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ABSTRACT 

Rosario J. Pusateri 

August 2012 

 Colorectal cancer is the fourth most common cancer, and the fourth leading cause 

of cancer related death in the United States. It also happens to be one of the most 

preventable cancers provided an individual performs a regular screening. For years 

colonoscopy via colonoscope was the only method for colorectal cancer screening. In the 

past decade, colonography or virtual colonoscopy (VC) has become an alternative (or 

supplement) to the traditional colonoscopy. 

 VC has become a much researched topic since its introduction in the mid-nineties. 

Various visualization methods have been introduced including: traditional flythrough, 

colon flattening, and unfolded-cube projection. In recent years, the CVIP Lab has 

introduced a patented visualization method for VC called flyover. This novel 

visualization method provides complete visualization of the large intestine without 

significant modification to the rendered three-dimensional model.  

 In this thesis, a CVIP Lab VC interface was developed using Lab software to 

segment, extract the centerline, split (for flyover), and visualize the large intestine. This 

system includes adaptive level sets software to perform large intestine segmentation, and 

CVIP Lab patented curve skeletons software to extract the large intestine centerline. This 

software suite has not been combined in this manner before so the system stands as a 

unique contribution to the CVIP Lab colon project. The system is also a novel VC 

pipeline when compared to other academic and commercial VC methods. The complete 
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system is capable of segmenting, finding the centerline, splitting, and visualizing a large 

intestine with a limited number of slices (~350 slices) for VC in approximately four and a 

half minutes. Complete CT scans were also validated with the centerline extraction 

external to the system (since the curve skeletons code used for centerline extraction cause 

memory exceptions because of high memory utilization).                                               
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CHAPTER 1: 

 

INTRODUCTION 

 

1.1 Colorectal Cancer Screening Background 

 

Colorectal cancer is a cancer that affects either the colon and/or rectum region of the 

large intestine [see figure 1]. In the United States it is the fourth most common cancer in 

both women and men as of 2012, and the fourth leading cause of death after lung, 

stomach, and liver cancer [1]. Colorectal cancer is also one of the most preventable 

cancers when controlling for lifestyle choice and environment as it can be thwarted with 

various medical diagnostic procedures. This is because the cancer usually begins as a 

localized benign colorectal polyp that takes nearly 10 to 15 years to develop into cancer.   

 

Figure 1: Anatomy of the large intestine [28]. 
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The colonoscopy procedure is the most common method for diagnosing potential 

colorectal cancer cases. A traditional colonoscopy requires preparation with laxatives 

(typically magnesium citrate and/or sodium phosphate), and bowel irrigation via a 

combination of polyethylene glycol and electrolytes (sports drinks or similar fluid). This 

process is typically conducted 24 hours prior to the procedure and is usually unpleasant 

for the patient. The procedure itself requires the patient to be given mild-dose general 

anesthesia (twilight anesthesia). Following this, a CCD camera fitted colonoscope is 

inserted into the anus of the patient and progressed through the colon [see figure 2 & 3]. 

Potential polyps within a certain size range can be removed and biopsied for malignancy. 

 

Figure 2: A colonoscope used for colonoscopy (without polyp extraction component), and a device for 

removing polyps [29]. 

Although, this procedure is the gold standard among most gastrointestinal doctors its 

invasiveness deter many patients from having it done as recommended (every 10 years 

after age 50) [2]. In addition the colonoscopy procedure may miss potential polyps in the 
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ascending colon near the cecum (proximal from the anus), and polyps hidden behind 

haustra. Computed tomography colonography (CT colonography) or virtual colonoscopy 

is an alternative approach to the traditional colonoscopy. The procedure is non-invasive 

(or nearly non-invasive) and provides complete visualization of the entire colon. This 

procedure is fast becoming an accepted method for colorectal cancer screening. 

 

Figure 3: The colonscope in the colon (A), the view from the scope head inside the large intestine (B), 

and the scope head components (C) [30]. 
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1.2 Virtual Colonoscopy (VC) 

Dr.Vining and Dr. Gelfand at the Society of Gastrointestinal Radiologist first 

presented virtual colonoscopy to the medical community in 1994 [3]. Although it was 

only a non-interactive video of a virtual colonoscopy flythrough (explained below) it 

sparked an explosion of interest in the academic and medical community. Since then, VC 

has become one of the accepted methods for colorectal cancer screening.     

The VC method for colorectal cancer screening is minimally invasive and requires 

less time than a traditional colonoscopy. The patient follows a colon-cleansing regimen 

similar to that done for the traditional colonoscopy screening. For the procedure, the 

patient lies in the supine position and a small tube is inserted into the anus to inflate the 

colon with a small amount of air (this is to create proper large intestine distension for 

better viewing). Then the patient is scanned with either CT or MRI (the conducted work 

was with CT images). The patient then moves to a prone position to be scanned again. 

Two scans in different positions are needed to ensure that no polyps are missed in pools 

of residual fluid or fecal matter. For recent VC procedures, the scans are typically low-

dose, or rarely, ultra-low dose to minimize exposure to radiation. It has been concluded 

that low-dose CT resolution is adequate to reveal most significant polyps in colorectal 

scans [9]. 

After the procedure the scan images (DICOM for the work conducted) are processed 

by available software. Typically, the software renders the colon images in a manner that 

mimics a traditional colonoscopy. This is called the flythrough visualization method. 

Other means of visualization include: flattening [11], unfolded cube projection [10], and 
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flyover [12] (developed by the CVIP Lab and patented). These methods will be 

elaborated upon in the literature review. 

1.3 CVIP Lab Virtual Colonoscopy Interface  

 The task assigned for this thesis is the consolidation of CVIP Lab segmentation, 

centerline extraction, and visualization-preparation/visualization software into one front-

end system for VC [see figure 4]. Therefore, can these components be combined in a 

manner that is computationally efficient? The interface pipeline includes: a means of 

segmenting the colon images via adaptive level sets [23, 24, 17, 19], a method for 

extracting the colon centerline via curve skeletons using gradient vector flow [20, 21, 22], 

and visualization-preparation/visualization of the rendered colorectal images via the 

flyover method (using VTK and Qt). This pipeline will be surveyed part by part after a 

thorough literature review outlining research in the field of VC.  

 

Figure 4: The proposed CVIP Lab VC interface pipeline. 
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CHAPTER 2: 

  

LITERATURE REVIEW 

2.1 VC Using the Flythrough Visualization Method 

 The flythrough method is the traditional model for virtual colorectal visualization. 

It aims to simulate a colonoscopy procedure by starting the camera at the anus and 

progressing it through the virtual large intestine toward the cecum; this is an antegrade 

VC (note that VC may also be retrograde, or from the cecum to the anus, as this allows 

more complete viewing of the colon). This was first proposed academically in the work 

by Lichan Hong, 3D Virtual Colonoscopy (1995) one year after the first virtual 

colonoscopy demonstration [13]. In this foundation publication the patient was prepped 

and scanned with CT to obtain images of the large intestine. The visualization was 

obtained through the use of third-party volume visualization software, VolVis. The 

produced visualization was a flythrough movie that was non-interactive and a basic 

proof-of-concept.  

