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ABSTRACT 

OPTIMIZATION MODELS FOR PATIENT ALLOCATION DURING A 

PANDEMIC INFLUENZA OUTBREAK 

LiSun 

December 9, 2011 

Pandemic influenza has been an important public health concern. During the 20th 

century, three major pandemics of influenza occurred in 1918, 1957, and 1968. The 

pandemic of 1918 caused 40 to 50 million deaths worldwide and more than 500,000 

deaths in the United States. The 1957 pandemic, during a time with much less 

globalization than now, spread to the U.S. within 4 to 5 months of its origination in 

China, causing more than 70,000 deaths in the U.S., and the 1968 pandemic spread to the 

U.S. from Hong Kong within 2 to 3 months, causing 34,000 deaths. 

Pandemic influenza is considered to be a relatively high probability event, even 

inevitable by many experts. During a pandemic influenza outbreak, some key 

preparedness tasks cannot be accomplished by hospitals individually; regional resource 

allocation, patient redistribution, and use of alternative care sites all require collaboration 

among hospitals both in planning and in response. The research presented in this 

dissertation develops optimization models to be used by decision makers (e.g. hospital 

associations, emergency management agency, etc.) to determine how best to manage 
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medical resources as well as suggest patient allocation among hospitals and alternative 

healthcare facilities. 

Both single-objective and multi-objective optimization models are developed to 

determine the patient allocation and resource allocation among healthcare facilities. The 

single-objective optimization models are developed to optimize the patient allocation in 

terms of minimizing the travel distance between patients and healthcare facilities while 

considering medical resource capacity constraints. During the pandemic, the surge 

demand most likely would exhaust all the medical resources, at which time the models 

can help predict the potential resource shortage so an appropriate contingency plan can be 

developed. If additional resource quantities become available, the models help to 

determine the best allocation of these resources among healthcare facilities. Various 

methods are proposed to conduct the sensitivity analysis to help decision makers 

determine the impact of different level of each type resource on the patient service. The 

multi-objective optimization model not only considers the objective of minimization of 

the total travel distance by patients to healthcare facilities, but also considers the 

minimization of maximum patient travel distance. A case study from Metro Louisville, 

Kentucky is presented to demonstrate how the models would aid in patient allocation and 

resource allocation during a pandemic influenza outbreak. A web-based application based 

on the optimization models developed in this dissertation is presented as an initial tool for 

decision makers. 
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CHAPTER 1 INTRODUCTION 

1.1 Motivation 

Pandemic influenza has been an important public health concern. During the 20th 

century, three major pandemics of influenza occurred in 1918, 1957, and 1968. The 

pandemic of 1918 caused 40 to 50 million deaths worldwide and more than 500,000 

deaths in the United States. The 1957 pandemic, during a time with much less 

globalization than now, spread to the U.S. within 4 to 5 months of its origination in 

China, causing more than 70,000 deaths in the U.S., and the 1968 pandemic spread to the 

U.S. from Hong Kong within 2 to 3 months, causing 34,000 deaths (Das et aI., 2008; 

Meltzer et ai., 1999). 

Pandemic influenza is considered to be a relatively high probability event, even 

inevitable by many experts (Ekici et aI., 2008). Many researchers study the impact of the 

next pandemic. Based on extrapolation of the 1957 and 1968 pandemic, the Centers for 

Disease Control and Prevention (CDC) estimates that in the U.S. there could be 839,000 

to 9,625,000 hospitalizations, 18 to 42 million outpatient visits, and 20 to 47 million 

additional illnesses, depending on the attack rate of infection during the pandemic 

(Meltzer et ai., 1999). The estimates based on the more severe 1918 pandemic suggest 

that substantially more hospitalizations and deaths could occur (Meltzer et ai., 1999). A 

software program called FluSurge was developed by the CDC to calculate the potential 
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impact of a pandemic on hospital resources such as staffed beds (both overall and ICU -

Intensive Care Unit) and ventilators (Zhang et ai., 2006). The results from FluSurge 

indicate that hospitals would be severely stressed in the moderate 1968-like scenario, and 

completely overwhelmed in the case of a severe 1918-like pandemic (Toner & Waldhorn, 

2006). Toner and Waldhorn (2006) state that during a pandemic influenza outbreak, some 

key preparedness tasks cannot be accomplished by hospitals individually, and it is 

necessary that regional resource allocation, patient redistribution, and use of alternative 

care sites all require collaboration among hospitals both in planning and in response. The 

research presented in this dissertation develops optimization models to be used by 

decision makers (e.g. hospital association, emergency management agency, etc.) to 

determine how best to manage medical resources as well as suggest patient allocation 

among hospitals and alternative healthcare facilities. 

1.2 Problem Statement 

This research focuses on how to allocate the inpatients among the hospitals and other 

healthcare facilities during a pandemic influenza outbreak. Previous work related to 

patient allocation mostly focuses on either long term planning such as hospital network 

planning over a span of years (Chu & Chu, 2000; Green et ai., 1980; Gunes & Yaman, 

2010; Harper et ai., 2005; Mitropoulos et ai., 2006; Ruth, 1981; Santibanez et ai., 2009; 

Schweikhart & Smith-Daniels, 1993; Stummer et ai., 2004; Syam & Cote, 2010) or short 

term planning such as emergency disaster response to a earthquake or hurricane in a 

matter of hours or days (Fiedrich et ai., 2000; Minciardi et ai., 2009; Yi & Ozdamar, 

2007). Since a pandemic outbreak usually lasts several months, it is considered to be a 

medium term planning problem. In this research several mathematical models are 
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formulated and solved to help decision makers address the patient and resource allocation 

issues faced by a multi-facility healthcare network in a medium term influenza outbreak. 

The mathematical models developed in this research optimize the patient allocation in 

terms of: 

1) Minimizing the patients' "cost" of access to service measured as the total travel 

distance between patients and healthcare facilities; 

2) Minimizing the maximum patient travel distance; 

3) Optimizing patient preferences such as special service for certain patients; for 

example patients prefer traveling farther to primary hospital other than health 

center, patients prefer particular healthcare facility that accepts their insurance; 

4) Balancing the workload (i.e. the number of patients treated) among healthcare 

facilities via a predefined desirable occupancy rate; 

5) Satisfying resource capacities via constraints to incorporate limited availability of 

resources at each facility. Resources can include the physical facilities (such as 

non ICU-beds, ICU-beds, and ventilators) and health-care personnel (such as 

doctors, nurses, and lab technicians). Various patient types are considered, 

requiring different levels of service based on the severity of their illness. Each 

patient type category requires multiple types of resources and occupies the 

resources for a specific time period depending on the length of stay in the 

hospital, which is incorporated into the capacity constraints. 

An initial mathematical model is developed to predict when (i.e. which day), where (i.e. 

which healthcare facility) and what (i.e. which resource) is exceeded by the influenza 

patient demand during the outbreak. Based on these predictions, decision makers can 
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determine if healthcare facilities need to increase medical capacity (e.g., have personnel 

work extra hours or put patients in hallways) or request additional capacity from the state 

or national stockpile, which is designed to supplement and re-supply healthcare facilities 

and state/local public health agencies in the event of an emergency. If the healthcare 

facilities receive new resources and/or agree to transfer the resources among healthcare 

facilities, the model can be used to optimize the allocation of resources. 

The mathematical models are also used to perform 'what if ... ' scenario analyses to 

evaluate the system performance under different scenarios, such as considering different 

amounts of new resources, different demand levels, and different policies to transfer 

resources among healthcare facilities. 

1.3 Research Summary 

This research is focused on the admitted or in-patient allocation and resource allocation 

to decide which healthcare site the patients should go to, no matter how they are 

transported; either patients arrive to the healthcare site by themselves or are delivered by 

EMS (Emergency Medical Services). The results from the models can help: 

I) To encourage patients to go to specific healthcare sites, which can be 

implemented in the following ways: 

a. Family physicians refer respective patients to appropriate hospitals or 

other alternative healthcare facilities; 

b. To increase public awareness of each healthcare facility's availability: 

developing the dashboard website, or through phone; 
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c. EMS delivers patients to appropriate hospitals or other alternative 

healthcare facilities; 

d. Other public policy? 

2) To predict the utilizations of various resources among healthcare facilities over 

time, which would help the healthcare facility to be well prepared; 

3) To predict when (which day) where (which healthcare facility) and what (which 

resource) capacity would be exceeded by the surge demand, therefore the surge 

capacity needs would be identified; 

4) To allocate the new resources among healthcare facilities, and/or transfer the 

existing resources among healthcare facilities. 

The state/local hospital association, EMS, and healthcare emergency response agents can 

apply the models to determine the patient distribution and potential resource allocation 

among the healthcare network during an influenza pandemic outbreak. 

This research focuses on medium-term planning during a pandemic influenza outbreak, 

which is different from either long-term or short-term planning as in most current 

research, in the following ways: 

• The planning horizon can be divided into several shorter planning horizons to 

reduce the solution run time and to allow the interjection of real changes in the 

system during the disease spread such as surge capacity increase and healthcare 

personnel infection during the pandemic development. Most current research 

models utilize a single planning horizon; 
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• The model will consider the length of stay of patients in hospitals or other 

alternative healthcare facilities, which is included explicitly in the capacity 

constraints, while most current research models simplify the stay of length by 

estimating a general capacity rate, such as number of patients per time unit 

(Gunes & Yaman, 2010; Santibanez et aI., 2009; Stummer et aI., 2004); 

• Sensitivity analysis is applied to optimization models and helps determine how 

different levels of additional resource impact the service to the patients; 

• A multi-objective optimization model will be developed to consider two 

objectives related to patients' cost of access to healthcare services, including 

minimization of the total travel distance by patients to service and minimizing the 

maximum distance a patient travels. 

1.4 Contribution 

The contribution of this work is summarized as follows. 

• Problem: 

This work is problem-focused. Much work has been done related to pandemic 

influenza response, as discussed in following literature review Chapter 2. But as 

can best be determined, the patient allocation along with resource allocation 

problems during an influenza pandemic outbreak has not been studied in the 

literature. In addition, sensitivity analysis is applied to optimization models which 

helps determine how different levels of additional resource in a healthcare 

network impact the service to the patients. 

• Models: 
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As mentioned, this work is a medium term planning problem, while most the 

allocation models in a healthcare setting focus on either long term planning or 

short term planning. In this work, the models consider the length of stay of 

patients in healthcare facilities explicitly in the capacity constraint, while most 

current research models simplify the stay of length by estimating a general 

capacity rate. In addition, the planning horizon can be divided into several shorter 

planning horizons to reduce the solution run time and to allow the interjection of 

real changes in the system during the disease spread such as surge capacity 

increase and healthcare personnel infection during the pandemic development, 

and the models are developed to connect consecutive shorter planning horizons 

with one another. Most current research models utilize a single planning horizon. 

