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ABSTRACT 

 
RECOVERY AND BIOGEOGRAPHY OF PSEUDOMONAS AND BURKHOLDERIA 

SPECIES FROM THE HUMAN HOME 

 

Megan E. Purdy 

August 5th 2013 

 

15 households in the Louisville Metro area were sampled, 7 had a patient with 

cystic fibrosis (CF), and 8 did not.  Houses were sampled between 3 and 8 times each, 

and samples were collected from 123 different sites within and around the homes.  These 

sites were categorized into the variable environment type based on ecological similarity 

of sites.  Between 75 and 168 samples were collected from each home per visit.   

Recovery was examined for biogeographical patterns by environment type and 

season at multiple taxonomic levels.  Approximately 10% of samples taken yielded 

Pseudomonas, and of these 61% were P. putida group, 23% P. fluorescens group, and 

15% P. aeruginosa group.  Environment type and season influenced patterns of 

Pseudomonas species recovery at all taxonomic levels (genus, species groups, and 

species), and house of recovery influenced recovery for all species groups but P. 

aeruginosa.  Soils and drains were the environment types with the highest recovery.  

Soils had the highest recovery rates for P. fluorescens group and P. putida group, while 

drains had the highest recovery rates for P. aeruginosa group.  This indicates that 
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household Pseudomonas distribution is influenced by dispersal limitation as well as 

adaption to the environment.  

Recovery from the opportunistic pathogen, P. aeruginosa, was examined in 

greater detail with the aim of determining hotspots of recovery in the home.  Drains were 

identified as hotspots for P. aeruginosa recovery were identified and no differences in 

recovery from drains were found in houses with CF patients compared to those without 

CF patients.  No P. aeruginosa was recovered from animals, and only a single isolate was 

recovered from each soils and equipment used to treat CF.  Indicating that P. aeruginosa 

is a drain specialist regardless of patient presence. 

The human home was investigated as a potential source of Burkholderia spp. by 

looking at recovery from various types of environments.  Overall, the recovery rate of 

Burkholderia sp. was very low (0.22%).  Isolates that were recovered were primarily 

from soil environments and drains.  Isolates evenly clustered within two phylogenetic 

clades: the plant-associated beneficial environmental group described by Suárez-Moreno 

et al. (2012) and the B. cepacia complex.  
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CHAPTER 1 

INTRODUCTION 

 

Human Home as an Ecosystem of Study 

In this dissertation I examined the recovery and biogeography of the bacterial 

genera Pseudomonas (Chapters 2 and 3) and Burkholderia (Chapter 4) from the human 

home.  Homes have characteristics making them interesting and important sites to study.  

First, houses are an ecosystem for which we have a priori knowledge.  We already have a 

basic understanding regarding possible dispersal mechanisms through the home; we 

understand how people, animals and objects move throughout the home.  This knowledge 

allows us to evaluate and generate hypotheses about known patterns of use and 

movement as they relate to recovery of microbes.  

Second, the human home provides a study site that is directly relevant to human 

exposure and interaction with microorganisms.  We are in constant contact with our home 

environments, including the animal and human residents and objects both in and around 

the home, all of which are sources of microorganisms.  Opportunistic pathogens, such as 

Pseudomonas aeruginosa and Burkholderia cepacia complex, present in the home 

environment, are of special concern to individuals with immune-compromising diseases.
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Understanding the distribution of opportunistic pathogens throughout the home will 

provide information necessary for decisions regarding the removal of pets or objects from 

the home, or avoidance of areas where opportunistic pathogens are frequently recovered.  

Last, and perhaps most important, is that the human home provides many habitat 

types within a small geographical space.  Homes also have a replication structure that 

allows for examining the effect that different types of environments and location have on 

the distribution of organisms.  Rooms within a house can be thought of as one level of 

geographical location; while, houses themselves are an additional level.  Sites within the 

house can be categorized by ecological similarity or type of environment; for example, 

drains may be located within different rooms of the house (kitchen, bathroom, etc.) but 

are more likely to be ecologically similar to each other than they are to a child’s toy.  It is 

possible for each home to have replication of both room (i.e., multiple bathrooms in a 

house) and environment type (i.e., multiple drains in a house).  Figure 1 provides a 

schematic of environments and rooms within a single home.  Studying multiple houses 

allows for replication at an additional geographic scale, the level of the house. 
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Figure 1. Different environment types with replication (brown lines for soils, blue lines for 
drains) and different rooms within a single house.  Sampling multiple houses add an 
additional layer of replication (that of house) beyond what is pictured in this schematic. 

 

Microbiology of the Built Environment 

Humans spend, on average, nearly 90% of the day indoors (Klepeis, et al. 2001).  

This time is split between residential spaces, offices/work places, vehicles, shopping 

centers, etc.  These indoor spaces are important ecosystems to study, as they are the 

ecosystems we interact with most.  Traditionally, the public health concern with built 

environments has focused around broad topics of sanitation, fire and damage prevention, 

and safety (Jackson 2003).  However, the air we breathe and the surfaces we touch, etc. 

are all environments for microorganisms, but only recently have researchers started to 

investigate the microbiome of indoor spaces and its potential effects on human health 

(Corsi et al. 2012).  

Several studies have been conducted examining the microbiome of various indoor 

sites including: airplanes (Osman, et al. 2008), daycares/schools (Andersson, et al. 1999; 

Liu, et al. 2000), kitchens (Flores, et al. 2012), office spaces (Hewitt, et al. 2012), 

restrooms (Flores, et al. 2011), and homes (Täubel, et al. 2009).  As a results of these 
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studies and others, we now know that human skin appears to be the main source of 

bacterial contamination of frequently touched surfaces, such as computer keyboards and 

computer mice (Fierer, et al. 2010).  Bacteria associated with humans, particularly skin 

(i.e., Propionibacteriacaae), were also most abundantly recovered from surfaces inside 

office buildings (Hewitt, et al. 2012).  Human skin, gut, and vagina-associated bacteria 

were found on varying surfaces of public restrooms (Flores, et al. 2011).  Bacteria 

commonly associated with soils were also recovered from office buildings and public 

restrooms (particular samples from the floor).  A study by Flores and colleagues (2012) 

of kitchens also found an abundance of human-associated bacteria on kitchen surfaces; 

interestingly, the abundance of bacteria commonly associated with food was widespread 

but recovered at much lower frequency.  In addition to humans, pets are also sources for 

microbial communities in built environments (Fujimura, et al. 2010).  In a study 

examining microbial communities in dust, Fujimura and colleagues found that homes 

with pets, particularly dogs, had significantly more diverse microbial dust communities, 

and hypothesize that this could be due to dogs being permitted indoors and outdoors.   

By connecting bacteria found indoors to sites whose those taxa are typically 

isolated from other locations (i.e., outdoors) or sources (i.e., humans), these studies 

demonstrate potential sources of bacteria found in indoor environments, and also indicate 

the importance of humans as both sources for built environment microbial communities, 

and as possible vectors of microbes into the built environment.  A source is defined by 

where bacteria in the home were originated, while a vector is defined as the method of 

transport for that organism.  In the home there are a diversity of sources and vectors, and 

some things play both roles (Figure 2). Figure 2 is a schematic of possible sources and 
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vectors of microbial contamination of built environment sites, showing how humans, 

animals, etc. can influence microbial communities (adapted from Kelley and Gilbert 

2013).     

Figure 2.  Possible sources and vectors of different microbial community members of the 
built environment.  Yellow colored boxes represent possible external sources of microbial 
community members; blue colored boxes represent possible vectors for microbial dispersal to 
built environment; and, green colored boxes present possible vectors and sources of 
microbial community members (figure adapted from Kelley and Gilbert 2013). 
 

Environmental conditions can also play a role in the microbiome of the built 

environment.  Studies of indoor air and dust have shown variation in microbial 

communities across seasons (Moschandreas, et al. 2003; Rintala et al. 2008).  In addition 

to seasonal variability, Moschandreas and colleagues (2003) examined indoor air of 

Chicago-area homes for differences by room of the home, and found no differences at 

this spatial scale.  Microbial communities differ between different office buildings of the 

same city (Rinatala, et al. 2008) and between office buildings in different cities (Hewitt, 

et al. 2012), indicating that environmental factors, such as climate, may be important in 

influencing microbial community composition of indoor sites.  In addition, differences 

Humans 

Pets 

Soil 

Shoes 

Outdoor Air 

Dust 

Indoor Built Environment Sites 

Source Vector Vectors and Sources 

Food 
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seen between buildings suggest founder effects and/or dispersal limitation may play a 

role in shaping indoor microbial communities.  By studying the human home ecosystem 

in this dissertation I am able to examine the distribution of two organisms of interest 

(Pseudomonas and Burkholderia species), and explore seasonal variability, spatial 

variability by examining house-to-house variability in recovery, and variation in recovery 

by type of environment. 

  

Culture-Based Methods of Recovery  

The technique of culturing microbial organisms has existed for well over a 

century.  Culture media is defined as “a solid or liquid preparation used to grow, transport 

and store microorganisms” (Willey et al. 2008, p. 110).  Culture-based techniques are 

considered the standard for determining cell viability (Kelley and Gilbert 2013).  

Additionally, culture-based techniques used for the recovery of microbial organisms 

allow for archival of isolates collected for further study.  However, there are a number of 

limitations of culture-based studies.  Many organisms are not culturable or a have non-

culturable state, or organisms for which there are no known media or conditions under 

which they can be cultured, and are thus missed by culture-based studies of diversity 

(DeLong and Pace 2001).   

Culture-independent studies, or studies that use molecular techniques (e.g., 16s 

rDNA), for examining diversity can capture more organisms that culture-based studies 

miss, several orders of magnitude more diversity are found from these types of studies 

(Woese et al. 1990; Kelley and Gilbert 2013).  However, there are also limitations to 

culture-independent studies.  Culture-independent methods are biased by the efficacy of 
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the DNA extraction methods and the primers used (Kelley and Gilbert 2013).  

Additionally, culture-independent methods address only if the DNA of an organism is 

present, rather than if the organisms is viable under the sampled conditions.  

The studies described in this dissertation use culture-based techniques to address 

distribution patterns of bacteria in the genera Pseudomonas and Burkholderia.  Samples 

were plated on to Pseudomonas Isolation Agar (PIA).  Pseudomonas Isolation Agar is a 

solid media that selects for the isolation of Pseudomonas spp.  PIA contains glycerol as a 

carbon source, peptone for sustaining growth, and Irgasan as a selective agent (Hardy 

Diagnostics: PIA 1996).  Irgasan works by preventing fatty-acid synthesis and causes 

membrane damage (Russell 2004).  In addition to distribution information, the use of 

culture-based techniques allows for downstream studies and phenotypic and genotypic 

characterization of isolated strains. 

 
Microbial Biogeography 
 

Biogeography addresses one of the most intriguing biological questions: what 

factors explain the distribution of organisms in space and in time.  The answer(s) to this 

fundamental biological question would provide a body of knowledge impacting a variety 

of additional topics, including: colonization, dispersal, extinction, inter- and intra-species 

interactions, speciation, and succession (Martiny et al. 2006).  Biogeography has long 

been a topic of interest for “macro” ecology; however, only recently have these questions 

been applied to microorganisms.  Ramette and colleagues (2009) propose that a 

combination of molecular advances and improvements in the fields of multivariate 

analyses, phylogenetics, and time-scale analyses have allowed the study of microbial 

biogeography and microbial ecology to increase at a dramatic rate. 
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Hutchinson (1959) introduced the idea of a fundamental niche and a realized 

niche.  Generally speaking, the fundamental niche consists of everywhere the 

environmental conditions are suitable for an organism to grow and reproduce, and the 

realized niche can be defined as where, or under what conditions, an organism is actually 

found. There is some debate about what defines the fundamental niche and what 

determines the realized niche.  Hutchinson’s fundamental niche was defined by the 

abiotic environmental factors, such as temperature or disturbance, an organism can 

withstand, and the realized niche is further constrained by biotic factors, such as 

competition or disease (Hutchinson 1959; Kylafis and Loreau 2011).  Opposing this is the 

biogeographical viewpoint of the realized niche discussed by Colwell and Rangel (2009).  

Colwell and Rangel (2009) discuss how the Hutchinson’s fundamental niche is defined 

by a biotype, or geographical area and abiotic environmental conditions, but that the 

modern fundamental niche cannot be defined this way.  They state that no geographical 

distribution of organisms should be assumed and that relying a biotype would require 

careful demonstration that the said factors are unaffected by the interactions of species.  

Colwell and Rangel (2009) propose that limitations of the fundamental niche be 

determined based on experiments and models of organism physiology, and that the 

realized niche is constrained not only by biotic interactions, but also by dispersal 

capabilities and abiotic environmental conditions.  Regardless of whether abiotic 

environmental conditions define the fundamental niche of an organism or whether these 

conditions determine the size of the realized niche, abiotic environmental conditions are 

clearly important for determining the distribution of organisms. 
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Microbial species are inherently more difficult to define than those of macro-

organisms.  Classical species concepts of interbreeding cannot be easily applied to 

organisms with the free exchange of genetic material through plasmids, transposons, etc.  

The difficultly in defining species has lead to an ongoing debate about whether it is better 

to use a more traditional phylogenetic or taxonomic approach to studying biogeography 

of microorganisms, or whether using a phenotype or trait based approach would be more 

appropriate (Fenchel and Finlay 2006; Green et al. 2008; Øvreås 2000).  In this 

dissertation, I examined recovery at multiple taxonomic scales, including genus, species 

groups (as defined by Anzai et al. 2000), and species.  Species assignments were made 

based on 16s rDNA sequences. 

Biogeography has traditionally been studied by looking at the influence of past 

historical events on the current distribution of species alongside the role that current 

environmental conditions play on these species distributions (Martiny et al 2006).  The 

study of microorganisms is no different.  Martiny and colleagues (2006) outline four 

hypotheses, regarding the distribution of organisms in space.  The first hypothesis, the 

null hypothesis, is that nothing explains the distribution of organisms, because their 

distribution is random.  The second hypothesis is that organisms are dispersed 

everywhere and that the environmental conditions determine the distribution; this 

hypothesis is also known as the Bass-Becking (1934) hypothesis ‘everything is 

everywhere – the environment selects’.  The third is that distribution of organisms states 

a result of historical events, such as dispersal capabilities and historical environmental 

conditions.  The last hypothesis, is a combination of the second and third, and is that both 
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environmental conditions and historical event shape the distributions of organisms 

(Martiny et al. 2006).   