 Since 1994 numerous commercial VC products have been produced that utilize 

the flythrough visualization method. Although, current visualizations vary somewhat the 

flythrough remains the gold standard for medical doctors using VC because of its close 

similarity to traditional colonoscopy.    
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Figure 5: An example of a flythrough visualization (the red circle is a tagged polyp).  

2.2 VC Using the Flattening Visualization Method 

 As with traditional colonoscopy, flythrough VC can miss potential polyps that are 

hidden behind haustra. This is because the antegrade flythrough VC can only make 

visible colorectal tissue exposed to the normal of the viewing camera. Therefore, polyps 

hidden behind haustra viewed from the antegrade direction will be missed. There are only 

two means of remedying this problem with VC flythrough: stopping the visualization 

camera at regular intervals and panning it about the colorectal interior or, conducting a 

retrograde flythrough in addition to the antegrade flythrough. Stopping at regular 

intervals is time consuming and unrealistic for efficient patient diagnosis. Antegrade in 

combination with retrograde visualization, while less time consuming then the former 

method, is still an involved process that requires redundancy in procedure. In addition, 
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antegrade and retrograde flythrough are both prone to having colorectal regions that are 

not visible from either direction [see figure 6]. 

 

Figure 6: Cross cut of large intestine showing the camera field of view for antegrade and retrograde 

colonoscopy flythrough (the hidden regions are traced in black) [10]. 

 For these reasons, it has become desirable to expose the entire virtual large 

intestine surface as the camera passes without redundant visualization or regular camera 

panning. Colorectal flattening had been proposed in Nondistorting Flattening in Virtual 

Colonoscopy and Nondistorting Flattening Maps and the 3D Visualization of Colon CT 

Images in 2000 [11, 14]. In this research, colon flatting is achieved by mapping from an 

assumed open cylindrical surface to a rectangular surface [see figure 7].  

 

Figure 7: An example image of colorectal flattening [15]. 
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The removal of distortion from the projection is achieved along a defined curve using 

geographic projection techniques. In Conformal Virtual Colon Flattening a similar result 

is achieved through more intensive application of topological methods [15]. Although in 

this approach, the colon is mapped to completely fill a proper geometric rectangle, 

whereas in the former approaches the colon did not map completely but included some 

offset.       

2.3 VC Using the Unfolded Cube Projection Visualization Method 

 Colon flattening techniques reduce the need for redundant visualizations by 

revealing the entire surface of the organ, but a flattened colon surface is not visually 

intuitive to examine by a medical professional (flattening maps to two dimensions, while 

traditional visualizations of the colon interior are in three dimensions). It is also true that 

discerning three-dimensional forms from two-dimensional mappings can be difficult 

without proper training.  

 Unfolded cube projection is another researched method for colon visualization 

proposed in the paper Three-Dimensional Display Modes for CT Colonography: 

Conventional 3D Virtual Colonoscopy versus Unfolded Cube Projection in 2003 [10]. 

For this method a point on the centerline is defined with six camera normals. These 

normals are all orthogonal to one another and one normal is oriented in the antegrade 

centerline direction while another normal is oriented in the retrograde centerline 

direction. As a result, the views of the colon are projected to the inside of a cube. This 

imaging cube is unfolded and flattened to show all the potential views of the colon 

interior at once for every centerline position [see figure 8].  
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Figure 8: The unfolded cube projection with a polyp indicated with the black arrow (note how the 

projection shows both antegrade and retrograde perspectives) [10]. 

 Though this method provides a more intuitive visualization its layout is an object 

of criticism. The projections are situated in a manner that is time consuming to diagnose 

as the reader is required to scan each side of the unfolded cube [see figure 8]. Therefore, 

unfolded cube projection solves the ‘hidden polyps’ problem of flythrough VC, but still 

requires considerable time to diagnose properly.         

2.4 Summary 

 VC flythrough visualization is still considered a gold standard by many 

radiologists and medical professionals when considering the various VC methods. In 

recent years the other flattening and projection methods have become viable in some 

commercial applications. Viatronix, General Electric (GE), and Philips all offer 
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commercial VC products. All of these companies use the flythrough visualization while 

GE and Philips use some variation of colon flattening as well. Research in efficient 

visualization methods is still a relevant pursuit, as VC becomes a more accepted method 

for colorectal cancer screening.   
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CHAPTER 3: 

CVIP LAB VC INTERFACE: DATA ACQUISITION 

3.1 Pre-CT Scan Prep and CT Scan Protocol  

 The CT scans used to test and validate the CVIP Lab VC interface were obtained 

from the Virtual Colonoscopy Center at Walter Reed Army Medical Center in 

Washington D.C. and 3DR Incorporated in Louisville, KY. Patients involved in the scans 

underwent a twenty-four hour large intestine prep protocol that required: oral intake of 90 

milliliters of sodium phosphate and 10 milligrams of bisacodyl (these are laxatives 

required to flush the large intestine of contents), as well as 500 milliliters of barium (a 

radiocontrast agent) and 120 milliliters of Gastrografin (known as diatrizoic acid) which 

contains iodine (also a radiocontrast agent). When ingested, the barium and Gastrografin 

cause the remaining luminal fluid (i.e. fecal matter and water) to have a high X-Ray 

absorption capacity (similar to bone), and objects with high absorption display brightly 

on CT scans. Barium and iodine are ideal radiocontrast agents since they have high 

atomic density without being radioactive. 

   The scans were done using either the GE LightSpeed four-channel scanner or the 

GE LightSpeed Ultra eight-channel scanner. The scanners were set to 100 mAs (current 

exposure time product) and 120 kVp (peak kilovoltage) with 1.25 millimeter to 2.5 

millimeter collimation and 15 millimeter per second scan table speed. The spatial 

resolution for each scan is one cubic millimeter while the number of slices varies from 

400 to approximately 550 slices. A single transverse scan typically contains: bone (high 
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contrast), luminal fluid (high contrast), tissue (mid-level contrast), and air (low-contrast) 

[see figure 9].    

 

Figure 9: A CT scan slice with luminal fluid (white) in the large intestine regions. 

3.2 DICOM Sorting and Conversion for the VC Interface 

 The input to the segmentation system used in the VC interface requires the images 

to be in portable graymap (PGM) format. Therefore, the DICOM scans need to be sorted, 

scaled to a PGM (0-255) scale, and converted to the PGM image format. The Matlab 

functions dicominfo, dicomread, dicomwrite, and imwrite allow the user to do this. The 

command dicominfo reads relevant information about a particular scan and can be used to 
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order a patient’s scan slices according to slice order. Following sorting, dicomread and 

dicomwrite can be used to assign a DICOM to a variable and write it to an array 

respectively. The final step is to convert the array’s Hounsfield scale (-1000 to 1000) to a 

typical grayscale (0 to 255) and use imwrite to make a PGM image of the rescaled array. 

The above protocol is done iteratively until all DICOMs have been sorted and converted.    

