polyG/polyC tract that codes for the VEGF promoter (VEGFq), which is located in the 

proximal promoter region upstream of the transcription initiation site. This 

oligonucleotide has been shown to have significant growth hindering effects when 

introduced in the NSCLC cell line, A549.  

To determine the biological role of VEGFq on non-small cell lung cancer in vitro, 

cells were treated with either VEGFq or the corresponding mutant sequence (MutVEGF), 

which lacks the runs of guanines necessary for quadruplex formation. Circular dichroism 

spectroscopy confirmed that VEGFq formed a parallel quadruplex, while the MutVEGF 

sequence did not form a quadruplex structure. It is hypothesized that the considerable 

growth inhibition is caused by hindering the VEGF signaling pathway. The VEGF 

signaling cascade, which is normally triggered by VEGF binding to FLK1 (VEGF 

Receptor 2), is unable to function adequately due to decreased VEGF protein levels. This 

causes a disruption in the phosphorylation of target proteins including ERK1/2 and 

AKT/PKB, which in turn decreases overall cell proliferation. This observed decline in 

overall cell proliferation corresponded to decreased levels of VEGF protein expression, 
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indicating that there is a direct correlation between the treatment and the changes in 

proliferation. A single treatment of A549 NSCLC cells with VEGFq caused a significant 

dose and time-dependent decrease in cell viability after 3 and 6 days as determined by 

MTT assay. Parallel treatment of nontransformed human fibroblast cells with VEGFq 

showed no changes in growth, demonstrating the cancer specificity of VEGFq. Cell cycle 

analysis showed no changes in cell phases at 24, 48, 72 and 96 hours, indicating that 

VEGFq's effects due to a mechanism other than cell cycle arrest. Confocal microscopy 

and flow cytometry after 72 hours showed significant uptake and nuclear localization of 

VEGFq, but not MutVEGF. Boyden chamber invasion/migration measurement shows 

that the VEGFq treated cells have decreased cell movement, indicative of possible anti-

angiogenic effects as well.  

To determine the biological role of VEGFq on non-small cell lung cancer in vivo, 

A549 cells were injected into nude mice and grown for 10 days prior to daily IP 

injections of 10 mg/kg VEGFq or the control vehicle for 14 days. Tumor progression was 

physically measured using calipers three times a week. Fluorescent imaging was used to 

detect the presence, stability, and distribution of Alexa Fluor 750-labeled VEGFq after 

injection into the mouse to ensure localization in the targeted tumor. 

These results demonstrate that A549 cells treated with VEGF quadruplex-forming 

oligonucleotides experience a dramatic decrease in cell proliferation, suggesting that 

VEGFq may have significant therapeutic implications for the treatment of non-small cell 

lung cancer. 
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I. INTRODUCTION 

 

1.1 Lung Cancer and Current Treatments 

Lung cancer is a highly prevalent disease with an estimated 250,000 new 

diagnoses in 2011 in the US alone and is the leading cause of cancer deaths in the US, 

with a staggering 5-year survival rate of only 15.7%. Lung cancer can be broken down 

into two subtypes known as small cell lung cancer and non-small cell lung cancer 

(NSCLC) depending on the tumor morphology (NCI, 2011). NSCLC comprises 80.4% of 

lung cancers and can be further classified as adenocarcinoma, squamous cell carcinoma, 

or large cell carcinoma (NCBI, 2011, Travis, 1995). Adenocarcinomas are the most 

common form of lung cancer, accounting for 44% of NSCLC, and are typically found in 

the outer regions of the lung. Another 37.5% of NSCLC are squamous cell carcinomas, 

which are usually found in the center of the lung next to a bronchus. The less common 

large cell carcinomas account for the other 18.5%, and can be found in any part of the 

lung. Smoking has been identified as the primary cause of most cases of adenocarcinoma 

and squamous cell carcinoma; however, it is a common misconception that smoking is 

the only way to develop lung cancer. In fact, some people who have never smoked have 

gotten lung cancer (NCBI, 2011, Bryant, 2007). Although it is often difficult to pinpoint 

what causes each patient’s lung cancer, some common risk factors for NSCLC include 

long term exposure to high levels of: air or drinking water pollution, asbestos, coal 

products, mustard gas, preservatives, and formaldehyde (NCBI, 2011). Despite lung 

cancer research funding of over 281 million dollars in 2010 alone, not much progress has 

been made in the way of improving patient survival rates (NCI, 2011).  
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Conventional treatment options for non-small cell lung cancer (NSCLC) involve a 

long list of regimens, including 1) cytotoxic combination chemotherapy with the 

platinum based drugs cisplatin or carboplatin as well as paclitaxel, gemcitabine, 

docetaxel, vinorelbine, irinotecan, and pemetrexed; or, 2) bevacizumab and cetuxemab; 

or 3) epidermal growth factor receptor tyrosine kinase inhibitors; or, 4) cisplatin, 

vinorelbine, and cetuximab; or, 5) maintenance premetrexed; or, 6) external beam 

radiation therapy; or, 7) endobronchial laser therapy and/or brachytherapy. The specific 

treatment route selected for patients depends on several factors and disease specifics 

including but not limited to: tumor histology, patient age versus comorbidity, 

performance status, presence, number, and location of metastases, EGFR expression 

and/or mutation, and previous treatments received (NCI, 2011). All of these therapies are 

accompanied by a number of side effects ranging from mild to severe that are manifested 

as a result in damage to patients’ normal cells due to their non-specificity for cancer. The 

lethal nature of NSCLC demands that a more effective and selective therapy be 

developed to improve outcomes and reduce the burden of unwanted side effects. 

 

1.2 Vascular Endothelial Growth Factor and Its Receptors 

The Vascular Endothelial Growth Factors (VEGFs) are a family of five secreted 

dimeric proteins capable of acting upon many different cell types, but are mainly 

associated with endothelial cell stimulation. VEGF members include VEGFA, VEGFB, 

VEGFC, VEGFD, and placenta growth factor (PLGF) that regulate the growth of new 

blood vessels in embryos (vasculogenesis), the growth of blood vessels from existing 

vasculature (angiogenesis), and overall vascular maintenance in adults (Olsson, 2006). 
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Prior to the discovery of the other subtypes, VEGF referred to VEGFA, which is the 

primary member of its growth factor family, and the two terms are typically 

interchangeable (Loureiro, 2005).  

VEGFA is an eight exon long gene located on chromosome 6 that undergoes pre-

mRNA splicing to produce proteins from 19 of its 25 unique transcripts; however, only 

six of these have been highly classified (ENSEMBL, 2011, Robinson, 2001, Hilmi, 

2011). These isoforms are annotated as VEGFxxx, where the xxx represents the number 

of amino acids present minus the signal peptide. The most common are 121, 165, and 

189, which have been found to exist as an “a” or “b” splice variant. VEGFxxxa forms 

arise from the proximal splicing of exon 8, and VEGFxxxb forms are created from the 

distal splicing of exon 8. As expected, VEGFxxxa forms have been shown to be pro-

angiogenic. Curiously however, evidence has been found that suggests that VEGFxxxb 

forms have an inhibitory effect on angiogenesis (Hilmi, 2011). 