The two hypotheses that have generated the most interest and debate in microbial 

biogeography are the ‘everything is everywhere – the environment selects’ or that there is 

no dispersal limitation and the hypothesis that both past historical events and current 

environmental conditions are important in explaining species distribution (Bass-Becking 

1934; Whitfield 2005; Martiny et al. 2006).  The focus on these two hypotheses is 

because many studies have demonstrated some effect of environmental conditions or 

adaption to local environment types for microbial biogeography (Martiny et al. 2006).    

Studies that include both spatial and temporal variability are used to address 

biogeographical questions.  In addition, taxonomic scale is important when evaluating 

distribution of organisms, what is considered globally distributed at one taxonomic level 

could be endemic to certain regions at a finer taxonomic resolution.  At the taxonomic 

level of domain Bacteria, distribution is global; while, at finer taxonomic resolutions 

global distribution may not be the case (Ramette and Tiedje 2007).  At a genus level 

some organisms are considered pandemic, or global in nature; fluorescent Pseudomonas 

from soils are an example of this (Chao and Tiedje 2000; Ramette and Tiedje 2007).  At 

finer taxonomic levels this is not the case.  In the case of fluorescent Pseudomonas 

studied by Chao and Tiedje (2000), genetic fingerprinting techniques showed endemic 

patterns of distribution.    

Studies of spatial variation are able to identify possible ‘hotspots’ of diversity, 

correlate recovery and distribution with environmental conditions, and evaluate 

hypotheses regarding dispersal limitation (Gonzalez et al. 2012).  Studies of temporal 
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variation can address many of the same questions as studies of spatial variation, but can 

also address questions of cyclical or static patterns of recovery and distribution (Gonzalez 

et al. 2012).  This dissertation includes a study addressing both spatial and temporal 

variation, with replicate households sampled repeatedly across seasons.  By analyzing 

recovery from different environment types (i.e., soils, drains) and houses, I evaluated 

biogeographical hypotheses at multiple taxonomic and spatial scales using household 

Pseudomonas species. 

 

Cystic Fibrosis and Microbiology of the CF Lung 

 The incidence of cystic fibrosis in the United States is approximately 1 in every 

3,500 live births, and is more common in Caucasian individuals than other demographic 

groups (Davis et al. 1996; CF Foundation Patient Registry 2011; Weiler and Drumm 

2013).  There are approximately 30,000 individuals living with CF in the United States, 

and it is estimated one-half of those are children under the age of 18 (CF Foundation 

Patient Registry 2011).  Great strides have been made in the last few decades at 

increasing the length and quality of life for CF patients.  According to the CF Foundation 

Patient Registry (2011), the median life expectancy of a patient 25 years ago was 

approximately 28 years old.  Now it is nearly 37 years old. 

 Cystic fibrosis is an autosomal recessive disease caused by a mutation in the 

cystic fibrosis transmembrane conductance regulator (CFTR) gene, which was identified 

in 1989 (Kerem, et al. 1989; Riordan et al. 1989; Rommens et al. 1989).  Currently there 

are over 1900 known mutations to the CFTR (Cystic fibrosis mutation database 

http://www.genet.sickkids.on.ca/StatisticsPage.html).  However, one mutation (Δ508) is 
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much more common than any of the others, with over 85% of patients possessing at least 

one copy (CF Foundation Patient Registry 2011).  It has become clear that both the type 

and position of the mutation(s) to the CFTR gene affect the severity and presentation of 

the disease (Zielenski 2000).  These mutations alter the main function of the CFTR 

protein, which is to transport chloride ions across epithelial cells (responsible for 

producing sweat, mucous, digestive enzyme, etc.) and regulate sodium transport 

(Zielenski 2000; Rowe et al. 2005; Weiler and Drumm 2013).  Mutations causing a loss 

or decrease of function of the CFTR gene often manifest clinically as a thickening of the 

mucosal linings of the lungs, creating an environment very susceptible to infection 

(Weiler and Drumm 2013).  These infections are associated with further decline in lung 

function, inflammation, and ultimately early mortality (Koch 2002; Weiler and Drumm 

2013).   

 The CF lung is a complex ecosystem for establishing microbial communities, 

conditions and resources vary with disturbance events that include antibiotic treatment, 

immune system invasion and attack, and inputs from the external environment (Yang et 

al. 2011).  Therefore microbial community composition is expected to vary with 

changing conditions.  There are a handful of bacteria well-documented and classically 

associated with lung infections of the CF patient: Staphylococcus aureus, Haemophilus 

influenzae; Pseudomonas aeruginosa; Burkholderia cepacia.  Of these organisms, S. 

aureus and H. influenzae are found more commonly in children with CF, while P. 

aeruginosa and B. cepacia are more commonly associated with adult patients (Yang et al. 

2011).  Traditionally, these organisms have been considered the normal infections in the 

CF lung environment, but in the last decade or so there has been an increased awareness 
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of the complex nature of the human microbiome and its interaction with the human body 

(Lynch and Bruce 2013).   

Because of this awareness and advances in culture-independent techniques and 

sequencing technology, the entire microbiome of the CF lung is now being explored.  The 

CF airways contain microbial communities including organisms traditionally associated 

with CF and anaerobes (Zemanick et al. 2011).  In addition, the bacteria 

Stenotrophomonas maltophila, Achromobacter xylosoxidans, other non-cepacia 

Burkholderia species, and the fungus Aspergillus fumigatus are increasingly causing 

infections in CF patients and can cause a decline in lung function (Hauser et al. 2011; 

Zemanick et al. 2011).  There is debate regarding the increased prevalence of these 

organisms and whether they are truly increasing in frequency or are products of changing 

patient care guidelines, differences in sample processing techniques between laboratories, 

and better identification techniques (LiPuma 2010).        

Blainey and colleagues’ (2012) culture-independent study comparing sputum of 

healthy people to sputum of CF patients found significant differences in the micriobiota 

of the two groups, with healthy people having more diverse microbiota than the CF 

patients.  They also found a unique signature of microorganisms for the sputum samples 

of the CF patients, which included a much greater presence of the phylum Bacteroidetes 

in CF sputum.  Cox and colleagues (2010) examined the bacterial diversity of the CF 

lung and found that diversity increases for the first decade of life, and then decreases as 

patients age, presumably as organisms establish dominance in the community.  In this 

study they found that only Stenotrophomonas maltophilia, Haemophilus influenza, and P. 

aeruginosa were significantly correlated with an increased patient age.  Other studies 
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have indicated that the incidence of P. aeruginosa infection is as high as 80% by the age 

of 20 (FitzSimmons 1993; Koch 2002).  In this dissertation I address the recovery of P. 

aeruginosa from homes with and without a CF patient (see Chapter 3).  Burkholderia 

infections, while less common, can rapidly lead to a decline in lung function, and the 

recovery of Burkholderia species from the home is addressed in Chapter 4.  

 

The Genus Pseudomonas 

 Pseudomonas species are gram-negative, motile rods.  They are isolated from a 

wide variety of environments, causing the genus to often be described as ubiquitous or 

global (Golderberg 2000; Stover et al. 2000).  Pseudomonas species have diverse 

metabolic profiles and large genomes (~6Mb), allowing them to use a large number of 

compounds.  Pseudomonas species tend to grow preferentially on amino acids or organic 

acids compared to glucose or other sugars (Rojo 2010).  This versatility contributes to 

Pseudomonas’ ability to inhabit such diverse environments.  Pseudomonas species have 

been described as human pathogens (predominantly P. aeruginosa, and occasionally 

other species), plant pathogens (P. syringae), insect pathogens (P. entomophilia), plant 

growth promoters (P. fluorescens), nitrogen-fixers (P. stutzeri), and bioremediators (P. 

putida) (Silby et al. 2011).    

Pseudomonas species can produce bacteriocins, called pyocins, which are 

proteinaceous antimicrobial compounds, evolved from phage tails, that target closely 

related species (Parret and DeMot 2002).  Pyocin production by Pseudomonas species 

alters the composition of mixed-culture biofilms (Waite and Curtis 2009).  In addition, 

pyocins can provide a competitive advantage between P. aeruginosa strains (Heo et al. 



! 15!

2007).  These studies indicate that pyocins could influence Pseudomonas’ ability to 

compete with each other and other organisms.  In addition, Pseudomonas species 

(especially the opportunistic pathogen P. aeruginosa) are often described as being 

resistant to antibiotics. P. aeruginosa infect susceptible patients, including burn victims, 

diabetics, and patients with cystic fibrosis.  P. aeruginosa strains have been described as 

having an intrinsic resistance to antibiotics such as aminoglycosides, quinolones, 

carbapenems, and penicillins (Gellatly and Hancock 2013).  P. putida has also been 

reported to have antibiotic resistance, but may also serve as an environmental reservoir 

for resistance genes, particularly to β-lactam antibiotics (Meireles et al. 2013). 

In addition to their antibiotic resistance capacities, Pseudomonas species can also 

form biofilms.  Biofilms are an aggregate of microbial organisms, usually consisting of 

multiple species, contained within a sticky, extracellular matrix of polysaccharides, 

proteins, and DNA, facilitating adherence to surfaces (Høiby et al 2010).  Bacteria in 

biofilms are up to 1,000 times more resistant to antibiotics than planktonic, or free-living, 

bacteria (Wagner and Iglewski 2008).  Not only have Pseudomonas biofilms been 

recovered from sites of clinical relevance, such as the lungs of CF patients (Wagner and 

Iglewski 2008), but also from environmental sites, such as plumbing (Eboigbidin et al. 

2008). 

Pseudomonas species have many characteristics that would be consistent with 

having a broad fundamental niche: relatively large genomes, strong competitive abilities, 

versatility in resource use, and tolerance to varied habitat conditions.  In Chapter 2 and 3 

of this dissertation Pseudomonas recovery from the human home is investigated.  Chapter 
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2 focuses on all species of Pseudomonas and their biogeography, while Chapter 3 focuses 

on the opportunistic pathogen, P. aeruginosa. 

 

The Genus Burkholderia 

The genus Burkholderia was formally named in 1992 and was then comprised of a 

small number of species previously described as Pseudomonas (Yabuuchi, et al. 1992). 

Today, the number of species in the genus is much larger and more diverse.  Much of this 

diversity is attributed to their large (4-9Mb) multireplicon genomes.  Burkholderia 

species are versatile and commonly isolated from soils.  There are Burkholderia species 

that are capable of fixing nitrogen, associating with plant roots to promote plant growth, 

protecting plants from fungal and other infections (Parke and Gurian-Sherman 2001), 

degrading a variety of pollutants, including trichloroethylene (TCE), polychlorinated 

biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). (O’Sullivan and 

Mahenthiralingam 2005), and causing disease in plants, animals and humans (Coenye 

and Vandamme 2003; Mahenthiralingam et al. 2005; Baldwin et al. 2007).  Most 

Burkholderia found in association with plants are considered beneficial 

(Mahenthiralingam et al. 2005; Suárez-Moreno et al. 2012).  Burkholderia species have 

been used in agriculture, as well as for bioremediation; however, because some species 

are also considered opportunistic pathogens, this has caused concern that immune-

compromised patients may be exposed to these species because of their use in agriculture 

and for bioremediation (Chiarini et al. 2006).  It is because of this concern that the United 

States Environmental Protection Agency restricted use of B. cepacia, a species 
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commonly associated with human infection, for bioremediation and agricultural uses 

(Federal Register 2003).    

One of the most studied groups of the Burkholderia genus is the Burkholderia 

cepacia (formerly Pseudomonas cepacia) complex.  The B. cepacia complex consists of 

17 formally named, phenotypically different species (LiPuma 2005; Nørskov-Lauritsen, 

et al. 2010; Suárez-Moreno et al. 2012).  Many of the members of the B. cepacia complex 

are capable of the abilities listed previously and have been isolated from both 

environmental and clinical environments.  B. cepacia complex species are considered 

opportunistic pathogens of particular interest to the cystic fibrosis (CF) community, as 

infection with these species can lead to a rapid decline in lung function and prognosis 

(Mahenthiralingam et al. 2008).  The first reports of B. cepacia complex species 

infections in CF patients were in the 1970’s and 1980’s (LiPuma 2010).  Causing 

additional concern to the CF community is the fact that B. cepacia complex species are 

transmissible from person-to-person (LiPuma 1990; Baldwin et al. 2008).  Clinical efforts 

such as generating patient cohorts, where patients with B. cepacia complex infections are 

seen on different days than uninfected patients, and other infection control measures have 

greatly reduced the incidence of infection (LiPuma 2010).   Clinical measures have not 

eliminated the incidence of B. cepacia complex infections, indicating that there could be 

an environmental source of infection.  In Chapter 4, recovery of Burkholderia species 

from the human home is examined. 
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Research Interests and Hypotheses  

What influences the biogeography of household Pseudomonas species? 

I examined the biogeographical patterns and seasonal variation for Pseudomonas 

species collected from the human home environment, using 15 homes to provide 

replication at the spatial scale, and sampling each repeatedly over different seasons 

provide temporal variability.  I hypothesized that both spatial and temporal factors affect 

the distribution of Pseudomonas species.  Recovery was examined at multiple taxonomic 

levels, and varied significantly by within home environment types at all levels, indicating 

the ability of Pseudomonas species to adapt to varied conditions.  Recovery varied 

significantly by season at the level of genus, and for two of the species groups (P. 

fluorescens group and P. putida group), indicating temporal variability in recovery for 

Pseudomonas species.  Interestingly, the patterns of recovery by both environment and 

season were different between the species groups.  Both season and environment type 

influenced distribution patterns of species within the genus Pseudomonas, suggesting 

niche partitioning within the genus. Overall, I found that Pseudomonas species exhibited 

both spatial and temporal variability, indicating that both adaption and dispersal 

limitation drive biogeographical patterns. 

 

Which environments in the human home are most likely to harbor Pseudomonas 

aeruginosa, and are there differences in P. aeruginosa recovery between homes with and 

without a cystic fibrosis (CF) patient? 

 I identified environments in the human home that harbored Pseudomonas 

aeruginosa, examined recovery seasonally, and compared recovery rates from homes 
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with P. aeruginosa culture-positive CF patients to those without.  I hypothesized that P. 

aeruginosa recovery does not vary between home with and without a CF patient, when 

recovery from patient-associated sites is excluded.  P. aeruginosa recovery patterns from 

homes were examined by comparing 10 different environment types (drains, soils, 

surfaces, etc.), and drains were identified as the environment type with the greatest P. 

aeruginosa recovery.  This indicates that drains could pose a risk to CF patients.  Season 

of isolation significantly influenced the recovery of P. aeruginosa, but season did not 

significantly influence recovery from drains.  P. aeruginosa recovery did not differ from 

drains in CF vs. non-CF homes, indicating that high recovery from drains is not explained 

by spread from patients to drains. 

