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ABSTRACT 

Ten alga! isolates were obtained from soil into axenic culture and 

placed into defined media containing from 0 to 50 ppm of DDT, 2, {f-D, 

2,4,5-T, rotenone, or malathion (in two purities, 95 and 99%). For nine 

of the isolates, growth was measured photometrically every two weeks for 

a period of two months. Because of the twisted growth forrr, of the tenth 

isolate, a visual estimation was used to measure its growth over the 

same period of time. 

The results of the experiments in the light were as follows: 

1) 2,4-D and 2,4,5-T were generally neutral in their growth 

effects. However, both sti.mulated g:-owth of two isolates, and 2,4,5-T 

inhibited the growth of two other is~lates while 2,4-D inhibited only 

one. 

2) Rotenone and DDT had mixed effects; rotenone inhibited five, 

stimulated three, and did not effect two isolates, while DDT inhibited 

four, stimulated one, and have no effect on five isolates. 

3) Malathion was neutral toward one isolate and reduced the 

growth of all others. 

4) In several cases, the isolates appeared to use the pesticides 

to supplement their groVith. Two of the isolates were better able to 

withs:and the effects of the pesticides and tended to b9 stimulated 

mora often than t~e ethErs. 

None of the algae were able to use any of the pesticides as a 

sole ("",tben source ~vhell grov,n in .lefined media in the dark for two 

iii 



months. Several isolates did no~ survive under those conditions, and none 

of the isolates survived in a 10 ppm DDT solution. 

The effect that pesticide use ma.y halTe on natural populations of 

soil algae is discussed. 
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INTRODUCTION 

The number of different compounds used as pesticides and the 

total magnitude of their use has increased dramatically since the end of 

World War II. Each year new pesticides are developed and registered for 

use, often with little knowledge of their effects on non-target organisms 

or their behavior in the e!1vironment. By many different path.,7aYs, some 

direct, many indirect, most, if not all. of these compounds reach the 

soil where they may effect any of the multitude of soil organisms, 

ranging from animals such as earthworms to microorganisms such as 

bacteria, fungi. and algae. Those studies \Jhich are done before 

registration of new pesticides usually concentrate on their effects on 

mnn and other large non-target organisms; e. g., mammals, birds, trees, 

etc., and exclude the microorganisms which often playa vital role in 

soil fertility and dynamics. Therefore, recognizing the existence of 

that void, this study was undertaken to determine the effects of a few 

selected pesticides OIl the growth of some soil algae. The pesticides 

used .,Tere selected from widely varying groups in the hope of discovering 

if there were differences between these groups in their effects on the 

soil algae. Some of the questions which this study attempted to answer 

were: Do the pesticides under consideration have any effect on the 

growth of axenic cultures of soil algae? Is there a relationship between 

persistence of the pesticide in the soil and its effect on the algae 

there? Can any of the alga0 use any of the pesticides as a sole carbon 

source, thercby. degrading it? It is hoped that the information detailed 
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in this dissertation will contribute to our understanding of the inter­

actions of pesticides and soil algae. 



REVIEW OF THE LITERATURE 

Soil Algae 

Species of diatoms, other chrysophytes, blue-green, and green 

algae O~aksman, 1952), as many as 1, 000, 000 in a gram of well-fertilized 

soil (Shields and Durrell, 1964), are an often overlooked part of the 

soil mieroflora. Host works on soil biology ignore them completely or 

mention them only briefly, and their importance is probably underestimated 

(Lund, 1967). Recent studies on the taxonomy of soil algae have indicated 

that some species are the same ones found in fresh water, but many others 

are unique to the soil habitat (Deason and Bold, 1960; Mattox and 

Bold, 1962; Chantanachat and Bold, 1962; Bischoff and Bold, 1963; Shields 

and Durrell, 1964; Groover and Bold, 1969; Kantz and Bold, 1969; Bold, 

1970). Other recent studies have dealt with the distribution of soil 

algae and annual cyclic changes (Willson and Forest, 1957; Forest, et 

al., 1959; Potul'nitskii, 1962; Lund, 1962, 1967; Forest, 1962; Shields 

and Durrell, 1964; MacEntee, et al., 1972). Host of these studies 

emphasized the importance of combining field and laboratory culture 

work for the complete identification and characterization of soil algae. 

Factors "Jhich determine the growth and di.stribution of soil 

algae are pH, water requirement and availability, depth in soil, and 

substrate (Waksman, 1952; Lund, 1962; Shields and Durrell, 1964). They 

are most commonly found in soil of pH 5.5 to 8.5 (Lund, 1967), but many 

can tolerate a wider pH range and only at extremes of pH is there any 

correlation between pH and flora (Lund, 1962); e. g., the green algae 

3 
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being particularly abundant in acid soil (Waksman, 1952). Many of the 

species can survive air·drying for periods of up to 10 years (Lund. 1962, 

1967; Shields and Durrell, 1964; Trainor, 1970) or shorter periods at 

extreme temperatures (0 C for 6 days, 60 or 100 C for 1 hour, !fucEntee, et 

a1., 1972; Lund, 1962, 1967). While algae are found to a considerable 

depth, they usually are most abundant near the surface (Willson and 

Forest, 1957; \.;t'aksman, 1952; Shields and Durrell, 196i~; Lund, 1967); and 

if buried by rain or earthworms, they ca.n often return to the surface 

(Peterson, 1935, cited in Lund, 1967). If furnished with an appropriate 

carbon source, algae can live heterotrophically in the lab in the dark 

so that those found at great depths in the soil may actually be grmving 

and multiplying there, although probably at a slower rate than in the 

light (Waksman. 1952; Parker, et al., 1960; Parker, 1961; Lund, 1967). 

(However, care must be taken in interpreting these studies since 

organic substrates are often less easily used in soil than in free 

solution [Alexander, 1964]). Little information is available on the 

specific nutrient needs of soil algae, but adding phosphorous and 

nitrogen (Lund, 1962) or manure (Waksman, 1952) will usually increase 

their growth \\1hile the findings on the effects of other elements are 

contradictory and may be more closely correlated with species. Drewes, 

in 1928, was the first to definitely establish the ability of Anabaena 

and Nasto.::: species to fix nitrogen (Waksman, 1952). It is now known that 

about one-·third of the algae which can fix nitrogen are found in the soil 

(Lund, 1962) and are able to fix nitrogen there (Tiffany, 1951; '({aksman, 

1952; Shields and Durrell, 1964; Berger. 1965; Lund, 1967). 

The interaction of soil algae with other organi.sms may vary from 

nE:utral to protocooperation to competition (ALexander, 1964; Lund, 1967), 
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but only in a very few cases has a detailed analysis of the specific 

relationship been attempted (Parker and Bold, 1961; Parker and Turner, 

1961). Son~ algae live more or less symbiotically with higher plants 

(Lund, 1962; Shields and Durrell, 1964), but they, as a group, flourish 

most where higher plants are sparse or absent (Lund, 1962). 

Algae often serve in the i~itial stage in plant succession helping 

to form and adding energy substrates to the soil (Tiffany, 1951; 

Potul'nitskii, 1962; Alexander, 1964; Shields and Durrell, 1964; Berger, 

1965), but there do not seem to be any specific "pioneer" algae, the 

most abundant adjacent ones simply moving in first (Forest, et aI., 

1959; Shields and Durrell, 1964). Blue-green algae are amon.g the first 

organisms ,-.. hich grow on volcanic rock \voere they form au interwoven mat 

which stabilizes and forms a non-erodible surface which breaks the force 

of falling water, improves infiltration, and acts as a substrate for the 

germination of seeds and spores (Shields ard Dllrrell, 1964). The algal 

layer, especially in arid and saline soils, is a source of humus and 

nitrogen, exerts a solvent action on certain soil minerals, and may 

change the balance of inorg~nic factors (Lund, 1962; Shields and Durrell, 

1964). But in normal soils they do ~ot significantly alter the structure 

or texture, mainly adding organic matter since either dead or alive they 

may act as fertilizers (Lund, 1962, 1967). While in climax communities, 

the algae are mainly heterotrophs using the energy fixed by the higher 

plants (Alexander, 1964). 

Pesticide Persistence 

Th~ quantity of pesticides produced and used in the United 

States each year is staggering. In 1969, 1,333,377,000 pounds 

(Sll+,099,SOO kilograms) \lere produced here and it is estimated that 
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10 9 over 10 pounds (4.536 x 10 kilograms) have been used since 1945, 

&lthough there seems to be a slow decline in the use of some pesticides 

in the last few years (Hatsumura, 1972). The over 900 compounds used 

here as pesticides (Crosby, 1973) may reach the soil by many different 

routes including direct application, drifting of spray, rainfall, wind 

blown dust, accidental spills, manufacturing and agricultural by-products 

and wastes, erosion, and residues from both living and dead plants and 

animals (Edwards, 1966; Westlake and Gunther, 1966; Crosby, 1973); and 

it is probable that pesticides are now present in at least small amounts 

in all parts of the world, even where never applied directly (Westlake 

and Gunther, 1966). Dr. Howard Reiquam of the Battelle Institute ranks 

pesticides as the most hazardous of 19 environmental problems due to their 

world wide range, extreme persistence, and complexity in terms of 

biological effects, social and political ramifications, air, land, and 

water involvement, and effects on nutrition sources, but he expects 

them to ?rop to number 15 in the future as the most persistent are 

eliminated (Anon., 1972). 

The ultimate environmental fate of any pesticide is difficult to 

determine because of dilution and dispersal, chemical and biological 

changes, and inadequate means of detection and identification (Crosby, 

1973). The main causes of deactivation are photodecomposition and 

volatilization from the soil surface, adsorption, leaching, and chemical 

and biological decomposition by oxidation, reduction, hydrolysis, or 

other transformations, although the complete mechanisms are not usually 

knOvffi (Horowitz, 1969; Crosby, 1973). Disappearance curves are generally 

sigm·,)idal, the more persistent compounds have a long period of slow 

disappearance followed by a period of rapid reduction (Audus, 1950; 
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Horowitz, 1969; Kearney, et a1., 1970). The most important factor deter­

mining the stability of a pesticide in the soil is the structure of the 

chemical itself (Edwards, 1966; Kearney, e~ al., 1970; Horowitz, 1969; 

Alexander, 1965a; Lichtenstein, 1972). Of the soil characteristics which 

effect persistence, the organic matter content is the most important as 

it is the major adsorptive site for the chemicals (Edwards, 1966) and, 

therefore, determines how readily available the chemical will be to attack 

by microorganisms (Kearney, et al., 1967; Wolcott, 1970). Other factors 

influencing persistence are moisture, soil temperature, cover crops, 

cultivation, mode of application, formulation used, wind or air movement, 

and presence of microorganisms which can attack and biodegrade the 

pesticide (Lichtenstein, 1965, 1972; Horowitz, 1969). Due to the large 

number of varying effects, no specific "half-life" can be assigned to one 

particular pesticide (Lichtenstein, 1972). 

Persistence of a pesticide in the soil may be due to its basic 

non-biodegradibility or to its combining with another compound to become 

unavailable for attack (Alexander, 1965a, 1965b). Many pesticides are 

recalcitrant since conditions are not always proper for their biological 

degradation; i.e., organisms may not be present which can degrade them, 

the compounds may not be in a form suitable for degradation or may not 

be available to the microorganisms, they may not be capable of inducing 

formation of the appropriate enzymes for decomposition, or environmental 

conditions may be toxic or a growth factor missing so the degradation 

organisms cannot grow or the enzyme cannot work (Kearney, et a1., 1967; 

Audus, 1964; Alexander, 1965a, 1967). Soil type, pH, cation exchange 

capacity, temperature, organic matter,' and moisture content of the soil 

not only affect the availability and persistence of pesticides in the 
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soil directly, but also indirectly through effects on microorganisms 

(Kearney, et a1., 1967; Wolcott, 1970; Crosby, 1973). Since di.fferent 

organisms have different metabolic abilities to degrade specific 

pesticides (Fletcher, 1960; Crosby, 1973), uncommon organisms may become 

prominent when pesticides are the primary carbon source as the compounds 

are often unusual and only broken down by a fev1 specific species. Once 

a suitable population has developed after an initial dose, second and 

later applications of the pesticide will disappeer more rapidly 

(Alexander, 1971). 

Since there is no clear relationship between the structure of 

a chemical and its sensitivity to degradation, each ne\v compound must 

be tested individually to find out how it will react (Hoore, 1967; 

Horowitz, 1969). Complicating factors in predicting persistence include 

a difference in disappearanc.e rates between the lab and the field, the 

effect of interactions of organisms since alany compoun:is are broken 

down by combinations of several P.licrobes, and presence of a second 

carbon compound (e. g. glucose) "lhich can result in degradation of 

normally resistant compounds (Alexander, 1965b; Cripps, 1971). The 

latter factor called "cometabolism" or "cooxidation" appears to be 

widespread and may result when a foreign molecule is acted on by an 

enzyme which normally has a similar function, but in this case the 

product is not used for growth because it canDot be further metabolized 

or because it is toxic (Alexander, 1967, 1971). 

Therefore, because of the extensive use of pesticides, their 

conmlOll persistence, and the inadequate knowledge of the ecology of 

soil algae, thi.s study was undertaken in an attempt to determine some 

of the interactions between soil algae and pesticides. Since the 
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problem is very complex, this study is only 3 bare beginning which 

included isolating organisms from soil into axenic culture, growing 

them on artificial media in the lab. and testing the effects of certain 

pesticides on their growth under carefully controlled conditions. 



MATERIALS AND METHODS 

Soil samples were collected from several sites in Oldham and 

Jefferson Counties, Kentucky. Approximately ten grams of soil from each 

sample were placed in 125 ml Ehrlenmeyer flasks and covered with 50 ml 

of Tris-buffered inorganic medium (TBIH) (Smith and Wiedeman, 1964), which 

is described below. 

TBHl 

Final concentration 
Chemical compound Amount mg/liter llM/liter 

KNO 
3 

20 ml of 0.1 M solution 202 2000 

Na2
HP04 10 ml of 0.1 M solution 142 1000 

MgS0
4

·7H
2

O 3 ml of 0.1 M solution 64 300 

CaC12·2HZO 1 ml of 0.1 M solution 14 100 

Tris(hydroxymethyl)- 25 ml of 0.2 M solution 606 5000 
aminomethane (TRIS) 

Each of the above was added to approximately 800 ml of deionized or glass-

distilled water. One ml of each of the micronutrient stock solutions was 

then added and a final dilution to one liter made. The pH of the medium 

was adjusted to 7.5 with 1.0 i\ Bel. 

Micronutrient Stock Solutions: 

Amount 

1. EDTA 50 g} per liter deionized 
or glass-distilled 

KOH,85% 31 g water 

II. H3B03 11. 42 g/Hter deionized 
or glass-distilled water 

Final concentration 
mg/liter ilM/liter 

50 170 

31 470 

11.42 185 

III. FeS0
4

·7H2O 4.98 g/Uter acidified water* 4.98 17.8 

10 
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Final concentration 
Amount rug/liter pM/liter 

IV. Zn304 ' 7HZO 
8.82 g 1 8.82 30 

MnCl2 ' 4H20 

(NH4)6Mo7024'4H20 

CuS04 'SH20 

Co(N03)2'6H20 

1.44 g 

0.87 gf per liter 

1. 57 g acidified water* 

0.49 g 

1.44 

0.87 

1.57 

0.49 

*Acidified water: 999 ml deionized or glass-distilled water 
1 ml concentrated H2S04 

7.3 

4.9 

6.3 

1.7 

The flasks were placed in a plant growth chamber at a temperature 

of 22 C with a 12 hour cycle of alternating light and dark periods pro-

1 vided by Natur-escent lights, henceforth termed standard conditions. 

In addition, ten-gram samples of soil were placed in the bottom halves 

of steril petri plates, moistened daily with deionized water, and left 

covered i.n front of a south facing ~vindow. 

,The algae which grew under these conditions \-7ere streaked on 

TBIM solidified with 1.5% agar. Unialgal isolations were made using 

the methods of Bold (1942), Pringshei.m (1946), and Lewin (1959). The 

algae were isolated into axenic culture using a modification of the 

atomizing technique of Wiedeman, et a1. (1964). Instead of ultrasonica-

tion, the algal cells were soaked for tTIlO hours in 10 ml of the following 

solution: 

50 ml TBD1 

45 ml dei.)nized water 

5 ml full strength Walgreen Justrite clear lotion detergent. 

The cells \vere then centrJfuged, "Jashed with TBIM 10 times, and 

sprayed onto a sterile plate of proteose-peptone-TBIM agar. Cells 
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which appeared to be bacteria-free after having grown for several days 

were inocul.1.ted into fiv.e ml of TBH1 in 10 x 100 rom Pyrex, rimless test 

tubes and plugged with non-absorbent cotton. Approximately two Inonths 

later, these cultures were streaked onto proteose peptone, nutrient, yeast 

extract, and malt extract agar plates, and into fluid thioglycolate to 

determine if they were axenic. The plates and tubes were incubated for 

two weeks at 37 C, and any contaminated cultures were disposed of at the 

end of that time. Stock cultures were grown in 10 ml of TBIM in 18 x 130 

nun Pyrex, rimless test tubes plugged with non-absorbent cotton, wrapped 

with transparent plastic film, and secured with rubber bands. Reserve 

stocks were kept on TBIM and TBIM plus proteose-peptone agar slants (the 

latter as a check for possible bacterial contamination). All stocks were 

grown ur.der standard conditions. After the isolates had grown on the 

slants, liquid TBIH was added asceptically to the tubes to cover about 

two-thirds of the exposed agar. The liquid TBIM stocks were used for all 

experimental inocula. 