Finally, a dummy hospital is included into the models to generate feasible 

solutions when encountering resource shortages in the healthcare network. 

• Results and implementation: 

The models generate optimal solutions in a reasonable run time for various scales, 

considering it is a medium term planning problem. A web-application tool, based 

on the models in this work, is developed by a research team. The users are 

allowed to solve the models and obtain results in a reasonable time through the 

website. Users can determine the patient allocation, predict the potential resource 

shortage, and decide the allocation of additional resources among the healthcare 

facilities during an influenza pandemic outbreak. The users also can apply what-if 

analysis to evaluate the system performance under various situations. 

1.5 Dissertation Organization 
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The remainder of the dissertation is organized as follows: 

In Chapter 2, a comprehensive literature review is presented, including the literature 

related to pandemic influenza planning and response, literature related to healthcare 

allocation modeling for normal, non-pandemic instances, and literature related to the 

solution techniques. In Chapter 3, the formulations of several single objective 

optimization models are presented. The objective of these models is to minimize the 

patients' cost (i.e. travel distance) to the service. In Chapter 4, numerical results for a 

case study from Metro Louisville, KY are presented to demonstrate how the model can 

help decision makers determine the patient allocation and potential resource shortages in 

the healthcare system, as well as help to decide the potential surge medical resource 

allocation. In addition, sensitivity analysis is applied to the single-objective model, which 

is mainly used to help decide how different respective levels of additional resources 

would improve the service to the patients. A web-based version of the optimization 

models developed in this dissertation was implemented by a team of web developers. An 

example of this web-based tool is included in Chapter 4. In Chapter 5, multi-objective 

optimization models are formulated to optimize the patient allocation and potential surge 

medical resource allocation among the healthcare sites considering two objectives related 

to patients' cost of access to healthcare services: 1) minimization of the total travel 

distance by patients to healthcare sites; and 2) minimization of the maximum travel 

distance of a patient. Numerical results are presented for a case study. Finally in Chapter 

6, the conclusions and future study plans for the research are presented. 
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CHAPTER 2 LITERATURE REVIEW 

This literature reVIew divides the relevant literature into three categories: literature 

related to pandemic influenza planning and response, literature of healthcare allocation 

modeling for normal, non-pandemic instances, and literature related to the solution 

techniques proposed in this work. 

2.1 Models for Pandemic Influenza Planning/Response 

Pandemic influenza planning/response involves various aspects, including, forecasting of 

the disease spread, mass vaccination clinics, and current tools available for hospital 

planning in the event of a pandemic influenza outbreak. 

Disease spread modeling is used to estimate the infectious disease progression, which 

helps to prepare for the pandemic influenza outbreak. Various researchers use 

mathematical or simulation models to estimate the disease spread (Bobashev et al., 2007; 

Larson, 2007; Naron & Wasserkrug, 2007; Parker, 2007). Based on the disease spread 

model, a growing amount of literature studies the impact of a variety of mitigation 

strategies, including vaccination, prophylaxis, social distance, quarantine, and travel 

restrictions. Difference scale models (such as local, regional, national, and global) are 

studied in the literature to investigate the spread of a pandemic influenza outbreak under 

various mitigation strategies (Chowell et al., 2006; Colizza et al., 2007; Das et al., 2008; 

Eubank et al., 2004; Ferguson et al., 2005; Germann et al., 2006; Goedecke et al., 2007; 
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Halloran et aI., 2008; lenvald et aI., 2007; Kaplan et aI., 2002; Lant et aI., 2008; Longini 

Jr. et aI., 2005; Wu et aI., 2006). 

Mass vaccination is one of the important mitigation strategies. Various papers focus on 

the logistics aspect of mass vaccination, such as the location problem of the point-of­

dispensing (POD) facilities, and the resource allocation in the POD, which can be 

considered as a short term planning problem since the mass vaccination takes place in a 

short period (days or hours). A software suite of decision-support systems, RealOpt, for 

planning large-scale emergency dispensing clinics (i.e. point-of-dispense, POD) to 

responder to biological threats and infectious-disease outbreaks is developed by Lee and 

her group (Lee et aI., 2009; Lee et aI., 2006a, 2006b; Lee et aI., 2009). The software 

contains a component to solve the POD-location problem, a simulation component to 

estimate the POD service performance (e.g. average wait time, average queue length, 

average utilization rate, etc.), and an optimization component to solve the resource 

allocation problem in the POD. Another software package containing discrete-event 

simulation models and capacity-planning and queueing-system models is developed by 

(Aaby et aI., 2006; Aaby et aI., 2006) to plan emergency mass dispensing and vaccination 

clinics for Montgomery County's (Maryland) Public Health Services (PHS). 

Hospital planning during a pandemic influenza outbreak is another important area in the 

literature. The Centers for Disease Control and Prevention (CDC) of the U.S. Department 

of Health and Human Services provides pandemic influenza response tools FluAid 2.0 

and FluSurge 2.0. FluAid 2.0 is designed to assist state and local level planners in 

preparing for an influenza pandemic by providing a range of estimates of potential impact 

in terms of deaths, hospitalizations and outpatient visits due to pandemic influenza 
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(Meltzer et aI., 2000). FluSurge 2.0 is a spreadsheet-based model to allow hospital 

administrators and public health officials to access the impact of pandemic influenza on 

hospital services (Zhang et aI., 2005). 

FluSurge 2.0 users are asked to provide estimates of their local population in three age 

groups (0-19, 20-64, and 65+ years) and their total hospital resources (total non-ICU 

hospital beds, total ICU beds, and total mechanical ventilators), and are able to select the 

duration of a pandemic and the gross clinical attack rate. Based on these data, FluSurge 

estimates the number of hospital admissions and deaths due to pandemic influenza and 

compares hospital resources needed during a pandemic with existing hospital resources. 

A number of researchers applied FluAid and FluSurge to study pandemic responses in 

various geographical areas. For example, Zhang et aI., (2006) discuss Metropolitan 

Atlanta to demonstrate the results, using population-based rates of illness and death in an 

influenza pandemic adapted from Meltzer et aI., (1999). Sobieraj et ai. (2007) use 

FluSurge 2.0 to determine hospital capabilities at William Beaumont Army Medical 

Center (WBAMC) in response to patient arrival surges of the Fort Bliss population in 

mild 1968-type and severe 1918-type influenza pandemics. Lum et ai. (2009) apply 

FluSurge 2.0 and FluAid 2.0 to estimate the demand for critical care hospital admissions 

in Victoria, Canada resulting from the rapid rise in the number of pandemic (H 1 N 1) 2009 

influenza cases, and compare the estimation with the data obtained from daily hospital 

reports of pandemic (HIN1) 2009 influenza-related admissions and transfers to intensive 

care units (ICUs). The results show that the observed rate of hospital admissions was 

broadly consistent with a 5% gross clinical attack rate, with 0.3% of infected patients 

being hospitalized and 20% transfer rate of hospital admissions to ICU s. They conclude 
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that the prospective use of modelling tools informs critical decisions in the planning and 

management of the pandemic and early estimation of the clinical attack rate, 

hospitalization rates, and demand for leU beds guides implementation of surge capacity. 

Rico et al. (2007) present a simulation model to optimize nurse allocation in a Veteran's 

Hospital during a pandemic influenza outbreak by using FluSurge 2.0 to determine the 

arrival rate of patients to the hospital. Wilson, et al. (2005) apply FluAid to estimate the 

impact of the next influenza pandemic on population health and health sector capacity in 

New Zealand. Menon et al. (2005) use FluSurge to model the impact of an influenza 

pandemic on critical care services in England. It should be noted that all the literature 

regarding using FluAid and FluSurge for hospital planning focuses on one hospital, not a 

hospital network, or simply compares the existing hospital resources with the estimated 

demand, not related to the collaboration among hospitals in a network. It appears that the 

patient allocation and resource allocation among a healthcare network of hospitals or 

other alternative healthcare facilities during a pandemic influenza has not been studied. 

2.2 Models for the Allocation Problem in a Hospital Network 

The literature related to the allocation problem (i.e. patient allocation, resource 

allocation/re-allocation) in a hospital network is reviewed here. Previous work mostly 

focuses on either long term planning (e.g. hospital network planning for future years) or 

short term planning (e.g. ambulance allocation, and emergency disaster response). This 

research deals with a medium-term planning horizon, considering that a pandemic 

influenza usually lasts several months, neither years nor days. 
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2.2.1 Long Term Allocation Model 

The location-allocation model that aims to simultaneously determine optimal facility 

locations and the assignment of customers to the selected facilities has been extensively 

applied in healthcare settings to decide the location of healthcare facilities and the 

assignment of patients to facilities. Various researchers apply the location-allocation 

model to design a hospital network in a long term planning horizon. These models are 

used by decision makers to determine the resource allocation/re-allocation among 

hospitals, the assignment of patients to hospitals, the service portfolio (i.e. if a service is 

placed in a hospital or not), and the location of a healthcare facility. 

Gunes and Yaman (2010) present a mixed integer programming formulation for re­

planning hospitals after a merger of Turkish hospital networks. The model is used to to 

optimize the re-allocation of resources (i.e. beds and specialist doctors) among hospitals, 

the assignment of patients to hospitals and the service portfolio to minimize the systems 

costs subject to quality and capacity constraints. 

Santibanez et al. (2009) use a mixed integer programming model to plan Fraser Health's, 

British Columbia's largest regional health authority, hospital network to increase its acute 

care capacity over the next 15 years (3 planning periods are considered in the planning 

horizon) for its anticipated population growth and aging. They formulate a facility 

location-allocating model to determine if a service should be placed in a hospital or not, 

in every decision period, and to assign demand for a service from each community to the 

hospitals in each decision period. 
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Harper et al. (2005) develop a discrete-event geographical location-allocation simulation 

model to evaluate various options for the provision of healthcare services, which includes 

the location of the service centers, service capacities, and patients' access to the service 

centers. Their stochastic location-allocation approach considers various patient flows, 

traveling times, and transport preferences. 

Syam and Cote (2010) develop a mixed integer programming model to solve the location 

and allocation of specified healthcare services such as traumatic brain injury (TBI) 

treatment in one of the Department of Veterans Affairs' (VA) integrated service 

networks. 

Stummer et al. (2004) develop a multi-objective combinatorial optimization model to 

determine location and size of medical departments within the hospitals of a given 

network. 

Ruth (1981) develops a mixed integer programming model for regional planning of a 

hospital inpatient service. The model is used to solve the allocation of beds to match the 

demand. It needs to minimize the cost of the changes considering a distance constraint to 

ensure geographical accessibility, which makes sure patients requiring a certain level 

service should be expected to travel within an acceptable distance. 

