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ABSTRACT
Rosario J. Pusateri
August 2012

Colorectal cancer is the fourth most common cancer, and the fourth leading cause
of cancer related death in the United States. It also happens to be one of the most
preventable cancers provided an individual performs a regular screening. For years
colonoscopy via colonoscope was the only method for colorectal cancer screening. In the
past decade, colonography or virtual colonoscopy (VC) has become an alternative (or
supplement) to the traditional colonoscopy.

VC has become a much researched topic since its introduction in the mid-nineties.
Various visualization methods have been introduced including: traditional flythrough,
colon flattening, and unfolded-cube projection. In recent years, the CVIP Lab has
introduced a patented visualization method for VVC called flyover. This novel
visualization method provides complete visualization of the large intestine without
significant modification to the rendered three-dimensional model.

In this thesis, a CVIP Lab VC interface was developed using Lab software to
segment, extract the centerline, split (for flyover), and visualize the large intestine. This
system includes adaptive level sets software to perform large intestine segmentation, and
CVIP Lab patented curve skeletons software to extract the large intestine centerline. This
software suite has not been combined in this manner before so the system stands as a
unique contribution to the CVIP Lab colon project. The system is also a novel VC

pipeline when compared to other academic and commercial VC methods. The complete



system is capable of segmenting, finding the centerline, splitting, and visualizing a large
intestine with a limited number of slices (~350 slices) for VC in approximately four and a
half minutes. Complete CT scans were also validated with the centerline extraction
external to the system (since the curve skeletons code used for centerline extraction cause

memory exceptions because of high memory utilization).
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CHAPTER 1:
INTRODUCTION

1.1 Colorectal Cancer Screening Background

Colorectal cancer is a cancer that affects either the colon and/or rectum region of the
large intestine [see figure 1]. In the United States it is the fourth most common cancer in
both women and men as of 2012, and the fourth leading cause of death after lung,
stomach, and liver cancer [1]. Colorectal cancer is also one of the most preventable
cancers when controlling for lifestyle choice and environment as it can be thwarted with
various medical diagnostic procedures. This is because the cancer usually begins as a

localized benign colorectal polyp that takes nearly 10 to 15 years to develop into cancer.

Ascending :
colon = Descending
colon
Cecum
Rectum Sigmoid
colon
Anus | 2 Healthwise, Incorporated

Figure 1: Anatomy of the large intestine [28].
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The colonoscopy procedure is the most common method for diagnosing potential
colorectal cancer cases. A traditional colonoscopy requires preparation with laxatives
(typically magnesium citrate and/or sodium phosphate), and bowel irrigation via a
combination of polyethylene glycol and electrolytes (sports drinks or similar fluid). This
process is typically conducted 24 hours prior to the procedure and is usually unpleasant
for the patient. The procedure itself requires the patient to be given mild-dose general
anesthesia (twilight anesthesia). Following this, a CCD camera fitted colonoscope is
inserted into the anus of the patient and progressed through the colon [see figure 2 & 3].

Potential polyps within a certain size range can be removed and biopsied for malignancy.

Figure 2: A colonoscope used for colonoscopy (without polyp extraction component), and a device for
removing polyps [29].
Although, this procedure is the gold standard among most gastrointestinal doctors its

invasiveness deter many patients from having it done as recommended (every 10 years

after age 50) [2]. In addition the colonoscopy procedure may miss potential polyps in the
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ascending colon near the cecum (proximal from the anus), and polyps hidden behind
haustra. Computed tomography colonography (CT colonography) or virtual colonoscopy
is an alternative approach to the traditional colonoscopy. The procedure is non-invasive
(or nearly non-invasive) and provides complete visualization of the entire colon. This

procedure is fast becoming an accepted method for colorectal cancer screening.

Video
camera
lens

| trrigation

scope view

cross section | Colonoscope
ofcolonand | BEME examines
rectum antire colon

Instrument
channel

Figure 3: The colonscope in the colon (A), the view from the scope head inside the large intestine (B),

and the scope head components (C) [30].
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1.2 Virtual Colonoscopy (VC)

Dr.Vining and Dr. Gelfand at the Society of Gastrointestinal Radiologist first
presented virtual colonoscopy to the medical community in 1994 [3]. Although it was
only a non-interactive video of a virtual colonoscopy flythrough (explained below) it
sparked an explosion of interest in the academic and medical community. Since then, VC
has become one of the accepted methods for colorectal cancer screening.

The VC method for colorectal cancer screening is minimally invasive and requires
less time than a traditional colonoscopy. The patient follows a colon-cleansing regimen
similar to that done for the traditional colonoscopy screening. For the procedure, the
patient lies in the supine position and a small tube is inserted into the anus to inflate the
colon with a small amount of air (this is to create proper large intestine distension for
better viewing). Then the patient is scanned with either CT or MRI (the conducted work
was with CT images). The patient then moves to a prone position to be scanned again.
Two scans in different positions are needed to ensure that no polyps are missed in pools
of residual fluid or fecal matter. For recent VVC procedures, the scans are typically low-
dose, or rarely, ultra-low dose to minimize exposure to radiation. It has been concluded
that low-dose CT resolution is adequate to reveal most significant polyps in colorectal
scans [9].

After the procedure the scan images (DICOM for the work conducted) are processed
by available software. Typically, the software renders the colon images in a manner that
mimics a traditional colonoscopy. This is called the flythrough visualization method.

Other means of visualization include: flattening [11], unfolded cube projection [10], and
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flyover [12] (developed by the CVIP Lab and patented). These methods will be
elaborated upon in the literature review.
1.3 CVIP Lab Virtual Colonoscopy Interface

The task assigned for this thesis is the consolidation of CVIP Lab segmentation,
centerline extraction, and visualization-preparation/visualization software into one front-
end system for VVC [see figure 4]. Therefore, can these components be combined in a
manner that is computationally efficient? The interface pipeline includes: a means of
segmenting the colon images via adaptive level sets [23, 24, 17, 19], a method for
extracting the colon centerline via curve skeletons using gradient vector flow [20, 21, 22],
and visualization-preparation/visualization of the rendered colorectal images via the
flyover method (using VTK and Qt). This pipeline will be surveyed part by part after a

thorough literature review outlining research in the field of VC.

CVIP Lab Virtual Colonoscopy
Pipeline

Figure 4: The proposed CVIP Lab VC interface pipeline.
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CHAPTER 2:
LITERATURE REVIEW

2.1 VC Using the Flythrough Visualization Method

The flythrough method is the traditional model for virtual colorectal visualization.
It aims to simulate a colonoscopy procedure by starting the camera at the anus and
progressing it through the virtual large intestine toward the cecum; this is an antegrade
VC (note that VC may also be retrograde, or from the cecum to the anus, as this allows
more complete viewing of the colon). This was first proposed academically in the work
by Lichan Hong, 3D Virtual Colonoscopy (1995) one year after the first virtual
colonoscopy demonstration [13]. In this foundation publication the patient was prepped
and scanned with CT to obtain images of the large intestine. The visualization was
obtained through the use of third-party volume visualization software, VolVis. The
produced visualization was a flythrough movie that was non-interactive and a basic
proof-of-concept.