Five pesticides were selected for use covering a broad range of 

pesticide types. Each chemical was used at six concentrations: 0.1, 0.5, 

1.0, 5.0, 10.0, and 50.0 parts per million. The pesticides used and the 

molar concentrations used for each were as follows: 

2,4-D (2,4-dichlorophenoxy acetic acid); 0.45, 2.26, 4.5, 22.4, 

45, and 226 11M; 

2,lf,5-·T (2,4,5-trichlorophenoxy acetic acid); 0.39, 1.96, 3.9, 19.6, 

39, and 196 11M; 

rotenone (C23HZ206); 0.25, 1.27, 2.5, 12.7, 25, and 127 11M; 

malathion (O,O-dimethyl S-bis (carboethoxy) ethyl phosphorodithioate); 

in two formulations, 95% and 99% purity; 0.30, 1.51, 3.0, 15.1, 

30, and 151].l M; and 
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DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane); 0.28, 1.41, 2.8, 

14.1, 28, and .141 UK. 

A dosage of one pound per acre (1.121 kg/hectare) results in a concentra­

tior.. in the upper soil layer of approximately 2 to 2.5 ppm (Fletcher, 1960). 

Therefore, concentrations were selected which ranged proportionately 

around the average recommended dose of 2 to 2.5 pounds per acre. The 

sodium salts of 2.4-D and 2,4,5-T were used since they are more water 

soluble than their acid equivalents. Rotenone, DDT, and malathion were 

dissolved in ethanol before being added asceptically to the sterilized 

growth medium. Ethanol was added at a rate of 20 ml per liter of growth 

medium. Since DDT should not be used in an alkaline medium or with iron 

salts (Stecher, 1968), Bold's Basal Medium II (BBM2) minus iron as 

described below was used instead of TBIM for the experiments with DDT. 

Bold~ Basal Medit.!!!!. Modified (BBH2) (Cain, 1965) 

Ten milliliters of each of the following stock solutions was 

added to approximately 800 mi of deionized or glass distilled water; 

NaN0
3 2.5% 12.5 g/500 ml 

KHZ
P04 1.5% 7.5 g/500 ml 

K
2

HP0
4 1.0% 5.0 g/500 ml 

MgS0
4

'7H
2

O 0.75% 3.75 g/500 ml 

CaCI2 '2H2O 0.25% 1. 25 g/500 ml 

NaCl 0.25% 1. 25 g/500 reI 

To this was added one ml of each of the micronutrient stock solutions 

(as described for l'BIM) and a final dilution to one liter made. The 

pH of the result::'lI1t medium was 6.6 after autoclaving and cooling. 

Each alga was grown under all the following conditions: 



Controls: TEIM 

TBIM + 2% ethanol, 

BBM2 

BBM2 - Fe, 

BBM2 - Fe + 2% ethanol. 

14 

Experimental groups: DDT in 2% ethanol in BBM2 - Fe (6 concen­

trations) ; 

malathion, 95% purity in TBIM + 2% ethanol 

(6 concentrations); 

malathion, 99% purity in TBIM + 2% ethanol 

·(6 concentrations); 

2,4-D in TBIM (6 concentrations); 

2,4,5-T in TBIM (6 concentrations); and 

rotenone in TBIM + 2% ethanol (6 

concentrations). 

Each experiment was run in six replications under standard conditions. 

Growth was measured at two week intervals for a period of two months at 

a wavelength of 425 nm with a Spectronic 20, and also at 12 weeks for 

those isolates which showed slow growth in one or more pesticides. 

A further experiment was conducted in the dark. All controls 

and the following concentrations of pesticides were used: 

rotenone, SO and 10 ppm, 

malathion, 99% purity, 50 ppm, 

malathion, 95% purity, 50 ppm, 

DDT, 10 ppm., 

2,4-D, 50 ppm, and 

2,4,5-T, 50 ppm. 
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Each expc!:'iment was run in six replications at 22 C in the dark for a 

period of two months. Growth was determined visually at the end of that 

period as none. trace minus minus minus, trace minus minus, or trace 

minus. 

Photomicrographs were made of each isolate at the end of eight 

weeks with a Zeiss RA microscope wiLh Nikon camera and shutter components 

on Kodak Panatcmic X black and whit~ film. 



RESULTS 

Description of the Algal Isolates 

Ten isolates from soil collected in Jefferson and Oldham Counties, 

Kentucky were obtained in axenic culture for use in this study. Nine 

of the isolates are members of the Division Ch10rophycophyta. The tenth, 

isolate 8, could not be readily identified and is, therefore, listed 

as unknown. This isolate gave a very weak or negative reaction when 

tested for the presence of starch with potassium iodine and is, therefore, 

possibly a member of the Division Chrysophycophyta. Since the primary 

purpose of this investigation was ecologica.l rather than taxonc1mic, the 

complete identification of this alga has been reserved for those with 

~axonomic inclinations. It is possible that this alga is a new species 

or even a new genus, as the taxonomic study of soil algae is still 

very much in its infancy and most investigations describe one or more 

new species (Bold, 1970). 

The other nine isolates have been identified to genus, and if 

the organism were particularly distinct, to species. The isolates are 

listed in Table I following the classification of Smith (1950) ',vith a 

description of their source. Identifications which are tentative are 

so indicated by a question mark. Figures 1 - 10 are photomicrographs 

of each of the isolates. 

As can be seen by an inspection of Figure 10, isolate 10, 

flO1:m.idium f1accidium, has an unusual growth habit. This organism 

forms t\visted ropes when growing in culture. Bec~use of this, the 

colony develops as a tightly intertwined mat. This mat is so interwO'len 

16 
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TABLE I 

CLASSIFICATION AND SOURCE OF ALGAL ISOLATES USED IN THIS STUDY 

Classification 

Division Chlorophycophyta 

Class Chlorophyceae 

Order: Ulotrichales 

Family: Ulotrichaceae 

Hormidium sp. ? 

Hormidium f.laccidium A. Br. 

stichococcus chodati (Rial.) Heering 

Stichococcus chodati (Bial.) Heering 

Order: Chlorococcales 

Family: Chlorococcaceae 

Chlorococcum sp. 

Ch.Zorococcum sp. 

Neochloris sp. ? 

Bracteacoccus sp. ? 

Isolation 
number 

1 

10 

2 

6 

3 

5 

7 

4 

Isolation 
source 

Rose bed, Southwest 
Jefferson County 

Rose bed, Southwest 
Jefferson County 

Ant Hill, Horner 
Wildlife Refuge, 
Oldham County 

Rose bed, South,,?est 
Jefferson County 

Woods, Horner 
Wildlife Refuge, 
Oldham County 

Sod Field, Horner 
Wildlife Refuge, 
Oldham Ccunty 

Tobacco Field, 
Horner Wildlife 
Refuge, Oldham 
County 

Cedar Knoll, Horner 
Wildlife Refuge, 
Oldham County 



TABLE I (Cont'd) 

Classification 

Family: Oocystaceae 

Chiorella sp. 

Alga of unknmvn classification 

Isolation 
number 

9 

8 

Isolation 
source 

18 

Abandoned Held, 
Horner Wildlife 
Refuge, Oldham 
County 

Cedar Knoll, 
Horner Wildlif e 
Refuge, Oldham 
County 
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FIGURE l. Isolate 1 : Hormidium sp. ? 

FIGURE 2. Isolate 2: Stichococcus chodati (Bial.) Hee:ring 

FIGURE 3. Isolate 3: Ch2o:ococcum sp. 

FIGURE 4. Isolate 4 : Bracteacoccus sp. ? 

FIGURE 5. Isolate 5 : Chloroccccum sp. 

FIGURE 6. Isolate 6: stichococcus chodati (Bial. ) Heering 

All figures are x 430. 
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FIGURE 7. Isolate 7: Neochloris sp. ? 

FIGURE 8. Isolate 8: Unknown 

FIGURE 9. Isolate 9: Chlorella sp. 

FIGURE 10. Isolate 10: Hormidiunl flaccidium A. Er. 

All figures are x 430. 
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that it is not possible to disperse the colony adequately to get an 

accurate reading with a Spectronic 20. Therefore, for isolate la, only 

visual estimaticns of g~owth were possible. The 15 grades used were 

None, Trace minus minus minus, Trace minus minus, Trace minus, Trace, 

Trace plus, Fair minus, Fair, Fair plus, Good minus, Good, Good plus, 

Excellent minus. Excellent, and Exc211ent plus. Only 2 or more degrees 

of difference, except in T---, T--, and T-, were regarded as significant 

(Wiedeman, 1964). 

Algal Growth in Control ~edia 

As noted previously, five different media were used for controls. 

Which medium served as the control for a particular pesticide depended on 

whether or not the pesticide was water soluble and whether or not it 

could be used in an alkaline medium. No attempt was made to determine 

opt i";),.al pH for the growth of the isola tes or to determine if there ",'ere 

changes in the pH of the media during the course of the experiment as 

can happen in culture (Hiedeman, 196!f). Figures 11-13 show the growth 

of isolates 1-9 in all five control media, and Table II gives the visual 

growth meaGu~e for isolate 10 in each of them. 

There was a very distinct difference in most of the isolates 

between growth in TBIM media (alkaline) and that in BBN2 media (acid). 

Only Hormidium sp (1) and liormidiurn flac:c::di urn (10) grew generally as 

well or better in BBM2 than in TBIM based media, with the difference 

being more pronounced for isolate 1 than isolate 10. These two species 

of Horrnidium had limited growth in all defined media. Growth was so 

slow that observations were extended to 12 weeks instead of the 8 week 

period which was adequate for mast other isolates under most conditions. 

Even aj~cer 12 weeks, growth ,,1;1S better tkm fair only for isolate 1 in 
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FIGURE 11 

Effect of control media on growth of isolates 1 - 3. Abscissa - Time 
in weeks; Ordinate - Optical density as measured on the Spectronic 
20 at 425 nm. The numbers for the first graph are applicable to the 
following two graphs. 

1. Hormidium sp. (1) 

2. stichococcus chodati (2) 

3. Chlorococcum sp. (3) 
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FIGURE 12 

Effect of control ~edia on growth of isolates 4 - 6. Abscissa - Time 
in weeks; Ordinate - Optical density as measured on the Spectronic 20 
at 425 nm. The numbers for graph 4 are applicable to the other two 
graphs. 

4. Bracteacoccus sp. (4) 

5. Chlorococcum sp. (5) 

6. Stichococcus chodati (6) 
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FIGURE l3 

Effect of control media on growth of isolates 7 - 9. Abscissa - Time 
in weeks; Ordinate - Optical density as measured on the Spectronic 20 
at 425 nm. The numbers for graph 7 are applicable to the other t\OlO 

graphs. 

7. Neochloris sp. (7) 

8. UnknowL1 (8) 

9. Chlorella sp. (9) 
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Controls 

------TBIM 

TBIM + EIOH 

------BBM2 

BBM2 - Fe 

BBM2 - Fe + EIOH 



TABLE II 

VISUAL ESTI!-f.A'!'IONS OF THE GROWTH OF HORHIDIUM FL.~CCtDIUM (10) 
IN CONTROL MEDIA 

Time (weeks) 

Medium 2 4 6 8 12 

TBIM T--- T- T+ F- F 

THIN + EtOH T--- T--- T-- T-- T 

BBM2 T--- T-- T- F- F 

BBM2 - Fe T--- T-- T- F- F 

BBY12. - Fe + EtOH T--- T-- T- F- F 

30 
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3B}f2 - Fe, while that same isolate only had a trace of growth at 12 weeks 

in both TBIH media. Low.er growth for these isolates could be due to 

several factors. Mattox and Bold (1962) reported that only one of their 

isolates of Hormidium sp. gre~v better than fair in a completely inorganic 

Bristol's solution which was very similar to the BBM2 used in this study. 

The one isolate which grew very well in Bristol's solution was from an 

aquaLic environment. the rest being terrestrial in origin (except those 

from the Culture Collection of Algae at Indiana University whose origins 

were unknown to Mattox and Bold). The addition of a vitamin mixture to 

the Bristol's solution increased the growth of many of the cultures to 

excellent. No attempt was made to ·determine which specific vitamin (or 

vitamins) was required. Therefore, the low growth in this study could 

be due to a vitamin deficiency. Also, tris in some cases is toxic to 

algae (Mc Lachlan, 1963) which could be the reason for the lower growth 

of isolate 1 in TBIM than in BBM2. Also, this Hormcrdium sp. might prefer 

a slightly acid rather than slightly alkaline pH for optimum growth as 

has been reported for some algal species (Wiedeman, 1964). 

For the other eight isolates, growth was significantly depressed 

in BBM2 as compared to TBIM media. Three isolates, Bracteacoccus (4), 

Neoch1.oris (7), and Chiorella (9), had such a reduced growth that 

observations ~'lere extended on those isolates in all BBM2 media, both 

control and (~xperimental, to 12 weeks. Even after 12 weeks, growth in 

all but one case (Neochioris in BBM2 Fe) was less than in the TBIM 

control media at 8 weeks. Isolate 8 (unidentified) had a difference in 

gro\vth only a.t the 12 week observation point, with significantly more 

grmvth at that time in the TBIM media that in the BBM2. Since TEIM was 
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used for isolation of the algae, their better growth in that medium could 

simply be a result of selection for organisms which grow well under 

those conditions. 

In most cases, the growth curves for the isolates were very 

similar in media with and without ethanol. In TBIM, five isolates, 

Stichococcus chodati (2), Chloroccum (3) and (5), Bracteacoccus (4) 

and unidentified (8), had slightly better growth in the presence of 

ethanol at three or more of the sampling points. One isolate, Neochloris 

(7) had better growth in TBIH + ethanol at two sampling points and less 

growth at the other two. The remaining fouy isolates, Hormidium (1), 

Stichococcus chodati (6), Chlorella (9), and Hormidium flaccidium (10) 

had better growth in the absence of ethanol at three or more of the 

sampling points. This may indicate that the first groups of organisms 

can use ethanol to supplement their growth in the light. Even for those 

organisms ~dth slightly depressed grmvth in ethanol, the reduction was 

insignificant compared to the differences between growth in TBIM and 

BBM2 media. 

For the control media based on BBH2, there was also little 

difference in growth rates in most cases with and without ethanol. 

For Stichococcus chodati (2), Chlorococcum (3), Bracteacoccus (4) and 

Hormidium flaccidium (10), the grmvth curves in the three media were 

almost identical. In three other cases (Chlorococcum (5), stichococcus 

chodati (6), and Chlorella (1» there was a slight reduction in growth 

with the elimination of Fe and the addition of ethanol (BBM2 - Fe + 

EtOH). Chloroooccum (5) had nearly identical curves for growth in BBM2 -

Fe with and without ethanol. For the other two isolates, there was 

less growth in BRM2 - Fe + EtOH than in BBH2 - Fe which was in turn 
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slightly less than in BBM2. Isolate 1, lIormidium sp., had almost identical 

growth in gIl three BBM2 media for the ffrst eight weeks. However, at 

the 12 week sampling point, growth was muc~ higher in BBM2 - Fe and 

slightly higher in BBM2 - Fe + EtOH than in BBM2. Isolate 8, unidentified, 

had a reduction in growth from BBM2 to BBM2 - Fe, but the addition of 

ethanol resulted in a growth curve nearly identical to that of BBM2. 

Finally, isolate 7, Neochloris sp., had better growth in BBH2 - Fe than 

in BBM2 which was in turn slightly better than BBM2 - Fe + EtOH. None 

of the differences within the BBM2 control media were as great as the 

growth differences bet'Yleen the BBM2 and the TBIM media. Therefore, it 

is concluded that the addition of 2% ethanol or the absence of iron salts 

from the nledia did not adversely effect the experimental organisms during 

the course of the experiment. 

Statistical Analvsis 

A 9 by 6 by 7 factorial analysis of variance was made of the 

experimental data with the variables being respectively algae, pesticides, 

and concentrations. Tables III - VI are the summary tables for the 

analysis of variance for weeks 2, 4, 6, and 8 respectively. Examination 

of the F values of each table indicates that all variables are significant 

at least at t!l.e p < 0.01 level for all main effects and all interactions 

for each data collection period point. HOvlever, as Winer (1971) states, 

In many cases ~"hich arise in practice, tests on main effects may 
be relatively meaningless when interactions are significantly 
different from zero. 

Therefore, it is difficult to analyze the significance of the two way 

iuteractions and the main effects since the three way interaction is 

signif icant. This indicates a high level of statictical complexity. 

