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ABSTRACT 

VEHICLE TO GRID AS A HOUSEHOLD EMERGENCY GENERATOR FOR 2007 

TOYOTA PRIUS PLUG-IN HYBRID ELECTRIC VEHICLE 

Michael Kevin Schoen 

July, 2012 

Electric vehicles are quickly becoming one of the most rapidly growing 

technologies of this age.  With their acceleration to prominence, the concept of 

Vehicle to Grid (V2G) becomes much more common as well.  V2G is normally 

used as a supplement to the power grid to shave peak load levels, as a spinning 

reserve, or as a supplement to renewable energy sources.  These vehicles can 

provide many advantages to consumers and power grid operators while also 

benefitting the environment.  This paper explores an additional application where 

V2G could be of great benefit.  This situation is the use of a V2G capable car to 

provide backup electricity generating capacity to an average American-style 

home (in terms of power consumption).  This objective is completed in 

coordination with the IEEE 1547 Standard for Interconnecting Distributed 

Resources with Electric Power Systems.  A 2007 Toyota Prius retrofitted to 

function as a Plug-In Hybrid Vehicle is used as a baseline.  The output of the 

system is designated to be a single phase 240 Vrms 60 Hz signal that would 

connect to the house grid.  All steps in designing and simulating the interface are 

performed as well as selection of components including gate drive support 

systems. 
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CHAPTER 1 

INTRODUCTION 

 In recent years, electric vehicles (EV) have become much more popular to 

the average consumer.  Cost of personal use EVs has gone down and, with gas 

prices on the rise and petroleum in high demand, the benefits of EV ownership 

have become much more apparent.  EVs offer consumers high efficiencies, low 

noise, and reduced pollution over their internal combustion counterparts.  This 

combination has been the chief focus of the EV’s increase in popularity. 

 With the popularity of EVs brings introduction to a new technology, Vehicle 

to Grid (V2G).  V2G is focused on the use of an EV connected to the power grid 

as a source for several different purposes.  The focus of this thesis is the design 

of a V2G interface that would allow an EV plugged into a household to be used 

as a backup generator capable of powering common appliances and devices 

within.  In this paper a brief introduction into EVs, V2G, and household backup 

generators is discussed.  In addition, the design of a V2G interface for the 

specific objective of backup generating is planned, designed, and simulated 

completely. 

1.1 Types of Electric Vehicles 

 EVs can be classified in several different ways, each with their own 

characteristics.  The first is the Battery Electric Vehicle (BEV).  The BEV is a 

vehicle that runs on power generated solely by its own battery pack which 

supplies power to its electric traction motor as shown in Figure 1.1.  No gasoline  
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Electric Energy 
Source

Electric Motor 
Drive

Mechanical 
Transmission

Battery Charging 
System

 

Figure 1.1: BEV Configuration [2] 

is used in the operation of a BEV.  Rather, any emissions associated with this 

type of vehicle are those caused by generating the electricity used to charge it.  

Still, this vehicle must recharge this battery pack much like an internal 

combustion vehicle must refuel regularly.  The difference in that is with current 

battery charging technology, this recharge could take several hours to complete 

which many consumers may find unappealing.  The second major type of EV is 

the Hybrid Electric Vehicle (HEV).  This type of vehicle most closely resembles 

an internal combustion vehicle.  As seen in Figure 1.2, the HEV uses an 

additional battery pack to store energy that would otherwise be wasted in an 

internal combustion engine such as using kinetic energy from braking to charge 

the additional battery.  This stored energy can then be used when the car has 

need of it.  This style of EV needs an internal combustion engine (ICE) to 

function, unlike the BEV, and also needs fuel to supply that engine.  The third 
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type of EV is the Plug-In Hybrid Electric Vehicle (PHEV).  This type of vehicle is a 

mixture of the BEV and HEV as seen in Figure 1.3.  It uses a large additional  

 

Figure 1.2: HEV Configuration [2] 

 

Figure 1.3: PHEV Configuration [2] 
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battery like the HEV to supplement an ICE.  The difference is that this pack can 

be charged from an external source similar to the BEV’s battery.  This makes the 

PHEV a good option for consumers who want the benefits of a BEV while not 

being completely reliant on the need for charging. 

1.2 Introduction of Vehicle to Grid 

With EV quickly becoming a sizeable population of the personal consumer 

vehicle fleet, another relatively new concept is becoming better known.  This 

concept is called Vehicle to Grid.  V2G refers to the functioning of a BEV or 

PHEV as a supplement to the power grid in some fashion.  This functionality 

could take many different forms such as smoothing the load curve, improved 

reliability of power, or in a backup capacity [9]. 

 

Figure 1.4: Effects of V2G Peak Shaving on Sardinia Island Test [1] 
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  A large fleet of BEVs and PHEVs can be of tremendous assistance for 

balancing the peak load that a power grid has during the day [8].  Normally, a 

power grid is at its greatest load from midday to evening, when most people are 

awake, the sun is shining, and appliances/devices are on as can be seen in 

Figure 1.5.  Since this only occurs for a few hours a day, it is more economical to 

draw on a low cost source to supplement these needs instead of drawing that 

energy from a more expensive source like a power plant. 