 VEGF is capable of acting on cells through the binding to its tyrosine kinase 

receptors (VEGFR), numbered one through three. These receptors contain seven varying 

extracellular immunoglobulin-like domains allowing them to bind different forms of 

VEGF with differing affinities. Additionally, they contain conserved trans-membrane 

domains, anchoring them to the plasma membrane, and intracellular tyrosine kinase 

domains allowing them to participate in signal transduction. VEGFR-1 and VEGFR-2 

bind several forms of VEGF, but have the highest affinity for VEGFA. VEGFR-3 does 

not bind VEGFA, only the VEGFC and VEGFD forms. Despite its capability to bind 

VEGFA, VEGFR-1 activation has no apparent effects on proliferation, migration, or 
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cytoskeletal remodeling can be detected. Conversely, VEGFR-2 activation has been 

shown to induce these processes (Robinson, 2001). 

 

1.3 VEGF Signaling and Cancer 

VEGF is often highly overexpressed in lung cancer and is commonly associated 

with poor prognosis, making it an attractive target for therapeutic agents for treatment of 

NSCLC (O’Byrne, 2006, Robinson, 2001, Yuan, 2000). In order for VEGF to transmit its 

message to cancer cells, a series of signaling steps must occur (Figure 7A). Firstly, VEGF 

must be secreted and bind to VEGFR-2 on the target cell, acting through an autocrine or 

paracrine mechanism (Mendel, 2000). Receptor binding then stimulates a cascade 

through several downstream kinases, notably ERK, p38, and Akt. These kinases then 

trigger the up-regulation of proliferation, angiogenesis, vascular permeability, and cell 

survival (Kanehisa Laboratories, 2009). These processes have been identified to be 

critical for tumor survival, growth, and metastasis of lung cancer (Molina, 2006). 

Bevacizumab, a monoclonal antibody to VEGF, is a recent development in 

targeted VEGF therapy that has shown promising results in patient studies; however, 

patients treated with bevacizumab still experience adverse effects of the drug and even 

deaths due to pulmonary hemorrhage, gastrointestinal hemorrhage, central nervous 

system infarction, gastrointestinal perforation, myocardial infarction, or neutropenic 

sepsis (Cao, 2011, NCI, 2011). VEGF-targeted therapeutics provide an important and 

necessary weapon against NSCLC to ensure that the tumor does not receive a blood 

supply adequate enough to survive, thrive, and spread to other regions of the body, yet 
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improvement upon current VEGF directed therapeutics is necessary to enhance patient 

outcomes and reduce treatment related harm. 

Another method of inhibiting VEGF-induced tumor growth involves targeting 

VEGFR-2 so that cannot transmit its signaling cascade correctly. Two small molecule 

tyrosine kinase inhibitors (TKI) being investigated include sorafenib and sunitinib. These 

multi-targeted inhibitors do not specifically act upon VEGFR-2; however, they work to 

inhibit multiple kinases. Although they both show promise in other types of cancer, they 

do not appear to be any benefit to lung cancer patients (Jain, 2006). In fact, the addition 

of sorafenib to treatment regimens for squamous cell lung cancer increased patients’ risk 

of mortality (Chustecka, 2008). Another TKI that is specific to VEGFR-2 is known as 

semaxanib. Despite its advancement to phase III clinical trials in colorectal cancer, it 

failed to meet the efficacy goals, and as a result the trials were canceled prior to 

completion. Further drug development, including investigation as a treatment for lung 

cancer, was not pursued due to these poor results (Jain, 2006). Even though TKI therapies 

show promise for some cancer types, it is apparent that this current generation of drugs 

do not show enough efficacy for the treatment of NSCLC. 

 

1.4 Oligonucleotide Therapy 

 One class of gene-specific therapeutic agents that has been examined as a 

potential cancer therapy is known as an antisense oligonucleotide. First discovered 

around 1980, these naturally occurring single stranded oligonucleotides are 

complementary to the RNA sequence of their target. Synthetic antisense drugs have been 

created to inhibit the expression of a gene through binding to the targeted sequence, 
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inhibiting translation of the gene (Zhang, 2005). While this gene-specific approach aims 

to improve upon whole cell effects by only inhibiting the undesired gene, it fails to 

exclusively target cancer cells, exhibiting highly toxic side effects in all cells. Some 

additional barriers against successful antisense therapy include low serum stability, low 

affinity for target molecules, low cellular uptake, and vulnerability to nucleolytic 

degradation (Kurreck, 2003). While the concept is promising, the setbacks that 

accompany antisense therapy make it an unattractive option for the widespread treatment 

of cancer. 

 Another gene-specific therapeutic agent that has been developed recently is the G-

quadruplex forming oligonucleotide. These oligonucleotides are guanine-rich, and 

possess four runs of at least three guanines, each separated by between one and seven 

bases. Through Hoogsteen hydrogen bonding, four nonadjacent guanines can associate 

with one another, forming a guanine tetrad. Furthermore, these guanine tetrads are 

capable of stacking upon one another, establishing a G-quadruplex (Gubala, 2004). These 

structures occur naturally throughout the human genome, most notably in telomeres, 

which are found at the ends of chromosomes, as well as in the promoter regions of an 

estimated 43% of all genes, including VEGF. While telomeric G-quadruplex formation is 

believed to play a role in the protection of chromosomes, those formed in promoter 

sequences are thought to negatively regulate transcription of the downstream gene via 

steric blockage (Huppert, 2008). This suggests that G-quadruplexes could be an attractive 

agent to selectively inhibit the expression of targeted genes. 
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1.5 G-Quaduplex DNA for Cancer Therapy 

 Until recently, the biological significance of G-quadruplex oligonucleotides has 

remained unknown. Just over a decade ago, AS1411, a G-rich oligonucleotide designed 

as a control sequence for another oligonucleotide being investigated as an inhibitor of 

gene expression in cancer, exhibited strange properties during the initial studies. The 

sequence actually caused far greater growth inhibition of the cancer cells compared to the 

oligonucleotide being investigated. Focus quickly shifted to determine the reason and 

mechanism behind the effects caused by this random sequence. During this investigation, 

it was noted that this G-rich sequence overcomes all of the setbacks of conventional 

antisense oligonucleotide therapies. Namely, AS1411 is highly resistant to degradation by 

serum and cellular nucleases, it is taken up by cells without the use of transfection 

reagents, and most importantly, it does not have toxic effects on non-cancerous cells. 

Since its initial discovery, AS1411 has been shown to be effective in inhibiting the 

growth of over 60 different cancer cell lines. Due to its high reactivity in cancer and low 

toxicity to non-transformed cells, it has progressed through phase II clinical trials, 

exhibiting promising results in both renal cell carcinoma and acute myeloid leukemia 

(Bates, 2009).  

The success of AS1411 has inspired an abundance of studies aimed at not only 

solving the structure and mechanisms of G-quadruplex oligonucleotides, but to also seek 

out other G-rich sequences that can be used as cancer therapies. The promoter regions of 

many oncogenes are G-rich and are believed to be capable of being specifically targeted 

and suppressed by their own specific sequence through the formation of a G-quadruplex. 

