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ABSTRACT 

3D MINUTIAE EXTRACTION IN 3D FINGERPRINT SCANS 

Sara Shafaei 

July, 14,2011 

Traditionally, fingerprint image acquisition was based on contact. However 

the conventional touch-based fingerprint acquisition introduces some problems 

such as distortions and deformations to the fingerprint image. The most recent 

technology for fingerprint acquisition is touchless or 3D live scans introducing 

higher quality fingerprint scans. However, there is a need to develop new algo­

rithms to match 3D fingerprints. In this dissertation, a novel methodology is pro­

posed to extract minutiae in the 3D fingerprint scans. The output can be used for 

3D fingerprint matching. 

The proposed method is based on curvature analysis of the surface. The 

method used to extract minutiae includes the following steps: smoothing; com­

puting the principal curvature; ridges and ravines detection and tracing; cleaning 

and connecting ridges and ravines; and minutiae detection. First, the ridges and 

ravines are detected using curvature tensors. Then, ridges and ravines are traced. 

Post-processing is performed to obtain clean and connected ridges and ravines 

based on fingerprint pattern. Finally, minutiae are detected using a graph theory 

concept. 

A quality map is also introduced for 3D fingerprint scans. Since a degraded 

area may occur during the scanning process, especially at the edge of the finger-
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print, it is critical to be able to determine these areas. Spurious minutiae can be 

filtered out after applying the quality map. The algorithm is applied to the 3D 

fingerprint database and the result is very encouraging. To the best of our knowl­

edge, this is the first minutiae extraction methodology proposed for 3D fingerprint 

scans. 
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CHAPTER I 

INTRODUCTION 

Person identification and authentication are fundamental activities in a fast­

moving, modern society. Traditional identification methods such as ID cards, ATM 

cards and PIN codes do not meet the demands of this wide-scale connectivity. Au­

tomated biometrics provide efficient solutions to these modern identification prob­

lems and eliminate common problems such as forged or stolen personal identifi­

cation numbers (PINs) and illegally copied keys. It can also be used for identifica­

tion purposes involving security access systems. A biometric system is a pattern­

recognition system that recognizes a person based on specific physiological or be­

havioral characteristics that the person possesses [11]. Some of the physiological 

biometrics are fingerprint, face, iris, retinal, hand geometry, DNA and vascular 

pattern; some of the behavioral biometrics are signature, keystroke dynamics and 

vocal behavior. 

The fingerprint has been one of the most successful biometrics used for per­

sonal identification. Fingerprint recognition systems are widely used in the field 

of biometrics because of their uniqueness, stability and universality. Each indi­

vidual has unique fingerprints, and no two people have yet been found with the 

same fingerprints. A fingerprint is the pattern of ridges and valleys on the fin­

ger tip. Fingerprints have been used in forensic applications for a long time and, 

recently, in computer-automated identification and authentication. Fingerprint ac­

quisition, for many years, has been accomplished by first pressing an inked finger 

on paper and then converting the image into digital form. Recent developments 

in fingerprint acquisition technology have resulted in inkless or livescan finger­

print scanners; compared to the ink and paper-based methods this technology is 
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easy to use. The contact-based fingerprint image acquisition includes: ink, ca­

pacitive, ultrasonic, pyroelectric, thermal, and optoelectronic approaches [12-15]. 

The most recent technology for fingerprint acquisition is touchless or 3D live scan, 

which uses more than one camera that surround the finger for acquisition of a 3D 

fingerprint. 

Many existing fingerprint technologies are used either by rolling or pressing 

an ink-covered fingertip on the paper surface or touching or rolling a finger on a 

glass surface of a special device. In both cases, the user must place her /his finger 

on the hard surface. Since the surface of the finger is not flat, the user should press 

down the fingerprint area onto the sensor surface to get a good quality fingerprint 

image. This pressure introduces physical distortions and inconsistencies on the 

image. These distortions are usually non-linear in arbitrary direction and strength. 

Moreover, the distortion occurs globally, while its parameters can change locally 

[16]. All of these factors make it difficult to estimate the distortion accurately, and 

deformation errors remain in the fingerprint image. Therefore, the image changes 

with every impression, and there are different versions of the fingerprint images 

for the same finger. Hence, the relative location of the minutiae, size and quality 

of fingerprint are different, and this highly affects fingerprint recognition. A good 

number of algorithms have been proposed to obtain better results. Despite all 

efforts to enhance the performance, there is an innate problem of distortion due 

to the pressure of contact with the solid surface. Although many algorithms have 

been suggested to overcome this problem [17], there are still large amounts of cost 

and error. 

There are also latent fingerprint problems [18]. The latent fingerprint is the 

trace of fingerprint on the surface of the sensor. This can cause hygienic prob­

lems and forgery use, such as the fingerprint faking. Additionally, a contact-based 

fingerprint usually results in partial or degraded images caused by improper fin­

gerprint placement, smearing, or sensor noise from a tear of surface coating. Image 

imperfections generate errors in determining the coordinates of each true minutia 
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and relative orientation of the image and produce spurious minutiae. All these 

facts remarkably decrease the recognition system reliability. 

In order to address the above-mentioned problems with touch-based finger­

print technology, a new generation of touchless live scan devices that generate 3D 

representation of fingerprints has been introduced to the market [2,16,18-22]. They 

are able to capture a nail-to-nail fingerprint without any surface touching. Since 

this new technology can capture a fingerprint image without any contact, it over­

comes many of the aforementioned problems. Due to using cameras, touchless 

fingerprint devices have several advantages such as avoiding plastic distortion, 

avoiding latent fingerprints, reducing hygienic problems and capturing a large 

image area quickly. The combination of distortion-free fingerprints and a large 

image area are most desirable to get many minutiae in the same relative location 

and orientation in each image [18]. 3D touchless systems can also provide new 

information about the finger ridges and valleys, and information related to the 3D 

dimensions and shape of the finger. This new information can be used for more 

accurate automatic and manual techniques for fingerprint analysis. 

Parziale et al [21,22] proposed a multi-camera touchless fingerprint scanner 

which acquires different finger views that are combined together to provide a 3D 

representation of the fingerprint. Due to the lack of contact between the finger 

and surface, the acquired images preserve the fingerprints "ground-truth" without 

skin deformation during acquisition [22]. However, employing the shape-from­

silhouette scanning technique, the ridge information is obtained from the surface 

reflection variation information. Therefore, the fingerprint is sensitive to surface 

color, surface reflectance, geometric factors and some other effects. 

In an attempt to build such a system, Flashscan3D LLC and the Univer­

sity of Kentucky [23] have been developing a non-contact, 3D finger scanning sys­

tem. A prototype scanner is shown in Figure 1. This system uses multiple, high­

resolution, commodity, digital cameras and utilizes Structured Light Illumination 

(SLI) through phase measuring profilometry (PMP) [23-25] as a means of acquir-
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ing 3D scans of the fingers with sufficient high resolution so as to record 3D ridge­

depth information. SLI is a popular sensing technique that calculates the 3D geom­

etry of a target by illuminating the target with structured projection patterns and 

capturing and decoding the reflected image to obtain the projector co-ordinates 

corresponding to the image pixel. Conventional SLI systems use multiple patterns 

for reliable and accurate 3D reconstruction such as (i) binary patterns, (ii) gray­

coded patterns, and (iii) PMP. The PMP technique has the advantage of high ac­

curacy and simple implementation, requiring as low as three projection frames. It 

also requires no point-matching or image enhancement to obtain the fringe distor­

tion, making it suitable for a pipelined or parallel processing implementation. In 

PMP, the light pattern projected is a sine-wave pattern shifted several times with 

the captured light pattern [23]. Figure 2 demonstrates 3D fingerprint acquisition 

using the PMP technique. 

In this research, the 3D fingerprint scans were used from the system devel­

oped by Flashscan3D LLC and the University of Kentucky [23] as the input to the 

algorithms in the following chapters. Figure 3 demonstrates a sample 3D finger­

print scan. 

After obtaining the 3D data, new algorithms must be developed to match 

3D fingerprints, which might be done in two ways. The first method requires 

that the fingerprint is first unwrapped from a 3D scan into a 2D rolled equivalent 

fingerprint. Having the unwrapped 2D fingerprints, conventional 2D matching 

methods can be applied. The benefit of this method is the compatibility with the 

existing legacy rolled images. 

However, a major disadvantage of transforming 3D fingerprint images into 

2D images is that unwrapping results in information loss and distortion in the 

fina12D image. To overcome these disadvantages, a better approach is to perform 

fingerprint matching directly in 3D. High accuracy in fingerprint matching might 

be achieved by direct comparison of the fingerprints in 3D. 

Fingerprint matching is an extremely difficult task because of large intra-
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FIGURE 1-Prototype scanner for 3D fingerprint scanning [1] . 

Projector 

FIGURE 2-3D fingerprint acquisition using PMP technique [2]. 
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FIGURE 3-3D fingerprint scan [2] . 

class variation and small inter-class variation. The problem of 2D fingerprints has 

been studied in the literature, and a large number of approaches have been pro­

posed. An overview of the current 2D minutia-based matching is provided in 

Chapter II, which includes minutiae definition, 2D minutiae extraction and match­

ing algorithms. As it is demonstrated in Chapter II, most automatic 2D systems for 

fingerprint matching are based on minutiae matching [3]. Minutiae, or Galton's 

characteristics [26], are local discontinuities in the fingerprint pattern. A thorough 

explanation of minutiae is defined in Chapter II. 

The first step to develop a 3D minutiae-based fingerprint matching is minu­

tiae detection in the 3D fingerprint. Since minutiae are the key features for finger­

print identification, it is important to detect them precisely. In this research, the 

focus is on the minutiae detection in 3D fingerprint scans. Chapter III proposes an 

unwrapping method to unwrap a 3D scan into a 2D rolled equivalent, and then 

apply the conventional minutiae detector to detect minutiae. However, as it is ex­

plained earlier, this method has some disadvantages. Therefore, the main focus of 
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this research is on minutiae detection directly in 3D scans, which is explained in 

Chapter IV. A quality map for 3D fingerprint scans is proposed in Chapter V, which 

can be used separately or along with minutiae detection to remove low quality 

minutiae. To the best of our knowledge, there are currently no 3D minutiae detec­

tion methodologies that exist. Chapter VI includes testing and evaluation of the 

proposed algorithm. Finally, a conclusion and future works are given in Chapter 

VII. 

3D finger imaging not only brings the biometric industry forward but also 

sets the stage for the future by enabling more advanced, more reliable and com­

pletely new methods for liveness detection and fingerprint matching. 
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CHAPTER II 

20 FINGERPRINT MATCHING 

Fingerprint matching is an extremely difficult task because of large intra­

class variation and small inter-class variation. Intra-class variation, which is a dif­

ferent impression of the same finger, is usually caused by rotation and displace­

ment of finger impression on the sensor, non-linear distortion, sensor noise or skin 

condition. The problem of fingerprint has been studied in the literature, and a 

large number of approaches have been proposed, which can roughly be classified 

in three categories: correlation-based, minutiae-based, and ridge feature-based ap­

proaches. 

Correlation-based matching: The query and template fingerprint images 

are superimposed and spatially correlated, so degree of similarity can be esti­

mated. Since the rotation and displacement parameters are usually unknown, cor­

relation should be computed for all possible parameters. Therefore, it is computa­

tionally expensive. Additionally, some problems such as non-linear distortion and 

noise reduce global correlation between two fingerprints. Thus, local correlation is 

proposed to solve these problems. Local correlation is done locally in a region of 

interest such as regions with high curvature or around minutiae. 

Minutiae-based matching: The most common and well-known approach 

for matching fingerprints is minutiae-based matching. In this approach, the minu­

tiae are first extracted from the query and template fingerprint images and saved 

in two point sets, and then matching two minutiae sets are usually considered as 

a point pattern matching problem. The similarity between them is proportional to 

the number of matching minutiae pair. 
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Ridge feature-based matching: These approaches compare fingerprints based 

on features extracted from ridge patterns. In fact, correlation-based and minutiae­

based matching can be considered as a sub-class of feature-based matching, since 

pixel intensity and minutiae are features of the ridge pattern. Other common fea­

tures used in papers are size of finger print and shape of fingerprint silhouette; 

number, type and position of singularities; spatial relationship and geometrical at­

tributes of ridge lines; shape features; global and local texture information; sweat 

pores; and fractal features. 