Mitropoulos et al. (2006) develop a bi-objective model for the location planning of 

hospital and health centers to minimize the total weighted traveling distance from 

population centers to the healthcare facilities, and to minimize the maximum distance 

from population centers to the medical facilities. 
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Schweikhart and Smith-Daniels (1993) present a nonlinear integer model to determine 

the number, location and service offerings of facilities for a managed healthcare network 

in order to minimize cost and maximize market share. 

Chu and Chu (2000) present a modeling framework to plan for the supply and demand 

matching of public hospital beds in Hong Kong, which addresses 1) hospital locations 

and 2) service allocations, including new services distribution as well as existing services 

redistribution. 

Green et al. (1980) use the bounded transportation problem to investigate new hospital 

location and optimal patient assignments in rural Appalachian Ohio hospitals. 

Various researchers study resource allocation in a healthcare setting as well. One of the 

problems focuses on monetary allocation. For example, Zaric and Brandeau (2001) 

present a model for allocation of epidemic control resources among a set of interventions, 

aiming to maximize quality-adjusted life years gained or the number of new infections 

averted over a fixed time horizon, subject to a budget constraint. Koyuncu and Erol (2010) 

develop a multi-objective model for optimal resource allocation (monetary budget for 

antivirals and preventive vaccinations, ICU beds, ventilators and non-ICU beds) to 

mInImIZe the deaths, number of cases and total morbidity days during a pandemic 

influenza. Flessa (2003) analyzes the optimal allocation of monetary budget to preventive 

programs and the four levels of curative care in the Mtwara region, Tanzania. 

The allocation of available hospital resources to a service IS another problem in 

healthcare setting. Govind, Chatterjee, and Mittal (2008) examine a network of hospitals 

in a predefined geographical area to determine the resources (specifically, beds) that each 
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hospital in the network should devote to different disease classes in order to maximize 

speed of access to care. Blake and Carter (2002) present linear goal programming models 

for allocating resources to decide the case mix and volume for physicians in hospitals. 

2.2.2 Short Term Allocation Model 

Various researchers study emergency response over a short time horizon, such as after an 

earthquake, hurricane, or terrorist attack. The planning horizon could be days, or even 

hours in the disaster response situation. Fiedrich et al. (2000) study the assignment of 

available resources to operational areas in order to minimize the total number of fatalities 

during the initial search-and-rescue period after strong earthquakes, using a dynamic 

combinatorial optimization model. Yi and Ozdamar (2007) build an integrated location­

distribution model to study the selection of temporary emergency centers that result in 

maximum coverage of medical need in affected areas after disasters, and the optimal 

medical personnel allocation among both temporary and permanent emergency units. 

Minciardi et al. (2009) develop a mathematical model to support optimal resource 

allocation before and during an emergency due to natural hazard events. 

2.3 Multi-Objective Optimization Solution Methodologies 

Multiple objectives will be considered in the future study to optimize the allocation of the 

patients and potential additional resources among hospitals and other alternative 

healthcare facilities. Hence, the multi-objective optimization solution methodologies and 

the application in the healthcare setting are reviewed. 

Multi-objective optimization involves the optimization of a collection of objectives. The 

general multi-optimization problem is defined as follows (Marler & Arora, 2004): 

16 



Minimize F(X) = [Fl (X), Fz(X), ... , Fk(X)F 

Subject to gj(X) :::; O,j = 1,2, ... , m, 

hl(X) = 0,1 = 1,2, ... ,e, 

Where k is the number of objective functions, m is the number of inequality constraints, 

and e is the number of equality constraints. X is a vector of decision variables. 

There are two general approaches for solving the multiple-objective optimization 

problem. One solution technique is to combine the multiple objectives to a single 

composite function or move all but one objective to the constraint set. The other approach 

is to generate a set of efficient solutions and allow the decision maker to evaluate the 

solutions and choose a desirable course of action. 

2.3.1 Multiple Objectives Combined into Single Function 

There are many ways to transform a multi-objective optimization to single-objective 

optimization problem, including weighted-sum approach, goal programming, and E­

constraint programming. Weighted-sum approach is one of most commonly-used 

classical methods (Deb, 2001). As the name suggests, the weighted-sum approach 

transforms a multi-objective optimization problem to a single-objective optimization 

problem by pre-multiplying each objective with a user-supplied weight (Deb, 2001). 

Then the objective is transformed to be: 
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It is important to notice that this weighted-sum approach is highly sensitive to the pre­

defined weight vector supplied by the decision maker. Finding a weight vector itself is 

highly subjective and not straightforward. 

Santibanez et al. (2009) build a mathematical model to plan the inpatient hospital 

network for Fraser Health in Canada. They use the weighted-sum method to optimize the 

problem, which is to minimize the total travel patient distance and to minimize the total 

disruption cost to the current system. 

Goal Programming is another widely-used method to transform a multi-objective 

optimization problem to single composite objective. Goals bj are specified for each 

objective function F/X). Then the total deviation from the goals LJ=ll dj I is minimized, 

where dj is the deviation from the goal bj for the jth objective. 

Blake and Carter (2002) use goal programming to solve the resource allocation problem 

in hospitals. Their model allows decision makers to set case mix and case volume in 

hospitals to preserve physician income and minimize disturbance to practice. Li et al. 

(2009) use goal programming to solve the multi-objective bed allocation problem among 

different departments in a hospital, taking account of objectives related to customer 

service and profits from the hospital manager. Oddoye et al. (2007) use a weighted goal 

programming method to solve a resource allocation problem in a medical assessment 

unit. Doctors, nurses and beds are considered as three main resources, and the objectives 

are to minimize the patients' delay time and the amount of extra resources needed such as 

doctors' and nurses' time and beds. 
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The most commonly-used classical method for the latter case of moving all but one 

objective to the constraint set is E -Constraint method, which reformulates the multi­

objective optimization problem to a single-objective function by keeping just one of the 

objectives and restricting the rest of the objectives within user-specified values (Deb, 

2001). The objective is transformed to: 

Minimize Fi(X) for some i 

Subject to Fj(X) ::; Ej, j = 1,2, ... ,k,for j"* i 

The E-Constraint method depends on the chosen E vector, which is also supplied by the 

decision makers. 

Mitropoulos et al. (2006) use the constraint method to solve a biobjective optimization 

problem for locating hospitals and primary healthcare centers. Two objectives are 

considered: (1) minimization of the distance between patients and facilities, and (2) 

equitable distribution of the facilities among citizens. They optimize the first objective 

while the other one is constrained to values that vary through a range of feasible values. 

Koyuncu and Erol (2010) develop a multi-objective optimization model to solve the 

budget allocation problem among preventive vaccination, antiviral treatment and fixed 

resources to mitigate the impact of pandemic influenza. A case study for Turkey is 

presented. They use a hierarchical method to solve the multi-objective optimization 

problem by ordering the objectives in terms of importance based on the preferences of the 

decision-maker, which is (I) minimizing the number of deaths; (2) minimizing the 

number of cases; and (3) minimizing the total morbidity days. Then the algorithm uses a 

multi-level reduced feasible region approach. At the first level, it is attempted to 
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minimize the objective function with the highest importance over the feasible region 

outlined by the system constraints. The value of the objective function at the optimal 

point is used as a constraint for the next optimization. At level 2, the objective function 

with second importance is minimized under the new constraint obtained from the first 

level. This procedure continues in the same way for all objective functions. 

The inherent drawback of the above approaches is that prior preference information is 

required from a decision maker. In practice, it can be very difficult to precisely and 

accurately identify the preference information (e.g. weights, constraining value), even for 

someone who is familiar with the problem domain. It is very arbitrary as well. Sometimes 

even small changes in the preference values (e.g. weights, constraining value) can lead to 

quite different solutions. 

2.3.2 Determine a Set of Efficient Solutions for Multi-Objective Optimization 

The second general solution approach for multi-objective optimization is to determine an 

entire Pareto optimal solution set or a representative subset, rather than get a single 

solution from every single run using the first general approach (as above methods). A 

Pareto optimal set is a set of solutions that are nondominated by each other (i.e. efficient 

solutions). While moving from one Pareto solution to another, there is always a certain 

amount of sacrifice in one objective(s) to achieve a certain amount of gain in the other(s) 

(Konak et aI., 2006). The most widely-used heuristics methods for multi-objective 

optimization problem are genetic algorithms, simulated annealing, and tabu search. The 

algorithms of the above heuristics methods were initially developed for the single 

objective optimization problem, and are tailored to solve multi-objective optimization 
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problem. Jones et aI. (2002) give a comprehensive overview of the heuristic methods for 

multi-objective optimization problem. 

The concept of genetic algorithm was introduced by (Holland, 1975). Genetic algorithms 

are inspired by the evolutionist theory explaining the origin of species, which emulate the 

way species breed and adapt in the field of genetics. Coello (2000) presents a 

comprehensive survey on generic algorithms based multi-objective optimization 

techniques. Simulated annealing emulates the way in which a material cools down to its 

steady state in the field of thermodynamics. Suman and Kumar (2006) present a survey of 

simulated annealing as a tool to solve multi-objective optimization problem. Tabu search 

is based on the social concept of 'taboo' in order to provide an effective search technique 

which avoids local optima (Jones et aI., 2002). 

Syam and Cote (2010) apply simulated annealing to solve a mixed integer programming 

model, which is developed for the location and allocation of specified healthcare services 

in integrated service networks. 

Fiedrich et aI. (2000) study the assignment of available resources to operational areas to 

minimize the total number of fatalities during the initial search-and-rescue period after 

strong earthquakes. They apply both simulated annealing and tabu search methods to 

solve the assignment problem. 

Stummer et aI. (2004) use a multi-objective decision support approach to determine the 

location and size of medical departments in a hospital network. They apply a multi­

objective tabu search procedure to identify efficient alternatives and then allow the 
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decision makers to interactively explore the corresponding solution space through 

iterative cluster analysis. 

Decision makers often prefer working with Pareto optimal solution set to be given a 

single solution. A Pareto optimal solution set can be examined for trade-offs. When 

considering real-life problems, the final solution of the decision-maker always involves 

making trade-offs. 
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CHAPTER 3 SINGLE OBJECTIVE OPTIMIZATION 

MODELS 

This chapter presents five single-objective optimization models for the medium term 

patient allocation problem encountered by a system of healthcare providers during a 

pandemic influenza outbreak. 