3.3 Summary 

 Data acquisition for the CVIP Lab VC interface follows a similar prep procedure 

to other commercial VC methods and requires some manipulation of the raw DICOMs in 

order for the system to operate as desired. Concerning the colon prep procedure, laxatives 

are required for the current system to function properly, but luminal fluid tagging may 

not be necessary as described in section 3.1. Either a barium swallow or Gastrografin 

may be used, but one should suffice. Although Matlab is currently required for the sorting 

and conversion of the DICOMs, the conversion program can be put into a dynamic linked 

library (DLL) and made into an executable so that it can be utilized without a Matlab 

installation. Future work could be applied toward a completely self-contained C/C++ 

DICOM sorter and converter through the use of DCMTK (an open-source DICOM 

toolkit).   
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CHAPTER 4: 

CVIP LAB VC INTERFACE: SEGMENTATION AND CENTERLINE 

EXTRACTION 

4.1 Adaptive Level Sets Segmentation 

4.1.1 Introduction  

 Proper visualization of the large intestine requires the colorectal tissue to be 

isolated from abdominal tissue and organs (i.e. small intestine, lungs, and liver). The 

segmentation of the large intestine is bimodal. By this it is meant that the colorectal tissue 

is considered foreground (logical true) while all other artifacts are considered background 

(logical false). In the CVIP Lab VC interface the segmentation of the large intestine is 

carried out via adaptive level sets after basic pixel threshold preprocessing.  

 The pixel threshold preprocessing is required to remove the remaining opacified 

luminal fluid in the large intestine [see figure 9]. The opacified fluid is typically brightly 

displayed in the scans (similar to bone) because of the barium and iodine ingested by the 

patient during the pre-scan prep period. Since the air in the colon is typically black and 

the surrounding tissue is mid-intensity brightness this fluid is removed via thresholding 

without difficulty [see figure 9].  

4.1.2 Basic Level Sets 

 The level set method describes the shape of a curve in two-dimensional or three- 

dimensional space in terms of time. Level sets method is desirable for shape and curve 

analysis in two respects: it allows for the description of curves and shapes without the 

need to parameterize them, and it is ideal when describing shapes that have dynamic 
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topological structure (i.e. shapes that split into parts or develop holes). Basic level sets as 

it is applied in the VC interface can be described as follows. 

 Assume a curve, defined by , that is set in the function , which represents some 

higher dimensional space (three dimensions in this research). Given this, the curve may 

be defined by  =  :  = 0, which implies that the curve is the zero level of the 

function  ( = {x, y, z} in this research). In order to describe the shape, the zero-level 

curve must be evolved with time through the higher dimensional space. Therefore, a time 

component must be added to  which describes the changing curve front. The curve front 

evolution function can now be described as  = (, t) (note that a lower case Phi is used 

to denote the time component). Since the curve boundary (front) represents the zero level 

of the function  it may be written as:  

          (, t) = 0.             (1) 

 The basic level sets function, as described by Osher and Sethian, is defined by the 

following [23].  

     t + F = 0             (2) 

To describe  dynamically equation 2 can be written as the partial differential equation 

(PDE) given below. 

 
  0,

,
 txF

t

tx





            (3)  

In discrete applications the evolving level set can be described by the following. 

(t + t) = (t) - Ft            (4) 
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where, F describes the velocity field and  is the Euclidean norm of the curve 

gradient. The velocity field, F, determines whether the curve shrinks (F > 0), grows (F < 

0), or remains static (F = 0). In this application F is defined by the following. 

F = 1 -              (5) 

where  describes the curvature of the front and  describes the bending of the front. The 

above formulation provides a foundation for adaptive level sets, which uses statistical 

methods to improve the accuracy of the evolving level sets front [17, 19, 23].  

4.1.3 Adaptive Level Sets  

 Adaptive level sets supplements statistical parameters to the basic level sets 

formulation described above. In essence, it places statistical models in regions of the 

object being modeled via level sets. These statistical models are reevaluated after each 

evolution of the level set in order to more accurately represent the respective regions. 

Adaptive level sets as it is applied in the VC interface is given as follows.  

  As stated above, the model followed for segmentation of the large intestine is 

bimodal where large intestine is foreground and non-large intestine is background. 

Gaussian distributions are assumed for each region. In terms of probability this is a two-

class problem where the class is defined as i, therefore i = 1, 2. The mean, variance, and 

prior probability are defined as I,  i
2
, and i respectively and given by the below 

equations. 

   

   

 

 


dxH

dxIH

i

i

i









            (6) 
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where, x = {x, y, z} or a voxel in the CT scan image space, H denotes the Heaviside 

step function used as a differential representation of the unit step function, and the 

statistical priors satisfy the condition 
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1

1
i

i . These parameters are updated after each 

evolution of the level set front and used in the classification model given below. 

      xIpxi iii 2,1

* maxarg             (9) 

where Ix is the image data in the x = {x, y, z} domain and pi is the probability density 

function. Equation 9 uses Bayesian criteria to determine if a particular voxel x is included 

in the foreground (large intestine) or background (non-large intestine). Specifically, if the 

voxel x belongs to the class i = i
*
(x) then the front will propagate.  

 Using the classification criteria described above the final level sets function can 

be defined by putting the level sets PDE (equation 3) in general form with the derivative 

of the Heaviside step function, given by (z). This yields the following equation defined 

for a particular class i. 
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In this equation, the Heaviside step function derivative, (z) is used to select a narrow 

band of points about the curve front for criteria checking. This narrow banding restricts 
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the number of iterations required to propagate the front since fewer points are considered. 

This method is acceptable since only points at the front need to be considered for curve 

propagation [24].  

4.1.4 VC Interface Segmentation Procedure  

 The CVIP Lab VC segmentation interface utilizes the adaptive level sets process 

described above along with user input to segment the large intestine. The interface 

requires the user to seed within the large intestine regions at various locations in the CT 

scan. More seeds provide accurate segmentation but typically no more than 40 seeds are 

required for an entire scan (~450-550). Ideally, seeds should be placed every 30 to 40 

slices, particularly in scan regions where there are multiple large intestine artifacts on a 

single transverse CT slice. In conjunction with the seed points the user can define the 

radius of the seeds, the curvature coefficient  (used in equation 5), and the number of 

iterations (these are all saved to a text file excepting the number of iterations which is 

passed directly). The seed radius and curvature coefficient are determined for every seed 

selected. The radius is three and the curvature coefficient is zero by default as these were 

the most ideal values for accurate segmentation. The number of iterations should be 100+ 

for ideal segmentation although as little as 75 iterations may be acceptable [17].   

 After seeding the segmentation button can be selected. Upon execution the 

program reads the text file where the seed data was written. This text file contains the x, 

y, and z position as well as the radius and curvature coefficient for every seed selected. 

These seed initializations as well as the number of iterations determined by the user are 

passed to the adaptive level sets segmentation software. Each seed is propagated as an 
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independent evolving front in three-dimensional space. As stated in 4.1.3, for each 

iterative step equations 6, 7, and 8 are evaluated to determine the extent of expansion for 

each seed point via the Bayesian classifier of equation 9 and the general adaptive level 

sets formulation of equation 10. Figure 10 displays the original CT slice (after 

thresholding) and the segmented result after the segmentation procedure. 