A. Minutiae-Based Matching 

As it is mentioned in the previous section, minutiae-based matching is the 

most popular matching approach. Minutiae-based fingerprint representation has 

an advantage in helping privacy issues since the original image cannot be recon­

structed from using only the minutiae information. Minutiae are relatively stable 

and robust to contrast, image resolutions and global distortion when compared 

to other representations. However, extracting the minutiae from a poor quality 

image is not an easy task. Today, most of the automatic fingerprint recognition 

systems are developed to use minutiae for their fingerprint representations [27]. 

This section starts with the thorough definition of minutiae and then continue with 

minutiae extraction methods and finally minutiae matching methods. 

1. What are the Minutiae? 

Minutiae are the local discontinuities of the local ridge structures in the fin­

gerprint pattern. Since Sir Francis Galton (1822-1922) was the first person who 

categorized minutiae and observed the structures and permanence of minutiae, 

minutiae are also called "Galton details." There are about 150 different types of 

minutiae [28] (the most common types are shown in Figure 4). The American Na-
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FIGURE 4-different minutiae type [3] 

tional Standards Institute (ANSI) proposes four classes of minutiae [3] : ending, 

bifurcation, crossover (trifurcation), and undetermined. The FBI only considers 

ending and bifurcation in its model. Fortunately, nearly all the minutiae types are 

definable in terms of two fundamental types: ridge endings and bifurcations. So 

the matching systems usually do not use other types of minutiae. A ridge ending 

is defined as the point where the ridge ends abruptly, and the ridge bifurcation 

is the point where two ridges merge together (see Figure 5). The minutiae-based 

fingerprint representation that is proposed by ANSI-NIST includes minutiae loca­

tion, which is x and y coordination and orientation [29]. The minutia orientation is 

defined as the direction of the ridge on which it resides (Figure 5). 

2. Minutiae Extraction 

There are two main approaches to extract the minutiae from the fingerprint 

image: 

• Binarization-based extraction 

• Gray-scale based approach 
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(b) 

FIGURE 5-(a) ridge ending (b) ridge bifurcation (xo , Yo) is coordinate of minutia 
and e is orientation of minutia [3] 

a. Binarization-Based Minutiae Extraction Most minutiae extraction meth-

ods are based on the binary image where there are only two levels of interest: black 

and white. Most implementations include the steps which are shown in Figure 6). 

In the following paragraphs, each step is explained. 

Binarization is the process of transforming a gray-level image to a binary 

image, which improves the contrast between the ridges and valleys in the finger­

print image and consequently eases the minutiae extraction process. The easiest 

method uses global threshold T, and then it assigns one to each pixel that has an 

intensity value greater than threshold T and zero to each pixel that has an inten­

sity value lower than threshold t. A global threshold is not enough to have correct 

binarization because of the contrast variation in the fingerprint images. Therefore, 

a local threshold is preferred in general, which requires that the threshold is ad­

justed to the local characteristic of the image. A local threshold method cannot 

always guarantee acceptable results. For instance, it does not work very well with 

a poor quality fingerprint image. 

Ratha et al. [30] propose a binarization approach based on the peak detec­

tion in the cross section gray-level profiles orthogonal to the ridge flow orientation. 

They consider a 16x16 oriented window around each pixel, in which the pixel of 

interest is on the center, and the orientation of the window is perpendicular to the 

local ridge orientation. A gray-level profile of pixel intensities is obtained from 
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the central segment of the window. Before projection, the profile is smoothed by 

averaging the pixels along the direction of the ridge in the window. The picks in 

the profile and the two neighboring pixels on each side of the picks are taken as 

foreground and the rest of it as background. The result image is a binary image. 

Cavusoglu et al. [31] use a local threshold for binarization. They divide the 

fingerprint image into 9x9 blocks, then they compute mean gray value as the local 

threshold value for the pixels in the block. Kim and park [4] propose a binariza­

tion technique based on convex threshold. Their algorithm is composed of four 

steps. First they estimate local ridge orientation using the modified least mean 

square orientation estimation algorithm. Next, they quantize the local ridge orien­

tation into four directions (0,45,-45,90). Then a 2-D filter is applied on the image 

for the fingerprint ridge structure regularization. Finally, convex threshold detect 

the ridge. The fingerprint of ridge direction is considered as an one-dimensional 

signal (see Figure 7), where the ridges are convex and valleys are concave. Fig­

ure 7 illustrates the process for ridge detection. If the mean value of left and right 

pixels of the current center pixel is lower than the current pixel, then the pixel is a 

ridge point. 

Garris et al. [8] and Watson et al. [32] propose a directional binarization tech­

nique. In this approach, each pixel is analyzed to determine whether to assign a 

black or white pixel. A pixel is assigned to white if there is no detectable ridge flow 

for the local block. If there is a detected ridge flow in the pixel's local block, then an 

orientated window is used to analyze the neighboring pixel intensity of the pixel. 

The center of the window is on the pixel of interest, and its rows are parallel to 

the local ridge direction. The average row sum is obtained and compared against 

the central row sum. If the central row sum is less than the window's average row 

sum, a pixel would be white; otherwise, it is black. 

Zhang and Xiao [5] propose an approach that simulates the human exercise 

for finding uniform areas. An algorithm is developed to distinguish the dark/light 

image area, which generates a robust uniform region (see Figure 8). Then bina-
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FIGURE 7 - (a) convex detection process (b) result of convex detection [4] 
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(8) 

FIGURE 8 - (An example of region generation: (a) region divided based on human 
vision; (b) image divided by region generation algorithm [5] 

rization is performed for each generated region individually by calculating a local 

threshold for each region and using a traditional thresholding method. Domeni­

coni et al. [9] introduce a binarization method using a differential geometry tool. 

The main idea is to view ridges line as a sequence of maximum and saddle points. 

A Hessian matrix is computed for each pixel; its elements are second-order deriva­

tive of tow-dimensional surface S around a pixel P. The eigenvalues of the Hessian 

matrix are principal curvatures (maximum and minimum curvature) of the sur­

face. Then Pixel P is a local maximum if both eigenvalues are negative, and it is a 

saddle point if one of them is negative and the other one positive. 

Bartunek et al. [33] presents an approach for binarization using frequency 

domain. A method is developed for automatically determining the proper size of 

the local area which is obtained by analyzing the entire fingerprint image in the 

frequency domain. Frequency analysis is also used in the local areas to design 

directional filters. 

The binarization-based minutiae extraction methods usually apply an inter­

mediate thinning step after the binarization step to obtain the skeletons of finger­

print ridges, which reduces the width of ridges to one pixel while keeping the con-
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nectivity of the original shape. It is critical to develop thinning algorithms without 

generating spurious minutiae. The thinning algorithms tend to generate hairy-like 

artifacts along the skeleton which produce the spurious minutiae. Also, holes in 

ridges will produce two spurious bifurcations in a skeleton, or noise will result in 

two spurious ridge endings. Therefore, various regularization techniques are pro­

posed between binarization and thinning stages to fill holes, remove small breaks 

and eliminate ridge bridges and other artifacts. Most of thinning algorithms use 

morphological operators [3]. 

Fingerprint thinning is usually implemented via morphological operations 

such as erosion and dilation. The following equation explains the mathematical 

definition of erosion. The erosion of A by element B is denoted by: 

A8B={zEEIBz~A} (1) 

Where E is Euclidean space and B z is the translation of B by the vector z, 

B z = {b + zlb E B} 

Sometimes using erosion might cause some features to be corrupted, so 

there is another function called dilation. Its mathematical definition is shown in 

the following equation: 

(2) 

where Bs denotes the symmetric of B, that is, BZ = {x E EI- x E B} Two other op­

erators that might be used are opening and closing. They are respectively denoted 

by the following equations: 

A 0 B = (A 8 B) EB B (3) 

A. B = (A EB B) 8 B (4) 

Ji et al. [34] proposed an image thinning algorithm using a template-based pulsed­

coupled neural network (PCNN). The proposed PCNN is a single-layer, 2-D neural 
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network. There is a one-to-one relationship between neurons in the network and 

pixels in the image. Then a coarse-to-fine skeletonize is introduced. It removes 

the pixels from the object's edge iteratively. In the first step, it removes four pixel 

patterns from the edge of the image, and in the second step, it removes all possible 

three pixel patterns. They also introduce a thinning constraint schema by ridge 

orientation which avoids the spikes. Constraint forces the network to do thinning 

in the direction of orthogonal to local ridge orientation by indicating that a neuron 

can fire only along the constrained thinning direction. 

Bazen and Gerez [35] introduce a thinning algorithm by encoding each 3 x 3 

pixel neighborhood in a 9-bit integer. They use this code as an index of the lookup 

table to find the binary value after the current thinning step. Two different lookup 

tables are used for a different thinning direction. They use them iteratively, un­

til the final skeleton is obtained. Hongbin et al. [36] propose a thinning approach 

based on mathematical morphology, which uses hit-miss transformation for thin­

ning the fingerprint. Ratha et al. [30] eliminate the spikes using an adaptive mor­

phological filtering. They use a box-shaped open morphological operator with a 

structuring element. The orientation of the structuring element is perpendicular to 

local ridge orientation. 

Ahmed and Ward [37] propose a rule-based approach for thinning. The 

method is rotation invariant and guarantees symmetrical thinning and high speed. 

It uses 20 rules which are applied simultaneously to each pixel in the image and 

thins objects to their central lines. The algorithm is iterative. At each iteration, it 

deletes every point that lies on the outer boundaries of the symbol, as long as the 

width of the symbol is more than one pixel wide. For this purpose, the algorithm 

uses a set of rules over a 3 x 3 pixel neighborhood of the pixel to be considered for 

deletion, but it cannot handle 2-pixel wide lines very well. Patil et al. [6] propose a 

modified version of an algorithm, which also takes care of the thin zigzag diagonal 

line with a 2-pixel width that is not considered in [37]. The method is based on 21 

thinning rules plus 4 diagonal rules, which are applied in parallel to every pixel 
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(a) (b) (c) 

FIGURE 9- (a) Original image (b) Tinning by Ahmed et aI's algorithm (c) Thinning 
by Pattil et aI's algorithm [6] 

in each iteration. The results of the two aforementioned algorithms are shown in 

Figure 9. 

Once a binary skeleton of a fingerprint is obtained, minutiae detection in the 

thinned image is relatively easy. The most commonly employed method of minu­

tiae extraction is the Crossing Number (CN) concept. The minutiae are extracted 

by scanning the local neighborhood of each pixel in the image using a 3 x 3 win­

dow. A ridge ending point has only one neighbor in the window. A bifurcation 

point possesses more than two neighbors, and an intermediate ridge point has two 

neighbors. Therefore, minutiae detection is implemented by scanning the thinned 

fingerprint and counting the CN. The CN number can be defined as follows [38]: 

8 

CN = 0.5 L IPi - Pi+ II , Pg = PI (5) 
i= I 

where Pi is the pixel value in the neighborhood of I . The eight neighboring 

pixels for pixel I are shown in Figure 10. 

After the C N for a ridge pixel has been computed, the pixel can then be 

classified according to the property of its CN value. (Figure 11) 

• If CN = 2 , p is an intermediate ridge point 

• If CN = l ,p is a ridge end 

• If CN >= 3, p is a bifurcation, crossover or some other complex minutia 
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eN = 3, ridge bifurcation 
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Many papers use the aforementioned method for extracting minutiae from 

the skeleton [30,39-42]. Bartunek et al. [43] propose a method for minutiae extrac­

tion from the skeleton using the neural network. A four-layered, fully-connected, 

feed-forward neural network is implemented to detect and classify minutiae. This 

network has 25 neurons in the input layer, two hidden layers with 25 neurons in 

each of them and 3 neurons in output layers, and the activation function is a bipo­

lar sigmoid function. The network is trained for three different pattern classes: 

termination, bifurcation and non-minutiae, with a 5 x 5 window as training data. 