Thus, it cannot be E:aid what simple effect the different algae had 
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TABLE III 

ANALYSIS OF VARIANCE TABLE FOR WEEK 'nolO 

Source E=ror Term F Sum of Squares Deg. of Mean Square 
Freedom 

1 Hean 3.265985 1 3.265985 

2 I R(IJK) 328.87 .9531845 8 .1191480 

3 J IJ 19.606 .3472589 5 .06945175 

4 K IK 11. 456 .1437431 6 .02395718 

5 IJ IJK 6.4375 .1416953 40 .0035L12381 
6 IK IJK 3.8004 .1003799 48 .002091249 
7 JK LJK 11. 5544 .1907437 30 .006358124 
8 IJK R(IJK) 1.5233 .1320663 240 .0005502761 
9 R(IJK) .6827394 1890 .0003612377 

I = Algae 

J = Pesticides 

K = Concentrations 
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TABLE IV 

ANALYSIS OF VARIANCE TABLE FOR WEEK FOUR 

Source Error Term F Sum of Squares Deg. of Mean Square 
Freedom 

1 Mean 22.10565 1 22.10565 

2 I R(IJK) 575.8733 6.632678 8 .8290848 

3 J IJ 14.501162 1.983252 5 .3966503 

4 K IK 5.341488 .3328799 6 .05547998 

5 IJ IJK 12.0705 1. 094124 40 .02735309 
6 IK IJK 4.5835 .4985601 48 .01038667 
7 JK IJK 9.8473 .6694537 30 .02231512 
8 IJK R(IJK) 1.5739 .5438679 240 .002266116 
9 R(IJK) 2.721203 1890 .001439790 

I = Algae 

J = Pt:!sticides 

K = Concentrations 
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TABLE V 

ANALYSIS OF VARIA~CE TABLE FOR WEEK SIX 

Source Error Term F Sum of Squares Deg. of Mean Square 
Freedom 

1 Mean 68.31825 1 68.31825 

2 I R(IJK) 851.18254 21. 31157 8 2.663946 

3 J 1J 11.983752 5.199875 5 1.039974 

4 K IK 5.8064516 .8983440 6 .1497240 

5 1J 1JK 15.7500 3.471283 40 .08678204 
6 IK IJK 4.6799 1.237719 48 .02578580 
7 JK 1JK 8.3078 1.373275 30 .04577582 
8 1JK R(IJK) 1. 7605 1. 322389 240 .005509950 
9 R(IJK) 5.915161 1890 .003129715 

I = Algae 

J = Pesticides 

K = Concentrations 
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TABLE VI 

ANALYSIS OF VARIANCE TABLE FOR T,-,TEEK EIGHT 

Source Error Term F Sum of Squares Deg. of Mean Square 
Freedom 

1 Mean 144.490.3 1 14t .. 4903 

2 I R(IJK) 980..61466 44.46577 8 5.558222 

3 J IJ 9.3267721 10..12167 5 2.0.24333 

4 K IK 2.9131615 .8347748 6 .1391291 

5 IJ IJK 16.0.231 8.681816 40. .2170454 
6 IK IJK 3.5257 2.292422 48 .04775880. 
7 JK IJK 5.3635 2.179599 30. .0.7265329 
8 IJK R(IJK) 2.3898 3.250994 240. .o.135/~580 

9 R(IJK) 10..71276 1890. .0.0.5668126 

I = Algae 

J == Pesticides 

K = Concentrations 
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without also taking into consideration the effects of pesticides and 

concentrations on algae~ Likewise, there is no simply interpretable 

effect for either pesticides or concentrations. The statistical 

analysis further indicates that the joint effects of algae by pesticides, 

algae by concentrations, or pesticides by concentrations cannot be 

considered without also considering the third variable. Thus, care 

must be taken in the interpretation of the independent effects due to 

algae, pesticides, or concentrations and the two way interactions of 

these variables. Further, since the interactions are significant, these 

data cannot be clearly extrapolated to other algae, pesticides, or 

concentrations. Therefore, the analysis in the following sections will 

concentrate on the interaction effects. 

2~4-D Introduction 

The selective herbicidal properties of the chlorinated phenoxy 

acetic acids were discovered in 1942, but were not publicized until the 

end of World War II (Hartin, 1964). In spite of the numerous studies 

done since then, the reason for their herbicidal behavior is still not 

understood at the cellular and molecular level (Moreland, 1967). The 

recommended agricultural dose is less than 5 lb/A (5.604 kg/H) (Edwards, 

1964). In 1968, 142,248 pounds (64,523.69 kg) of all forms of technical 

material of 2,4-dichlorophenoxy acetic acid (2,4-D) were sold in Kentucky 

(Moore, 1973), while in 1969, 68.624,000 pounds (31,127,846 kg) of 2,4-D 

and 2,4,5-T were produced in the United States (Hatsumura, 1972). A 

national survey of pesticide use on croplands in 1969 found that 15.14% 

of 1684 sites had been treated with 2,4-D at an average level of 0.54 

lb/A (0.605 kg/H). Of 188 sites tested for residues~ 3 (1.6%) had 

detectable residues at a mean level of less than 0.01 ppm and a range 
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of 0.01 to 0.03 ppm (Wiersma, Tai, & Sand, 1972b). In Kentucky, 3.2% of 

31 cropland sites surveyed had had 2,4-D application at an average level 

of 0.50 Ib/A (0.56 kg/H) (Wiersma, Tai, & Sand, 1972b). 

Degradation of 2,4-D is rapid and can be due to the molecule 

combining with other cell molecules, to cleavage of the side chain, or to 

ring hydroxylation or ring cleavage (Hilton, et al., 1963; Alexander, 

1965b; ~.,rright, 1971). Reported detoxification times in the lab or 

greenhouse range from six to seven days to 18 months and in the field 

from one week to over 160 days (Appendices I & II). Environmep.ta1 factors 

which influence the persistence of 2,4-D in soil include depth, organic 

matter, cation exchange capacity, exchangeable calcium, moisture, free 

drainage value, total exchangeable bases, soil type, temperature, pH, 

leaching, type of forest litter, chemical formulation, presence of DDT, 

and presence of lime (Newman, et a1., 1952; Hanks, 1946; Nutman, et a1., 

1945; Kries, 1947; Martin, 1946; Weaver, 1948; Brown and Mitchell, 1948; 

DeRose and Newman, 1948; Jorgensen and Hamner, 1948; Crafts, 1949; Norruan, 

et a1., 1950; Blackman, et a1., 1951; Ogle and 1.Jarren, 1954; Bell, 1960; 

Burger, et al., 1962; Upchurch and Mason, 1962; Upchurch. 1966; Norris 

and Greiner, 1967; Boyce Thompson Institute, 1971; Montgomery, et a1., 

1972) • 

There are three stages in decomposition: immediate initial 

adsorption on soil colloids, a lag phase, and rapid and complete detoxi­

fication (Audus, 1951; Montgomery, et a1., 1972). The actual 

decomposition is due to the action of microorganisms in most cases 

(Audus, 19 l,9, cited in Bollen, 1961; Audus, 1950; Norman, et a1., 1950), 

as conditions which destroy or inhibit microbes increase persistence 

(Audus, 1951; DeRose and Newman, 1948; Bro>-TI,1 and Mitchell, 1948; Hernandez 
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and ~~arren, 1950, cited in Audus, 1964), and over 10 different species 

of bacteria, actinomycetes, and fungi have been isolated which can use 

2,L.-D as a sole carbon source (Appendix III). After initial decomposition, 

adcitional applications are detoxified without the long lag phase (Audus, 

1951; Newman, et al., 1952; Rogoff and Reid, 1956). Also, CO
2 

is evolved 

from soil in which 2,4-D is the only carbon source (Martin, 1946; Jensen 

and Peterson, 1952). Finally, adding organisms capable of detoxification 

to the soil causes breakdovffi typical of subsequent rather than initial 

application (Audus, 1950). 

Determinations of the breakdown pathway suggest that it is not 

the same in all species. One frequent intermediate is 2,4-dichlorophenol 

(Audus, 1952; Evans and Smith, 1954; Steenson and Walker, 1957; Loos, 

et al., 1967), which may be further metabolized to 4-chloro, 2-hydroxy­

phenol (Steenson and Walker, 1957). Other reported intermediates are 

6-hydroxy-2,4-dichlorophenoxyacetic acid (Evans and Smith, 1954), 

2,4-dichloro-5-hydroxyphenoxyacetic acid (Woodcock, 1964; Faulkner 

and Woodcock, 1954, 1965), 2,5-dichloro-4-hydroxypllenoxy-acetic acid 

(Faulkner and Woodcock, 1964, 1965), and a-chloromuconic acid (Fernley 

and Evans, 1959). 

Although a few cases of inhibition of microorganisms by 2,4-D 

at normal weed control doses (about 10 ppm or less) are known, most 

reports of negative effects are at concentrations much higher than 

ordinarily used. In some cases stimulation has been noted either at 

normal or even high concentrations (Smith, et a!., 1945; Stevenson 

and Hitchell, 1945; Martin, 1946. 1963; Lewis and Hamner, 1946; DubQs, 

1946; Newman, 1947; Payne and Fults, 19L:7; Fults and Payne, 1947; 



41 

Carlyle and Thorpe, 1947; Worth and HcCabe, 1948; Norman, et al., 1950; 

Kratochvil, 1951; Gould and Barnstead, 1951; Warren, et al., 1951; Aldrich, 

1953; Colmer. 1953; Roberts and Bollen, 1955; Johnson and Colmer, 1955a 

and b; Magee and Colmer, 1955; Rogoff and Reid, 1956; Walker and Newman, 

1956; Bell, 1957; Frans, et al., 1957; Newman and Downing, 1958; Treater, 

et al., 1958; Woodford, et al., 1958; Fletcher, 1960; Whiteside and 

Alexander. 1960; Il'in, 1962; Mashtatov, et al., 1962; Petruk, 1964; 

Audus, 1964; Dean and Law, 1964; Goodman, 1965; Farm Chemicals Handbook, 

1965; Upchurch, 1966; Mickovski, et al., 1968; Montgomery, et al., 1972; 

and the following all cited in Pimentel, 1971: Slepecky and Beck, 

1950; Anderson and Baker, 1950; Hoover and Colmer, 1953; Rapoport and 

Cangioli, 1963; Bounds and Colmer, 1964; Arnold, et al., 1966). 

In most cases, studies of 2,4-D and algae also find negative 

effects only at high concentrations. In sea water, 1.0 ppm had little 

effect on productivity of pcytoplankton (Butler and Springer, 1964, 

cited in Loosanoff, 1965); while four hours exposure to 1.0 ppm did not 

decrease phytoplankton gro\'lth (Butler, 1963, cited in Pimentel, 1971). 

Grmvth of Nitzschia palea was inhibited by 2 ppm 2,4-D at three days, 

but from 7-21 days was the same as the control; Cylindrospermum 

licheniforme had reduced growth at three days, but not at 7 - 21 days; 

and four other algae tested in unialgal cultures (Microcystis aeruginosa, 

Scenedesmus obliquus, Gomphonema parvulum, and Chlarella varigata) were 

not affected at any time up to three weeks (Palmer and Maloney, 1955). 

At 20 ppm and up, Anabaena was significantly inhibited (inhibition 

increasing with concentration); Chlorella was inhibited by 5 - 100 ppm 

(inhibition increasing with concentration), with 1 ppm reducing dry 

weight but having no at-her signif.icant influence; 1 - 50 ppm caused 
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marked growth inhibition of Oedogonium; and 10 ppm reduced growth of 

Vaucheria to 74% of controls; while, in some cases, 1 ppm of 2,4-0 

promoted growth (Kim, 1961). Chlorella pyrenoidosa respiration was 

stimulated at moderate concentrations (about 35 ppm) (Erickson, et al., 

1955; Wedding, et al., 1954) and inhibited at high concentrations 

(Wedding, et al., 1954). -3 At 2x10 H, photosynthesis was almost completely 

inhibited at pH 3.10 and 4.10, but was stimulated at pH 7.0 ar.d above, 

while cells in 9.35x10-5
M and higher were progressively decolorized 

(Wedding, et al., 1954). -3 At pH 4.49, a 3.02x10 M concentration of 

2,4-0 was needed to produce complete photosynthesis inhibition (Erickson, 

et al., 1955). Exposure to high concentrations (10-2M) at 10 C for 

4 hours did not kill this alga (Wedding, et al., 1959). No toxic effects 

of up to 200 ppm technical grade 2,4-0 were found on axenic cultures of 

ScenedeSlnus quadricauda, Chlamydomonas, and Chlore12a pyrenoidosa (Vance 

and Smith, 1969), ~vhile 250 P?ID had no effect on Microcystis aeruginosa 

(Fitzgerald and Skoog, 1952). For a period of 40 hours. 1000 ppm of 2,4-0 

had no inhibition at pH 5.1, 6.0, or 7.4 to axenic cultures of ChLorella 

pyrenoidosa (Tomisek, et al., 1957). Finally, eight algae isolated from 

waste stabilization ponds had a maximum tolerance to 2,4-D of 1.0 mM, 

with the other 31 isolates having a maximum tolerance at 2.0 mM. None 

of the 39 isolates could grow at 10 or 20 Illi'1, and one isolate (Chiore1.1a 

23) did not survive at 2.0 mM. Two isolates (Dictgosphaerium 380 and 

Scenedesmus 410) grew better at 2.0 mM than in the controls (Wiedeman, 

1964). 

At the concentrations used in this study, the basic effect of 

2,4-D \vas neutral or stimulatory. A careful l~xamj.naLion of Figures 14 
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to 16 and Table VII reveals that in most cases the growth curves are not 

greatly different at high or low co~centrations of 2,4-D than those for 

the control. For example, stichococcus chodati (2) shows a typical 

neutral effect. The growth curve for the control is situated in the midst 

of the curves io~ the 2,4-D co~centrations, and there is no systematic 

arrangement of the curves for the experimental concentrations. This same 

pattern Is evident for Bra::::teacoccus (4), Chlorococcum (3) and (5), 

Stichococcus choda.ti (6), unidentified (8» and Hormidium flaccidium (10). 

Chiarella (9) tad an ap?arent reduction in growth at the higher concentra­

tions (5 ppm and above) at both the six and eight week sampling points 

with little or no reduction at lower concentrations. Hormidium (1) and 

Neochioris (7) have definite stimulation of growth by 2,4-D, especially 

at the later sampling points. In both cases, growth at the final sampling 

poi~t is greatly increased in one of the lower concentrations, with the 

rest of the concentrations c.lustered at a point midway between that and 

the control. It "is possible that these tHO isolates are able to use 

2,4-D to some extent to increase their growth in the light. Graph 

10 in Figure 16 shows the overall interaction of isolates 1-9 with 2,4-D 

and c.onfirms the original observation that the basic effect iE neutral. 

These results agree quite well with the general finding of past 

experi~ents that 2,4-D has negative effects on algae only at high 

concentrations, usually much higher than those used in this study. The 

only genera used in this experiment which had been reported on previously 

were ChJ.orr2i1a and Chlorococcum. The one reference to Chlorococcum 

(\Viedeman, 1964) rer>0rted that five isolates of that species grew as well 

in 2.0 rrJ1 Z,b-·D (L1!.2 ppm) ;:;5 they did in the control, but they could ltot 

g1"OI" in 10.0 m}f (2210 rpm). Of the five is(llates, tt1l0 had the same growth 
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FIGURE 14 

Effect of 2,4-D on the growth of isolates 1 - 3. Abscissa - Time in 
weeks; Ordinate - Optical density as measured on the Spectronic 20 at 
425 nrn. The numbers for the first graph are applicable to the following 
two graphs. 

1. Hormidium sp. (1) 

2. stichococcus chodati (2) 

3. Chlorococcum sp. (3) 
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FIGURE 15 

Effect of 2,4-D on the growth of isolates 4 - 7. Abscissa - Time in 
weeks; Ordinate - Optical density as measured on the Spectronic 20 at 
425 nrn. The numbers for graph 4 are applicable to the following three 
graphs. 

4. Brac~eacoccus sp. (4) 

5. Chlorococcum sp. (5) 

6. S~ichococcus choda~i (6) 

7. Neochloris sp. (7) 
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FIGURE 16 

Effect of 2,4-D on the growth of isolates 8 and 9 and on a composite 
of isolates 1 - 9. Abscissa - Time in weeks; Ordinate - Optical 
density as measured on t:-te Spectronic 20 at 425 nm. The numbers for 
graph 8 are applicable to the following two graphs. 

8. Unknown (8) 

9. Chlorella sp. (9) 

10. Composite of isolates 1 - 9 
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TABLE VIr 

VISUAL ESTIMATIONS OF THE GROWTH OF IIORl1IDIUN FLACCIDIUM (10) 
IN 2,4-D 

Weeks 

Concentration 2 4 6 8 12 

50 ppm N T-- T- F F+ 

10 ppm N T-- T F F+ 

5 ppm T--- T- T F F+ 

1 ppm T--- T-~ T F- F 

0.5 ppm N T-- T F F+ 

0.1 ppm T--- T-- T- F F+ 

o ppm T--- T- T T- F 
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at all concentrations up to 2.0 rnM while the other three were stimulated 

slightly by all concentrations up to 2.0 ~M. The present study found 

no stimulation of growth even at concentrations comparable to those used 

by Wiedeman which is probably the result of using isolates belonging to 

different species or different physiological strains of similar species. 

There have been a number of reports of the effects of 2,4-D 

on Chlarella, both on unspecified species and ina few cases on identified 

species. These reports vary from no toxic effects at moderate to high 

concentrations, to growth inhibitions in some cases at low concentrations. 

Studies which measured photosynthesis and respiration found stimulation 

of Chlore.Ila at moderate and inhibition at high concentrations, while 

other studies reported no negative effects at concentrations close to 

those used in this study (Tomisek, et a1., 1957; l.Jedding, et a1., 1954; 

Vance and Smith, 1969; \-liedeman, 1964). This study found a growth 

inhibition at concentrations of 5 ppm and higher, but only after a period 

of six weeks. This agrees with the work of Kim (1961) who found that 

Chlorella had growth inhibited by 5-100 ppnl, with 1 ppm causing only a 

reduction in dry weight (which was not measured in this study). The 

differences between some of the previocs studies and the present report 

may be due to different algae used, to different media used, or to 

different experimental conditions, with the different organisms being 

the most likely reason. 