  

How common are Burkholderia species in the human home, and are there patterns of 

recovery by location or by environment type? 

I investigated the human home as a potential source of Burkholderia sp. for CF 

patients by looking at the recovery rate from various environment types, hypothesizing a 

low recovery rate.  Overall, the recovery rate of Burkholderia sp. was very low, and 

isolates were recovered primarily from soil and soil-like environments and drains.  

However, even with low recovery, sites within the house cannot be eliminated as 

potential sources of new infection because of their recovery from within the home.  
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CHAPTER 2 

BIOGEOGRAPHY PATTERNS AND SEASONAL VARIATION IN RECOVERY OF 

HOUSEHOLD PSEUDOMONAS 

 

Summary 

Pseudomonas species are often described as “ubiquitous” (Stover et al. 2000) and 

have been isolated from many different environments.  In this study, I examined the 

biogeographical patterns and seasonal variation of Pseudomonas species collected from 

different environments in the human home; 15 homes were sampled 3-8 times each, with 

samplings being approximately 3 months apart.  Recovery was examined at multiple 

taxonomic levels: genus, species groups (as described in Anzai et al. 2000), and species.  

The majority of Pseudomonas recovered was from the P. putida group (60.8%), followed 

by the P. fluorescens group (22.9%), and P. aeruginosa group (15.2%).  Recovery varied 

by environment type (Appendix I) at the level of genus, with soils being most likely to 

yield Pseudomonas.  Recovery for each of the three species groups varied, with drains 

being most likely to yield P. aeruginosa group, and soils being most likely to yield P. 

fluorescens and P. putida group.  Seasonal variation was found at the level of genus, with 

winter having the lowest recovery.  At the level of species group, recovery also varied 

seasonally for the P. fluorescens group and P. putida group. Distribution patterns of 

species within the genus Pseudomonas were found to vary by environment type and 

season.  Soils and drains were the environment types with the highest recovery at the 
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taxonomic level of genus and at the level of species groups, so they were examined in 

greater detail by comparing different types soils and drains.  Recovery patterns at the 

level of species group for indoor soils (houseplants) were significantly higher from 

outdoor soils.  Overall, this study shows that variability between environment types and 

seasons can be seen at multiple taxonomic scales, that season influences recovery for 

household sites, that dispersal may be limited between houses, and that within the genus 

Pseudomonas species exhibit patterns of niche partitioning.  

 

Introduction 

 Interactions with other organisms including competitive abilities, predation and 

disease, as well as resource use, abiotic conditions, and an organism’s ability to disperse 

can all influence the distribution of organisms in space and time.  As a genus 

Pseudomonas is highly versatile and capable of using a wide range of resources and 

conditions (Goldberg 2000; Madigan et al. 2000).  In addition, Pseudomonas species are 

known to have advantages such as resistance to a wide array of antibiotics (Heuer et al 

2002; Johansen et al. 2008; Ratjen et al. 2009; Meireles et al. 2013).  These 

characteristics would indicate that as a genus Pseudomonas has a broad fundamental 

niche as defined by Hutchinson (1959).  Consistent with this, Pseudomonas species have 

been isolated from a variety of habitats such as: soils and rhizospheres (Green et al 1974; 

Berg et al. 2005), drains (Regnath et al. 2004; Remold et al. 2011), fresh water rivers 

(Pirnay et al. 2005), open oceans (Kahn et al. 2008), “petroleum sludge” (Bharali and 

Konwar 2011), insects (Saitou et al. 2009), medical equipment (Srinivasan et al. 2003), 



! 22!

and the human body (Bodey et al. 1983), and Pseudomonas species have been described 

as “ubiquitous” (Stover et al. 2000).  

However, an organism’s realized niche is often smaller than that of its 

fundamental niches (Hutchinson 1959).  Pseudomonas species, including P. aeruginosa 

(Knezevic et al. 2011), P. fluorescens (Sillankora et al. 2008), and P. putida group 

(Shaburova et al. 2009) are subject to disease, in the form of infection by phage.  

Presence of phage in an environment could affect the distribution of Pseudomonas.  

Pseudomonas can be prey for protozoan in the environment (Mazzola et al. 2009), which 

could also affect the distribution of Pseudomonas.  Lastly, production of bacteriocins, 

which are antimicrobial compounds produced by a bacterium to kill other closely related 

bacteria (Parret and De Mot 2002), could also alter the distribution of Pseudomonas.  It is 

because of these biotic factors that we expect not to find ubiquitous distribution of 

household Pseudomonas.  Depending on the way the realized niche is defined, abiotic 

factors (i.e., temperature, pH) could also influences its size (Colwell and Rangel 2009).   

 Season of recovery, which encompasses a variety of environmental characteristics 

(i.e., temperature, humidity), has been shown to be important in soil microbiology (Smit 

et al. 2001; Lipson and Schmidt 2004; Fierer and Jackson 2006), and microbial 

communities of lakes (Jasser et al. 2013) and microbial communities of the oceans 

(Giovannoni and Vergin 2012).  However, little is known about seasonal variability for 

Pseudomonas species or indoor microorganisms.  A study by Rodríguez and colleagues 

(2012) found significant seasonal variability in the recovery of Pseudomonas species in 

the Cautro Ciengas Basin in Chihuahuan desert of Mexico, which consists of a small 

valley and multiple water systems.  Rintala and colleagues (2008) found recovery of 
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microbial communities from indoor dust, mainly composed of gram-positive organisms, 

did vary by season.  In this study I examined the distribution of species by environment 

type and seasonal variation of the genus Pseudomonas from sites in and around the 

human home in order to contribute to knowledge about the realized niche of 

Pseudomonas species. 

 Competing hypotheses in microbial biogeography examine whether dispersal 

limitation is what dictates an organism’s distribution, or whether an organism’s ability to 

adapt to a particular environment dictates its distribution, or if it is a combination of both 

(Martiny et al. 2006).  The human home provides a place to study these questions with 

multiple microhabitats within and around a single building that are replicated within and 

between homes (i.e., bathroom sink drains).  Analyzing isolate recovery from samples 

taken using culture-based methods in a longitudinal study of 15 households over 4.5 

years, I describe variability of Pseudomonas recovery from 8 environment types within 

and around the home (Appendix I) to address biogeographical patterns of adaptation at 

multiple taxonomic scales: genus, species groups (as describe in Anzai et al. 2000), and 

species.  Variability in Pseudomonas recovery between different houses, which are 

spatially distant, was analyzed to address biogeographical patterns of dispersal limitation.  

Seasonal variability is also examined at multiple taxonomic scales (genus, species group, 

and species).  Lastly, I examined the distribution of Pseudomonas species across both 

seasons and environment types to determine if patterns of temporal and spatial niche 

partitioning occurred within this genus. 
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Materials and Methods 

Sample Collection  

I collected samples from 15 households in the Louisville, KY (USA) metropolitan 

area.  Two types of households were sampled: houses with a young cystic fibrosis (CF) 

patient in residence and houses without CF patients.  Each household was sampled 

between October 2007 and March 2012 at intervals of approximately three months.  

Houses were each sampled between 3 and 8 times, with over half (n=8) being sampled 8 

times; the average number of samplings per household was 6.  A total of 11,726 samples 

were taken.  Within each household, between 75 and 168 samples were collected 

(depending on the number of bathrooms, people, pets, etc.) from 123 types of sites in and 

around the home (Appendix I).  Choice of sites was not biased toward environments 

previously reported to harbor Pseudomonas; rather sites that might be important for 

human contact and the dispersal of microbial organisms were chosen.  Subjects enrolled 

in the study were instructed not to clean the home the week before the sampling date. To 

minimize the risk of cross-contamination, no two households were sampled on the same 

day.  Federal and institutional guidelines and policies regarding the use of human and 

animal subjects were followed including signed informed consent forms (and assent 

forms, where applicable). 

Samples were collected with sterile swabs pre-moistened with phosphate-buffered 

saline.  Surfaces were sampled at locations most likely to have frequent contact with 

human skin (i.e., knobs, buttons, etc.). Soils were sampled by inserting a swab 1-2 inches 

from the surface, collecting soil on the swab.  All drains were swabbed within the first 1-
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2 inches from the top of the opening.  The subjects or their parents/guardians collected 

human fecal and genital samples. Swabs were streaked onto Pseudomonas isolation agar 

(PIA) at the homes. Plates were transported on ice and incubated for 48 hours at 28ºC 

immediately upon return to the laboratory. Where growth occurred, a single colony from 

each plate was picked randomly, re-streaked onto PIA, grown, and frozen for further 

analysis.  Where multiple colony morphologies grew from a single sample, one of each 

was frozen (194 instances total) for further analysis. On twenty-eight instances, 

morphologically different isolates from the same sample were identified to be the same 

species; for these only one isolate was used in the analyses presented. 

Sample Identification  

Isolates were first identified as belonging to the genus Pseudomonas using 

previously described primers that selectively amplify members of the genus 

Pseudomonas (Spilker et al. 2004).  Pseudomonas isolates were identified to a finer 

taxonomic level by using >500bp sequences of the isolates' 16s rDNA (8f and 1492r 

universal bacterial primer pair for PCR and the 1401r primer for sequencing (Weisburg et 

al. 1991). Assignments were made to the level of species using three separate databases: 

Bioinfo 1200 neucleotide, Bioinfo 2 sequences, and EzTaxon (Chun et al. 2007; Croce et 

al. 2010).  Where the databases were not in agreement, Bioinfo 1200 nucleotide database 

was used for species assignment.  Species were then classified into species groups, as 

defined by Anzai and colleagues (2000).  While identification to the level of species was 

not always consistent for members of the P. fluorescens group and P. putida group, 

identification at the group level was.   

Statistical Analysis 
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Preliminary analyses of data excluding CF-associated sites, human upper 

respiratory sites and equipment used to treat CF, show that there are no differences 

between homes with and without a CF patient.  In order to increase the power of the 

analyses we therefore combined the two types of houses and continued analyses with this 

reduced dataset.  For analysis, the 123 types of sites considered in this study were 

categorized to create a summary variable: “environment type” which describes ecological 

similarity (Appendix I).  Using a mixed linear model with presence/absence of 

Pseudomonas sp. as the response variable, season and environment type as the fixed 

predictor variables.  The interaction between season and environment type was not tested 

because of imbalance in the dataset.  House and the interaction of house and environment 

type were random factors, and sampling as repeated measure nested with season of 

recovery (PROC GLIMMIX, SAS 9.3).  It is important to note that absence of recovery 

does not preclude these species being present, and sampling techniques could have biased 

recovery from sites.  For this, and all analyses involving seasons, the season of recovery 

was determined based on the meteorological seasons rather than astronomical seasons.  

The meteorological season considers factors such as average high and low temperatures 

for the area, Louisville Metro (Climatology – Louisville).  Winter was classified as 

December through February, spring as March through May, summer as June through 

August, and fall as September through November.    

In all analyses, for significant predictor variables, differences in least squares 

means among levels were calculated, and adjusted for multiple comparisons using 

Bonferroni corrections (PROC GLIMMIX, SAS 9.3).  Wald Z tests were used to 

calculate p-values for the covariance parameters of house and house by environment type 
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interaction.  In graphing these data and all other data presented in this chapter, odds ratios 

and least square means were calculated from the relevant mixed linear model and used to 

estimate probability of recovery for each season and environment type with 95% 

confidence intervals.  This is a maximum likelihood approach to estimate the variance for 

multiple variables (i.e., environment type and house) simultaneously, and is used because 

of the intrinsic imbalance and multivariate nature of the dataset.  For example, raw 

probabilities would not be able to account for factors such as having three times as many 

samples collected during a certain season compared to other seasons, while this approach 

accounts for such variation.  Least square means are generated from parameter estimates 

of the model and are estimates of fixed effects. 

Seasonal and environmental variability of recovery was examined for the three 

major species groups recovered in this study: P. aeruginosa group, P. fluorescens group, 

and P. putida group (Table 1; Anzai, et al. 2000) were tested.  Mixed linear models with 

presence/absence of each species group were the response variables, season and 

environment type as the predictor variables, house and the interaction of house and 

environment type as random factors, and sampling as repeated measure nested with 

season of recovery were used to address these questions. (PROC GLIMMIX, SAS 9.3). 

Contrasts and graphical display of the data are as previously described for overall 

Pseudomonas spp. recovery.    

Data were then analyzed for potential patterns of niche partitioning within the 

genus Pseudomonas by season and environment type.  The relative rate of recovery was 

generated for each species across environment types for each season (number of isolates 

of a particular species divided by the total number of Pseudomonas isolates).  Species for 
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which fewer than 8 isolates were recovered were pooled together by species group (i.e., 

Other P. putida group).  A Bray-Curtis dissimilarity matrix was calculated for the relative 

recovery rates by species across environment type for each season using PRIMER (2006).  

A permutational ANOVA was used to evaluate the effect of environment type and season 

(as fixed factors) on the dissimilarity matrix generated from proportion data (Anderson 

2005; PRIMER).  

 Since recovery was greatest from soils and drains they were examined further.  

Soils were further classified as indoor soils (including only houseplants) and outdoor 

soils (including only yard and garden soils).  Drains were further classified into three 

types: kitchen sink drains (including garbage disposals), bathroom sink drains, and 

bathtub/shower drains.  Recovery was then examined by species group for soil type and 

drain type using mixed linear models with presence/absence of each species group were 

the response variables, season and drain (or soil) type as the predictor variables, and 

sampling as repeated measure nested with season of recovery were used to address these 

questions. (PROC GLIMMIX, SAS 9.3).  In addition, recovery from soils and drains 

were examined for patterns of niche partitioning within the genus Pseudomonas.  

Analyses preformed as previously described with soil types and drain types rather than 

environment types.  

 

Results 

 Pseudomonas species were recovered from every season, every house, and every 

environment type sampled.  A total of 1,152 Pseudomonas isolates were recovered from 

11,726 samples taken for an overall recovery rate of 9.8%.  Of the isolates collected, 
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60.8% were from the P. putida group, 22.9% were from the P. fluorescens group, 15.2% 

were from the P. aeruginosa group, and 1.1% were from other Pseudomonas species 

(Table 1). 