The algorithm that is used for learning is back-propagation. Then the neural net­

work is trained and tested on the 23 fingerprints. Leung et al. [44] also use a three­

layer perception neural network with a back-propagation learning technique for 

extracting minutiae from the skeleton. 

Miao et al. [7] introduce a method based on principal curve to extract minu­

tiae. The principal graph algorithm is used to obtain the fingerprint's skeleton 

which consists of a set of principal curves. Then, the endings of principal curves 

are analyzed to extract the minutiae. For this purpose, they check the first and the 

last points of each of the principal curves and count how many principal curves 

share these endings. If the ending is found only in one of them, then it is a ridge 

end, and if it is found in three of them, then it is a ridge bifurcation. In Figure 12 

five principal curves (AB, BC, BD, CE, CF) are shown. A is a ridge end because it 

is found in only one principal curve (AB), and B is bifurcation because it is found 

in three principal curves (AB, BC, BD). 

There are some proposed approaches which extract the minutiae directly 

from a binary image without any intermediate thinning. Weber [45] proposes a 

rule-based algorithm to extract the minutiae from a thick binary image. The algo­

rithm follows a ridge from a starting point to a termination point which can be a 

bifurcation or a ridge end. Jung-Hwan Shin et al. [46] extract minutiae based on 

representing the ridge structure of a fingerprint image as a run length code (RLC). 

After preprocessing and segmentation, the fingerprint image is converted to a bi-
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FIGURE 12 - Principal curves of a complex ridge [7] 

nary image. Then, a binarized fingerprint image is entirely represented by a linked 

list of its runs. The minutiae are detected by searching for the termination points 

or bifurcation points of ridges in the RLC. 

Garris et al. (NIST) [8] use a series of pixel patterns to extract the minutiae 

from binraized fingerprint images. The right-most pattern in Figure 13 represents 

the family of ridge ending patterns which are scanned vertically. Ridge ending 

candidates are determined by scanning the consecutive pair of pixels in the finger­

print searching for the pattern-matched sequences. Figure 14 illustrates a series 

of minutiae patterns used to detect the ridge endings and bifurcations in the bi­

nary fingerprint image. Since the mechanism of this minutiae detection method is 

totally different from a skeletonization-based minutiae detection method, specific 

minutiae filtering methods are also designed. The NIST algorithm is applied on 

two different fingerprint images (inked and digital). The minutiae detection re­

sults are shown in Figure 15; the red color represents the best quality, and the blue 

color represents the worst quality. Minutiae with bad quality can be avoided. 

b. Direct Gray-Scale Minutiae Extraction Binarization-based minutiae ex­

traction causes some problems such as losing information during the binarization, 

producing spurious minutiae and being time-consuming. It is also unsatisfactory 

when applied to a low-quality image such as a broken ridge. To overcome the 
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(b) 

FIGURE 15 - Minutiae extraction using NIST algorithm. Fingerprint acquisition is 
performed by UK university (a) digital fmgerprint (b) inked fingerprint 
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problems, some approaches have been proposed, which extract minutiae directly 

from gray-scale extraction methods. 

Maio and Maltoni [9] introduce a method based on ridge line following to 

extract the minutiae from a gray-scale image. The algorithm uses the concept that 

a ridge line is composed of a set of pixels with local maxima along one direction. 

Therefore, at each step, the algorithm finds a local maximum which is related to a 

section orthogonal to the ridge direction. The ridge line can be obtained by con­

necting them. Therefore, the algorithm begins with a starting point (xc, Yc) and 

starting direction ec, and then computes a new point (Xt, Yt) by tracing the ridge 

along the ec with step of f.L pixels from current pixel. The point (Xt, yd is only an 

approximation of the next ridge point. So, to compute the exact location of it, a 

new section n with a median of (Xt, Yt) is obtained, with a direction that is orthog­

onal to ee and its length is 2p + 1. The next ridge point (xn' Yn) is computed by 

analyzing the gray-scale profile of the section set n and finding a local maximum 

in it. This point would be used as a new starting point and the local ridge direction 

at it as the new starting direction of the next iteration (Figure 16). The parame­

ters f.L and p are determined according to the average thickness of the ridge. The 

tracing is executed in the direction of a ridge and stops when a ridge line termi­

nates or intersects with other ridges. Jiang et al. [47] improve Maio and Maltoni's 

method by determining a dynamic value for the ridge following step f.L according 

to the change of ridge contrast and bending level. A large step f.L is used when 

there is low variation of intensity along the segment and the bending level of the 

local ridge is low. Otherwise, a small step f.L is taken in the presence of high inten­

sity variation and high ridge bending, which respectively represent possible ridge 

termination and ridge bifurcation. 

Chang and Fan [48] introduce an algorithm to extract the ridges' locations 

directly from a gray-scale image, which is based on gray-level histogram decom­

position. The ridge, raving and background are determined by a statistical analysis 

of the trimodal distribution. The algorithm considers the effect of background in 
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FIGURE 16 - Some ridge following steps. Some sections are shown on the right [9] 
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a fingerprint image; therefore, it is working for a complete fingerprint, as opposed 

to Maio and Maltoni's algorithm, which only works for a partial fingerprint. Since 

the algorithm does not need any preprocessing stage, the computational time is 

low. Montesanto et al. [49] use three algorithms to detect minutiae in gray-scale 

fingerprint images. The first algorithm is based on a sequential method which 

traces a ridge in a gray-scale image. The ridges are reproduced on another digital 

image using a polynomial to combine all of the ridge points which are found by 

the algorithm. The second algorithm is also a ridge following algorithm which is a 

reactive agent, and the third one extracts minutiae using a multi-layer neural net­

work from a gray-scale image. The results of the three algorithms are combined to 

match fingerprints. 

Liu et al. [50] propose an approach based on tracking the relationship be­

tween the ridges and valleys in the gray-scale image. They use the concept that 

the ridges and the valleys are roughly parallel to each other in a local neighbor­

hood. Therefore, the relationship between adjacent ridges and valleys remains 

the same until they reach to minutiae, such as bifurcation and ridge end. The re­

lationship is detected by tracking neighboring ridges and valleys along the local 

direction of the ridge which is obtained from orientation image, and the relation­

ship is represented by vector with three points located in a line orthogonal to the 

local direction. One of the points is the center of a ridge and the others are the 

centers of the two adjacent valleys. 

Leung et al. [51] propose a neural network-based method. A set of oriented 

Gabor filters is first applied to fingerprint image, and the outputs are given as 

input into a three-layered back-propagation neural network to find the existence 

of minutiae. Fronthaler and Bigun [10] use Linear Symmetry (LS) filter to detect 

the minutiae based on the concept that minutiae are local discontinuities of the 

LS vector field. Two types of symmetries (parabolic and linear symmetry) model . 

and extract the local structure in a fingerprint. After the calculation of linear and 

parabolic symmetry, extra steps are applied to extract minutiae reliably. Hence, the 
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FIGURE 17 - Minutia point detection process [10] 

selectivity parabolic filter is improved with the following equation: 

P Si = P S .(l - ILSI) (6) 

In Figure 17 the minutiae detection process is shown. The first and second images 

are original and enhanced fingerprint images respectively. The image displayed in 

image III is linear symmetry, and parabolic symmetry is shown in image IV. The 

resulting sharpened magnitudes after applying equation 6 is shown in image V. 

Then all points which have filter response below a certain threshold are set to zero, 

and remaining points are searched for finding minutiae. The point is determined 

as minutiae if it is fully surrounded by high linear symmetry. It can be done by 

checking whether the average linear symmetry on a ring around a minutia candi­

date is above a certain threshold. Detected minutiae are shown in image VI. 

All the minutiae points detected with the above methods are not always 

true minutiae. False minutiae may be introduced by factors such as a noisy image 

and image artifacts created by the thinning process. A post-processing stage called 

minutiae filtering is usually necessary to eliminate spurious minutiae. The elimi­

nation is based on their structural characteristics or minutiae filtering in the gray­

scale domain. Some examples of false minutiae are shown in Figure 18, which 

include the spur, hole, triangle and spike structures [29]. 

3. Minutiae-based matching 

Most common fingerprint matching algorithms are Minutiae-based match­

ing algorithms. This approach attempts to get the similarity degree between two 
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FIGURE 18 - Examples of typical false minutiae structures. 

minutiae sets which are first extracted from the query and stored template by one 

of the methods that was previously explained. Then an algorithm matches the rel­

ative placement of the minutiae set in the query fingerprint with stored template 

and returns a binary decision (matched/non-matched) or a similarity score to in­

dicate how similar the two fingerprints are. The minutiae can be represented by 

a number of attributes: i) x-coordinate, ii) y-coordinate, iii) local ridge orientation 

iv) type (e.g., ridge end, ridge bifurcation), and so on. A triplet m = {x, y , O} is the 

most common representation of a minutia, where (x , y) is the location coordinate 

and 0 is the minutia angle. If T and Q are the indication of the template and the 

query fingerprint, they can be represented as: 

(7) 

(8) 

Where n and f are the number of minutiae in T and Q, respectively. A minutia m~ 

in T matches the minutia m i in Q, if their spatial distance is smaller than a certain 

threshold ro and their orientation difference is smaller than the angular threshold 

00 , They can be represented by the following equations: 

Since the alignment parameters are unknown, the matching problem is hard. 

Various techniques have been proposed in the literature to solve the problem. The 
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easiest technique is a brute force approach which computes all the possible solu­

tions, and the complexity of it is exponential in the number of minutiae. A few 

brute force approaches have been proposed in literature. Minutiae-based methods 

may make the more sophisticated computation to search for the best correspon­

dence of minutiae pairs or ridge pairs, which usually use point pattern matching 

algorithm, such as relaxation, energy minimization and Hough transform. It may 

also use some features like core or delta minutiae point to estimate the alignment 

parameter. Usually, the geometric transformation (e.g. displacement, rotation, 

scale) is used to make the alignment between two fingerprints. 

One of the popular approaches for minutiae matching is the Hough transform­

based approach [52] which converts point pattern matching to a problem of lo­

cating the highest peak in the discrete Hough space of transformation parameter. 

Ratha et aL [53] propose a Hough transform-based minutiae matching approach 

which creates a four-dimensional parameter space include translation, rotation 

and scale (6x, 6y, f), s). The parameter space is discretized into small cells, then a 

four-dimensional array A is utilized for accumulating the evidence of transforma­

tion parameters. The parameter values with the highest evidence are used for com­

puting the geometric transformation. Chang et aL [54] introduce another version 

of Hough transform-based approach which use a line segment between two minu­

tiae to compute transformation parameter space and accumulate the evidence. 

In the relaxation approach [55], the confidence level of each corresponding 

pair iteratively is adjusted based on its consistency with other pairs until a certain 

criterion is satisfied. Although different versions of this approach are proposed in 

the literature, these algorithms are slow because of their iterative nature. Energy 

minimization is another approach to point matching. This approach defines a cost 

function based on an initial set of possible correspondences, and then optimal so­

lutions are obtained using an appropriate optimization algorithm such as genetic 

algorithm [56] and simulated annealing [57]. These methods are usually very slow. 

Another approach for minutiae-based matching is alignment-based match-
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ing algorithm, which pre-aligns template and input fingerprint before the minutiae 

matching. Jain et aL [58] propose a pre-alignment-based minutiae matching. They 

use the fact that each minutia in a fingerprint is associated with a ridge. During 

minutiae extraction, the associated ridge (represented as a planar curve) with the 

minutiae is also recorded. Ridges matching between all possible pairs of ridges on 

query and template fingerprint is performed until a pair is found in which their 

matching score is within a certain threshold. The pair found is used to extract the 

parameter for pre-alignment. All the minutiae are converted to polar coordinates, 

and they are then translated into symbolic strings, where the correspondence be­

tween minutiae can be obtained by a dynamic programming algorithm. 

Wegstein [59] introduces an approach that pre-alignment is performed with 

respect to the core positions and the average direction of two regions on the two 

sides of the core. Since a database is created by the transformed template, speed of 

identification is significantly improved. 
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CHAPTER III 

UNWRAPPING A 3D FINGERPRINT TO A 20 ROLLED EQUIVALENT 
FINGERPRINT 

As mentioned in Chapter I, the first method to detect minutiae is to unwrap 

the 3D fingerprint scan to a 20 rolled equivalent image and to use conventional 20 

minutiae detectors. Also, 3D touchless fingerprint images need to be compatible 

with the legacy rolled images. Therefore, this chapter proposes an algorithm to 

convert the 3D fingerprint scan to a 20 rolled equivalent fingerprint. 

