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ABSTRACT 

TRIHALOMETHANE FORMATION POTENTIAL IN TWO KENTUCKY 

RESERVOIRS 

Richard Scott Pirkle 

May 12,2007 

Water treatment facilities strive to provide potable drinking water to the 

community which they service. The most common way of insuring drinkable water that 

is free of pathogens is water chlorination, but this can lead to the production of 

carcinogenic disinfection byproducts. This study looks at two drinking water reservoirs 

that have known United States Environmental Protection Agency minimum contaminant 

level violations oftrihalomethanes (THMs), a disinfection byproduct. Physical and 

chemical parameters of the two lakes were measured over the course of 13 months and 

analyses indicated that nitrate and soluble reactive phosphorus, along with temperature 

and pH, played a significant role in determining the THM formation potential (THMFP) 

in the lakes. A bench-top scale experiment used to determine if air oxidation could 

reduce THMFP showed that air oxidation could consistently reduce THMFP in finished 

drinking water, but raw water oxidation leads to variable reductions and increases in 

THMFP. 
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INTRODUCTION 

The production of potable drinking water, free of potential pathogens, is vital for 

reducing illness and is a primary goal for the successful water treatment facility. 

Treatment facilities have employed various highly effective measures to reduce the 

amount of water-borne disease-causing agents, such as the bacteria Salmonella typhi 

(typhoid fever), Vibrio cholerae (cholera), and Shigella species (dysentery) (Johnson et 

al. 1990), but the most commonly used method of disinfection is water chlorination 

(Clark and Sivangensen 1998). Though successful in producing potable drinking water, 

this process can lead to the production of disinfection byproducts (DBPs) when chlorine 

reacts with natural organic matter (NOM) present in the source water. One important 

class ofDBPs is the trihalomethanes (THMs), which include organic hydrocarbons that 

are one or more carbons in length. THMs include, for example, chloroform (CHCh), 

bromoform (CHBr3), and ch10rodibromomethane (CHClBr2)' The production of 

trihalomethanes has come under increased scrutiny, as THMs are known to be 

carcinogens in laboratory animals (Singer 1999) and have also been tied to higher 

incidence of rectal and bladder cancer in humans (Simpson and Hayes 1998). Recent 

regulations (2004) by the United States Environmental Protection Agency (USEPA) have 

reduced the allowable amount ofTHMs in finished water from 100 Ilg/L to 80 Ilg/L. 

This reduction has required some water companies to aggressively treat source waters in 

an effort to remove THM precursors before chlorination. 
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Though the potential hazards from THMs and other DBPs are well known, little is 

known about the exact composition of the natural organic matter that is the source of the 

problem. Various studies (Rook 1976, Stevens et ai. 1976, Reckhow et ai. 1990) have 

shown a strong link between humic substances (nonpolar components of natural organic 

matter) and THM formation potential (THMFP, which is operationally defined as the 

total amount of natural organic matter that is available in source water that will react 

during the chlorination process and form THMs). Other work has indicated a correlation 

between THMFP and algal production (Jack et ai. 2002, Pa1mstrom et ai. 1988, Graham 

et aI., 1998, Schmidt et ai. 1998) as well as increases in THMFP due to microbial 

decomposition of organic matter (Bukaveckas in press). The latter sources ofTHM 

precursors will lead to organic material that is part of the dissolved organic carbon pool 

and thus is not removable via pre-chlorination filtration. Dissolved organic carbon 

(DOC) refers to organic material from plants, animals, and microbes that are broken 

down through decomposition into smaller molecules that enter into solution. These 

compounds include carbohydrates, lipids, and proteins, but it also includes a complex 

array of organic acids and other compounds from the microbial breakdown of dead 

organic matter. 

The processes of coagulation with subsequent flocculation are capable of binding 

and removing DOC from source water. However, in areas with high source water DOC, 

coagulation may not remove sufficient amounts of DOC (or the specific organic 

components of DOC) that will lead to the creation of THM levels above USEP A 

standards. Water treatment plants may choose to pre-oxidize source water with 

potassium permanganate or some other strong oxidizers (Jiang and Lloyd 2002) before 
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treating with a flocculant such as ferric chloride. Enhanced coagulation (the use of 

excessive amounts of coagulants or extremely strong oxidants (Miltner et al. 1994)) has 

also been used as a method of reducing DOC in waters with high organic loads. 

However, this requires the use of chemicals that are known to be hazardous to the 

environment and treatment facility personnel. Current approaches to reduce THM levels 

in finished drinking water focus on reducing the THM formation potential of source 

water prior to chlorination. The reactivity rate of chlorine with NOM is a function of 

treatment type, contact time, the characteristics of the distribution system, and source 

water characteristics (Boccelli et al. 2003). 

Ozonation is an alternative disinfection process in which ozone is used to 

inactivate microbial contaminants in source water (Elovitz et al. 2000). This process 

results in little production of halogenated DPBs, but can lead to the production of 

bromate (Br03) in waters that are bromine rich (USEP A 1998). Bromate has also been 

shown to have adverse effects on human health. Ozone is also an environmental hazard, 

and improper handling of this oxidizer could result in unsafe conditions for employees at 

water treatment facilities (Bascom 1996). 

However, some water companies may find that even the current methods are 

insufficient to address their THMFP problems. The relative importance of various forms 

of THM precursors is thought to be influenced by site-dependent factors, including 

watershed characteristics (soils, land-use) and source water conditions (Jack et al. 2002). 

Therefore the development of a general treatment protocol that will be effective for all 

water companies is unlikely. 
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I examined a particular system in central Kentucky (USA) where high organic 

loads in the source waters have led to levels ofDBPs (especially THMs) above current 

USEP A standards. I first compared the two lakes to determine if significant differences 

in chemical and physical traits between the two lakes might be found and to determine 

whether or not these differences affect THM production. The THM violations tended to 

occur during times when the source water reservoirs were stratified and anoxic in the 

lower layers. The highly reducing conditions present during stratification may enhance 

the production of THM precursors. THM levels also tend to be higher in the distribution 

system than in the source water, which suggests that THM precursors are not being 

sufficiently degraded by the processes currently used by the plant operators. I 

hypothesized that air oxidation of the source waters might prove effective in reducing 

THMFP in the source waters. The air oxidation process does not require the use of harsh 

chemical oxidizers and poses little risk to the environment and water treatment plant 

employees. This reduction could then allow the plant operators to successfully manage 

the THM levels by conventional methods and avoid water quality violations. 
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METHODS 

Study Sites 

Willisburg Lake (37 0 49.64'N, 85 0 9.78'W (NAD83/WGS84)) is located 12 miles 

northeast of Springfield, KY and is the primary water source for the Springfield Water 

and Sewer Commission. Willisburg Lake has an average depth of 2.5 meters, with a 

maximum depth of about 15 meters at full pooL The lake has a surface area of 

approximately 53 hectares and a watershed of approximately 960 hectares. The 

surrounding watershed is dominated by forest (67% landcover, predominantly deciduous 

forest), a modest amount of agriculture (31 % landcover of which most is 

pasture/hay/field) with a small percentage (1 %) designated for residentiallanduse (See 

Figure 1 for an aerial photograph with the approximate sampling location marked). 

Willisburg Lake has three stream inputs; these streams are intermittent during summers 

with low precipitation. Willisburg Lake is monomictic with a stratified period beginning 

between late March and early April. During early to mid-October the lake becomes 

isothermic. 

Springfield Reservoir (37 0 41.19'N, 85 0 13.89'W (NAD83/WGS84)) is a small (6 

hectare) reservoir with a watershed of approximately 65 hectares. A man-made 

impoundment, Springfield Reservoir has no perennial stream input (see Figure 2 for 

aerial photograph); the major inflows of water come from water pumped from Willisburg 

Lake and rain water. Springfield Reservoir also exhibits monomictic thermal cycles, 
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above the bottom of the lake (total of four grab samples) using a translucent lO-liter Van 

Dorn water sampler. Care was taken with the bottom sample to not disturb the benthic 

substrate and any grab sample that contained a large amount of sediments was released 

and another grab sample was taken. After the lake became isothermal, only the surface 

and bottom samples were taken at monthly intervals. The water samples were transferred 

to clean containers and brought back to the lab, on ice, for processing. Beginning in May 

2005, a finished water sample (post-processed and chlorinated) was concurrently 

collected from a water tap in the treatment plant. Hydrolab parameters were not gathered 

from the finished water samples. 

Samples were prepared for analysis within 8 hours of collection. For each 

collected depth, whole water samples were subsampled for nutrient analysis. Four 500-

mL bottles were filled (three of which were preserved with concentrated H2S04, the other 

kept cold) and sent the next day to the Water Analysis Training Education and Research 

Services (W A TERS) Laboratory at Western Kentucky University for analysis of 

ammonia, total Kjeldahl nitrogen, nitrate/nitrite, total phosphorous, soluble reactive 

phosphorous (SRP), chloride, and silicon dioxide levels. The concentrations were 

determined by standard methods (See Table 1 for particular APHA [1998] methods). 

Total Kjeldahl nitrogen consists of organic nitrogen plus ammonia-nitrogen (NH3-N). 

The THMFP for each depth collected was determined using Standard Method 5710B 

(APHA 1998). To summarize the standard procedure, a one liter dark amber glass bottle 

was filled with water from each depth and lake sampled. The water was then quenched 

(saturated) with chlorine and incubated for seven days upon which the sample was 
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Table 1 

Standard Methods from APHA for Analysis of Nutrients 

Analysis Method 
DOC SM 5310 B 

Ammonia SM 4500-NH3 D 
TKN SM 4500-Norg B 

Nitrate SM 4110 B 
SRP SM 4500-P B&E 
TP SM 4500-P B&E 

Chloride SM4110B 
Silica SM 3111 D 

Standard Methods were taken from APHA 1998 in accordance with USEP A guidelines 

for analysis of these nutrients. 
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analyzed by purge and trap gas chromatographic - mass spectrometric method 

(performed at Beckmar Environmental Laboratory in Louisville, KY, USA with a 

Hewlett Packard 5890 Series 11/5971 gas chromatograph/mass selective detector withia 

Teckmar LSC-2000 purge and trap concentrator (Standard Method 6232C; APHA 

1998)). Results were reported as the four major components ofTHMFP (chloroform. 