One such synthetic G-quadruplex forming oligonucleotide that codes for the promoter 
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sequence of the common oncogene c-myc is known as PU27. Treatment of leukemic cells 

with PU27 has been shown to selectively kill these malignant cells through down 

regulation of c-Myc, while overcoming the same setbacks of antisense therapy that 

AS1411 does (Sedoris, 2011). This breakthrough suggests that the targeting of VEGF and 

other genes containing G-rich promoter sequences (e.g. c-Myc, HIF-1, Bcl-2, etc) with 

their corresponding oligonucleotides may possess therapeutic efficacy as cancer-specific 

drugs (Qin, 2008). 

 

1.6 Preliminary Data 

 The work in this section was not performed by the author, but has been included 

to support the author’s hypothesis and rationale for pursuing this study. The preliminary 

experiments were performed and analyzed by Dr. Kara Sedoris, Sheila Thomas, Cortney 

Clarkson, Campbell Grant, and Dr. Donald Miller at the James Graham Brown Cancer 

Center. 

 In order to identify a molecular target for the treatment of NSCLC with G-

quadruplex oligodeoxynucleotides (ODNs), the A549 NSCLC protein expression levels 

of common oncogenes containing G-rich promoters (HIF-1, VEGF, BCL-2, and c-Myc) 

were determined by Western Blot analysis (Preliminary Figure 1A). After normalizing 

each oncoprotein to the housekeeping protein β-actin, VEGF was identified as having the 

highest expression out of the four selected proteins, distinguishing it as an attractive 

target in A549 cells. Furthermore, the four oncogenes’ Quadruplex-forming ODNs’ 

effects on cell growth of A549 cells were determined using an MTT assay (Preliminary 

Figure 1B). This test elucidated that the VEGF ODN drastically inhibited A549 cell 
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growth compared to the other ODNs, perhaps due to the cells’ higher expression of 

VEGF. These preliminary findings suggest that the VEGF quadruplex forming ODN 

could be a potential therapy for NSCLC, warranting further study and development of 

this ODN. 

 

PRELIMINARY FIGURE 1 – Quantitation of the basal protein levels of commonly 

overexpressed oncogenes whose promoters are guanine rich and the 

changes in growth due to treatment with each respective oncogene’s G-

Quadruplex ODN in A549 NSCLC. 
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1.7 Purpose of Study 

 The purpose of this study was to determine the biological significance of VEGFq, 

the G-quadruplex forming oligonucleotide that codes for the proximal promoter 

sequence, as a possible treatment for NSCLC. Characterization of oligonucleotide 

secondary structure, quantitation of cell proliferation and invasion, quantitation of 

oligonucleotide uptake, localization, and stability, quantitation of changes in protein 

expression and phosphorylation, and quantitation of in vivo oligonucleotide activity, 

distribution, and stability were performed. Additionally, the data collected in this study 

can be utilized to plan future experiments to further model the uptake and action 

mechanisms of this novel compound. 

 

1.8 Hypotheses 

1) In vitro treatment of NSCLC cells with VEGFq inhibits cell growth and invasion 

by decreasing VEGF expression. 

2) The in vitro VEGFq-induced decrease in VEGF expression down regulates FLK-1 

activation and signaling through downstream kinases. 

3) In vivo treatment of xenografted NSCLC cells in nude mice with VEGFq 

selectively inhibits NSCLC cell growth. 

4) In vivo injection of VEGFq into nude mice xenografted with NSCLC cells 

primarily localizes and remains in the tumors compared to non-transformed cells. 
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1.9 Significance of the Study 

VEGF is a key protein in a variety of cancers including lung cancer that triggers 

cells to survive, thrive, and eventually spread to other parts of the body. Inhibition of 

VEGF signaling is believed to be an important process in halting lung cancer growth and 

metastasis; however, a suitable drug that can accomplish this without causing significant 

side effects is yet to be discovered. VEGFq is believed to be capable of filling this void. 

Additionally, if current studies are successful, VEGFq may be examined for therapeutic 

efficacy in other cancer types in which VEGF is overexpressed. Through the 

development and characterization of VEGFq, our group hopes to add another gene-

specific and cancer-specific agent to the arsenal of next generation oligonucleotides for 

utilization in the battle against cancer.  

Personalized medicine, or the specific selection of treatment options based upon 

the individual patients’ genetic profile rather than the broad treatment of a disease, has 

been an attractive yet unrealized idea. This is most likely due to the non-targeted and 

globally acting nature of most drugs as well as the unavailability of the necessary gene-

specific drugs. Without the ability to specifically target genes, personalized medicine 

cannot be practiced; however, quadruplex-forming drugs like VEGFq present a possible 

opportunity for the development of personalized medicine. Not only does VEGF have a 

quadruplex in its promoter sequence, but the promoters of many other oncogenes have 

been identified as being capable of forming quadruplexes. Just a few of these include c-

Myc, c-kit, KRAS, HIF-1, Bcl-2, and RET, with many others yet to be identified and 

characterized (Qin, 2008). Through the use of quadruplex drugs that specifically target 

and silence these genes in cancer, the practice of personalized medicine may be possible. 
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Individual patients’ genomes could be sequenced to identify the key oncogenes activated 

in their specific cancer, which will allow physicians to tailor their treatment regiments to 

include only the quadruplex drugs needed. Although further investigation and 

development of other quadruplex-forming drugs is necessary prior to their widespread 

use, this class of cancer drugs theoretically satisfies the current deficiencies of 

personalized medicine. 
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II. INSTRUMENTATION AND EQUIPMENT 

 

This section contains information regarding the instrumentation and equipment 

used during the completion of this thesis. 

 

2.1 Circular Dichroism Spectropolarimeter 

Circular Dichroism Spectra were recorded on a Jasco-810 spectropolarimeter 

(Jasco, Easton, MD), using a quartz cell of 1 mm optical path length, an instrument 

scanning speed of 200 nm/min, response time of 2 sec, and scans were performed over a 

wavelength range of 340 nm to 220 nm at room temperature (~25C). 

 

2.2 Spectrophotometer 

 Absorbances of 96 well plates were determined by using a BioTek Synergy HT 

spectrophotometer (BioTek, Winooski, VT). The selected wavelength of light used to 

read plates varied depending on experimental conditions.  

 

2.3 Flow Cytometer 

 Cell cycle and uptake of FITC-labeled ODNs were determined using a FACS 

Calibur flow cytometer (BD Biosciences, San Jose, CA). Initial cytometer settings were 

optimized for each untreated cell type used, and saved for use during subsequent 

experiments to maximize consistency between replicates. 

 

 



 

14 

2.4 Confocal Microscope 

Cells were visualized by confocal microscopy with an Olympus Fluoview FV500 

(Olympus, Center Valley, PA) laser scanning microscope. A 493 nm laser was used to 

visualize the DAPI fluorphore and a 358 nm laser was used to visualize the FITC 

fluorophore. 

 

2.5 In Vivo Photon Imager 

 In vivo uptake and biodistribution of Alexa Fluor 750-labeled VEGFq was imaged 

using a Photo Imager RT photon imager, using an excitation wavelength of 750 nm. 