2,4,5-T Introduction 

The auxin type herbicide most effective against woody plants 

is 2,4,5-trichlorophenoxy acetic acid (2,4,S-T) which has a recommended 

usage level of 6 lb/A (6.725 kg/H) or less (Blackman, et al., 1951; 

Fletcher, 1960; Martin, 1964; Farm Chemicals Handbook, 1965; Moore, 
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1967). In 1968,38,356 pounds (17,398.3 kg) of technical material of all 

forms of 2,4,5-T were gold in Kentucky (Moore, 1973). A national survey 

of pesticides used on croplands in 1969 (1684 sites) found that 0.18% 

of the sites had been treated with 2,4,5-T at an average application of 

0.83 lb/A (0.93 kg/H) (Wiersma, Tai, & Sand, 1972b). 

Soil decomposition is much slower than for 2,4-D (DeRose, 1946; 

Audus, 1951; Alexander, 1965b; Walker, 1967), but follovis the same basic 

pattern of adsorption, a long lag phase, and then rapid detoxification 

(Audus, 1951). The disappearance rate of a second application after 

detoxification of the first has been reported to be both without a long 

lag (Audus, 1951) and as long as the initial detoxification (Newman, 

et a!., 1952; Newman and Downing, 1958). There is also a controversy 

over whether the decomposition is due to microorganisms. wbiteside 

and Alexander (1960) reported that 2,4,5-T was not broken dOwTI by 

microbes, and no organism which can decompose it has been isolated into 

pure culture (Newman and Downing, 1958; Walker, 1967). However, 

those conditions which favor the growth of microbes decrease the 

persistence of 2,4,5-T in the soil (including soil type, moisture, dose, 

temperature, and organic matter) (DeRose and Newman, 1948; Norman, et 

al., 1950; Blackman, et al., 1951; Aucius, 1951; Boyce Thompson Institute, 

1971). In addition, a bacterial poison, 0.01% sodium azide, destroyed 

the detoxifying ability of soil which had been able to breakdown 

2,4,5-T (Audus, 1951). However, if microorganisms are responsible for 

th~ decomposition, they are not the same ones which detoxify 2,4-D 

(AuGus, 1951; MacRae and Alexander, 1965). 

Persistence varies greatly both under lab or greenhouse 

conditions and in the field, hut is generally in terms of several 
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months. Some of the times cited for disappearance in the lab were: over 

three months (Whiteside and Alexander, 1960); more than 47, 124, and 205 

days (different soil types) (Alexander and Aleem, 1961); 270 days (Audus, 

1951); 147 days and 11 months (different concentrations) (DeRose and 

Newman, 1948); and over 15 months (stored in dry soil) (Weaver, 1948). 

Persistence in the field was reported to be two to five weeks (Klingman, 

1961, cited in Pimentel, 1971); over 93 days (DeRose and Newman, 1948); 

19 weeks (~e~.;rman, et a1., 1952); five months (75-100% loss) (Hatsumura, 

1972); six to seven nionths (Alexander, 1965b); and 12 months (95% 

disappearance) (Ed\.Tards, 1964). 

At concentrations normally used for weed control, reports of 

negative effects on rnicroorganisms are uncommon (Kratochvil, 1951; Mugee 

and Colmer, 1955; Roberts and Bollen, 1955; Newman and Downing, 1958; 

Fletcher, 1960; ~fuiteside and Alexander, 1960; Bounds and Colmer, 1964, 

cited in Pimentel, 1971). Only at very high concentrations are 

inhibitions noted (Newman, 1947; Magee and Colmer, 1955; Roberts and 

Bollen, 1955; Johnson, et a1., 1956; Fletcher, 1960; Whiteside and 

Alexander, 1960), with 2,4,5-T, in general, appearing to be more 

toxic than 2,4-D (Hagee and Colmer, 1955; Johnson, et a1., 1956). In 

some cases, stimulation of soil organisms has even been reported 

(Roberts and Bollen, 1955; Newman and Downing, 1958). 

Studies on the effect of 2,4,5-T on algae generally agree with 

those on other microorganisms: i. e., adverse effects only at concentra­

tions far exceeding the norma] dose for \veed control (about 10 ppm). 

Exposing phytoplankton to 1 ppm of 2,4,5-T for 4 hours did not decrease 

productivity (Butler, 1963, cited in Pimentel, 1971). A commercial 

preparation at 2 ppm was toxic to MicIOCystis aeruginosa at: three and 



seven days (but not at 14 and 21 days), stimulated Cylindrospermum 

licheniforme at three days, and was non-toxic to four other algae 

(Scenedesmus obliquus, Chlorella variegata~ Gomphonema parvulum, and 

Nitzschia palea) at three and seven days and to all six unialgal 
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cultures at 14 and 21 days (Palmer & Malovey, 1955). Concentrations up 

to 200 llg/ml (200 ppm) of technical grade material had no toxic effects 

on axenic cultures of Scenedesmus quadricauda, Chlamydomonas eugametos, 

and Chlorella pyrenoidosa for a period of four days (Vance and Smith, 

1969). Finally, the effect of 2,4,5-T at concentrations of 0.02 to 20 ~~ 

was tested on 39 axenic algal cultures isolated from waste-stabilization 

ponds (Wiedeman, 1964). None of the isolates survived in concentrations 

of 10 or 20 ~~; two isolates (Chlorella, 23 and Ankistrodesmus, 340) did 

not tolerate 2.0 nM (511 ppm); and two could only tolerate a maximum of 

0.1 mM (25.5 ppm) (Chlorella, 293 and 370). Two other isolates were 

stimulated by 2.0 mM (Dictyosphaerium, 380 and Scenedesmus, 410). 

2,4,5-T Results 

The effect of 2,4,5-T depended on the isolate under consideration, 

ranging from stimulation to neutrality to inhibition. Stichococcus 

chodati (2) and (6), Bracteacoccus (4), unidentified (8), Chlorella (9), 

and Horm.idiullI flaccidium (10) were all basically une.ffected by 2,4,5-T 

at the concentrAtions used as can be seen by an examination of Figures 

17-19 and Table VIII. Two isolates, Hormidiunl (1) and Neochloris (7), 

were stimulated by 2,4,5-T, especially at the later sampling points. Both 

Chlorococcum isolates (3) and (5) were inhibited by the higher concentra­

tions (10 and 50 ppm), but were only slightly effected at lower concentra­

tions. In no case was there total inhibition of growth of any isolate. 

Figure 19-10 showing the com~inej effect of 2,4,5-T across isolates 1-9 



55 

FIGURE 17 

Effect of 2,4,5-T on the growth of isolates 1 - 3. Abscissa - Time 
in weeks; Ordinate - Optical density as measured on the Spectronic 
20 at 425 nrn. The numbers for graph 1 are applicable to the ether 
two graphs. 

1. Hormidium sp. (1) 

2. stichococcus chodati (2) 

3. Chlorococcum sp. (3) 
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FIGURE 18 

Effect of 2,4,5-T on the gro\<7th of isolates 4 - 7. Abscissa - Time 
in weeks; Ordinate - Optical density as measured on the Spectronic 
20 at 425 nm. The numbers for graph 4 are applicable to the other 
three graphs. 

4. Bracteacoccus sp. (4) 

5. Chlorococcum sp. (5) 

6. Stichococcus chodati (6) 

7. NeochJor is sp. (7) 
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FIGURE 19 

Effect of 2,4,S-T on the growth of isolates 8 - 9 and a composite of 
isolates 1 - 9. Abscissa - Time in weeks; Ordinate - Optical density 
as measured on the Spectronic 20 at 425 nm. The numbers for graph 8 
are applicable to the other two graphs. 

8. Unknown (8) 

9. Chlorella sp. (9) 

10. Composite of isolates 1 - 9 
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TABLE VIII 

VISUAL ESTIM..<\TIONS OF THE GROV.'TH OF 
HORMIDIUM "FLACCIDIUM (10) IN 2,4,5-T 

Weeks 

Concentrations 2 4 6 8 12 

50 ppm N T--- T-- T T+ 

10 ppm N T-- T- T F 

5 ppm T--- T-- T- T+ F 

1 ppm T--- T-- T F- G-

0.5 ppm N T-- T- T+ F-

0.1 ppm T--- T- T- F- F+ 

o ppm T--- T- T F- F 
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verifies the basic neutrality of 2,4,5-T to soil algae at the concentra­

tions tested. 

This study generally agrees with past work, finding negative 

effects rarely and mainly at higher concentrations. An earlier report 

on five isolates of Chlorocaccum sp. (Wiedeman, 1964) found that they 

could tolerate concentrations up to 2.0 rnM (511 ppm), but could not survive 

at 10.0 mM. Only one of those five isolates was stimulated and two were 

slightly inhibited (but not significantly) by concentrations comparable to 

those used in this study. A number of studies reported on effects of 

2,4,5-T on Chlorella sp. Palmer and Maloney (1955) found no toxic effects 

of 2 ppm over a period of 21 days, while Vance and Smith (1969) reported 

no toxic effects of technical grade chemical at concentrations up to 

200 ppm. Wiedeman (1964) worked with six isolates of Chlorella sp. and 

found varying tolerances to different concentrations of 2,4,5-T. None 

of the isolates could tolerate a concentration of 10.0 rnM (about 2554 

ppm), one grew as well in 2.0 mM (511 ppm) as it did in the control, 

three others could grow as well as in the control at concentrations 

only up to 0.2 mM (51 ppm), while the other two isolates had growth 

equal to the control at a maximum concentration of 0.1 roM (25 ppm). 

It is possible that more inhibiting effects might have been found in this 

study if concentrations higher than 50 ppm had been used, but it was 

desired to keep this study within the limits that would most commonly 

be encountered by the orgarlisms in nature. 

A comparison of the graphs for 2,4-D and 2,4,5-T for isolates 

Chlorococcu~ (3) [Figures 14-3 & 17-3] and (5) [Figures 15-5 & 18-5] 

shmvs that they are more susceptible to 2,4,5-T than to 2,4-D. Close 

inspection of the graphs for those isolates in 2,4-D shows that both 
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are inhibited by 2,4-D to some extent at the final sampling point with 

inhibition much less evident at the earlier periods. This may indicate 

that the Chlorococcum isolates are sensitive to both 2,4-D and 2,4,5-T, 

but more sensitive to the latter. This agrees with \Uedeman (1.964) l-1ho 

also found that the Chlorococcum isolates he tested were more sensitive 

to 2,4,5-T than to 2,4-D. Chlorella isolate (9) shows the opposite 

reaction, being more sensitive to 2,4-D than to 2,4,5-T. But even the 

inhibition due to 2, '+-D is not as prominent as that due tv the other 

pesticides tested. In the case of 2,4,5-T there appears to be a slight 

inhibition at: the higher concentrations, but this is not as obvious as 

that with 2,4-D. It appears likely that the addition of one chlorine 

atom, changing 2,4-D to 2,&,5-T, can have a large influence on the effects 

on soil algae. 

DDT Introduction 

In 1874, Othmar Zeidler first described 1,1,1-trichloro-2,2-bis 

(p-chlorophenyl) ethane, commonly called DDT; but it was not until 1939, 

that Paul Muller recognized its value as an insecticide (Farm Chemicals 

Handbook, 1965). Since that time the total amount used may be as high 

6 5 as 10 short tons (9,078 x 10 metric tons) (Moore, 1967), and residues 

arc often found in the soil of over 100 ppm (Wiersma, Mitchell, and 

Stanford, 1972). In 1972, the use of DDT in the U. S. '!!.Tas halted for 

crops (with three minor exceptions), for nonhealth applications, and 

for health purposes without a prescription (Ruckelshaus, 1972). The 

governmental findings leading to that decision stated that the risk from 

continued use outweighed the benefits since suitable, but less persistent, 

substitutes were available. The specificity of DDT may be due to its 

high penetrability through insect cuticle but net through vertebrate skin 
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(Martin, 1964), or it may be due to differences in rates of degradation 

(O'Brien, 1966). Its precise mode of action is unknown, but it appears 

to inter fer with nerve transmission (O'Brien, 1966, 1967). DDT is 

nonselective and often kills the natural enemies of the pest it is applied 

to ~ontrol, thereby causing an increase in the undesired pest (Wurster, 

1973). 

Shortly after DDT use began on a large scale, it became apparent 

that it persisted in soils for many years, even decades. Since the 

late 1940's, reports have shown that even a single application will 

persist for many years, that repeated applications accumulate to amounts 

much higher than amounts applied in anyone year, that it is seldom found 

in quantity in the soil below plow depth, that it is concentrated by 

organisms in the food chain, and that DDT and its residues are found 

1.n soils where they have never been directly applied (Smith, 1948; 

Chisholm, et al., 1950 and 1955; Foster, 1951; Fleming and Maines, 1953; 

Allen, et al., 1954; Ginsburg and Reed, 1954; Ginsburg, 1955; Lichten­

stein, 1957; Lichtenstein and Schulz, 1959; Lichtenstein, et a1., 1960; 

Taschenberg et al., 1961; Clore, et al., 1961, cited in Alexander, 1965b; 

Roberts, et al., 1962; Wheatley, et al., 1962; Bridges, et al., 1963; 

Edwards, 1963. 1964; Woodwell and }~rtin, 1964; Harris, et al., 1966; 

Nash and Woolson, 1967; Woodwell, et al., 1967; Woodwell, 1967; Cole, et 

al., 1967; Chacko and Lockwood, 1967; Ko and Lockwood, 1968a; Dimond, et 

al., 1970; Kearney, et al., 1970; Cox, 1970a, 1970b; Lichtenstein, et al., 

1971; Matsumura, 1972; Brown, 1972; Tarrant, et al., 1972; Wiersma, Tai 

and Sand, 1972a; Wiersma, Mitchell, and Stanford, 1972; Menzie, 1972; 

Yule, 1973, and the following, all cited in March. 1965: Randolph, et 

a]., 1960; MacPhee, et a1., 1960; Gallaher and Evam:, 1961). 
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Factors which influence DDT persistence in the soil include soil 

type, temperature, ultrdvioiet light, moisture, amount of mixing into 

soil, plowing, and organic matter (Foster, 1951; Fleming and Maines, 

1953; Eno, 1958; Licht~nstein and Schulz, 1959 and 1961; Lichtenstein, 

etal.,1960). 

Although first speculated on almost 20 years ago (Jones, 1956, 

cited in Halker, 1967), e"'idcace has only accumulated in the last 10 

years to show that DDT can be degraded by microorganisms. No single 

microbe is known which can break it down all the way to CO2 , H
2
0, and 

chlorine, but it appears that several can break it down by acting in 

sequence. None can use DDT or any ·of its reduction products as a sole 

carbon scurC2, so breakdown must be a form of cometabolism (Chacko, et 

a1. t 1966; \Vedemeyer, 196 7b; Alexander, 1971; Focht, 1972; Pfaender and 

Alexander, 1972). Organisms which have been shown to be involved in at 

least one step of the breakdoT.vrl are listed in Appendix IV. The main 

metabolite is TDE (DDD), but other breakdown products have been identified 

and are listed in Appendix V. Some of the breakdown steps require the 

absence of air, others its presence (Pfaender and Alexander, 1971; Focht, 

1972; Alexander, 1972; Focht and Alexander, 1971; \ledemeyer, 1966, 1967a, 

and 1967b). If microorganisms can break it down, why does DDT persist 

and accumulate in the soil? This may be because of the need for 

alternating anaerobic and aerobic conditions, or more likely because 

organisms which break it down are not abundant and they have no selective 

advantage in decomposing it since they cannot use it as a carbon source 

(Pfaender and Alexander, 1972; Alexander, 1972; Chacko, et al., 1966; 

Focht, 1972). 

DDT has been reported to have effects on higher plants varying 

from negative to neutral to stimulation (Chapmqn and Allen, 1948; 



Appleman and Sears, 19L16; Gould and Hamstead, 1951; Thurston, 1953; 

Chisholm, et al., 1955; Harcourt and Cass, 1955; Clower and Matthysse, 

1954; Eno and Everett, 1958; Eder, 1963; Bridges, et al., 1963; 

Lichtenstein, et a1., 1962; Lawler and Rogers, 1967; National Academy 

of Sciences t 1968). 

66 

The effects of DDT on microorganisms and their processes are 

usually reported to be neutral. Negat:ive effects are normally only 

found at very high concentrations, \vhile a few cases of stimulation 

have even been reported (Appleman and Sears, 1946; Wilson and Choudhri, 

1946; Smith and Wenzel, 1947; Fults and Payne, 1947; Gould and Hamstead, 

1951; Bollen, et a1., 1951fa and 1954b; Eno, 1968; Eno and Everett, 1958; 

Pathak, et al., 1961, cited in }furth, 1965; Bartha, et al., 1967; Ko 

and Lockwood~ 1968b; Ledford and Chen, 1969; Tarrant, et al., 1972; Payne 

and Fults, 1947; Eder, 1963; MacP~e and Vinchx, 1973; Roberts and Bollen, 

1955; the following all cited in Bollen, 1961; Martin, et a1., 1959; 

Jones, 1956; and Braithwaite, et al., 1958). 

Since DDT has a very low water solubility (about 1.2 ppb. 