I 

(CHCh), bromodichloromethane (CHBrCh), chlorodibromomethane (CHClBr2), and I 

bromoform (CHBr3)). THMFP was assumed to be the sum of these four haloforms. ~ 
i 

portion of the remaining water was filtered through an ashed glass fiber filter (0.5 /lml 

pore size, 47 rum, Pan Type AlE) in order to ascertain particulate organic carbon (P0F) 
levels. The filtered water was collected and sent to the WATERS lab at WKU for II 

I 

analysis of dissolved organic carbon (Table 1). Lastly, a subsample of water was filt red 

through MCE (mixture of cellulose acetate and cellulose nitrate) filters (Fisherbrand, ore 

size of 0.45 /lm). Chlorophyll a levels (acid corrected for phaeo pigments) were 

determined by fluorometric methods with a Turner Designs fluorometer Modell O-Al 

Air Oxidation Experiment I 

Beginning in August 2005, extra water samples were taken (using the 

methodology from above) from the lake and plant and were prepared for the air oxidation 
! 

experiment. All samples were allowed to warm to room temperature (approximately i 

I 

I 

22°C). Redox potential was measured at the outset and at the conclusion of the aerati~n 

period to ensure that air oxidization was occurring. Redox potential was determined 

using an Orion Redox Probe (Model 967800) and an Orion pH Meter (Model 420A). 

The bottle tops were removed from the four replicate water samples and the initial redox 

potential was determined. One sample was then resealed and used as a reference sample. 
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The remaining samples were aerated at a controlled air velocity for approximately 16 

hours. Final redox potential was recorded for the aerated samples which were then 

prepared for incubations to determine THMFP along with the previously sealed reference 

sample. THMFP was quantified using a standardized method that mimics processes 

occurring during water treatment (APHA, 1998). Samples were buffered to pH 7.0; 

chlorine demand was quenched with excess chlorine and incubated at 25°C for seven 

days. Upon completion of the incubation period, THM concentrations were determined 

using the purge and trap gas chromatographic-mass spectrometric method described 

above. 

Statistical Analysis 

I analyzed the data using SAS (Version 9.1.3, 2004). A repeated measures mixed 

model was chosen to eliminate temporal pseudoreplication. THMFP was chosen as the 

response variable and the lakes were used as subjects. The mixed procedure allows for 

the modeling of covariance stmcture in regards to the measured response variables (i.e. 

THMFP). The appropriate covariance stmcture was selected using the log likelihood 

function method and chi square tests for the significance of model against other related 

covariance stmctures. For all analyses, the compound symmetry (the assumption that the 

within subject variance is homogeneous as well as the covariance to be homogenous) 

model was significantly better than variance component (in which the assumption is only 

that the within subject variance is homogenous) model. To begin, all measured variables 

were used for the covariance matrix and backwards elimination was used to remove non

significant effects from the model. 
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RESULTS 

Comparative Study 

Average THMFP for Willisburg Lake and Springfield Reservoir was similar 

throughout the study period (August 2004 - October 2005). Surface water samples from 

Willisburg Lake had an average THMFP of209.99 Jlg/L (SE = 21.24) while Springfield 

Reservoir had a slightly lower average THMFP concentrations of 190.88 Jlg/L (SE = 

22.48) though the difference was not statistically significant. Bottom water samples for 

both lakes averaged 208.65 Jlg/L (SE = 25.55) and 167.24 (SE = 24.51) for Willisburg 

Lake and Springfield Reservoir, respectively. A time series analysis ofTHMFP over the 

study period showed a general downward trend in THMFP concentration (see Figure 6) 

that was apparent in both surface and bottom samples of each lake. 

Statistical analysis of THMFP as a response variable, and all other measured 

physical and chemical parameters of the water, resulted in significant covariation 

between some measured parameters. Backwards elimination was used to remove factors 

one at a time in order to find the principle factors that were related to THMFP. The 

procedure resulted in four parameters being significant at a level ofp < 0.05: Nitrate (p = 

0.0064), SRP (p = 0.0370), temperature (p = 0.0016), and pH (p = 0.0008). Two other 

variables (DOC and chlorides) were near statistical significance (p = 0.0546 and 0.0761, 

respectively). The depth from which the water was taken was not found to be statistically 

significant (p = 0.3845, see Table 2) in explaining THMFP. 
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Figure 6 

Trihalomethane Formation Potential Profile 
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Trihalomethane formation potential in both lakes at surface and bottom. At the beginning 

of the study (August 2004), THMFP was highest but generally trended downward 

throughout the rest of the 14th month study period. The study began (Day 0) on Julian 

date 04233 and ended (Day 424) on Julian date 05290. 
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Table 2 

Mixed Procedure Table for Comparative Study 

Effect F -Statistic P-value 
Depth 2.10 0.3845 
Day 9.45 <0.0001 
DOC 3.81 0.0546 

Nitrate 7.87 0.0064 
SRP 4.51 0.0370 

Chlorides 3.23 0.0761 
Temperature 10.77 0.0016 

pH 12.07 0.0008 

Significant results of the mixed model analysis after backwards elimination. The 

significant Day effect identifies that THMFP changed over time. Depth from which the 

sample was collected had no statistically discernible effect on THMFP while nitrate, 

SRP, temperature, and pH all showed statistically significant results. DOC and chloride 

concentrations were nearly statistically significant. 
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Nitrate concentrations at the beginning of the study period averaged 0.61 mg L-1
, 

but by Day 17 the concentrations were 70% lower. Nitrate concentrations increased 

slightly for Willisburg Lake towards the end of 2004 and the beginning of 2005 but by 

Day 242 (Julian date 05108), Willisburg Lake and Springfield Reservoir had consistently 

low nitrate concentrations which remained low through the end of the study period (see 

Figure 7). 

Soluble reactive phosphorus (SRP) concentrations were higher and more variable 

for both lakes and depths during the beginning of the sampling period (see Figure 8). 

Consistent values were seen for both lakes and depths after Day 151 (Julian date 05017) 

until an increase was seen in SRP concentrations for Springfield bottom samples. 

Temperature and pH profiles in both lakes throughout the study period are typical 

for mid-latitude lakes (see Figures 9 and 10, respectively). The water temperatures at the 

lake bottoms were different between the two lakes at the beginning of the sampling 

period until October 2004 (when both lakes turned over) with Willisburg Lake having 

colder hypoliminion temperatures during the initial stratified period (August 2004 to late 

October 2004). After mixis, bottom and surface water temperatures were very similar, 

with the largest single difference between them during that time being no more than 1.5 

degrees C. Surface water temperature was similar for both lakes throughout the sampling 

period. Differences in pH at depth were found, but both lakes responded similarly during 

the sampling period with generally higher pH at the surface (most likely driven by algal 

activity) and more neutral pH at the bottom during stratified periods. While the lakes 

were isothermal, the pH in both lakes at both depths was generally slightly basic. 
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Figure 7 

Nitrate Concentration Profile 
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Nitrate concentrations were high for both lakes and depths at the start of the sampling 

period (from August 2004 to October 2004, during the first stratified time). Isothermal 

conditions resulted in an increase in nitrate concentrations which were reduced at the start 

of the second measured stratified period (April 2005, Day 242, Julian date 05108). 
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Figure 8 

Soluble Reactive Phosphorus Profile 
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Soluble reactive phosphorus concentrations for both lakes and depths were higher during 

the beginning of the study period and then remained low throughout most of the rest of 

the study. Increased SRP in Springfield Reservoir's bottom water may be due to the 

addition of cupric sulfate by the water company in order to reduce algal growth 2 weeks 

prior to the increase in SRP. 
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Figure 9 

Temperature Profile 
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Temperature profile for Willisburg Lake and Springfield Reservoir during the study 

period. Surface water temperatures for both lakes were very similar throughout the study 

period while bottom water temperatures from Willisburg Lake were lower than 

Springfield Reservoir during the beginning of the study. During the second measured 

stratification period, the bottom water temperatures were very similar for both lakes. 
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Figure 10 

pH Profile 
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pH of bottom water samples from both lakes were circumneutral during most of the study 

period. High pH values were obtained at the surface and were likely driven by algal 

production during stratified periods at both lakes. 
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DOC concentrations were highly variable (see Figure 11). DOC concentrations 

generally declined throughout the study period and samples taken from Willisburg Lake 

and Springfield Reservoir were similar to each other at both depths sampled. Free 

chloride concentrations found in the lakes were similar to each other and followed the 

same pattern in both lakes and both depths (see Figure 12). Chloride concentrations for 

both lakes and depths decreased during isothermal periods but remained consistent and 

higher during both stratified periods. 

Air Oxidation Experiment 

Results from the aeration experiments were variable and depended on site. 

Hypolimnion samples from both lakes showed high variability, and were statistically 

insignificant. THMFP for Willisburg Lake and Springfield Reservoir throughout the time 

period sampled responded variably (increases and decreases) to aeration (see Figure 13). 

Statistical analysis of these changes in THMFP from before aeration to after of 

Willisburg Lake and Springfield Reservoir gave non-significant results due to the 

manipulation (p = 0.4480 and p = 0.2533, respectively, see Table 3). However, THMFP 

in finished water was consistently reduced as much as 50% by aeration throughout the 

seven weeks of sampling (p < 0.0001, see Figure 13). 
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Figure 11 

Dissolved Organic Carbon Profile 
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Dissolved organic carbon concentrations were variable in both lakes and at surface and 

bottom. DOC concentrations declined slightly towards the end of the study period. 
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Figure 12 

Chloride Profile 
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Chloride concentrations were similar for both lakes and depths during the entire sampling 

period. A decrease in chloride concentrations was observable after the first stratification 

period (October 2004) and a subsequent increase towards the end of the isothermal period 

(April 2005) resulting in chloride concentrations similar to those at the beginning of the 

study. 
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Figure 13 

Air Oxidation x eriment 
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Results from th bench-top scale air oxidation experiment. Dark bars represent the 

THMFP of the amples that were split off and not bubbled while the lighter bars are the 

average THMF of the three aerated samples. Finished water showed a significant (p < 

0.0001) reducti n in THMFP during each week sampled, while raw water from the 

hypolimnion of both lakes showed no consistent pattern of reduction by aeration, and 

often resulted i an increase in THMFP. 
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Table 3 

Mixed Procedure Table for Air Oxidation Experiment 

Site F -Statistic P-value 
Finished Water 29.02 <0.0001 

Springfield Bottom 1.36 0.2533 
Willisburg Bottom 0.59 0.4880 

The mixed procedure analysis for the aeration experiment shows a highly significant 

difference in THMFP due to manipulation (aeration) for finished water samples while 

raw water samples from both lakes hypolimnion show no significant results. 
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CONCLUSIONS 

The significant lake factors that correlated best with THMFP in our study are 

specifically related to the nutrients (nitrate and SRP) and conditions (water temperature 

and pH) of the lake. During this period the lakes were eutrophic (Nurnberg 1996) and 

nutrient levels were similar to other mesotrophic/eutrophic lakes in this region. 