Fluorescence integration mode was selected, and a total of 750,000 events were collected 

over an acquisition time of 4 seconds to quantitate signal intensity. Images were 

generated by capturing 1000 ms per frame. 
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III. PROCEDURE 

 

3.1 General  

A549 adenocarcinomic human alveolar basal epithelial cells, H1944 

adenocarcinomic non-small cell lung cancer cells, H1299 non-small cell lung cancer 

carcinoma cells, and Hs27 human fibroblast cells (ATCC) were maintained in DMEM 

media supplemented with 10% Fetal Bovine Serum (FBS) and 100 U/mL 

penicillin/streptomycin at 5% CO2 and 37 °C. The three lung cancer cell lines were used 

to determine the biological significance of the VEGFq oligonucleotide as a potential 

treatment for NSCLC while the readily available non-cancerous fibroblast cells were 

used as a control for growth inhibition studies to demonstrate VEGFq’s cancer 

specificity.  

Synthesized oligodeoxynucleotides (ODNs) (Oligos Etc.), delivered as a 

lyophilized powder, were reconstituted in RNAse/DNAse free ultrapure DH2O 

(Invitrogen) to a stock concentration of 500 µM upon receipt and stored at -20 °C when 

not in use. Prior to treatment, the oligonucleotides were thawed at room temperature and 

then boiled at 95 °C for 5 min. The boiling is hypothesized to increase the activity of the 

oligonucleotides, which is believed to be due to the denaturing of the secondary 

structures that formed during cold storage. The VEGFq sequence, which contains runs of 

three or more adjacent guanines that are required for quadruplex formation, was the main 

oligonucleotide of interest in this study, while MutVEGF was used as an oligonucleotide 

control. The general synthesis and preparation methods of both oligonucleotides were 

identical; however, their primary sequences differ. MutVEGF is essentially the same 
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sequence as VEGFq except that several guanines have been mutated to cytosines so that 

it does not contain the runs of three or more adjacent guanines. Without the clusters of 

guanines that are necessary for quadruplex formation, it is hypothesized that MutVEGF 

does not form a quadruplex. It can then be used as a control in all studies to ensure that 

the effects of VEGFq are not simply due to the introduction of foreign DNA, but are 

instead sequence specific. 

Cells in logarithmic growth phase were plated and treated with 10 µM (final 

concentration unless otherwise specified) of VEGFq or the respective control, MutVEGF, 

for various time intervals and collected for subsequent biochemical analysis. The ensuing 

data was recorded and analyzed using Microsoft Excel, unless otherwise noted. 

 

3.2 Circular Dichroism Spectroscopy  

To determine the presence and classification of VEGFq and MutVEGF 

oligonucleotide secondary structures, ODNs were boiled for 5 minutes and annealed by 

adding physiological buffer containing 20 mM KH2PO4 dibasic, 120 mM KCL, 5 mM 

MgCl2 then slow cooled to room temperature. Annealed ODNs were diluted in the same 

buffer to approximately 5 µM, a concentration which gives an absorbance of 0.800 at 260 

nm according to the spectropolarimeter instructions. Structures of the ODNs in solution 

were determined by circular dichroism spectroscopy (CD), using a Jasco-810 

spectropolarimeter (Jasco). Three scans were performed for each ODN at 25 °C and then 

baseline corrected for signal contributions due to buffer. The spectropolarimeter 

determines the difference between the sample’s absorbance of left and right polarized 

light at each wavelength. To calculate the molar circular dichroism (Molar CD), which 
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can be used to determine ODN secondary structure, the absorbance value was divided by 

a provided system constant, the concentration of the sample, the path length, and the 

number of bases of the ODN. Each Molar CD value was then plotted versus each 

corresponding wavelength. These spectra are representative of the average of the scans 

taken. 

 

3.3 MTT Assay  

Changes in cell proliferation of lung cancer cell lines and non-transformed 

fibroblasts in response to VEGFq or MutVEGF were assessed by 3-(4,5-dimethylthiazol-

2yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Mitochondrial dehydrogenase 

activity in viable cells metabolizes MTT into formazan crystals. The concentration of 

formazan, which is directly proportional to cell number, can be quantified 

spectrophotometrically. A549, H1299, H1944, and Hs27 cells plated in a 96-well plate 

(1X10
3
 cells/well) were treated with 1, 3, 5, 10, or 15 µM of either VEGFq or MutVEGF 

for 24, 48, 72, 96 h, or 6 days. At the end of the incubation times, 15 µL of MTT reagent 

(0.1 µg/µl phosphate buffered saline (PBS)) was added and cells were incubated at 37°C 

and 5% CO2. After 4 h, cells were lysed and the formazan product was detected at 570 

nm. The optical density of treated wells was standardized to untreated samples in order to 

quantify the change in proliferation due to ODN treatment.  

 

3.4 Analysis of VEGFq and MutVEGF Uptake  

Cellular uptake of VEGFq or MutVEGF was analyzed by FACS and confocal 

microscope image analysis. In order to identify and locate ODNs in these assays, VEGFq 
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and MutVEGF were labeled with a 5’ fluorescein isothiocyanate (FITC) tag. FITC is a 

green fluorescent molecule whose excitation max is 493 nm and emission max is 517 nm. 

A549 or Hs27 cells were incubated with 10 µM of FITC-labeled VEGFq or MutVEGF 

for 1, 24, or 72 h before being collected.  

For FACS analysis, the cells incubated with FITC-ODNs were first washed with 

PBS and then resuspended in 1 mL PBS before being analyzed. The FACS Calibur flow 

cytometer (BD Biosciences) was calibrated with untreated cells so that on a forward 

scatter versus side scatter plot, the majority of detected cells had mid-range forward and 

side scatter. A region was then created that included these cells, which were considered to 

be intact and viable cells. Those with very low side scatter and/or very low forward 

scatter were excluded, since these cells were most likely dead cells and/or cellular debris, 

and would detract from experimental accuracy if included. The cells that fell within the 

region of interest (ROI) were gated and further analyzed based on their fluorescent 

intensity. This parameter, which was plotted on a fluorescent intensity histogram, was 

calibrated so that the untreated cells’ peak occurred very low on the scale, ensuring that 

the curve did not make contact with the y-axis. These calibrations were saved and reused 

during subsequent experiments for consistency. Each sample was run until 10,000 gated 

events were collected. The resulting data was analyzed on Flow-Jo (Tree Star, Inc), and 

the presented histograms are representative of three experiments. 

For confocal microscopy, Hs27 or A549 cells (grown in 2-well chambered slides) 

were treated for 72 h with FITC-labeled VEGFq or MutVEGF. Slides were washed with 

PBS, and fixed in 4% paraformaldehyde for 20 min before being washed with PBS again. 

Cell nuclei were stained with 4’,6-diamidino-2-phenylindole (DAPI), a blue fluorescent 
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molecule whose excitation max is 358 nm and emission max is 461 nm. Following 

another wash with PBS, slides were mounted with Prolong Gold (Invitrogen) anti-fade 

reagent to preserve fluorescence. Cells were visualized by confocal microscopy with an 

Olympus Fluoview FV500 (Olympus) laser scanning microscope. Prior to image capture, 

laser intensity and gain were optimized and permanently set for FITC and DAPI in order 

to minimize background noise while maximizing fluorescent signal without losing 

accuracy and precision due to too high of a signal intensity. Samples were visualized at 

60X magnification and sequentially scanned with the two lasers to minimize spectral 

crossover. The obtained images of FITC only, DAPI only, bright field only and 

fluorescent overlay were compiled, and a representative set of each sample was selected. 