 

Figure 10: The original CT slice after thresholding (left), and the CT slice after the adaptive level sets 

segmentation procedure (right). 

4.2 Centerline Extraction using Curve Skeletons Method   

4.2.1 Introduction 

 Although it is possible to model the large intestine three dimensionally without 

the extraction of the centerline, it would serve little use to a medical practitioner. The 

centerline provides a graphically viable path for the virtual camera to follow within the 

large intestine. An object centerline can mimic the path of a colonoscope traveling 

through the large intestine much as it would in a traditional colonoscopy. In the CVIP 

Lab VC interface this task is accomplished using the curve skeleton extraction software 
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developed by M. Sabry Hassouna and described in his publication On the Extraction of 

Curve Skeletons using Gradient Vector Flow [21]. 

4.2.2 Curve Skeletons Defined 

 A curve skeleton for a three-dimensional object (such as the large intestine) can 

be defined as a sequence of paths between two voxels. Therefore, centerline extraction 

can be defined, in the simplest case, as a minimum-cost path problem between two points 

in three-dimensional space (for this circumstance). Assume that the path can be defined 

by s : [0,)  R
3
 and it must be minimized between the points A and B. Then the 

minimum cost function can be defined by the following equation. 

     

    

x

A
Ax

dssuxT 


min           (11) 

where x is some point in the three-dimensional space R
3
, u is the cost function, and the 

set Ax is all the paths connecting A to the point x [21]. It can be seen that the minimum 

integral of the cost function will yield the path with the lowest cost. It is known from 

geometrical optics that the Eikonal equation is satisfied by equation 11 with the following 

formulation. 

    1 xFxT           (12) 

where F(x) is the (optical/energy) wave speed. The wave speed can be derived by the 

inverse of the cost function given by. 

 
 xu

xF
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            (13) 
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For the path to be shortest then this wave speed (F(x)) must be maximized. A thorough 

proof of the above assertion is beyond the scope of this paper as the VC interface only 

utilizes its implementation. A complete proof of the curve skeleton theorem can be found 

in M. Sabry Hassouna’s publication given above in section 2.1 [21]. 

4.2.3 Determining Object Medialness via Gradient Vector Flow 

 The medialness of an object can be understood as its centeredness. Recall that the 

curve skeleton should graphically describe an object in simplest terms (one dimensional 

lines). Therefore, approximating the centeredness of an object can facilitate the extraction 

of the curve skeleton. In the VC interface, the medialness of the large intestine is 

approximated by gradient vector flow (GVF) in conjunction with a medialness parameter 

defined in M. Sabry Hassouna’s publication [21].  

 GVF uses a vector field, defined by V(x), to minimize the functional defined as 

follows. 

   
    dxfVfVVE

222
          (14) 

where x = (x, y, z) (a voxel),  is a regularization parameter, and f(x) is an edge map 

extracted from the image space I(x) (a CT scan volume in the case of the large intestine). 

The vector field flows from the boundary of the object towards its center. Near the 

boundary the field flows slowly while toward the object center it flows more quickly. As 

a result, the magnitude of V is large near the object’s center and small near the object 

boundary. The following medialness parameter constrains the GVF to a narrow region 

near the center of the object [21]. 
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For a thorough definition of the medialness parameter, , as it relates to curve skeletons 

please refer to M. Sabry Hassouna’s publication [21]. As stated above, by using equation 

15 the computation of the GVF will be constrained to the medial regions of the object 

thereby reducing the time needed to compute the result.   

4.2.4 Extraction of Centerline 

 The final extraction of the object’s curve skeleton(s) can be defined for two cases: 

one in which there is only one curve skeleton (ideally the case for the large intestine), and 

a case where there are multiple curve skeletons that need to be related to each other (a 

general object). The multiple curve skeleton case will not be reviewed in this paper as it 

does not relate to the extraction of the colon centerline, but it can be found in the 

references [21]. For the single curve skeleton case (a large intestine centerline), the set of 

voxels (nodes) approximated about the convergence of the vector field (through GVF) 

can be used in conjunction with the following ordinary differential equation (ODE) to 

find the centerline. 

 
  00, PP

T

T

ds

sdP





           (16) 

where P represents the voxels (or nodes) in question. This equation expresses the fast 

marching method for determining which voxel is nearest, in terms of travel time, to the 

propagating wave front, F. The gradient of the minimum cost function, T, represents the 

normal to the wave front, which is the direction yielding the fastest travel time. 
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Therefore, any voxel in the direction of this unit normal will be the next candidate in the 

object centerline.     

4.2.5 VC Interface Centerline Extraction Procedure     

 The curve skeletons code is entirely automated within the VC interface system. 

The input to the system is the segmented images from the segmentation procedure. These 

input images are in PGM format. The output from the curve skeletons code is a series of 

text files that include run times and most importantly the location of the large intestine 

centerline. This centerline text file is essential for the visualization routine, which will be 

discussed in the following chapter. The centerline is required for the colon splitting 

procedure that creates the flyover view as well as the camera path which allows for 

internal visualization of the colon [see figure 11]. 

 

Figure 11: A solid model of the colon with the centerline shown in red. 
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4.3 Summary 

 The accurate segmentation and centerline extraction of the large intestine is 

essential for the VC interface to visualize the colorectal interior. The methods described 

above are both robust and accurate, but the segmentation/centerline extraction process 

does have some limitations. The segmentation method, though accurate, is restricted by 

the manual seeding requirement. The user must be able to differentiate between large 

intestine and small intestine (both of which are filled with air and therefore are dark on 

the scans). Additionally, the manual seeding process can be time consuming (times will 

be provided in Chapter 6). The GVF curve skeletons software is extremely well suited to 

determine the skeleton graph of a complex object but it is hindered in two ways: inability 

to extract the centerline for a large intestine with collapsed portions (i.e. non-distended), 

and potential for run-time failures because of high memory consumption. The CVIP Lab 

has been pursuing various methods for automatic colorectal segmentation therefore such 

an automatic system may be a future addition to the interface. As for centerline 

extraction, it may be more efficient to extract the centroids of the segmented large 

intestine slice-by-slice and connect them with some tensor linking technique. Ultimately, 

the interface is structured in such a way that future modifications can be added as desired 

to test functionality and efficiency.       
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CHAPTER 5:  

CVIP LAB VC INTERFACE: VISUALIZATION 

5.1 Introduction 

 The Visualization Toolkit (VTK) is an open-source visualization, graphics, and 

image-processing library. It is used in the fields of mechanical design and drafting, 

testing and simulation, and medicine (as with this research). In the case of the CVIP VC 

interface it is used for the visualization of a large intestine solid model, traditional 

flythrough visualization, and the CVIP Lab patented Flyover visualization. In addition to 

these mapped and rendered three-dimensional models the interface also displays the 

transverse, coronal, and sagittal views of a particular CT scan slice (this is also done with 

the VTK library) [see figure 12]. The VTK library is the hub of the CVIP Lab VC 

interface’s visualization capabilities. 
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Figure 12: The anatomical planes for a human body (these also correspond to the VC interface’s visualized 

CT planes) [27]. 