Temperature ranges and approximate lake turnover times were also consistent with other 

warm monomictic, mid-latitude lakes in the area (Bukaveckas, in press). THMFP was 

highest when nutrient concentrations were high. The increase in nitrate and SRP during 

the beginning of the study may indicate an algal mediated THMFP. Jack et al. in 2002 

found that extra cellular products (ECPs) and algal senescence were identified as the 

likely causative factor for increasing the precursors to THM production. In another 

study, Arruda and Fromm (1989) showed a positive correlation with THMFP and the 

trophic state of a lake suggesting autochthonous production of precursors as a possible 

source THMFP. 

The overall decline in THMFP over the 14 month study may be explainable by 

climate differences between 2004 and 2005. The National Oceanographic and 

Atmospheric Administrations' (NOAA) Palmer Drought Severity Index demonstrates a 

decrease in rainfall from the beginning of the sampling period to the end, with the region 

experiencing an Unusual Moist Spell or Very Moist Spell during the end of2004 to Near 

Normal or Moderate Drought through October 2005 (From the NOAA National Climatic 

Data Center). The decrease in rainfall would lead to a decrease in allochthonous inputs 
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(DOC, phosphorus, and nitrate) from the watershed surrounding Willisburg Lake and 

Springfield Reservoir. These in tum could reduce the amount of algal productivity and 

hence reduce source of the THM precursors. Higher concentrations of THMFP during 

the isothermal period may be due to hypolimnetic release of organic precursors (e.g. 

humic acids). The increase in THMFP due to hypolimnetic production ofTHM 

precursors has been observed in other regional lakes (Taylorsville Lake, Taylorsville, 

KY), and a similar mechanism may be responsible for the high THMFP during 

isothermal periods (Bukaveckas, in press). Further work in characterizing the exact 

composition of the precursor pool would be needed to determine if these hypotheses are 

correct. 

Though THMFP in raw water was highest during the beginning of the study 

period and the isothermal period between 2004 and 2005, Springfield Water Company 

only reported USEP A THM violations during months when the source water was 

stratified. Finished water samples taken (May 2005 - October 2005, a stratified period) 

show that a significant amount of DOC "survives" the coagulation/flocculation process 

employed by the Springfield Water Company. Average DOC levels were reduced by 

approximately 50%, leaving a significant amount of possible organic precursors available 

for additional formation of THMs during distribution. 

In the case of Springfield Water Company, the amounts of NOM and the 

particular constituents (i.e. the NOM quality) of the THM precursor pool have lead to the 

need for the water treatment facility to modify its methodologies. The constituents of the 

THM precursor pool may vary based on the mechanism by which they form 

(hypolimnetic formation vs. extra cellular products formation), and one method of 
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precursor reduction may not sufficiently reduce THMFP. For Springfield Water 

Company, air oxidation subsequent to chlorination during stratified periods may be a 

valuable tool for reducing THMFP. 

In the bench-top scale experiments, 16 hours of aeration was able to reduce the 

amounts of THM precursors in I-liter of finished drinking water by as much 52%. This 

reduction was enough to lower THMFP levels from above current USEP A standards to 

acceptable levels. I believe that this change occurs by the process of air oxidation which 

is known to degrade organic based materials (Denney 1971). The degradation occurs 

through the formation of a free radical on the carbon molecule leading to the oxidation of 

that molecule. Oxidation ofTHM precursors may "inactivate" them such that they would 

not add to the THMFP. Levels of dissolved organic carbon (DOC) measured during this 

study indicates that the processes used at the Springfield Water Treatment Plant (SWTP) 

may not effectively remove important small organic molecules that contribute to 

THMFP. Levels of DOC in raw water averaged 5.16 mgIL (SE = 0.08 mg/L) during the 

sampling period for which the aeration experiment took place, while DOC levels in 

processed finished water were only reduced to an average of 2.86 mgIL (SE = 0.05 

mg/L). POC levels in the finished water during this period were negligible and the 

remaining DOC is likely the primary THM precursor source. At a bench top scale, air 

oxidation of finished water was capable of significantly reducing THMFP (p<0.000 1). 

Technological advances would be necessary to implement any air oxidation methods to 

finished drinking water, but I believe that possible environmental and health benefits 

might be worth the effort. 
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In the raw unfiltered water, manipulation resulted in either drastic decreases in 

THMFP after air oxidation or increases in THMFP of up to 400%. The variability in 

THMFP reduction may be due to differences in the microbial communities that might 

respond differently to changing redox potentials during oxidation. Further work 

identifying microbial community structure would be needed in order to ascertain whether 

or not this hypothesis is valid. Ifvalid, future work could aim at manipulating microbial 

community structures in storage basins that could be aerated to reduce THMFP without 

the need for strong oxidizers. Technological adjustments for the basin and aeration units 

would be achievable with relative ease as existing flocculation basins could be easily 

converted to aeration basins. 

The findings of this study show the importance of understanding watershed level 

processes (watershed landuse) and their possible implication for THMFP during different 

climatic patterns and thermal status (isothermal vs. stratified). A single process may not 

sufficiently reduce THM precursors, though further work characterizing the constituents 

that make up the precursor pool, and how those precursors form, would certainly allow 

for a greater understanding of the exact mechanisms that lead to these differences and 

methods of control. My results show that eutrophication may have an impact on THMFP 

for this particular system and the implementation of a Best Management Practices to 

reduce nutrient loading may reduce THMFP in Willisburg Lake. This in tum could 

reduce the organic carbon load that is being processed at the treatment facility. A 

reduction in carbon loads at the treatment facility could allow current methodologies of 

reducing known THM precursors (TOe, DOC) to function at a level that might avoid 

USEP A violations. 
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APPENDICES 

The following appendix contains the raw data which was used for statistical mixed 

procedure analysis using SAS version 9.1.3 and described in the Methods section. Blank 

spaces indicate no data was taken. All units are in mg L-1 unless otherwise noted. 
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Julian 
Lake Date Date Day Depth DOC Ammonia 

Springfield 8/20/2004 04233 1 Surf 6.265 0.09 
Springfield 8/29/2004 04242 10 Surf 6.075 0.09 
Springfield 9/5/2004 04249 17 Surf 5.667 0.09 
Springfield 9/12/2004 04256 24 Surf 6.225 0.09 
Springfield 9/19/2004 04263 31 Surf 5.689 0.09 
Springfield 9/26/2004 04270 38 Surf 0.09 
Springfield 10/3/2004 04277 45 Surf 6.272 0.09 
Springfield 11/9/2004 04314 82 Surf 5.237 0.09 
Springfield 12/13/2004 04348 116 Surf 5.398 0.45 
Springfield 1/17/2005 05017 151 Surf 5.264 0.09 
Springfield 2/14/2005 05045 179 Surf 5.004 0.09 
Springfield 3/14/2005 05073 207 Surf 5.092 0.09 
Springfield 4/18/2005 05108 242 Surf 5.146 0.09 
Springfield 5/5/2005 05125 259 Surf 5.466 0.09 
Springfield 5/30/2005 05150 284 Surf 5.3705 0.09 
Springfield 6/6/2005 05157 291 Surf 5.436 0.09 
Springfield 6/13/2005 05164 298 Surf 6.935 0.09 
Springfield 6/20/2005 05171 305 Surf 6.022 0.09 
Springfield 6/27/2005 05178 312 Surf 6.842 0.01 
Springfield 7/5/2005 05186 320 Surf 4.945 0.13 
Springfield 7/11/2005 05192 326 Surf 4.639 0.07 
Springfield 7/18/2005 05199 333 Surf 4.515 0.009 
Springfield 7/25/2005 05206 340 Surf 4.752 0.06 
Springfield 8/1/2005 05213 347 Surf 4.735 0.009 
Springfield 8/17/2005 05229 363 Surf 5.213 0.02 
Springfield 8/22/2005 05234 368 Surf 5.042 0.04 
Springfield 8/29/2005 05241 375 Surf 4.964 0.13 
Springfield 9/5/2005 05248 382 Surf 5.028 0.009 
Springfield 9/26/2005 05269 403 Surf 4.924 0.03 
Springfield 10/17/2005 05290 424 Surf 5.209 0.009 
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Lake Date Day Depth TKN Nitrate SRP 
Springfield 8/20/2004 1 Surf 0.09 1.38 0.07 
Springfield 8/29/2004 10 Surf 0.09 0.96 0.03 
Springfield 9/512004 17 Surf 0.09 0.48 0.1 
Springfield 9/12/2004 24 Surf 1.16 0.32 0.05 
Springfield 9/19/2004 31 Surf 0.88 0.23 0.009 
Springfield 9/26/2004 38 Surf 0.8 0.41 0.009 

Springfield 10/3/2004 45 Surf 0.56 0.09 0.2 
Springfield 11/9/2004 82 Surf 0.56 0.17 0.01 
Springfield 12/13/2004 116 Surf 0.07 0.22 0.009 
Springfield 1/1712005 151 Surf 0.07 0.17 0.009 
Springfield 2/14/2005 179 Surf 0.28 0.0096 0.009 
Springfield 3/14/2005 207 Surf 0.14 0.01 0.009 
Springfield 4/18/2005 242 Surf 1.295 0.007 0.009 
Springfield 5/5/2005 259 Surf 0.63 0.02 0.009 
Springfield 5/30/2005 284 Surf 1.26 0.0295 0.009 
Springfield 616/2005 291 Surf 1.75 0.0458 0.009 
Springfield 6/13/2005 298 Surf 0.91 0.01 0.009 
Springfield 6/20/2005 305 Surf 0.98 0.01 0.009 