 

3.5 Cell Cycle Analysis  

A549 or Hs27 cells treated for 24, 48, 72, or 96 h with 10µM VEGFq or 

MutVEGF were collected and washed in PBS. Cells were processed with the 

CycleTest™ Plus DNA Reagent kit (BD Biosciences), during which they were lysed with 

trypsin in spermine teterahydrochloride detergent buffer and the isolated nuclei were 

stained with propidium iodide. Prepared nuclei were then analyzed by FACS to 

determine the distribution and percentage of cells in each cell cycle phase. For 

calibration, similar gating was applied as in the ODN uptake experiments to collect only 

the cells with mid-range side and forward scatter. A histogram of fluorescent intensity 

was created from 10,000 gated cells. Results were analyzed with Flow-Jo, and the 

spectrum provided is a representative of three cell cycle experiments at the 72 h time 

point. 
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3.6 Serum and Intracellular Stability of VEGFq  

VEGFq and MutVEGF sequences were radiolabeled using [-
32

P]-dATP with T4 

polynucleotide kinase (Invitrogen) and incubated at 10 µM in DMEM medium with 10% 

FBS or in the presence of A549 cytoplasmic (S100) or nuclear extract at 37 °C for 0, 1, 2, 

4, 24, 48, 72, or 96 h. After heating in 98% formamide buffer to 65 °C, ODNs were run 

on a 12% denaturing gel and imaged by autoradiography. The obtained images are 

representative of three stability experiments. 

 

3.7 Western Blot analysis  

To determine the changes in protein expression, A549 cells were incubated with 

10 µM of VEGFq or MutVEGF for 24, 72, 96, or 144 h before being collected and lysed. 

Samples’ total protein concentrations were determined by Lowry Assay calibrated with 

bovine serum albumin (BSA). Equal quantities of A549 total cell lysates were separated 

by 4-15% SDS-Tris polyacrylamide gel electrophoresis (SDS-PAGE) and electroblotted 

onto PVDF membranes. Following transfer, membranes were air dried and then re-wetted 

with 100% methanol. Successful electrophoresis and protein transfer was confirmed by 

staining with Ponceau S dye. In order to reduce nonspecific binding and background 

signal, the membranes were blocked in 5% milk in a solution of 0.05% Tween-20 in PBS 

for 1 hr at room temperature with agitation. Membranes were then incubated with 

agitation overnight at 4 C with VEGF, ERK1/2, p-ERK1/2, AKT1/2/3, p-AKT1/2/3, or 

FLK-1 antibodies (Santa Cruz Biotechnology) diluted in the blocking solution. After 

washing three times with 0.05% Tween-20 in PBS for 5 minutes at room temperature, the 

membranes were incubated with a horseradish peroxidase (HRP)-conjugated secondary 
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antibody diluted in the blocking solution. Following another set of three washes with 

PBS-Tween, an additional wash for 5 minutes at room temperature was performed to 

remove the detergent. Proteins were visualized by standard chemiluminescence (ECL) 

methods (GE Healthcare). All films were scanned with an optical scanner (Epson 

Expression 1680) and band densities were quantified using UNSCAN-IT software (Silk 

Scientific).  

Equal loading of protein samples was verified by probing the membrane with a 

mouse monoclonal anti-β-actin primary antibody or a mouse monoclonal anti-GAPDH 

primary antibody (Santa Cruz Biotechnology). Prior to re-probing, membranes were 

incubated with Restore Western Blot Stripping Buffer (Thermo Scientific) for 15 minutes 

at room temperature with agitation and washed with PBS to remove the previously bound 

antibodies. To correct for possible unequal loading, each band density was normalized to 

its respective β-actin or GAPDH density. 

 

3.8 p-FLK-1 ELISA  

To quantify the changes in phosphorylation of VEGFR-2, A549 cells were 

incubated with 10 µM of VEGFq or MutVEGF for 72 h before being collected and lysed. 

Samples’ total protein concentrations were determined by Lowry Assay calibrated with 

BSA. The sandwich ELISA method (R&D Systems) was used to examine 25 and 50 µg 

amounts of A549 total cell lysates, according to kit instructions. A 96-well microplate 

was incubated overnight at room temperature with a phospho-FLK-1 capture antibody 

and washed 5 times with 0.05% Tween-20 in PBS before being blocked with a 1% BSA 

in PBS solution for 2 h at room temperature. Following another round of washes, samples 
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were diluted to 25 or 50 µg/100 µL in a provided dilution buffer and incubated along 

with 4 and 8 ng/mL of a provided phospho-FLK-1 control in separate wells for 2 h at 

room temperature. Following another washing step, the plate was incubated with a 

phospho-FLK-1 HRP-conjugated detection antibody for 2 h at room temperature. After a 

final set of washing, the substrate solution was added, and following a 20 min room 

temperature incubation, the stop solution. The resulting absorption was read at 450 nm. 

Expression levels were compared to untreated samples to calculate a percent of untreated. 

The obtained figure is representative of an average of three experiments.  

 

3.9 Boyden Chamber Invasion/Migration Assay  

The Boyden chamber assay was used to assess the metastatic potential of A549 

cells in response to VEGFq or MutVEGF. A549 cells pretreated with 10 µM VEGFq or 

MutVEGF for 72 h were detached with TripleE (Invitrogen) and seeded (5X10
5
/mL) in 

serum-free medium in the top side of the chamber containing an 8 µm pore polycarbonate 

filter coated with Matrigel or a control chamber without Matrigel (BD Biosciences). 

Medium containing 10% FBS was applied to the lower chamber as a chemoattractant. 

VEGFq or MutVEGF (10 µM) were added into the serum-free medium in the top 

chamber and the cells were incubated for 24 h at 37°C.  At the end of the incubation, cells 

in the upper surface of the membrane were carefully removed with a cotton swab and the 

cells that had invaded across the Matrigel to the lower surface of the membrane were 

fixed with 100% methanol for 2 min, briefly rinsed in PBS, and stained with crystal 

violet stain (Sigma-Aldrich) for 2 min. Excess stain was removed by washing in dH2O 

before drying overnight at room temperature. Each insert was then imaged at 20X 
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magnification using a microscope, and the number of cells present was physically 

counted. The percentage of cells that invaded through the Matrigel and migrated through 

the filter (percent invasion) was calculated by dividing the number of cells present in 

each treatment’s Matrigel chamber by the number of cells present in its respective control 

chamber. The invasion index was then calculated by dividing the percent invasion of the 

treated cells by the untreated percent invasion. 