Since 1994 numerous commercial VC products have been produced that utilize
the flythrough visualization method. Although, current visualizations vary somewhat the
flythrough remains the gold standard for medical doctors using VVC because of its close

similarity to traditional colonoscopy.
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Figure 5: An example of a flythrough visualization (the red circle is a tagged polyp).

2.2 VC Using the Flattening Visualization Method

As with traditional colonoscopy, flythrough VC can miss potential polyps that are
hidden behind haustra. This is because the antegrade flythrough VC can only make
visible colorectal tissue exposed to the normal of the viewing camera. Therefore, polyps
hidden behind haustra viewed from the antegrade direction will be missed. There are only
two means of remedying this problem with VVC flythrough: stopping the visualization
camera at regular intervals and panning it about the colorectal interior or, conducting a
retrograde flythrough in addition to the antegrade flythrough. Stopping at regular
intervals is time consuming and unrealistic for efficient patient diagnosis. Antegrade in
combination with retrograde visualization, while less time consuming then the former

method, is still an involved process that requires redundancy in procedure. In addition,
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antegrade and retrograde flythrough are both prone to having colorectal regions that are

not visible from either direction [see figure 6].

Figure 6: Cross cut of large intestine showing the camera field of view for antegrade and retrograde

colonoscopy flythrough (the hidden regions are traced in black) [10].

For these reasons, it has become desirable to expose the entire virtual large
intestine surface as the camera passes without redundant visualization or regular camera
panning. Colorectal flattening had been proposed in Nondistorting Flattening in Virtual
Colonoscopy and Nondistorting Flattening Maps and the 3D Visualization of Colon CT
Images in 2000 [11, 14]. In this research, colon flatting is achieved by mapping from an

assumed open cylindrical surface to a rectangular surface [see figure 7].

Figure 7: An example image of colorectal flattening [15].
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The removal of distortion from the projection is achieved along a defined curve using
geographic projection techniques. In Conformal Virtual Colon Flattening a similar result
is achieved through more intensive application of topological methods [15]. Although in
this approach, the colon is mapped to completely fill a proper geometric rectangle,
whereas in the former approaches the colon did not map completely but included some
offset.

2.3 VC Using the Unfolded Cube Projection Visualization Method

Colon flattening techniques reduce the need for redundant visualizations by
revealing the entire surface of the organ, but a flattened colon surface is not visually
intuitive to examine by a medical professional (flattening maps to two dimensions, while
traditional visualizations of the colon interior are in three dimensions). It is also true that
discerning three-dimensional forms from two-dimensional mappings can be difficult
without proper training.

Unfolded cube projection is another researched method for colon visualization
proposed in the paper Three-Dimensional Display Modes for CT Colonography:
Conventional 3D Virtual Colonoscopy versus Unfolded Cube Projection in 2003 [10].
For this method a point on the centerline is defined with six camera normals. These
normals are all orthogonal to one another and one normal is oriented in the antegrade
centerline direction while another normal is oriented in the retrograde centerline
direction. As a result, the views of the colon are projected to the inside of a cube. This
imaging cube is unfolded and flattened to show all the potential views of the colon

interior at once for every centerline position [see figure 8].

19



Figure 8: The unfolded cube projection with a polyp indicated with the black arrow (note how the

projection shows both antegrade and retrograde perspectives) [10].

Though this method provides a more intuitive visualization its layout is an object
of criticism. The projections are situated in a manner that is time consuming to diagnose
as the reader is required to scan each side of the unfolded cube [see figure 8]. Therefore,
unfolded cube projection solves the ‘hidden polyps’ problem of flythrough VC, but still
requires considerable time to diagnose properly.

2.4 Summary

VC flythrough visualization is still considered a gold standard by many
radiologists and medical professionals when considering the various VC methods. In
recent years the other flattening and projection methods have become viable in some

commercial applications. Viatronix, General Electric (GE), and Philips all offer
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commercial VVC products. All of these companies use the flythrough visualization while
GE and Philips use some variation of colon flattening as well. Research in efficient
visualization methods is still a relevant pursuit, as VC becomes a more accepted method

for colorectal cancer screening.
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CHAPTER 3:
CVIP LAB VC INTERFACE: DATA ACQUISITION

3.1 Pre-CT Scan Prep and CT Scan Protocol

The CT scans used to test and validate the CVIP Lab VC interface were obtained
from the Virtual Colonoscopy Center at Walter Reed Army Medical Center in
Washington D.C. and 3DR Incorporated in Louisville, KY. Patients involved in the scans
underwent a twenty-four hour large intestine prep protocol that required: oral intake of 90
milliliters of sodium phosphate and 10 milligrams of bisacodyl (these are laxatives
required to flush the large intestine of contents), as well as 500 milliliters of barium (a
radiocontrast agent) and 120 milliliters of Gastrografin (known as diatrizoic acid) which
contains iodine (also a radiocontrast agent). When ingested, the barium and Gastrografin
cause the remaining luminal fluid (i.e. fecal matter and water) to have a high X-Ray
absorption capacity (similar to bone), and objects with high absorption display brightly
on CT scans. Barium and iodine are ideal radiocontrast agents since they have high
atomic density without being radioactive.

The scans were done using either the GE LightSpeed four-channel scanner or the

GE LightSpeed Ultra eight-channel scanner. The scanners were set to 100 mAs (current
exposure time product) and 120 kVp (peak kilovoltage) with 1.25 millimeter to 2.5
millimeter collimation and 15 millimeter per second scan table speed. The spatial
resolution for each scan is one cubic millimeter while the number of slices varies from

400 to approximately 550 slices. A single transverse scan typically contains: bone (high
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contrast), luminal fluid (high contrast), tissue (mid-level contrast), and air (low-contrast)

[see figure 9].

Figure 9: A CT scan slice with luminal fluid (white) in the large intestine regions.