A. Previous Work 

There have been recently some algorithms proposed to convert 3D finger­

print images to unwrapped 20 images. Chen et al. [60] propose two methods 

to unwrap a 3D fingerprint scan, namely, parametric and non-parametric. The 

parametric approach projects a 3D fingerprint to the parametric model and then 

unwraps the model. They used a cylinder as the parametric model. Since a cylin­

drical model is the closest model to the finger shape, it is a reasonable choice for 

parametric unwrapping of 3D fingerprints. The transformation in this method is 

often straightforward. The texture of the fingerprint is projected onto the cylinder 

which surrounds the finger, and then the 20 fingerprint is obtained by flattening 

the cylinder. Each point (x, y, z) in the fingerprint is transformed to the cylindrical 

coordinate (e, z), where e = tan- 1(x/y). One of the shortcomings of this approach 

is that it does not preserve the relative distance between the points on the finger­

print surface, which introduces a horizontal distortion to the flattened fingerprint. 

Another method proposed in [60] is a non-parametric algorithm. In this 

method, the unwrapping directly applies to the fingerprint without projecting it 
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to a special model. The approach locally unfolds the finger surface. In fact, a 

3D fingerprint is divided into thin horizontal parallel sections and each section is 

unfolded separately. Linear interpolation is used to obtain more slices between 

the main slices which results in a more smooth fingerprint. Finally, points are 

regenerated using linear interpolation for each horizontal slice to map the slice 

from 3D to 20. The regenerating of the point for unwrapping starts from the center 

and goes to the nail side. The non-parametric method generates better results than 

the parametric method since it preserves the relative distance between minutiae in 

the fingerprint. The main shortcoming of this method is that it does not use depth 

information and it only uses albedo. 

Fatehpuria et al. [61] propose another approach to extract a 20 rolled equiv­

alent fingerprint from a 3D fingerprint. They first extract the smooth surface of 

the 3D fingerprint by smoothing the ridges and valleys by a weighted, non-linear, 

least square algorithm. The weights are obtained by a Gaussian function. Then the 

smoothed 3D surface is transformed to the 20 unfolded surface using the "springs 

algorithm" proposed by Atkins et al. [62]. The texture of the fingerprint (ridges 

and valleys) is calculated by taking the difference between the original 3D surface 

and the smoothed 3D surface. Therefore, the final, 20 rolled equivalent fingerprint 

is obtained by putting the texture onto the unfolded surface which is extracted by 

the "springs algorithm." Wang et al. [63] propose an approach using both depth 

and albedo information. First the ridges and valleys information is extracted by 

fitting different size circles along the vertical direction. By putting these circles to­

gether, a tube form of 3D fingerprint will be obtained. Then, the 20 fingerprint 

is obtained by flattening the tube. Also, the albedo flattened 3D fingerprint is ob­

tained by extracting the ridges information from the albedo image. Hassebrook et 

al. [64] fuse the depth and albedo unraveled fingerprints to achieve higher quality. 

B. Proposed Algorithm to Unwrap 3D Fingerprints to 2D Images 
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Extracting the Smoothed Sulface of a 3D Fingerprint Scan 

~ ,.. 

Unfolding the 3D Smoothed Sulfate to Obtain a 2D 
Smoothed Surface 

~ ,.. 

Obtaining the Fingerprint Texture from the Original 3D 
Fingerprint using Curvature Analysis 

~ ,.. 

Applying the Texture on the Smoothed 2D Sulface 

FIGURE 19-5chematic flow chart of our algorithm for unwrapping a 3D finger­
print. 

In this research, a new algorithm based on curvature analysis of the 3D sur­

face is proposed to unwrap the 3D fingerprint. The steps are shown in Figure 19. 

C. Extracting the Smoothed Fingerprint Surface from a 3D Fingerprint Scan 

The first step in this approach is to extract the smoothed surface of the 3-D 

fingerprint. The purpose is to obtain the 3D finger shape without any ridge and 

valley. To satisfy this purpose, a weighted linear least square algorithm is used, 

whose weights are calculated by a Gaussian function. At each 3D point of the 3D 

fingerprint scan, a plane is fitted to the point under consideration and the points 

in the neighborhood of it. Therefore, a N x N window centered at the point of 

interest is considered and the plane is fitted to the points inside the window using 

the weighted linear least square method. The points close to the point of interest 

or center of the window are given higher weights, and points that are further are 
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given lower weights. 

N2 

S = mina,b,c L wdz; - (aXi + bYi + c))2 (10) 
i=1 

Wi is the weight of ith point. N 2 is number of points in the N x N. The weight of 

each point shows its influence on the plane fitting. Closer points to the center have 

a higher weight than the further points. The Gaussian function is used to calculate 

the weights: 

(11) 

where di is the Euclidean distance between the ith point inside the window and the 

window's center point. Equation (10) can be minimized by setting partial deriva­
N 

tives of the function L Wi. (Zi - (aXi + bYi + c) ) 2 to zero. A linear system of equations 
i=1 

is obtained by taking partial derivatives with respect to the unknown coefficients 

a, band c. Therefore, coefficients can be obtained from the following formula: 

(12) 

C includes coefficients; X includes all of the x and y coordinates of the points; Z 

includes z coordinates of the points, and W includes the weights. The result of 

smoothing is shown in Figure 20. 

D. Unfolding the 3D Smoothed Surface 

Once a smoothed approximation of the fingerprint shape is obtained by the 

aforementioned method, the next step is unfolding the 3D smoothed surface to 

obtain the 2D rolled-equivalent fingerprint image. This is performed by applying 

the "springs algorithm" proposed by Atkins et al. [62]. They introduce a halftone 

post-processing technique which rearranges image pixels to get a smoother rendi-

tion. 

The algorithm assumes virtual springs between a point under consideration 

and its neighboring points. The point would move to a new location based on 
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(a) termination (b) bifurcation 

FIGURE 20 - (a) Original 3D fingerprint scan (b) Smoothed 3D fingerprint scan 

minimizing the energy in the springs. This energy is defined by the cost function. 

Brown et al. [65] also use the spring method to unwrap an old document, and 

Provot [66] uses the mass spring system to model rigid cloth deformation. The 

same idea is applied here to unwrap the 3D surface to the flattened, 2D surface. A 

physical-based modeling approach is used same as in [61]. 

The cloud point is considered a mechanical system, in which each point has 

some mass, and it is connected to the 8-connected neighbors with virtual springs. 

Each spring has a relax length and it has minimum energy when it has its relax 

length. Therefore, to have minimum energy in the springs, they are required to 

compress or stretch to reach their relax length. An iterative algorithm is imple­

mented to calculate the displacement of the points. Each iteration consists of one 

pass over all the points. Displacement is only applied to the point under consid­

eration, and other points remain fixed. To calculate the total energy in each point, 

the energy that is stored in the springs, which connect the point to its neighbors, is 

added together. The magnitude of the energy of each spring is obtained by squar-
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ing the magnitude of the displacement between the current length of the spring 

and its relaxed length, and the sign of energy is determined by subtracting the 

relax length from the current length. More details can be found in [62]. 

E. Curvature Analysis to Obtain the Fingerprint Texture and Applying it on 

the Unfolded 2D Surface 

After the rolling, the fingerprint texture (ridges and valleys) needs to be ob­

tained and apply it to the 2D rolled equivalent fingerprint surface. The curvature 

concept is utilized to detect a ridge on the 3D fingerprint surface. Therefore, each 

point is determined whether or not to be on a ridge. If the point is a ridge point the 

corresponding point in the 2D rolled equivalent fingerprint is assigned black color 

which shows a ridge pixel on the fingerprint. 

Since the image captured by the 3D scanner has some noise and gaps, a 

preprocessing step is required to remove them. Therefore, a median filter is first 

applied to the whole image to remove the sharp spikes which occur during the 

scanning of a finger. Then a low pass filter is applied to get a smoother surface on 

ridges and valleys [67], which are not smooth due to existing pores on the ridge 

surface and other noise which happens during the scanning. 

The next step is to extract the points lying on ridge lines on the surface. 

There are different approaches to locate the ridges [68]. One approach is to use the 

Gaussian and mean curvature which is used here. They are thresholded to find 

these points. In 3D Euclidean space, a surface can be defined by two partial dif­

ferential equations, the so-called first and second fundamental form of differential 

geometry. 

These fundamental forms determine how to measure the length, area and 

the angle of the surface, and the normal surface curvature can be calculated from 

these two fundamental forms. The first fundamental form (I) is defined as the inner 

product of dx with itself [69], where dx is tangent to the surface in the direction 
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defined by du and dv: 

I dx.dx = (xudu + xvdv).(xudu + xvdv) 

(xu.xu)du2 + 2(xu.xv)dudv + (xv.xv)dv2 

Edu2 + 2Fdudv + Gdv2 

E, F and G are first fundamental coefficients. 

(13) 

The second fundamental form (II) is defined as the inner product of dx and 

dN [69], where dN means the spatial rate of change of unit normal vector N to the 

surface. 

II 

(xu.Nu)du2 + 2(xu.Nv + xv.Nu)dudv + (x v .Nv)dv2 

Ldu2 + 2Al dudv + N dv2 

(14) 

L,1I1 and N are the second fundamental coefficients. The Gaussian and mean cur­

vatures K and H ,respectively, are defined as: 

_ ~(k k ) _ EN - 2F AI + GL 
H - 2 1 + 2 - 2(EG _ F2) 

Principal curvature kl and k2 can be obtained by the following formula: 

kl = H + VH2 - K 

kl = H - VH2 - K 

(15) 

(16) 

(17) 

By using the Gaussian and mean curvature, every point can be determined that is 

a ridge or valley point on the fingerprint. Then all of the ridge points are painted 

with the black color on the flattened rolled fingerprint surface. The shape and 

orientation at each point of the surface can be described by the Gaussian and mean 

curvature, respectively. For example, if the sign of two principal curvatures kl and 

k2 are opposite or the Gaussian curvature K is less than zero, the surface is a saddle 
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at that point. Also if the points have mean curvature H greater than zero, they are 

ridge points. Therefore, each point on the rolled fingerprint would be replaced by 

black color if it is determined as a ridge point on the original 3D fingerprint. Other 

points remain white. 

F. Results 

In this section, the proposed method is applied to several 3D fingerprints 

which are scanned by the 3D scanning hardware developed by Flashscan30 LLC 

and the University of Kentucky [2]. 

Figure 21 shows three different 20 rolled equivalent fingerprints which are 

obtained by applying the proposed algorithm on the 3D scan fingerprints. 

Once the 20 rolled equivalent fingerprints are obtained by our proposed 

method, we enhance the result by using the method proposed by Chikkerur and et 

al. [70] which is based on block-wise contextual filter approach in Fourier domain. 

The result of enhancement on images in Figure 21 are illustrated in Figure 22. 

In order to determine the quality of the 20 rolled equivalent fingerprint 

image, NIST 1 fingerprint image software (NFIS2) [71] is used. It is important to 

analyze the fingerprint image and determine degraded areas for reliable minutiae 

detection. NFIS includes seven major packages. The MINOTCT package is uti­

lized, which detects minutiae and assesses the quality of each minutiae. It also 

generates the quality map. 