 

3.10 VEGFq In Vivo Activity  

To determine the in vivo effect of VEGFq on cell proliferation of NSCLC 

xenografted in nude mice, 10X10
6
 A549 cells suspended in 100 µL PBS were injected 

subcutaneously in each mouse’s left dorsal flank and grown for 10 days. After tumors 

became visible under the skin, mice were sorted into groups of small, medium, and large 

tumors based on visual inspection of tumor sizes. An equal number of each size set was 

then sorted into either the control or treatment groups. The treatment group was then 

injected intraperitoneally with 10 mg/kg VEGFq dissolved in an equal volume of 2X 

RPMI media for a final volume of 100 µL every weekday until tumor sizes reached a 

large enough size that required sacrificing.  

Tumor length and width measurements for all animals were collected every other 

weekday during the study. The tumor volumes at each time point were calculated by 

multiplying the length measurement by the width measurement by one half of the width 

measurement. To correct for the differences in beginning tumor sizes, the percent change 

in growth was calculated for each animal by dividing the difference between each 
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measurement and the initial measurement by the initial measurement, and then averaged 

for each group. 

 

3.11 VEGFq In Vivo Stability and Biodistribution  

VEGFq stability and biodistribution in the in vivo NSCLC xenograft nude mouse 

model was determined by intraorbital injection of 1 mg/kg of Alexa Fluor 750 labeled 

VEGFq mixed with an equal volume of 1X RPMI media to a 100 µL final volume for 

subsequent imaging. Non-injected control animals were used to establish a baseline for 

no fluorescent signal. Treatment and control animals were sedated with isoflurane and 

imaged simultaneously in a Photo Imager RT system immediately after injection as well 

as at 1, 2, 6, 24, 48, and 72 hour time points. Detector settings were optimized to 

minimize background noise while maximizing signal. To quantify the signal coming from 

only the tumors, ROIs of equal area that encompassed both the treatment and control 

animals’ tumors were selected and a signal strength value was collected. To eliminate the 

effect of noise variation on the results, the fluorescence intensity of the control ROI was 

subtracted from that of the treatment ROI. This calculation provided a value for the 

number of photons per square centimeter due to fluorescently tagged 750-labeled VEGFq 

alone being emitted from the tumor due to treatment with VEGFq. These values were 

plotted as a function of time to determine the extent of oligonucleotide retention over 

time. 
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IV. RESULTS AND DISCUSSION OF RESULTS 

 

4.1 VEGFq forms a parallel quadruplex in solution  

 

FIGURE 1 – Representative CD scan of the quadruplex forming oligonucleotide VEGFq 

and the non-quadruplex forming oligonucleotide MutVEGF. 

 

To characterize the secondary structure of VEGFq and MutVEGF, 

oligonucleotides were analyzed using Circular Dichroism spectroscopy, a technique that 

has been used to examine the secondary structures of nucleic acids in solution for several 

decades (Gray, 2003). VEGFq dissolved in physiological solution had a peak absorbance 

at 260 nm and a trough absorbance at 240 nm, indicative of parallel quadruplex formation 

(Figure 1). MutVEGF did not form a stable parallel quadruplex in solution, which was 

reflected by a shift in its spectrum (Rankin, 2005).  

These results confirm that VEGFq can be examined as a quadruplex forming 

oligonucleotide, and whose effects can be attributed to this characteristic. Additionally, 
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MutVEGF, which arises from the mutation of the VEGFq sequence so that did not have 

three adjacent guanines in the sequence, is inhibited from forming a quadruplex; 

therefore, it can be used as a negative quadruplex control for VEGFq. 

 

4.2 VEGFq inhibits NSCLC cell proliferation  

Treatment of A549 NSCLC cells with 1-15µM VEGFq for 24-144 h caused a 

dose and time-dependent decrease in proliferation, culminating to 80% inhibition with 10 

µM and 90% inhibition with 15 µM after 6 days compared to untreated cells with an IC50 

of less than 5 µM (Figure 2A). Little change in proliferation occurred with MutVEGFq 

(Figure 2B). The effect of dose escalation of VEGFq on cell proliferation was also 

examined in H1299 (Figure 2C) and H1944 NSCLC cell lines after 72 and 144 h. There 

was a significant dose-dependent decrease in cell proliferation with IC50 values of less 

than 15 µM after 144 h; however, both cell types were slightly less sensitive than A549 

cells. Since the growth arrest occured in the VEGFq treatment groups and not the 

MutVEGF groups, these observations suggest that the quadruplex-forming nature of 

VEGFq results in decreased cell growth of NSCLC. 

 Alternatively, treatment of Hs27 non-transformed human fibroblast cells with 

VEGFq caused no significant change in cell proliferation (Figure 2D) as compared to 

A549 cells treated in parallel. MutVEGF did not affect the growth of either cell line. 

These results suggest that growth inhibition due to VEGFq is specific to cancer cells as 

compared to normal cells.  
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FIGURE 2 – MTT dose response time courses for VEGFq and MutVEGF in A549, 

H1299, and Hs27 cells. 

 

4.3 Enhanced cellular uptake of VEGFq  

FITC-VEGFq was immediately taken into cells after only 1 hour of treatment, 

with enhanced uptake after 24 hours and retained signal at 72 hours post-treatment 

(Figure 3A). Significantly less FITC-MutVEGF appeared to be taken into cells at all time 

points. Confocal microscopy confirmed these results, showing both cytoplasmic and 

nuclear localization of FITC-VEGFq and almost no uptake of MutVEGF at the same 

intensity settings (Figure 3B). These results suggest that VEGFq is greatly internalized by 

A549 cells compared to MutVEGF and largely located in the nucleus and cytoplasm. A 

key improvement of VEGFq upon traditional antisense oligonucleotide therapies is 

exhibited here; while antisense oligonucleotides are typically linear and have low cellular 
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uptake, the quadruplex secondary structure exhibited by VEGFq may cause the observed 

cellular uptake enhancement (Kurreck, 2003). 

 

 

FIGURE 3 – Cellular uptake and localization of VEGFq and MutVEGF in A549 and 

Hs27 cells. 
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Similarly, non-transformed Hs27 cells also took up FITC-VEGFq after 1 hour, 

with greater uptake over time, which appeared more largely localized in the cytoplasm. 

Uptake of VEGFq into Hs27 cells suggest that the anti-proliferative effect of VEGFq on 

A549 cells is unrelated to its ability to be taken into cells, but instead may be cancer 

specific.  

 

4.4 VEGFq and MutVEGF do not cause a change in cell cycle  

 

FIGURE 4 – Cell cycle analysis of A549 cells treated with VEGFq or MutVEGF. 

 

To determine if treatment of A549 cells with VEGFq or MutVEGF caused an 

overall change in the cell cycle, A549 cells incubated with 10μM VEGFq or MutVEGF 

for 24-96 h were assessed. No significant change in the cell cycle occurred with VEGFq 

or MutVEGF treatment (Figure 4). A representative figure at 72 h is shown; however, 

cell cycles at all time points showed similar results.  
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4.5 Enhanced VEFGq serum and cytoplasmic stability  

Since the therapeutic utility of ODNs is limited by their susceptibility to nuclease 

degradation, the stability of VEGFq was examined in serum and intracellularly. 
32

P-

labeled VEGFq was inherently stable in serum and in the presence of nuclear and 

cytoplasmic extracts, while MutVEGF almost immediately degraded into a smaller 

product (Figure 5). This remarkable increase in VEGFq stability is likely related to the 

inherent nuclease resistance of quadruplex DNA.  