Springfield 6/27/2005 312 Surf 1.043 0.02 0.009 

Springfield 7/5/2005 320 Surf 0.01 0.009 
Springfield 7/11/2005 326 Surf 0.005 0.009 

Springfield 7/18/2005 333 Surf 0.005 0.009 
Springfield 7/25/2005 340 Surf 0.005 0.009 

Springfield 8/1/2005 347 Surf 0.005 0.009 

Springfield 8/17/2005 363 Surf 0.005 0.009 

Springfield 8/22/2005 368 Surf 0.013 0.009 

Springfield 8/29/2005 375 Surf 0.005 0.009 

Springfield 9/5/2005 382 Surf 0.04 0.009 

Springfield 9/26/2005 403 Surf 0.009 0.009 

Springfield 10/17/2005 424 Surf 0.04 0.04 
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Lake Date Day Depth TP Chlorides Silica 
Springfield 8/20/2004 1 Surf 0.15 3.47 1.68 
Springfield 8/29/2004 10 Surf 0.25 3.1 2.99 
Springfield 9/512004 17 Surf 0.3 2.98 1.95 
Springfield 9/12/2004 24 Surf 0.13 3.05 2.97 
Springfield 9/19/2004 31 Surf 0.12 3.26 3.14 
Springfield 9/26/2004 38 Surf 0.11 3.14 3.23 
Springfield 10/3/2004 45 Surf 0.4 2.84 2.89 
Springfield 11/9/2004 82 Surf 0.07 2.07 1.55 
Springfield 12/13/2004 116 Surf 0.49 1.38 3.4 
S~ringfield 1/1712005 151 Surf 0.14 2.51 6.5 
Springfield 2/14/2005 179 Surf 0.06 2.72 6.71 
Springfield 3/14/2005 207 Surf 0.02 3.53 1.19 
Sprinqfield 4/18/2005 242 Surf 0.009 3.85 1.032 
Springfield 5/5/2005 259 Surf 0.009 3.87 0.398 
Springfield 5/30/2005 284 Surf 0.26 3.2897 0.299 
Springfield 616/2005 291 Surf 0.1 3.2923 0.689 
Springfield 6/13/2005 298 Surf 0.05 3.7 1.241 

S~ringfield 6/20/2005 305 Surf 0.03 3.71 1.239 
Springfield 6/27/2005 312 Surf 0.19 3.84 0.603 
Springfield 7/5/2005 320 Surf 0.09 3.83 1.829 
Sprinqfield 7/11/2005 326 Surf 0.11 3.89 3.648 
Springfield 7/18/2005 333 Surf 0.06 3.79 3.648 

Springfield 7/25/2005 340 Surf 0.06 3.88 1.102 
Springfield 8/1/2005 347 Surf 0.15 3.86 1.515 
Springfield 8/17/2005 363 Surf 0.17 3.88 2.465 
Springfield 8/22/2005 368 Surf 0.2 4 3.123 
Springfield 8/29/2005 375 Surf 0.17 3.98 5.404 
Springfield 9/512005 382 Surf 0.17 4.13 4.929 

Springfield 9/26/2005 403 Surf 0.14 3.85 2.664 

Springfield 10/17/2005 424 Surf 0.23 4.15 2.106 
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THM Total Chi a Pheoa 
Lake Date Day Depth (ug/L) (ug/L) (ug/L) 

Springfield 8/20/2004 1 Surf 498.1 37.4 15.4 
Springfield 8/29/2004 10 Surf 365.6 193.9 -11.2 
Springfield 9/5/2004 17 Surf 341.1 134.3 4.5 
Springfield 9/12/2004 24 Surf 286.4 99.5 5.2 

Springfield 9/19/2004 31 Surf 234.6 62.0 5.6 
Springfield 9/26/2004 38 Surf 43.8 2.4 
Sj>ringfield 10/3/2004 45 Surf 288.7 27.4 4.7 
Springfield 11/9/2004 82 Surf 244.2 11.4 6.9 
Springfield 12/13/2004 116 Surf 294 10.9 6.6 
Springfield 1/17/2005 151 Surf 369.2 9.4 14.1 
Springfield 2/14/2005 179 Surf 206.6 16.2 8.9 
Springfield 3/14/2005 207 Surf 267.7 27.7 6.3 
Springfield 4/18/2005 242 Surf 333 9.4 5.5 
Springfield 5/5/2005 259 Surf 139.1 9.9 9.2 

Springfield 5/30/2005 284 Surf 75.1 44.0 2.0 
Springfield 6/6/2005 291 Surf 240.6 66.1 0.8 

Springfield 6/13/2005 298 Surf 49.5 30.1 3.3 

Springfield 6/20/2005 305 Surf 150.7 36.9 27.1 
Springfield 6/27/2005 312 Surf 56.2 
Springfield 7/5/2005 320 Surf 184.2 
Springfield 7/11/2005 326 Surf 95.5 
Springfield 7/18/2005 333 Surf 117.8 
Springfield 7/25/2005 340 Surf 176.8 
Springfield 8/1/2005 347 Surf 78.4 
Springfield 8/17/2005 363 Surf 46.3 
Springfield 8/22/2005 368 Surf 66.7 
Springfield 8/29/2005 375 Surf 114.2 

Springfield 9/5/2005 382 Surf 61.6 
Springfield 9/26/2005 403 Surf 67.8 
Springfield 10/17/2005 424 Surf 85.7 
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Lake Date Day Depth poe Temperature DO 
Springfield 8/20/2004 1 Surf 8.79 25.24 6.71 
Springfield 8/29/2004 10 Surf 13.83 26.52 8.38 
Springfield 9/5/2004 17 Surf 10.80 25.11 7.41 
Springfield 9/12/2004 24 Surf 9.71 24.69 12.4 
Springfield 9/19/2004 31 Surf 7.37 21.9 4.75 
Springfield 9/26/2004 38 Surf 9.06 22.44 8.5 
Springfield 10/3/2004 45 Surf 4.36 22.14 7.03 
S~iQ9field 11/9/2004 82 Surf 2.10 14.08 5.13 
Springfield 12/13/2004 116 Surf 3.63 8.65 6.58 
Springfield 1/17/2005 151 Surf 1.87 6.59 11.15 
Springfield 2/14/2005 179 Surf 6.46 6.04 12.89 
Springfield 3/14/2005 207 Surf 4.43 6.06 8.97 
S~ingfield 4/18/2005 242 Surf 5.31 17.35 4.55 
Springfield 5/5/2005 259 Surf 1.47 14.75 9.24 
Springfield 5/30/2005 284 Surf 1.47 23 9.33 
Springfield 6/6/2005 291 Surf 10.59 25.71 13.34 
Springfield 6/13/2005 298 Surf 8.80 25.67 8.18 
Springfield 6/20/2005 305 Surf 8.24 25.28 7.7 
Springfield 6/27/2005 312 Surf 6.25 28.52 5.2 
Springfield 7/5/2005 320 Surf 4.98 28.28 6.14 
Springfield 7/11/2005 326 Surf 5.21 27.66 4.12 
Springfield 7/18/2005 333 Surf 6.75 26.6 9.3 
Springfield 7/25/2005 340 Surf 4.00 29.76 10.92 

S~ingfield 8/1/2005 347 Surf 15.26 28.37 12.62 
Springfield 8/17/2005 363 Surf 7.43 27.98 4.55 
Springfield 8/22/2005 368 Surf 14.07 27.98 6.45 
Springfield 8/29/2005 375 Surf 10.00 25.86 4.22 
Springfield 9/5/2005 382 Surf 6.75 24.36 4.65 

Springfield 9/26/2005 403 Surf 6.80 24.81 3.31 
Springfield 10/17/2005 424 Surf 5.66 18.29 2.89 
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Lake Date Day Depth pH SpCond 
Springfield 8/20/2004 1 Surf 8.42 206 
Springfield 8/29/2004 10 Surf 8.22 191 
Springfield 9/512004 17 Surf 7.91 204.3 
Springfield 9/12/2004 24 Surf 8.49 199.1 
Springfield 9/19/2004 31 Surf 7.15 197.2 
Springfield 9/26/2004 38 Surf 8.83 210.6 

Springfield 10/3/2004 45 Surf 7.51 221.1 
Springfield 11/9/2004 82 Surf 7.56 266.1 
Springfield 12/13/2004 116 Surf 7.45 275.2 
Springfield 1/1712005 151 Surf 7.3 263.9 
Springfield 2/14/2005 179 Surf 8.31 284.2 
Springfield 3/14/2005 207 Surf 8.15 301.7 
Springfield 4/18/2005 242 Surf 8.26 315.6 
Springfield 5/5/2005 259 Surf 8.09 312.2 
Springfield 5/30/2005 284 Surf 8.65 295.2 
Springfield 6/612005 291 Surf 8.49 250.9 
Springfield 6/13/2005 298 Surf 8.38 234.4 
Springfield 6/20/2005 305 Surf 8.4 246.1 
Springfield 6/27/2005 312 Surf 7.7 259 
Springfield 7/512005 320 Surf 8.08 237.8 
S~ringfield 7/11/2005 326 Surf 7.59 246.6 

Springfield 7/18/2005 333 Surf 8.52 244.9 

Springfield 7/25/2005 340 Surf 8.86 212.4 

Springfield 8/112005 347 Surf 9.28 193.2 
Springfield 8/17/2005 363 Surf 8.76 194.2 

Springfield 8/22/2005 368 Surf 8.95 196.3 
Springfield 8/29/2005 375 Surf 8.08 208.1 
Springfield 9/5/2005 382 Surf 8.13 217.7 

Springfield 9/26/2005 403 Surf 7.85 224 

Springfield 10/17/2005 424 Surf 7.65 245.5 
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Julian 
Lake Date Date Day Depth DOC Ammonia 