Model 1 is developed to determine the patient allocation over a planning horizon while 

minimizing the total patient travel distance and satisfying the capacity constraints of 

various physical healthcare resources. As an extension of the basic Model 1, 

considerations for desirable resource occupancy rate, patient preference, and the 

healthcare personnel resources are introduced in Model 2. Desirable resource occupancy 

rate is used to balance the workload among hospitals. By ensuring that the resource 

utilization at each hospital does not exceed a predefined desirable occupancy rate, the 

workload is balanced. Patient preference is used to incorporate the idea that some patients 

prefer specific healthcare facilities. Finally, Model 2 includes healthcare personnel 

resources considerations since personnel most likely would become a critical resource 

due to the high infection rate among healthcare workers. Two techniques are investigated 

to include the personnel resource capacity in the model. One technique is to include a 

staff rate parameter which indicates the percentage of physical resources that are staffed. 

The other technique is to include the specific personnel schedule over the planning 
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horizon to determine the personnel capacity. In Model 3, a long planning horizon is 

divided into several short planning horizons to help shorten the solution run time and 

reflect capacity changes in different time periods. 

When the capacity of a certain resource is exceeded by demand, Models 1, 2 and 3 would 

suggest that there is no feasible solution. However, in reality, even if a certain type of 

resource is exceeded, the patients who do not require that type of resource can still be 

accepted by hospitals. The hospitals also would obtain newly released resource capacity 

when the previously admitted patients are discharged, which could relieve the capacity 

shortage problem later. Therefore Model 4 allows resource shortages to be estimated and 

allows patients who do not require the exhausted resource to continue to be allocated to a 

hospital. Inclusion of a dummy hospital with unlimited resources allows solutions to 

continue to be generated when one or a few resources are exhausted. This Model 4 can be 

used to predict when (i.e. which day), where (i.e. which healthcare facility) and what (i.e. 

which resource) is exceeded by the influenza patients demand during the outbreak. Based 

on these predictions, decision makers can determine if healthcare facilities need to 

request additional capacity from the state or national emergency management agencies. If 

additional resources become available, Model 5 is developed to help optimize the 

allocation of additional new resources in terms of maximizing the global patient services 

for the entire healthcare system. 

3.1 Modell: Basic Model 

As with all mathematical models, a variety of input data or parameters are needed. The 

models included in this research assume that the in-patient demand or number of patients 
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to be admitted to the hospital can be estimated for each population area. This demand 

data can be obtained from a disease spread model. Disease spread models are used to 

estimate the infectious disease progression, which helps to prepare for the pandemic 

influenza outbreak. Various researchers use mathematical or simulation models to 

estimate the disease spread (Bobashev et aI., 2007; Larson, 2007; Naron & Wasserkrug, 

2007; Parker, 2007). Demand estimation is generated over the planning horizon for 

different patient types requiring different levels of service based on the severity of their 

illness. Each patient type category requires multiple types of equipment resources (such 

as ICU beds, non-ICU beds, ventilators) and occupies the resources for a specific time 

period depending on the length of stay in the hospital. Based on the demand and resource 

capacity information, Model 1 optimizes the patient allocation with regard to minimizing 

the patients' cost of access to service as measured here by total distance travelled. The 

data for demand and resource capacity is assumed to be available in the model. A case 

study for Metro Louisville, Kentucky is studied in Chapter 4, and the data availability 

will be discussed in more details in Chapter 4. 

The model is described as follows: 

Sets: 

H 

A 

T 

R 

hospitals 

population areas (demand points) 

periods in the current planning horizon 

equipment resource types (e.g. non-ICU beds, ICU beds, 

ventilators) 
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p 

Parameters: 

Distancea,h 

Demandp,a,t 

patient types (depending on resources needed and length of 

stay required by the patients) 

set of patient types requmng the serVIce of equipment 

resource r E R 

distance from population area a to hospital h 

demand of patient type p from area a on day t (in number of 

patients) 

CONCapacitYr,h initial capacity of resource r In hospital h (assume that 

certain resource quantities are dedicated to pandemic 

patients at each hospital) 

Capacityr,h,t 

Decision Variables: 

Xp,a,h,t 

Objective Function: 

capacity of resource r in hospital h at day t 

length of stay (i.e. how many days) for patient type p 

Number of patient type p from area a assigned to hospital h 

on day t 

Min I I I I Distance a.h *X p,Q,h,1 (1) 
P a h I 
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Constraints: 

Capacityr,h.l = CONCapacityr,h 

Capacity = Capacity - " " X + " " X r,h,t r,h,t-l ~ ~ p,a,h,t-l ~ ~ p,a,h,t-LOSp 

I X p,a,h,t = Demand p,a,t 
h 

I I X p,a,h,t ::; Capacity r,h,t 
a pES, 

X p,a,h,t ~ 0 

a pES, a PES, 

Vr,h (2) 

Vr,h,t > 1 (3) 

Vp,a,t (4) 

Vr,h,t (5) 

Vp,a,h,t(6) 

The objective function of the model (equation 1) minimizes the total travel distance of all 

patients. Constraints (2) and (3) determine the available capacity of each resource at each 

hospital on each day. Equation (2) assigns the initial capacity of each resource type in 

each hospital. It is assumed that certain resource quantities are dedicated to pandemic 

patients at each hospital. Based on the normal healthcare operation, a regular resource 

occupancy rate can be observed, then it can be predicted that how many resources at each 

hospital can be dedicated to pandemic patients. Equation (3) updates the daily resource 

capacity based on that day's demand and released capacity of patients leaving the 

hospital. Equation (4) ensures each patient is assigned to a hospital. Equation (5) ensures 

the capacity of each equipment resource at each hospital is not exceeded. Equation (6) are 

the nonnegativity constraints. 

Model 1 was tested using problems of various sizes to compare the respective solution 

runtimes. Since the purpose of running different problem sizes is to test the run time, 
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randomly generated data, rather than real-world data, was used. The size of the model 

depends on the number of hospitals, the number of population areas, the number of 

periods in the planning horizon, the number of resource types, and the number of patient 

types. The model was solved using LINGO 11.0 on WINDOWS XP of a Pentium 4 PC 

with 1 GB memory. The run times for the various cases are given in Table 1. 

Table 1. Modell runtime for various data set sizes 

Case1 Case2 Case3 Case4 

Number of Hospitals 8 16 16 16 

Number of Areas 8 20 30 40 

Number of Days 8 10 15 30 

Number of Resource Types 8 8 8 8 

Number of Patient Types 8 8 8 8 

Number of Decision Variables 5056 28032 61312 161152 

Number of Constraints 2497 6593 11153 24833 

Runtime(hh:mm:ss) 00:00:23 00:05:21 00:20:42 01:43:33 

As can be seen in Table 1, as the data sets get larger from case 1 to case 4, the number of 

decision variables and the number of constraints increase dramatically and the model run 

time increases accordingly. Therefore, for larger instances of the model the run time is a 

concern. While longer run times are not the utmost concern for medium term planning, 

shorter run times are advantageous for performing what-if analysis. Dividing the long 

planning horizon into several short planning horizons is a way to reduce the run time, 

which is implemented in Model 3. 

3.2 Model 2: Additional Characteristics 
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To make Model 1 more accurately reflect real world situations, additional parameters and 

constraints are included in the basic Modell. Desirable occupancy rate, patient 

preference, and healthcare personnel capacity are introduced in Model 2. 

Desirable occupancy rate is a way to balance the workload among hospitals, by ensuring 

that the resource utilization at each hospital does not exceed a predefined desirable 

occupancy rate. The occupancy rate can be determined by the decision maker and 

different levels can be applied to see the impact on the performance. Such a parameter 

and the corresponding constraints can be used to avoid the situation where some 

healthcare sites are overloaded while others are underutilized. CONCapacityr,h indicates 

the resource capacity to be dedicated to the pandemic influenza. The parameter 

OccupancyRate is included to indicate the predefined desirable percentage of resource 

capacity to be occupied (i.e. the range is [0, 1]). The user is allowed to define the 

occupancy rate. The predefined desirable resource occupancy rate can be changing during 

the development of pandemic. At early stage of the development, the hospitals may not 

be very stressed by the patients, a relatively low occupancy rate (e.g. 60% to 80%) can be 

applied to spread out the patients among hospitals. As the development of the disease, the 

hospitals can get much more overwhelmed by the surge demand, then a higher occupancy 

rate (e.g. 80% to 100%) must be applied. In addition, what-if analysis can also be applied 

to evaluate the impact of different levels of occupancy rate on the service to patients. The 

following constraints (7) are included to ensure that the resource utilization does not go 

beyond the predefined desirable occupancy rate. 

Capacity r,h,1 - I I X p,Q,h,1 ~ (1- OccupancyRate) * CONCapacity r,h Vr,h,t (7) 
Q pES, 
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Considerations for patient preference are also included in Model 2. From a patient's 

viewpoint, quality of care and access to services are key concerns. In the initial model, it 

is assumed that the quality of care among hospitals is the same, and the travel cost is the 

only concern for the patients. However, in reality, some patients prefer going to a certain 

hospital for various reasons, such as 1) they need a special service in a certain hospital 

(e.g. children go to children's hospital), 2) insurance concerns, 3) consideration of 

hospital's reputation, etc. It is assumed that a certain percentage of a certain patient type 

prefer a certain hospital. Therefore, additional parameters PatientPrejerencep,h are 

included in the model to indicate the percentage of patient type p who prefer (or have to) 

go to hospital h. PatientPrejerencep,h is a rate, then the range is [0,1]. The following 

constraints are introduced in Model 2: 

X p,a.h,t ~ PatientPrejerencep,h * Demandp,a,t Vp,a,h,t (8) 

During a pandemic influenza outbreak, the healthcare personnel are among the high-risk 

group to be infected. The infection of healthcare personnel would limit the number of 

patients who can be treated. A shortage of healthcare personnel can also affect the usage 

of other physical resources. Therefore, it is necessary to consider the healthcare personnel 

capacity to determine the patient allocation. In the basic Modell, only physical resource 

capacity is included. To corporate the healthcare personnel capacity in the model, two 

possible techniques are considered: 1) staffed rate is applied to indicate the percentage of 

physical resources that are staffed; 2) healthcare personnel schedule is used to include the 

specific personnel capacity level. The estimation of the staffed rate or personnel schedule 

can be obtained based on the decision makers' expertise. Experiments using different 
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levels of the staffing rate or personnel schedule can be investigated as well to reflect 

different situations. 