3.2 DICOM Sorting and Conversion for the VC Interface

The input to the segmentation system used in the VVC interface requires the images
to be in portable graymap (PGM) format. Therefore, the DICOM scans need to be sorted,
scaled to a PGM (0-255) scale, and converted to the PGM image format. The Matlab
functions dicominfo, dicomread, dicomwrite, and imwrite allow the user to do this. The

command dicominfo reads relevant information about a particular scan and can be used to
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order a patient’s scan slices according to slice order. Following sorting, dicomread and
dicomwrite can be used to assign a DICOM to a variable and write it to an array
respectively. The final step is to convert the array’s Hounsfield scale (-1000 to 1000) to a
typical grayscale (0 to 255) and use imwrite to make a PGM image of the rescaled array.
The above protocol is done iteratively until all DICOMSs have been sorted and converted.
3.3 Summary

Data acquisition for the CVIP Lab VC interface follows a similar prep procedure
to other commercial VC methods and requires some manipulation of the raw DICOMs in
order for the system to operate as desired. Concerning the colon prep procedure, laxatives
are required for the current system to function properly, but luminal fluid tagging may
not be necessary as described in section 3.1. Either a barium swallow or Gastrografin
may be used, but one should suffice. Although Matlab is currently required for the sorting
and conversion of the DICOMs, the conversion program can be put into a dynamic linked
library (DLL) and made into an executable so that it can be utilized without a Matlab
installation. Future work could be applied toward a completely self-contained C/C++
DICOM sorter and converter through the use of DCMTK (an open-source DICOM

toolkit).
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CHAPTER 4.
CVIP LAB VC INTERFACE: SEGMENTATION AND CENTERLINE
EXTRACTION
4.1 Adaptive Level Sets Segmentation
4.1.1 Introduction

Proper visualization of the large intestine requires the colorectal tissue to be
isolated from abdominal tissue and organs (i.e. small intestine, lungs, and liver). The
segmentation of the large intestine is bimodal. By this it is meant that the colorectal tissue
is considered foreground (logical true) while all other artifacts are considered background
(logical false). In the CVIP Lab VC interface the segmentation of the large intestine is
carried out via adaptive level sets after basic pixel threshold preprocessing.

The pixel threshold preprocessing is required to remove the remaining opacified
luminal fluid in the large intestine [see figure 9]. The opacified fluid is typically brightly
displayed in the scans (similar to bone) because of the barium and iodine ingested by the
patient during the pre-scan prep period. Since the air in the colon is typically black and
the surrounding tissue is mid-intensity brightness this fluid is removed via thresholding
without difficulty [see figure 9].

4.1.2 Basic Level Sets

The level set method describes the shape of a curve in two-dimensional or three-
dimensional space in terms of time. Level sets method is desirable for shape and curve
analysis in two respects: it allows for the description of curves and shapes without the

need to parameterize them, and it is ideal when describing shapes that have dynamic
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topological structure (i.e. shapes that split into parts or develop holes). Basic level sets as
it is applied in the VC interface can be described as follows.

Assume a curve, defined by 77 that is set in the function @, which represents some
higher dimensional space (three dimensions in this research). Given this, the curve may
be defined by "= {X: @&(X)= 0/, which implies that the curve is the zero level of the
function @ (X'= {Xx, y, z} in this research). In order to describe the shape, the zero-level
curve must be evolved with time through the higher dimensional space. Therefore, a time
component must be added to @ which describes the changing curve front. The curve front
evolution function can now be described as ¢ = #(X; t) (note that a lower case Phi is used
to denote the time component). Since the curve boundary (front) represents the zero level
of the function ¢ it may be written as:

AX 1) =0. 1)

The basic level sets function, as described by Osher and Sethian, is defined by the
following [23].

a+F/veo/=0 )
To describe @ dynamically equation 2 can be written as the partial differential equation

(PDE) given below.

%g't) +FIVg(x, ) =0 3)

In discrete applications the evolving level set can be described by the following.

At + A) = §(t) - FAt/Vp/ (4)
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where, F describes the velocity field and /\7¢/ is the Euclidean norm of the curve
gradient. The velocity field, F, determines whether the curve shrinks (F > 0), grows (F <
0), or remains static (F = 0). In this application F is defined by the following.
F=#-¢ex (5)
where x describes the curvature of the front and ¢ describes the bending of the front. The
above formulation provides a foundation for adaptive level sets, which uses statistical
methods to improve the accuracy of the evolving level sets front [17, 19, 23].
4.1.3 Adaptive Level Sets

Adaptive level sets supplements statistical parameters to the basic level sets
formulation described above. In essence, it places statistical models in regions of the
object being modeled via level sets. These statistical models are reevaluated after each
evolution of the level set in order to more accurately represent the respective regions.
Adaptive level sets as it is applied in the VC interface is given as follows.

As stated above, the model followed for segmentation of the large intestine is
bimodal where large intestine is foreground and non-large intestine is background.
Gaussian distributions are assumed for each region. In terms of probability this is a two-
class problem where the class is defined as i, therefore i = 1, 2. The mean, variance, and
prior probability are defined as z4, o, and 7 respectively and given by the below
equations.

HL (0

O ) ©
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of = ' (7)

= (8)

where, x ={x, y, z} or a voxel in the CT scan image space, H,(®) denotes the Heaviside

step function used as a differential representation of the unit step function, and the

2
statistical priors satisfy the condition Z”i =1. These parameters are updated after each
i=1

evolution of the level set front and used in the classification model given below.
i"(x)=arg(max,.,, (z; p, (1(x))) ©)
where 1¢X) is the image data in the x = {X, y, z} domain and pji(e) is the probability density
function. Equation 9 uses Bayesian criteria to determine if a particular voxel x is included
in the foreground (large intestine) or background (non-large intestine). Specifically, if the
voxel x belongs to the class i = i"(x) then the front will propagate.
Using the classification criteria described above the final level sets function can
be defined by putting the level sets PDE (equation 3) in general form with the derivative
of the Heaviside step function, given by 6,(z). This yields the following equation defined

for a particular class i.

a,(xt)

S0, (0 e x £V ) (10)

In this equation, the Heaviside step function derivative, 0,(z) is used to select a narrow

band of points about the curve front for criteria checking. This narrow banding restricts
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the number of iterations required to propagate the front since fewer points are considered.
This method is acceptable since only points at the front need to be considered for curve
propagation [24].

4.1.4 VC Interface Segmentation Procedure

The CVIP Lab VC segmentation interface utilizes the adaptive level sets process
described above along with user input to segment the large intestine. The interface
requires the user to seed within the large intestine regions at various locations in the CT
scan. More seeds provide accurate segmentation but typically no more than 40 seeds are
required for an entire scan (~450-550). Ideally, seeds should be placed every 30 to 40
slices, particularly in scan regions where there are multiple large intestine artifacts on a
single transverse CT slice. In conjunction with the seed points the user can define the
radius of the seeds, the curvature coefficient « (used in equation 5), and the number of
iterations (these are all saved to a text file excepting the number of iterations which is
passed directly). The seed radius and curvature coefficient are determined for every seed
selected. The radius is three and the curvature coefficient is zero by default as these were
the most ideal values for accurate segmentation. The number of iterations should be 100+
for ideal segmentation although as little as 75 iterations may be acceptable [17].

After seeding the segmentation button can be selected. Upon execution the
program reads the text file where the seed data was written. This text file contains the X,
y, and z position as well as the radius and curvature coefficient for every seed selected.
These seed initializations as well as the number of iterations determined by the user are

passed to the adaptive level sets segmentation software. Each seed is propagated as an
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independent evolving front in three-dimensional space. As stated in 4.1.3, for each
iterative step equations 6, 7, and 8 are evaluated to determine the extent of expansion for
each seed point via the Bayesian classifier of equation 9 and the general adaptive level
sets formulation of equation 10. Figure 10 displays the original CT slice (after

thresholding) and the segmented result after the segmentation procedure.