Table 1. Species recovered in this study, as categorized into species groups.  Species groups 
were defined by Anzai et al. (2000). 
P. aeruginosa group P. fluorescens group P. putida group Other 

Pseudomonas sp. 
P. aeruginosa P. cedrina P. cremoricolorata P. abietaniphila 
P. alcaligenes P. extremaustralis P. fulva P. chlororaphis 
P. citronellolis P. fluorescens P. monteilii P. cichorii 

P. multiresinivorans P. libanensis P. mosseliiss P. rhizosphaerae 
P. nitroreducens P. lurida P. oryzihabitans P. stutzeri 

P. otitidis P. orientalis P. plecoglossicida P. syringae 
 P. poae P. putida  
 P. proteolytica   
 P. rhodesiae   
 P.  tolaasii   
 P. trivialis   
 P. veronii   

 
   

Environment type and season were examined at the level of genus to determine 

their influence on the recovery of Pseudomonas.  Household Pseudomonas recovery 

varied significantly by environment type (p<0.0001), and was significantly higher from 

soil sites compared to all other types of environments (Figure 3A).  Recovery from drains 

was also higher than all other types of environments excluding soils.  Human skin sites 

had the lowest recovery of Pseudomonas species, followed by animal and surface sites. 

Pseudomonas recovery varied significantly by season (p<0.0001), with winter having 

significantly lower recovery than other seasons.  The interaction between season and 

environment type was unable to be tested due to imbalance in the dataset.  Recovery rates 

of Pseudomonas differed significantly among houses (p=0.047); additionally, there was a 

significant interaction between house and environment type (p=0.0002).  
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Figure 3. Predicted probability of Pseudomonas recovery as calculated from mixed general 
linear model with Pseudomonas sp. recovery as the response variable, environment type and 
season as predictor variables, house and the interaction of house and environment type as 
random factors, and sampling as a repeated measure nested within season of recovery by A) 
environment type B) season.  95% confidence intervals of the probability are shown.  The 
letters over data-points indicate the results of differences of least square means comparisons 
of seasons. Each letter that appears multiple times designates pairs of seasons did not differ 
significantly; seasons that differed significantly (p<0.05) do not share letters.  Contrasts were 
adjusted for multiple comparisons using a Bonferroni correction.  Overall significance 
designated by: ***p<0.0001. 
 
 Next, variability in recovery by environment type was explored at the level of 

species group (P. aeruginosa group, P. fluorescens group, and P. putida group).  For all 

three species groups recovery rates varied among the environment types, and 

interestingly, the species groups did not exhibit the same patterns of recovery (Figure 4).  

P. aeruginosa group recovery differed from the pattern of recovery at the genus level, 

with drain sites as the environment type with the highest recovery.  Recovery for drains 

was significantly different from all other environment types including soils (Figure 4A).  

Due to small sample size animals were unable to be included in analyses examining 

recovery of P. aeruginosa group by environment type.  For P. fluorescens groups, soil 
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sites were the environment type with the highest recovery.  Due to high variation in 

recovery from P. fluorescens group differences were not statistically significantly 

different, from recovery from drain sites, trash/compost sites, water sites, or 

miscellaneous moist sites, which include items that are frequently wet or in contact with 

water but have opportunities to dry (i.e., dish scrubbing tools, bath toys, etc.) (Figure 4B).  

For P. putida group, recovery was significantly higher for soil sites than any of the other 

environment types (Figure 4C).  Recovery from drain sites was also significantly higher 

than most other environment sites for P. putida group. Although results of pairwise tests 

differ, the recovery trends for P. fluorescens group and P. putida group are similar.  All 

three groups had very low recovery from vertebrates (animal and human skin 

environment types). 

 
 
Figure 4. Predicted probability of recovery from environment types from mixed general 
linear model analygous to that described in Figure 3, expect that response variables are 
recovery from: A) PAG - P. aeruginosa group B) PFG - P. fluorescens group C) PUG - P. 
putida group 95% confidence intervals of the probability are shown.  The letters over data-
points indicate the results of differences of least square means comparisons of environment 
type. Each letter that appears multiple times designates pairs of seasons did not differ 
significantly; seasons that differed significantly (p<0.05) do not share letters.  Contrasts were 
adjusted for multiple comparisons using a Bonferroni correction.  Overall significance 
designated by: ***p<0.0001. 
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Recovery at the level of species groups was also examined for variability across 

season.  P. aeruginosa group recovery did not differ by season (data not shown).  P. 

putida group and P. fluorescens group show significant seasonal differences (Figure 5) 

and interestingly have different seasonal patterns from each other.  P. putida group had a 

higher probability of recovery in the summer and fall (Figure 5B), and while not the same 

as exhibited at the level of genus, the pattern is similar.  P. fluorescens group had 

significantly more recovery in the spring, followed by summer, and the lowest recovery 

in winter and fall (Figure 5A).  This pattern of recovery, with spring having greatest 

recovery compared to all other seasons appears to differ from that of the genus as a 

whole.  The effect of house on recovery variability was also examined for each of the 

three Pseudomonas species groups.  Variability in recovery was not significantly 

explained by house-to-house variability for the P. aeruginosa group (p=0.3626); however 

the interaction between house and environment type was significant (p=0.001).  

Variability in recovery was significantly explained by house-to-house variability for both 

P. fluorescens group and P. putida group (p=0.022 and p=0.035 respectively); 

additionally, the interaction between house and environment type was significant for both 

P. fluorescens group and P. putida group (p=0.0002 and p=0.001 respectively). 
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Figure 5. Predicted probability of recovery from seasons by Pseudomonas species groups: A) 
P. fluorescens group B) P. putida group from mixed general linear models as described in 
Figure 4.  95% confidence intervals of the probability are shown.  The letters over data-points 
indicate the results of differences of least square means comparisons of seasons. Each letter 
that appears multiple times designates pairs of seasons did not differ significantly; seasons 
that differed significantly (p<0.05) do not share letters.  Contrasts were adjusted for multiple 
comparisons using a Bonferroni correction.  Overall significance designated by: 
***p<0.0001. 
 

The relative rates of recovery for Pseudomonas species across seasons and 

environment types was examined for patterns of niche partitioning within the genus by 

comparing proportions for each species by season/environment type.  The relative 

recovery rate of species in the genus Pseudomonas differs significantly by season 
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sites.   While fall had nearly twice as many Pseudomonas collected as winter, the 

distribution of species present did not significantly differ 

 

 Figure 6. Proportion of recovered strains by species for all Pseudomonas by A) seasons B) 
environment types.  Coloring represents species (see legend) and group: reds - P. aeruginosa 
group, greens - P. fluorescens group; blues – P. putida group.  Numbers on the tops of bars 
indicate sample size (# Pseudomonas collected) for each category.  A permutational ANOVA 
was used to evaluate the effect of environment type and season (as fixed factors) and for 
pairwise comparison between environment type and season.  The letters over bars indicate 
the results of pairwise comparisons. Each letter that appears multiple times designates pairs 
of seasons or environments that did not differ significantly; seasons that differed significantly 
(p<0.05) do not share letters.  Contrasts were not adjusted for multiple comparisons and are 
shown to explore trends.  Overall significance designated by: *p<0.05, **p<.0.01. 
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 The relative rate of recovery of Pseudomonas species also differed significantly 

by environment type (p=0.001; Figure 6B).  Drain sites exhibited a different distribution 

of Pseudomonas than most of the other environment types, as drains had a greater 

proportion of P. aeruginosa and other P. aeruginosa group members present compared to 

other environment types.  Additionally, the proportion of P. aeruginosa group was low in 

other environment types, consistent with the finding at the level of species group that P. 

aeruginosa group members are primarily found in drains (Figure 4A).  The distribution of 

Pseudomonas species from soil sites differ significantly compared to drain sites and 

miscellaneous moist sites (i.e., dish scrubbing tools, bath toys, etc.).  Soils did not differ 

from the rest of the environment types (with the exception of trash/compost sites), but are 

dominated by P. putida group members.  Approximately 75% of Pseudomonas recovered 

from soils fall within the P. putida group. 

Soil and drain sites had the highest recovery of Pseudomonas species; it was for 

this reason they were sub-categorized for further examination.  Drains were sub-divided 

into kitchen sink drains, bathroom sink drains, and tub/shower drains, while soils were 

sub-divided into indoor soils (houseplants) and outdoor soils.  I compared recovery from 

the drain subtypes at the level of species group, and found no significant differences for 

any of the three species groups (data not shown).  The relative rates of recovery for all 

Pseudomonas species was also compared for drain sub-types and between seasons for 

drain recovery, and there were no significant differences between subtypes or season 

(data not shown).  Indoor soils were compared to outdoor soils at the level of species 

group. No differences were found between indoor and outdoor soils for P. aeruginosa 

group (data not shown), perhaps because of small sample size (only 9 P. aeruginosa 
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group isolates total were collected from soils).  There were significant differences in 

recovery between indoor and outdoor soils for both P. fluorescens group and P. putida 

group (p=0.009 and p=0.011, respectively; Figure 7A-B). Both P. fluorescens group and 

P. putida group had higher recovery from outdoor soils compared to indoor soils.   

 

Figure 7. Recovery of Pseudomonas from soils.  Comparisons of indoor soils to outdoor soils  
at the level of species group: A) P. fluorescens group B) P. putida group.  C) Seasonal 
variation in probability of recovery of P. fluorescens group isolated from soils.  For panels A-
C: predicted probability of recovery as calculated from mixed general linear model with P. 
fluorescens group or P. putida group recovery as the response variable, soil type and season 
as predictor variables, house and the interaction of house and environment type as random 
factors, and sampling as a repeated measure nested within season of recovery.  95% 
confidence intervals of the probability are shown.  The letters over data-points indicate the 
results of differences of least square means comparisons. Each letter that appears multiple 
times designates pairs of seasons did not differ significantly.  Contrasts were adjusted for 
multiple comparisons using a Bonferroni correction.  D) Distribution of Pseudomonas 
species from indoor and outdoor soils, numbers on the tops of bars indicate sample size (# 
Pseudomonas collected) for each category.  Overall significance designated by: *p<0.05.   
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For each species group, seasonal variability in recovery from soils was examined.  

There was not any significant seasonal variability for P. aeruginosa group or P. putida 

group soils (data not shown).  P. fluorescens group was found to have significant 

seasonal variability (p=0.023; Figure 7C).  This difference was driven by slightly higher 

P. fluorescens group recovery in winter and spring, but pairwise comparisons were not 

significant after adjustment for multiple comparisons.  The relative rates of recovery of 

all Pseudomonas species recovered was compared between indoor and outdoor soils; 

additionally, the distribution for soil sites was examined for seasonal trends in recovery.  

The relative rates of recovery for Pseudomonas species from soils differed marginally 

significantly by season (p=0.06; data not shown), but were found to differ significantly 

by soil type (p=0.05; Figure 7D).  However, P. putida group dominates both indoor and 

outdoor soils. 

 

Discussion 

 While Pseudomonas recovery from the home is not common (9.8%) of samples 

taken), species were recovered from every season, every house sampled, and every 

environment type.  Patterns of recovery indicate that recovery from soils and drains are 

significantly more likely.  Both at the level of genus, and within each species group, 

recovery from soil sites and drain sites were high, indicating their importance for 

household Pseudomonas.  Classical accounts of Pseudomonas species describe them as 

being common in soil and aquatic sites, and these results are consistent with those 

observations (Ringen and Drake 1952).  Additionally, patterns of recovery vary between 

species groups, with patterns of recovery from P. aeruginosa group differing from those 
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of P. fluorescens group and P. putida group.  The patterns of recovery for Pseudomonas 

as a genus are very similar to those of the P. putida group.  This is driven by the 

numerical dominance of P. putida group (60.8%) and species group was not corrected for 

when analyzing recovery at the genus level.  Season also influenced recovery for all 

taxonomic levels and is important in determining the distribution of Pseudomonas in the 

home.  The finding of differences among environment types and in the relative recovery 

of Pseudomonas species provides evidence for niche partitioning within the genus. 

 

Fundamental vs. Realized Niche 

 Generally, the fundamental niche consists of everywhere the environmental 

conditions are suitable for an organism to grow and reproduce, and the realized niche can 

be defined as where, or under what conditions, an organism is actually found.  We 

expected that the fundamental niche be broad and larger than the realized niche for 

Pseudomonas, as Pseudomonas have diverse metabolic capabilities and have previously 

been isolated in numerous varying environments.  Consistent with that, Pseudomonas 

was recovered from every season, home, and environment type.   

The realized niche is usually smaller than the fundamental niche because of 

interactions with other species, such as competition, predation, or disease.  We found 

there is also evidence to support that the realized niche could be smaller than the 

fundamental niche for household Pseudomonas.  Significant variation in recovery 

patterns by environment type was found, even at the level of genus.  Recovery at the level 

of genus was highest for soils and followed by drains, while other environment types had 

much lower recovery.  When using finer taxonomic resolutions, and examining recovery 
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at the level of species group and species, variability between environment types persist.  

Furthermore, patterns of recovery differ between species groups.  It is clear that members 

of the P. aeruginosa group do not necessarily occupy the same types of sites as other 

Pseudomonas species groups (i.e., soils), or at least are not found nearly as frequently in 

these sites.  It is important to note that absence of recovery does not preclude these 

species being present, and sampling techniques could have biased recovery from sites.  

However, these data do suggest that while Pseudomonas species have a broad 

fundamental niche, P. fluorescens group and P. putida group use multiple types of sites, 

but only a few really well.  P. aeruginosa group is found at least occasionally in most 

types of sites, but frequently only in drains.  This indicates that all species groups within 

the genus may have smaller realized niches, which is consistent with other reports of the 

genus Pseudomonas  (Remold et al. 2011).   

It is unclear from this study what specific factors are influencing the size of the 

realized niche; however, it is quite possible that biotic factors, such as competition at the 

local environment, or disease in the form of phage could be decreasing the size of the 

realized niche.  All three Pseudomonas species groups discussed in this paper have been 

shown to be vulnerable to phage (Sillankora et al. 2008; Shaburova et al. 2009; Knezevic 

et al. 2011).  If these phage are present in the home environment, this could contribute to 

the distributions found.  Depending on the way the realized niche is defined, abiotic 

factors could also influences its size (see Chapter 1; Colwell and Rangel 2009).  If one 

uses this definition for the realized niche it is possible that abiotic environmental 

conditions such as temperature, pH, humidity, and so on could also be contributing to 

varied distributions found.  Lastly, it is also possible that the realized niche of household 
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Pseudomonas is constrained by the dispersal limitations or abilities of Pseudomonas spp 

(which are discussed below). 