When staffed rate is used to reflect the capacity related to healthcare personnel, the 

parameter StafJRater.h.t is introduced in the model, indicating the staffed rate for physical 

equipment resource r in hospital h on day t, then constraints (2) and (3) related to 

capacity in Modell are modified as follows: 

Capacityr.h,1 = CONCapacityr.h * StajfRater.h,1 Vr,h (9) 

Capacity r,h,t = StajfRate r,h.t * (capacity r,h,t-I - L LX p.a,h,t-I + L LX p,a,h,t-LOS
p 

) 

a pES, a PES, 

Vr,h,t > 1 (10) 

When a specific healthcare personnel schedule is used, additional sets, parameters and 

intermediate variables (i.e. they are not main decision variables, but their values are 

computed in the models) need to be included in the model as follows: 

Sets: 

S Healthcare personnel (staff) resource types (e.g. doctor, nurse, and lab 

technician) 

Ss Set of patient types requiring the service of personnel resource S E S 

Parameters: 
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StajfHrsp,s 

StajjCaps,h,t 

Intermediate Variables: 

NoPatientsp,h,t 

number of staff hours needed by patient type p for personnel 

resource s each day 

staff capacity (man-hours) for personnel resource s at hospital 

h on day t 

number of patient type p in hospital h on day t 

The predicted number of patients at each hospital is calculated for each day and should 

not exceed the personnel capacity constraints. The capacity constraints related to 

personnel resources are added as follows: 

NoPatients p,h,l = I X p,a,h,l \fp,h(11) 
a 

NoPatients p,h,t = NoPatientsp,h,t_l + I X p,a,h,t -I X p,a,h,t-LOS
p 

\fp,h,t> 1 (12) 
a a 

I NoPatientsp,h,t *StaffHrsp,s ::; StajfCaPs,h,t \fs,h,t(13) 
pES j 

3.3 Model 3: Model for Multiple Planning Horizons 

In models 1 and 2, a constant starting condition is used for each resource's capacity 

constraint and then the daily capacity is updated based on the newly admitted patients and 

the discharged patients. 
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In model 3, a long planning period, such as a 2-month wave for the pandemic outbreak, is 

divided into several shorter planning periods (e.g. consecutive weekly plans can be made 

during the outbreak). Then the capacity is updated based on the new patients, the 

discharged patients and the new released capacity from the last planning period. 

Dividing a long planning horizon into several short planning horizons has the following 

advantages: 

• Reduces the solution run times. The shorter planning horizon, the less run time 

required to find a solution, as demonstrated in Table 1. It should be noted that 

shortening the planning horizon and solving the model iteratively does not 

guarantee the overall, global optimal solution. However, the suboptimal solution 

found by dividing the time horizon and 'adding up' the short optimal solutions is 

acceptable for the decision makers to determine patient allocation solutions for a 

pandemic influenza outbreak. 

• Offers the flexibility to update the input to the models during the long planning 

horizon. If the model is solved once for a long planning horizon, an initial starting 

capacity condition is set and may be difficult to update during a long planning 

horizon. If several short planning horizons are considered, the resource capacity 

condition can be updated to reflect the additional capacity that may be obtained 

during the surge demand period. When the capacity is exceeded by the demand, 

extra capacity can be added in the system, and the problem can be solved based 

on the new capacity constraints. 

• Obtains feasible solutions before resources run out in a long planning horizon. If 

the model is solved once for a long planning horizon, no feasible solution would 
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be obtained if resources run out at certain point during the pandemic influenza 

outbreak, which has a high possibility. In this case, if the model is solved in short 

planning horizons, a feasible solution would be obtained for the periods when the 

capacity is not exceeded by the demand. 

To connect the consecutive short planning horizon models with one another, the output 

from the previous planning horizon is used as the starting condition for the current 

planning horizon as follows: 

• The final capacity from the previous planning horizon is fed into the current 

planning period as the starting capacity, or the current real capacity situation can 

be input as a starting condition to compute the current planning horizon, which 

would give more reliable results. Also, the additional surge capacity can be added 

to the system after several short planning horizons. 

• The current planning horizon would carry the newly released capacity from the 

patients who were admitted in the previous planning horizon and are discharged 

in this planning horizon. The capacity released for the following planning horizon 

is calculated in the current planning horizon as well. 

Sets: 

H hospitals 

A population areas (demand points) 

T periods in the current planning horizon 

T' periods in the next planning horizon 

R equipment resource types (e.g. non-ICU beds, ICU beds, ventilators) 
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S personnel (staff) resource types (e.g. doctors, nurses, lab technician) 

P patient types (depending on resources needed and length of stay required by 

the patients) 

Sr set of patient types requiring the service of equipment resource r E R 

Ss set of patient types requiring the service of personnel resource S E S 

Parameters: 

Distancea,h distance from population area a to hospital h 

Demandp,a,t demand of patient type p from area a on day t (in number of 

patients) 

CONCapacityr,h initial capacity of resource r in hospital h (assuming constant 

capacity allocated to pandemic patients) 

StajfHrsp,s staff hours needed for patient type p of staff resource S 

LOSp length of stay (how many days) for patient type p 

StajjCaps,h,t staff capacity (man-hours) for personnel resource s at hospital 

h on day t 

InitPatientsp,h . number of patient type p at hospital h prior to the planning 

horizon 

Intermediate Variables: 

NoPatientsp,h,t 

ReleasedPatients p,h,t 

number of patient type p at hospital h on day t 

number of patient type p admitted from the previous 

planning horizon who will be released at hospital h 

on day t of the current planning horizon 
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NextReleasedPatientsp,h,t' number of patient type p admitted from the current 

planning horizon who will be released at hospital h 

on day t' of the next planning horizon 

Decision Variables: 

Xp,a,h,t number of patient type p from area a assigned to hospital h on day t 

Objective Functions: 

Min LLLLX p,a.h,! * Distancea,h (14) 
p a h I 

Constraints: 

LXp,a,h.t = Demandp,a.1 Vp,a,t(15) 
h 

NoPatients p.h.1 = InitPatients p,h + L X p,a,h,1 - ReleasedPatients p.h,1 'lip, h (16) 
a 

NoPatients p,h.1 = NoPatients ",h.t-! + L X p.a.h,t 
a 

- L (X p.a.h.I-LOS
p 
)- ReleasedPatients p,h,1 

Vp,h,t> 1(17) 

a 

NextReleasedPatients p,h,I' = LX p,a,h,I'+T -LOS p Vp,h,t' (18) 
a 

L NoPatients p,h.1 ::; Con Capacity r," Vr,h,t (19) 
PES, 

L (NoPatients 1',",1 * StafJHrs P.s)::; Staff Cap s,h,t Vs,h,t (20) 
PES, 
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X p.a,h,t ~ 0 Vp,a,h,t (21) 

Constraints (15) define the demand constraint. Every patient is assigned to a specific 

healthcare facility. Constraints (16) through (20) define the capacity constraint for each 

resource type at each facility. Constraints (16) and (17) calculate the number of patients 

of each type in each hospital each day. These constraints calculate the number of patients 

as: number of patient type p on day t = number of patient type p on day (t-l) + newly 

admitted patient type p on day t - released patient type p on day t who are admitted at 

current planning horizon - released patient type p on day t who are admitted from 

previous planning horizon. It is assumed that the length of stay (LOS) for a patient type is 

not greater than the planning horizon. The number of released patients is calculated by 

considering only the previous and current planning horizon. Constraints (18) calculate the 

number of each type of patient in each hospital admitted in the current planning horizon 

and released in the next planning horizon. Therefore, NextReleasedPatientsp,h.t' calculated 

in the current planning horizon will become ReleasedPatientsp,h,( for the next planning 

horizon. Constraints (19) and (20) are the capacity constraints to make sure both the 

equipment and personnel capacity is not exceeded by the demand. Constraints (21) are 

the nonnegativity constraints. 

3.4 Model 4: Model for Multiple Planning Horizons and Allowed 

Resource Shortages 

During a pandemic outbreak, a wave of patient demand is expected which will peak after 

a certain time period and then start to decrease. If the patient demand for a specific 

resource exceeds the capacity, the previous three models will not give a feasible solution 
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due to the capacity constraints being violated. However, in reality, even when one type of 

resource is exceeded, those patients who do not require that specific resource can still be 

accepted by hospitals. The hospitals will also obtain newly released capacity when 

previously admitted patients are discharged, which could relieve the capacity shortage 

problem later in the planning horizon. Therefore it is desirable to develop a patient 

allocation model that can be used for planning over the entire horizon, even if some 

resources are temporarily depleted. In Model 4, a dummy hospital with unlimited 

resources is introduced to allow feasible solutions for the entire planning horizon. The 

other improvement of Model 4 is that the shortage of a resource is calculated to indicate 

the reason some patients are rejected by regular healthcare facilities, i.e. admitted to the 

dummy hospital. Then the decision maker can be alerted about the resource shortage and 

corresponding additional quantities of resources can be requested from emergency 

management agency. 

A dummy hospital is introduced in the model which is used to absorb the patients who 

cannot be assigned to a real hospital when there is a capacity shortage. Patients are only 

allocated to the dummy hospital when all other hospitals are experiencing a capacity 

shortage. Therefore the patients who are assigned to the dummy hospital can be 

considered as the rejected patients in the real situation. The big-M method is used in the 

model (big-M stands for a very large number). The dummy hospital is assumed to have M 

capacity for each resource to make sure that the dummy hospital can accept all the 

exceeded demand, and the distance between the dummy hospital and each population 

area is M. The objective function is: 
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Min IIIIDistancea,h*X p,a,h,t + IIIDistancea,h'*X p,a,h',t *(T + I-t) (22) 
p a h t pat 

The first term of the objective function is the same as the previous model, which is to 

minimize the total travel distance between all patients and their assigned hospital. The 

second term (h' is the dummy hospital) is to minimize the number of the rejected patients 

and to make sure that the patients are assigned to the dummy hospital only when the other 

hospitals cannot accept the patients. The distance between the dummy hospital and each 

population area is large enough to make sure that the number of the patients who are 

assigned to the dummy hospital is minimized, which means that only the exceeded 

demand is assigned to the dummy hospital. In the Model 4 objective function, the 

distance is multiplied by (T + 1-t), to make sure that patients are accepted to the dummy 

hospital only when the real hospitals cannot accept patients due to a capacity shortage. If 

the second term is written as IIIDistancea,h'*X p,a,h',t' then the number of patients 
pat 

who are assigned to the dummy hospital can be minimized, however it could happen that 

the patients are rejected (assigned to the dummy hospital) before the capacity of the other 

hospitals is exceeded. Therefore the term (T + 1-t) is used to make sure that the 

assignment to the dummy hospital only occurs when the other, real, hospitals cannot 

accept the patient. T is the total periods in the planning horizon, and t is the period index, 

therefore T + 1-t>0. T + 1-t is expected to be as small as possible to minimize the second 

term in the objective function, so t is as large as possible, which means that the 

assignment to the dummy hospital is as late as possible, so only when the other, real, 

hospitals cannot accept the patients, the dummy hospital would start to accept the 

patients. 
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In addition, the other improvement of Model 4 is to calculate the resource shortage in the 

system to indicate why some patients are admitted to the dummy hospital, meaning 

rejected by regular healthcare sites. The following additional parameters are included in 

Model 4: 

ResourceShortager,t shortage of physical resource r on day t 

StaffHrsShortages,t Shortage of staff hours on day t 

The resource shortage is calculated by the difference between resource needed by the 

demand and the resource held by the healthcare facilities. The needed resource is 

calculated based on all patients including the ones admitted to dummy hospital, while the 

held resource is calculated based on capacity at all real healthcare sites, as follows: 

ResourceShortage r,1 = I CONCapacity r.h -

h 

I I NoPatients p,h,1 - I NoPatients p,h',1 

h PES, pES, 

StaJfHrsShortage S,I = Staff Cap s,1 - I I NoPatients p,h,1 * StaJfHrs p.s -

h pES, 

I NoPatients p,h',1 * StaJfHrs p,s 

PES, 

\lr,t (23) 

\ls,t (24) 

Overall, Model 4 allows solutions to be obtained for the planning horizon even when a 

resource's capacity is exceeded. The advantages include: 

• For the patients who do not need the shortage resource, the model is able to 

assign them to appropriate hospitals; 
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• At some time one or more resources may be depleted. Later in the planning 

horizon, the depleted resources can regain capacity when patients are discharged 

thereby allowing new patients to claim the resource. 