 

Figure 1.5: Simulation of Dailey Power Grid Load Variations [13] 

EVs that are connected to the grid provide the opportunity for a consumer 

to “sell” energy stored in their battery to the electric company and to have the 

energy bought back at another time during the day when it is cheaper to produce 
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and in less demand.  In much the same style, V2G capable cars can provide a 

reserve of power in areas largely dependent on certain types of renewable 

energy.  Generation sources such as wind and solar power are notorious for not 

being able to guarantee power when it is needed.  Therefore, V2G capable 

vehicles can provide a reserve support system if it is needed [5] [6].  Energy can 

be drawn from these vehicles and then recharged at a later time when power is 

available from the grid.  Finally, V2G capable vehicles are capable of providing a 

backup source of power for household use.  In this instance, a V2G capable car 

can provide enough energy to power a household if the need arises, during a 

power outage for instance.  A V2G interface can be used to keep the household 

running in much the same capacity a gasoline backup generator would.  This is 

the specific situation that is the focus of this thesis. 

Although using V2G to provide power to a single household has been 

listed as an option in several works [6] [9], at the time of publication the authors 

found no published work detailing the design necessary to achieve the energy 

transfer from an EV for use in a home setting.  Therefore, this work is novel in its 

description of such a system and will serve as a comparison for any future 

designs in this research area. 

1.3 Household Backup Generators 

Since the focus of this work will be household backup generation, a logical 

first step is to look at current models of backup generators on the consumer 

market.  Most backup generators for an average American house fall in the 5 to 
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20 kW range.  For this thesis, the objective is to provide power to a house during 

a power outage and to allow close-to-normal operations for the occupants.  Since 

this is a subjective stipulation, a baseline needs to be set.  As far as this thesis is 

concerned, close-to-normal operation includes several more important 

appliances refrigerator, freezer, air conditioner (windowed or central), furnace 

fan, and water heater as well as a few amenities including approximately 10 100 

W light bulbs, television, computer system, dishwasher, electric clothes washer 

and dryer, and microwave oven.  Using several generator sizing tools [10] [11], a 

generator size of 14 to 15 kW is recommended.  The upper bound of 15 kW is 

chosen as the power objective for this research.  A residential model generator of 

this capacity costs approximately $3,500. 

The final specification is the nature of the signal that will be supplied to the 

household.  In the IEEE 1547 [4] electrical standard, electricity supplied from the 

power grid must meet a certain specification.  For the scope of this thesis, a 

single phase line is selected.  From the standard, single phase electricity must be 

a 240 V 60 Hz signal.  In addition, this signal must be provided with less than 5% 

total harmonic distortion (THD).  THD represents a measurement of the harmonic 

components compared to the fundamental frequency or how much the output 

deviates from the target output.  Using different switching styles, the effects of 

additional harmonics can be lessened, as will be discussed in subsequent 

sections.  With these objectives set, the design for this V2G interface is the next 

step. 
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  CHAPTER 2 

VEHICLE TO GRID INTERFACE FOR 2007 TOYOTA PRIUS PHEV 

 

 

This research work has the potential to give PHEV users an additional 

benefit to owning a V2G capable vehicle.  Household backup generators provide 

a service that can be extremely useful but are not in constant need.  Specifically, 

a V2G interface that can supply enough power to energize a normal American 

household has not been put into production and poses an interesting design 

objective.  As a baseline for this thesis, a 2007 Toyota Prius PHEV retrofit will be 

used.  However, this design is able to easily be adapted to other applications and 

vehicles. 

2.1 Developing Design Specifications 

 The first step of this work is to determine some general specifications and 

assumptions.  The 2007 Toyota Prius is retrofitted with a 240 V lead acid battery 

pack that has a rating of 400 A-hrs in addition to its original battery pack and 

internal combustion engine (ICE).  The output of the power electronic interface 

must meet the specifications set out in the IEEE 1547 standard for a 240 Vac, 60 

Hz, single phase system with no more than 5% THD.  A common household 

backup generator that this proposed design would replace provides 10 to 20 kW 

of power.  For the scope of this thesis, 15 kW was selected after some 
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comparison to household backup generators [10] [11].  At 15 kW, a consumer 

could expect to run several major appliances such as refrigerator/freezer, electric 

water heater, and central or wall air conditioner as well as several less significant 

amenities like a personal computer, television, dishwasher, etc.  It is a common 

practice while designing a power electronic circuit to select a test load that would 

reflect the maximum power and draw from the battery pack.  The load for this 

design is selected to be a series 3.84 Ω resistance and a 20 mH inductance.  

This resistance represents maximum power consumption while the inductance 

represents common inductance for motors used in air conditioning systems 

which is one of the larger inductive loads in most homes.  By selecting this this 

power level for a V2G interface, it would allow a typical home owner to run major 

appliances and several amenities as mentioned previously.  The retrofitted 

battery pack has the ability to drive this system for up to 11.2 hours based on the 

average current drawn of 35.82 A which is described in later sections, the battery 

rating of 400 A-hrs, and Equation 2.1. 

             
              

               
     (2.1) 
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CHAPTER 3 

DESIGN OF VEHICLE TO GRID INTERFACE 

  

 

 A series of Power Electronics Interfaces (PEI) were chosen to provide the 

240 Vrms 60 Hz single phase AC voltage waveform from the retrofitted Prius as 

seen in Figure 3.1.  A PEI uses electronics for the control and conversion of 

electric power, matching the source to the load.  This setup maintains the 5% 

THD, and provides a design that is reasonable to implement.  Since the design 

uses separate interfaces feeding from one PEI to another, each block can be 

designed and tested separately to confirm individual functionality. 