 

Seasonal Variability  

 The results of this study demonstrate that season is important for the recovery 

patterns and distribution of Pseudomonas species at all taxonomic levels examined.  At 

the level of genus, recovery is found to be the lowest during the winter months and nearly 

equal for the other three seasons.  At the level of species group, P. putida group recovery 

was higher in the fall and summer and nearly equal for winter and spring.  P. fluorescens 

group had a different pattern, where recovery was highest during the spring.  The average 

high temperature in the spring in Louisville is 67.9°F, compared to 45.5°F for winter, 

87.5°F for summer, and 69.7°F for fall; while, the average low temperature in the spring 

in Louisville is 47.4°F, compared to 28.9°F for winter, 68.1°F for summer, and 49.6°F 

for fall (Climatology – Louisville).  P. fluorescens group and P. putida group differ 

particularly with respect to recovery in the spring and fall (see Figure 5), where the 

temperature differential is minimal.  This indicates the seasonal differences are driven by 

something other than temperature.   

Season is a broad term that encompasses a variety of environmental and climactic 

changes including temperature, humidity, precipitation, etc.  Therefore it is possible 

changes in another environmental factor associated with season are driving the difference 

seen between P. fluorescens group recovery and P. putida group recovery.  Additionally, 

most of the samples collected in this study were from sites inside the home, where 

temperature is generally more constant throughout the year.  It is also possible that 
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behavioral patterns of human and animal inhabitants including increased movement from 

inside to outside, or vice versa, or closed ventilation verses open windows during certain 

seasons could also potential explain patterns.  Further research needs to be done to 

investigate more precise causes of these differences.  

Rintala and colleagues (2008) found that the diversity of microbial communities 

from indoor air dust in Finland (mostly Gram-positive organisms) was highest in the 

spring and lowest in the winter.  Moschandreas and colleagues (2003) found that 

recovery of cultivable organisms from Chicago-area homes (focusing on Gram-positive 

organisms) was highest in the summer, but also resident dependent.  At the genus level, 

the results of this study do not differ from these accounts, where Pseudomonas recovery 

is lowest in the winter.  However geographic differences, in addition to technical 

differences, make comparing these studies difficult.  It is established that external inputs 

to indoor environments, such as open windows, food, and soil can influence the diversity 

of microbial communities (Kelley et al. 2013), and it is possible these factors are 

influencing differences in seasonal recovery of Pseudomonas species as well.  Seasonal 

variability in Pseudomonas recovery indicates that microbial longitudinal studies must be 

carefully designed and consider climatic or environmental variables for greatest accuracy.   

 

 Dispersal vs. Adaption     

At all taxonomic levels Pseudomonas recovery significantly varied by 

environment type, with the environment type varying between different species groups.  

These results indicate that the distribution of Pseudomonas species is influenced by their 

ability to adapt to certain types of environments.  However, at both the level of genus and 
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the level of species group Pseudomonas recovery varied significantly among houses, with 

the exception of P. aeruginosa group, which showed no significant house-to-house 

variability. 

 Competing hypotheses in microbial biogeography question whether dispersal 

limitation is what dictates an organism’s distribution, ability to adapt to its environment 

dictates an organism’s distribution or if both dictates its distribution (Martiny et al. 2006).  

Unfortunately these things are difficult to detangle based on frequency data alone.  

Evidence for dispersal limitation could include absence or by changes in frequency of 

recovery (e.g., founder effects, legacy effects); however, differences in frequency of 

recovery could also be due to adaptation to local environment. 

 

Relative Distributions and Patterns of Niche Partitioning   

The relative distribution of species within the genus Pseudomonas was found to 

be variable by both environment type and season (Figure 6), which is indicative of niche 

partitioning within the genus.  Interestingly, the two types of environments with the 

greatest amount of Pseudomonas recovery, soils and drains, showed significant 

differences in patterns of species distribution.  Drains were significantly different 

compared to most other environment types in their pattern of Pseudomonas distribution, 

with the exceptions of trash/compost sites and water sites.  Relative recovery rates of all 

Pseudomonas species from indoor soils compared to outdoor soils differed. This 

difference could be due to the difference in soil nutrient and characteristic from indoor 

houseplant soil, which is likely potting soil, compared to yard or garden soil, from 

differences in water sources and regularity of watering, or from differences in exposure to 
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larger organisms (i.e., earthworms).  The increased recovery of Pseudomonas from 

outdoor soils compared to indoor soils is consistent with Remold and colleagues (2011), 

also consistent with this study in the increased recovery of P. fulva from outdoor soils 

compared to indoor soils (Figure 7D).   

Classically niche partitioning is a result of competition over some sort of limiting 

resource so that competing organisms do not co-exist in the same niche-space.  The 

patterns of niche partitioning examined in this study are relative only to other 

Pseudomonas and could be indicative of species interactions, such as competition, 

occurring within household environments.  However, this study did not assess whether 

Pseudomonas species were competing with each other, or species of other genera, for a 

limited resource, so it is possible that the patterns of niche partitioning seen could be 

caused by other biotic factors.  Alternatively the distributions seen could be driven by 

dispersal limitation and driven by founder effects. 

Overall, this study demonstrates that while household Pseudomonas have broad 

fundamental niches, indicated by occasional recovery from most environments, at the 

level of genus, species group, and species there is evidence for a smaller realized niche 

for household Pseudomonas species.  Evidence supporting Pseudomonas species 

adaptation to local environments as well as limited ability to disperse between houses are 

also shown.  Seasonal variability in recovery of Pseudomonas species, demonstrates that 

indoor environments and microbial inhabitants are affected by seasonal changes.  

Seasonal variability also points to the importance of carefully designed longitudinal 

studies, so as to not miss or mask variability. Patterns of recovery consistent with niche 
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partitioning indicate that the factors influencing the distribution of the different species 

groups may differ, including both species interactions and dispersal limitation. 
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CHAPTER 3 

IDENTIFICATION OF SITES HARBORING PSEUDOMONAS AERUGINOSA IN 

HOMES WITH CF PATIENTS AND HOMES WITHOUT CF PATIENTS 

 

Summary 

Pseudomonas aeruginosa infection occurs at an early age in many cystic fibrosis 

(CF) patients.  While most colonizing strains are thought to be environmental, little work 

has been done to identify source environments important in lung colonization.  My goals 

were to identify environments in the human home that harbor P. aeruginosa from which 

infections could be acquired, examine recovery patterns for seasonal trends, and to 

compare recovery rates from homes with P. aeruginosa culture-positive CF patients to 

those without.  I characterized P. aeruginosa recovery patterns from human homes with 

(n=7) and without (n=8) young CF patients.  In all, 75-168 sites representing a broad 

range of types of environments were sampled at each of 3-8 visits to each home.  These 

included both host-associated (e.g. nose, mouth, eyes of humans and pets), and non-host 

associated sites (e.g. drains, counters, soils).  In all, 11,726 samples were taken.  

Excluding isolates collected from CF patients, isolates from drains represent 67.3% of P. 

aeruginosa collected.  Whereas 28.6% of drains yielded P. aeruginosa, recovery from all 

other types of environments except upper respiratory sites of CF patients was low.  The 
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season of isolation significantly influenced the overall recovery of P. aeruginosa, but 

season did not significantly influence recovery from drains.  Recovery from bathroom 

sink drains was significantly higher than recovery from kitchen sink drains or 

bathtub/shower drains.  P. aeruginosa recovery did not differ from drains in CF vs non-

CF homes, indicating that high recovery from drains is not explained by spread from 

patients to drains.  These data indicate that household P. aeruginosa are mainly found in 

drains, and suggest that if successful cleaning regimes targeting drains could be identified, 

they could substantially reduce exposure to environmental P. aeruginosa in the home. 

 

Introduction 

 A majority (90%) of cystic fibrosis patients tested positive for whole-cell 

antibodies to Pseudomonas aeruginosa and nearly 80% of patients’ oropharynx cultures 

were positive for P. aeruginosa by 3 years of age (Burns et al. 2001).  The prevalence of 

P. aeruginosa infections in CF patients increases with age, with approximately 80% of 

patients being infected by the age of 20 (FitzSimmons 1993; Koch 2002).  As infections 

establish in the lungs they become more difficult to eradicate.  It is well documented that 

P. aeruginosa can be transmitted between siblings (Renders et al. 1997; Tubbs et al. 

2001), and cross-infection can occur from patient-to-patient in clinical settings (Cheng et 

al. 1996; Denton et al. 2002; McCallum 2002; Jones et al. 2003; Scott and Pitt 2004).  

However, initial infections are frequently found to be genetically more similar to isolates 

collected from environmental sources compared to those from chronically infected CF 

patients (Burns et al. 2001; Rau et al. 2010; Jelsbak et al. 2007; Workentine and Surette 
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2011).  This indicates that the source of these initial infections is likely to be somewhere 

in the patients’ everyday environments. 

 P. aeruginosa is often referred to as “global” or “ubiquitous” (Goldberg 2000; 

Stover et al. 2000).  Even though P. aeruginosa has been isolated from many highly 

variable environments, only a few studies have examined it in environments or at a scale 

relevant to objects that young CF patients might contact on a daily basis (Mortensen et al. 

1995; Ojima et al. 2002; Regnath et al. 2004; Schelstraete et al. 2008; Remold et al. 

2011).  Four of these five studies (Mortensen et al. 1995; Ojima et al. 2002; Regnath et al. 

2004; Schelstraete et al. 2008) focused on the interior of the homes (primarily 

bathrooms/washrooms and kitchens), and all previous studies consisted of a single 

sampling of each household.  Both the number and types of sites sampled varied between 

the studies.  Remold et al. (2011) examined the many sites spanning inside and outside of 

the home from 20 homes; however, neither this study nor Ojima and colleagues’ study 

(2002), included any CF patients or their homes. None of these studies addressed 

variation in recovery across seasons.  

 This study looks extensively at the human home environment (both interior and 

exterior), paying particular attention to sites that young children might come into contact 

with regularly, over multiple time-points and seasons.  Additionally, I compare recovery 

of P. aeruginosa in homes with a CF and those without a CF patient.  Analyzing isolate 

recovery from 11,726 samples taken in a longitudinal study of 15 households over 4.5 

years, I describe the types of household sites harboring P. aeruginosa and other 

Pseudomonas species.  Sites from which P. aeruginosa are most frequently recovered are 

potential environmental sources of P. aeruginosa infection.  Identification of these sites 



! 48!

would also identify parts of the home for which effective cleaning strategies should be 

implemented in order to minimize patient exposure to household P. aeruginosa.  I 

examine recovery of P. aeruginosa for seasonal trends in recovery, which would indicate 

cleaning regimes could be further targeted towards seasons where P. aeruginosa is most 

prevalent.  Lastly, I compare recovery from homes with and without a P. aeruginosa 

culture-positive CF patient. Whereas increased recovery in homes with a culture-positive 

CF patient could occur if droplet contamination from coughing, spitting, etc. affected 

colonization of non-patient sites, similar recovery patterns across homes with and without 

a CF patient would indicate that patient dispersal of P. aeruginosa is not the primary 

explanation for recovery and that isolates can be considered environmental in origin. 

 

Materials and Methods 

Sample Collection  

I collected samples from 15 households in the Louisville, KY (USA) metropolitan 

area; 7 households had a child with cystic fibrosis (CF) ranging in age from 6 months to 

14 years old and 8 did not.  All households with a CF patient were recruited through the 

Pediatric CF Center at the University of Louisville, and each had only one CF patient per 

house.  Most patients had positive P. aeruginosa cultures from upper respiratory sites 

during the course of the study (Table 2).   
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Table!2.!P.#aeruginosa!and!other!pathogen!recovery!from!upper!respiratory!sites!of!
enrolled!CF!patients!during!the!course!of!their!participation!in!the!study.!!Houses!3E5,!7,!
8,!10,!11,!13!did!not!have!a!CF!patient.!
!
House&
#&

P.#aeruginosa&
isolated&at&
clinic&visit(s)&

P.#aeruginosa&
isolates&from&
this&study&

Other&pathogens&
isolated&at&clinic&

visit(s)&

Age&(in&
years)&at&

start&of&study&

&

1& X# X! ! 3! !
2& ! ! Staphylococcus#auerus# 6! #
6& X# X! ! 14! !
9& X# X! Staphylococcus#aureus# 11! #
12& X! X! Staphylococcus#aureus,#

Stenotrophomonas#sp.#
8! #

14& ! ! Aspergillus#fumigatus;#
Cryptococcus#sp.#

0.5! #

15& X! X! Staphylococcus#aureus;#
Alcaligenes#sp.;#Candida#
albicans;#Achromobacter#

xylosoxidans!

10! #

 

Each household was sampled between October 2007 and March 2012 at intervals 

of approximately three months.  Houses were each sampled at least 3-8 times, with over 

half (n=8) being sampled 8 times; the average number of sampling events per household 

was 6.  A total of 11,726 samples were taken.  Within each household for each visit, I 

collected between 75 and 168 samples (depending on the number of bathrooms, people, 

pets, etc.) from 123 types of sites in and around the home (Appendix I).  Choice of sites 

did not bias sampling toward environments previously reported to harbor Pseudomonas; 

rather I sampled broadly to include those sites with which young children with CF might 

have contact or exposure.  Subjects were instructed not to clean the home the week before 

the sampling date. To minimize the risk of cross-contamination, no two households were 

sampled on the same day.  Federal and institutional guidelines and policies regarding use 
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of human and animal subjects were followed, including signed informed consent forms 

and assent forms, where applicable. 

Samples were collected with sterile swabs pre-moistened with phosphate-buffered 

saline; the subjects or their parents/guardians collected human fecal and genital samples. 

All drains were swabbed within the first 1-2 inches from the top of the opening. Surfaces 

were sampled at locations most likely to have frequent contact with human skin (i.e., 

knobs, buttons, etc.). Soils were sampled by inserting swab 1-2 inches from the surface, 

collecting soil on the swab. Swabs were streaked onto Pseudomonas isolation agar (PIA) 

at the homes. Plates were transported on ice and incubated for 48 hours at 28ºC 

immediately upon return to the laboratory. Where growth occurred, a single colony was 

picked, re-streaked onto PIA, and frozen for further analysis; where multiple colony 

morphologies were found for a single sample one of each were frozen for further analysis. 