To generate the quality map, NFIS divides the image into the blocks and 

for each block it generates several maps (direction map, low contrast, low flow, 

and high curve) and integrates them into one general map. It contains 5 levels of 

quality; a value of 4 shows the highest quality, and the value of 0 shows the lowest 

quality. In the quality map grayscale image that we display here, the brighter area 

1 National Institute of Standards and Technology 

2NIST Fingerprint Image Software 
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TABLE 1 
MINUTIAE'S QUALITY 

Color Quality Percentage 

Red 80-100 

Magenta 60-80 

Yellow 40-60 

Green 20-40 

Blue 0-20 

shows the better quality, and the darker area shows the worse quality. Therefore, 

white shows the highest quality, and black shows the lowest quality. Figure 23 

shows the minutiae detected on the fingerprints in Figure 22. The color of minutiae 

shows the reliability and quality of the minutiae. Table 1 shows the quality value 

for each color. Most of the detected minutiae are red which shows the best quality 

(Table 1). The blue minutiae are the poor quality minutiae, and can be deleted for 

the matching purpose. The fingerprint quality maps are shown in Figure 24. The 

majority of gray scale quality map images are white which shows a good quality 

fingerprint image as described above. 
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(a) subject 1 (b) subject 2 

(c) subject 3 

FIGURE 21- The rolled 2-D fingerprints which are obtained by applying the pro­
posed algorithm to the 3-D fingerprints. 
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(a) subject 1 (b) subject 2 

(c) subject 3 

FIGURE 22 - Enhanced 20 rolled equivalent fingerprints. 
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(a) subject 1 (b) subject 2 

(c) subject 3 

FIGURE 23 - Detected minutiae on the fingerprints. The color of minutiae shows 
the reliability and quality of the minutiae (Table 1) 
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(a) subject 1 (b) subject 2 

(c) subject 3 

FIGURE 24 - Quality map where white shows the best quality and gray shows the 
bad quality; worst quality is shown in black. 
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CHAPTER IV 

MINUTIAE DETECTION IN 3D FINGERPRINT SCANS 

As it is mentioned in the second chapter, the first step to develop 3D minutiae­

based fingerprint matching is minutiae detection in the 3D fingerprint. Minutiae 

extraction is a crucial process in 20 conventional fingerprints as well. Minutiae 

are the key features for fingerprint identification, and it is important to develop an 

algorithm to detect them precisely. The focus of this research is mainly the minu­

tiae detection in 3D fingerprint scans. This chapter proposes a novel methodology 

to find 3D minutiae in 3D fingerprint scans. To the best of our knowledge, there 

are currently no 3D minutiae detection methodologies that exist for 3D fingerprint 

scans. 

A. Overview of the proposed Algorithm 

In this method, first differential geometry concepts are used and curvature 

analysis of the surface in order to detect ridges and ravines in the 3D surface. Prac­

tical detection of the crest lines is a difficult computational task since it requires 

a high-quality estimation of the curvature tensors and their derivatives. In order 

to detect them more accurately, an implicit surface can be fitted globally or locally 

to the mesh. Global fitting leads to more accurate detection; however, local fit­

ting is much faster, and results can be satisfactory. Here, the local fitting is used. 

Having detected ridges and ravines, minutiae can be detected using graph theory 

concepts. Finally, a quality map is developed for 3D fingerprint scans. The false 

minutiae are removed by applying the quality map. The steps of the proposed 

algorithm are shown in Figure 25. 
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FIGURE 25-Schematic flow chart of our algorithm for 3D minutiae detection. 

B. Smoothing 

Since the image captured by the 3D scanner has some noise and gaps, and 

the curvature extrema are sensitive to even small variations, a smoothing proce-

dure is applied to the mesh before curvature extraction. This study used two 

kinds of smoothing. In the first called Centroid smoothing, the smoothed mesh 

is obtained by using adjacent triangles. For every vertex in the mesh, a one-ring 

neighborhood is considered. Then the arithmetic mean of the centroids of the ad­

jacent triangles of the considered vertex is obtained as a new vertex [72]. A new 

mesh is formed by the new vertices, which is smoother than the old one. Figure 26 

shows the original scan of a sample fingerprint; Figure 27 demonstrates the same 

sample after Centroid smoothing. 

The second method is adaptive smoothing [73]. This method smoothes the 

noisy mesh while preserving the sharp features, like ridge lines. First, mesh nor­

mals are smoothed using the Gaussian filter, then the mesh vertex positions are 
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modified in order to fit the mesh to the field of smoothed normals. Figure 28 

shows the result after adaptive smoothing. 

C. Computing the Principal Curvatures and Directions 

This section describes the methods that have been developed in order to cal­

culate principal curvatures on meshes. There are three basic steps before curvature 

calculation: normal estimation, local coordinates, and surface fitting. 

1. Normal Estimation 

The first step to compute the principal curvatures of the surface mesh is the 

computing of the normal vector for each vertex on the mesh. In general, a triangle 

mesh does not have the normals associated with it, and therefore, these must be 

estimated as well. This normal vector approximates the real surface normal vector 

at that vertex. The normal vector at the vertex can be computed as the average 

of the face normals for the faces adjacent to the vertex, with various weightings 

applied. It may also be computed as the normal to the plane that best fits the ver­

tex and some number of nearby vertices. Here, the unit normal for each vertex is 

computed by using Nelson Max's method [74]. In this method, a normal vector 

at each vertex is computed as a normalized weighted sum of the normals of trian­

gles incident to the vertex. The weight of each normal depends on the size of the 

relevant facet. The larger weights are assigned to smaller facets, and the smaller 

weights are assigned to the larger facets. 

2. Local Coordinate System 

Before delving into curvature estimation, a local orthonormal coordinate 

system should be build. Many parameterization methods utilize a local 3D co­

ordinate frame with its origin at the vertex. A local coordinate system is formed 
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FIGURE 26 - Original 3D fingerprint scan. 
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FIGURE 27 - Fingerprint scan after Centroid smoothing. 
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FIGURE 28 - Fingerprint scan after Adaptive smoothing. 
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by the normal vector and two arbitrary orthonormal vectors in the plane through 

the considered vertex. Transforming it to such a local coordinate system does not 

restrict the curvature calculation, but does simplify the solution of the equations 

defining the surface representation. All of the calculations should be done in the 

local coordinate system. 

3. Surface Fitting Method 

Continuous methods rely on fitting a polynomial surface locally to the ver­

tex and to some neighboring points. The idea is to somehow best approximate 

locally the underlying surface that was the source of the triangulation. The main 

discriminatory factor between fitting methods is the function chosen to model the 

local surface shape. The chosen function is fit separately at each vertex of the mesh, 

and the coefficients of the function are computed. A local 3D coordinate centered 

at the vertex is used for parameterization. Curvatures are then calculated by in­

terrogating the polynomial surface fit rather than directly from the triangle mesh. 

Since differential properties are local, then this is all that is needed. This method 

has been one of the more popular and stable techniques for curvature estimation. 

Two of the most popular choices for the fitting function are tried, quadratic and 

cubic. They are explained in the following sections. As will be seen later in Chap­

ter 6, the cubic fitting produces better results. Therefore, in this chapter, the output 

of the cubic method is used. 

a. Quadratic fitting Various forms of quadratic function have been fit­

ted to range data [75-7S] and mesh representations [79,SO].The approximation is 

based on the fact that a surface can locally be represented as a graph of a bivariate 

function which is computed using the least squares approach. A general second­

order polynomial with six coefficients, applied to a height function, is shown in 

Equation IS. Amini and Duncan [Sl] and Yokoya and Levine [S2] used this local 

quadratic function for surface fitting. The same function is also used here to fit the 
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surface. 

Zi = f(xi' Yi) = Ax; + BXiYi + CYT + DXi + EYi + F (18) 

where (Xi, Yi) is the parametric location of the i th point in the tangent plane, 

and Zi is the height of the point above (or below) the tangent plane, measured along 

the normal direction. i runs from 1 to N, where N is the number of vertices being 

fit. The coefficients A through F are obtained using the standard least squares 

fit [83,84]. The number of vertices to include in the least square fit should be 

decided. One approach is to use only the vertices of the one-ring neighborhood. 

Alternatively, the neighborhood can be expanded to include a specified number 

of vertices in the least-square fit. This larger number of vertices may be required 

based on the number of coefficients, or to improve the stability of the solution. The 

later method is used for including vertices in the surface fitting. 

In matrix form, the coefficient vector a which minimizes the fit error is: 

(19) 

where A is an n x 6 matrix with row i being [x~ XiYi Y; Xi Yi 1.0], i is a 

column vector of the Zi values. 

b. Cubic fitting Goldfeather et al. [85] expanded the quadric method by 

using a cubic fit of a system of equations formed from the coordinates and normal 

vectors at vertices on the neighborhood. They added normal vectors at adjacent 

vertices in order to create third-degree terms in the least-squares solution, which 

resulted in a better fitting surface. 

In this method, first a cubic approximation approach is applied. A cubic 

polynomial is fitted to p, the vertex under consideration, and its neighboring ver-

tices: 
A C 

f(x, y) = _X2 + Bxy + _y2 + Dx 3 + Ex2y + Fxy2 + Gy3 (20) 
2 2 

Neighboring vertices of the vertex under consideration are obtained from 

51 



the k-link neighborhood, not including vertices, whose normal vector makes an 

obtuse angle with the normal vector at the vertex under consideration. 

Each point in the selected neighborhood of p should fit in the surface, so 

Equation 20 can be rewritten: 

(21) 

where b = (A BCD E F Gf , and (Xi Yi Zi) are the coordinates of the 

points in the selected neighborhood of p. 

In order to get more accurate results, the normal vectors calculated in the 

first step are also used. Therefore, two other approximation equations are added 

to the equation system, in which the real normal at each point should be equal to 

the normal at the surface of that point. (ai bi Ci) indicates the normal vector at the 

point (Xi Yi Zi), and normal to the surface at the same point (Xi Yi Zi) is given by: 

(Jx(X, Y), fy(x, y), -1) 

(22) 

The real normal vector can be rewritten as ( - Qi, - ~, -1), and it should be equal to 
C t C1 

Equation 22 : 

( ai bi ) ( 2 2 2 2 --, --, -1 = AXi+BYi+3Dxi +2ExiYi+FYi' BXi+CYi+Exi +2FxiYi+3GYi -1) 
Ci Ci 

(23) 

which leads to the following equations: 

(24) 

(25) 

Then, a linear least-square method can be applied in order to solve the Equations 

21,24 and 25 as system Ub = d. Then b would be found. As it can be seen later, 

just A, Band C are used to drive the curvature extrema, since the curvature is only 

dependent on the second-degree terms in the local coordinate system. 
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4. Principal Curvatures and Directions 

After a surface is fitted to the point and its neighbor vertices, principal cur­

vatures and principal directions can then be extracted from the local surface. 

Let P denote a point on 3D surface S. Suppose X(u, v) is a local parameter­

ization of S in a neighborhood of P. The partial derivatives of X with respect to 'U 

and v are denoted by xu(P) and xv(P). The unit normal vector N(P) to the surface 

at point P is computed as: 

(26) 

Using (Xu(P), Xv(P), N(P)) as a local orthogonal coordinate system, we can com­

pute coefficients of the first fundamental form as: 

E 

F 

G 

Xu(P).Xu(P) 

Xu(P).Xv(P) 

Xv(P).Xv(P) 

The coefficients of the second fundamental form are computed as: 

e 

f 

9 

N{P).Xuu{P) 

N{P).Xuv{P) 

N(P).Xvv{P) 

The Weingarten curvature matrix at the point P can be computed as follows: 

[ 

eG-fF fE-eF j 
W = EG-F2 EG-F2 

fG-gF gE-fF 
EG-F2 EG-F2 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

when Xu and Xv are orthogonal unit vectors, then this becomes the symmetric ma-

trix: 

(34) 
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If v is a unit vector in the tangent plane to Sat P, then: 

(35) 

is the normal curvature of the surface at the point P in the direction of v. 

Therefore, the eigenvalues '"Yl and {2 of the matrix Ware the maximum and 

minimum principal curvatures of the surface at point P. The eigenvectors VI and 

V2 are the corresponding maximum and minimum principal directions. 

Since, Xu and Xv are orthogonal unit vectors, and regarding the Equation 20 

as the local surface, the Weingarten matrix can be rewritten as: 

(36) 

A, Band C are computed in the previous step. Having matrix W, we can obtain 

principal curvatures and principal directions by computing the eigenvalues and 

the eigenvectors of W. Principal curvatures and directions for a sample fingerprint 

scan are shown in Figures 29,30,31,32, respectively. 