 This work will start with the design of the H-Bridge Inverter.  This 

component performs the primary function of the design objectives, the 

conversion from direct current (DC) signal to alternating current (AC) signal, and 

also sets requirements on other stages of the design.  In a subsequent section, 

the Full Bridge converter is designed because it is directly connected to the H-

Bridge Inverter.  The last designed stage is the Forward Converter which is used 

for low voltage DC requirements and support systems.  In each of these sections, 

the steps behind designing each section are shown as well as the simulations 

and component selection information.  In addition, the support systems such as 
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the controller and gate drivers selected are discussed after the Forward 

Converter.   

Car Battery
240 Vdc

Full Bridge Converter
Boosts DC Voltage to 424 Vdc

H Bridge Inverter
Converts 424 Vdc to

240 Vac at 60 Hz Single Phase
THD < 5%

House Connection
240 Vac at 60 Hz

Controller

Forward Converter
Steps Down Voltage to
Required Voltage for

Control Levels (8 Volts)

Gate Driver

Gate Driver

Gate Driver  

Figure 3.1: System Level Block Diagram 

3.1 H-Bridge Inverter 

 An H-Bridge Inverter is used to convert a DC voltage source into an AC 

voltage output, thus making it a key part of this design.  Because the Prius’ 

battery pack supplies a DC voltage, this stage is required for the output voltage 

waveform to be the AC signal required for use in a household electrical power 

system, which is 240Vrms, 60Hz, single phase.  The end objective of this stage is 

to take the output from the Full Bridge Converter and use it to generate the 240 V 

AC signal at 60 Hz with a THD of less than 5% as required by IEEE 1547.  The 

H-Bridge Inverter is created using 4 transistors, which are operated in either the 

cut-off region or the saturation region to provide a switching function [12].  These 

transistors are driven by a controller based on a pulse width modulated (PWM) 

signals.  This PWM signals are generated using the comparison of a triangle 

wave signal (Vtri) and a sinusoidal signal (Vsine).  These switches are arranged in 
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the same fashion as those in Figure 3.2.  The specifics of generating these two 

signals are discussed later in this section. 

 

Figure 3.2: H-Bridge Inverter Schematic 

 For the scope of this thesis work, a bipolar switching algorithm, shown in 

Figure 3.3, is used for the PWM switching.  Bipolar switching refers to the style of 

switching done by the transistors in the H-Bridge setup, allowing the switches to 

only operate in pairs and not individually.  This concept closes Q1 and Q3, 

setting the output voltage equal to the input voltage, when Vsine is greater than 

Vtri.  Conversely, Q2 and Q4 are closed, setting the output voltage equal to the 
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negative of the input voltage, when Vsine is less than Vtri [3].  Neither set of 

switches can be on at the same time as its counterpart.  Another important 

aspect of Bipolar Switching is the selection of the amplitude modulation (ma) and 

frequency modulation (mf) ratios.  The amplitude modulation ratio is defined as 

the ratio between the amplitudes of the sinusoidal and triangle signals.  It also 

represents the ratio between the input DC voltage and the amplitude of the 

output voltage at the fundamental frequency.  The frequency modulation ratio is 

the ratio between the frequencies of the triangle and sinusoidal signals.  Many 

PWM outputs have large harmonics generated but these harmonics can be 

placed far enough away from the fundamental frequency that a simple low pass 

filter can remove them [3].  The location of these harmonics are controlled by a 

multiple of the fundamental frequency, 60 Hz for this design.  The modulation 

frequency ratio determines the multiple of the fundamental frequency that the 

large additional harmonics are placed.  This is important because the further 

away from the fundamental frequency the harmonics are placed (the larger the 

frequency modulation ratio is) the lower the THD is for the system. 

 This switching method provides a voltage square wave as an output of 

either positive Vdc or negative Vdc.  This may not seem appropriate since the 

objective of this stage is to provide a sinusoidal output.  However, due to the 

inductive load, the resulting current waveform will be a sinusoid.  By modifying 

the amplitude and frequency modulation ratios involved in the generation of the 

voltage square wave, the characteristics of the current sinusoid can be controlled 
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to meet the desired output.  All of this together results in an output similar to that 

shown in Figure 3.3. 