 

 

FIGURE 5 – Comparison of VEGFq and MutVEGF stability in serum and in cell 

extracts. 

 

4.6 VEGFq treatment decreases VEGF protein levels  

To determine if VEGFq decreases VEGF protein levels, A549 cells were treated 

with 10 μM VEGFq or MutVEGF and analyzed by Western Blotting. Treatment of A549 

cells with VEGFq did not decrease VEGF protein levels after 24 and 72 h, however 
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caused a marked decrease in expression (< 60% of untreated) after 96 h and 6 days. 

MutVEGF treatment did not alter VEGF protein expression levels (Figure 6).  

 

FIGURE 6 – Western Blot results of VEGFq and MutVEGF treated A549 cells. 

 

4.7 VEGFq alters activation of FLK-1 and downstream signaling  

Decreased VEGF protein resulting from VEGFq treatment corresponded with a 

small decrease in FLK-1 phosphorylation after 72 h compared to untreated A549 cells, as 

determined by ELISA analysis (Figure 7C). A less significant change in FLK-1 

phosphorylation occurred with MutVEGF treatment. However, total FLK-1 expression 

remained constant after either VEGFq or MutVEGF treatment (Figure 7B).  

VEGFq treatment of A549 cells slightly decreased total ERK 1/2 levels and 

markedly decreased p-ERK 1/2 (p42/p44), beginning at 72 h and continuing thorough 96 

h (Figure 7D). Although Akt total 1/2/3 levels remained relatively constant, p-Akt 1/2/3 

levels were also significantly decreased after 72 and 96 h by VEGFq (Figure 7E). These 

results suggest that the change in phosphorylation of FLK-1 may be due to a decrease in 
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binding of VEGF to FLK-1, causing a subsequent decreased in the activity of 

downstream kinases ERK and Akt. 

 

 

FIGURE 7 – Schematic of VEGFR-2 signaling and Western Blot and ELISA analysis of 

changes in receptor and downstream protein and phosphorylation levels 

due to VEGFq and MutVEGF treatment in A549 cells. 

 

4.8 VEGFq inhibits NSCLC cell invasion  

To determine whether decreased VEGF from VEGFq treatment changed A549 

cell invasion, cells treated with 10μM VEGFq for 24 h were evaluated by Boyden 

chamber analysis. Compared to untreated, VEGFq decreased A549 cell invasion by 40%, 

while MutVEGF had no effect (Figure 8). There were no changes in cell number of the 

control plates in response to VEGFq or MutVEGF treatment. 
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FIGURE 8 – Invasion/Migration analysis of A549 cells treated with VEGFq or 

MutVEGF. 

 

4.9 VEGFq inhibits in vivo NSCLC cell proliferation  

Following the successful xenografting of A549 cells, nude mice were injected 

daily for 14 weekdays with VEGFq, to examine possible growth hindering effects in vivo. 



 

34 

Even after only two days of treatment, the VEGFq animals’ tumor growth was 

significantly arrested compared to the untreated arm (Figure 9). The significant difference 

between arms was continued throughout the entire experiment. These results suggest that 

VEGFq treatment can inhibit NSCLC tumor growth in vivo.  

 

FIGURE 9 – In Vivo change in tumor growth of xenografted A549 cells treated with 

VEGFq or MutVEGF. 

 

4.10 Enhanced VEGFq in vivo stability and tumor localization  

 To determine the stability and biodistribution of VEGFq in vivo, A549 cells were 

xenografted into nude mice and were imaged following an injection of VEGFq tagged 

with Alexa Fluor 750. Subsequent quantitation of the fluorescent intensity was performed 

to yield a photons/cm
2
 value. In order to eliminate background noise, the fluorescence 

signal (photons/second/cm
2
) of the untreated mouse’s tumor was subtracted from that of 

the mouse treated with VEGFq. This value was multiplied by the acquisition time (4 
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seconds), providing a fluorescent intensity per unit area value (photons/cm
2
). If an 

oligonucleotide calibration curve could be created, the fluorescent intensity value could 

be used to calculate the concentration of oligonucleotide delivered to the tumor. Results 

showed striking uptake of VEGFq into the tumor regions and prolonged storage of 

oligonucleotide in the tumor at 72 h after treatment (Figure 10). 

 

FIGURE 10 – In Vivo Alexa Fluor 750 labeled VEGFq fluorescent intensity in 

xenografted A549 tumors. 
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V. CONCLUSIONS 

 

The following list of conclusions is based upon on the results and analysis of the 

experiments performed during this study. 

 

 VEGFq forms a stable parallel quadruplex structure under physiological 

conditions. 

 VEGFq significantly inhibits NSCLC cell growth not due to cell cycle arrest with 

an IC50 of less than 5 µM in A549 cells and an IC50 < 10 µM with H1299 and 

H1944 cells. It does not inhibit non-transformed cell growth. 

 Inhibition of cell growth by VEGFq is not due to changes in the cell cycle. 

 NSCLC cell invasion is decreased by 40% through treatment with VEGFq. 

 VEGFq is taken up into cells without transfection enhancement as early as 1 hour, 

localizing in both the nucleus and cytoplasm. 

 VEGFq is highly stable in serum and intracellularly for longer than 96 hours. 

 VEGFq treatment of NSCLC cells downregulates VEGF protein expression, 

decreasing activation of FLK-1 corresponding with decreased ERK and AKT 

phosphorylation. 

 VEGFq causes a significant decrease in NSCLC cell growth in vivo. 

 VEGFq is highly stable and remains in NSCLC xenograft tumors for greater than 

72 hours. 

 VEGFq preferentially localizes in xenograft tumors compared to other tissues. 
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VI. RECOMMENDATIONS 

 

Although the research performed has answered many questions regarding VEGFq 

and its biological significance, there are an equal number that have arisen through the 

completion of this study. Below is a list of recommendations for future experiments that 

will further the knowledge of the quadruplex-forming oligonucleotide field, especially 

with regards to VEGFq. 

First and foremost, although it is known that it is readily taken up into cells, the 

exact mechanism of this process remains uncharacterized. Since there is more VEGFq 

taken up in comparison to MutVEGF, this suggests that its quadruplex secondary 

structure may play a role in its uptake. By studying VEGFq’s uptake in the presence of a 

quadruplex inhibitor, it can be determined if the quadruplex indeed makes it more 

favorable for uptake into cells. Additionally, since its large molecular weight and highly 

polar nature makes VEGFq thermodynamically impossible for passive diffusion to take 

place, the discovery of either a transport protein or receptor that would facilitate its 

transport or endocytosis would reveal a logical procedure for this process. A third method 

of uptake could possibly involve VEGFq binding to a carrier protein that is then 

transported across the plasma membrane and then disassociates from VEGFq, freeing the 

oligonucleotide once inside. Discovering this uptake mechanism will not only shed light 

on how quadruplex-forming oligonucleotides get inside cells to such a high degree, but it 

could also teach us more about how they interact with other biomolecules. 