Figure 10: The original CT slice after thresholding (left), and the CT slice after the adaptive level sets

segmentation procedure (right).

4.2 Centerline Extraction using Curve Skeletons Method
4.2.1 Introduction

Although it is possible to model the large intestine three dimensionally without
the extraction of the centerline, it would serve little use to a medical practitioner. The
centerline provides a graphically viable path for the virtual camera to follow within the
large intestine. An object centerline can mimic the path of a colonoscope traveling
through the large intestine much as it would in a traditional colonoscopy. In the CVIP

Lab VC interface this task is accomplished using the curve skeleton extraction software
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developed by M. Sabry Hassouna and described in his publication On the Extraction of
Curve Skeletons using Gradient Vector Flow [21].
4.2.2 Curve Skeletons Defined

A curve skeleton for a three-dimensional object (such as the large intestine) can
be defined as a sequence of paths between two voxels. Therefore, centerline extraction
can be defined, in the simplest case, as a minimum-cost path problem between two points
in three-dimensional space (for this circumstance). Assume that the path can be defined
by #65): [0,20) — R*®and it must be minimized between the points A and B. Then the

minimum cost function can be defined by the following equation.

x

T(x)=min|u(y(s)\ds (11)

>

where x is some point in the three-dimensional space R, u(e) s the cost function, and the
set yAx is all the paths connecting A to the point x [21]. It can be seen that the minimum
integral of the cost function will yield the path with the lowest cost. It is known from
geometrical optics that the Eikonal equation is satisfied by equation 11 with the following

formulation.
VT (x]F(x)=1 (12)
where F(x) is the (optical/energy) wave speed. The wave speed can be derived by the

inverse of the cost function given by.

F(x)=—— (13)
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For the path to be shortest then this wave speed (F(x)) must be maximized. A thorough
proof of the above assertion is beyond the scope of this paper as the VC interface only
utilizes its implementation. A complete proof of the curve skeleton theorem can be found
in M. Sabry Hassouna’s publication given above in section 2.1 [21].
4.2.3 Determining Object Medialness via Gradient Vector Flow

The medialness of an object can be understood as its centeredness. Recall that the
curve skeleton should graphically describe an object in simplest terms (one dimensional
lines). Therefore, approximating the centeredness of an object can facilitate the extraction
of the curve skeleton. In the VVC interface, the medialness of the large intestine is
approximated by gradient vector flow (GVF) in conjunction with a medialness parameter
defined in M. Sabry Hassouna’s publication [21].

GVF uses a vector field, defined by V(x), to minimize the functional defined as

follows.

EV)=[J #vV|* +|V[*V — V| dx (14)
where x = (X, Y, z) (a voxel), zis a regularization parameter, and f(x) is an edge map
extracted from the image space I(x) (a CT scan volume in the case of the large intestine).
The vector field flows from the boundary of the object towards its center. Near the
boundary the field flows slowly while toward the object center it flows more quickly. As
a result, the magnitude of V is large near the object’s center and small near the object

boundary. The following medialness parameter constrains the GVF to a narrow region

near the center of the object [21].
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J 0<qg<l (15)

For a thorough definition of the medialness parameter, A, as it relates to curve skeletons
please refer to M. Sabry Hassouna’s publication [21]. As stated above, by using equation
15 the computation of the GVF will be constrained to the medial regions of the object
thereby reducing the time needed to compute the result.
4.2.4 Extraction of Centerline

The final extraction of the object’s curve skeleton(s) can be defined for two cases:
one in which there is only one curve skeleton (ideally the case for the large intestine), and
a case where there are multiple curve skeletons that need to be related to each other (a
general object). The multiple curve skeleton case will not be reviewed in this paper as it
does not relate to the extraction of the colon centerline, but it can be found in the
references [21]. For the single curve skeleton case (a large intestine centerline), the set of
voxels (nodes) approximated about the convergence of the vector field (through GVF)
can be used in conjunction with the following ordinary differential equation (ODE) to

find the centerline.

dP(s) VT 0)

=——, =P 16
ds VT| ° (16)
where P represents the voxels (or nodes) in question. This equation expresses the fast
marching method for determining which voxel is nearest, in terms of travel time, to the

propagating wave front, F. The gradient of the minimum cost function, VT, represents the

normal to the wave front, which is the direction yielding the fastest travel time.
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Therefore, any voxel in the direction of this unit normal will be the next candidate in the
object centerline.
4.2.5 VC Interface Centerline Extraction Procedure

The curve skeletons code is entirely automated within the VC interface system.
The input to the system is the segmented images from the segmentation procedure. These
input images are in PGM format. The output from the curve skeletons code is a series of
text files that include run times and most importantly the location of the large intestine
centerline. This centerline text file is essential for the visualization routine, which will be
discussed in the following chapter. The centerline is required for the colon splitting
procedure that creates the flyover view as well as the camera path which allows for

internal visualization of the colon [see figure 11].

Figure 11: A solid model of the colon with the centerline shown in red.
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4.3 Summary

The accurate segmentation and centerline extraction of the large intestine is
essential for the VC interface to visualize the colorectal interior. The methods described
above are both robust and accurate, but the segmentation/centerline extraction process
does have some limitations. The segmentation method, though accurate, is restricted by
the manual seeding requirement. The user must be able to differentiate between large
intestine and small intestine (both of which are filled with air and therefore are dark on
the scans). Additionally, the manual seeding process can be time consuming (times will
be provided in Chapter 6). The GVF curve skeletons software is extremely well suited to
determine the skeleton graph of a complex object but it is hindered in two ways: inability
to extract the centerline for a large intestine with collapsed portions (i.e. non-distended),
and potential for run-time failures because of high memory consumption. The CVIP Lab
has been pursuing various methods for automatic colorectal segmentation therefore such
an automatic system may be a future addition to the interface. As for centerline
extraction, it may be more efficient to extract the centroids of the segmented large
intestine slice-by-slice and connect them with some tensor linking technique. Ultimately,
the interface is structured in such a way that future modifications can be added as desired

to test functionality and efficiency.
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CHAPTER 5:
CVIP LAB VC INTERFACE: VISUALIZATION
5.1 Introduction
The Visualization Toolkit (VTK) is an open-source visualization, graphics, and
image-processing library. It is used in the fields of mechanical design and drafting,
testing and simulation, and medicine (as with this research). In the case of the CVIP VC
interface it is used for the visualization of a large intestine solid model, traditional
flythrough visualization, and the CVIP Lab patented Flyover visualization. In addition to
these mapped and rendered three-dimensional models the interface also displays the
transverse, coronal, and sagittal views of a particular CT scan slice (this is also done with
the VTK library) [see figure 12]. The VTK library is the hub of the CVIP Lab VC

interface’s visualization capabilities.
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Figure 12: The anatomical planes for a human body (these also correspond to the VC interface’s visualized

CT planes) [27].