[Bowman, et a1., 1960]), studies on its effects on phytoplankton are 

often at concentrations which might be found in water, but which are 

far belm" amounts normally used for insect control. Algae which have 

been reported to be uneffected or only mildly zffected by DDT under such 

conditions are listed in Table IX. However, algae can accumulate DDT 

passively and rapidly to a level several hundred times higher than the 

concentration in which they are growing, and surveys of algae isolated 

from nature have found many with high DDT concentrations in their cells 

(Rice and Sikka, 1973; Keil and Priester, 1969; Gregory, et al., 1969; 

Woodwell, et .1.1., 1967; Cox, 1970a and 1970b; Vance and Drummond, 1969). 
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TABLE IX 

ALGAE UNAFFECTED BY DDT AT LOW CONCENTRATIONS 

Algal species Conditions Reference 

Chiorella sp. Wilson and Choudhri, 
1946 

Agmenuiium quadrupiicatum 100 ppb DDT Boush and Batterton, 
1972 

Anacystis nidulans 100 ppb DDT Boush and Batterton, 
1972 

Dunaiiella tertiolecta 80 ppb Bowes, 1972 

Cyclotelia nana 80 ppb, short lag Bowes, 1972 
before division started 

Thalassiosira fluviatilis 80 ppb, short lag Bowes, 1972 
before division started 

~~phidinium carteri 80 ppb, short lag Bowes, 1972 
before division started 

Coccolithus huxleyi 80 ppb, short lag Bowes, 1972 
before division started 

Porphyridium sp. 80 ppb, short lag Bowes, 1972 
before division started 

Phytoplankton culture 1.0, 0.1, 0.05, 0.01 ppm Loosanoff, et al., 
1957 

(mainly Chlorella, Chlamydomonas, other common species, and zooplankton) 

Dunaliella tertiolecta 100 ppb 

CoccoJithus huxleyi 100 ppb 

Chlamydomonas re.inharatii 0.2-20 ppm 

Cylindrospermum licheniforme 2 ppm, commercial 
preparations 
unialgal cultures 

Scenedesmus obliquus 2 ppm, commercial 
preparations 
unialgal cultures 

Chiarolla variegata 2 ppm, commercial 
preparations 
uni.algal ct!lt1.lres 

Menzel, et aI., 
1970 

Menzel, et al., 
1970 

Morgan, 1972 

Palmer and Maloney, 
1955 

Palmer and Maloney, 
1955 

Palmer and Haloney, 
1955 



TABLE IX (Cont'd) 

Algal species 

Nitzschia palea 

Microcystis aeruginosa 

. Gompllonema. parvul urn 

Anacystis nidulans 

Scenedesmus obliquus 

Euglena gracilis 

Microcystis aeriginosa, 
Anabaena cylindrica, 
Scenedesmus quadricauda, and 
Oedogonium sp. in unialgal 
cultures 

Conditions 

2 ppm, commercial 
preparations 
unialgal cultures 

2 ppm (toxic at first) 

2 ppm (reduced growth 
slightly at first) 

1 ppm 

1 ppm 

1 ppm 

up to 1.0 ppm 

68 

Reference 

Palmer and Maloney, 
1955 

Palmer and Maloney, 
1955 

Palmer and Maloney, 
1955 

Gregory, et al., 
1969 

Gregory, et al., 
1969 

Gregory, et al., 
1969 

Vance and Drummond, 
1969 
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There are several reports that DDT might upset a natural balance. 

In some cases, the changes were concluded to be no greater than those 

caused by climate or other ecological factors (Bishop, 1947; DeKoning 

and Mortimer, 1971). Others reported that the effects might influence 

the algal population composition in nature (Lazaroff and Moore, 1966; 

Woodwell, et a1., 1967; Mosser, et al., 1972; Batterson, et a1., 1972). 

Shane (1948) described a bloom of Synedra sp. in a reservoir due possibly 

to stimulation by a DDT spray or tv a reduction in the number of 

zooplankton grazers because of the DDT spray. A pond treeted with 0.02 

ppm DDT had a disappearance of Chara sp. and Spirogyra sp. within two 

months with the regrowth the following sununer less than 20% of the previous 

year's high (Bridges, et al., 1963). 

Negative effects on algae have been reported at low, normal, and 

high concentrations of DDT. Butler (1963, cited in Pimentel, 1971) 

found that phytoplankton communities exposed to DDT at 1 ppm in the lab 

for four ,hours had a reduction in productivity of 77.2%. Stadynk (1967, 

cited in Vance and Drununond, 1969) reported a significant reduction in 

14C assimilation by Scenedesmus quadricauda. Wurster (1968) found that 

DDT as low as a few ppb reduced photosynthesis in lab cultures of four 

species of marine algae in axenic culture and also a natural mixed 

phytoplankton community. Chiarella grown in less than 0.3 ppb DDT for 

three days had great morphological ch3nges which disappeared when the 

DDT was removed (Sodergren, 1968). The LD
100 

for Anabaena cylindrica 

is between 15 and 20 ppm DDT in unialgal culture, while for Nicrocystis 

aerugjnosa, Scencdesmus qlladric3uda, and Oedogonium sp. it is over 20 

ppm (Vance and Drummond, 1969). At the end of fcur days, DDT at 100 

ppm reduced the groHth of Scenedesmus and Eug.lena" but not Chiorella 

and Ankistrodesmus and varying pH did not chan!:;e the effect of DDT on 



~-------

70 

Chlorella (Christie, 1969). Growth of Monochrysis lutheri was reduced 

75% by 0.60 ppm DDT, while Protococcus sp. growth was reduced 50%, 

Dunaliella euchlora growth was reduced 25%, and Chlorella sp. and 

Phaeodactylum tricormutum growth was reduced very little by concentrations 

up to 1.0 ppm DDT (Uke1es, 1962). Cell division of Skeletonema costatum 

was blocked after two to three divisions by 100 ppb DDT, while division 

of Cyclotella nana was slowed (Henzel,. et aI., 1970). Another report 

found that 80 ppb DDT delayed cell division of Skeletonema costa tum for 

nine days, after which it continued at the normal rate (Bowes, 1972). At 

250 ppm, Coccolithus huxleyi and S. costatum had lag phases of two and 

ten days respectively before normal cell division began. The only morpho­

logical differences cited were that cells of S. costatUln in lag phase 

looked "unhealthy". Finally, a wide range in tolerance of waste stabili­

zation pond algae to DDT was reported (Wiedeman, 1964). Four isolates 

(Pediastruln, 161 and 265, and Chlorella, 185e and 370) had no tolerance 

for even 0.02 roM, the lowest concentration used. One isolate (Chloro­

coccum, 155) grew quite well at the highest concentration (20 roM), while 

11 others showed at least some growth at that concentration. Four other 

isolates (ChlamydoQonas, 29, stigeoclonium, 96, and Chlorococcuffi, 78 and 

292) grew as well in 10.0 ruM as they did in the controls. 

DDT Results 

DDT is a most perplexing compound to work with. Its solubility 

in water is very low, so it must be dissolved in a solvent before being 

added to the growth medium. Unfortunately, at tbe highest concentration 

used in this study, 50 ppm, the DDT precipitated when added to the medium. 

This precipitate scattered light and made it impoo.sib1e to obtain accurate 

readings with the Spectronic 20 at that concentratt.i.on. Therefore, only 
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visual readings are given for the growth of the isolates in 50 ppm DDT 

(Table X), but these follow the pattern for other concentrations for each 

isolate. For isolates 1 through 9, graphs of the effect of DDT on the 

growth curves, Figures ZO-Z2, are given as usual for concentrations of 

10 ppm and below where there ,.,as not the problem of interference from 

the DDT precipitate. Table XI gives visual estimations of growth for 

isolate 10. Because of the slow growth of several of the isolates in 

BBNZ, observations were made additionally at lZ weeks for algae 1, 4, 

7, 8, 9, and 10. The general effect of DDT was neutral, although in 

several cases there was a wide spread in the growth levels, especially 

at the final sampling point. The following isolates ,,,ere either uneffected 

or only mildly effected: Hormidium (1), Chlorococcum (3) and (5), 

Stichococcus chodati (6) and unidentified (8). Bracteacoccus (4) and 

Neochloris (7) show a growth pattern with inhibition at the higher 

concentrations and either no effect or a slight stimulation at the lowest 

DDT concentrations. Chiorella (9) showed a neutral effect at the 2, 4, 

and 6 week sampling points, but a stimulation by DDT at the 8 and 12 

week points. Finally, Stichococcus chodati (Z) and Hormidium flaccidium 

(10) had depressed growth at all concentrations of DDT. Figure Z2-10 

shows the effect of DDT on the total of isolates 1-9. This indicates a 

rather mixed reaction over all with little systematic effect. 

These results are comparible to those in the literature which 

found widely varying effects of DDT depending upon the organism being 

examined. Only Chlorella and Chlorococcum of the algae used in this 

study have been previously reported. Wiedeman (1964) described the 

effects of concentrations of DDT up to 20 mN (7090 ppm) on fi.ve isolates 

of Chlorococcum. One of these isolates gre~ as well in the highest 

concentration as in the controls (although tht l1'.aximum growth was found 
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FIGURE 20 

Effect of DDT on the growth of isolates 1 - 3. Abscissa - Time in 
weeks; Ordinate - Optical density as measured on the Spectronic 20 
at 425 nrn. The numbers for graph 1 are applicable to the other two 
graphs. 

1. Hormidium sp. (1) 

2. Stichococcus chodati (2) 

3. Chlorococcum sp. (3) 
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FIGURE 21 

Effect of DDT on the growth of isolates 4 - 7. Abscissa - Time in 
weeks; Ordinate - Optical density as measured on the Spectronic 20 
at 425 nm. The numbers for graph 4 are applicable 1:0 graphs 5 and 7. 

4. Bracteacoccus sp. (4) 

5. Chlorococcum sp. (5) 

6. StichoCOCCU5 chodati (6) 

7. Neochloris sp. (7) 
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FIGURE 22 

Effect of DDT on the growth of isolates 8 and 9 and a composite of 
isolates 1 - 9. Abscissa - Time in weeks; Ordinate - Optical density 
as measured on the Spectronic 20 at 425 nm. The numbers for graph 8 
are applicable to the other two graphs. 

8. Unknown (8) 

9. Chlorella sp. (9) 

10. Composite of isolates 1 - 9 
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TABLE X 

VISUAL ESTIMATIO~!S OF THE GROWTH OF ISOLATES 1 - 9 
IN 50 PPM DDT 

Weeks 

Isolate If 2 4 6 8 12 

1 T--- T--- T-- T- T+ 

2 T--- T-- T- T 

3 T-- T-- T- T+ 

4 N T--- T--- T--- T---

5 T--- T-- T- T .. 
6 T--- T-- T- T 

7 N N N N T-

8 N N N T-- F-

9 N T--- T--'~ T-- T 
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TABLE XI 

VISUAL ESTIMATIONS OF THE GROWTH OF 
HORMIDIUM FLACCIVIUM (10) IN DDT 

Weeks 

Concentration 2 4 6 8 12 

50 ppm N N T--- T- T 

10 ppm N N T--- T- T+ 

5 ppm N N T-- T T 

1 ppm N T--- T-- T F 

0.5 ppm N T--- T-- T F-

0.1 ppm T--- T-- T-- T+ F 

o ppm T--- T-- T- T+ F 
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in concentrations of 1. 0 and 2.0 mH). Three other isolates could survive 

in the highest concentration, with greatly reduced growth, and two of 

those isolates could gr.ow as well ill 10.0 "mt-t (3545 ppm) as in the control. 

The final isolate had a growth equal to the control at a maximum concen-

tration of 2.0 rn..'1 (709 ppm). In four of the five cases, growth was 

stimulated by at least one of the concentrations, most commonly 1.0 and 

2.0 ~I. The results at the concentrations used in this study are compar-

able to those from Wiedeman (1964). 

A number of studies have mentioned the effects of DDT on Chlorella 

sp. The reported results vary greatly. Less than 0.3 ppb DDT caused 

great morphological changes, but no growth effects (Sodergren, 1968); 

while from 1.0 ppm to 100 ppm did not reduce growth even with varying pH's 

(Ukeles, 1962; Christie, 1969). Finally, ~\Tiedeman (1964) reported that 

two of the six isolates of Chlorella which he investigated did not grow 

as well in the lowest concentration used (0.02 rUM or 7.1 ppm) as they did 

in the control. The other four isolates were inhibited at concentrations 

of either 0.2 or 1.0 mM (70.9 or 354.5 ppm), and none of the isolates was 

stimulated by any concentration used. Two other studies have also report-

ed little or no effect of DDT on Chlorella at low concentrations (Wilson 

and Choudhri, 1946; Falmer and Maloney, 1955). The present study found 

neutral effects for the first six weeks of observation and a stimulation 

for weeks eight and 12. This stimulation may not have been noticed in 

earlier studies since most of the studies reported in the literature were 

of much shorter duration (or of unspecified duration). However, the 

neutral effects for the first six weeks agree with most previous studies. 

Rotenone Introduction 

Rotenone is a botanicrt1 or natural compound with a biosynthesis similar 
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to that of the isoflavonoids (Fukami and Makajima, 1971) and the following 

structure: 

It is extracted from the dried rooes of Derris elliptica in southeast 

Asia and Indonesia and Lonchocarpus spp. in South America, Peru being 

the chief source (Farm Chemicals Handbook, 1965). The crude extract 

from the "tubaroot" includes a number of other derivatives, some of 

which are not insecticidal (O'Brien, 1967). This extract has long been 

used as a fish poison by Malayan natives; and in 1848, T. Oxley suggested 

that it might be useful as an insecticide against leaf-eating caterpillars 

(Fukami and Nakajima, 1971). In 1912, Nagai isolated the active ingre-

dient from tubaroot naming it rotenone; and in 1961, Miyano, Kobayashi, 

and Matsue first synthesized it. In addition to rotenone, 10 related 

compounds are known from plants of the legume family, some of \.,rhich also 

have insecticidal properties. 

Rotenone is short lived as an insecticide (O'Brien, 1967), break-

ing down on exposure to heat or light to at least 20 different, mainly 

noninsecticidal compounds, the major toxic one being 6aS, 12aS-rotenolone 

(Cheng, et al., 1972). Toxicity is almost completely lost in as short a 

period as 10 days due to decomposition or other chemical changes and not 

to absorption and translocation in plants (Pagan and Morris, 1953). 

Rotenone becomes firmly bound in the mitochondria (Yamamoto, 1969) 

and acts by inhibiting the coupJed oxidation of NADH2 and the reduction 
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of cytochrome b, thereby blocking oxidation of all substrates oxidized 

by the NAD system (glutamate, a-ketoglutarate, pyruvate, etc.), but not 

interfering with the oxidation of succinate (O'Br.ien, 1967). The reason 

for its high toxicity to insects, fish, and pigs, but low toxicity to 

most mammals is still unknown, but differences in degradation rates have 

been proposed as a possible explanation. 

Little research has been done on the effects of rotenone on 

nontarget species as its use has been greatly curtailed since the 

introduction of many synthetic insecticides in the last 30 years. Only 

2,254 pounds (1022.4 kg) of the technical material were sold in Kentucky 

in 1968 (Moore, 1973). Rotenone does not leave harmful residues on 

vegetable crops (Farm Chemicals Handbook, 1965) and has no effect on 

cucumbers (Harcourt and Cass, 1955). 

Several studies have noted effects on aquatic microorganisms. 

Hooper (1948) found a decrease in the number of protozoans after treating 

a lake with derri.s root (cited in Cope, 1965). Hoffman and Olive (1961) 

noted that rotenone at a concentration of 1. 0 ppm applied to a lake re­

duced the number of entomostraca, rotatoria, and protozoa. Kiser, 

Donaldson, and Olson (1963) treated a shallow lake with 0.5 ppm rotenone 

and reported a complete removal of the open water zooplankton species 

for three months, a more gradual and shorter disappearance of the shore 

edge species, and only a reduction in numbers of those species in the 

dense weed patches. Of 42 cladoceran and copepod species in that lake 

none was permanently eliminated. A second lake was treated with 1 ppm 

of rotenone which penetrated to the thermocline at 30 feet (9.144 m) in 

six hours killing Cladocera and Copepoda as it sank. The zooplankton 

did not return to thejr prenppli.l:ation level for several months after the 
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lakes had become non-toxic to fish and been restocked. None of these 

studies made any mention of the effects of rotenone on phytoplankton or 

other plants. 

Rotenone Results 

The most common effect of rotenone on algal growth was inhibition, 

but it was also neutral in some cases and stimulatory in others (Figures 

23-25 and Table XII). These isolates which were definitely inhibited 

include Stichococcus chodati (2), Chlorococcum (3) and (5), Bracteacoccus 

(4), and unidentified (8). In several cases the pattern of inhibition 

was quite marked, with a gradual increase in growth from the highest 

concentrations to the control. That pattern is particularly apparent 

for isolates 3, 4, and 5. Chlorella (9) and Hormidium flaccidium (10) 

(Figure 25-9 and Table XII) were uneffected by rotenone as g~owth was 

almost identical at all concentrations and in the control. For the 

remaining three isolates, there was some stimclatory effect. Stichococcus 

chodati (6) was stimulated only at 10 and 50 ppm with the other concentra­

tions being very close to the control. Neochloris (7) was stimulated by 

all concentrations considerably at eight weeks, slightly at six weeks, and 

hardly at all at weeks two and four. Hormidium (1) was stimulated by 

all concentrations slightly at four weeks and considerably at the six, 

eight, and 12 week periods. Since rotenone is known to break down in 

the light to several other compounds, it is possible that those organisms 

which are stimulated by its presence are actually not responding to the 

rotenone but to one of its breakdown products since the stimulation occurs 

only at the later observation times when breakdown is likely to have occ­

urred. Figure 25-10 indicate::; the overall effect of rotenone across all 

algae studied. It confirms the above disccssion indicating that rotenone 
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FIGURE 23 

Effect of rotenone on the growth of isolates 1 - 3. Abscissa - Time 
in weeks; Ordinate - Optical density as measured on the Spectrcnic 20 
at 425 nm. The numbers for graph 1 are applicable to the other two 
graphs. 