• The model can indicate when resources would be depleted. 

• The model calculates the resource shortage to indicate the magnitude of the 

resource shortage. 

3.S ModelS: Model Considering the Allocation of Additional Resources 

Model 4 can be used to predict when (i.e. which day), and which resource(s) is exceeded 

by the influenza patients demand during the outbreak. Based on these predictions, 

decision makers can determine if healthcare facilities need to increase medical capacity 

(e.g. put the patients at the hallway), or request additional resource capacity from the 

state or national stockpile. These stockpiles supplement and re-supply healthcare 

facilities and state/local public health agencies in the event of an emergency. If the 

healthcare facilities could receive additional resources, Model 5 is proposed to optimize 

the allocation of additional resources in terms of maximizing the patient services. The 

additional parameters and decision variables, compared to above models, are as follows: 

Parameters: 

AddResr 

AddPRess 

Decision Variables: 

number of additional equipment resource r 

man-hours of additional personnel resource s 
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AddResAllcr,h number of resource r allocated to hospital h 

AddPResAllcs,h man-hours of personnel resource s allocated to hospital h 

Constraints: 

I AddResAllc r,h ::;; AddRes r 
h 

I AddP ResAllc s,h :::; AddP Res s 

h 

'\Ir (25) 

'\Is (26) 

Constraints (25) and (26) are the additional resource allocation constraints to make sure 

the allocation does not exceed the available additional resources including both 

equipment resources and personnel resources. 

I NoPatients p.h.r :::; ConCapacity r,h + AddResAllc r,h '\Ir,h,t (27) 
pES, 

I (NoPatientsp,h.t * StaffHrs p,s):::; StajfCaPs,h,t + AddPResAllcs,h '\Is,h,t(28) 
PES, 

Constraints (27) and (28) are the updated capacity constraints which consider the newly 

allocated additional resources including both equipment and personnel resources. 

Model 5 is applied in a case study from Metro Louisville, Kentucky in Chapter 4 to 

demonstrate how the model can help decision makers determine the patient allocation and 

potential resource shortages in the healthcare in a healthcare network during an influenza 

pandemic outbreak, as well as help to decide the potential surge medical resource 

allocation. 
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CHAPTER 4 CASE STUDY AND SENSITIVITY ANALYSIS 

The models presented in Chapter 3 can be used for patient allocation during a pandemic 

influenza outbreak. Moreover the models can be used to predict a resource shortage 

during an outbreak. Based on these predictions, decision makers can determine if 

healthcare facilities need to increase medical capacity (e.g. put the patients at the 

hallway), or request additional capacity from the state or national emergency 

management agents. If the healthcare facilities could receive new resources, the models 

help to optimize the allocation of additional new resources in terms of maximizing the 

patient services. 

In this Chapter, numerical results for a case study from Metro Louisville, Kentucky are 

presented to demonstrate how the model can help decision makers (e.g. Kentucky 

hospital association, Kentucky Emergency Operations Center) determine the patient 

allocation and potential resource shortages in the healthcare system, as well as help to 

decide the potential surge medical resource allocation. In addition, sensitivity analysis is 

applied to the mathematical models, which is mainly used to help decide how different 

quantities of additional resources would improve the service to the patients. Considering 

the high demand during a pandemic influenza outbreak, a resource shortage is most likely 

to happen. Therefore, an important task for the decision makers to decide is how much 

additional resource should be requested and how different quantities of resources would 

impact the service to the patients. Finally, a web-based application based on the models 
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presented in Chapter 3 was developed by research colleagues and is included here as an 

example of the real world application of this work. 

4.1 Case Study 

A case study is presented here to demonstrate how the models developed in Chapter 3 

can help decision makers determine the patient allocation and potential resource 

shortages in the healthcare system, as well as help to decide the potential surge medical 

resource allocation. 

4.1.1 Model Input Data 

A case study from Louisville-Jefferson County, Kentucky is studied. In 2009 Louisville­

Jefferson County, Kentucky was estimated to have a population of approximately 

722,000 people and cover 400 square miles. For this case study, Louisville-Jefferson 

County was divided into 16 areas as shown in Figure 1. There are 170 census tracts in 

Louisville-Jefferson County. The influenza patient demand from each census tract is too 

trivial since the population size from each census tract is small. Hence, 170 census tracts 

are combined into 16 areas, then the patient demand from each area is more substantial 

and it is easier to implement the patient allocation decision while considering relatively 

smaller number of areas. Seven hospitals were considered available to receive patients 

during an influenza pandemic; the location and numbering scheme of these hospitals is 

shown in Figure 1. The distance (in miles) between the geographic centroid of each 

population area and each hospital is shown in Table 2. 
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Figure 1. Map of Metro Louisville, Kentucky 

Table 2. Distance (in miles) between population areas and hospitals 

Hospital 1 Hospital 2 Hospital 3 Hospital 4 Hospital 5 Hospital 6 Hospital 7 

Area 1 4.64 2.06 6.04 5.83 0.85 0.86 10.73 

Area 2 6.75 2.20 2.74 2.60 3.64 3.25 8.36 

Area 3 6.59 2.98 4.99 4.67 1.56 1.22 8.86 

Area 4 9.49 4.98 2.32 1.88 5.23 4.84 5.51 

Area 5 5.04 4.79 8.74 8.48 2.51 2.92 12.61 

Area 6 1.71 4.98 9.33 9.38 6.47 6.54 15.41 

Area 7 2.47 5.99 10.8 1 10.70 5.55 5.86 15.90 

Area 8 4.11 0.45 5.27 5.20 2.78 2.61 10.92 

Area 9 6.25 3.35 4.32 4.56 6.10 5.82 10.79 

Area10 4.63 5.42 8.38 8.58 7.85 7.76 14.83 

Area11 9.79 5.66 l.78 2.22 7.58 7.18 7.42 

Area12 13.75 9.31 5.75 5.45 9.00 8.67 l.55 

Area 13 16.23 11.79 6.96 7.06 12.82 12.4 1 4.88 

Area14 5.89 10.16 14.52 14.59 1l.20 11.37 20.63 

Area15 9.81 8.13 7.64 8.04 10.90 10.63 13.52 

Area16 15.26 11.81 8.11 8.50 14.02 13.63 10.74 
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FluSurge 2.0, developed by CDC, (Zhang et aI., 2006) was used to generate the demand 

estimation of influenza patients used in this case study. FluSurge users are asked to 

provide estimates of their local population in three age groups (0 to 19, 20 to 64, and 65+ 

years) that can be obtained from census data, and are able to select the duration of a 

pandemic (6, 8, or 12 weeks) and the gross clinical attack rate (15%, 25%, or 35%), i.e. 

the percentage of population with a symptomatic case of influenza. Based on these data, 

FluSurge estimates the number of hospital admissions each day due to pandemic 

influenza for three scenarios (most like scenario, minimum scenario, and maximum 

scenario). FluSurge estimates the total hospitalizations for the entire user-defined 

pandemic duration based on the gross attack rate and distributes the total number of 

hospitalizations over each week. A triangular distribution is assumed for weekly 

distribution of hospital admissions with fewer influenza hospitalizations occurring at the 

beginning and end of the duration and a peak occurring in the middle of the pandemic. 

During the weeks before the peak of the pandemic, FluSurge assumes a 3% daily increase 

in hospitalizations due to influenza. After the pandemic peak, a 3% daily decrease in 

patients is assumed by FluSurge. 

The hospital admissions of three types of patients are estimated by FluSurge; Type 1 

patients are moderate severity patients who occupy a non-ICU bed and stay in a hospital 

for 5 days, Type 2 patients are severe patients who occupy an ICU bed and stay in a 

hospital for 10 days, and Type 3 patients are more severe patients who occupy both an 

ICU bed and a ventilator and stay in a hospital for 10 days. This case study uses the 

FluSurge default assumption of 85% of influenza hospitalizations are for Type 1 patients, 
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7.5% of hospitalizations are Type 2 patients and the remaining 7.5% of hospitalizations 

are Type 3 patients. 

Based on the three types of pandemic patients considered in FluSurge, Non-ICU beds, 

ICU beds and ventilators are the three types of critical equipment resources to be 

considered in this case study. The total amount of equipment resources in the seven 

Metro Louisville hospitals in this case study are obtained from a statewide-used software, 

WebEOC (2010), which is a web-enabled crisis information management system used at 

the Kentucky Emergency Operations Center for natural disaster response and recovery 

efforts. Each of the seven hospitals considered in this case study have equipment resource 

capacities ranging from 100 to 200 non-ICU beds and 20 to 200 ICU beds. The total 

amount of each type resource at each hospital is shown as in Table 3: 

Table 3. Total number of each type resource at hospitals 

Hospital 1 Hospital2 Hospita13 Hospital4 HospitalS Hospital6 Hospital7 

Non-ICU 104 153 139 204 103 168 111 
ICU Bed 81 88 72 206 172 56 16 

Ventilator 4 11 3 20 7 12 7 

4.1.2 Numerical Results 

Based on the expertise of the Louisville emergency response personnel consulted for this 

research, such as emergency preparedness/trauma coordinator from Kentucky Hospital 

Association, Kentucky Strategic National Stockpile Coordinator, physicians from local 

hospitals, Coordinator from Louisville Metro Emergency Management Agency, and 

Consultant from Louisville Metro Emergency Management, this case study investigates 

the patient allocation and resource allocation during a estimated pandemic influenza 
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outbreak with 35% gross clinical attack rate and 6-week duration for the most likely 

scenarIo. 