5.2 General Visualization Protocol Using VTK

VTK works in a pipeline fashion (i.e. the output of one process is the input of
another). The general makeup of a VTK pipeline is as follows: i) input data sources
(PGM, PPM, generated files, etc.), ii) filter input data (step is optional, but it usually
involves data reduction, smoothing, conversion, etc.), iii) map data (converts the data
input into a VTK object that can be visualized), iv) convert mapped data to a VTK actor
(allows for the adjustment of object color, opacity, etc.), v) set actors to renderers and
render windows (displays objects in windows and allows for user interactions) [see figure

13]. As stated in step v above, controls and interface options can be added to render

37



windows to allow the user to make selections with a mouse or use hotkeys. This is used

extensively in the CVIP Lab’s VC interface.

VTK Visualization Pipeline

Sources
Provide initial data input

from files or generated

A\ 4

Filters ( Optional )
Modify the data in some way,
conversion, reduction, interpolation, merging, . . .

Y

Mappers
Convert data into tangible "objects"

Y

Actors
Adjusts the visible properties
( transparency, color, level of detail, etc. )

Renderers & Windows
The viewport on the screen
Interaction done here also

Not exactly part of the pipeline,

User Interface & Controls
but a very important part of the application

Figure 13: The VTK pipeline [25].
5.3 Transverse, Coronal, and Sagittal CT Slice Visualization
The VC interface displays the three planes of a CT scan in order to enhance the
user’s ability to diagnose an anomaly detected in the rendered visualizations. Radiologists
are all familiar with colorectal CT scans but the same cannot be said of rendered
colorectal visualizations including: flythrough, flattening, or flyover. Therefore, the

original CT images provide a benchmark for comparison. Fortunately, VTK includes
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libraries that can take a CT scan input (in DICOM, BMP, or PGM format) and display it
in the three anatomical planes (transverse, coronal, and sagittal) [see figure 12].

In the VC interface the original images are PGM formats of the original CT scan
images (as stated in section 3.2). These original PGMs for a single scan are read
sequentially using the VTK library vtkPNMReader. Within this library the x, y, and z
extent of the scan volume is defined. The CT image sets used to validate the CVIP Lab
VC interface are 512 by 512 on the x-y plane, and of varying z dimensions (400~550)
depending on patient height. In addition to image dimensions the library is also used to
define the range of values that are the intensities of the PGM images. After reading the
scan volume the images are filtered via vtkimageCast and
vtkimageMapToWindowLevelColors respectively. These filtering libraries format the
images for proper viewing in a VTK render window by scaling intensity values (see VTK
pipeline [figure 13]).

Prior to converting the scan into a working VTK actor it must be formatted to
display the scan in terms of the three anatomical planes. This is accomplished through the
use of the libraries vtkimageStencil and vtkimagePlaneWidget. The latter library
(vtkImageStencil) combines the various images (slice-by-slice) in a relatable fashion by a
“cookie-cutter operation” as defined in VTK documentation, while the former library
(vtkimagePlaneWidget) allows for the access of a particular slice on the remapped scan
(i.e. remapped to the transverse, coronal, and sagittal planes) [26]. Following the above
formatting steps the newly defined PGM image planes can be made into two-dimensional

image actors using vtkimageActor and the actors can be set to a VTK renderer and
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rendering window using vtkRenderer and vtkRenderWindow respectively. The windows
made by vtkRenderWindow are associated with window controlling and interacting tools
as well, but these will be covered in section 5.6.

5.4 Colorectal Solid Model Visualization

Because the local topologies of the large intestine vary greatly from patient to
patient a rendered solid model of the organ can provide valuable information to a medical
professional performing a VVC. For instance, a thick tissue wall in the colon or rectum can
indicate cancer without the existence of a polyp (this is called non-polypoid colorectal
neoplasm). A colorectal solid model, in conjunction with the CT slice visualizations, can
assist a medical professional in determining if a colorectal wall thickening is the result of
abnormality or part of a patient’s unique anatomy. Using VTK along with the segmented
colon images a solid model of the colon can be visualized and viewed with little data
manipulation.

As with the CT slice visualizations above the images must be read using
vtkPNMReader, except these images are the binary segmentations of the large intestine,
and formatted for size (x and y) and depth (number of slices or z). Following reading in
the image data the images need to be filtered (smoothed) so that following steps can
create an isosurface and a triangular mesh for visualization. Smoothing the image data is
done using the vtkimageGaussianSmooth class, which, as its name implies, uses Gaussian
smoothing to create ideal edges for the creation of an isosurface. After the filtering
procedure the images are ideal for creating the isosurface. An image isosurface is simply

a surface of constant values that are established in three-dimensional space. The
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isosurface is created using vtkMarchingCubes. This class uses the marching cubes
method first defined by William E. Lorensen and Harvey E. Cline in Marching Cubes: A
high resolution 3D surface construction algorithm published in Computer Graphics
(1987).

The output from the above process is points defining the large intestine surface
along with any properly formed triangulations between these points [26]. Three filtering
steps are required after the above isosurface creation, one to remove excess or poorly
placed isosurface points, another to reduce the number of surface triangles (as there are
often more than necessary to render the large intestine surface), and a final step to adjust
the remaining points using interpolation. Junk isosurface points are merged or removed
by way of the vtkCleanPolyData class, and redundant surface triangles are removed via
vtkDecimatePro [26]. The final step is carried out using the vtkWindowedSincPolyData
class. This class uses a windowed sinc function interpolation kernel to adjust points in an
ideal fashion so that the surface triangles provide the best visualization (see VTK
documentation for greater detail regarding the vtkWindowedSincPolyData class [26]).

The final three steps in the visualization pipeline for the large intestine model
are: the generation of the normals for the large intestine polygon mesh, the mapping of
the normals to create a VTK object, and the creating of a VTK actor using the mapped
VTK object. The creation of the large intestine object normals is done with the class
vtkPolyDataNormals. These normals are defined for all of the triangular vertices of the
isosurface. Mapping of these normals into a VTK object is done using

vtkDataSetMapper. This mapper operates in a similar manner as the mapper used for the
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CT scan slices except its input is computed data rather than pixel maps. Finally, the
mapped VTK object is made into a VTK actor using vtkActor and set to a renderer and
render window as described in section 5.2 using vtkRenderer and vtkRenderWindow.
5.5 Colorectal Flythrough Visualization

The process for creating the VC flythrough visualization is very similar to that
done for the large intestine solid model visualization described in section 5.3. For the
flythrough visualization the output from vtkPolyDataNormals is used in the VTK class
vtkPolyDataMapper. The class vtkPolyDataMapper is similar to the class
vtkDataSetMapper used for solid model visualization except for the way in which the
data is handled. In vtkPolyDataMapper the data are known to be defined vertices, lines,
or polygons, while in vtkDataSetMapper the data are represented as raw data values.
Following data mapping a visuals lookup table is applied to the mapped surface. This is
done through the class vtkLookupTable. A lookup table simply applies a red, green, blue,
and alpha transparency (RGBA) to the object to be visualized. Using this class the user
can define the appearance of the flythrough visualization and set it to resemble the
interior of the large intestine. The mapped flythrough object is turned into a VTK actor,

set to a VTK renderer, and placed in a render window as with all VTK visualizations.
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5.6 Colorectal Flyover Visualization
The flyover visualization is a CVIP Lab patented method for viewing the large
intestine. Essentially, it splits the colon into halves which are viewed from overhead [see

figure 14].