D. Curvature Tensor Smoothing 

In order to get a better result, a smoothing to the curvature tensors kmax , kmin , t max 

and tmin is also applied. In order to do so, the weighted average curvature tensor 

of the neighboring vertices is calculated. Weights are computed according to the 

distance from the neighboring vertex to the vertex under consideration. A smaller 

weight is assigned to the bigger distance and vice-versa. Finally, the new curva-

ture tensor is the weighted summation of the original curvature tensor and that 

obtained from the averaging. 

E. Ridge and Ravine Detection 

Once principal curvatures and directions for each point are obtained, ridge 

and ravine points can be determined. Two different methods are tried in order to 
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FIGURE 29 - Maximum principal curvature. 
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1.-

FIGURE 30 - Minimum principal curvature. 
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FIGURE 31-Maximum principal direction. 
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FIGURE 32 - Minimum principal direction. 
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detect ridges and ravines. First method is the nonmaxima suppression technique. 

In the second method, derivatives of curvature principals are used to detect ridges 

and ravines. A comparison between two methods is discussed in Chapter 6. 

F. First Method 

The ridge points are selected by choosing the points that their maximal prin­

cipal curvature attains the local positive maxima along its curvature line. The 

ravine points are selected by choosing the points that their minimal principal cur­

vature attains the negative minimum along its curvature line. Ridges and ravines 

are dual according to the definition. Therefore, without loss of generality, only 

ridges are considered. 

The nonmaxima suppression technique [86,87] is applied to obtain the ridge 

and ravine vertices. To decide whether kmax takes a maximum along its curvature 

associated with maximum principal direction tmax at vertex V, three steps are fol­

lowed: 

1- The intersection between the normal plane and the polygon that is com­

posed by the first ring neighbors of P is obtained. The normal plane is generated 

by the normal vector at P and the maximal principal curvature at P. 

2- These two surfaces intersect each other at two points: Q and S ( Figure 

33). Curvature values can be estimated at Q and S by linear interpolation. For 

example, curvature values at Q are obtained by linear interpolation of curvature 

values of Vi and Vi+l. 

3- Finally, the maximum principal curvature at P is compared to the maxi­

mum principal curvatures at Q and S. If it is greater than both of them, then the 

maximum principal curvature attains a maximum at P along the normal section 

curve, and it is the ridge point. 

The same process can be applied in order to find ravine points. Once the 

ridge/ ravine vertices are marked, it is also checked if they meet the following 
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,l i+1 

FIGURE 33 - Intersection between the normal plane and the polygon that is com­
posed by the first ring neighbors of P. 

conditions, and the vertices are unmarked if they do not. This is necessary in order 

to remove insignificant ridges. 

Ridge : kmax > I kmin I (37) 

Ravine: kmin < -Ikmaxl (38) 

The final result is shown in Figure 18, in which ridge and ravine points are repre­

sented by red and blue dots, respectively. 

G. Tracing the Ridge and Ravine Lines 

In order to reduce fragmentation of the ridges, those vertices are marked 

as ridge vertices that have two ridge neighbors. Assume that Vi, Vi+land Vi+2 are 

three ordered neighbor vertices of i, in which Vi+! neighbors Vi and Vi+2 as shown 

in Figure 35. For each non-ridge vertex i, if Vi and Vi+2 are both ridge vertices and 

Vi+l is not a ridge vertex, then either i or Vi+!, whichever has bigger kmax, would 
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FIGURE 34-Ridge (red dots) and ravine (blue dots) vertices. 
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FIGURE 35 - Vertex i and three neighboring vertices. 

be the new ridge vertex. 

The same procedure can be applied to all the ravines. kmin value of Vi and 

Vi+2 are compared and then choose whichever is smallest. 

Having all ridge and ravine vertices, we can then trace the vertices and con­

nect them together. In this step, the gaps between the ridges/ravines are filled. 

In order to do so, a simple modification of Dijkstra's algorithm [88] is applied in 

order to find the shortest path between two ridge ends. To generate the weights 

for Dijkstra's algorithm, the following formula [89] is used for ridge detection and 

to assign a weight to each edge in the original mesh: 

where P and Q are two vertices of the edge PQ in the mesh. IIPQII is the length 

of edge PQ. K is assigned the largest maximal curvature of the region. While 

Dijkstra's algorithm is being applied, all the vertices in the neighborhood are not 

visited. Only those ridge vertices are visited and expanded that meet the following 

condition: 

Ridge : kmax > I kmin I (40) 

Ravine: kmin < -Ikmaxl (41) 

The final result is shown in Figure 36, in which red lines show ridges and blue 

lines show ravines. 
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FIGURE 36 - Tracing ridge (red) and ravine (blue) lines. 
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H. Second Method 

In this method, curvature principals and their derivatives are used to detect 

ridges and ravines. 

Denote S to be a given smoothed oriented surface and P to be a point on 

S. The maximal and minimal curvatures of S at P are called kmax and kmin(kmax 2:: 

kmin ). Let tmax and tmin be the corresponding principal directions which are the 

associated tangent directions of S at P. emax and emin denote the derivatives of the 

principal curvature along their corresponding curvature directions: 

(42) 

The point at which the principal curvatures are equal to each other (kmax = 

kmin ) is called umbilic. emax and emin are not defined at umbilic points, because 

the principal directions are undefined there. A non-umbilic point P is called a 

ridge point if kmax attains a local maximum at P along the corresponding principal 

direction tmax . A non-umbilic point P is called a valley point if kmin attains a 

local minimum at P along the corresponding principal direction tmin . Considering 

these definitions, the ridges and ravines are characterized as: 

Ridges: 

(43) 

Ravines: 

(44) 

Note that if surface orientation is changed, then ridges turn into the valleys and 

vice versa. 
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1. Computing e max and emin 

The well-known formula to compute an extremality coefficient e = 8k/8t 

for surface given in implicit form F(X) = 0, X = (Xl, X2, X3) is: 

(45) 

where Fij and FiJI denote the second and third partial derivatives of F(x) , re­

spectively. t = (tl' t2, t3)is the principal direction corresponding to a principal cur-

vature k, n = (nl' n2, n3) is the unit surface normal, and the Einstein summation 

convention is used. 

Some papers like [90] use Equation 45 to compute e max and emint but here 

we use the elegant formula from [91] which is computationally less expensive and 

faster: 

e = 8k/8t = (ti) T (6D 2E) (tl) 
t~ 2F 60 t2 

(46) 

where t = (t I, t2 f is the principal direction corresponding to the principal curva­

ture k, and surface is locally approximated by: 

Equation 46 is derived from Equation 45. In our case, F = z - f(x, y) where 

f(x, y) is defined in Equation 47 and n = (0,0,1) and t = (tl' t2 , 0) at the origin 

of coordinates. f(x, y) does not contain linear terms, at the origin of coordinates, 

therefore Equation 45 would be : 

(48) 

which results in Equation 46. 

2. Tracing the ridges and valleys 

Once the principal curvatures, directions and their derivatives e max and emin 

are calculated for each vertex of the mesh, we are ready to extract the crest points 
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with checking if the each edge of mesh contains curvature maxima or minima. To 

do so, we applied the approach proposed by [88]. 

To detect the ridge points, for each edge e = (VI, V2), the following condition 

is checked: 

(49) 

(50) 

with i = lor2 (51) 

emax (vde m in(V2) < 0 implies whether emax has a zero crossing on edge e, and Equa­

tion 51 checks whether emax obtains a maximum on edge e. If the aforementioned 

equations are satisfied then a linear interpolation is used to find a zero-crossing of 

emax on edge e, which would be a ridge point. 

(52) 

Same procedure can be applied to obtain valley points. 

Finally, if two crest points are detected on the two edges of mesh triangle, 

those crest points would be connected by a straight line. If three crest points are 

detected on three edges of triangle, then crest points are connected by the centriod 

of the triangle. The final result is shown in Figure 37, in which red lines show 

ridges and blue lines show ravines. Since, first method gives better results, the 

result of first method is used for the following sections. The comparison between 

two methods will be discussed in Chapter VI. 

I. Post Processing and Cleaning 

To prevent false minutiae detection, it is necessary to clean the ridges and 

ravines before going to the minutiae detection step. Three different cleaning pro­

cesses are applied: 

• Removing the short ridges 
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FIGURE 37 - Ridge (red) and ravine (blue) lines for second method. 
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FIGURE 38 - A sample of short ridges 

• Removing the short branches 

• Connecting the broken ridges/ ravines 

According to the ridge pattern of the fingerprint, very short ridges are not 

real ridges. Short ridges may be caused by some noise or other artifacts during 

scanning. A example of short ridges is displayed by Figure 38. Therefore, the 

ridge length for each ridge is computed and compared to a specific threshold and 

short ridges are then deleted. Figure 42 demonstrates ridges and ravines after 

deleting the short ridges. The real size of the ridge length in the physical scan 

is used, which gives us more accurate results. Also, the length of branches in the 

ridges/ravines is calculated. Figure 39 illustrates a sample of short branches. Once 

compared to a certain threshold, then the short branches are eliminated (Figure 

41). 

Finally, the remaining gaps between ridges / ravines. Figure 40 shows a 

sample of gaps need to be filled. Here a modified Dijkstra's algorithm is applied 

with different conditions. First, Dijkstra's algorithm is applied to find the shortest 

path from one ridge/ravine end to the nearest ridge/ravine end. If the distance be­

tween them is less than a specific threshold and the direction of two ridges/ravines 

is almost identical, then two ridge/ravine ends are connected. The result is shown 
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FIGURE 39 - A sample of short branch 

FIGURE 40 - A sample of gaps between the ridges 

in Figure 43. Figure 44 shows the difference before and after post-processing in 

the zoomed area. 

J. Minutiae Detection 

After obtaining clean and connected ridges and ravines, minutiae can be 

detected. We look for two kinds of minutiae: termination and bifurcation. Ter­

mination happens when a ridge suddenly comes to an end; bifurcation happens 

when a ridge divides into two [3]. As mentioned in Chapter 2, most fingerprint 
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FIGURE 41- Ridges (red lines) and ravine (blue lines) after removing short 
branches. 
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FIGURE 42 - Ridges (red lines) and ravines (blue lines) after removing short ridges. 
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FIGURE 43-Ridges (red lines) and ravines (blue lines) after filling gaps in the 
ridges. 
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(a) 

(b) 

FIGURE 44-(a) Before cleaning (b) after cleaning 
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matching systems are based on these two kinds of minutiae. First, the degree is 

computed for each vertex. The degree of a vertex is the number of ridge edges 

incident to the vertex. For example, a vertex with a degree of two shows that the 

vertex is in the middle of the ridge. Therefore, vertices with a degree of one cor­

respond to termination minutiae as shown in Figure 45(a). Vertices that having a 

degree of three correspond to bifurcation minutiae as shown in Figure 45(b). All 

one-degree ridge vertices are marked as low quality termination; all three-degree 

ridge vertices are marked as low-quality bifurcation. 

In order to mark them as high-quality minutiae, the termination and bifur­

cation in the ravines are used. Ridges and ravines are dual. Hence, a ridge termi­

nation usually happens when ravine bifurcation happens nearby (Figure 46(a)); 

a ridge bifurcation usually occurs close to the ravine termination (Figure 46(b)). 

This fact is used to obtain reliable minutiae. If a ravine bifurcation is found close 

to the ridge termination, then it is marked as a high quality termination. If we can 

find a ravine termination close to ridge bifurcation, then we mark it as a high qual­

ity bifurcation. The result is shown in Figure 47, in which red dots show reliable 

minutiae and blue dots show low-quality minutiae. The blue minutiae might be 

ignored for matching purpose. In Figure 48, the low-quality minutiae are removed 

and only the high-quality minutiae are demonstrated. 
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(a) termination 

(b) bifurcation 

FIGURE 45-(a) Vertex with degree of one (termination). (b) Vertex with degree of 
three (bifurcation). 
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(a) termination 

(b) bifurcation 

FIGURE 46-(a) Ridge termination (red line) close to ravine bifurcation (blue line). 
(b) Ridge bifurcation close to ravine termination. 
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FIGURE 47 - Minutiae detection. Red dots demonstrate reliable minutiae and blue 
dots show low-quality minutiae. 
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FIGURE 48 - Minutiae detection. After removing the low-quality minutiae. 
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CHAPTER V 

QUALITY MAP 

As seen in Figure 48, there are lots of false minutiae, especially at the edge 

of the fingerprint. Since degraded areas may happen during the scanning process, 

especially at the edge of the fingerprint, it is critical to be able to determine these 

areas. Therefore, false minutiae can be avoided. In order to identify the bad qual­

ity area, we propose a method that measures the quality of 3D fingerprint scans. 