Only physical equipment resources are considered in this case study since accurate 

personnel scheduling data is not currently available for these hospitals; however, it is 

believed that in a pandemic scenario the hospitals would have a more precisely-tracked 

scheduling system and personnel resources would become critical, so the personnel 

constraints are included in the models. 

It is assumed that a certain percentage of hospital resources would be dedicated to the 

pandemic influenza patients. Considering that the average bed occupancy rate in hospitals 

is 80% to 90% during normal, non-influenza operations and assuming that less than 

normal occupancy of non-influenza patients would be expected during a pandemic 

situation, 25% of the total resource capacity in hospitals was selected as a reasonable 

level to be dedicated to pandemic in-patients in a starting experiment in this case study. 

In this case study, the model with multiple planning horizons and allowable resource 

shortage (i.e. Model 5 in Chapter 3) is applied. As stated above, the hospitalization for a 

6-week pandemic outbreak is estimated by FluSurge 2.0. The detailed demand estimation 

is shown in the Appendix. The model is solved for every two weeks for the planning 

horizon. The mathematical model was solved in seconds using LINGO 11.0 on a Pentium 

4 PC with 1 GB memory. To explain how the model can help suggest the patient 

allocation, the allocation results for each type of patient for the first two-week planning 

horizon are summarized in Table 4, Table 5, and Table 6. It shows the summary of to 

which hospital each type of patient from each area should be allocated (the hospital 0 
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indicates the dummy hospital in the table). For example, on day 5 influenza Type 1 

patients from area 5 should be admitted to hospitals 5 and 6. As stated earlier, it is 

assumed these Type 1 patients will occupy a non-leU bed for 5 days, Type 2 patients 

will occupy an leu bed for 10 days, and Type 3 patients will occupy an leu bed and a 

ventilator for 10 days. Table 4, Table 5, and Table 6 provide a summary of the model 

results; detailed model results would include the number of patients to allocate to each 

hospital each day, as shown in the Appendix. 

Table 4. Patient type 1 allocation summary 

DI D2 D3 D4 D5 D6 D7 D8 D9 DIO DII DI2 DI3 D14 

AI 6 6 6 6 6 6 6 6 6 6 6 6 6 6 

A2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

A3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 

A4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

A5 5 5 5 5 5,6 5 5 5 5 5,6 5 5 5 5 

A6 1,2 1,2 2 1,6 2,6 1,2,6 1,2,6 
1,2, 

1 2,6 1,2 I 1,2 1,2 
6 

A7 5 5 5 5 6 5,6 5,6 5,6 
5, 

6 6 6 6, 0 6, 0 
6 

A8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

A9 2 2 2,4 2 4 2,4 2 2 
2, 

4 2,3 2, 3 
2, 3, 

2,4 
4 4 

AlO 2 2 2 2 2 2 2 2 2 2 2 2 2 0 

All 3 3 3 3 3, 4 3 3 3 3 3,4 3 3 3 3 

A12 7 7 7 7 7 7 7 7 7 7 7 7 7 7 

AI3 7 7 7 7 4, 7 7 7 4, 7 
4, 

4 
3,4, 

3, 7 7, 0 7, 0 
7 7 

AI4 I I I I 6 1 1 0 0 0 0 0 0 0 

A15 3 3 3 3,4 4 3 3 3, 0 
3, 

0 3, 0 3, 0 0 0 
0 

AI6 3 3 4 4 4 3,4 3,4 0 0 0 0 0 0 0 

During the first two weeks of the pandemic development, some areas would not have the 

hospitalization cases for patient types 2 and 3. Therefore Table 5 and Table 6 for the 

patient allocation summary only show the areas which have the hospitalization cases; the 

empty cells also indicate no hospitalization cases early in the planning horizon. 
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Table 5. Patient type 2 allocation summary 

Day I D2 D3 D4 D5 D6 D7 D8 D9 DIO Dll Dl2 D13 Dl4 

Area5 5 5 5 

Area6 I 1 I I I I I 1 I 1 

Areal I 3 3 3 3 

Areal4 I I 1 I I 1 1 

Table 6. Patient type 3 allocation summary 

Dayl D2 D3 D4 D5 D6 D7 D8 D9 DlO Dll D12 D13 Dl4 

Area5 5 0 0 

Area6 2 4 4 4 2 2 4 4 0 0 

Areal 1 7 7 3 0 

Areal4 6 5 6 I 6 0 0 

As seen in Table 4, Table 5, and Table 6, the hospitals start to reject patient type 1 on day 

8, and patient type 3 on day 13 (i.e. patients are admitted to the dummy hospital) due to 

resource shortages. The resource shortages which cause the rejections are determined and 

reported by the model, as shown in Table 7. It summarizes the healthcare system-wide 

resource cumulative shortages for all hospitals. 

Table 7. Resource shortages 

Resource Day8 Day9 Day10 Dayl1 DayI2 Day 13 Dayl4 

Non-leU Bed -13 -27 -43 -58 -74 -82 -94 

Ventilator -3 -7 

Based on the resource shortages reported by the model, the decision maker can be alerted 

to request additional resources from an emergency agency. If additional resources 

become available, the model also helps to determine how to allocate the resources among 

hospitals in the healthcare network. Therefore, if the system obtains additional resources 
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based on resource shortage prediction (i.e. 94 non-leU beds, 7 ventilators), the model 

optimizes the allocation as shown in Table S. 

Table 8. Allocation of additional resources 

Allocation 
Hospital Hospital Hospital Hospital Hospital Hospital Hospital 

1 2 3 4 5 6 7 
Non-leU 

66 0 14 0 0 0 14 
Bed 

Ventilator 7 0 0 0 0 0 0 

With the allocation of additional resources among the healthcare facilities in Table S, the 

patient allocation can be optimized as shown in Table 9, Table 10, and Table 11. 

Table 9. Patient type 1 allocation summary with additional resource allocation 

Dl D2 D3 D4 D5 D6 D7 DS D9 DlO Dll D12 D13 D14 
Al 5 5 5 5 6 5 5 6 6 6 6 6 6 6 
A2 2 2 2 2 2 2 2 2 2 6 6 6 6 6 
A3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 
A4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
A5 5 5 5 5 5 5 5 5 5 5,6 5 5 5,6 5 
A6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
A7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
AS 2 2 2 2 2 2 2 2 2 2,6 2 2,6 2 2 
A9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

AlO I 1 1 1 1 1 1 1 1 2 2 1,2 2 2 
All 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
A12 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
A13 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
A14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
A15 3 3 3 3 3 3 3 3 3 3,4 3,4 3 2,3 3 
A16 3 3 3 3 4 3,4 3,4 3,4 3,4 4 4 4 4 4 

Table 10. Patient type 2 allocation summary with additional resource allocation 

I Dayl I D21 D3 I D41 D5 I D61 D71 Dsl D91 DlO I Dll I DI21 Dl31 D141 
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Area5 5 5 5 

Area6 2 2 2 2 1 1 1 1 1 2 

Area11 3 3 3 3 

Area14 1 1 1 1 1 1 1 

Table 11. Patient type 3 allocation summary with additional resource allocation 

Oay1 02 03 04 05 06 07 08 09 010 011 012 013 014 

Area5 5 6 5 

Area6 4 4 4 6 2 6 2 2 4 1 

Area11 7 7 3 4 

Area14 1 1 1 1 1 1 1 

As noted from the comparison between Table 4, Table 5, Table 6, Table 9, Table 10 and 

Table 11, the additional resource allocation can change patient allocation for the entire 

planning horizon. Since additional resources are allocated among hospitals to serve the 

patients, more patients are able to obtain improved service (i.e. admitted to a closer 

hospital). For example, without additional resources, as seen from Table 4, patients from 

area 6 are distributed among hospitals 1, 2 and 6, and patients from area 7 are distributed 

among hospitals 5 and 6 and the dummy hospital (i.e. being rejected), while with 

additional resources, 66 non-leU beds are assigned to hospital 1 as suggested in Table 8, 

and hospital 1 is the closest hospital for the patients from area 6 and area 7, as seen from 

Table 9, the patients from area 6 and area 7 are admitted to their closest hospital 1 with 

the additional resource allocation. 

The numerical results presented above demonstrate how the model would help decision 

makers determine the patient allocation and potential resource shortages in the healthcare 

network for an estimated pandemic case in Metro-Louisville, KY with a most likely 

scenario of 35% gross attack rate and 6 weeks duration with 25% of the current total 
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medical resource is dedicated to the pandemic patients. Additionally the model can be 

used to determine the allocation of additional resources to healthcare facilities. Since the 

gross attack rate, pandemic duration, and the proportion of the resources dedicated to 

pandemic patients are the three important assumptions which impact the solution, 

experimentation with different levels of these three factors is conducted. Table 12 shows 

the levels of each factor to be considered in the experiments. 

Table 12. Different levels for each factor 

Factor Levels 
Gross Attack Rate 15% 25% 35% 

Duration (in weeks) 6 8 12 
Proportion of Hospital Resources 

15% 25% 35% 
Dedicated to Pandemic Influenza Patients 

The objective function of the model is to minimize the total travel distance between 

patients and hospitals. However, the objective value itself does not impart specific patient 

service and resource status information. Therefore the earliest resource shortage date is 

used to compare the experimental results. The result for each factor level combination is 

shown in Table 13. 