On eight instances morphologically different isolates from the same sample were 

identified to be the same species; for these only one was used in the analyses. 

Sample Identification  

Isolates were first identified as belonging to the genus Pseudomonas using 

previously described primers that selectively amplify members of the genus 

Pseudomonas (Spilker et al. 2004). Further identification of those isolates identified as 

Pseudomonas was performed using >500bp sequences of the isolates 16s rDNA (8f and 

1492r) universal bacterial primer pair for PCR and the 1401r primer for sequencing 

(Weisburg et al. 1991). Assignments were made to the level of species using two separate 

BLAST databases: Bioinfo 1200 neucleotide and EzTaxon (Chun et al. 2007; Croce et al. 

2010). The two databases agreed on the species assignment for all P. aeruginosa isolates.  
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Isolates classified by 16s sequence as P. aeruginosa were confirmed using previously 

described primers designed to selectively amplify P. aeruginosa (Spilker et al. 2004).  

Statistical Analysis 

 For analysis, the 123 types of sites were categorized to create a summary variable: 

“environment type” which describes ecological similarity (Appendix I). I compared 

overall recovery of P. aeruginosa to other Pseudomonas species by looking at presence 

or absence across all samplings for each site sampled using McNemar’s Test (PROC 

FREQ, SAS 9.3).  I also compared recovery of P. aeruginosa to other Pseudomonas 

species within each environment type (PROC FREQ, SAS 9.3).  

I tested hypotheses regarding seasonal variability in P. aeruginosa recovery for 

overall recovery and for recovery from sites inside the home, humans, and 

bathroom/kitchen drains (the environment with the highest P. aeruginosa recovery) using 

mixed linear models with presence/absence of P. aeruginosa as the response variable, 

season and house type (whether a CF patient resides in the home or not) as the predictor 

variables, and sampling as repeated measure nested with season of recovery (PROC 

GLIMMIX, SAS 9.3).  For this and all other analyses odds ratios and least square means 

were used to generate probability of recovery for each season with 95% confidence 

intervals (PROC GLIMMIX, SAS 9.3).  This is a maximum likelihood approach to 

estimate the variance for multiple variables (i.e., environment type and house) 

simultaneously, and is used because of the intrinsic imbalance and multivariate nature of 

the dataset.  For example, raw probabilities would not be able to account for factors such 

as having three times as many samples collected during a certain season compared to 

other seasons, while this approach accounts for such variation.  Least square means are 
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generated from parameter estimates of the model and are estimates of fixed effects.  

Additionally, differences in least squares means were calculated, and adjusted for 

multiple comparisons using Bonferroni corrections (PROC GLIMMIX, SAS 9.3).    P. 

aeruginosa isolated from sites outside of the home were unable to be tested for seasonal 

trends due to low recovery.  Season of recovery was determined based on the 

meteorological seasons rather than astronomical seasons.  The meteorological season 

considers factors such as average high and low temperatures for the area (Climatology – 

Louisville). 

Then I further examined recovery from the environment with the highest recovery 

(bathroom/kitchen drains).  First, I examined whether drains in homes with a culture-

positive CF patient (n=5) were different from drains in homes without a CF patient (n=8).  

Culture positivity was defined as collection of P. aeruginosa in an upper respiratory 

(sputum, oropharynx, etc.) site either through our study or clinical collection during 

course of the study.  If drains in homes with a culture-positive CF patient have higher 

recovery rates of P. aeruginosa a possible explanation of this would be that patients are 

dispersing P. aeruginosa to their local environment.  This was examined using a mixed 

linear model with presence/absence of P. aeruginosa as the response variable and house 

type (CF or non-CF house) as the predictor variable, and sampling as repeated measure 

nested with season of recovery (PROC GLIMMIX, SAS 9.3).  Second, I also compared P. 

aeruginosa recovery from the three types of drains: kitchen sink drains (including 

garbage disposal), bathroom sink drains, and bathtub or shower drains.  This was done 

using a mixed linear model with presence/absence of P. aeruginosa as the response 
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variable and type of drain as the predictor variable, and sampling as repeated measure 

nested with season of recovery (PROC GLIMMIX, SAS 9.3).  

Results 

Although species from the genus Pseudomonas were isolated from all 10 

environment types sampled (Figure 8, Appendix I), recovery rates varied greatly between 

P. aeruginosa and other Pseudomonas species environment types (Figure 8).  The overall 

recovery rates of P. aeruginosa and other Pseudomonas were significantly different 

(p<0.0001).  Soils had the highest proportion (78.0%) of sites with Pseudomonas sp. 

growth, followed by drains (38.5%). Pseudomonas sp. recovery was also high in a 

number of other environment types, such as water sites (33.6%), trash/compost sites 

(29.6%), miscellaneous moist sites (26.4%), surfaces (21.4%) and human upper 

respiratory sites (9.5%).   

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Pseudomonas recovery by environment type. Percentage of 2,473 sites from 15 
homes ever yielding Pseudomonas aeruginosa (red), yielding both Pseduomonas aeruginosa 
and other Pseuodmonas species (purple) and yielding only non-aeruginosa Pseudomonas 
(blue).  Overall recovery (combination of all environment types) was signigicantly different 
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between P. aeruginosa and other Pseudomonas species (p<0.0001).  Results of tests of 
differences within each environment are shown (not corrected for multiple comparisons): 
***p<0.0001; **p<.001; ns not significant; ^ unable to be tested because no P. aeruginosa. 
 
Drains were the environment type that had the greatest of recovery of P. aeruginosa in 

the home. In fact, over one-half of all P. aeruginosa isolates recovered during the study 

were from drains (51.5%).  When host-associated sites of CF patients were excluded, 

drains represented 67.3% of the P. aeruginosa collected.  Of the drains sampled, 28.6% 

harbored P. aeruginosa at least once over the course of the study.  

As expected, recovery from upper respiratory sites differed between CF patients 

and non-CF patients; 46.2% of upper respiratory sites of CF patients yielded P. 

aeruginosa over the course of the study, while only 1.55% of upper respiratory sites of 

non-CF patients yielded P. aeruginosa over the course of the study.  Interestingly, 

recovery of non-aeruginosa Pseudomonas from upper respiratory sites over the course of 

the study was approximately equal for CF patients (10.7% of sites over the course of the 

study) compared to non-CF patients (10.3% of sites over the course of the study), and 

was substantially higher than P. aeruginosa recovery from non-CF patients.  Furthermore, 

P. aeruginosa recovery was extremely low for all other types of environments.  Extensive 

sampling of household surfaces (2,424 samples taken) yielded only 5 P. aeruginosa 

isolates from surfaces: a kitchen countertop, a spill on a kitchen counter, 2 bathroom 

counters, and one from a patient’s inhaler (all 5 from different homes). This inhaler was 

the only sample from patient equipment (PEP masks, compression vests, nebulizers, etc.) 

to yield P. aeruginosa. Even with extensive sampling, only 1 P. aeruginosa was 

recovered from soils (626 samples taken), and no P. aeruginosa was recovered from pets 

(864 samples taken) using our collection method.  A full list of all P. aeruginosa 

recovery can be found in Appendix II. 
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 I then examined seasonal variability in recovery of P. aeruginosa.  Overall, I 

found that recovery differed significantly across seasons (p=!0.0077; Figure 9A).  The 

probability of recovering P. aeruginosa was higher in the fall than any of the other 

seasons.  I then examined seasonal variability within sites inside the home, humans 

(including CF patients), and bathroom and kitchen drains.  Season significantly 

influenced recovery for sites inside the home (p=!0.0405).  I also found that, while not 

statistically different, the probability of recovering P. aeruginosa in the fall was higher 

than the other seasons.  Recovery from humans and bathroom and kitchen drain 

environments were not significantly influenced by season (Figure 9C and 9D 

respectively).  Consistent with trends for overall recovery and indoor sites, there appears 

to be a slight, but not statistically significant, increased probability of recovery of P. 

aeruginosa during the fall for both humans and drains.  I did not examine recovery for 

sites outside of the home for seasonal trends due to low sample size, only 5 P. aeruginosa 

were from outside of the home.  Patient status of the home, whether a CF patient resides 

there or not, did not significantly influence recovery (p=0.55). 
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Figure 9. Probability of P. aeruginosa recovery by season as calculated from mixed general 
linear model with P.aeruginosa recovery as the response variable, season and house type as 
predictor variables, and sampling as a repeated measure nested within season of recovery: A) 
overall B) indoor sites C) humans D) bathroom and kitchen drains.  95% confidence intervals 
of the probability are shown.  The letters over data-points indicate the results of differences 
of least square means comparisons of seasons. Each letter that appears multiple times 
designates pairs of seasons did not differ significantly; seasons that differed marginally 
significantly (p<0.10) do not share letters.  Contrasts in panels A and B were adjusted for 
multiple comparisons using a Bonferroni correction.  Overall significance designated by: 
**p<0.01; *p<0.05. 

 

I then examined patterns of recovery from drains in greater detail.  I compared 

recovery from bathroom and kitchen drains of homes with a P. aeruginosa culture-

positive CF patient (n=5; see Table 1) to homes without a CF patient (n=8).  I found that 

the probability of recovery from drains of homes without a CF patient was higher than 

from a home with a culture positive CF patient (0.1146 and 0.07 respectively), but not 

significantly so (Figure 10A). I compared recovery of kitchen sink drains (including 
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garbage disposals), bathroom sink drains, and bathtub/shower drains, combining data 

from all houses in light of the absence of a significant difference in drain recovery 

between houses with and without a CF patient. I found that the probability of P. 

aeruginosa recovery differed significantly overall, and was driven by higher recovery 

from bathroom sink drains (Figure 10B).  The difference between bathroom sinks and 

kitchen sinks and the difference between bathroom sinks and bathtubs or showers are 

only marginally significant after adjusting for multiple comparisons (Figure 10B).  

 

 

 

Figure 10. Probability of P. aeruginosa recovery in bathroom and kitchen drains as 
calculated from mixed general linear model with P.aeruginosa recovery as the response 
variable, drain type and house type as predictor variables, and sampling as a repeated 
measure nested within season of recovery by: A) house type (CF houses with a P. aeruginosa 
culture-positive patient (n=5) compared to non-CF houses) B) drain types (bathroom sink, 
kitchen sink, and tub/shower). 95% confidence intervals of the probability are shown.  The 
letters over data-points indicate the results of differences of least square means comparisons. 
Each letter that appears multiple times designates pairs of seasons did not differ significantly; 
seasons that differed marginally significantly (p<0.10) do not share letters.  Contrasts were 
adjusted for multiple comparisons using a Bonferroni correction.  *p<0.05 
 

Discussion 

Species from the genus Pseudomonas were collected from every home sampled, 

and from locations and environments both inside and outside of the homes.  My data 

suggest that, as a genus, Pseudomonas is very versatile.  This is consistent with other 

studies (Stainer et al. 1966; Nelson et al. 2002; Özen et al. 2011). In contrast, although P. 
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aeruginosa was recovered from every home sampled (regardless of patient status), the 

patterns of recovery from these homes were not consistent with this species being 

ubiquitous in nature with respect to environment type. Rather, P. aeruginosa was 

primarily found in drains, consistent with Ojima, et al. 2002, Regnath et al. 2004, and 

Remold et al. 2011. 

 Potential sources of P. aeruginosa to which exposure could be controlled are of 

particular interest. While I recovered some Pseudomonas species from household pets 

(primarily cats and dogs were sampled), I did not recover any P. aeruginosa.  This 

suggests that pets do not commonly act as a reservoir for P. aeruginosa, and that their 

presence is likely not a primary source of risk to CF patients regarding acquisition of P. 

aeruginosa. Similarly, I only recovered a single P. aeruginosa isolate from all 626 yard, 

garden, or houseplant soil samples taken; this isolate was from an indoor houseplant.  P. 

aeruginosa is often reported as a soil organism, and other studies have isolated P. 

aeruginosa from the soil (Green et al. 1974; Mukherjee et al. 2011). These studies 

collected much larger soil samples and suspended soil samples in water before 

inoculating media, so it is possible that differences in sampling methods contributed to 

the differences in observed recovery.  The low recovery of P. aeruginosa from soils in 

this study is consistent with the results reported by Remold and colleagues (2011), which 

sampled more houses than this study, but used a similar technique.  Failure to detect P. 

aeruginosa in these studies is not due to a failure to detect Pseudomonas (Figure 8); 

however, it is possible different Pseudomonas species could use different components of 

soil and may then vary in their ability to be recovered.   Food sources, particularly fresh 

produce, have been cited as potential sources for P. aeruginosa. Studies have isolated P. 
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aeruginosa at varying levels on supermarket fruits and vegetables (Schwaiger et al. 2011; 

Allydice-Francis and Brown 2012).  When present, I sampled vegetables grown in the 

ground (potatoes, carrots, etc) and sampled the vegetable drawer of the refrigerator but I 

recovered no P. aeruginosa from these sites.  However, my sample sizes of 67 vegetables 

and 92 vegetable drawers (totals reflect multiple sampling events) are small compared to 

other studies.   

Recovery from neither humans nor drains differed significantly across seasons, 

but the trends are consistent with pattern of recovery across all sites, in that the 

probability of P. aeruginosa is higher in the fall for both.  The increased recovery in fall 

could be due to the change in weather, or due to the change in behavioral patterns, such 

as going back to school or increased movement in and out of the home, that are 

associated with the fall.  The average high temperature for fall in the Louisville area is 

69.8°F, the average low temperature for the fall in the Louisville area is 49.6°F, and the 

average precipitation in the fall for the Louisville area is 9.86” (Climatology – Louisville).  

Johansen and colleagues’ (1992) examination of seasonal variability of CF 

patients’ initial acquisition of P. aeruginosa found that there is an increase in the winter 

months.  This study was conducted in Denmark and defined winter as October through 

March.  Our study demonstrates that there is seasonal variability in recovery from the 

home environment and that patients could possibly have an increased risk of P. 

aeruginosa exposure from the home during certain times of the year (in this case fall).  