We define fingerprint quality to mean the quality of detected minutiae. Several 

characteristics are designed to convey information that measures the quality in the 

3D fingerprint scans. These include detecting regions with low-depth information 

and low-flow direction. Such characteristics represent unstable areas in the fin­

gerprint scan where detected minutiae are unreliable. Also they can be used to 

represent the levels of quality in the 3D scan. Before defining such characteristics, 

it is necessary to divide the 3D scan into blocks. 

A. Blocking 

In order to analyze the quality of the fingerprint locally, the 3D scan is di­

vided into blocks. All vertices inside the block are assigned the same value. First, 

it must be determined how many vertices for each block are necessary to reliably 

derive the desired characteristics. Different block sizes are tried and thirty vertices 

gave the best results. 

In the first step of the blocking process, each vertex is checked. If it is not 

already assigned to the block, then the current block number is assigned to the ver­

tex. Next, the first-ring neighborhood of the vertex under consideration is checked. 
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Any of the vertices that are not assigned to another block are assigned the same 

block number of the vertex under consideration. The number of vertices in each 

block needs to be equal to the threshold number for the block size. Therefore, if the 

number of vertices is less than the block size, then the second-ring neighborhood 

is checked and the same process is applied. This will continue in the next neigh­

borhood untill the number of vertices is equal to the block size, or there are no 

non-assigned vertices in the neighborhood. Hence, the size of some blocks is less 

than the threshold. This may result in small blocks, which have inaccurate results. 

In order to solve this problem, these small blocks are merged to the neighbor block 

with the smallest size. The result of blocking is shown in Figure 49. 

B. Low-depth information map 

The purpose of this map is to represent areas of the 3D scan that have suffi­

cient ridge structure. Clearly visible and well-formed ridges and ravines are nec­

essary to reliably detect minutiae. Sometimes, there is no sufficient depth informa­

tion to create a well-formed ridge structure. This especially happens at the edge 

of fingerprint scans. The minutiae that are detected in these areas are not reliable. 

To avoid detecting the false minutiae in these areas, we need to identify them. For 

this purpose, the following steps are proposed, which include: curvature tensor 

detection, ridge and ravine detection, identifying the depth value for each vertex 

, and finally obtaining the value for the whole block to assign to each vertex. Us­

ing blocks instead of each vertex individually gives a more accurate and smooth 

results. 

Curvature tensor for each vertex is obtained in Section C of Chapter 4; ridge 

and ravine detection is explained in Section E of Chapter 4. Once the ridge and 

ravine points are computed, the following conditions are checked for each ridge 

and ravine vertex: 

ridge vertex: kmax > T (53) 
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FIGURE 49 - Dividing the 3D fingerprint scan into blocks. Size of the blocks are 30 
vertices. The blocks are shown by different color. 
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ravzne vertex: kmin < -T (54) 

where T is the threshold according to the physical normal ridge depth of a 

fingerprint. 

If these conditions are met for the vertex, then the vertex is marked as a good 

vertex, otherwise it is marked as a bad vertex. The result for the block is obtained 

by taking the average of the value for all vertices inside the block. Afterwards, the 

result is assigned to all vertices inside the block. Therefore, all vertices inside each 

block have the same quality. 

It is desirable to share data used to compute the results with neighboring 

blocks. This way, part of the mesh that contributed to one block's results is in­

cluded in the neighboring block's results as well, which helps minimize discon­

tinuity. This smoothing can be implemented by taking a weighted averaging be­

tween the block under consideration and the neighboring blocks. The result for 

a low-depth information map is shown in Figure 50. The low-quality areas are 

represented by black; high-quality areas are shown by white. 

C. Low-direction flow 

The purpose of this map is to detect the areas in which ridge directions are 

not well-formed, where there are no clearly defined ridges. Minutiae detection 

within these areas is problematic. A map called the low-direction flow map is 

computed, in which blocks of sufficiently low flow-direction are flagged. 

One of the fundamental steps for extracting a low-direction flow map is to 

derive a directional ridge flow map. The map is computed using principal direc­

tions and principal curvatures of the vertex. The following formulas are used in 

order to extract the ridge and ravine directions: 

. [] 8kmax [i] [.] 8kmax [i] [ ] 
ridge directwn i = ~ . [.] x tmax Z - 8 [.] x tmin i 

utmm Z tmax Z 
(55) 
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FIGURE 50-Low-depth information map. White indicates good quality/while 
black shows poor quality. 
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o 0 [OJ 8kmin [iJ [OJ 8kmin [iJ [J 
ravzne dzrectzon z = 0::. [oJ X tmin Z - 0::. ° [oJ X t max i 

utmax z utmm Z 
(56) 

where i is the vertex under considerationo 

The direction map is shown in Figure 51. Once the ridge directions for the 

ridge vertices and the ravine directions for the ravine vertices are optained, then 

the next step is to compare these directions inside a block to find low-direction flow 

blockso In order to do so, all of the vertices inside a block are checked. Aligned 

vertices and non-aligned vertices are recognized; the average is taken over the 

vertices and the result for the block is obtained. Finally, the result is assigned to all 

of the vertices inside the block. 

In order to determine the aligned and non-aligned vertices, the direction of 

the vertex is compared to the direction of other vertices inside the block. If the 

angle between them is less than a certain threshold, then the vertex is marked as 

an aligned vertex. Otherwise, it is marked as a non- aligned vertex. Again, like a 

low-depth information map, the results in the neighboring blocks are used for the 

block. For this purpose, a weighted averaging between the block under consid­

eration and the neighboring blocks is applied. The result of low-flow direction is 

shown in Figure 52. The black area shows poor quality and the white part shows 

good quality. 

D. Overall quality map 

The final quality map is produced by integrating the low-depth information 

map and the low flow direction map into one general map. Figure 53 shows the fi­

nal result. The quality assigned to a specific block is determined based on its prox­

imity to blocks flagged in these various maps. Finally, the quality map is applied 

to the detected minutiae. The result is shown in Figure 54. Red shows reliable 

minutiae detected in good quality areas and black indicates unreliable minutiae 

detected in low-quality areas. 
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FIGURE 51- Direction map. 
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FIGURE 52 - Low-flow direction map. White shows good quality and black indi­
cates poor quality. 
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FIGURE 53 - Overall quality map. White indicates good quality and black refers 
to poor quality. 
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FIGURE 54 - Minutiae detection after applying quality map. Red dots show reli­
able minutiae detected in high quality areas and black dots demonstrate minutiae 
detected associated with poor-quality areas. 
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CHAPTER VI 

TESTING AND EVALUATION 

The proposed 3D minutiae extraction procedure has been tested on a 3D 

fingerprint database consisting of 100 fingerprint scans. All fingers were scanned 

using the SLI 3D fingerprint scanner provided by Flashscan3D LLC and the Uni­

versity of Kentucky [2]. The camera resolution of the scanner was 1392 pixels x 

1040 pixels (H xW), where, depending on the depth, the lateral spacing between 

points typically varies from 20 to 25 f.-Lm. 

Row data is in MatS format, which includes five files that end with: *C.bmp, 

*I.bmp, *X.byt, *Y.byt, *Z.byt. The first file is the color image, sometimes called the 

texture map in BMP format. The second file is the "Indicator" or "quality" matrix. 

The format for this is also in BMP. This Indicator matrix is black and white in value. 

The remaining three files are X, Y, and Z. They contain no header information and 

use one float value for each element. The X, Y and Z matrices contain the X, Yand 

Z coordinates, respectively. Using a simple Matlab code, they were converted to 

pts format, which can be used as input for the triangulation process. The method 

proposed by [92] is used to make the triangle mesh from data points. The method 

is based on the Garland-Heckbert local quadric error minimization strategy. 

In this chapter, first the results of the two different fitting methods: quadratic 

and cubic are compared. Then, the comparison is performed between two different 

methods for detecting ridges and ravines, which are explained in Chapter IV. 

A. Statistical results 

The efficiency of the minutiae extraction can be measured by how well it 
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TABLE 2 
MEAN AND STANDARD DEVIATION OF THE SENSITIVITY AND 

SPECIFICITY FOR CUBIC FITTING 

Sensitivity(% ) Specificity(% ) 

Mean Value 88.3 79.5 

Standard Deviation 6.8 9.1 

meets the objective of detecting the minutiae from the original image by a finger­

print expert. The proposed algorithm is tested by using two quantity measures, 

namely Sensitivity and Specificity, which indicate the ability of the algorithm to 

detect the genuine minutiae and remove the false minutiae respectively. Sensitiv-

ity and specificity are defined as follows [93]: 

S 
Missed Minutiae 

ensitivity = 1 - ---------­
Ground Truth Minutiae 

S f 
False l\Iinutiae 

peci icity = 1 - ---------­
Ground Truth Minutiae 

(57) 

(58) 

Missed minutiae are those that could not be detected by the algorithm; false 

minutiae are that do not exist. The "ground truth" consists of the fingerprint minu­

tiae manually detected in each fingerprint image, as exampled in Figure 55. 

The sensitivity and specificity were measured over the entire database; the 

mean and standard deviation were calculated. Table 2 presents the results of the 

cubic fitting along with the first method ridge and ravine detection. Results for 

quadratic fitting and first method of ridge and ravine detection are reported in Ta­

ble 3. Studying Tables 2 and 3 reveals that cubic fitting gives better results. There­

fore, the cubic fitting is chosen in order to compare the two methods for detecting 

ridges and ravines. 

The sensitivity and specificity were also obtained for the second method of 

detecting ridges and ravines; the results are reported in Table 4. Comparing Tables 

2 and 4 shows that the best results were observed for the first method of ridge 

and ravine detection along the cubic fitting. The high values of sensitivity and 
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TABLE 3 
MEAN AND STANDARD DEVIATION OF THE SENSITIVITY AND 

SPECIFICITY FOR QUADRATIC FITTING 

Sensitivity(% ) Specificity(% ) 

Mean Value 75.8 43.2 

Standard Deviation 8.3 14.2 

TABLE 4 
MEAN AND STANDARD DEVIATION OF THE SENSITIVITY AND 

SPECIFICITY FOR SECOND METHOD OF RIDGE AND RAVINE DETECTION 

Sensitivity(% ) Specificity(% ) 

Mean Value 55.8 71.6 

Standard Deviation 13.9 11.5 

specificity suggest the effectiveness of the proposed technique. 

B. Visual considerations 

Figure 55 shows the minutiae manually detected on a fingerprint of the 

database. The minutiae located in regions with poor contrast are neglected, where 

minutiae detection cannot be performed even manually. Figure 56 shows the au­

tomatic extraction through the proposed algorithm, mentioned in this research on 

the same fingerprint. The Figure 56 was obtained by using cubic fitting, along 

with the first method for detecting ridges and ravines. In this figure, only the good 

quality minutiae in the high quality area are demonstrated. Comparing these two 

pictures, there are one missed minutiae and two false minutiae. Sensitivity and 

specificity for this Figure are 0.97 and 0.94, respectively. 

Figure 57 demonstrates detected ridges and ravines for the same sample 

used in Figure 55 by using quadratic fitting. Red lines show ridges and blue 

lines show ravines. The quality map for this fingerprint is shown in Figure 58, 

in which white indicates high-quality areas, and poor-quality areas are shown by 

91 



FIGURE 55 - The minutiae manually detected on a fingerprint. 
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FIGURE 56-Automatic extraction through our algorithm. 
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black. Figure 59 demonstrates minutiae detection on this sample after applying 

the quality map to the detected minutiae. Black dots illustrate minutiae associated 

with poor-quality regions; red dots indicate high-quality minutiae associated with 

high quality regions. Finally, Figure 60 shows detected minutiae after removing 

the low-quality minutiae. Sensitivity and specificity for this sample are 0.83 and 

0.40, respectively. 