 

Figure 3.3: Bipolar Switching Method [3] 

 In addition to the bipolar switching algorithm, there are other methods that 

can provide the correct switching signals for an H bridge inverter.  There is 

unipolar switching, where the output can be switched from high to zero or from 

low to zero instead of just between high and low as in bipolar switching as shown 

in Figure 3.4.  Also, harmonics in unipolar switching are generated at twice the 

frequency from where bipolar algorithms typically do [3].  There is also space 

vector modulation, which is commonly used in 3 phase inverter designs.  The 

bipolar switching method works best in this design due to the small amount of 

generated harmonics in this system. 
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Figure 3.4: Unipolar Switching Method [3] 

3.1.1 H-Bridge Inverter Design 

 After selecting the circuit topology and PWM switching methods, next is to 

design the interface.  For the circuit design of this PEI stage as well as the other 

two stages, equations and design steps are performed using Power Electronics 

by Daniel Hart as a reference [3].  For the design work on the H-Bridge Inverter, 

the first step is to look at the output voltage needed.  Since the output is required 

to be 240 Vrms, the peak is found to be 339.41 Vdc using Equation 3.1.  Next, the  
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       √  = 339.41 V    (3.1) 

modulation amplitude ratio (ma) is chosen.  This ratio controls the Vpeak of the 

fundamental frequency with respect to the input voltage and is selected to be 0.8 

so the input voltage is kept as low as possible while still allowing some room for 

adjustment.  This ratio is typically selected be between 0 and 1 in order to keep a 

linear relationship between the input voltage and the fundamental frequency 

voltage.  Using this value, the required input voltage can be determined at 424.26 

V using Equation 3.2.  For the purposes of this design, the input voltage is 

rounded to 424 V and that is the value used for the DC Link bus.  The next step  

V1 = 
  

  
 = 424.26 V         (3.2) 

in design is to select the frequency modulation ratio (mf) which will determine 

where large additional harmonics occur.  The minimum value is determined using 

Equation 3.3 and is then increased, moving them further from the fundamental  

    
   

       
         (3.3) 

frequency, until the required THD of 5% is met.  The ratio is selected for this is 

design to be 27 which corresponds to harmonics being located at 1620 Hz.  The 

coefficients for determining voltages are given in Figure 3.5.  These voltages 

represent the peak values at each harmonic and can be used with Ohm’s Law to 

determine a value for current to be used to calculate THD with Equation 3.4.  The 

results for these calculations are shown in Figure 3.6.  THD for this design is kept 

at 3.64 %, which is well within the requirements set out at the beginning of the 
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research project.  The values determined for input voltage, ma, and mf allow the 

design to be implemented and the input voltage sets the requirements for the DC 

Link bus along with the next stage of the work. 

      
√∑       

  
 

      
           (3.4) 

 

Figure 3.5: Normalized Fourier Coefficients for Bipolar PWM [3] 

 

Targeted Harmonic 27       

THD 3.64%       

          

Harmonic Frequency Voltage Impedance Current 

1 60 339.20 8.44 40.17 

25 1500 74.62 188.53 0.40 

27 1620 278.14 203.61 1.37 

29 1740 74.62 218.69 0.34 

Figure 3.6: Fourier Series Harmonic Analysis 

3.1.2 H-Bridge Simulation Results 

 All simulations for this stage are done using National Instrument’s 

MultiSim software package.  Creating a ±424 V signal is difficult in MultiSim with 

transistors or switches, so a comparator is used to perform the same function.  
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This simulation has 2 sources as inputs to the comparator that generate the 

pulse width modulated signal and allows a Fourier analysis to be performed on 

the system.  The peak voltage for the Vsine source was chosen based on the 

modulation amplitude ratio of the inverter with a frequency that is the same as 

the desired output of 60 Hz.  The Vtri source is set to switch between -1 and 1 V 

at a period of .61728 msec which is the inverse of 1620 Hz.  This comparator is 

set to have an output of ±424 V based on the input voltage from the DC Link Bus.  

R1 and L1 are chosen based on the desired test load for this design.  With this 

setup, a Bipolar Switching Algorithm is achieved as set out in the previous 

section. 

 

Figure 3.7: Simulation Schematic for H-Bridge Inverter 
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Figure 3.8: Switching Output for H-Bridge Inverter (Voltage and Current) 

 

Figure 3.9: Fourier Analysis of IO(t) in MultiSim Simulation 



29 
 

 

Figure 3.10: Fourier Analysis Zoomed on Additional Harmonics 

 As the simulation in Figure 3.8 shows, the transient output of this system 

results in a voltage that switches back and forth between ±424 V in a similar 

fashion to the example bipolar output shown in Figure 3.3.  Figure 3.9 shows the 

overall magnitudes of current at various frequencies and that all aberrant 

harmonics appear near 1620 Hz just as was intended by design, which are 

shown zoomed in on Figure 3.10.  These harmonics are extremely small by 

comparison to the fundamental frequency current value of 40.17 A from the 

Fourier analysis shown in Figure 3.6.   

3.1.3 Component Selection 

 For this stage, there are several devices that can be used for the switches.  

This stage requires a blocking voltage of at least 424 Vdc, a passing current of 

40.17 A, and be able to switch at 1620 Hz.  IGBTs are selected over other types 
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of transistors because they have lower power losses at the low frequencies this 

stage operates.  They also keep conduction losses smaller than other options.  

The specific part chosen is the International Rectifier IRG4PC50FD.  This 

transistor has a blocking voltage of 600 V with a maximum pulse current 

allowance of 280 A, both within operating conditions for this stage.  This 

transistor has a collector-to-emitter voltage (VCE(on)) of 1.45 V.  It also has a 

combined turn on time (tcon) of 86 nsec and a combined turn off time (tcoff) of 660 

nsec.  These values are very important for calculating losses for this component.  

This model needs to be driven by a gate voltage of about 6.5 V based on the 

information in Figure 3.11, to be supplied by the gate driver of this stage.  Once 

component selection is complete, the next step is to perform a thermal and 

power loss analysis. 