5.2 General Visualization Protocol Using VTK 

 VTK works in a pipeline fashion (i.e. the output of one process is the input of 

another). The general makeup of a VTK pipeline is as follows: i) input data sources 

(PGM, PPM, generated files, etc.), ii) filter input data (step is optional, but it usually 

involves data reduction, smoothing, conversion, etc.), iii) map data (converts the data 

input into a VTK object that can be visualized), iv) convert mapped data to a VTK actor 

(allows for the adjustment of object color, opacity, etc.), v) set actors to renderers and 

render windows (displays objects in windows and allows for user interactions) [see figure 

13]. As stated in step v above, controls and interface options can be added to render 
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windows to allow the user to make selections with a mouse or use hotkeys. This is used 

extensively in the CVIP Lab’s VC interface. 

 

Figure 13: The VTK pipeline [25]. 

5.3 Transverse, Coronal, and Sagittal CT Slice Visualization    

 The VC interface displays the three planes of a CT scan in order to enhance the 

user’s ability to diagnose an anomaly detected in the rendered visualizations. Radiologists 

are all familiar with colorectal CT scans but the same cannot be said of rendered 

colorectal visualizations including: flythrough, flattening, or flyover. Therefore, the 

original CT images provide a benchmark for comparison. Fortunately, VTK includes 
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libraries that can take a CT scan input (in DICOM, BMP, or PGM format) and display it 

in the three anatomical planes (transverse, coronal, and sagittal) [see figure 12].  

 In the VC interface the original images are PGM formats of the original CT scan 

images (as stated in section 3.2). These original PGMs for a single scan are read 

sequentially using the VTK library vtkPNMReader. Within this library the x, y, and z 

extent of the scan volume is defined. The CT image sets used to validate the CVIP Lab 

VC interface are 512 by 512 on the x-y plane, and of varying z dimensions (400~550) 

depending on patient height. In addition to image dimensions the library is also used to 

define the range of values that are the intensities of the PGM images. After reading the 

scan volume the images are filtered via vtkImageCast and 

vtkImageMapToWindowLevelColors respectively. These filtering libraries format the 

images for proper viewing in a VTK render window by scaling intensity values (see VTK 

pipeline [figure 13]).  

 Prior to converting the scan into a working VTK actor it must be formatted to 

display the scan in terms of the three anatomical planes. This is accomplished through the 

use of the libraries vtkImageStencil and vtkImagePlaneWidget. The latter library 

(vtkImageStencil) combines the various images (slice-by-slice) in a relatable fashion by a 

“cookie-cutter operation” as defined in VTK documentation, while the former library 

(vtkImagePlaneWidget) allows for the access of a particular slice on the remapped scan 

(i.e. remapped to the transverse, coronal, and sagittal planes) [26]. Following the above 

formatting steps the newly defined PGM image planes can be made into two-dimensional 

image actors using vtkImageActor and the actors can be set to a VTK renderer and 
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rendering window using vtkRenderer and vtkRenderWindow respectively. The windows 

made by vtkRenderWindow are associated with window controlling and interacting tools 

as well, but these will be covered in section 5.6.        

5.4 Colorectal Solid Model Visualization 

 Because the local topologies of the large intestine vary greatly from patient to 

patient a rendered solid model of the organ can provide valuable information to a medical 

professional performing a VC. For instance, a thick tissue wall in the colon or rectum can 

indicate cancer without the existence of a polyp (this is called non-polypoid colorectal 

neoplasm). A colorectal solid model, in conjunction with the CT slice visualizations, can 

assist a medical professional in determining if a colorectal wall thickening is the result of 

abnormality or part of a patient’s unique anatomy. Using VTK along with the segmented 

colon images a solid model of the colon can be visualized and viewed with little data 

manipulation.  

 As with the CT slice visualizations above the images must be read using 

vtkPNMReader, except these images are the binary segmentations of the large intestine, 

and formatted for size (x and y) and depth (number of slices or z). Following reading in 

the image data the images need to be filtered (smoothed) so that following steps can 

create an isosurface and a triangular mesh for visualization. Smoothing the image data is 

done using the vtkImageGaussianSmooth class, which, as its name implies, uses Gaussian 

smoothing to create ideal edges for the creation of an isosurface. After the filtering 

procedure the images are ideal for creating the isosurface. An image isosurface is simply 

a surface of constant values that are established in three-dimensional space. The 
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isosurface is created using vtkMarchingCubes. This class uses the marching cubes 

method first defined by William E. Lorensen and Harvey E. Cline in Marching Cubes: A 

high resolution 3D surface construction algorithm published in Computer Graphics 

(1987).  

 The output from the above process is points defining the large intestine surface 

along with any properly formed triangulations between these points [26]. Three filtering 

steps are required after the above isosurface creation, one to remove excess or poorly 

placed isosurface points, another to reduce the number of surface triangles (as there are 

often more than necessary to render the large intestine surface), and a final step to adjust 

the remaining points using interpolation. Junk isosurface points are merged or removed 

by way of the vtkCleanPolyData class, and redundant surface triangles are removed via 

vtkDecimatePro [26]. The final step is carried out using the vtkWindowedSincPolyData 

class. This class uses a windowed sinc function interpolation kernel to adjust points in an 

ideal fashion so that the surface triangles provide the best visualization (see VTK 

documentation for greater detail regarding the vtkWindowedSincPolyData class [26]).   

    The final three steps in the visualization pipeline for the large intestine model 

are: the generation of the normals for the large intestine polygon mesh, the mapping of 

the normals to create a VTK object, and the creating of a VTK actor using the mapped 

VTK object. The creation of the large intestine object normals is done with the class 

vtkPolyDataNormals. These normals are defined for all of the triangular vertices of the 

isosurface. Mapping of these normals into a VTK object is done using 

vtkDataSetMapper. This mapper operates in a similar manner as the mapper used for the 
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CT scan slices except its input is computed data rather than pixel maps. Finally, the 

mapped VTK object is made into a VTK actor using vtkActor and set to a renderer and 

render window as described in section 5.2 using vtkRenderer and vtkRenderWindow.    

5.5 Colorectal Flythrough Visualization 

 The process for creating the VC flythrough visualization is very similar to that 

done for the large intestine solid model visualization described in section 5.3. For the 

flythrough visualization the output from vtkPolyDataNormals is used in the VTK class 

vtkPolyDataMapper. The class vtkPolyDataMapper is similar to the class 

vtkDataSetMapper used for solid model visualization except for the way in which the 

data is handled. In vtkPolyDataMapper the data are known to be defined vertices, lines, 

or polygons, while in vtkDataSetMapper the data are represented as raw data values. 

Following data mapping a visuals lookup table is applied to the mapped surface. This is 

done through the class vtkLookupTable. A lookup table simply applies a red, green, blue, 

and alpha transparency (RGBA) to the object to be visualized. Using this class the user 

can define the appearance of the flythrough visualization and set it to resemble the 

interior of the large intestine. The mapped flythrough object is turned into a VTK actor, 

set to a VTK renderer, and placed in a render window as with all VTK visualizations.    
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5.6 Colorectal Flyover Visualization  

 The flyover visualization is a CVIP Lab patented method for viewing the large 

intestine. Essentially, it splits the colon into halves which are viewed from overhead [see 

figure 14]. 