Figure 14: The colorectal flyover views in which one half is colored blue and the other half is colored red.

This visualization lacks the hidden regions of the flythrough, while maintaining a
topology that is intuitively interpreted by a medical professional. Though VTK is
essential in the final visualization of the flyover it does not provide all of the tools
necessary to split a solid object into corresponding halves. The flyover visualization is

created by the following protocol:
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1)

2)

3)

4)

5)

6)

7)

8)

9)

The normals for the large intestine solid model are generated as they were in
section 5.3.

The centerline points as well as distance from centerline boundary (DFB) values
(added to the centerline point data in a small subroutine) are read into the classes
vtkPoints (holds three-dimensional points for manipulation and visualization) and
vtkKochanekSpline (used to compute interpolating splines using Kochanek basis
[26].

The X, y, and z centerline points are interpolated using vtkKochanekSpline and
written to a text file.

The text file of interpolated centerline points are read and used to determine
normals for each centerline position.

Another centerline is created for the other large intestine half using rigid
translations.

The normals are determined for the new centerline.

The large intestine is broken into segments (each segment corresponding to a
centerline(s) point) so that it can be split into halves part-by-part, and the polygon
data (determined in step 1) for each segment is assigned to a C array of
vtkCellArrays (this class stores vertex, line, or polygon data).

The polygons stored in the array of vtkCellArrays are matched to their
corresponding (i.e. closest) centerlines via Euclidean distance.

The colon is split using the class vtkPolyDataClipper for each large intestine

segment with a finite implicit plane (created through the class vtkPlane).
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10) The polygons for each corresponding half (left and right) are stored in their own
containers via vtkAppendPolyData.

11) Finally, the polydata is filtered using vtkCleanPolyData, the normals are
computed with vtkPolyDataNormals, and the normals are written to VTK
visualization files with vtkPolyDataWriter.

The above procedure creates two files (Left.vtk and Right.vtk) that are later read by

the QT/VTK main interface thread and displayed on the QVTK window.
5.7 Window Controlling and Interacting

Window controlling is a feature in VTK that allows a user to interact and control
a VTK window. VTK window controllers and interacting tools can allow the user to:
manipulate object size through a mouse wheel, move an object with the mouse, annotate
points on an object/image, use hot keys, as well as various other interactive features.
VTK window interactions can be done through vtkRenderWindowlInteractor,
vtkGenericRenderWindowInteractor, and vtkStyleInteractorimage. The first class
(vtkRenderWindowlInteractor) is the general window interactor used for most VTK
objects. It allows for object annotation, movement, and other basic object manipulations.
The second class (vtkGenericRenderWindowlInteractor) is more versatile than the first
class in that the user can program interaction events such as special mouse usage or
hotkeys. The final class (vtkStyleInteractorimage) is used in conjunction with
vtkGenericRenderWindowInteractor to associate user events with uniquely programmed
observers. These observers are typically classes or functions (as is the case in the CVIP

VC interface). All of the above VTK window interaction classes are used in the CVIP VC
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interface. VTK interactors offer a wide array of tools beyond the scope of this thesis’
analysis, but further information can be found in VTK web documentation [26]. Section
6.1 (system design) will go into further detail as to the use of interactors in the CVIP VC
interface.

5.8 Summary

The preceding sections describe all of the components of the CVIP Lab VC
interface. It has been shown that VTK provides a robust open-source library for
visualization, and its application to the VC interface broadened the system’s capabilities.
In the following section (6.1) on overview of the system design will be given including

functionality, and layout.
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CHAPTER 6:

CVIP LAB VC INTERFACE: SYSTEM DESIGN AND VALIDATION
6.1 System Design
6.1.1 Introduction

The CVIP VC interface was designed using Qt (specifically Qt Designer), a cross
platform user interface (Ul) framework, in conjunction with VTK. The Qt platform
contains a wide array of tools that can be applied to any Ul design. Qt Designer provides
a platform to design an Ul visually (i.e. without the need to program it from scratch). The
file created by Qt Designer is a Ul file. This must be compiled in CMake with a
corresponding header file to generate a UIC (user interface compiler) file, and an MOC
(meta-object compiler) file. The UIC file is a compiled combination of the user
programmed parameters (such as signals and slots) in the header file and the codified
geometries and parameters that were created in Qt Designer. This UIC file contains the
class declaration and methods/variables for the entire Ul system.

The CVIP VC interface was designed as a tabbed window with four tabs named
as follows: Flyover (displays the flyover visualization and contains primary push buttons,
and driver controls), CT (displays the sagittal, transverse, and coronal CT slices from left
to right accordingly), Extra (displays the large intestine solid model with centerline (blue
dots), and camera position (red dot) as well as the flythrough for comparison, and
Light/Camera (light and camera control tools). A tabbed interface was selected because
of its high mobility between platforms. Although a multi-window interface may be

desirable with multiple monitors it would be cluttered and unusable in a single monitor
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setting. This interface design provides the flexibility to quickly cycle between CT
visualization and flyover/flythrough visualization without the need for multiple screens.
Each tab of the interface as well as the segmentation pop-up window will be described in
the sections below.
6.1.2 Pop-Up Window: Segmentation Interface

The segmentation interface is a separate pop-up window that displays the CT scan
slice-by-slice, and allows the user to: seed the scan for segmentation, cycle through the
slices via pushbuttons (Next and Previous), change position (text edits X, y, and z), seed
radius (text edit r), or seed curvature parameters (text edit Smoothness Coefficient),
determine the number of segmentation iterations (text edit Number of Iterations),
segment after seeding (Segment), and close the segmentation window (Close). During
seeding the seed points are written to a text file. When the segmentation pushbutton is
selected the seed point text file is read into a queue and passed into the segmentation
protocol. When completed, the segmentation protocol saves the segmented binary images
as PGMs and returns function to the segmentation interface. Upon closure of the
segmentation window the centerline extraction process begins automatically using the

segmented PGMs as input.
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Figure 15: A screenshot of the segmentation interface.