 

Figure 3.11: Inverter IGBT Gate Voltage Transfer Characteristic 
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3.1.4 Power and Thermal Analysis 

 Power is lost in this stage due to the switches in both conduction and 

during turn on and turn off switching.  For this analysis, power losses are 

calculated when the duty cycle (D) is at its maximum, due to the variance in duty 

cycle associated with driving this stage.  For a PWM signal, the switching cycles 

vary between 0% and 80% at the switching frequency.  This means that the 

same amount of switching occurs each cycle, regardless of the duty cycle.  

However, this maximum duty cycle represents the worst case for conduction 

losses since this is when the IGBT will be conducting for the longest percentage 

of the cycle.  This case is found at 1620 Hz to be approximately 89.48 %.  Using 

this value, conduction losses are calculated to be 36.86 W using Equation 3.5, 

where IDrms equals 28.41 A from the output current of this stage.  On the other 

hand, switching losses are at 8.23 W using Equation 3.6.  Summing these values 

together gives combined losses for the inverter stage at 45.09 W.  Using a one 

                        (3.5) 

           (          )               (3.6) 

dimensional thermal analysis equivalent circuit like that in Figure 3.12 where P is 

the total power lost, one obtains Equation 3.7 [7].  The selected IGBT has a 

junction-to-case thermal resistance (     ) of 0.64    ⁄ .  The Sil-Free thermal 

grease that interfaces between the IGBT and heat sink has a case-to-sink 

thermal resistance (     ) of 0.24    ⁄ .  Using these values and the combined 
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power loss of 45.09 W, this design requires a       of 1.56    ⁄ .  This value is 

too low given the current available types of heat sinks.  Therefore, as an 

alternate solution, two IGBTs in parallel are used instead of single IGBT for each 

switch effectively halving the current through each transistor and the power  

 

Figure 3.12: Power Dissipation Thermal Resistance Circuit [7] 

dissipated across them.  This combination allows the power loss to be lowered to 

a more manageable level.  With this modification and Equation 3.7, a thermal 

resistance for the heat sink is determined to be       of 3.99    ⁄  at 150⁰C.  The  

   
     

                 
     (3.7) 
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6400BG heat sink from Aavid Thermalloy, shown in Figure 3.13, provides       of 

2.7  
 ⁄  and will match the IR IGBT transistors used.  Together this will provide 

a junction temperature of 124⁰C which is an optimal temperature to operate the 

IGBTs. 

 

Figure 3.13: 6400BG Heat Sink 

 The H-Bridge Inverter forms one of the major pieces of this thesis work.  

This section takes a specific DC voltage and provides the 240 Vrms 60 Hz single 

phase signal set out as an objective of the design.  In order to provide this signal, 

an appropriate input DC voltage of 424 V is needed.  In the subsequent section, 

a Full Bridge converter will adjust the 240Vdc delivered from the batteries to the 

required 424Vdc.  

3.2 Full Bridge Converter 

 With the design of the H-Bridge Inverter as it stands, a larger DC voltage 

is required than what the Prius’ battery can readily provide.  As such, an 

interface to provide that larger DC voltage is needed to maintain the 15 kW 

power objective.  For this stage, a Full Bridge Converter is selected.  The Full 
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Bridge Converter uses a combination of an H bridge of transistors, similar to the 

H bridge inverter from the previous section [3].  This array is operated by two 

equal square waves driven at the designed frequency and duty cycle with one 

square wave offset from the other by half of the switching time (inverse of the 

switching frequency) as is shown in Figure 3.14.  The bridge is isolated from a  

 

Figure 3.14: Full Bridge Converter Driving Signal 

buck converter by a center tapped transformer as shown in Figure 3.15.  This 

stage needs to provide the 424 V required by the inverter stage using the 240 

Vdc input from the Prius with a small amount of variance (to prevent generating 
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additional harmonics).  Output voltage ripple is selected to be within 1% while 

current ripple is to be kept so that the converter always operates in the 

continuous conduction mode, meaning the current stored in the inductor 

fluctuates but never reaches zero.  It is general practice for power electronics 

dealing with larger load currents to operate in the continuous current mode.  A 

transformer works well in this situation because of the large increase in voltage.  

This design uses the turns ratio in the transformer to adjust the voltage level.  

Also, this design allows for a smaller switching frequency (< 100k kHz) to be 

used, both lowering the minimum inductance and the inductor current variance.  

A non-transformer design would need a high switching frequency (> 300 kHz) to 

have a manageable inductor size and to keep inductor current greater than zero.  

The high switching frequency required would result in very high switching losses.  

For the  design objectives, a switching frequency of 20 kHz is selected.  This 

value is suitably low to keep switching losses from dominating the thermal 

analysis while still allowing for the minimum inductance to maintain continuous 

current operation to be kept relatively low. 

 



36 
 

 

Figure 3.15: Full Bridge Converter Schematic 

3.2.1 Full Bridge Converter Design 

 Once the specifications of the stage have been set, the next objective is to 

begin designing the converter.  For the design of the Full Bridge Converter, the 

first step is to look at the relationship between input and output voltages.  Since 

the inverter requires an input of 424 V, this is selected as the DC Link bus 

voltage which is the output of this stage.  In addition, the transformer is chosen 

to have a turns ratio between the primary and secondary winding (N) to be 7.  