Springfield 8/20/2004 04233 1 Bottom 5.922 0.09 
Springfield 8/29/2004 04242 10 Bottom 5.699 0.09 
Springfield 9/5/2004 04249 17 Bottom 6.453 0.09 
Springfield 9/12/2004 04256 24 Bottom 6.2 0.09 
Springfield 9/19/2004 04263 31 Bottom 0.09 
Springfield 9/26/2004 04270 38 Bottom 6.653 0.09 
Springfield 10/3/2004 04277 45 Bottom 5.885 0.09 
Springfield 11/9/2004 04314 82 Bottom 5.019 0.09 
Springfield 12/13/2004 04348 116 Bottom 6.015 1.4 
Springfield 1/17/2005 05017 151 Bottom 5.56 0.09 
Springfield 2/14/2005 05045 179 Bottom 5.051 0.09 
Springfield 3/14/2005 05073 207 Bottom 5.332 0.09 
Springfield 4/18/2005 05108 242 Bottom 5.35 0.09 
Springfield 5/5/2005 05125 259 Bottom 5.366 0.09 
Springfield 5/30/2005 05150 284 Bottom 5.255 0.09 
Springfield 6/6/2005 05157 291 Bottom 5.261 0.09 
Springfield 6/13/2005 05164 298 Bottom 6.786 0.09 
Springfield 6/20/2005 05171 305 Bottom 6.686 0.06 
Springfield 6/27/2005 05178 312 Bottom 6.716 0.2 
Springfield 7/5/2005 05186 320 Bottom 5.022 0.09 
Springfield 7/11/2005 05192 326 Bottom 4.884 0.09 
Springfield 7/18/2005 05199 333 Bottom 4.887 0.04 
Springfield 7/25/2005 05206 340 Bottom 5.111 0.009 
Springfield 8/1/2005 05213 347 Bottom 4.834 0.17 
Springfield 8/17/2005 05229 363 Bottom 5.26 0.13 
Springfield 8/22/2005 05234 368 Bottom 5.414 0.36 
Springfield 8/29/2005 05241 375 Bottom 7.112 0.02 
Springfield 9/5/2005 05248 382 Bottom 5.072 0.009 
Springfield 9/26/2005 05269 403 Bottom 4.886 0.06 
Springfield 10/17/2005 05290 424 Bottom 4.974 0.009 
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Lake Date Day Depth TKN Nitrate SRP 
Springfield 8/20/2004 1 Bottom 0.09 0.51 0.1 
Springfield 8/29/2004 10 Bottom 0.09 0.35 0.04 
Springfield 9/512004 17 Bottom 0.09 0.09 0.4 
Springfield 9/12/2004 24 Bottom 0.56 0.1 0.04 
Springfield 9/19/2004 31 Bottom 1.26 0.09 0.009 
Springfield 9/26/2004 38 Bottom 0.7 0.09 0.009 
Springfield 10/3/2004 45 Bottom 0.84 0.09 0.1 
Springfield 11/9/2004 82 Bottom 0.595 0.18 0.01 
Springfield 12/13/2004 116 Bottom 0.77 0.2 0.01 
Springfield 1/1712005 151 Bottom 0.56 0.16 0.009 
Springfield 2/14/2005 179 Bottom 0.56 0.0096 0.009 
Springfield 3/14/2005 207 Bottom 0.7 0.004 0.009 
Springfield 4/18/2005 242 Bottom 1.12 0.007 0.009 
Springfield 5/5/2005 259 Bottom 0.7 0.01 0.009 
Springfield 5/30/2005 284 Bottom 1.085 0.02 0.009 
Springfield 6/6/2005 291 Bottom 1.05 0.0312 0.009 
Springfield 6/13/2005 298 Bottom 0.94 0.01 0.009 
Springfield 6/20/2005 305 Bottom 1.855 0.005 0.009 
Springfield 6/27/2005 312 Bottom 1.533 0.01 0.009 
Springfield 7/5/2005 320 Bottom 0.004 0.009 
Springfield 7/11/2005 326 Bottom 0.02 0.09 
Springfield 7/18/2005 333 Bottom 0.005 
Springfield 7/25/2005 340 Bottom 0.005 0.02 
Springfield 8/1/2005 347 Bottom 0.005 0.14 
Springfield 8/17/2005 363 Bottom 0.005 0.009 
Springfield 8/22/2005 368 Bottom 0.005 0.009 
Springfield 8/29/2005 375 Bottom 0.005 0.01 
Springfield 9/5/2005 382 Bottom 0.005 0.009 
Springfield 9/26/2005 403 Bottom 0.009 0.009 
Springfield 10/17/2005 424 Bottom 0.04 0.04 
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Lake Date Day Depth TP Chlorides Silica 
Springfield 8/20/2004 1 Bottom 0.16 3.54 2.54 
Springfield 8/29/2004 10 Bottom 0.2 2.98 2.05 
Springfield 9/512004 17 Bottom 0.3 3.17 5.53 
Springfield 9/12/2004 24 Bottom 0.13 2.72 2.27 
Springfield 9/19/2004 31 Bottom 0.17 3.13 3.9 
Springfield 9/26/2004 38 Bottom 0.1 2.97 3.54 

Springfield 10/3/2004 45 Bottom 0.6 2.68 3.11 
Springfield 11/9/2004 82 Bottom 0.07 2.1 1.86 
Springfield 12/13/2004 116 Bottom 0.35 2.5 3.5 
Springfield 1/1712005 151 Bottom 0.13 2.66 6.75 
Springfield 2/14/2005 179 Bottom 0.13 2.7 5.96 
Springfield 3/14/2005 207 Bottom 0.13 3.45 0.8 
Springfield 4/18/2005 242 Bottom 0.009 3.74 3.109 
Springfield 5/5/2005 259 Bottom 0.01 3.7 0.498 
Springfield 5/30/2005 284 Bottom 0.3 3.222 1.175 
Springfield 6/6/2005 291 Bottom 0.19 3.1515 2.032 
Springfield 6/13/2005 298 Bottom 0.11 3.61 1.17 
Springfield 6/20/2005 305 Bottom 0.26 3.6 2.798 
Springfield 6/27/2005 312 Bottom 0.2 3.66 1.677 
Springfield 7/512005 320 Bottom 0.28 3.89 2.608 
Springfield 7/11/2005 326 Bottom 0.45 3.81 3.104 
Springfield 7/18/2005 333 Bottom 3.77 3.104 
Springfield 7/25/2005 340 Bottom 0.52 3.67 3.765 
Springfield 8/1/2005 347 Bottom 0.51 3.77 4.12 
Springfield 8/17/2005 363 Bottom 0.26 3.94 2.593 
Springfield 8/22/2005 368 Bottom 0.1 3.91 3.68 
Springfield 8/29/2005 375 Bottom 0.84 3.94 3.679 
Springfield 9/5/2005 382 Bottom 0.16 4.03 4.086 
Springfield 9/26/2005 403 Bottom 0.15 3.73 2.623 
Springfield 10/17/2005 424 Bottom 0.26 3.94 1.6 
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THM Total Chi a Pheoa 
Lake Date Day Depth (ug/L) (ug/L) (ug/L) 

Springfield 8/20/2004 1 Bottom 438.1 16.0 22.2 
Springfield 8/29/2004 10 Bottom 384.7 59.0 4.3 
Springfield 9/5/2004 17 Bottom 291.6 14.6 10.8 
Springfield 9/12/2004 24 Bottom 278.3 70.6 9.8 
Springfield 9/19/2004 31 Bottom 267.2 28.1 8.4 

Springfield 9/26/2004 38 Bottom 269.9 30.4 5.0 
Springfield 10/3/2004 45 Bottom 217.9 24.6 7.8 
Springfield 11/9/2004 82 Bottom 268.5 10.7 8.2 
Springfield 12/13/2004 116 Bottom 260 11.3 8.5 
Springfield 1/17/2005 151 Bottom 324.5 8.5 13.6 
Springfield 2/14/2005 179 Bottom 283.2 15.8 11.3 
Springfield 3/14/2005 207 Bottom 289.6 28.2 6.6 
Springfield 4/18/2005 242 Bottom 339.9 10.5 11.8 
Springfield 5/5/2005 259 Bottom 70 11.1 17.5 
Springfield 5/30/2005 284 Bottom 18.7 5.8 
Springfield 6/6/2005 291 Bottom 86.9 19.5 9.0 

Springfield 6/13/2005 298 Bottom 10.9 18.6 11.1 
Springfield 6/20/2005 305 Bottom 29.9 17.9 14.6 
Springfield 6/27/2005 312 Bottom 12.5 

Springfield 7/5/2005 320 Bottom 59.6 
Springfield 7/11/2005 326 Bottom 97.9 
Springfield 7/18/2005 333 Bottom 79.5 
Springfield 7/25/2005 340 Bottom 24.1 
Springfield 8/1/2005 347 Bottom 33.5 
Springfield 8/17/2005 363 Bottom 21.9 
Springfield 8/22/2005 368 Bottom 44.3 
Springfield 8/29/2005 375 Bottom 64.5 
Springfield 9/5/2005 382 Bottom 28 
Springfield 9/26/2005 403 Bottom 118.6 

Springfield 10/17/2005 424 Bottom 154.6 
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Lake Date Day Depth poe Temperature DO 
Springfield 8/20/2004 1 Bottom 6.72 22.76 0.79 

Springfield 8/29/2004 10 Bottom 9.14 22.42 0.29 
Springfield 9/5/2004 17 Bottom 4.09 19.76 0.33 
Springfield 9/12/2004 24 Bottom 5.97 21.41 0.52 
Springfield 9/19/2004 31 Bottom 7.11 19.52 0.61 
Springfield 9/26/2004 38 Bottom 5.97 21.27 1.31 

Springfield 10/3/2004 45 Bottom 3.39 19.73 2.8 
Springfield 11/9/2004 82 Bottom 2.38 14.06 4.41 
Springfield 12/13/2004 116 Bottom 4.21 8.61 6.55 
Springfield 1/17/2005 151 Bottom 2.18 6.37 9.95 
Springfield 2/14/2005 179 Bottom 5.34 6.06 12.66 
Sprinqfield 3/14/2005 207 Bottom 5.84 5.96 8.65 
Springfield 4/18/2005 242 Bottom 4.37 10.78 1.64 
Springfield 5/5/2005 259 Bottom 0.59 13.02 2.31 

Springfield 5/30/2005 284 Bottom 0.59 13.49 0.14 
Springfield 6/6/2005 291 Bottom 5.88 13.41 0.19 

Springfield 6/13/2005 298 Bottom 5.54 15.43 0.14 

Springfield 6/20/2005 305 Bottom 5.00 14.3 0.23 
Springfield 6/27/2005 312 Bottom 4.98 16.95 0.23 
Springfield 7/5/2005 320 Bottom 3.96 16.77 0.24 
Springfield 7/11/2005 326 Bottom 4.98 16.49 0.21 