 

Figure 14: The colorectal flyover views in which one half is colored blue and the other half is colored red. 

This visualization lacks the hidden regions of the flythrough, while maintaining a 

topology that is intuitively interpreted by a medical professional. Though VTK is 

essential in the final visualization of the flyover it does not provide all of the tools 

necessary to split a solid object into corresponding halves. The flyover visualization is 

created by the following protocol: 
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1) The normals for the large intestine solid model are generated as they were in 

section 5.3. 

2) The centerline points as well as distance from centerline boundary (DFB) values 

(added to the centerline point data in a small subroutine) are read into the classes 

vtkPoints (holds three-dimensional points for manipulation and visualization) and 

vtkKochanekSpline (used to compute interpolating splines using Kochanek basis 

[26].  

3) The x, y, and z centerline points are interpolated using vtkKochanekSpline and 

written to a text file. 

4) The text file of interpolated centerline points are read and used to determine 

normals for each centerline position. 

5) Another centerline is created for the other large intestine half using rigid 

translations. 

6) The normals are determined for the new centerline. 

7) The large intestine is broken into segments (each segment corresponding to a 

centerline(s) point) so that it can be split into halves part-by-part, and the polygon 

data (determined in step 1) for each segment is assigned to a C array of 

vtkCellArrays (this class stores vertex, line, or polygon data). 

8) The polygons stored in the array of vtkCellArrays are matched to their 

corresponding (i.e. closest) centerlines via Euclidean distance. 

9) The colon is split using the class vtkPolyDataClipper for each large intestine 

segment with a finite implicit plane (created through the class vtkPlane). 
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10) The polygons for each corresponding half (left and right) are stored in their own 

containers via vtkAppendPolyData.  

11) Finally, the polydata is filtered using vtkCleanPolyData, the normals are 

computed with vtkPolyDataNormals, and the normals are written to VTK 

visualization files with vtkPolyDataWriter.  

The above procedure creates two files (Left.vtk and Right.vtk) that are later read by 

the QT/VTK main interface thread and displayed on the QVTK window.  

5.7 Window Controlling and Interacting 

 Window controlling is a feature in VTK that allows a user to interact and control 

a VTK window. VTK window controllers and interacting tools can allow the user to: 

manipulate object size through a mouse wheel, move an object with the mouse, annotate 

points on an object/image, use hot keys, as well as various other interactive features. 

VTK window interactions can be done through vtkRenderWindowInteractor, 

vtkGenericRenderWindowInteractor, and vtkStyleInteractorImage. The first class 

(vtkRenderWindowInteractor) is the general window interactor used for most VTK 

objects. It allows for object annotation, movement, and other basic object manipulations. 

The second class (vtkGenericRenderWindowInteractor) is more versatile than the first 

class in that the user can program interaction events such as special mouse usage or 

hotkeys. The final class (vtkStyleInteractorImage) is used in conjunction with 

vtkGenericRenderWindowInteractor to associate user events with uniquely programmed 

observers. These observers are typically classes or functions (as is the case in the CVIP 

VC interface). All of the above VTK window interaction classes are used in the CVIP VC 
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interface. VTK interactors offer a wide array of tools beyond the scope of this thesis’ 

analysis, but further information can be found in VTK web documentation [26]. Section 

6.1 (system design) will go into further detail as to the use of interactors in the CVIP VC 

interface.    

5.8 Summary 

 The preceding sections describe all of the components of the CVIP Lab VC 

interface. It has been shown that VTK provides a robust open-source library for 

visualization, and its application to the VC interface broadened the system’s capabilities. 

In the following section (6.1) on overview of the system design will be given including 

functionality, and layout.  
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CHAPTER 6:  

CVIP LAB VC INTERFACE: SYSTEM DESIGN AND VALIDATION 

6.1 System Design 

6.1.1 Introduction 

 The CVIP VC interface was designed using Qt (specifically Qt Designer), a cross 

platform user interface (UI) framework, in conjunction with VTK. The Qt platform 

contains a wide array of tools that can be applied to any UI design. Qt Designer provides 

a platform to design an UI visually (i.e. without the need to program it from scratch). The 

file created by Qt Designer is a UI file. This must be compiled in CMake with a 

corresponding header file to generate a UIC (user interface compiler) file, and an MOC 

(meta-object compiler) file. The UIC file is a compiled combination of the user 

programmed parameters (such as signals and slots) in the header file and the codified 

geometries and parameters that were created in Qt Designer. This UIC file contains the 

class declaration and methods/variables for the entire UI system.  

The CVIP VC interface was designed as a tabbed window with four tabs named 

as follows: Flyover (displays the flyover visualization and contains primary push buttons, 

and driver controls), CT (displays the sagittal, transverse, and coronal CT slices from left 

to right accordingly), Extra (displays the large intestine solid model with centerline (blue 

dots), and camera position (red dot) as well as the flythrough for comparison, and 

Light/Camera (light and camera control tools). A tabbed interface was selected because 

of its high mobility between platforms. Although a multi-window interface may be 

desirable with multiple monitors it would be cluttered and unusable in a single monitor 
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setting. This interface design provides the flexibility to quickly cycle between CT 

visualization and flyover/flythrough visualization without the need for multiple screens. 

Each tab of the interface as well as the segmentation pop-up window will be described in 

the sections below.   

6.1.2 Pop-Up Window: Segmentation Interface 

The segmentation interface is a separate pop-up window that displays the CT scan 

slice-by-slice, and allows the user to: seed the scan for segmentation, cycle through the 

slices via pushbuttons (Next and Previous), change position (text edits x, y, and z), seed 

radius (text edit r), or seed curvature parameters (text edit Smoothness Coefficient), 

determine the number of segmentation iterations (text edit Number of Iterations), 

segment after seeding (Segment), and close the segmentation window (Close). During 

seeding the seed points are written to a text file. When the segmentation pushbutton is 

selected the seed point text file is read into a queue and passed into the segmentation 

protocol. When completed, the segmentation protocol saves the segmented binary images 

as PGMs and returns function to the segmentation interface. Upon closure of the 

segmentation window the centerline extraction process begins automatically using the 

segmented PGMs as input. 
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Figure 15: A screenshot of the segmentation interface. 

6.1.3 Main Interface: Flyover Tab 

 The flyover tab contains all of the primary pushbuttons and driver controls (used 

to move through the large intestine). A radio button (Preprocessed CT Scan) gives the 

user the option to either run a set through the entire CVIP VC interface protocol (i.e. 

segmentation, centerline extraction, and visualization), or visualize a preprocessed scan 

directly (i.e. segmentation and centerline extraction are already completed). If the radio 

button is selected the user must load the original PGM format CT scan with the Load 

Dataset pushbutton, and the segmented images as well as the centerline data is assumed 

to be in the working directory (as it would be under normal operation). With the radio 
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button selected the Segment pushbutton will remain disabled. If the radio button is not 

selected the user must select the original PGM scan and this will enable the Segment 

button. Pressing the Segment button opens the segmentation pop-up window described in 

section 6.1.2. Upon the completion of segmentation and centerline extraction the 

Visualize button will be enabled. Pressing this button begins the entire visualization 

routine (described in chapter 5). Upon the completion of the visualization routine all of 

the driver, light, and camera controls will be enabled (this includes the driver controls 

Stop, Reverse, Forward, and the speed slide-bar between the Reverse and Forward 

pushbutton). The other interface options available for this tab, such as hot-keys or 

window interactions, will be described in section 6.1.7. 