However, the increase in recovery for fall demonstrated in this study is indicative only of 

the Ohio River Valley and may not be able to be extrapolated to other climates and 

geographies. 
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 If drains in homes with a culture-positive CF patient had higher recovery rates of 

P. aeruginosa a possible explanation of this would be that culture-positive CF patients 

were disseminating P. aeruginosa to the drains in their homes.  The probability of P. 

aeruginosa was not significantly different for drains in homes without a CF patient, 

indicating that P. aeruginosa is not being distributed to drains from P. aeruginosa 

positive patients at a rate significantly higher than the dispersal rates P. aeruginosa in 

homes without a patient.  This result is consistent with those of Panagea and colleagues 

(2005), who report colonized patients disseminating P. aeruginosa to their surroundings 

at detectable levels and indicate this dissemination is only to areas in the patients’ direct 

vicinity (i.e., clothing) and contamination appeared to be transient.  I also looked at 

differences in types of drains: kitchen sink, bathroom sink, and bathtub or shower drains.  

There is some evidence to suggest that recovery of P. aeruginosa is higher for some types 

of drains (bathroom sinks), and the higher recovery from bathroom sink drains is 

consistent with other comparisons of P. aeruginosa in household drains (Remold et al. 

2011).  However, most important is that P. aeruginosa recovery is highest for household 

drains.  While the outcome of the statistical analysis for drain type is different here than 

in Chapter 2, the trends are consistent.  This difference is likely due to analysis at the 

level of species group (P. aeruginosa group) in Chapter 2 compared to analysis of just P. 

aeruginosa proper here, and slight differences in the model.  While the exact source of 

the P. aeruginosa in household drains is unknown, it is possible that tap water, a regular 

input to both bathroom and kitchen drains could be a potential source.  P. aeruginosa has 

been recovered from tap water in both home and hospital environments (Anaissie et al. 
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2002; von Baum et al. 2010).  One study of household tap water in Germany found P. 

aeruginosa in the tap water of nearly 11% households sampled (von Baum et al. 2010). 

 Biofilms, found both in the drain environment and the lung environment, may 

help explain the increased recovery of P. aeruginosa from these sites.  Biofilms are an 

aggregate of microbial organisms, usually consisting of multiple species, contained 

within a sticky, extracellular matrix of polysaccharides, proteins, and DNA, facilitating 

adherence to surfaces (Høiby et al 2010).  P. aeruginosa has a number of characteristics 

that cause them to be successful in biofilm environments.  First, they can be facultative 

anaerobes allowing them to continue to grow and reproduce in anaerobic regions of 

biofilms which other organisms may not be able to survive (Wagner and Iglewski).  

Second, P. aeruginosa species in biofilms are capable of adhering to surfaces (i.e., 

piping) and this could give them an advantage in biofilms that are subject to shear force, 

as in drains. Third, in biofilms P. aeruginosa species are in close contact with 

neighboring organisms, and could be at an advantage due to their diverse metabolic 

capabilities.  Last, biofilm formation has been shown to greatly increase antibiotic 

resistance of P. aeruginosa, increasing its ability to withstand the disturbance event of 

antibiotic exposure (Wagner and Iglewski 2008).  

 My data show that within the human home environment P. aeruginosa is 

primarily found in bathroom and kitchen drains and that P. aeruginosa is primarily a 

drain specialist regardless of patient status of the home. It is known that P. aeruginosa 

isolated from initial infections of CF patients are more genetically similar to isolates 

collected from the environment than those isolates collected from chronically infected 

patients (Burns et al. 2001; Jelsbak et al. 2007; Rau et al. 2010; Workentine and Surette 
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2011).  It is possible the environmental source(s) of initial infections are drains from 

patients’ homes; this is consistent with the findings of Schelstraete, et al. 2008, where 

nearly 20% of isolates from newly infected CF patients where identical to isolates from 

patients’ homes. 

 One should be cautious about interpreting presence/absence data for particular 

sites or environments because detection of P. aeruginosa does not address the relative 

ability of strains to establish infection.  Nevertheless, my results suggest that identifying 

and implementing effective cleaning strategies for drains in patients’ homes could be 

effective in minimizing exposure to P. aeruginosa.  Identifying the most effective 

cleaning strategies is key, as household drains are likely to contain difficult to eradicate 

biofilm communities.  Future research focusing on correlations between cleaning regimes, 

cleaning agent, drain materials and P. aeruginosa recovery and infection rates would be a 

beneficial addition to the body of knowledge about P. aeruginosa. 

!
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CHAPTER 4 

RECOVERY OF BURKHOLDERIA SPECIES FROM THE HUMAN HOME 

ENVIRONMENT 

 

Summary 

Burkholderia cepacia complex species can cause life-threatening illness in cystic 

fibrosis patients.  While clinical efforts to minimize transmission (particularly patient-to-

patient) of B. cepacia complex species have been very successful, new cases still arise 

with unknown sources.  I investigated the human home as a potential source of 

Burkholderia sp. by looking at the recovery rate of various types of environments.  

Overall, the recovery rate of Burkholderia sp. was very low (0.22%) with only 14 isolates 

being recovered out of 6,495 samples taken.  These 14 isolates were recovered primarily 

from soil and soil-like environments (62.3%) and drains (28.6%).  Isolates evenly 

clustered within two phylogenetic clades: a plant-associated beneficial environmental 

group described by Suárez-Moreno et al. (2012) and B. cepacia complex.  Because of the 

culture-based nature of the study, the data represent a conservative estimate of 

Burkholderia in the household environment; however, even with low recovery, sites 

within the house cannot be eliminated as potential sources of new infection. 
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Introduction 

Burkholderia cepacia complex members are considered opportunistic pathogens 

and are of particular interest to the cystic fibrosis (CF) community.  B. cepacia complex 

infections in the CF lungs of some individuals can lead to cepacia syndrome, a rapid 

decline in lung function, overall prognosis, and ultimately death (Mahenthiralingam et al. 

2008).  B. cepacia complex has been shown to be transmissible from person-to-person, 

and efforts to minimize this transmission have proven greatly effective (LiPuma 1990, 

Baldwin et al. 2008). However, these measures have not completely eliminated the 

occurrence of new infections among patients who have not come into contact with an 

infected patient. Therefore, it is possible that the source of some patients’ infections are 

non-clinical or environmental (LiPuma 2010). 

Other Burkholderia species, including some of those in the B. cepacia complex, 

have been found in close association with plant roots and have been found to promote 

plant growth.  Some strains have been reported to be capable of N2-fixation, making them 

of particular interest to the agriculture community (Parke and Gurian-Sherman 2001). 

Much work has been done on the use of Burkholderia species for purposes of 

bioremediation, due to their diverse metabolic capabilities (reviewed in O’Sullivan and 

Mahenthiralingam 2005).  The use of Burkholderia species, specifically B. cepacia, for 

biocontrol and bioremediation purposes has been concerning for the CF community 

because the introduction of these organisms to places where vulnerable people might 

come into contact with them could result in infections (Chiarini et al. 2006). 

 It was once believed that the beneficial environmental and clinical strains could 

be differentiated from each other; however, LiPuma and colleagues (2002) identified an 
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epidemic clinical isolate of B. cepacia complex in soil samples. Additionally, another 

study (Baldwin et al. 2007) found that over 20% of tested clinical isolates could not be 

distinguished from isolates from the environment. This points to the environment as a 

potentially important reservoir for infectious strains. A study by Fisher and colleagues 

(1993) examined a small number of sites in patient homes and control homes (refrigerator 

bins, refrigerator drain pans, sink drains, and soil samples), salad bars, and food stores for 

B. cepacia.  Their recovery rate for B. cepacia in homes was approximately 1% with 

isolates being recovered from a refrigerator bin, two refrigerator drain pans, a bathroom 

sink drain and a kitchen sink drain.  Recovery from food stores and salad bars was 

approximately 4.5%.  We now know that in addition to B. cepacia many additional 

members of the B. cepacia complex can cause infections in CF patients.  In this study we 

aim to examine many more sites within each home (75-168 per home) as well as sample 

each home repeatedly (3-8 times each) for all members of the genus Burkholderia. 

 

Materials and Methods 

Sample collection 

 Samples were collected from 15 households in the Louisville, KY (USA) 

metropolitan area. Each household was sampled between October 2007 and March 2012 

at intervals of approximately three months. Houses were each sampled between 3 and 8 

times, with the average household being sampled 6.5 times. Within each household, we 

collected between 53 and 85 samples (depending on the number of bathrooms, toys etc.) 

from 97 types of sites in and around the home (Appendix I).  A total of 6,495 samples 

were taken. Subjects were instructed not to clean the home the week before the sampling 
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date. To minimize the risk of cross-contamination of households, no two households were 

sampled on the same day. Federal and institutional guidelines and policies regarding use 

of human and animal subjects were followed, including signed informed consent forms 

(and assent forms, where applicable). 

Samples were collected with sterile swabs pre-moistened with phosphate-buffered 

saline.  All drains were swabbed within the first 1-2 inches from the top of the opening. 

Surfaces were sampled at locations most likely to have frequent contact with human skin 

(i.e., knobs, buttons, etc.). Soils were sampled by inserting swab 1-2 inches from the 

surface, collecting soil on swab. Swabs were streaked onto Pseudomonas isolation agar 

(PIA) at the homes.  While selective media has been developed specifically for 

Burkholderia, PIA does not inhibit the growth of Burkholderia, and is used for growth of 

Burkholderia species in other studies (Hardy Diagnostics: PIA 1996; Sokol et al. 1999; 

Lagatolla et al. 2002; Ferreira et al. 2007).  Plates were transported on ice and incubated 

for 48 hours at 28ºC immediately upon return to the laboratory. Where growth occurred, 

a single colony was picked, restreaked onto PIA, and frozen for further analysis; where 

multiple colony morphologies were found for a single sample one of each were frozen for 

further analysis. 

Sample Identification  

763 isolates not previously identified (as described in Chapters 2 and 3) were 

extracted using a technique described by Spilker and colleagues (2009). Successful DNA 

extracts were confirmed using 16s rDNA universal bacterial primers 8f and 1492 

(Weisburg et al. 1991) and amplified with the RecA primers designed as part of a multi-

locus sequencing type (MLST) set for Burkholeria species (Spilker et al. 2009). Of the 
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814 isolates 5 were unable to be examined further.  Because at least three extraction and 

amplifications with the universal bacterial primers had failed, these were concluded to be 

non-bacterial.  Potential Burkholderia isolates (samples amplified by Burkholderia RecA 

primers) were identified using >500bp sequences of the isolates 16s rDNA (1401r primer 

for sequencing) (Weisburg et al. 1991), as well RecA as using sequences (Spilker et al. 

2009).  I assigned each isolate to the level of species based on 16s sequences, using three 

BLAST databases (EzTaxon, Bioinfo 1200 nucleotide, Bioinfo 2 sequences) (Chun et al. 

2007; Croce et al. 2010). Where the databases disagreed a species assignment was made 

using the designation from the Bioinfo 1200 nucleotide database (Croce et al. 2010).  The 

Burkholderia RecA primers were designed as part of an MLST set, and the amplicon for 

these primers was 704 base pairs (Spilker et al. 2009).  Due to this, RecA sequences were 

used to confirm the assignment to the genus Burkholderia.  

Data Analysis 

16s rDNA sequences of the 14 collected isolates plus 7 Burkholderia type strains 

were used to construct a maximum likelihood tree.  In order to contrast the tree, 

sequences were aligned using MUSCLE (v3.7; Edgar 2004).  Ambiguous regions of 

sequences after alignment were removed using Gblocks (v0.91b; Castresana 2000).  The 

maximum likelihood phylogenetic tree was constructed and bootstrap values calculated 

(100 replicates) in the PhyML program (v3.0; Anisiova and Gascuel 2006; Dereeper et al. 

2008; Guindon et al. 2010).  The tree was then graphically represented using TreeDyn 

(v198.3; Chevenet et al. 2006). 
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Results 

 Burkholderia species were very rarely found in the human home, with only 14 

isolates being recovered (Table 3).  The overall recovery was 0.22%.  The Burkholderia 

isolates recovered came almost exclusively from two types of environments: soil samples 

or soil-like environments (9/14) and drain samples (4/14).  On two occasions 

Burkholderia isolates were recovered from the same physical site at different sampling 

events (Table 3), and in neither case were they consecutive sampling events.  

Interestingly, for both sites it was the same species that was recovered twice.  Both of 

these cases indicate that the reported recovery rate should be considered a lower limit, as 

there is a potential for a high false negative rate. 

Table 3. Recovery of Burkholderia sp. from 15 households. ^ indicates recovered from 
the same floor drain at different sampling events; * indicates recovered from the same 
houseplant at different sampling events. 

 
Site 16S Identification House Sampling Sample ID# 

Floor Drain^ B. cepacia 1 3 1281 
Floor Drain^ B. cepacia 1 5 1625 

Sandbox B. cepacia 14 5 2129 
Stovetop B. cepacia 4 8 2518 

Floor Drain B. fungorum 10 5 3176 
Houseplant B. mimosarum 4 7 2350 
Houseplant B. multivorans 1 5 1627 
Houseplant B. multivorans 7 3 1547 
Houseplant B. tropica 5 4 3080 
Houseplant* B. tuberum 4 5 1926 
Houseplant* B. tuberum 4 7 2349 

Garbage Disposal B. vietnamiensis 10 2 2889 
Yard Soil B. vietnamiensis 15 7 2610 

Houseplant B. xenovorans 4 7 2355 
 

I was interested in examining the distribution of the isolates collected across the 

15 houses sampled.  Of the 15 houses sampled, 7 harbored Burkholderia.  Recovery from 
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each home varied from 0 to 5 isolates per house.  Since most of the Burkholderia 

recovered was isolated from soil environments, it is possible that the variability in 

recovery from house to house could be explained by variability in the number of 

houseplants in each house. The number of houseplants sampled (pooled across all 

samplings per house) varied from 0 to 131 per house. Over one-third of the Burkholderia 

isolates came from the house that had the greatest number of houseplants (house 4).  A 

total of 275 strains were collected from houseplants with 7 of those isolates identified as 

Burkholderia species (2.5%). 

A maximum likelihood tree was constructed from 16s rDNA sequences to 

examine relatedness of samples collected from households to recognized Burkholderia 

type strains (Figure 11). The type strains clustered into two distinct groups previously 

described by Suárez-Moreno and collaborators (2012).  Suárez-Moreno et al. (2012) 

characterize these clades as comprising plant-associated beneficial and environmental 

group (PBE) species, and the Burkholderia cepacia complex (BCC group) species.  Of 

the isolates collected from household environments, one half (7/14) cluster within the 

PBE group, while the other half (7/14) cluster within the BCC group.   