Springfield 7/18/2005 333 Bottom 5.75 17.24 0.24 
Springfield 7/25/2005 340 Bottom 1.00 16.6 0.18 
Springfield 8/1/2005 347 Bottom 8.00 18.9 0.26 
Springfield 8/17/2005 363 Bottom 8.58 19.46 0.11 
Springfield 8/22/2005 368 Bottom 16.16 16.78 0.12 

Springfield 8/29/2005 375 Bottom 6.46 14.66 0.14 

Springfield 9/5/2005 382 Bottom 8.33 19.43 0.2 

Springfield 9/26/2005 403 Bottom 7.05 20.1 0.6 

Springfield 10/17/2005 424 Bottom 6.33 18.22 2.71 
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Lake Date Day Depth pH SpCond 
Springfield 8/20/2004 1 Bottom 6.84 229 
Springfield 8/29/2004 10 Bottom 6.75 263 
Springfield 9/512004 17 Bottom 6.69 370.6 
Springfield 9/12/2004 24 Bottom 6.89 321.3 
Springfield 9/19/2004 31 Bottom 6.64 366.2 
Springfield 9/26/2004 38 Bottom 7.15 228.2 

Springfield 10/3/2004 45 Bottom 6.97 223 
Springfield 11/9/2004 82 Bottom 7.59 266.6 
Springfield 12/13/2004 116 Bottom 7.48 277 
Springfield 1/1712005 151 Bottom 7.69 300.1 
Springfield 2/14/2005 179 Bottom 8.34 284.6 

Springfield 3/14/2005 207 Bottom 8.33 303.8 

Springfield 4/18/2005 242 Bottom 7.51 317.7 
Springfield 5/5/2005 259 Bottom 7.48 319.1 
Springfield 5/30/2005 284 Bottom 7.44 339.2 

Springfield 6/6/2005 291 Bottom 7.23 358.8 
Springfield 6/13/2005 298 Bottom 7.27 339 
Springfield 6/20/2005 305 Bottom 7.22 350.3 
Springfield 6/27/2005 312 Bottom 7.01 379.2 

Springfield 7/5/2005 320 Bottom 7.07 351.9 
Springfield 7/11/2005 326 Bottom 7.03 356.6 

Springfield 7/18/2005 333 Bottom 7.05 359.6 

Springfield 7/25/2005 340 Bottom 7 381.6 

Springfield 8/1/2005 347 Bottom 7.11 372.7 

Springfield 8/17/2005 363 Bottom 7.08 376.4 
Springfield 8/22/2005 368 Bottom 6.98 407.2 

Springfield 8/29/2005 375 Bottom 6.93 448.9 

Springfield 9/5/2005 382 Bottom 7.25 412.8 

Springfield 9/26/2005 403 Bottom 6.83 401.8 

Springfield 10/17/2005 424 Bottom 7.55 247.5 
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Julian 
Lake Date Date Day Depth DOC Ammonia 

Willisburg 8/20/2004 04233 1 Surf 6.322 0.09 
Willisburg 8/29/2004 04242 10 Surf 6.323 0.09 
Willisburg 9/5/2004 04249 17 Surf 6.351 0.09 
Willisburg 9/12/2004 04256 24 Surf 6.249 0.09 
Willisburg 9/19/2004 04263 31 Surf 4.424 0.09 
Willisburg 9/26/2004 04270 38 Surf 7.018 0.09 
Willisburg 10/3/2004 04277 45 Surf 6.97 0.09 
Willisburq 11/9/2004 04314 82 Surf 5.605 0.09 
Willisburg 12/13/2004 04348 116 Surf 5.081 0.6 
Willisburg 1/1712005 05017 151 Surf 6.29 0.09 
Willisburg 2/14/2005 05045 179 Surf 5.398 0.09 
Willisburg 3/14/2005 05073 207 Surf 6.102 0.09 
Willisburg 4/18/2005 05108 242 Surf 5.857 0.09 
Willisburg 5/5/2005 05125 259 Surf 5.553 0.09 
Willisburg 5/30/2005 05150 284 Surf 5.097 0.09 
Willisburg 6/6/2005 05157 291 Surf 4.725 0.09 
Willisburg 6/13/2005 05164 298 Surf 5.766 0.09 
Willisburg 6/20/2005 05171 305 Surf 5.839 0.09 
Willisburg 6/27/2005 05178 312 Surf 5.984 0.09 
Willisburg 7/5/2005 05186 320 Surf 4.701 0.09 
Willisburg 7/11/2005 05192 326 Surf 5.17 0.02 
Willisburg 7/18/2005 05199 333 Surf 5.126 0.04 
Willisburg 7/25/2005 05206 340 Surf 5.034 0.009 
Willisburq 8/1/2005 05213 347 Surf 5.248 0.009 
Willisburg 8/17/2005 05229 363 Surf 5.46 0.09 
Willisburg 8/22/2005 05234 368 Surf 5.533 0.1 

Willisburg 8/29/2005 05241 375 Surf 5.424 0.13 
Willisburg 9/5/2005 05248 382 Surf 5.546 0.009 
Willisburg 9/26/2005 05269 403 Surf 5.39 0.05 
Willisburg 10/17/2005 05290 424 Surf 5.293 0.009 
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Lake Date Day Depth TKN Nitrate SRP 
Willisburg 8/20/2004 1 Surf 0.09 0.47 0.06 
Willisburg 8/29/2004 10 Surf 0.09 0.29 0.07 
Willisburg 9/5/2004 17 Surf 0.09 0.09 0.1 
Willisburg 9/12/2004 24 Surf 0.42 0.09 0.05 
Willisburg 9/19/2004 31 Surf 0.39 0.04 0.009 
Willisburg 9/26/2004 38 Surf 0.42 0.09 0.009 

Willisburg 10/3/2004 45 Surf 0.525 0.09 0.1 
Willisburg 11/9/2004 82 Surf 0.595 0.02 0.01 

Willisburg 12/13/2004 116 Surf 0.7 0.2 0.01 

Willisburg 1/17/2005 151 Surf 0.42 0.5 0.009 
Willisburg 2/14/2005 179 Surf 0.49 0.39 0.009 
Willisburg 3/14/2005 207 Surf 0.67 0.24 0.009 
Willisburg 4/18/2005 242 Surf 0.7 0.007 0.009 
Willisburg 5/5/2005 259 Surf 1.15 0.01 0.009 
Willisburg 5/30/2005 284 Surf 0.98 0.02 0.009 

Willisburg 6/6/2005 291 Surf 0.6 0.0365 0.009 
Willisburg 6/13/2005 298 Surf 0.81 0.005 0.009 

Willisburg 6/20/2005 305 Surf 0.88 0.01 0.009 

Willisburg 6/27/2005 312 Surf 0.01 0.009 

Willisburg 7/5/2005 320 Surf 0.004 0.009 
Willisburg 7/11/2005 326 Surf 0.005 0.009 

Willisburg 7/18/2005 333 Surf 0.005 0.009 

Willisburg 7/25/2005 340 Surf 0.005 0.009 

Willisburg 8/1/2005 347 Surf 0.005 0.009 
Willisburg 8/17/2005 363 Surf 0.005 0.009 

Willisburg 8/22/2005 368 Surf 0.005 0.009 
Willisburg 8/29/2005 375 Surf 0.005 0.009 

Willisburg 9/5/2005 382 Surf 0.005 0.009 

Willisburg 9/26/2005 403 Surf 0.009 0.009 

Willisburg 10/17/2005 424 Surf 0.009 0.04 
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Lake Date Day Depth TP Chlorides Silica 
Willisburg 8/20/2004 1 Surf 0.19 3.86 2.66 
Willisburg 8/29/2004 10 Surf 0.15 3.01 2.34 
Willisburg 9/5/2004 17 Surf 0.1 2.82 2.91 
Willisburg 9/12/2004 24 Surf 0.08 2.75 2.55 
Willisburg 9/19/2004 31 Surf 0.08 3.17 4.03 
Willisburg 9/26/2004 38 Surf 0.07 2.94 3.34 
Willisburg 10/3/2004 45 Surf 0.4 2.82 2.96 
Willisburg 11/9/2004 82 Surf 0.07 2.36 3.3 
Willisburg 12/13/2004 116 Surf 0.5 2.51 3.23 
Willisburg 1/17/2005 151 Surf 0.15 2.86 7.77 
Willisburg 2/14/2005 179 Surf 0.15 3.09 7.26 
Willisburg 3/14/2005 207 Surf 0.009 3.9 2.44 
Willisburg 4/18/2005 242 Surf 0.009 4.2 0.747 
Willisburg 5/5/2005 259 Surf 0.009 3.9 1.023 
Willisburg 5/30/2005 284 Surf 0.3 3.4788 1.054 
Willisburg 6/6/2005 291 Surf 0.05 3.4843 0.907 
Willisburg 6/13/2005 298 Surf 0.01 3.84 0.214 
Willisburg 6/20/2005 305 Surf 0.01 3.84 1.189 
Willisburg 6/27/2005 312 Surf 0.14 3.87 0.443 
Willisburg 7/5/2005 320 Surf 0.1 4.02 1.822 
Willisburg 7/11/2005 326 Surf 0.1 3.96 1.427 
Willisburg 7/18/2005 333 Surf 0.08 8.05 1.303 
Willisburg 7/25/2005 340 Surf 0.12 3.95 2.407 
Willisburg 8/1/2005 347 Surf 0.18 3.97 2.507 
Willisburg 8/17/2005 363 Surf 0.1 3.88 2.664 
Willisburg 8/22/2005 368 Surf 0.53 4.3 2.972 
Willisburg 8/29/2005 375 Surf 0.15 4.21 4.063 
Willisburg 9/5/2005 382 Surf 0.1 4.13 3.224 
Willisburg 9/26/2005 403 Surf 0.22 3.57 4.371 
Willisburg 10/17/2005 424 Surf 0.25 3.75 2.274 
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THM Total ChI a Pheoa 
Lake Date Day Depth (ug/L) (ug/L) (ug/L) 