6.1.4 Main Interface: CT Tab 

This tab displays the CT slices corresponding to the position of the camera on the 

large intestine centerline. The CT slices are displayed (from left to right) sagittal, 

transverse, and coronal. This tab is made available so that a medical professional may 

have another reference beside the flyover visualization, flythrough visualization, or large 

intestine solid model. The other interface options available for this tab, such as hot-keys 

or window interactions, will be described in section 6.1.7. 
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Figure 16: A screenshot of the flyover interface (note the marker glyph, colored yellow, on the top flyover 

view). 
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Figure 17: A screenshot of the CT interface (note the marker glyph, colored yellow, from the flyover view 

shows up on the corresponding anatomical area in the CT slices). 

6.1.5 Main Interface: Extra Tab 

 This tab displays the large intestine solid model with the centerline (as blue dots) 

and the camera position (as red dots), and the flythrough visualization. As with the CT 

display this tab is for additional reference and comparison. The other interface options 

available for this tab, such as hot-keys or window interactions, will be described in 

section 6.1.7. 
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Figure 18: A screenshot of the solid model of the large intestine (top) with the centerline as blue dots and 

the camera position as a red dot, and the flythrough (bottom).  

6.1.6 Main Interface: Light/Camera Tab 

 This tab contains all of the camera and light controls available in VTK, and these 

controls only apply to the flyover visualization. Though not an essential tool in the 

interface, it provides additional flexibility and control not available in other VC systems. 

In addition to the camera and lighting adjustment slide bars there are also options to: 

reverse the camera orientation through the radio button Forward/Backward, turn the 

camera stereo on and off with the pushbutton Stereo On/Off, and reset the light values 
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with Reset To Defaults. The camera’s x, y, z, roll, elevation, and azimuth are also 

displayed for reference.  

 

Figure 19: A screenshot of the camera and lighting controls. 

6.1.7 Main Interface: User Interactions and Window Controls 

 There are various hot-keys and mouse controls available to the user when 

operating the CVIP Lab VC interface. For the Flyover tab the user is able to place a glyph 

(yellow sphere) on an object of interest by moving the mouse pointer over the object and 

pressing the “P” key. The glyph will remain until the user presses the “U” key. Glyphs 

can be added and removed as desired using the above procedure and more than one glyph 

can exist at a time. The user may also cycle through existing glyphs by pressing the “+” 
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or “-“ key. This advances through glyphs in a forward and backward manner 

respectively. Since the glyphs appear on the CT tab as well as the Flyover tab these 

controls work the same for both. In the Flyover tab, the user may also manipulate the 

distance from centerline boundary (DFB) with the mouse wheel and reorient the colon 

halves with mouse dragging. Correspondingly, the user can direct red crosshairs with a 

left mouse click on the CT tab. In the Extra tab the user can manipulate the orientation of 

the large intestine solid model with mouse drags and zoom in and out of the model with 

the mouse wheel. In addition, the user can direct the camera view in the flythrough view 

with mouse drags and move forward and backward along the camera path with the mouse 

wheel. These window controllers are intended to assist in any diagnostics using the CVIP 

Lab VC interface. Future additions to the system can include other hot-keys and view 

controllers.       

6.2 Validation 

 Validation of the system began with the assumption of a continuous pipeline as 

described in section 1.3. The computer used for initial compilation and testing contained 

an Intel® Xeon® Processor (W3565 quad-core 8MB Cache, 3.20 GHz, 4.80 GT/s Intel® 

QPI) and 24 GB RAM. A CT scan converted to PGMs is input to the system. The PGM 

inputs are segmented, the centerline is extracted, the large intestine is split, and the result 

is visualized. The largest CT scan (541 slices) was the first used to test the system’s 

capabilities. The segmentation procedure completed successfully, but the centerline 

extraction experienced a run-time failure because of the inability to create new memory 

on the free store, specifically, during the creation of an object array of size 512x512x541 
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(this is 141819904 x (4 bytes-per-integer) x (32 bytes-per-object) = ~18 GB). The curve 

skeletons code used to extract the centerline of the large intestine was originally intended 

to run as a standalone executable. Even in this form it has high memory consumption as 

multiple variables are created on the free store in addition to the one that throws an 

exception in the VC interface. When the curve skeletons code was included with the VC 

interface it also had to compete with the memory consumed by the creation of the UI and 

VTK variables, which both contain large memory volume classes and variables. To test 

the threshold of the system the slice count was gradually reduced. At 400 slices the 

system pipeline worked successfully but the isosurface for the large intestine solid model 

did not visualize successfully (i.e. the object mesh could not be generated because of 

polygon discontinuities). Therefore, the slice number was reduced incrementally to 350 

which led to a successful solid model. The results are provided in table one, and 

segmentation results can be seen in figure 20.  

Table 1: Run times for the successful run through. 

Set 1 (350 slices) Run Time (seconds) 

Segmentation 232 

Centerline Extraction 23 

Visualization 18 

Total Time 273 (4.55 minutes) 
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Figure 20: The segmentation results from the successful full run through. 

 Although the results of the initial trials were disappointing some validation of 

whole CT scans was still desired. In order to accomplish proper validation, the centerline 

extraction step was done externally from the VC interface using an executable so that 

there would be no competition for memory resources. The time of execution for external 

centerline extraction was treated as if it were within the system (as in-system run-times 

were similar for fewer CT slices). Before beginning this process a segmentation standard 

had to be used for all available sets. In order to determine that standard six trials were 

conducted. For the first trial a single seed was placed in each large intestine object every 
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50 slices. This trial failed to segment, therefore it was repeated (trial two) except seeding 

was done every 30 slices, but this failed as well. For trials three and four the number of 

seeds per large intestine object was increased to three, and they were placed every 50 

(trial three) and 30 (trial four) slices. These trials resulted in successful segmentation. The 

final two trials used heavy seeding (greater than 10) per large intestine object every 50 

(trial five) and 30 (trial six) slices. These two trials were done to compare the 

segmentation results to trials three and four. There was no discernible difference between 

the two sets. Therefore, it was assumed that three seeds per large intestine object every 50 

slices (trial three) would be an adequate segmentation method. Refer to the table and 

figures below for further elaboration. 

Table 2: Runtimes for the segmentation trials. 