This is used to step up the input value to a larger value while the duty cycle will 

decrease back to desired output.  Using these, a source voltage (Vs) of 240 V 

from the Prius, and Equation 3.8 duty cycle is determined to be 25.23%. 
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                                                     (3.8) 

Average output current is found using Equation 3.9 to be 35.82 A using the load 

resistance (R) of 12 Ω chosen using the desired output power of 15 kW and this 

stage’s output, 424 V.  The switching frequency (f) is the 20 kHz decided on in 

the specifications for this stage.  The minimum inductor value for continuous 

current operation is chosen with Equation 3.10 and can be increased as needed 

   
  

        
                                                            (3.9) 

      
        

  
                                            (3.10) 

to provide a suitably low ripple in the output current.  For this design, the 

minimum inductor value is calculated to be 42 uH but is raised to 500 uH to 

reduce the ripple current down to a minimum.  The output ripple current is found 

by determining how much the output current varies, halving it, and comparing it 

to the average output current from Equation 3.9.  The change in output current 

is determined by Equation 3.11 to be 6.06 A, leaving the maximum current at  

      
   

  
                                               (3.11) 

41.88 A and the minimum at 29.77 A.  Finally, the minimum capacitance value is 

found using the specified output voltage ripple (
   

  
) of 1% and Equation 3.12 to 

be 1.05 mF.  Pulling all these values together is the basis for designing the Full 

Bridge Converter. 
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                                                         (3.12) 

3.2.2 Full Bridge Converter Simulation Result 

 Simulations for the Full Bridge Converter are performed using PLECSim 

Standalone version.  This software package allows for the H-Bridge of 

transistors to be simulated as an array of switches driven by equal pulse 

generator sources with the second generator offset by half of the switching 

frequency.  Figure 3.16 shows the schematic used to simulate this design while 

Figure 3.17 is the resulting simulation.  All values are set to the values specified 

in the previous section with V_dc corresponding to the source voltage and the 

voltmeter reading the output voltage to the DC Link bus.  Rload is the test 

resistance for this stage, selected to be 12 Ω reflecting a 15 kW draw on this 

device. 

 

Figure 3.16: Full Bridge Converter PLECSim Schematic 
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Figure 3.17: Full Bridge Converter PLECSim Simulation Results 

  As the simulation waveform shows, the designed circuit operates well 

within the desired parameters, achieving a value of approximately 424 V and 

with a very low output voltage ripple.  The inductor current shows that this 

converter always operates in the continuous current mode keeping the inductor 

current always greater than zero. 
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3.2.3 Component Selection 

 This stage’s switching requirements could be fulfilled by several different 

types of devices.  A device is needed that can block a voltage of 240 V, allows a 

passing current of 41.88 A, and can switch at 20 kHz.  As with the inverter 

stage, an IGBT is used as the switching device in the Full Bridge Converter.  

This transistor style will keep conduction losses low while switching at the low 

frequency of this stage and can easily be designed to block the appropriate 

voltages at the desired passing current.  The specific part chosen is the 

International Rectifier IRG7PH42UD1PbF.  This transistor has a blocking 

voltage of 1200 V with a maximum pulse current allowance of 200 A, both within 

operating conditions for this stage.  This device has a Vce(on) of 1.7 V.  A soft 

switching style IGBT was chosen for this stage as well to keep switching losses 

low.  This device would have a gate voltage of approximately 8 V, based on the 

150 ⁰C measurement in Figure 3.18.  A custom transformer with the appropriate 

turn’s ratio would need to be ordered if this design was to be implemented as 

well as a custom inductor to allow for a high inductance of 500 uH with a large 

current requirement of 41.88 A.  Finally, a diode design must be selected that 

can handle the current and voltage requirements of this stage.  The Vishay 

400U(R) Standard Recovery Diode has a maximum reverse voltage of 800 V 

and a maximum forward current of 400 A.  These specifications fall within the 

simulated values with a comfortable safety margin.  After component for this 

stage are selected, a power loss and thermal analysis is the next step. 
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Figure 3.18: Full Bridge Converter IGBT Gate Voltage Transfer Characteristic 

3.2.4 Power and Thermal Analysis 

 Similar to the Inverter stage, the major power lost in the Full Bridge 

Converter is due to the IGBTs.  However, the power lost in this stage due only to 

the conduction and turn off switching.  Since a soft switching style IGBT is used, 

there is no combined turn on time and it is not included in the calculation of 

losses.  Using a similar method as with the inverter stage conduction losses are 

calculated to 11.74 W using Equation 3.5 [7].  With a combined turn off time of 

460 nsec, switching losses are calculated at 37.68 W using Equation 3.6. 
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 Combining these values together gives combined losses for the inverter 

stage at 49.42 W.  Just as with the inverter, using two gates allows the 

dissipated power to be at a more manageable level.  For this stage, the power 

dissipated for each IGBT is 24.71 W.  With this modification and Equation 3.7, a 

thermal resistance for the heat sink is determined to be       of 3.81    ⁄  at 

150⁰C [7].  The 6400BG heat sink from Aavid Thermalloy provides       of 

2.7  
 ⁄  and will match the IR IGBT transistors used in this stage also.  Using 

this heat sink will give an actual junction temperature of 122.5 ⁰C, within the 

operating conditions for the selected IGBTs. 