Willisburg 8/20/2004 1 Surf 500 22.9 13.7 
Willisburg 8/29/2004 10 Surf 341.8 77.5 1.8 
Willisburg 9/5/2004 17 Surf 256.4 22.9 3.6 
Willisburg 9/12/2004 24 Surf 246.7 30.2 3.7 
Willisburg 9/19/2004 31 Surf 256.1 19.3 3.9 
Willisburg 9/26/2004 38 Surf 258.2 17.1 6.5 
Willisburg 10/3/2004 45 Surf 210 25.3 3.0 
Willisburg 11/9/2004 82 Surf 349.1 14.5 6.4 
Willisburg 12/13/2004 116 Surf 212.7 8.5 6.0 
Willisburg 1/17/2005 151 Surf 380.9 12.6 10.8 
Willisburg 2/14/2005 179 Surf 377.4 23.2 14.6 
Willisburg 3/14/2005 207 Surf 358.2 15.2 6.8 
Willisburg 4/18/2005 242 Surf 348.8 14.2 6.3 
Willisburg 5/5/2005 259 Surf 146.1 9.1 6.6 
Willisburg 5/30/2005 284 Surf 147.8 9.5 5.2 
Willisburg 6/6/2005 291 Surf 223.3 8.3 4.2 
Willisburg 6/13/2005 298 Surf 274.1 14.6 8.3 
Willisburg 6/20/2005 305 Surf 177.9 19.1 9.0 
Willisburg 6/27/2005 312 Surf 117.2 
Willisburg 7/5/2005 320 Surf 86.6 
Willisburg 7/11/2005 326 Surf 102.6 
Willisburg 7/18/2005 333 Surf 33.8 
Willisburg 7/25/2005 340 Surf 186.9 
Willisburg 8/1/2005 347 Surf 124.9 
Willisburg 8/17/2005 363 Surf 105.8 
Willisburg 8/22/2005 368 Surf 77 
Willisburg 8/29/2005 375 Surf 90.8 
Willisburg 9/5/2005 382 Surf 107.8 
Willisburg 9/26/2005 403 Surf 119.3 
Willisburg 10/17/2005 424 Surf 81.4 
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Lake Date Day Depth poe Temperature DO 
Willisburg 8/20/2004 1 Surf 8.78 25.55 7.13 
Willisburg 8/29/2004 10 Surf 10.36 26.42 6.44 
Willisburg 9/5/2004 17 Surf 3.94 26.01 11.46 
Willisburg 9/12/2004 24 Surf 5.97 24.82 9.4 
Willisburg 9/19/2004 31 Surf 4.27 22.14 6.55 
Willisburg 9/26/2004 38 Surf 4.03 22.64 18.84 

Willisburg 10/3/2004 45 Surf 3.39 21.22 7.55 
Willisburg 11/9/2004 82 Surf 3.73 13.92 4.05 
Willisburg 12/13/2004 116 Surf 2.72 8.58 3.74 
Willisburg 1/17/2005 151 Surf 2.79 6.15 9.89 
Willisburg 2/14/2005 179 Surf 5.24 4.75 14.24 
Willisburq 3/14/2005 207 Surf 2.07 6.52 8.64 
Willisburg 4/18/2005 242 Surf 6.28 18.19 5.8 
Willisburg 5/5/2005 259 Surf 4.39 15.31 12.63 
Willisburg 5/30/2005 284 Surf 4.40 23.34 6.73 
Willisburg 6/6/2005 291 Surf 8.48 26.04 8.14 
Willisburg 6/13/2005 298 Surf 2.92 26.53 7.04 
Willisburg 6/20/2005 305 Surf 5.26 26.13 12.4 
Willisburg 6/27/2005 312 Surf 8.50 29.35 12.54 
Willisburg 7/5/2005 320 Surf 15.02 28.6 12.59 
Willisburg 7/11/2005 326 Surf 18.40 28.11 11.91 
Willisburg 7/18/2005 333 Surf 10.00 26.31 8.58 
Willisburg 7/25/2005 340 Surf 6.01 30.49 10.23 
Willisburg 8/1/2005 347 Surf 8.19 29.02 11.98 
Willisburg 8/17/2005 363 Surf 8.80 27.52 7.64 

Willisburg 8/22/2005 368 Surf 18.00 28.29 9.95 
Willisburg 8/29/2005 375 Surf 10.19 25.38 5.86 

Willisburg 9/5/2005 382 Surf 7.50 24.75 8.52 
Willisburg 9/26/2005 403 Surf 7.22 24.82 4.24 

Willisburg 10/17/2005 424 Surf 3.25 17.75 3.12 
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Lake Date Day Depth pH SpCond 
Willisburg 8/20/2004 1 Surf 8.91 176 
Willisburg 8/29/2004 10 Surf 8.58 183 
Willisburg 9/5/2004 17 Surf 8.73 188.1 
Willisburg 9/12/2004 24 Surf 8.52 195.4 
Willisburg 9/19/2004 31 Surf 7.47 187.6 
Willisburg 9/26/2004 38 Surf 8.22 206.5 
Willisburg 10/3/2004 45 Surf 7.34 216.3 
Willisburg 11/9/2004 82 Surf 7.51 251.3 
Willisburg 12/13/2004 116 Surf 7.27 256.9 
Willisburg 1/17/2005 151 Surf 7.38 235.4 
Willisburg 2/14/2005 179 Surf 7.86 257.4 
Willisburg 3/14/2005 207 Surf 7.54 286.8 
Willisburg 4/18/2005 242 Surf 9.05 280.7 
Willisburg 5/5/2005 259 Surf 8.2 290.8 
Willisburg 5/30/2005 284 Surf 8.25 308.4 
Willisburg 6/6/2005 291 Surf 8.25 305.7 
Willisburg 6/13/2005 298 Surf 8.28 307.3 
Willisburg 6/20/2005 305 Surf 8.75 301.8 

Willisbur9 6/27/2005 312 Surf 8.76 263.8 
Willisburg 7/5/2005 320 Surf 8.96 222.2 
Willisburg 7/11/2005 326 Surf 9.14 211.1 
Willisburg 7/18/2005 333 Surf 8.7 230.7 
Willisburg 7/25/2005 340 Surf 9.1 227.5 

Willisburg 8/1/2005 347 Surf 9.29 210.6 
Willisburg 8/17/2005 363 Surf 9.3 205.1 
Willisburg 8/22/2005 368 Surf 9.54 201.5 
Willisburg 8/29/2005 375 Surf 9 204.7 

Willisburg 9/5/2005 382 Surf 9.15 216.1 

Willisburg 9/26/2005 403 Surf 8.66 228.6 

Willisburg 10/17/2005 424 Surf 7.58 254.9 
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Julian 
Lake Date Date Day Depth DOC Ammonia 

Willisburg 8/20/2004 04233 1 Bottom 6.38 0.09 
Willisburg 8/29/2004 04242 10 Bottom 6.217 0.09 
Willisburg 9/5/2004 04249 17 Bottom 6.429 0.09 
Willisburg 9/12/2004 04256 24 Bottom 6.439 0.09 
Willisburg 9/19/2004 04263 31 Bottom 3.459 0.09 
Willisburg 9/26/2004 04270 38 Bottom 6.815 0.09 
Willisburg 10/3/2004 04277 45 Bottom 6.855 0.09 
Willisburg 11/9/2004 04314 82 Bottom 5.607 0.09 
Willisburg 12/13/2004 04348 116 Bottom 5.331 0.3 
Willisburg 1/17/2005 05017 151 Bottom 6.776 0.1 
Willisburg 2/14/2005 05045 179 Bottom 5.31 0.09 
Willisburg 3/14/2005 05073 207 Bottom 5.613 0.09 
Willisburg 4/18/2005 05108 242 Bottom 5.799 0.09 
Willisburg 5/5/2005 05125 259 Bottom 5.695 0.09 
Willisburg 5/30/2005 05150 284 Bottom 5.118 0.09 
Willisburg 6/6/2005 05157 291 Bottom 4.873 0.09 
Willisburg 6/13/2005 05164 298 Bottom 6.093 0.09 
Willisburg 6/20/2005 05171 305 Bottom 5.976 0.09 
Willisburg 6/27/2005 05178 312 Bottom 6.239 0.09 
Willisburg 7/5/2005 05186 320 Bottom 4.546 0.01 
Willisburg 7/11/2005 05192 326 Bottom 4.945 0.09 
Willisburg 7/18/2005 05199 333 Bottom 5.067 0.03 
Willisburg 7/25/2005 05206 340 Bottom 4.813 0.009 
Willisburg 8/1/2005 05213 347 Bottom 5.069 0.02 
Willisburg 8/17/2005 05229 363 Bottom 5.465 0.17 
Willisburg 8/22/2005 05234 368 Bottom 5.181 0.06 
Willisburg 8/29/2005 05241 375 Bottom 5.223 0.22 
Willisburg 9/5/2005 05248 382 Bottom 5.628 0.009 
Willisburg 9/26/2005 05269 403 Bottom 5.253 0.02 
Willisburg 10/17/2005 05290 424 Bottom 5.092 0.009 
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Lake Date Day Depth TKN Nitrate SRP 
Willisburg 8/20/2004 1 Bottom 0.09 0.59 0.12 
Willisburg 8/29/2004 10 Bottom 0.09 0.33 0.14 
Willisburg 9/5/2004 17 Bottom 0.09 0.09 0.2 
Willisburg 9/12/2004 24 Bottom 1.01 0.12 0.01 
Willisburg 9/19/2004 31 Bottom 0.65 0.09 0.01 
Willisburg 9/26/2004 38 Bottom 0.63 0.09 0.009 

Willisburg 10/3/2004 45 Bottom 1.08 0.09 0.2 
Willisburg 11/9/2004 82 Bottom 0.035 0.03 0.01 
Willisburg 12/13/2004 116 Bottom 0.56 0.33 0.06 
Willisburg 1/17/2005 151 Bottom 0.7 0.51 0.009 
Willisburg 2/14/2005 179 Bottom 0.07 0.39 0.009 
Willisburg 3/14/2005 207 Bottom 0.6 0.24 0.009 
Willisburg 4/18/2005 242 Bottom 0.77 0.007 0.009 
Willisburg 5/5/2005 259 Bottom 0.67 0.02 0.009 
Willisburg 5/30/2005 284 Bottom 0.84 0.02 0.009 
Willisburg 6/6/2005 291 Bottom 0.91 0.0638 0.009 
Willisburg 6/13/2005 298 Bottom 0.84 0.005 0.009 
Willisburg 6/20/2005 305 Bottom 1.015 0.01 0.009 
Willisburg 6/27/2005 312 Bottom 0.01 0.009 
Willisburg 7/5/2005 320 Bottom 0.01 0.009 
Willisburg 7/11/2005 326 Bottom 0.02 0.009 
Willisburg 7/18/2005 333 Bottom 0.005 0.009 
Willisburg 7/25/2005 340 Bottom 0.005 0.009 
Willisburg 8/1/2005 347 Bottom 0.005 0.009 
Willisburg 8/17/2005 363 Bottom 0.005 0.009 
Willisburg 8/22/2005 368 Bottom 0.005 0.009 
Willisburg 8/29/2005 375 Bottom 0.005 0.009 
Willisburg 9/5/2005 382 Bottom 0.005 0.009 