Figures 61 - 64 illustrate the results for the second method of detecting 

ridges and ravines as well as cubic fitting. Figure 61 demonstrates ridge lines (red) 

and ravine lines (blue). The quality map for this method is shown in Figure 62, 

in which white shows high-quality areas, and poor-quality areas are displayed in 

black. Figure 64 demonstrates minutiae detection after applying a quality map, 

in which black dots show minutiae associated with poor-quality regions while red 

dots show high-quality minutiae associated with high-quality regions. Finally, Fig­

ure 64 shows detected minutiae after removing the low-quality minutiae. Sensitiv­

ity and specificity for this sample are 0.64 and 0.70, respectively. 

There are more samples from the database shown in Figures 65 - 72. Fig­

ures 65 and 66 show the ridges(red) and ravines (blue) after post processing and 

cleaning. The quality maps for these samples are demonstrated in Figures 67 and 

68 with white for high-quality areas and black for poor-quality areas. Figures 69 

and 70 illustrate detected minutiae after applying the quality map. Black minutiae 

are associated with poor-quality areas and red minutiae with high-quality area. Fi­

nally, Figures 71 and 72 show the final results after removing low-quality minutiae. 

C. Algorithm Performance 

The algorithms have been executed on an Intel(R)Xeon(R) CPU 5140 (2.33 

GHz) PC with 8 GB RAM. These algorithms are compiled by using Microsoft Vi­

sual C++ 2008. For each algorithm, the following statistics have been evaluated 

on the whole database: average execution time and standard deviation of the ex-
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FIGURE 57 - Ridges (red) and ravines (blue) lines detected using quadratic fitting. 
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FIGURE 58-Quality map for the fingerprint in Figure 57. High-quality area 
(white) and poor-quality area (black). 
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FIGURE 59 - Minutiae detection for the fingerprint in Figure 57. Black dots show 
minutiae associated with poor-quality areas and red dots show minutiae associ­
ated with high-quality areas. 
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FIGURE 60 - Minutiae detection after removing the low-quality minutiae of Figure 
59. 
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FIGURE 61- Ridges (red) and ravines (blue) lines of Figure 37 after post process­
ing. 
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FIGURE 62 - The quality map for the fingerprint in Figure 61. High-quality areas 
displayed in white and poor-quality areas displayed in black. 
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FIGURE 63 - Minutiae detection for the fingerprint in Figure 61 . Black dots indicate 
minutiae associated with poor-quality areas; red dots refer to minutiae associated 
with high-quality areas. 
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FIGURE 64 - Minutiae detection after removing the low-quality minutiae of Figure 
63. 
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(a) subject 1 (b) subject 2 

(c) subject 3 (d) subject 4 

FIGURE 65 - Ridges (red) and ravines (blue) lines after post processing for four 
samples of the database. 
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(a) subject 5 (b) subject 6 

(c) subject 7 (d) subject 8 

FIGURE 66 - Ridges (red) and ravines (blue) lines after post processing for four 
samples of the database. 
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(a) subject 1 (b) subject 2 
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(c) subject 3 (d) subject 4 

FIGURE 67 - The quality map for four samples of the database. High-quality areas 
displayed in white and poor-quality areas displayed in black. 
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(c) subject 7 (d) subject 8 

FIGURE 68 - The quality map for four samples of the database. High-quality areas 
displayed in white and poor-quality areas displayed in black. 
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(a) subject 1 (b) subject 2 

(c) subject 3 (d) subject 4 

FIGURE 69 - Minutiae detection for four samples of the database. Black dots indi­
cate minutiae associated with poor-quality areas; red dots refer to minutiae associ­
ated with high-quality areas. 
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(a) subject 5 (b) subject 6 

(c) subject 7 (d) subject 8 

FIGURE 70 - Minutiae detection for four samples of the database. Black dots indi­
cate minutiae associated with poor-quality areas; red dots refer to minutiae associ­
ated with high-quality areas. 
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(a) subject 1 (b) subject 2 

(c) subject 3 (d) subject 4 

FIGURE 71- Minutiae detection after removing the low-quality minutiae for four 
samples of the database. 
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(a) subject 5 (b) subject 6 

(c) subject 7 (d) subject 8 

FIGURE 72 - Minutiae detection after removing the low-quality minutiae for four 
samples of the database. 
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TABLE 5 
ALGORITHM EXECUTION TIME 

Algorithm Average Execution time 

Adaptive Smoothing 18.71 

Centroid Smoothing 0.105 

Normal Computation 0.062 

Principal Curvature 10.906 

Tensor Smoothing 22.75 

Ridge and Ravine Detection 0.297 

Remove Short Branches 0.016 

Remove Short Ridges 0.015 

Connecting Broken Ridges 0.828 

Minutiae Detection 0.309 

Quality Map 1.484 

Standard deviation 

1.29 

0.023 

0.004 

1.046 

1.935 

0.047 

0.003 

0.003 

0.052 

0.040 

0.622 

ecution time. The execution times for each step of the extraction procedure are 

reported in Table 5. Adaptive smoothing and tensor smoothing are the most CPU-

expensive. 
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CHAPTER VII 

CONCLUSION AND FUTURE WORK 

This dissertation has proposed a novel framework used to detect minutiae 

in 3D fingerprint scans. A series of algorithms were introduced that extract minu­

tiae in 3D scans, and can be used for 3D fingerprint matching. To the best of our 

knowledge, this is the first minutiae detector for 3D fingerprint scans. 

With 3D fingerprint scans becoming popular, there is a need to develop al­

gorithms that detect minutiae directly in 3D and use them as input for 3D match­

ing. Minutiae are the key features in fingerprint identification. After minutiae 

detection, matching can be reduced to the point matching problem. 

A. Conclusion 

In Chapter I, first the problems with existing contact-based fingerprint tech­

nologies is studied. These problems include : physical distortions and inconsis­

tencies to the final image, hygienic problems, fingerprint faking, etc. In order to 

address these aforementioned problems, the new technology for fingerprint acqui­

sition is introduced to the market, which is a touchless, or 3D live scan, of the fin­

ger. Due to using cameras, touchless fingerprint devices have several advantages, 

such as avoiding plastic distortion, avoiding latent fingerprints, reducing hygienic 

problems and capturing a large image area quickly. In an attempt to build such 

a system, Flashscan3D LLC and the University of Kentucky have been develop­

ing a non-contact, 3D finger scanning system. This system uses multiple, high­

resolution, commodity, digital cameras and utilizes Structured Light Illumination 

(SU). In this dissertation, the 3D fingerprint scans from the system developed by 
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Flashscan30 LLC and the University of Kentucky are used to test the proposed 

algorithms. 

In Chapter II, we studied an existing matching method for conventional 20 

fingerprints. This study led us to the fact that most fingerprint print matching sys­

tems are based on minutiae detection. Therefore, the first step in order to develop 

3D minutiae-based fingerprint matching is minutiae detection in the 3D finger­

print. Minutiae extraction is a crucial process in 20 conventional fingerprints as 

well. Minutiae are the key features for fingerprint identification and it is impor­

tant to develop an algorithm that detects them precisely. Hence, research in this 

study focuses on minutiae detection in 3D fingerprint system. Two methodologies 

are proposed that extract minutiae. The first method is to convert a 3D fingerprint 

scan to a 20 rolled equivalent fingerprint. Then, minutiae detection is performed 

using conventional existing 20 minutiae detection tools. This method is intro­

duced in Chapter III. The proposed algorithm is based on curvature analysis of the 

3D surface. First, the smooth surface of the 3D fingerprint is extracted. Then, the 

smoothed 3D surface is transformed into the 20 unrolled surface. Ridge and val­

ley information are extracted from the 3D fingerprint by using curvature analysis 

of the 3D surface. Finally, ridge and valley information were put onto the unrolled 

surface. The benefit of this method is the compatibility with the existing 20 finger­

print images. However, the problem with this method is that unwrapping often 

results in information loss and distortion of the final 20 image. Therefore, another 

method that detects minutiae directly in 3D fingerprint is proposed. The main 

focus of our research is on this second method, which is explained in Chapter IV. 

A set of algorithms suitable for the extraction of minutiae from 3D finger­

print scans are presented. The proposed method to extract minutiae includes the 

following steps: smoothing; computing the curvature tensors; ridges and ravines 

detection and tracing; cleaning and connecting ridges and ravines; and minutiae 

detection. Since the curvature extrema are sensitive to even small variations, a 

smoothing procedure is applied to the mesh before curvature extraction. Two 
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kinds of smoothing are used: Centroid and Adaptive. Then, principal curvatures 

are extracted from the surface by using differential geometry concepts and curva­

ture analysis of the surface. In order to detect them more accurately, an implicit 

surface can be fitted locally to the mesh. Practical detection of the crest lines is a 

difficult computational task since it requires a high-quality estimation of the cur­

vature tensor and their derivatives. Two different methods are applied in order to 

detect ridges and ravines on the surface. The First method is the nonmaxima sup­

pression technique. In the second method, derivatives of curvature principals are 

used in order to detect ridges and ravines. The derivatives of curvature principals 

are computed by using an elegant formula that is much faster than the well-known 

formula. After detecting ridge and ravine vertices, they are traced to ridge and 

ravine lines. 

It should be noted that in order to prevent false minutiae detection, it is 

necessary to clean the ridges and ravines before going to the minutiae detection 

step. Three different cleaning processes are applied: 

• Removing the short ridges 

• Removing the short branches 

• Connecting the broken ridges/ ravines 

Finally, minutiae are extracted using graph theory concepts. They are clas­

sified as reliable and unreliable minutiae. Unreliable minutiae might be ignored in 

the final results. 

Chapter V introduces a quality map for 3D fingerprint scans. Since de­

graded area may happen during the scanning process, especially at the edge of 

the fingerprint, it is critical to be able to determine these areas. The quality map 

assigns the low quality to the area that has a poor contrast or very noisy ridges and 

valleys. Spurious minutiae can be filtered out after applying quality map. Several 

characteristics are designed to convey information to measure the quality in the 

114 



3D fingerprint scans. These include detecting regions with low-depth informa­

tion and low-flow direction. These characteristics represent unstable areas in the 

fingerprint scan where detected minutiae are unreliable. This map might be also 

used to determine the levels of quality in the 3D scans. 

Testing algorithms on database and evaluation is discussed in Chapter VI. 

The proposed method is tested using 3D fingerprint database including 100 3D 

fingerprint scans. The statistical analysis of the results obtained after quality map 

shows the effective reduction of spurious minutiae. The efficiency of the minutiae 

extraction is measured by two quantity measures namely sensitivity and speci­

ficity, which indicate the ability of the algorithm to detect the genuine minutiae and 

remove the false minutiae respectively. The high values of sensitivity and speci­

ficity in the end illustrate the encouraging performance of the proposed method. 

B. Future works 

In the future work, detected minutiae can be used for matching 3D finger­

print. The similarity degree might be obtained between two minutiae sets which 

are first extracted from the query and stored template by our algorithm. Then an 

algorithm matches the relative placement of the minutiae set in the query finger­

print with stored template and returns a binary decision (matched/non-matched) 

or a similarity score to indicate how similar the two fingerprints are. The 3D minu­

tiae set are similar to 2D but having extra z coordinate. Therefore, 2D matching 

algorithm can be used with adding Z coordinate. Hence, the best correspondence 

of minutiae pairs can be searched by algorithms such as point pattern matching 

algorithm, relaxation, energy minimization and Hough transform. 

Another recommendation for future work is to develop an enhancement 

that improves the 3D fingerprint scan quality. In general, a single fingerprint scan 

contains regions of: 

• Well-defined regions, where ridges are clearly differentiated from each other; 
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• Recoverable regions, where ridges are corrupted by a small amount of gaps 

and noise, and so on, but they are still visible and the neighboring regions 

provide sufficient information about their true structure . 

• Unrecoverable regions, where ridges are corrupted by such a severe amount 

of noise and distortion. 

The goal of an enhancement algorithm is to improve the clarity of the ridge 

structures in the recoverable regions. One suggestion might be 3D Gabor filters. 

Gabor filters have both frequency-selective and orientation-selective properties 

and have optimal joint resolution in both spatial and frequency domains. 
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