1. Hormidium sp. (1) 

2. Stichococcus chodati (2) 

3. Chlorococcum sp. (3) 
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FIGURE 24 

Effect of rotenone on the growth of isolates 4 - 7. Abscissa - Time 
in weeks; Ordinate - Optical density as measured on the Spectronic 20 
at 425 nm. The numbers for graph 4 are applicable to the other three 
graphs. 

4. Bracteacoccus sp. (4) 

5. Chlorococcum sp. (5) 

6. stichococcus chodati (6) 

7. Neochloris sp. (7) 
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FIGURE 25 

Effect of rotenone on the growth of isolates 8 and 9 and a composite 
of isolates 1 - 9. Abscissa - Time in weeks; Ordinate - Optical 
density as measured on the Spectronic 20 at 425 nrn. The numbers 
for graph 8 are applicable to the other two graphs. 

8. Unknow~ (8) 

9. Chlorella sp. (9) 

10. Composite of isolates 1 - 9 
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TABLE XII 

VISUAL E~TIMATIONS OF THE GROWTH OF 
HO&~IDIUM FLACCIDIUM (10) IN ROTENONE 

Weeks 

Concentration 2 4 6 8 12 

50 ppm N N N T--- T+ 

10 ppm N N T--- T-- T 

5 ppm N T-- T- T+ F-

I ppm N T--- T-- T- T 

0.5 ppm N T--- T-- T- T 

o. I ppm N T--- T-- T- T+ 

o ppm N T--- T--- T- T+ 



is more inhibitory than stimulatory to the isolates. The control is 

basically at a higher level than the experimental conditions, with the 

highest concentration being lower than the others. 
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Since no previous work has been reported on rotenone and algae, no 

comparison of the present study and past studies can be made. The general 

finding of an inhibition of zooplankton appears to be similar to the 

prevalent negative effect on growth which was found in this study. 

~~lathion Introduction 

O,O-dimethyl S-bis [(carboethoh~)ethyl] phosphorodithioate, com­

monly called malathion, is a short-lived synthetic organophosphate pesti­

cide (O'Brien, 1966). It was introduced in the early 1950's (Haller, 1952) 

and has had increased use in recent years as a replacement for many of the 

persistent organochloride pesticides, 51,467 pounds (23,345.4 kg) being 

sold in Kentucky in 1968 (Hoore, 1973). The organophosphate insecticides 

as a group act by inhibiting acetylcholinesterase and, thereby, disrupt­

ing nerve function (Casida, 1974). Early studies (Metcalf and March, 

1953) indicated that they were transformed in vivo by oxygen and enzymes 

to their active forms, as the highly purified insecticides in vitro did 

not greatly inhibit insect cholinesterase. Malathion has a low toxicity 

for man~als, 1375 mg/kg being the acute oral LD50 for rats (Farm Chemi­

cals Handbook, 1965), while 100 ppm in the diet is considered safe for 

man (Spiller, 1961); and it is, therefore, used in preference to others 

of this group ~.,hich are more toxic to humans. 

In soil outdoors, malathion is very short-lived, but it may be 

more persistent in soil indoors (Spiller, 1961). There is no evidence of 

its volitilization from soils (Harris and Lichtenstein, 1961), but degra­

dation there npparently by chemical hydrylosis is directly related to 
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adsorption and pH (Menzie, 1972). A national survey of croplands in 43 

states (1684 sites) reported that 7.54% of the sites had been treated with 

malathion at an average rate of a.17 lb/A (0.19 kg/H) (Wiersma, Tai, and 

Sand, 1972b). Of 66 samples tested for residues, only 2 (3%) had traces 

of malathion at rates of 0.04 and 0.36 ppm. Other reports on persistence 

included a 75-100% loss in bioactivity in one week (Kearney, et al., 1969); 

a persistence of only two days (Laygo and Schulz, 1963, cited in Pimental, 

1971); an 85% reduction in three days and a 96.6% loss in eight days when 

applied at five Ib/A (about 3.2 ppm) (Lichtenstein and Schulz, 1964); and 

even with very heavy applications (76.6 lb/A [85.86 kg/H] the first year 

and 16 lb/A [17.9 kg/H] the second and third years) complete disappearance 

at the end of one year (Roberts, et al., 1962). Wiersma, Mitchell, and 

Standford (1972) sampling onion fields for malathion residues reported 

t.hat 13.6% had been tre:a ted with an average of 2.86 lb/ A (3.21. kg/H), but 

found no residues either in the soil or in the onions grown in those fields. 

Phytotoxicity to higher plants varies with the species from none 

(Haller, 1952; Roberts, et al., 1962; Spiller, 1961) to moderate (Haller, 

1952; Clower and Matthysse, 1952; Stafford, 1954; Haviland and Highland, 

1955; and Lichtenstein, et a1., 1962) to outright killing (Clower and 

Matthysse, 1954); and the effects include lower yields (Gojmerac, 1957) 

and reduced germination (Starks and Lilly, 1955; Strong, et al., 1959, 

and Gojmerac, 1956 and 1957). 

There appears to be little negative effect of malathion on soil 

fungi and bacteria, possibly because most spraying is done when the fungi 

are not active (Spiller, 1961). Trichoderma viride, a soil fungus, and 

Pseudomonas sp., a soil bacterium isc18ted from heavily sprayed northern 

Ohio soils, could metabolize malathion (Natsumura and Boush, 1966) while 

autoclaved soil did not break it dO~l. Certain colonies of T. viride 
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from a culture collection had a very marked ability to cause the breakdown 

of malathion through the action of carboA7lesterase(s). Degradation of 

malathion added to soil at 150 and 1500 ppm was indicated by a high level 

of CO2 production and was increased by the addition of glucose (Bartha, et 

a1., 1967). An initial inhibition of nitrification decreased with time as 

the chemical was either detoxified or a resistant nitrifying population 

developed. 

Reports of the effects of organophosphates on algae are few. Me­

thy parathion at 3 ppb applied to a lake three times between June 19 and 

August 7 caused a reduction in zooplankton followed by an Anabaena bloom 

which had not occurred the previous year when there was no treatment (Cook 

and Conners, 1963). Hurlbert, et al.: (1972) reported a rapid increase in 

phytoplankton and a reduction in herbivores after treating several ponds 

with Dursban at 0.025 and 0.25 lb/A (0.028 and 0.28 kg/H). They found 

blooms of blue-green algae in four ponds and a diatom in a fifth pond and 

concluded that the changes in species were likely due to a reduction in 

grazing. Malathion at 7.25 ppm inhibited growth of Euglena gracilis by 

48.9% in the light and 19.2~~ in the dark (1-1oore, 1970). Inhibition was 

less at lower concentrations and 0.15 ppm stimulated growth in the dark 

by 11.4%. Christie (1969) reported on the effects of malathion on several 

species of algae from waste stabilization ponds. After four days 100 mg/l 

caused growth effects ranging from complete inhibitiQn of Ankistrodesmus 

to a 2/3 reduction for Scenedesmus and a very slight reduction for Chlor­

ella to an increase of 2-1/2 times for Euglena. After seven days at the 

same concentration growth of Chiorella was greatly stimulated while Scen­

edesmus, Euglena, and Schroderia had growth reductions of 1/6, 1/3 and 

1/2 respectively. Further experiments ,.,ere carried out with axeni.c 

cultures of Chiarella. pyrenoidosa in a defined medium. The pH of that 
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medium influenced the effect of 100 mg/l over a period of seven days; at 

pH 9.0, growth was reduced for days one to five, but only slightly depres-

sed by day seven; while at pH 6.0, growth-reduction was very slight for 

all seven days. Lower concentrations, 0-10 mg/l, at pH 6.0 resulted in 

less than a 10% growth reduction for Chlorella. The general conclusion 

was that malathion was capable of altering the composition of a mixed algal 

community from waste stabilization ponds, but would not display a persis-

tent inhibitory effect. 

Malathion Results 

Two different purities of malathion were used in this investiga-

tion. The first was 95% purity, the technical grade. This is the form 

that is sold for public use, either diluted or mixed with an inert chemical. 

The other, 99% purity, was laboratory grade. Figures 26-31 and Table XIII 

show that the majority of the isolates were adversely effected by both 

forms of malathion with some very dramatic reductions in the growth curves, 

but no complete inhibitio~ of growth at the concentrations used. Stich-

ococcus chodati (2), Chlorococcum (3) and (5), Bracteacoccus (4), and 

unidentified (8) show a definite reduction in growth in both malathion 95 

and 99. In some cases, isolates 2 and 4 in particular, there is a systema-

tic drop in growth as the concentration of malathion is increased, "to7hile in 

other cases the presence of even a small amount of pesticide reduces growth 

and additional pesticide does not decrease growth further. In both puri-

tics, stichococcus chodati (6) has reduced growth at the first three 

sampling points, but at the last time period grows as well in at least 

one of the experimental conditions as in the controL This may indicate 

an initial suppression \vhich is overcome as the pesticide is either de-

graded or tied up in the cells. Hormidium (1), Neochloris (7), and 
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FIGURE 26 

Effect of malathion - 95 011 the growth of isolates 1 - 3. Abscissa­
Time in weeks; Ordinate - Optical density as measured on the Spectronic 
20 at 425 nm. The numbers for graph 2 are applicable to graph 3. 

1. Hormidium sp. (1) 

2. Stichococcus chodati (2) 

3. Chlorococcum sp. (3) 
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FIGURE 27 

Effect of malathion - 95 on the growth of isolates 4 - 7. Abscissa­
Time in weeks; Ordinate - Opitcal de~sity as measured on the Spectronic 
20 at 425 nm. The numbers for graph 4 are applicable to the other three 
graphs. 

4. Bracteacoccus sp. (4) 

5. Chlorococcum sp. (5) 

6. Stichococcus chodati (6) 

7. Neochloris sp. (7) 
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FIGURE 28 

Effect of malathion-95 on the growth of isolates 8 and 9 and a composite 
of isolates 1 - 9. Abscissa - Time in weeks; Ordinate - Optical density 
as measured on the Spectronic 20 at 425 nm. The numbers for graph 8 
are applicable to the other two graphs. 

8. Unknown (8) 

9. Chlorella sp. (9) 

10. Composite of isolates 1 - 9 
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FIGURE 29 

Effect of malathion-99 on the growth of isolates 1 - 3. Abscissa­
Time in weeks; Ordinate - Optical density as measured on the Spe~tronic 
20 at 425 nm. The numbers for graph 2 are applicable to graph 3. 

1. Hor.nidium sp. (1) 

2. stichococcus chodati (2) 

3. Chlorococcum sp. (3) 
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FIGURE 30 

Effect of malathion-99 on the grcwth of isolates 4 - 7. Abscissa-
Time in weeks; Ordinate - Optical density as measured on the Spectronic 
20 at 425 nm. The numbers for graph 4 are applicable to the other three 
graphs. 

4. Bracteacoccus sp. (4) 

5. ChlorococcUIlI sp. (5) 

6. Stichococcus chodati (6) 

7. Neochloris sp. (7) 
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FIGURE 31 

Effect of malathion-99 on the growth of isolates 8 and 9 and a composite 
of isolates 1 - 9. Abscissa - Time in weeks; Ordinate - Optical 
density as measured on the Spectronic 20 at 425 nm. The numbers for 
graph 8 are applicable to the other two graphs. 

8. Unknown (8) 

9. Chlorella sp. (9) 

10. Composite of isolates 1 - 9. 
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TABLE XIII 

VISUAL ESTIHATIONS OF THE GROWTH OF 
HORMIDIUM FLACCIDIUM (10) IN MALATHION-95 k~ 99 

Malathion-95 Weeks 

Concentration 2 4 6 8 12 

50 ppm N T--- T-- T-- T--

10 ppm N T--- T--- T-- T-

5 ppm N T--- T-- T- T-

1 ppm N T--- T-- T-- T-

0.5 ppm N T--- T-- T-- T-

0.1 ppm N T--- T-- T- T-

O ppm N T--- T--- T- T+ 

Malathion-99 Weeks 

Concentration 2 4 6 8 12 

50 ppm N T--- T-- T T+ 

10 ppm N T-- T- T+ F 

5 ppm N T--- T- T T 

1 ppm N T-- T-- T- T 

0.5 ppm N T-- T- F F+ 

0.1 ppm N T-- T- T+ F 

a ppm N T--- T--- T- T+ 
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Hormidium flaccidium (10) are in general uneffected by malathion. All 

have a slight depression in growth at the first sampling period, but by 

the second data point growth in at least one concentration is equal to the 

control and by six or eight weeks, there ar.e no significant differences. 

The only case of a significant difference in the response of an isolate to 

the different purities is for Chlorella (9). In that case, malathion 95 

does not cause a reduction in the growth, but the malathion 99 does. The 

growth recluction in the malathion 99 is particularly striking at the six 

and eight week sampling points. 

These results appear to agree with the literature reports which 

found varying effects depending on species. The only genus used in this 

study which had been reported on before was Chlorella. In that case, 

Christie (1969) reported that Chlorella pyrenoidosa was inhibited more by 

100 ppm of malathion at pH of 9.0 than at a pH of 6.0, but that by day 

seven, the difference ~as no longer significant. It is possible that the 

differences found in this study bet~een the effects of malathion 95 and 

99 may be due to a slightly different pH of the medium or to changes in 

the pH of the medium during growth. But since this study was over a much 

longer period than that of Christie, a definite comparison cannot be made. 

Further research is needed to clarify this point and investigate probable 

causes. 

Figures 28-10 and 31-10 indicate the overall effect of malathion 

on all isolates tested. It confirms the negative effects described above, 

with the control having a curve much above that of any of the experimental 

concentrations, and the highest concentrations being lower than the 

intermediary concentrations. One striking difference between the t~vo 

figures is that there is a significant gap between the 10 and 50 ppm 

concentrations for malathion 99, but an overlap for these curves for 
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malathion 95. This may indicate a difference between the two purities at 

higher concentrations, with manufacturing impurities masking the effect 

of the 95% purity. 

Dark Experiment-Results 

The purpose of this experiment was to determine if any of the 

isolates could use any of the pesticides as a sole carbon source. Since 

the amount of plant mass in any isolate was very small, growth was measured 

only visually. The results are shown in TABLE XIV. In the control groups, 

the presence of ethanol did not result in any systematic growth increase. 

It is difficult to determine if the results indicated in TABLE XIV are 

true growth or simply the ability of the isolates to survive, but not 

divide, in those conditions in the dark, the latter being the more likely. 

Parker (1961) reported heterotrophic growth of several algae isolated from 

soil both in defined media with added sugars and in Texas soil-water 

flasks when a bacterium also isolated from the same soil was present. In 

the latter case, growth was much slower than in the glucose solution. At 

the end of 14 months, there was a 16-fold increaSe in algal cells over 

the original, indicating an average of only four divisions of each of the 

original cells. Therefore, it is possible that even if the algae used in 

this study could grow at a very slow rate in the pesticides in the dark, 

the two month i~cubation time would not have been long enough to show 

that. The concentrations of sugars used in Parker and in other studies 

on heterotrophic growth (Wiedeman, 1964; Wiedeman and Bold, 1965) are 

always much higher than that of the pesticides used in this study so 

that might also be a factor in the present lack of heterotrophic growth. 

One result of this experiment which is readily evident upon inspecting 

TABLE XIV is that none of the algap. could survive in 10 ppm of DDT in 
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TABLE XIV 

GROWTH OF ALGAE IN VARIOUS PESTICIDES IN THE DARK 

Isolate If 

Pesticide 1 2 3 4 5 6 7 8 9 10 

Rotenone, 10 ppm N T-- N T-- N N T--- N N N 

Rotenone, 50 ppm N T-- N T-- N T--- T--- N N N 

Malathion-99, 50 ppm N T-- T--- T-- N N T-- N T--- T---

Malathion-95, 50 ppm N T-- T--- T-- N T-- T-- N T--- T---

DDT, 10 ppm N N N N N N N N N N 

2,4,5-T, 50 ppm N T-- T--- T-- T--- T-- T--- T--- T--- T---

2,4-D, 50 ppm N T-- T--- T-- T--- T-- T-- N T--- T---

Controls: 

TBn! T--- T-- "' T-- T--- T-- T--- N N N .1---
TBIH-EtOH N T-- T--- T-- N T-- T-- N T--- T---

BBM2 N T-- N T-- T--- T-- T-- N T--- N 

BBM2 - Fe N T-- T--- T-- T--- T-- T--- N T--- T---

BRM2 - Fe + EtOH T--- T-- T--- T-- T--- T-- T-- N T--- N 
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the dark, even though they all could grow in this concentration in the 

light. This could not.be due to the BBM2 medium or any of its variants 

as most of the isolates could survive in one or more of them. 