Willisburg 9/26/2005 403 Bottom 0.009 0.009 
Willisburg 10/17/2005 424 Bottom 0.009 0.04 
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Lake Date Day Depth TP Chlorides Silica 
Willisburg 8/20/2004 1 Bottom 0.17 4.28 3 
Willisburg 8/29/2004 10 Bottom 0.2 3.96 2.55 
Willisburg 9/5/2004 17 Bottom 0.5 3.05 3.42 
Willisburg 9/12/2004 24 Bottom 0.2 3.8 2.85 
Willisburg 9/19/2004 31 Bottom 0.13 3.48 2.99 
Willisburg 9/26/2004 38 Bottom 0.1 
Willisburg 10/3/2004 45 Bottom 1 3.51 3.65 
Willisburg 11/9/2004 82 Bottom 0.08 2.36 3.83 
Willisburg 12/13/2004 116 Bottom 0.54 2.18 3.13 
Willisburg 1/17/2005 151 Bottom 0.18 2.85 7.55 
Willisburg 2/14/2005 179 Bottom 0.09 3.14 10.96 
Willisburg 3/14/2005 207 Bottom 0.009 3.92 2.72 
Willisburg 4/18/2005 242 Bottom 0.009 4.07 1.329 
Willisburg 5/5/2005 259 Bottom 0.009 3.9 1.748 
Willisburg 5/30/2005 284 Bottom 0.22 3.3488 1.324 
Willisburg 6/6/2005 291 Bottom 0.09 3.3755 1.659 
Willisburg 6/13/2005 298 Bottom 0.01 3.72 1.763 
Willisburg 6/20/2005 305 Bottom 0.04 3.72 2.912 
Willisburg 6/27/2005 312 Bottom 0.12 3.71 1.207 
Willisburg 7/5/2005 320 Bottom 0.07 4.04 1.881 
Willisburg 7/11/2005 326 Bottom 0.08 3.87 3.145 
Willisburg 7/18/2005 333 Bottom 0.09 3.9 3.145 
Willisburg 7/25/2005 340 Bottom 0.08 3.89 2.167 
Willisburg 8/1/2005 347 Bottom 0.12 3.81 2.613 
Willisburg 8/17/2005 363 Bottom 0.1 3.89 2.794 
Willisburg 8/22/2005 368 Bottom 0.1 4.12 2.454 
Willisburg 8/29/2005 375 Bottom 0.14 4.28 3.121 
Willisburg 9/5/2005 382 Bottom 0.17 4.02 4.948 
Willisburg 9/26/2005 403 Bottom 0.16 3.66 4.204 
Willisburg 10/17/2005 424 Bottom 0.13 3.93 2.865 
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THM Total Chi a Pheo a 
Lake Date Day Depth (ug/L) (ug/L) (ug/L) 

Willisburg 8/20/2004 1 Bottom 488.5 7.5 12.4 
Willisburg 8/29/2004 10 Bottom 442.1 9 5.9 
Willisburg 9/5/2004 17 Bottom 291.5 14.9 6.8 
Willisburg 9/12/2004 24 Bottom 211.5 13.8 4.3 
Willisburg 9/19/2004 31 Bottom 345.5 11.4 5.6 
Willisburg 9/26/2004 38 Bottom 221.4 13.6 4.8 
Willisburg 10/3/2004 45 Bottom 261.5 5.8 4.4 
Willisburg 11/9/2004 82 Bottom 352.7 12.8 6.7 
Willisburg 12/13/2004 116 Bottom 320.1 8.2 7.1 
Willisburg 1/17/2005 151 Bottom 422.4 10.5 13.4 
Willisburg 2/14/2005 179 Bottom 414.5 26.5 11.4 
Willisburg 3/14/2005 207 Bottom 362.9 20.1 16.9 
Willisburg 4/18/2005 242 Bottom 346.6 19.1 16.7 
Willisburg 5/5/2005 259 Bottom 149.5 13.2 6.4 
Willisburg 5/30/2005 284 Bottom 72.7 11.1 12.0 
Willisburg 6/6/2005 291 Bottom 158.9 9.0 12.2 

Willisburg 6/13/2005 298 Bottom 178.3 9.1 13.4 
Willisburg 6/20/2005 305 Bottom 80.8 14.0 19.9 
Willisburg 6/27/2005 312 Bottom 129.5 
Willisburg 7/5/2005 320 Bottom 115.6 

Willisburg 7/11/2005 326 Bottom 49.8 
Willisburg 7/18/2005 333 Bottom 196.2 
Willisburg 7/25/2005 340 Bottom 67.2 
Willisburg 8/1/2005 347 Bottom 129.7 
Willisburg 8/17/2005 363 Bottom 11.6 
Willisburg 8/22/2005 368 Bottom 40 
Willisburg 8/29/2005 375 Bottom 113.6 

Willisburg 9/5/2005 382 Bottom 94.4 
Willisburg 9/26/2005 403 Bottom 108.9 
Willisburg 10/17/2005 424 Bottom 81.7 
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Lake Date Day Depth poe TemDerature DO 
Willisburg 8/20/2004 1 Bottom 4.69 10.03 3.89 
Willisburg 8/29/2004 10 Bottom 6.23 16.49 0.25 

Willisburg 9/5/2004 17 Bottom 1.89 14.8 0.35 
Willisburg 9/12/2004 24 Bottom 3.70 12.29 0.51 
Willisburg 9/19/2004 31 Bottom 4.00 14.99 0.33 
Willisburg 9/26/2004 38 Bottom 3.79 16.08 0.56 

Willisburg 10/3/2004 45 Bottom 1.56 11.67 0.51 
Willisburg 11/9/2004 82 Bottom 3.76 13.58 1.31 
Willisburg 12/13/2004 116 Bottom 3.63 8.6 3.41 
Willisburg 1/17/2005 151 Bottom 1.85 5.88 7.16 

Willisburg 2/14/2005 179 Bottom 5.88 4.7 11.63 
Willisburg 3/14/2005 207 Bottom 3.55 5.62 8.28 

Willisburg 4/18/2005 242 Bottom 6.36 9.26 3.01 

Willisburg 5/5/2005 259 Bottom 1.46 11.91 2.61 

Willisburg 5/30/2005 284 Bottom 1.46 12.83 0.23 

Willisburg 6/6/2005 291 Bottom 5.52 13.26 0.18 

Willisburg 6/13/2005 298 Bottom 2.60 13.77 0.16 

Willisburg 6/20/2005 305 Bottom 2.83 12.95 0.22 

Willisburg 6/27/2005 312 Bottom 2.97 14.77 0.16 

Willisburg 7/5/2005 320 Bottom 5.20 14.37 0.17 

Willisburg 7/11/2005 326 Bottom 3.68 14.11 0.18 

Willisburg 7/18/2005 333 Bottom 5.80 15.38 0.19 

Willisburg 7/25/2005 340 Bottom -0.40 15.26 0.15 

Willisburg 8/1/2005 347 Bottom 3.50 15.77 0.31 

Willisburg 8/17/2005 363 Bottom 4.95 17.21 0.18 

Willisburg 8/22/2005 368 Bottom 7.71 17.18 0.23 

Willisburg 8/29/2005 375 Bottom 7.21 15.62 0.21 

Willisburg 9/5/2005 382 Bottom 5.81 20.08 0.37 

Willisburg 9/26/2005 403 Bottom 5.88 19.66 0.47 

Willisburg 10/17/2005 424 Bottom 4.00 17.05 2 
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Lake Date Day Depth pH SpCond 
Willisburg 8/20/2004 1 Bottom 6.8 282 
Willisburg 8/29/2004 10 Bottom 6 289 
Willisburg 9/5/2004 17 Bottom 6.82 305 
Willisburg 9/12/2004 24 Bottom 6.83 310 
Willisburg 9/19/2004 31 Bottom 6.63 284.3 
Willisburg 9/26/2004 38 Bottom 6.79 302.7 
Willisburg 10/3/2004 45 Bottom 6.59 311.3 
Willisburg 11/9/2004 82 Bottom 7.43 334.5 
Willisburg 12/13/2004 116 Bottom 7.16 257.9 
Willisburg 1/17/2005 151 Bottom 7.38 242.1 
Willisburg 2/14/2005 179 Bottom 7.77 258 
Willisburg 3/14/2005 207 Bottom 7.7 286.6 
Willisburg 4/18/2005 242 Bottom 7.49 294.7 
Willisburg 5/5/2005 259 Bottom 7.32 297.9 
Willisburg 5/30/2005 284 Bottom 7.15 304.8 
Willisburg 6/6/2005 291 Bottom 7.01 300.4 
Willisburg 6/13/2005 298 Bottom 7.08 303.1 
Willisburg 6/20/2005 305 Bottom 7.05 304.3 
Willisburg 6/27/2005 312 Bottom 7.02 309.3 
Willisburg 7/5/2005 320 Bottom 7.04 314.4 
Willisburg 7/11/2005 326 Bottom 7.04 312 
Willisburg 7/18/2005 333 Bottom 7.03 320.1 
Willisburg 7/25/2005 340 Bottom 7.05 322.3 
Willisburg 8/1/2005 347 Bottom 7.2 320.7 
Willisburg 8/17/2005 363 Bottom 7.16 319.2 
Willisburg 8/22/2005 368 Bottom 7.15 325.7 
Willisburg 8/29/2005 375 Bottom 7.2 326.9 
Willisburg 9/5/2005 382 Bottom 7.28 280.2 
Willisburg 9/26/2005 403 Bottom 6.87 311.8 
Willisburg 10/17/2005 424 Bottom 7.4 258.1 
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