Segmentation Method Trials Run Time (seconds) 

Trial Three 515 (8.58 minutes) 

Trial Four 605 (10.08 minutes) 

Trial Five 993 (16.55 minutes) 

Trial Six 1088 (18.13 minutes) 
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Figure 21: Segmentation trial six result from heavy seeding for every large intestine object every 30 slices 

(~1088 seconds or ~18.13 minutes for entire segmentation process). 
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Figure 22: Segmentation trial five result from heavy seeding for every large intestine object every 50 slices 

(~993 seconds or ~16.55 minutes for entire segmentation process). 
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Figure 23: Segmentation trial four result from three seeds for every large intestine object every 30 slices 

(~605 seconds or ~10.08 minutes for entire segmentation process). 
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Figure 24: Segmentation trial three result from three seeds for every large intestine object every 50 slices 

(~515 seconds or ~8.58 minutes for entire segmentation process). 

 The segmentation procedure was carried out for each CT set as if it were going 

through the entire CVIP Lab VC pipeline. Upon completion, the sets were saved in the 

interface’s working directory so that they could be read by the centerline extraction 

executable. The run time and number of seed for the segmentation of each CT scan is 

given in the table below. 

 

 

 

 



63 

Table 3: Runtime for segmentation along with the total seed count. 

Segmentation Run Time (seconds) Number of Seeds 

Set 1 (541 slices) 525 127 

Set 2 (428 slices) 421 122 

Set 3 (470 slices) 420 130 

Set 4 (484 slices) 448 118 

Set 5 (438 slices) 432 110 

 Set 6 (462 slices)  439 107 

Set 7 (387 slices) 391 94 

 Set 8 (432 slices)  427 116 

Set 9 (432 slices) 431 129 

 Set 10 (425 slices)  422 126 

 

 The large intestine centerline was extracted using an executable external to the 

VC system. Again, this was justified because the run-times for the external centerline 

extraction were identical to the run-times of the centerline extraction within the VC 

system for CT scans with fewer slices. Centerline extraction was done twice to compare 

the results. Refer to the table below for run-time results. 
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Table 4: Runtime for centerline extractions (two runs were done for comparison). 

Centerline Extraction Run 1 (seconds) Run 2 (seconds) Average Time (seconds) 

Set 1 (541 slices) 55 51 53 

Set 2 (428 slices) 28 28 28 

Set 3 (470 slices) 31 31 31 

Set 4 (484 slices) 36  36 36 

Set 5 (438 slices) 20 19 19.5 

Set 6 (462 slices) 49 49 49 

Set 7 (387 slices) 48 48 48 

Set 8 (432 slices) 28 28 28 

Set 9 (432 slices) 30 30 30 

Set 10 (425 slices) 30 30 30 

 

 Following the centerline extraction trials both centerlines for each set were used 

along with the segmentation results in the large intestine splitting and visualization 

routine (included in one step called visualization). The results are given in table five. 
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Table 5: Runtime for both centerlines extracted along with the total number of centerline points for each. 

Visualization Centerline 1 Centerline 2 Average Time (seconds) 

Set 1 (541 slices) 84 seconds/5478 points 39 seconds/5478 points 61.5 

Set 2 (428 slices) 58 seconds/3999 points 26 seconds/3998 points 42 

Set 3 (470 slices) 56 seconds/3597 points 26 seconds/3597 points 41 

Set 4 (484 slices) 79 seconds/5337 points 36 seconds/5337 points 57.5 

Set 5 (438 slices) 58 seconds/3495 points 25 seconds/3495 points 41.5 

Set 6 (462 slices) 57 seconds/4369 points 36 seconds/4369 points 46.5 

Set 7 (387 slices) 64 seconds/4071 points 30 seconds/4071 points 47 

Set 8 (432 slices) 49 seconds/3503 points 25 seconds/3503 points 37 

Set 9 (432 slices) 59 seconds/4824 points 31 seconds/4824 points 45 

Set 10 (425 slices) 56 seconds/4300 points 29 seconds/4300 points 42.5 

 

 The average total run-time as well as the average of the total run-times for all CT 

scans is given by table six. 
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Table 6: Average total run time for each set and the average total run time for all sets. 

Set Average Total Run Time (seconds) 

1 639.5 (10.66 minutes) 

2 491 (8.18 minutes) 

3 492 (8.2 minutes) 

4 541.5 (9.02 minutes) 

5 493 (8.22 minutes) 

6 534.5 (8.9 minutes) 

7 486 (8.1 minutes) 

8 492 (8.2 minutes) 

9 506 (8.4 minutes) 

10 494.5 (8.24 minutes) 

Average Total Run Time For All Sets 516.72 (8.61 minutes) 

 

6.3 Summary 

 The CVIP Lab VC system was designed with the intention of being user-friendly 

and portable. The system was also compiled and run on a Macbook Pro (Mac OS X 

10.6.8 with Intel Core 2 Duo 2.8 GHz and 4 GB RAM) with a Windows 7 emulator and it 

operated with similar result. As a proof-of-concept it is a valuable tool and opens many 

doors to future development in showcasing the flyover colorectal visualization method. 

However, significant strides must be taken to automate segmentation and reduce high 

memory consumption.   
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CHAPTER 7:  

CONCLUSION AND FUTURE WORK 

 In section 1.3 it was asked if the CVIP Lab’s adaptive level sets, curve skeletons, 

and large intestine visualization software can be combined in a manner that is 

computationally efficient. The response to this question is inconclusive, as they can be 

combined (as is the case in the current system), but they can only be used in series with 

certain constraints. That said, the primary contribution of this thesis work is the 

development of a front end VC system that includes a method for large intestine 

segmentation, centerline extraction, splitting (for flyover), and visualization. The 

particular system developed is novel when compared to existing VC systems (either 

academic or commercial). The CVIP Lab VC interface represents a proof-of-concept for 

VC using computer vision and image processing tools developed in the CVIP lab.     

The CVIP Lab VC interface requires future improvements in order to operate as a 

complete (and commercially viable) front-end system. These improvements may/must 

include: 

1) Automation of large intestine segmentation. 

2) Use of less memory dependent centerline extraction method. 

3) Or, advanced memory management programming.  

Automatic segmentation would remove the need for a medical professional to seed the 

large intestine objects in the CT scan. Ideally, an automatic segmentation protocol would 

speed up processing time for the CVIP Lab VC system making it more desirable as a tool 

for medical diagnostics. Centerline extraction, though fast, requires extensive use of 
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computer memory. As stated earlier, this high memory usage presents itself as potential 

run-time failures with large CT scans. Potential remedies to this may include an object 

centroid based approach to centerline extraction (where the centroids of the large 

intestine objects are found in each CT slice and approximated as the centerline), or an 

advanced memory management scheme that involves CT scan data compression or some 

similar approach. Ultimately, any substitute centerline extraction method should aim to 

maintain or surpass the run-time efficiency of the CVIP curve skeletons software while 

constraining the accuracy of the centerline to reasonable tolerances.        

As stated in section 6.3, the VC interface works as a proof of concept, and offers 

future students and researchers the opportunity to expand its capabilities since it was 

developed in an evolvable, modular fashion. It is the hope of the author that this VC 

system will provide a platform for expanding CVIP medical imaging projects related to 

colorectal diagnostic imaging into new fields.  
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