 Combining the Full Bridge Converter and H-Bridge Inverter designs, the 

source of the system, the Prius battery pack, matches the requirements 

discerned at the onset of the research for the load of a 240 Vrms 60 Hz single 

phase signal.  The next steps are to specify and design the support system for 

these two interfaces.  This includes creating a low bus voltage line, controlling 

the signals to each interface’s switches, and driving the transistors used in the 

design. 

3.3 Forward Converter 

 This V2G interface is designed to stand alone on only the power it 

receives from the Prius’ system itself.  Therefore, a low voltage line is needed in 

order to provide power for a controller, gate drivers, and any other low voltage 

components needed.  For this design, 8 V is selected as the low voltage line’s 

value due to that being the maximum low voltage required from the Full Bridge 
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Converter gate driving voltage.  To fulfill this need, the Forward Converter PEI is 

used.  A Forward Converter is a DC/DC converter that uses a transformer to 

decrease the output voltage and is very useful for designs with large voltage 

decreases, since a non-transformer design such as a Buck Converter would 

require an extremely low duty cycle resulting in a largely inefficient design [3].  

On the secondary winding side of the transformer is a filter much like is on other 

DC/DC converters.  The schematic for a Forward Converter is shown in Figure 

3.19.  

 

Figure 3.19: Forward Converter Schematic 

 This device receives its input from the connections on the retrofitted PHEV 

Prius battery pack, which for this research design is a constant 240 Vdc.  Since 

this low voltage bus is for driving smaller devices, a low average inductor current 

is set at 1 A.  The output ripple voltage is kept at 1% for this stage. 
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3.3.1 Forward Converter Design 

 For the design of the Forward converter, first the duty cycle and switching 

frequency are chosen to be 30% and 300 kHz respectively.  Using these 

selected values, the windings ratio on the transformer between primary and 

secondary windings is determined to be 9 using Equation 3.13.  The windings  

 
  

  
 

   

  
             (3.13) 

ratio between primary and auxiliary windings is set to 1, in accordance with 

common convention in design of Forward Converters.  The output inductance to 

guarantee continuous current is found using Equation 3.14 to be 46.67 uH while 

the minimum output capacitance is found using Equation 3.15 to be 2.08 uF. 

   
       

       
     (3.14) 

  
   

    
   
  

  
     (3.15) 

3.3.2 Forward Converter Simulation 

 The forward converter simulation is run using National Instrument’s 

MultiSim software package.  The results of the simulation are shown in Figure 

3.20. 
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Figure 3.20: Forward Converter MultiSim Simulation 

 As can be seen in the simulation, the voltage stays near the target voltage 

of 8 V.  In addition, the inductor current stays positive assuring that the 

converter always operates in the continuous current mode near 1 A inductor 

current specified for this stage.  As with the Full Bridge Converter, it is important 

for the stable operation of this PEI that the design operates in the continuous 

current mode. 

3.3.3 Component Selection 

 This stage has several requirements that set it apart from the other stages 

of the design.  This stage has a lower voltage and current requirement of 240 V 

and approximately 1 A respectively.  In addition, the switching frequency for this 

stage is at 300 kHz, much higher than other stages.  IGBTs are capable of being 

driven at this speed, but when they are the, switching losses are relatively high 

when compared to other device types.  For this power electronic interface, 

MOSFETs are the better choice for switch operations due to the low blocking 
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requirements and much higher switching frequency.  A MOSFET provides better 

switching losses at higher frequencies than IGBTs are capable of.  An 

appropriate MOSFET selected is the Infineon IPW65R037C6 650V CoolMOS C6 

Power Transistor.  This transistor has a maximum VDS of 700 V and a maximum 

pulse ID of 297 A which are both well within the tolerances for this stage.  Though 

this MOSFET has no listed absolute maximum for switching frequency, 300 kHz 

is a very common switching frequency for this transistor to handle.  Because of 

the low current requirement of this stage, a gate voltage of 4.5 V is used.  This 

value is determined using Figure 3.21.  As in the full bridge converter, a custom 

transformer will need to be ordered to match the specifics of this design. 

 

 

Figure 3.21: Forward Converter MOSFET Gate Voltage Transfer Characteristic 
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3.3.4 Power and Thermal Analysis 

 Major power losses in this stage come from the conduction and switching 

losses in the MOSFET.  While switching losses are determined by again using 

Equation 3.6, conduction losses are calculated using Equation 3.16 [7].  IDrms is 

taken from the RMS value of the output current and is determined to be 0.71 A. 

                
      (3.16) 

The selected MOSFET has a drain-source on-state resistance (RDS(on)) of 0.04 Ω 

which leaves conduction losses of 0.01 W.   

 This MOSFET has a combined turn on time of 24 nsec while having a turn 

off time of 147 nsec.  Switching losses are calculated for the MOSFET to be 7.24 

W leading to combined losses for the MOSFET in the forward converter to be 

7.25 W.  Using Equation 3.7, the maximum       for this switch is 14.86  
 ⁄  [7].  

The Aavid Thermalloy 530801B05150G heat sink in Figure 3.22 has a       of 

6.3  
 ⁄  which is well below the maximum value.  This design has a calculated 

junction temperature of 101⁰C. 