Secondly, although it is hypothesized that VEGFq binds exclusively to the VEGF 

promoter, physical evidence is still lacking that would solidify this claim. A mere 
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decrease in VEGF protein expression in response to VEGFq treatment does not 

necessarily prove that it binds to the promoter sequence. RT-PCR analysis of RNA 

extracted from untreated and VEGFq treated cells could be used to examine the changes 

in VEGF expression that may indicate that VEGFq’s effects are at the transcriptional 

level. Another possible method of determining VEGFq’s transcriptional effects is known 

as permanganate genomic footprinting. This method utilizes the ability of permanganate 

(MnO4
-
) to specifically oxidize thymines in single stranded DNA, namely those present 

in the transcription bubbles created by RNA polymerases. These oxidized thymines are 

cleaved with piperidine, the resulting fragments are amplified using PCR primers specific 

to the gene of interest, and the PCR product is run on a gel and visualized using a nucleic 

acid stain such as ethidium bromide (Gilmour, 2009). The resulting bands indicate the 

locations of transcriptions bubbles and subsequently, the locations of RNA polymerases 

on a given gene. If the polymerases on an active gene are free to proceed, it is expected 

that there will be a large number of band sizes signifying the protein’s progression along 

the gene; however, VEGFq treated samples are expected to exhibit very few, short bands, 

since quadruplex formation would inhibit the polymerase to proceed, indicating that 

VEGFq inhibits transcription of the VEGF gene.  

VEGFq could be acting through alternative mechanisms than its proposed binding 

to the VEGF promoter, such as antisense binding to VEGF transcripts or through binding 

to VEGF protein. It may prove to be important to elucidate VEGFq’s exact mechanism of 

action to fully understand its effects. Performing an experiment similar to ChIP 

(chromatin immunoprecipitation) where cell extracts are incubated with VEGFq-
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modified magnetic or agarose beads followed by mass spectrometry for proteins or 

sequencing for nucleic acids, may identify the binding targets of VEGFq.  

Global changes in gene expression and polymerase locations due to treatment 

with VEGFq can be determined by the utilization of next generation sequencing 

following the above described methods (RNA extraction, permanganate footprinting, and 

ChIP). Since the completion of the human genome project, the exact sequence of our 

DNA and the locations and sequences of all genes have been identified; therefore, 

through the use of next generation sequencing, extracted RNA or DNA can be sequenced 

and aligned to their exact locations in the genome, essentially determining their identities. 

This data can be used to identify the basal levels and changes due to treatment across the 

entire genome. This process can be helpful to interrogate genes that would not normally 

be examined with standard single gene approaches.  

RNA sequencing can also be enhanced to allow for quantitation of the number of 

transcripts per cell through the use of synthetic spike-in RNA’s. These synthetic RNA’s 

are comprised of specific sequences that are not present in our genome, so they will not 

be aligned to any gene, but rather they will be identified separately. If the sample’s cell 

number is determined prior to RNA extraction, a known number of copies of spike-in 

RNA can be added to each sample prior to library construction, which will allow for the 

standardization of the sequencing process across samples as well as a calculation for the 

number of copies of each transcript per cell. Finally, comparing the input and sequenced 

spike-in RNA copies can also serve as a sequencing efficiency check, since the two copy 

numbers should be equal. Although the practice of synthetic spike-in RNA’s is relatively 

new, it is clear that there are many advantages to using them (Jiang, 2011). 



 

40 

The author proposes that an undeveloped procedure that combines two established 

methods may prove to be the best way to answer the questions surrounding VEGFq’s 

interactions. A method known as dimethyl sulfate (DMS) footprinting can be used to 

mark the open N7 position of both single stranded and duplex guanines, but not guanines 

associated with a neighboring guanine involved in a G-quartet where the N7 is engaged 

in a hydrogen bond. Marked bases are then susceptible to heating, and following a mild 

alkali treatment, creating fragments that are involved in G-quartets (Neidle, 2006). While 

this may reveal where a quadruplex forms (most notably at the VEGF promoter), it does 

not prove that the VEGFq that was added to cells is the one associated with the 

endogenous sequence, but simply its treatment induced some sort of quadruplex 

formation. Therefore, another method, known as Forster Resonance Energy Transfer 

(FRET), is necessary to further examine this interaction. This method utilizes the 

quantum phenomenon between two fluorophores where, when the donor and acceptor 

molecules are in close enough proximity (within 10 nm), the excitation of the donor 

results in the emission of the acceptor (Didenko, 2001) that can be visualized using 

standard fluorescence detection methods. Additionally, if standards of known of 

fluorescence and varying ODN concentrations per cell number are used, the FRET signal 

can be quantified and the kinetics and efficiency of quadruplex formation can be 

determined. Prior to the addition of VEGFq, extracted DNA can be fragmented (to 

increase PCR efficiency) and guanines on one strand can be marked through one round of 

PCR with fluorescently labeled dGTP added rather than normal dGTP. The PCR product 

can then be incubated with FITC-labeled VEGFq, then undergo DMS treatment before 

FRET detection. As long as the modified guanines do not inhibit quartet formation, this 
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process will essentially determine if VEGFq can bind with an endogenous sequence to 

form a quadruplex. Additionally, if the quadruplexes positive for FRET can somehow be 

purified, these DNA fragments can be sequenced to determine their sequence and then 

can be mapped to reveal their exact location in the genome. While the usage of FRET 

without the DMS step may reveal other binding locations of VEGFq, the elimination of 

non-quartet DNA may decrease the chance of noise due to non-specific binding. Non-

DMS FRET should also be examined with other molecules modified with fluorophores, 

notably those identified in the ChIP experiments, to determine the cell-wide interactions 

of VEGFq. 

Thirdly, chemotherapy drugs and other quadruplex-forming oligonucleotides that 

target other genes should be tested in combination to VEGFq to identify any sets that 

exhibit synergy. Synergy is when the effect caused by the grouping of two or more agents 

is greater than the sum of the effects of the individual agents. Multiple chemotherapies 

are often prescribed to patients because they are synergistic and therefore work against 

the cancer better together than a single agent alone. If VEGFq is found to have 

synergistic effects with other drugs, it would enhance its efficacy, versatility, and 

marketability as an anti-cancer agent. 

Lastly, as nanotechnology continues to be developed, it is evident that it can be 

useful in many fields, including medicine. If VEGFq could be coupled with 

nanoparticles, such as exosomes, it is hypothesized that its efficiency would be enhanced. 

Not only could uptake into tumors be enhanced, but targeting to tissue types would allow 

for less waste of oligonucleotides that end up in normal cells. In fact, it has been 

suggested that exosomes are capable of crossing the blood brain barrier. This would 
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allow VEGFq to be delivered for the treatment of brain cancer, another disease in which 

VEGF is overexpressed. Finally, both quadruplex-forming oligonucleotides and many 

types of nanoparticles are easily modified to perform other functions, such as additional 

drug delivery, targeting to specific tissues, or even adding fluorescent or radioactive 

molecules for imaging and locating their biodistribution. 

It is clear that many questions still remain in the field of quadruplex-forming 

oligonucleotides; however, the anti-cancer activity and other properties that they exhibit 

make them an attractive option for the treatment of cancer, justifying extensive future 

study and development. 
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