I did not see strong habitat of isolation differences when examining in which 

clade an isolate.  Isolates collected from drain sites mainly cluster within the BCC group 

(3/4 of drain isolates), while soil and soil-like isolates are evenly split between the two 

groups (PBE: 5/9; BCC group: 4/9).  Of the isolates collected from houseplants 

specifically most (5/7) cluster in the PBE clade; however, most of those (4/5) were 

isolated from a single house (house 4).  Interestingly, there is clade-specificity in the 

location of isolation at the level of house.  All 5 Burkholderia isolates from house 4 
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cluster within the PBE clade of the tree.  All 3 Burkholderia isolates from house 1 cluster 

within the BCC clade of the tree, including the isolate collected from a houseplant. 

When I compare the species assignments of our isolates to the location of those 

species in the clades of the Suárez-Moreno et al. (2012) tree, I see concordance, except in 

one case.  The isolate collected from the stovetop of house 4 (ID# 2518) was classified as 

a Burkholderia cepacia; however, the 16s rDNA tree constructed (Figure 11) shows that 

this isolate does not cluster with the rest of the B. cepacia complex, but rather clusters 

within the PBE. The three databases used for species assignment to species disagreed 

regarding this isolate. The Bioinfo 1200 nucleotide database was used for identification 

(Croce et al. 2010) and identified this isolate as B. cepacia. Interestingly, the other two 

databases used classified this isolate as B. phenoliruptrix, which is more consistent with 

the tree constructed from sequence data.  
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Figure 11. Maximum likelihood tree of isolates and selected Burkholderia type strains.   
House number are represented by “H#” and are followed by the location of isolation. 
The * indicates isolates recovered from the same houseplant at different sampling 
events; ^ indicates isolates recovered from the same floor drain at different sampling 
events. The branch lengths (bar=0.06) are proportional to the number of nucleotide 
substitutions per site (Dereeper et al 2008). Bootstrap values are giving for branch 
nodes. Green shading – plant-associated beneficial and environmental group (PBE); 
blue shading – Burkholderia cepacia complex group (Suárez-Moreno et al. 2012). 
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Discussion 

 Overall I found very little Burkholderia in the human home environment, a 

finding consistent with Fisher and colleagues’ (1993) examination of home environments.  

Consistent with this study Fisher and colleagues recovered Burkholderia cepacia from 

household drains (refrigerator, bathroom, and kitchen), but interestingly only recovered 

one isolate from the soil.  The majority of their isolates were collected from food sources, 

and ground vegetables were the only food items sampled in our study (Appendix I).  

Even though recovery was low, caution should be taken in concluding that lack of 

isolation indicates absence; additionally, for sites where isolation of Burkholderia did 

occur it could be more frequent than our recovery indicate.  Culture-based techniques, 

including this study provide an indication of the organism(s) present, but can miss 

organisms not present at high frequencies or not culturable.  Of the Burkholderia isolates 

recovered approximately one-half fall into the B. cepacia complex clade that is typically 

associated with infections in CF patients. 

 Nosocomial outbreaks of Burkholderia cepacia complex have been linked to 

mouthwash (Kutty et al. 2007), washcloths (Martin et al. 2011), multi-use solutions (De 

Smet et al. 2012), and other contaminated products including water (Mann et al. 2010).  

A 2010 study (Lucero et al.) implicated hospital sinks and drains as the source of an 

outbreak of Burkholderia cepacia complex.  This study demonstrated recovery of 

members of the B. cepacia complex from household drains.  Without further study it is 

impossible to say if the household drain strains described here share phenotypic 

characteristics with clinical isolates or are as virulent as those recovered from hospital 

drains, but we have shown that they are present in some household drains, in absence of 
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an infected patient.  This indicates that respiratory secretions of infected patients were not 

the source of these isolates. 

 I have demonstrated that Burkholderia species, including members of the plant-

associated beneficial and environmental group (PBE) as described by Suárez-Moreno et 

al. (2012), as well as the B. cepacia complex are recoverable from environments at a 

scale relevant to patient contact.  Soil and soil-like samples are the source of 

approximately two-thirds of isolates collected in this study, and are split evenly between 

the two clades of the tree (Figure 11).  While recovery rates of Burkholderia are very low, 

we cannot eliminate the possibility that sites in the home (particularly soils and drains) 

could be an environmental source of infection.  In particular, a reevaluation of the risk 

associated with patient-soil contact could be beneficial. 
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APPENDIX I 
SITES SAMPLED IN THE HUMAN HOME 

* Were eliminated from analyses in Chapter 2.  
^ For analyses in Chapter 3 CF Equipment sites were included in surfaces. 
t Were eliminated from analyses in Chapter 4  
Upper Respiratory*t Human Skint Animalt CF Equipment*^t  

human mouth armpits skin compression vest  

human nose between toes eyes inhaler 

human throat eyes foot pads nebulizer 

human sputum navel outer ear canal PEP mask 

 human outer ear canal wounds suction device  

 piercings rectum 

 scalp 

 under fingernails 

 wounds 

 fecal 

 genital  

Drains   Soils Trash  

garbage disposal  house plant soil kitchen compost 

refrigerator drain  garden soil  kitchen trash can 

kitchen sink drain  yard soil  pet litter box 

bathroom sink drain  sand box  diaper disposal bin 

bathtub/shower drain    outside compost bin 

floor drain    outside trash can 
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Miscellaneous Moist  Surfaces Water  

dish drying rack  coffee maker  tap water 

dish rag  kitchen counter toilet 

dish scrubber brush  kitchen counter spills decorative fountain 

dish sponge  ground vegetables dehumidifier 

ice/water dispenser  microwave  fish tank 

moisture in undersink cabinet   vegetable drawer flower vase 

refrigerator spills  stove top  humidifier 

water filter  bathroom counter pet water bowl 

bath toy  tubs cream/lotion bird bath 

loofah  computer keyboard outdoor bucket 

poof  contact lens storage outdoor fountain 

shower head  pet bedding  garden pond 

bathroom soap dish  pet toy (non-chew) pool/hot tub 

spigot in tub  baby carrier  standing water 

washcloth  baby swing  watering can 

denture/retainer storage  car seat 

moist/mildewed areas  changing table 

pet chew toy  crib 

baby bathtub  electronic toy controls 

children’s bathing suits  frequently worn clothes 

bottle drying rack  high chair tray 

bottle warmer  stroller 

bottles  toy boxes 
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breast pump  toys 

food spoons  wipes 

pacifier  A/C unit 

spit-up clothes  outdoor grill 

teething rings  outdoor play area 

training toilet 

garden hose 

outdoor water toys!
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APPENDIX II 
PSEUDOMONAS AERUGINOSA ISOLATE LIST 

 
Houses 1, 2, 6, 9, 12, 14, ad 15 had CF patients residing in them  
House Season Specific Isolation Site Environment Type SRP# 

1 Fall Kitchen Counter surfaces 1062 
1 Fall Human Throat upper respiratory 1054 
1 Fall Bath Tub/shower drain drains 1068 
1 Spring Human Mouth upper respiratory 1266 
1 Spring Human Throat upper respiratory 1267 
1 Spring Kitchen Sink drain drains 1274 
1 Spring Bath Bath toy miscellaneous-moist 1276 
1 Summer Human Mouth upper respiratory 1426 
1 Summer Human Sputum upper respiratory 1431 
1 Summer Human Nose upper respiratory 1427 
1 Summer Human Throat upper respiratory 1428 
1 Summer Kitchen Sink drain drains 1435 
1 Summer Bath Bath toy miscellaneous-moist 1439 
1 Fall Kitchen Trash container trash/compost 1618 
1 Fall Inside-other House plants soils 1632 
1 Summer Kitchen Garbage disposal drains 1952 
2 Fall Outside Trash cans trash/compost 2004 
3 Fall Bath Bath toy miscellaneous-moist 2048 
3 Winter Bath Sink drain drains 2230 
3 Winter Kitchen Sink drain drains 2684 
3 Winter Bath Bath toy miscellaneous-moist 2704 
3 Fall Children's areas Food spoons miscellaneous-moist 3091 
4 Fall Human Between toes human skin 1004 
4 Fall Human Sputum upper respiratory 1005 
4 Fall Bath Tub/shower drain drains 1027 
4 Fall Bath Sink drain drains 1031 
4 Summer Outside Garden hose miscellaneous-moist 1421 
4 Spring Human Sputum upper respiratory 1906 
4 Spring Human Throat upper respiratory 1904 
4 Spring Outside Bird bath water 1943 
4 Spring Outside Bird bath water 2361 
4 Summer Bath Sink drain drains 2521 
5 Fall Kitchen Counter spills surfaces 2620 
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House Season Specific Isolation Site Environment Type SRP# 
5 Fall Bath Tub/shower drain drains 2629 
5 Fall Bath Tub/shower drain drains 2630 
5 Fall Bath Sink drain drains 2633 
5 Spring Bath Sink drain drains 2909 
5 Summer Bath Soapdish miscellaneous-moist 2933 
5 Fall Bath Sink drain drains 3061 
5 Winter Bath Sink drain drains 3151 
6 Fall Human Mouth upper respiratory 1565 
6 Fall Human Sputum upper respiratory 1571 
6 Fall Human Throat upper respiratory 1568 
6 Fall Bath Counter surfaces 1582 
6 Spring Human Mouth upper respiratory 1810 
6 Spring Human Sputum upper respiratory 1814 
6 Spring Human Throat upper respiratory 1811 
6 Spring Bath Moist or mildewed areas miscellaneous-moist 1831 
7 Winter Bath Sink drain drains 1162 
7 Winter Bath Sink drain drains 1150 
7 Summer Bath Sink drain drains 1320 
7 Summer Bath Sink drain drains 1321 
7 Fall Bath Sink drain drains 1535 
7 Fall Bath Sink drain drains 1537 
8 Fall Kitchen Sink drain drains 1607 
8 Fall Bath Sink drain drains 1609 
8 Winter Bath Sink drain drains 1772 
8 Fall Kitchen Trash container trash/compost 2146 
8 Fall Bath Sink drain drains 2151 
8 Winter Bath Sink drain drains 2253 
8 Summer Bath Tub/shower drain drains 2544 
8 Summer Bath Sink drain drains 2545 
8 Spring Bath Sink drain drains 2836 
8 Fall Bath Sink drain drains 3132 
8 Spring Bath Sink drain drains 3209 
9 Spring Human Mouth upper respiratory 1790 
9 Spring Human Sputum upper respiratory 1794 
9 Spring Human Throat upper respiratory 1792 
9 Fall Human Mouth upper respiratory 2087 
9 Fall CF Inhaler surfaces 2115 
9 Fall Human Sputum upper respiratory 2091 
9 Fall Human Throat upper respiratory 2089 
9 Fall Human Under fingernails human skin 2088 
9 Spring Human Sputum upper respiratory 2306 
9 Summer Human Mouth upper respiratory 2407 
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House Season Specific Isolation Site Environment Type SRP# 
9 Summer Human Throat upper respiratory 2408 
9 Summer Bath Sink drain drains 2415 
9 Winter Bath Shower head miscellaneous-moist 2670 
9 Winter Bath Sink drain drains 2674 
9 Spring Bath Sink drain drains 2877 

10 Fall Bath Tub/shower drain drains 2594 
10 Fall Bath Counter surfaces 2597 
10 Fall Bath Sink drain drains 2598 
10 Fall Bath Moist or mildewed areas miscellaneous-moist 2599 
10 Spring Bath Tub/shower drain drains 2892 
10 Spring Bath Sink drain drains 2894 
10 Summer Bath Tub/shower drain drains 2964 
10 Summer Bath Sink drain drains 2967 
10 Fall Bath Tub/shower drain drains 3100 
10 Fall Bath Sink drain drains 3101 
10 Winter Bath Tub/shower drain drains 3173 
11 Fall Bath Tub/shower drain drains 2562 
11 Fall Bath Sink drain drains 2563 
11 Winter Bath Tub/shower drain drains 2696 
12 Fall Human Sputum upper respiratory 3110 
12 Fall Bath Sink drain drains 3122 
12 Winter Bath Sink drain drains 3199 
13 Winter Human Nose upper respiratory 1169 
13 Winter Kitchen Dishwash 

scrubber/brush 
miscellaneous-moist 1172 

13 Winter Kitchen Garbage disposal drains 1173 
13 Winter Kitchen Sink drain drains 1175 
13 Winter Bath Tub/shower drain drains 1177 
13 Fall Bath Tub/shower drain drains 2578 
14 Fall Kitchen Dishwash 

scrubber/brush 
miscellaneous-moist 1078 

14 Fall Kitchen Garbage disposal drains 1082 
14 Fall Kitchen Sink drain drains 1086 
14 Fall Bath Tub/shower drain drains 1091 
14 Fall Outside Standing water water 1105 
14 Summer Kitchen Garbage disposal drains 1458 
14 Winter Human Fecal human skin 1642 
14 Spring Kitchen Garbage disposal drains 1858 
14 Spring Kitchen Trash container trash/compost 2299 
14 Spring Children's areas Bottle drying 

rack 
miscellaneous-moist 2304 

14 Summer Human Fecal human skin 2499 
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House Season Specific Isolation Site Environment Type SRP# 
14 Summer Kitchen Garbage disposal drains 2500 
15 Spring Kitchen Garbage disposal drains 1256 
15 Spring Kitchen Sink drain drains 1258 
15 Spring Bath Tub/shower drain drains 1260 
15 Summer Human Sputum upper respiratory 1348 
15 Fall Bath Tub/shower drain drains 1505 
15 Fall Bath Tub/shower drain drains 1507 
15 Spring Bath Sink drain drains 1845 
15 Summer Human Sputum upper respiratory 2433 
15 Summer Human Throat upper respiratory 2431 
15 Summer Bath Tub/shower drain drains 2438 
15 Fall Human Sputum upper respiratory 2554 
15 Fall Human Throat upper respiratory 2552 
15 Fall Bath Tub/shower drain drains 2604 
15 Fall Bath Sink drain drains 2605 
15 Winter Human Sputum upper respiratory 2769 
15 Winter Human Throat upper respiratory 2768 
15 Winter Bath Sink drain drains 2785 
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Appendix III 

Distribution of Pseudomonas Species by Season 

A Winter 
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Figure 1. Recovery by species for all Pseudomonas by seasons A) winter B) spring C) 
summer D) fall.  Coloring represents species (see legend) and group: reds - P. aeruginosa 
group, greens - P. fluorescens group; blues – P. putida group.  Numebrs on the tops of bars 
indicate sample size (# Pseudomonas collected) for each category. 
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