6.1.3 Main Interface: Flyover Tab

The flyover tab contains all of the primary pushbuttons and driver controls (used
to move through the large intestine). A radio button (Preprocessed CT Scan) gives the
user the option to either run a set through the entire CVIP VC interface protocol (i.e.
segmentation, centerline extraction, and visualization), or visualize a preprocessed scan
directly (i.e. segmentation and centerline extraction are already completed). If the radio
button is selected the user must load the original PGM format CT scan with the Load
Dataset pushbutton, and the segmented images as well as the centerline data is assumed

to be in the working directory (as it would be under normal operation). With the radio
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button selected the Segment pushbutton will remain disabled. If the radio button is not
selected the user must select the original PGM scan and this will enable the Segment
button. Pressing the Segment button opens the segmentation pop-up window described in
section 6.1.2. Upon the completion of segmentation and centerline extraction the
Visualize button will be enabled. Pressing this button begins the entire visualization
routine (described in chapter 5). Upon the completion of the visualization routine all of
the driver, light, and camera controls will be enabled (this includes the driver controls
Stop, Reverse, Forward, and the speed slide-bar between the Reverse and Forward
pushbutton). The other interface options available for this tab, such as hot-keys or
window interactions, will be described in section 6.1.7.
6.1.4 Main Interface: CT Tab

This tab displays the CT slices corresponding to the position of the camera on the
large intestine centerline. The CT slices are displayed (from left to right) sagittal,
transverse, and coronal. This tab is made available so that a medical professional may
have another reference beside the flyover visualization, flythrough visualization, or large
intestine solid model. The other interface options available for this tab, such as hot-keys

or window interactions, will be described in section 6.1.7.
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Figure 16: A screenshot of the flyover interface (note the marker glyph, colored yellow, on the top flyover

view).
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Figure 17: A screenshot of the CT interface (note the marker glyph, colored yellow, from the flyover view

shows up on the corresponding anatomical area in the CT slices).

6.1.5 Main Interface: Extra Tab

This tab displays the large intestine solid model with the centerline (as blue dots)
and the camera position (as red dots), and the flythrough visualization. As with the CT
display this tab is for additional reference and comparison. The other interface options

available for this tab, such as hot-keys or window interactions, will be described in

section 6.1.7.
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Figure 18: A screenshot of the solid model of the large intestine (top) with the centerline as blue dots and

the camera position as a red dot, and the flythrough (bottom).

6.1.6 Main Interface: Light/Camera Tab

This tab contains all of the camera and light controls available in VTK, and these
controls only apply to the flyover visualization. Though not an essential tool in the
interface, it provides additional flexibility and control not available in other VC systems.
In addition to the camera and lighting adjustment slide bars there are also options to:
reverse the camera orientation through the radio button Forward/Backward, turn the

camera stereo on and off with the pushbutton Stereo On/Off, and reset the light values
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with Reset To Defaults. The camera’s x, y, z, roll, elevation, and azimuth are also

displayed for reference.
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Figure 19: A screenshot of the camera and lighting controls.

6.1.7 Main Interface: User Interactions and Window Controls

There are various hot-keys and mouse controls available to the user when
operating the CVIP Lab VC interface. For the Flyover tab the user is able to place a glyph
(yellow sphere) on an object of interest by moving the mouse pointer over the object and
pressing the “P” key. The glyph will remain until the user presses the “U” key. Glyphs
can be added and removed as desired using the above procedure and more than one glyph

can exist at a time. The user may also cycle through existing glyphs by pressing the “+”
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or “-*“ key. This advances through glyphs in a forward and backward manner
respectively. Since the glyphs appear on the CT tab as well as the Flyover tab these
controls work the same for both. In the Flyover tab, the user may also manipulate the
distance from centerline boundary (DFB) with the mouse wheel and reorient the colon
halves with mouse dragging. Correspondingly, the user can direct red crosshairs with a
left mouse click on the CT tab. In the Extra tab the user can manipulate the orientation of
the large intestine solid model with mouse drags and zoom in and out of the model with
the mouse wheel. In addition, the user can direct the camera view in the flythrough view
with mouse drags and move forward and backward along the camera path with the mouse
wheel. These window controllers are intended to assist in any diagnostics using the CVIP
Lab VC interface. Future additions to the system can include other hot-keys and view
controllers.
6.2 Validation

Validation of the system began with the assumption of a continuous pipeline as
described in section 1.3. The computer used for initial compilation and testing contained
an Intel® Xeon® Processor (W3565 quad-core 8MB Cache, 3.20 GHz, 4.80 GT/s Intel®
QPI) and 24 GB RAM. A CT scan converted to PGMs is input to the system. The PGM
inputs are segmented, the centerline is extracted, the large intestine is split, and the result
is visualized. The largest CT scan (541 slices) was the first used to test the system’s
capabilities. The segmentation procedure completed successfully, but the centerline
extraction experienced a run-time failure because of the inability to create new memory

on the free store, specifically, during the creation of an object array of size 512x512x541
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(this is 141819904 x (4 bytes-per-integer) x (32 bytes-per-object) = ~18 GB). The curve
skeletons code used to extract the centerline of the large intestine was originally intended
to run as a standalone executable. Even in this form it has high memory consumption as
multiple variables are created on the free store in addition to the one that throws an
exception in the VVC interface. When the curve skeletons code was included with the VC
interface it also had to compete with the memory consumed by the creation of the Ul and
VTK variables, which both contain large memory volume classes and variables. To test
the threshold of the system the slice count was gradually reduced. At 400 slices the
system pipeline worked successfully but the isosurface for the large intestine solid model
did not visualize successfully (i.e. the object mesh could not be generated because of
polygon discontinuities). Therefore, the slice number was reduced incrementally to 350
which led to a successful solid model. The results are provided in table one, and

segmentation results can be seen in figure 20.

Table 1: Run times for the successful run through.

Set 1 (350 slices) | Run Time (seconds)
Segmentation 232
Centerline Extraction 23
Visualization 18

Total Time 273 (4.55 minutes)
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Figure 20: The segmentation results from the successful full run through.

Although the results of the initial trials were disappointing some validation of
whole CT scans was still desired. In order to accomplish proper validation, the centerline
extraction step was done externally from the VC interface using an executable so that
there would be no competition for memory resources. The time of execution for external
centerline extraction was treated as if it were within the system (as in-system run-times
were similar for fewer CT slices). Before beginning this process a segmentation standard
had to be used for all available sets. In order to determine that standard six trials were

conducted. For the first trial a single seed was placed in each large intestine object every
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50 slices. This trial failed to segment, therefore it was repeated (trial two) except seeding
was done every 30 slices, but this failed as well. For trials three and four the number of
seeds per large intestine object was increased to three, and they were placed every 50
(trial three) and 30 (trial four) slices. These trials resulted in successful segmentation. The
final two trials used heavy seeding (greater than 10) per large intestine object every 50
(trial five) and 30 (trial six) slices. These two trials were done to compare the
segmentation results to trials three and four. There was no discernible difference between
the two sets. Therefore, it was assumed that three seeds per large intestine object every 50
slices (trial three) would be an adequate segmentation method. Refer to the table and

figures below for further elaboration.

Table 2: Runtimes for the segmentation trials.