No algae were found in this study which were able to use any of 

the pesticides as a sole carbon source and grow in the dark. It is, how­

ever, possible that an investigation geared primarily at isolating algae 

that could so use them would be successful. This is particularly likely 

for the herbicide 2,4-D which has been found to be readily broken down 

a3d used as a carbon source by many bacteria, fungi, and actinomycetes 

(Appendix III). Because of the similarity between blue-green algae and 

bacteria (Stanier, et al., 1971), a search for an alga capable of breaking 

down 2,4-D or other pesticides would probably most profitably start with 

representatives of that group isolated from soil which had been sprayed 

at some time with the pesticide in question. Another group which might 

provide an alga which can utilize pesticides as a sole carbon source is 

the chlorococcalean algae (Division Chlorophycophyta, Order Chlorococ­

cales, Family Chlorococcaceae) since that group exhibited a great degree 

of heterotrophy in past studies (Parker, 1961). 

Although none of the isolates grew heterotrophically in the dark 

with the tested pesticides, there were some cases of stimulation of growth 

in the light. Wiedeman (1964) and Wiedeman and Bold (1965) described 

five ways in which organisms responded to supplemental carbon sources. 

The organisms in this study would fall in either their category 2 (obli­

gate autotrophs needing both light and air for growth) or category 3 

(obligate phototrophs which can grow in light either aerobically or with 

air excluded), a distinction which cannot be made on the basis of the 

present study. It is possible that the organisms in this study ~lich 
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were stimulated by one or more of the pesticides fall into category 3. 

That is, they can use the pesticide as a carbon source to supplement the 

natural carbon supply from carbon dioxide or can perhaps use it as a sole 

carbon source if air is excluded, as long as light is present, but cannot 

grow in the absence of light even in the presence of the stimulatory pes-

ticide. A second possibility is that the isolates which are enhanced by 

the pesticides in the light are able to use them as a supplemental source 

of carbon in a form of cometabolism, but cannot use them as a sole carbon 

source in the dark. Further study will be needed to determine if either 

of these hypotheses is correct. 

Results - Overall Effects of All Pesticides on Each Isolate - -- -- --- ----'--

Figures 32 and 33 show the average effects for each isolate for 

all six pesticides and give a good indication of the general reaction of 

each alga to pesticides. Stichococcus chodati (2), Chlorococcum (3) and 

(5), Bracteacoccus (4), and Chlorella (9) are all definitely inhibited by 

the addition of pesticides to the growth medium. Although the degree of 

inhibition varies, these organisms all show a definite pattern with lower 

growth in all concentrations of pesticides. In the case of isolates 3, 4 

and 5, the inhibition is particularly orderly with the growth curves for 

10 and 50 ppm falling below those for the other pesticide concentrations 

which in turn are lower than that for the controls. Stichococcus chodati 

(6) and unidentified (8) have patterns which are indefinite, not having 

any obvious order to the different concentrations and the controls. This 

is a particularly interesting difference between isolates 2 and 6 which 

have been tentatively identified as the same species. Finally, Hormidium 

(1) and Neochloris (7) have a pattern which indicates an overall stimula-

tion in grm.;rth due to the presence of pesticides. In both cases this is 
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FIGURE 32 

Interactions of all pesticides on the growth of isolates 1 - 4. 
Abscissa - Time in weeks; Ordinate - Optical density as measured on 
the Spectronic 20 at 425 nm. The numbers for graph 2 are applicable 
to graphs 3 and 4. 

1. Hormidium sp. (1) 

2. Stichococcus chodati (2) 

3. Chlorococcum sp. (3) 

4. Bracteacoccus sp. (4) 
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FIGURE 33 

Interactions of all pesticides on the growth of isolates 5 - 9. 
Abscissa - Time in weeks; Ordinate - Optical density as measured 
on the Spectronic 20 at 425 nm. The numbers for graph 5 are 
applicable to graphs 6, 7, and 9. 

5. Chlorococcum sp. (5) 

6. Stichococcus chodati (6) 

7. Neochloris sp. (7) 

8. Unknown (8) 

9. Chlorella sp. (9) 
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more marked at the later data points which might indicate an ability of 

these organisms to overcome any initial inhibition due to the pesticides 

and then use them to supplement their growth. 



DISCUSSION 

This section will be divided into four parts covering: 1) stimu­

lation due to certain pesticides; 2) analysis of growth effects of each 

pesticide; 3) the possible natural interactions of these pesticides and 

soil algae; and 4) suggestions for further research. 

Stimulation Effects 

The stimulation of growth of some isolates by four of the five 

pesticides tested (only malathion did not increase the growth of any 

isolates) is interesting since it was shown that none of the algae can 

use the pesticides as a sole carbon source in the dark. Other workers 

have also reported increased growth in some cases with the pesticides 

used. Since the tubes in which the isolate were growing were not shaken, 

it is probable that the amount of CO 2 in the media was the limiting factor 

in grml7th. It is known that suboptimal photosynthesis rates in higher 

plants are often the result of a lack of CO2 (Salisbury and Ross, 1969), 

and it is possible that this situation occurred in the tubes in the pre­

sent experiment toward the end of the daily 12 hour light period. Since 

the stimulation of growth is most pronounced at the later sampling periods, 

there might be a greater deficiency of CO2 as the number of photosynthe­

sizing cells increased. Wiedeman (1964) and Wiedeman and Bold (1965) 

have shown that some algae can utilize supplemental carbon sources under 

varyi.ng conditicus of light and air. Organisms which could grow either 

aerobically or with air excluded but only in the light Here labeled obli­

gate phot~trophs. Wiedeman (1964) reported a photometabolic process for 

many of the algae he 3tudjeJ when they were grwll.' in glucose, mannose, 

118 
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fructose, sodium acetate, and casein hydrolysate with exogenous carbon 

dioxide excluded. It is possible that the organisms in this study which 

were stimulated by the pesticides are obligate phototrophs, being able to 

take advantage of the supplemental carbon source (pesticide or ethanol) 

to increase their growth when the available CO2 has been depleted or re-

duced to a very low level, but only in the presence of light. Further 

studi~s with CO
2 

excluded or studies folloHing the breakdown of the pesti­

cides in the culture medium could clarify this point. 

It is interesting to note that isolates 1, Hormidium sp., and 7, 

Neochloris sp., were both stimulated by 2,4-D, 2,4,S-T and rotenone, and 

were uneffected by malathion. The only pesticide toward which they re-

acted differently was DDT, with 1 being uneffected and 7 being inhibited 

by the highest concentrations used. These 2 isolates appear to be the 

most resistant to pesticides and ~l7ould be the best species to test for 

possible pesticide degradation. Further studies of the means by which 

they are able to use a variety of pesticides to enhance their growth and 

to avoid the negative effects often found with other isolates could pro-

vide further insights into the pesticide-soil algae interaction. 

Growth Effects 

The five different pesticides used in this study fall into the 

following general sequence from least inhibitory to most inhibitory to-

ward the growth of the isolates used in this study: 2,4-D, 2,4,5-T, DDT, 

rotenone, and malathion. Discussion of the possible mechanisms for these 

effects will follow in that order. 

2,4-D 

As early as 1950, 2,4-D was known to effect many plant processes 

(Norman, et a1., 1950; Freeland, 1950; Van Overbeek, et a1., 1951; Wort 



120 

and Cowie, 1953). However, in spite of 30 years of work, the mode of ac­

tion of 2,4-D and the reason for its specificity for dicots over monocots 

is still not completely understood (Moreland, 1967; Salisbury and Ross, 

1969). The current theory is that 2,4-D and other auxin type herbicides 

act at the nuclear level by enhancing synthesis of RNA and protein and, 

therefore, tissue proliferation. The extra synthesis induced by these 

herbicides might preclude normal cell development and function, thereby, 

being the basis for herbicidal action by upsetting the natural metabolic 

balances resulting in uncontrolled metabolism and death of the plant 

(Hilton, et al., 1963; Moreland, 1967; Key, 1963; Key, et al., 1960; Sal­

isbury and Ross, 1969; Chrispeels and Hanson, 1962). Hm.rever, many re­

sponses are observable within a few minutes of application, a period too 

short for RNA synthesis. Therefore, it may be that auxins and auxin-like 

herbicides act in more than one way (Moreland, 1967; Salisbury and Ross, 

1969). Even if this hypothesis is correct for the mode of action of 

2,4-D and other auxin-type herbicides, it does not account for 2,4-D's 

specificity for broad leaf plants. It is possible that auxin selectivity 

is associ.ated with cyclic AMP which is known to be involved in the physio­

logical responses of animal hormones which are often exceedingly specific 

(Salisbury and Ross, 1969). It is also possible that differential select­

ivity of 2,4-D is due to differential penetration, translocation, and 

inactivation rates in susceptible and resistant plants. 

This study found that nine of the ten algae tested were either 

unaffected or stimulated by 2,4-D. From the preceeding discussion, it 

would appear than 2,4-D either does not penetrate into the algal cell or 

if it does, is rapidly detoxified there. Since 2,4-D is an auxin-mimicing 

herbicide, and auxins in general have lit tIt effect on algae, even though 

at least some algae are kno~m to contain lAA (Salisbury and Ross, 1969), 
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it is not too suprising that 2,4-D is basically neutral toward algae. 

The cne isolate which was inhibited, Chlorella (9), may be more sensitive 

to auxins and may not be able to breakdown those compounds readily when 

they enter the cell or to keep them from entering. 

The stimulation of t;yo isolates, Hormidium (1) and Neochloris (7), 

is interesting since it was shown that neither can use 2,4-D as a sole 

carbon source in the dark. Other workers have also reported stimulation 

of algal growth in some cases in the presence of 2,4-D. Respiration of 

Chlorella pyrenoidosa was stimulated at concentrations comparable to those 

used in this study (about 35 ppm, Erickson, et al., 1955), while Wedding, 

et a1., (1954) reported a stimulation of photosynthesis in the same algae 

at pH of 7.0 and above (comparable to the pH of the TBIM medium in this 

study) at 2,4-D concentrations of 2xl0-3M (442 ppm). Wiedeman (1964) 

reported that ttYO isolates, Dictyosphaerium 380 and Scenedesmus 410, grew 

better at 2.0 mM 2,4-D than they did in the control. Therefore, it is 

possible that the stimulation in the present study was due to similar 

mechanisms with the increase in growth due to increased phytosynthesis 

and respiration. 

2,4,5-T 

The general effects of 2,4,5-T in this study were found to be only 

slightly different that those of 2,4-D, two isolates being inhibited by 

2,4,5-T (Chlorococcum (3) and (5» while only one was inhibited by 2,4-D. 

2,4,5-T, like 2,4-D, is one of the chlorophenoxy herbicides and is, 

therefore, similar to naturally occurring auxins. Structurally, the only 

difference between 2,4-D and 2,4,5-T is that the latter has an additional 

chlorine atom at the number '5 position of the benzene ring in place of an 

hydrogen. This small structural difference, however, has a large 
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physiological difference. 2,4,5-T is very highly toxic toward woody plant 

species and is commonly used to remove undesired shrub growth. Because of 

a dioxin which results as a manufacturing impurity, 2,4,5-T was suspended 

from use around the home, near water, on food crops, and in South Vietnam 

in April, 1970. This dioxin is supposed to be very toxic to humans and 

other organisms. Since the 2,4,5-T used in this study was a purified form 

and not that generally sold in the market place, these dioxins should not 

have had any effect on the results reported here. 

A comparison of Figures 14-16 and 17-19 shows that two isolates, 

Chlorococcum (3) and (5) are more susceptible to 2,4,5-T than to 2,4-D. 

The inhibition at concentrations of 10 and 50 ppm is quite obvious in both 

isolates in 2,4,5-T. The probable mechanism which results in inhibition 

due to 2,4-D in the algae is also probably acting in the case of 2,4,5-T 

so the analysis described above Hill not be repeated. 

The isolates which were stimulated by 2,4-D, Hormidium (1) and 

Neochloris (7), were effected in the same way by 2,4,5-T. Isolate 1 has 

a greater stimulation due to 2,4,5-T while 7 is more effected by 2,4-D. 

The stimulation may be a result of photometabolism of 2,4,5-T under 

conditions of low CO2 as was discussed in the first section of the 

discussion. The only reports on the effects of 2,4,5-T on physiological 

processes is that 1 ppm did not decrease productivity of a phytoplankton 

sample over a period of four hours (Butler, 1963, cited in Pimentel, 

1971). Therefore, the effect on photosynthesis or other physiological 

processes is uncertain. 

DDT 

Although the insecticidal properties of DDT have been knoHn for 

over 35 years, an understanding of its mechanism and selectivity at a 
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cellular level is still far from complete. Its primary effect is on the 

central nervous system. (Moore, 1967), apparently in increasing the potas-

sium permeability of the axons of the sensory nerves (O'Brien, 1967). 

The effects it has on plants may be related, but cannot be exactly the 

same since plants have no nerves! Reports on the effects of DDT at the 

cellular level with higher plants have shown a significant respiration 

reduction (Lichtenstein, et al., 1962) and a reduction in the light re-

action of photosynthesis in susceptible varieties of barley (Lawler and 

Rogers, 1967). The latter reaction to DDT was controlled by a single 

major gene, susceptibility being dominant to resistance. With algae, DDT 

has been reported to reduce productivity of phytoplankton communities 

(B I 1963 . d' p' 1 1971) d C14 "1' (S d k ut er, • c~te ~n 1mente, ; re uce aSS1m1 at10n ta yn , 

1967); reduce photosynthesis (Wurster, 1968); and block or delay cell 

division (Menel, et al., 1970; Bowes, 1972). Other studies have reported 

morphological changes and both growth stimulations and growth reductions 

from varying concentrations of DDT. 

The present study found varying effects due to DDT depending upon 

the isolate under consideration. The inhibition found in four of the iso-

lates tested here could be due to any of the mechanisms discussed above. 

However, the actual basis for this negative effect cannot be determined 

from the present study. The difference in susceptibility between the 

isolates, especially striking between the two isolates tentatively iden-

tified as Stichococcus chodati (2 and 6), is probably due to e.ither dif-

ferential brea.kdown rates or to differential effects within the cell. 

Resistance is probably not due to ability to keep the molecule from enter-

ing the cell since it has been shown that uptake is passive and very 

rapid even with dead cells (S~dergren, 1968). 
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Rotenone 

Rotenone acts by inhibiting the coupled oxidation of NADH2 and the 

reduction of cytochrome b. a pathway common to all aerobic cells. It is 

not surprising then that it had negative effects on the growth of half of 

the isolates tested in this study. What is most surprising is that it 

was neutral toward two isolates and stimulated the growth of three others. 

Rotenone could have lost its effectiveness due to breakdoTNQ from exposure 

to light within the early part of the experiment. Some of the breakdown 

products are also toxic, and it may be that the isolates most affected are 

those that are inhibited both by rotenone and its toxic breakdow~ products. 

Those algae which were not effected may have a resistance to the breakdown 

products or may be able to modify them to other nontoxic chemicals. Two 

of the three isolates which were stimulated by rotenone were the same ones 

which were stimulated by 2,4-D and 2,4,S-T (Hormidium (1) and Neochloris 

(7)). These two isolates appear to be particularly well adapted to using 

supplemental carbon sources to increase their growth when light is 

present. The third isolate which was stimulated by rotenone was 

Stichococcus chodati (6) while the other isolate tentatively identified 

as the same species, (2), had a definite inhibition in growth due to 

rotenone. This difference may be due to difference in the physiological 

responses of the two strains. Finally, the pattern of stimulation of 

isolate 6 is interesting since it is stimulated only by the two higher 

concentrations and not by the lower ones indicating a possible threshold 

level for stimulation. Further studies will be necessary to determine the 

reason for the patterns of stimulation and the difference in response of 

two similar isolates. 
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Malathion 

Malathion, an organophosphate, had the strongest effect of any of 

the pesticides tested, inhibiting seven isolates, being neutral to three 

and stimulating none. The effect of inhibition is quite systematic, with 

the highest concentrations inhibiting most and successively lower concen­

trations being less inhibitory. The organophosphates exert their inhibi­

tory action in animals by reacting with cholinesterase (O'Brien, 1967). 

Specifically, the OH- of a serine at the active site of cholinesterase 

combines with the phosphorous of the organophosphate, forming a covalent 

bond between the enzyme and the pesticide. Since esterases are corr~on 

in algal cells, malathion likely exerts a negative effect on algae by 

tying up and inactivating essential esterase enzymes. This would explain 

the systematic effect regularly seen in this study. At higher concen­

trations more enzymes would be tied up with a greater disruption of the 

intermediary metabolism of the cells as a consequence. Organophosphates 

are activated in vivo when S-alkyl isomerization occurs (a CH3 - group 

moves from an oxygen atom to the sulfur atom. This makes the phosphorous 

more positive than it is in the original form, and it is able to react 

more rapidly with esterases.) Another change which can take place in 

vivo is the complete replacement of the sulfur atom by oxygen. (For mal-

athion, the resulting sulfurless compound is called malaoxon and is a 

more potent cholinesterase inhibitor than malathion). Christie (1969) 

found that at least some of the c14 malathion added to an axenic culture 

of Chiarella pyrenoidosa was converted to malaoxon. Therefore, a simi­

lar conversion may have occurred in the algae i.n this study which were 

inhibited by malathion. 

Carboxyesterases 8.nd phosphatases are known in rnamma.ls and insects 

which degrade malathion to mal~thion acid ( .. :hieh can be further cleaved to 
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malathion diacid) or to dimethyl phosphorothioate. Degradations of this 

type may also be possible in algae and may account for the few isolates 

which were found to be uneffccted by umlathion. Certain compounds are 

known which can, however, tie up the enzymes which are responsible for 

this hydrolysis and, therefore, increase the toxicity. 

Therefore, it is probable that the inhibitory effect of malation 

is due to its combining with essential esterases in the algal cells. 