 

Figure 3.22: Aavid Thermalloy 530801B05150G Heat Sink 
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 This design represents the last PEI involved in this V2G interface.  Its 

objective to create a low bus voltage is set out and completed within 

specification.  The next step is to decide on the component that will control the 

switching signals for the PEIs and also the component that will handle driving the 

transistors used in this design. 

3.4 Drive Support Systems 

 In order for the previous components to function as designed, several 

support systems need to be included.  These devices are chiefly concerned with 

controlling and driving the various switches involved with the entire system. 

3.4.2 Gate Driver Circuit 

 

Figure 3.23: Location of Gate Drivers in Design 

 The gate driver IC for this thesis work has to be capable of driving each 

transistor at the correct voltage for either MOSFETs or IGBTs.  It also needs to 

be capable of dual gate driving for the Full Bridge Converter and H-Bridge 

Inverter stages.  The gate driver chosen for this design is the Infineon 
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2ED020I12-F2 Dual IGBT Driver IC.  It is designed for a driving voltage of up to 

20 V, which is greater than any required driving voltage, and functions for both 

single and linked transistor pairs.  In addition, it has functionality for MOSFETs 

and IGBTs, allowing it to function on all stages of this design. 

 This Gate Driver requires 2 signals sent from the controller in order to 

operate a single PWM pair of IGBTs.  This means a total of 4 PWM signals are 

needed from the controller to manage both the H-Bridge Inverter and Full Bridge 

Converter.  This gate driver will send a set of signals to the “high and low” switch 

pairs individually.  In effect, 2 gate drivers will be needed for each of these 

stages.  The Forward Converter will only need a single gate driver IC and will not 

require a PWM signal from the controller.  With these requirements set, an 

appropriate controller can be specified. 

 

Figure 3.24: Gate Driver Block Diagram 
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3.4.1 Micro-Controller 

 

Figure 3.25: Location of Micro-Controller in Design 

 The micro-controller for this design has to be capable of managing several 

different signals at the same time.  The controller chosen is the 

DSPIC33FJ16GS504-H/TL from PIC Microchip.  This controller requires a 3.3 Vdc 

source to function which can be provided via regulator from the low voltage bus.  

It has the support for up to 4 PWM pairs each with independent timing as was 

specified in the previous section.  It can also run its own comparators on board if 

needed for the inverter stage’s PWM output.  In addition, a simple digital output 

can manage the signal needed to drive the Forward Converter switching cycle.  

This microcontroller is able to handle the situations posed by this design and also 

has room for any additional modifications if needed. 
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CHAPTER 4 

RESULTS AND CONCLUSIONS 

  

  

 

 The objective of this thesis is the design of a V2G interface that converts 

the 240 Vdc energy of the 2007 Toyota Prius Retrofitted PHEV into 15 kW of 240 

V 60 Hz single phase electricity that can be used to power a household.  While 

this idea has been presented as a potential benefit of V2G technology, a 

literature search revealed no detailed analysis or design of such an interface.  

The design proposed by this research meets all requirements set out with no 

shortcomings.  This design meets all specifications as defined in IEEE 1547 

standard for additional harmonics entering a household network.  This thesis 

shows the feasibility of such an endeavor.  

 This design provides many advantages over other styles that may be 

attempted.  One such advantage is in the use of transformer isolated PEIs.  With 

the large steps up and down in voltage that must be taken at certain stages, a 

transformer design allows a larger change in voltage level without taxing 

switches too greatly.  A non-transformer design would require much higher 

switching frequencies (resulting in greater switching losses) or operating the 

switch almost entirely in either the cut-off or saturation modes (an inefficient 
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operating style).  This design also minimizes power losses whenever possible.  A 

major point in the design work has been to ensure that the power dissipated in 

each stage is an amount that is realistic and could be absorbed by a heat sink if 

this design were implemented. 

 In conclusion, this design implements a concept that has often been 

spoken of as a potential benefit of V2G technology.  Through simulation and 

component searching, it is shown that a working model of this interface can 

theoretically be constructed.   This idea adds a new benefit to consumers for 

owning a V2G capable vehicle and can further increase the popularity of EVs on 

the market. 
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CHAPTER 5 

FUTURE STEPS 

  

  

 

 After the completion of this research work, there are several items that 

must be considered for any future work.  Primarily one must deal with the 

potential for voltage level variance based on the state of charge in the Prius’ 

battery pack.  The design described in this thesis treated the voltage level as a 

constant 240 Vdc source when in actuality there is the potential for the voltage 

level to swing between 210-270 Vdc based on the design of the battery 

depending on its state of charge.  Due to such variances, a closed-loop feedback 

controller for the Full Bridge Converter should be implemented to ensure that the 

H-Bridge Inverter always receives the appropriate voltage input. 

 It is important to note that this research represents a first-stage design, 

mainly proving the feasibility and design of an interface to meet the initial 

specifications and goals.  The next stage would need to involve reduction of 

costs in the device, mainly in components, while maintaining a minimum 
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efficiency of the design.  One such example is the need for several custom parts 

in this design that could prove to be more costly than desired.  In addition, this 

design uses several instances of combined transistors in order to make heat 

dissipation more manageable.  Minor adjustments to the design parameters 

could remove this additional cost. 
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