Segmentation Method Trials | Run Time (seconds)
Trial Three 515 (8.58 minutes)

Trial Four 605 (10.08 minutes)

Trial Five 993 (16.55 minutes)

Trial Six 1088 (18.13 minutes)
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Figure 21: Segmentation trial six result from heavy seeding for every large intestine object every 30 slices

(~1088 seconds or ~18.13 minutes for entire segmentation process).
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Figure 22: Segmentation trial five result from heavy seeding for every large intestine object every 50 slices

(~993 seconds or ~16.55 minutes for entire segmentation process).
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Figure 23: Segmentation trial four result from three seeds for every large intestine object every 30 slices

(~605 seconds or ~10.08 minutes for entire segmentation process).
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Figure 24: Segmentation trial three result from three seeds for every large intestine object every 50 slices

(~515 seconds or ~8.58 minutes for entire segmentation process).

The segmentation procedure was carried out for each CT set as if it were going
through the entire CVIP Lab VC pipeline. Upon completion, the sets were saved in the
interface’s working directory so that they could be read by the centerline extraction
executable. The run time and number of seed for the segmentation of each CT scan is

given in the table below.
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Table 3: Runtime for segmentation along with the total seed count.

Segmentation

Run Time (seconds)

Number of Seeds

Set 1 (541 slices) 525 127
Set 2 (428 slices) 421 122
Set 3 (470 slices) 420 130
Set 4 (484 slices) 448 118
Set 5 (438 slices) 432 110
Set 6 (462 slices) 439 107
Set 7 (387 slices) 391 94
Set 8 (432 slices) 427 116
Set 9 (432 slices) 431 129
Set 10 (425 slices) 422 126

The large intestine centerline was extracted using an executable external to the
VC system. Again, this was justified because the run-times for the external centerline
extraction were identical to the run-times of the centerline extraction within the VC

system for CT scans with fewer slices. Centerline extraction was done twice to compare

the results. Refer to the table below for run-time results.
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Table 4: Runtime for centerline extractions (two runs were done for comparison).

Centerline Extraction | Run 1 (seconds) | Run 2 (seconds) | Average Time (seconds)
Set 1 (541 slices) 55 51 53
Set 2 (428 slices) 28 28 28
Set 3 (470 slices) 31 31 31
Set 4 (484 slices) 36 36 36
Set 5 (438 slices) 20 19 19.5
Set 6 (462 slices) 49 49 49
Set 7 (387 slices) 48 48 48
Set 8 (432 slices) 28 28 28
Set 9 (432 slices) 30 30 30
Set 10 (425 slices) 30 30 30

Following the centerline extraction trials both centerlines for each set were used
along with the segmentation results in the large intestine splitting and visualization

routine (included in one step called visualization). The results are given in table five.
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Table 5: Runtime for both centerlines extracted along with the total number of centerline points for each.

Visualization Centerline 1 Centerline 2 Average Time (seconds)
Set 1 (541 slices) | 84 seconds/5478 points | 39 seconds/5478 points 61.5
Set 2 (428 slices) | 58 seconds/3999 points | 26 seconds/3998 points 42
Set 3 (470 slices) | 56 seconds/3597 points | 26 seconds/3597 points 41
Set 4 (484 slices) | 79 seconds/5337 points | 36 seconds/5337 points 57.5
Set 5 (438 slices) | 58 seconds/3495 points | 25 seconds/3495 points 41.5
Set 6 (462 slices) | 57 seconds/4369 points | 36 seconds/4369 points 46.5
Set 7 (387 slices) | 64 seconds/4071 points | 30 seconds/4071 points 47
Set 8 (432 slices) | 49 seconds/3503 points | 25 seconds/3503 points 37
Set 9 (432 slices) | 59 seconds/4824 points | 31 seconds/4824 points 45
Set 10 (425 slices) | 56 seconds/4300 points | 29 seconds/4300 points 42.5

The average total run-time as well as the average of the total run-times for all CT

scans is given by table six.
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Table 6: Average total run time for each set and the average total run time for all sets.

Set Average Total Run Time (seconds)
1 639.5 (10.66 minutes)
2 491 (8.18 minutes)
3 492 (8.2 minutes)

4 541.5 (9.02 minutes)

5 493 (8.22 minutes)

6 534.5 (8.9 minutes)

7 486 (8.1 minutes)

8 492 (8.2 minutes)

9 506 (8.4 minutes)

10 494.5 (8.24 minutes)
Average Total Run Time For All Sets 516.72 (8.61 minutes)

6.3 Summary

The CVIP Lab VC system was designed with the intention of being user-friendly
and portable. The system was also compiled and run on a Macbook Pro (Mac OS X
10.6.8 with Intel Core 2 Duo 2.8 GHz and 4 GB RAM) with a Windows 7 emulator and it
operated with similar result. As a proof-of-concept it is a valuable tool and opens many
doors to future development in showcasing the flyover colorectal visualization method.
However, significant strides must be taken to automate segmentation and reduce high

memory consumption.
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CHAPTER 7:
CONCLUSION AND FUTURE WORK

In section 1.3 it was asked if the CVIP Lab’s adaptive level sets, curve skeletons,
and large intestine visualization software can be combined in a manner that is
computationally efficient. The response to this question is inconclusive, as they can be
combined (as is the case in the current system), but they can only be used in series with
certain constraints. That said, the primary contribution of this thesis work is the
development of a front end VC system that includes a method for large intestine
segmentation, centerline extraction, splitting (for flyover), and visualization. The
particular system developed is novel when compared to existing VC systems (either
academic or commercial). The CVIP Lab VC interface represents a proof-of-concept for
VC using computer vision and image processing tools developed in the CVIP lab.

The CVIP Lab VC interface requires future improvements in order to operate as a
complete (and commercially viable) front-end system. These improvements may/must
include:

1) Automation of large intestine segmentation.

2) Use of less memory dependent centerline extraction method.

3) Or, advanced memory management programming.

Automatic segmentation would remove the need for a medical professional to seed the
large intestine objects in the CT scan. Ideally, an automatic segmentation protocol would
speed up processing time for the CVIP Lab VC system making it more desirable as a tool

for medical diagnostics. Centerline extraction, though fast, requires extensive use of
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computer memory. As stated earlier, this high memory usage presents itself as potential
run-time failures with large CT scans. Potential remedies to this may include an object
centroid based approach to centerline extraction (where the centroids of the large
intestine objects are found in each CT slice and approximated as the centerline), or an
advanced memory management scheme that involves CT scan data compression or some
similar approach. Ultimately, any substitute centerline extraction method should aim to
maintain or surpass the run-time efficiency of the CVIP curve skeletons software while
constraining the accuracy of the centerline to reasonable tolerances.

As stated in section 6.3, the VVC interface works as a proof of concept, and offers
future students and researchers the opportunity to expand its capabilities since it was
developed in an evolvable, modular fashion. It is the hope of the author that this VC
system will provide a platform for expanding CVIP medical imaging projects related to

colorectal diagnostic imaging into new fields.
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