Those organisms which are not effected are probably better able to con-

vert malathion to nontoxic compounds or to decouple the enzyme-insecticide 

bond. That no cases of stimulation were found indicates that none of the 

isolates studied were able under any conditions to profit from the pre-

sence of malathion, even if it were degraded. 

Natural Interactions 

As S. J. L. Wright has stated (1971): 

The microbiologist usually aims to study herbicide degradation 
under defined conditions, using pure microbial cultures and pure 
chemicals rather than commercial formulations. Such conditions 
are often so far removed from those in the soil environment 
as to render laboratory studies quite artificial. This is an 
unfortunate admission for physiological-ecological investiga­
tions and indicates that information obtained from in vitro 
experiments cannot necessarily be projected with certainty to 
the field where the microbial population and environment are 
infinitely more complex. 

The factors which must be considered for a full study of the effects of 

a given pesticide on a given species include; 1) the properties of the 

pesticide; 2) the manner of its application; 3) the extent to which the 

species contacts the pesticide; 4) the response of the species (acute 

and chronic toxicity); 5) information on the factors which control the 

population size of the species in the absence of the pesticide; and 6) 

toxicity information on the pesticide's effects on any species which 

control the given species in the absence of the pesticide. If all this 
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information were known, then a hypothesis could be made on the effect the 

pesticide may have on the species in nature (Moore, 1967). Since the 

present study does not include all these factors, the caution of Wright 

must be kept in mind during the speculation which follows. 

Of the five pesticides tested in this study, the two with the 

most harmful effects, rotenone and malathion, are also the ones which 

are least persistent. (However, DDT, the most persistent pesticide, is 

nearly as inhibitory). Ther~fore, the effects of these two pesticides, 

although they may be temporarily drastic, may not be long lasting. But 

it must be remembered that even sublethal effects may have a potentially 

great ecological importance. In addition, there are indirect effects 

which a pesticide may have on anyone species; delayed toxic effects, 

reduction of habitat, and removal of symbionts, competitors, and grazers 

(Hoore, 1967). Because none of these pesticides had a uniform effect 

across all the algae tested, they could alter the species composition of 

a mixed soil population and have some of the indirect effects noted above. 

As early as 1953, Aldrich suggested that 2,4-D might change the composi­

tion of microorganism populations with repeated applications by encour­

aging the growth of organisms which can decompose 2,4-D and use it as a 

carbon source while at the same time reducing the populations of other 

organisms which are susceptible to its effects. Cook and Conners (1963) 

and Hurlbert, et al. (1972) reported changes ~n natural species composi­

tion following application of different organophosphates. Christie (1969) 

found that malathion altered the species composition of a mixed algal 

community associated with waste stabilization ponds. Similarly the pre­

sence of DDT caused changes in species proportions in a mixed culture 

of two algal species (Nosser, et a1., 1972) and in natural algal popula­

tions (Lazaroff and Hoore, 1966; ,",oodwell. ct <1'1., 1967; Batterson, et 
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al., 1972; Shane, 1948; and Bridges, et al., 1963). Kiser, et al. (1963) 

and Hooper (1948, reported in Cope, 1965) found reductions in zooplankton 

in lake environments due to the presence of rotenone. So the present 

pesticides. even when there are no direct effects, may change the species 

composition of the soil algae co~nunity. 

It appears from this study that none of the algal isolates by 

themselves would be able to break down the pesticides in the soil. It 

is, however, possible that the algae could in concert with other micro­

organisms cause a change in structure of the chemicals which would lead 

to their gradual breakdown and disappearance. Alexander (1965b) indicates 

that microorganisms cannot always detoxify and decontaminate soils at a 

sufficient rate to keep the level of even readily biodegradable pesticides 

low. And since some of these chemicals are modified in various ways by 

different microbes, they may not have the same toxicities in every soil. 

Studies, therefore, must also focus on all potential detoxification pro­

ducts and how they effect soil microorganisms. 

Therefore, although it is difficult to say with great certainty 

from this study alone, it is probable that the pesticides tested would 

have an effect in nature on the species tested and would alter the ecol­

ogical balance of the soil microflora. 

Suggestions for Further Research 

This study, like most research, while answering a few questions 

has raised many new ones. Efforts should be made to expand the present 

study to include organisms of different algal groups, especially the 

blue-greens and diatoms which are common members of the soil microflora. 

Also, work should be done using mixed populations to determine what 

effects the pesticides have on diversity of the soil flora and the ef-
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fecta that interactions of more than one organism isolated from the same 

habitat can have on the pesticides. Further work could be done using 

technical grades of the pesticides studied here to determine if there are 

differences due to the presence of manufacturing impurities. A concerted 

effort should be made, particularly among the blue-green algae, to find 

isolates which can use pesticides, especially 2,4-D as a sole carbon 

source. Along this line, a dark experiment of 12-14 month duration could 

be performed to determine if any of the isolates could use the compounds 

as a sole carbon source in the dark, but at a very slow rate. Tests could 

be undertaken with the organisms which were stimulated by the pesticides 

to determine if they are actually breaking down any of the pesticides to 

any extent. Other studies could evaluate the ecological effects of pes­

ticide interaction (potentiation). Also, a study to determine the mech­

anisms of resistance of certain isolates would be informative. Finally, 

detailed morphological and physiological studies may find effects due to 

the presence of pesticides which lo7ere not apparent from the present study. 

While this study was only a beginning, it has shown that there 

are definite interactions between soil algae and pesticides which have 

not been considered before. These interactions have been found even at 

concentrations normally used as pesticidal levels and not only at the 

very high levels often used in studies of this type. Future studies 

could involve soil scientists, biochemists, bacteriologists, mycologists, 

and phycologists working together to determine the ultimate fate of 

pesticides in the environment and their effect on the soil microflora. 

~*~"""'«-.II!----~---------



SUMMARY AND CONCLUSIONS 

A study of the effects of five different pesticides on soil algae 

was made. This project involved isolating into axenic culture ten algae 

from soil collected in Oldham and Jefferson Counties, Kentucky, and then 

determining the effects of different concentrations of each pesticide on 

the growth curve of each isolate over an eight or 12 week period, and also 

determining if any of the isolates could use any of the pesticides as a 

sole carbon source. 

The algae isolated into unialgal, bacteria-free (axenic) culture 

were, with one possible exception, members of the Division Chlorophycophy­

tao Isolate 8, still unidentified, gave a very weak or negative response 

for starch when tested with potassium iodine. It is, therefore, possible 

that isolate is a member of the Xanthophycophyta. Two basic growth media 

were used, TEIM for most of the experiments and BBM2 for the experiments 

with DDT. All organisms, except for 111, grew better in TBIM than in BBH2, 

possibly because that was the medium used for isolation purposes or 

because the algae were better able to grow in an alkaline than an acid 

medium. 

Statistical analysis revealed that the three way interaction of 

pesticide-algae-concentrations was significant at all data collection 

points. Therefore, the two way interactions of pesticide-algae, pesti­

cide-concentration, and algae-concentrations and the main effects must be 

interpreted with caution. Due to the significant interactions, the re­

sults of this study cannot be generalized to other algae, pesticides, Or 

concentrati.ons. 

130 
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The results of each pesticide in the light may be summarized as 

follows: 

1) 2,4-0 was basically neutral, inhibiting one isolate, stimulat­

ing two others, and showing neutral effects toward the other seven. 

2) 2,4,S-T was also basically neutral: it inhibited the growth 

of two algae, stimulated two others, and had no effect on the growth of 

the other six. 

3) DDT had mixed effects: negative effects were found with four 

isolates, stimulation with one, and neutrality with the other five. 

4) Rotenone also had mixed effects: inhibiting five isolates, 

stimulating three, and having no effect on the other two. 

5) Malathion was used in two purities, 95% and 99%, the first 

being technical and the second laboratory grade. Except for isolate 9, 

the results were the same with both purities. There were six cases of 

inhibition, three cases of neutrality. and none of stimulation. Isolate 

9 was inhibited by one of the purities but not the other. 

The results of the dark experiment showed that none of the isolat­

es could use any of the pesticides as a sole carbon source to sustain 

growth in the dark at a level comparable to that in the light. At least 

some of the isolates could, however, survive for a period of eight weeks 

in all the pesticides except DDT. At the end of eight weeks there were 

no visible traces of algae in any of the tubes containing DDT. 

Other observations and results can be summarized as follows: 

1) In at least some cases, the isolates could use the pesticides 

to supplement their growth. This is probably a result of phototrophy 

since they could not use any of the pesticides to support their growth 

in the dark. 
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2) Isolates 1, Hormidium sp., and 7, Neochoris sp., are best 

able to withstand the presence of pesticides and to use them to supple­

ment their growth. 

3) Although four of the pesticides in this study (all but DDT) 

are rapidly broken down in the soil, repeated applications could still 

have an effect on the soil microflora. Changes in the proportions of 

different algal species could occur as a result of stimulation of certain 

organisms and inhibition of others. 

4) Finally, suggestions for further studies were made. 
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APPENDIX I 

DECOMPOSITION TIME FOR 2,4-D UNDER LAB CONDITIONS 

Time for Decomposition Conditions Reference 

3-8 weeks wet and dry soil Jorgensen and Hamner, 
1948 

2 weeks - 18 months wet and dry storage Mitchell and Marth, 
1946 

6 weeks 

120 days 

3 to over 7 months 
(95% disappearance) 

24 hours (81-85%) 

2-3 weeks 

10 days 

6-7 days 

less than 13 weeks 

8, 11, or 21 days; 
6-7 days 

23, 26, or 94 days 

less than 8 weaks 

14 days 

11 or 15 months 

67 days 

40, 80, or 160+ days 

over 7 weeks 

over 6 months 

lake water 

different soils 

lake muds previously 
adapted 

Hans, 1946 

Aly and Faust, 1964 

Montgomery, et al., 
1972 

Aly and Faust, 1964 

Jensen and Peterson, 
1952 

Whiteside and Alexander, 
1960 

Bell, 1957 

Kries, 1947 

varying concentrations; Newman and Thomas, 1950 
retreatment 

different soils Alexander and Aleem, 
1961 

greenhouse, un1eached DeRose, 1946 

dry storage, different 
concentrations 

in greenhouse 

different dosages and 
soil pHs 

Audus, 1951 

Weaver, 1948 

DeRose and Newman, 1948 

Martin, 1946 

Taylor, 1947 

organisms from activated Schwartz, 1967 
sludge 
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APPENDIX II 

DECOMPOSITION TTI1ES FOR 2,4-D UNDER FIELD CONDITIONS 

Time for decomposition 

less than 93 days 

over 45 days 

less than 80 days 

1 month 

4-6 weeks 

1 or 4 weeks or 
longer 

6 weeks; 
5 weeks 

1-4 weeks 

4-18 weeks 

2 or 6 weeks 

Conditions 

95% disappearance 

different soils and 
doses 

untreated soil; 
soil treated previous 
year 

different concentra­
tions 

Reference 

DeRose and Newman, 1948 

Weaver, 1948 

DeRose, 1946 

Matsumura, 1972 

Edwards, 1964 

Ogle and Warren, 1954 

Newman, et al., 1952 

Klingman, 1961 (cited 
in" Pimentel, 1971) 

Hernandez and Warren, 
1950 (cited in Pimentel, 
1971) 

Cope, et al., 1970 
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APPENDIX III 

ORGANISMS mnCH CAN USE 2,4-D AS A SOLE CARBON SOURCE 

Organism 

Bacterium globiforme type 

Rhizobium meliloti 

Flavobacterium aqua tile 

F. peregrinum 

Acllromobacter sp. 

Pseudomonas sp. 

Aspergillus niger 

Corynebacterium sp. 

Mycoplana sp. 

Penicillium sp. 

Scopulariopsis brevicaulis 

Fusarium neoceras 

Unidentified: 

Gram-negative bacterium, looked 
like Corynebacterium 

Gram negative, motile rod 

Bacterium 

Reference 

Audus, 1950, 1951; Audus and 
Symonds, 1955 

Nilsson, 1957 (cited in Audus, 
1964) 

Jensen and Peterson, 1952; Jensen, 
1960 (cited in Audus, 1964) 

Steenson and Walker, 1957, 1958 

Bell, 1957, 1960; 
Steenson and lvalker, 1957, 1958 

Fernley and Evans, 1959 

Woodcock, 1964 

Rogoff and Reid, 1956 

Walker and Newman, 1956 

Mickovski, et al. , 1968 

Mickovski, et a1. , 1968 

Mickovski, et a1., 1968 

Jensen and Peterson, 1952 

Evans and Smith, 1954 

Laos, et al., 1967 
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APPEWIX IV 

MICROORGANISMS INVOLVED IN AT LEAST ONE STEP OF DDT BREAKDO~~ 

Microorganism 

Yeast 

Lake plankton 

Proteus vulgaris 

Nocardia sp. 

Streptomyces il.ureofaciens 

s. cinnamoneus 

s. viridochromogenes 

s. albus 

s. antibioticus 

Escherichia coli 

Klebsiella pneumonial 

Aerobacter aerogenes 

23 plant pathogenic and saprophytic 
bacteria 

Trichoderma viride 

Gastrointestinal microflora of the rat 

Geotrichum sp. 

Rumen microorganisms 

Hydrogenomonas sp. 

Pseudomonas sp. 

P. aeruginosa 
P. fluroscens 

Reference 

Kallmand and Andrews, 1963; and 
Ledford and Chen, 1969 

Miskus, et al. , 1965 

Barker, et al. , 1965 

Chacko, et al. , 1966 

Chacko, et al. , 1966 

Chacko, et al. , 1966 

Chacko, et al. , 1966 

Chacko, et al. , 1966 

Chacko , et al. , 1966 

Wedemeyer, 1966 

Wedemeyer, 1966 

Wedemeyer, and Kearney, et al., 
1969 

Johnson, et al., 1967 

Matsumura and Boush, 1968; and 
Patil, et al., 1970 

Braunberg and Beck, 1968 

Ledford and Chen, 1969 

Frjes, et al., 1969 

Focht and Alexander, 1970, 1971; 
Focht, 1972; Alexander, 1972; 
pfaender and Alexander, 1972 

Patil, et al., 1970 

Cope, 1965 
Cope, 1965 
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Microorganism 

Bacillus sp. 

Micrococcus sp. 

Mucor alternans 

Monilaceae sp. 

Arthrobacter sp. 

Unidentified soil microbe 

Gram positive rod 

Reference 

Pati1, et a1., 1970 

Pati1 et a1., 1970 

Anderson, et a1., 1970 

Focht, 1972 

Pfaender and Alexander, 1972 

Pati1, et a1., 1970 

Ledford and Chen, 1969 
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DDT METABOLITES 

~letabolites 

Dicofol 

TDE (DDD) 
(2,2-bis(p-chlorophenyl)-1,1-di­
chloroethane) 

DDE (1,1-dichloro-2,2-bis(p­
chlorophenyl) ethylene) 

DDA (2,2-bis-(p-chlorophenyl)acetate) 

DBP (4,4'-dichlorobenzophenone) 

DDDE 

DDNS (1-bis(p-chloropheny1)-ethane) 

p-ch1orobenzoic acid 

Reference 

Matsumura and Boush, 1968; 
Anderson, et a1., 1970 
Pati1, et a1., 1970 

Ledford and Chen, 1969 
Ko and Lockwood, 1968b 
Kallman and Andrews, 1963 
Miskus, et a1., 1965 
Barker, et a1., 1965 
Wedemeyer, 1966, 1967b 
Chacko, et a1., 1966 
Johnson, et a1., 1967 
Guenzi and Beard, 1967 
Braunberg and Beck, 1968 
Fries, et a1., 1969 
Johnson, et al., 1972 
Anderson, et a1., 1970 
Patil, et al., 1970 
Matsumura and Roush, 1968 
Ott and Gunther, 1965 
Matsumura, et a1., 1971 
Menzie, 1972 
Pfaender and Alexander, 1972 

Anderson, et a1., 1970 
Matsumura and Boush, 1968 
Wedemeyer, 1967b 
Ott and Gunther, 1965 
Matsumura, et a1., 1971 
Menzie, 1972 
Pfaender and Alexander, 1972 

Menzie, 1972 
Wedemeyer, 1967b 
Patil, et al., 1970 
Anderson, et a1., 1970 

Menzie, 1972 
Anderson, et al., 1970 
Pfaender and Alexander, 1972 
Wedemeyer, 1967b, 1967a 

Ott and Gunther, 1965 

Matsumura et al., 1971 

Menzie, 1972 
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APPENDIX V (Cont'd) 

Metabolite 

Kelthane 

1,1-bis(p-chlorophenyl)ethane 

p-chlorophenylacetic acid 

DDMS (1-chloro-2,2-bis(p-chloro­
phenyl) ethane) 

DDMU (1-chloro-2,2-bis(p-chloro­
phenyl) ethane) 

DD~~ (unsym-bis(p-chlorophenyl) 
ethylene) 

DPM (Dichlorophenylmethane) 

DBH (Dichlorobenzhydrol) 

Phenylacetic acid 

2-phenyl-3,3, 3-trichloroproprionic 
acid 

Reference 

Menzie, 1972 

Anderson, et al., 1970 

Alexander, 1972 
Focht and Alexander, 1970, 1971 
Pfaender and Alexander, 1972 

Pfaender and Alexander, 1972 
Wedemeyer, 1967b 

Wedemeyer, 1967b 

Wedemeyer, 1967b 

Wedemeyer, 1967a 

Wedemeyer, 1967a 

Focht and Alexander, 1971 

Focht and Alexander, 1971 
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