Table 13. Resource shortage comparison 

Gross 
Duration Resource Earliest Resource 

Attack 
(in weeks) Proportion 

Resource Shortage 
Shortage Date 

Rate 
15% 6 15% Non-ICU Bed Day 15 
15% 6 25% No Shortages -

15% 6 35% No Shortages -
15% 8 15% No-ICU Bed Day 25 
15% 8 25% No Shortages -

15% 8 35% No Shortages -
15% 12 15% No Shortages -
15% 12 25% No Shortages -
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15% 12 35% No ShortaAes -

25% 6 15% 
Non-ICU Bed Day 5 

Ventilator Day 20 
25% 6 25% Non-ICU Bed Day 14 
25% 6 35% No Shortages -
25% 8 15% Non-ICU Bed Day 15 
25% 8 25% Non-ICU Bed Day 25 
25% 8 35% No Shortages -
25% 12 15% Non-ICU Bed Day 30 
25% 12 25% No Shortages -

25% 12 35% No Shortages -
Non-ICU Bed Day 4 

35% 6 15% Ventilator Day 11 
ICUBed Day 21 

35% 6 25% 
Non-ICU Bed Day 8 

Ventilator Day 13 

35% 6 35% 
Ventilator Day 14 

Non-ICU Bed Day 15 

35% 8 15% 
Non-ICU Bed Day 10 

Ventilator Day 22 

35% 8 25% 
Non-ICU Bed Day 17 

Ventilator Day 23 

35% 8 35% 
Ventilator Day 24 

Non-ICU Bed Day 26 

35% 12 15% 
Non-ICU Bed Day 23 

Ventilator Day 40 
35% 12 25% Non-ICU Bed Day 33 
35% 12 35% No Shortages -

As expected, the gross attack rate, duration, and proportion of the resources dedicated to 

influenza patients all have an impact on resource shortage. As the default assumption in 

FluSurge, 85% of the patients require a non-ICU bed, therefore non-ICU beds become 

the critical resources in most of the scenarios in Table 13. Gross attack rate has a 

significant impact on the resource shortage, that is, the higher the gross attack rate, the 

more resource shortage. For example, as show in Table 13,35% gross attack rate causes a 

resource shortage for all the scenarios except one with 12 weeks duration and 35% of the 
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resources dedicated to influenza patients; this scenano also causes a earlier resource 

shortage, such as a non-ICU bed shortage occurring on day 4 with 15% dedicated 

resources and 6 weeks duration. Duration has an impact as well. The longer the duration, 

the more that the patients are spread out during the planning horizon; the less likely a 

resource shortage is, the later the resource shortage occurs. The proportion of hospital 

resources dedicated to pandemic influenza patients is another important factor to impact 

the performance. Obviously, the higher the proportion dedicated to the pandemic patients, 

the larger the number of patients that are served. As shown in Table 13, when only 15% 

of hospital resources are dedicated to the patients, all the scenarios are under resource 

shortage except one that is the one with a 15% gross attack rate and 12 weeks duration. 

As shown in Table 13, a resource shortage is highly likely during an influenza pandemic 

outbreak. In the event of a resource shortage, decision makers must determine the type 

and quantity of additional resources to be requested and the impact on patient service. 

Toward this end, a sensitivity analysis can be performed. 

4.2 Sensitivity Analysis 

In general, sensitivity analysis helps to determine how sensitive the optimal solution is to 

changes in data values, which includes analyzing changes in an objective function 

coefficient and a right hand side value of a constraint. For the patient allocation problem 

as well as the resource allocation problem, sensitivity analysis can determine how 

different quantities of additional resources would change the service to the patients. 

Therefore the impact of changes to the right hand side of constraints (25) and (26) in 

Model 5 in Chapter 3 will be studied. 
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Using a sensitivity analysis, the following questions are expected to be answered: 

1) Are there unused quantities of resources? If so, which resources and in what 

quantities? 

2) How will additional quantities of each resource improve patient serVIce (i.e. 

reduce total patient travel distance)? What is the range of allowable resource 

quantity increase (i.e. at what point does the increase of a resource not improve 

the patient service)? 

3) Since some patients require more than one resource type, different types of 

resources are correlated. How will the simultaneous changes of several types of 

resources impact patient service? 

4) Overall, what is the solution space in which every single resource can improve 

patient service (i.e. the increase of resource quantity can improve patient service)? 

4.2.1 Basic Sensitivity Analysis 

Usually optimization software, such as LINGO, gives a solution report including the 

sensitivity analysis. However these default solver software sensitivity analyses have the 

limitation of not providing answers to all the questions outlined above. The sensitivity 

report involves only 1 change at a time. Even though the 100% rule can be applied for 

multiple changes, this rule is limited by the fact that the simultaneous changes are 

constrained by the sum of the percentages of the changes divided by the corresponding 

maximum allowable change not exceeding 100% (Ward & Wendell, 1990). Even for the 

case of one change at a time, the sensitivity report only gives the allowable range for the 

right hand side value in which the shadow price does not change. However, the helpful 
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information of the allowable range for a certain type resource is the range in which the 

service would be improved along the increase of the resource level, rather than constant 

shadow price. In other words, in the allowable range, the objective value improves as the 

resource level increases, no matter if the shadow price changes. 

To demonstrate the limitation of basic sensitivity analysis, the case study in Section 4.1 

was solved in LINGO and the sensitivity analysis was investigated. The resource 

shortage is shown in Table 7. The quantities of additional resources are the right hand 

side of constraints (25) and (26) in Model 5. The sensitivity analysis is expected to 

determine how different quantities of additional resources would change the service to 

the patients. From the LINGO report, the following information is obtained as in Table 

14. The dual price in the report is the amount that the objective would improve as the 

right-hand side of the constraint is increased by one unit and is valid only over a range of 

values. Consider non-ICU beds as an example; 94 non-ICU beds are all allocated among 

the hospitals since the slack is 0, and the dual price of 2.95 implies that the total patient 

travel distance would decrease 2.95 miles if the quantity of additional non-ICU beds is 

increased by one unit, and the dual price is only valid for one unit since the allowable 

increase is 1. However, even if the quantity of additional non-ICU beds is increased more 

than one unit and the dual price is not valid, the objective function value would still be 

improved. It would be useful to determine the range of values for the right hand side to 

improve the objective function value rather than the range for valid dual price (i.e. the 

range of additional resources to improve the patient service). 
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Table 14. Sensitivity analysis report from LINGO 

Right hand 
Slack/surplus Dual price 

Allowable Allowable 
side value mcrease decrease 

Non-lCU 94 0 2.95 1 0 
lCU 0 0 3.27 1 0 

Ventilator 7 0 9.60 0 0 

Therefore, several advanced sensitivity analysis methods are developed: two-point 

comparison, three-point companson, and a combination of two-point and three-point 

comparisons as discussed below. 

4.2.2 Advanced Sensitivity Analysis 

As mentioned in Chapter 3.4, many healthcare resources may be depleted by the surge 

demand during a pandemic influenza outbreak and the models presented in this work can 

help predict these resource shortages. The resource shortages obtained from equations 

(23) and (24) in Chapter 3.4 are the minimum amount (i.e., lower bound) of additional 

resource quantities needed to be able to satisfy the patient demand. The maximum 

amount (i.e. upper bound) of additional resource quantities needed also can be calculated, 

which means the amount of each type of resource needed to best serve the patients, i.e. all 

the patients can be served in their closest hospital. Then all possible combinations of 

resource quantities between lower bound and upper bound of each type resource are 

under the consideration for sensitivity analysis. 

Intuitively, the higher the resource quantities, the better the patients are served in terms of 

patients' travel distance. However, some resources are correlated with other resources 

(e.g. ICU bed and ventilator since some patients need both of them). The increase of 

some resources above certain amounts would not guarantee the improvement of the 

objective value (i.e. travel distance). In other words, once a resource quantity reaches a 
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boundary, additional quantities of the resource will not improve the system performance 

while other resource quantities remain the same. Therefore, it would be helpful to 

determine the boundary to increase certain resource quantities to improve the system 

performance. Three methods are proposed in this chapter to investigate this boundary: 

two-point comparison, three-point comparison and combination of two-point and three­

point comparisons. 

4.2.2.1 two-point comparison 

The quantity increase of a certain resource will improve the system performance until the 

resource quantity reaches a level such that increasing the quantity above this level will 

not improve the performance since the quantity of other correlated resources will limit 

patient service. So as the quantity of a resource is increasing from its lower bound to its 

upper bound, while other resource quantities remain unchanged, the pattern of the system 

performance will improve to a certain point then plateau. This section presents a method 

to find the boundary by comparing a pair of two consecutive points of adjacent resource 

quantities. If the latter point (i.e. a point stands for a resource quantity) has a better 

performance than the former point, then form a new pair of two consecutive points, the 

first point is the latter point of the previous pair. Keep forming the pair of two 

consecutive points until the performance of the two points are equal or reach the upper 

bound (i.e. the maximum quantity needed to best serve patients), then the boundary is the 

first point of last pair, or the upper bound. 

The two-point comparison method is very straightforward and easily implemented. 

However when the search range (between lower bound and upper bound) is relatively 
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large and the boundary point (i.e. stopping point for the search) is near the upper bound, 

this method could be very time-consuming. Hence, another alternative method, the three­

point comparison, is considered as below. 

4.2.2.2 three-Point Comparison 

The three-point comparison method proposed in this section reduces the search range by 

half in each comparison iteration and determines the range the boundary point falls in. 

In each comparison iteration, the search range is determined by two points (i.e. two levels 

of resource quantities); the start point and end point of the range. A third point is 

determined as the middle point of the range. (i.e. a point stands for a resource quantity) 

Then, the objective function value is calculated for the three points of the range: 

minimum point, middle point and maximum point. The three points divide the original 

search range into two half-size sub-ranges. The comparison among the three points 

determines which sub-range the boundary point falls in. If the end point has better 

performance than the middle point, then the boundary point falls in the latter sub-range, 

otherwise it falls in the former sub-range. Therefore this method reduces the size of the 

next search range in half. By continuing in this manner, the search size will be reduced 

small enough to obtain the boundary point. 

If the initial search range (between lower bound and upper bound) is relatively large and 

the boundary point falls near the upper bound, the three-point comparison method will be 

more efficient than two-point comparison since it would require less iterations to reach 

the boundary point. 
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4.2.2.3 Combination of two-Points Comparison and three-Points Comparison 

For the case study introduced in section 4.1, leu beds and ventilators are two correlated 

resources for patient types 2 and 3. Between the lower and upper bounds of each resource 

type, all the possible combinations of leu bed and ventilator quantities are considered in 

the sensitivity analysis. If the leu bed level is kept constant, the two-point comparison or 

three-point comparison will calculate the boundary of the ventilator level beyond which 

more ventilators do not improve performance. In addition, as leu bed level is increased, 

the search procedure for the boundary of ventilator is repeated for leu bed quantities 

between the lower and upper bounds. As mentioned above, if the initial search range 

(between lower bound and upper bound) is relatively large and the boundary point falls in 

near end of the search range, the three-point comparison method would be more efficient 

than two-point comparison since it would require less iterations to reach the boundary 

point. However, it also might be time-consuming to repeat the three-point comparison 

search procedure for each leu bed quantity. Intuitively, as the leu bed quantity is 

increased, the boundary of ventilators remains the same or increases since more leu beds 

can support the increase usage of ventilators. Therefore the combination of two-point and 

three-point comparisons can be used. For example, the leu bed quantity starts at its 

lower bound and three-point method is used to find the boundary point for ventilators. As 

leu bed quantity is increased by one until the upper bound is reached, the search 

procedure is applied using two-point comparison and the starting point of the first pair 

comparison is the boundary point from the previous leu quantity search procedure. 

Since the increase of the boundary for ventilators at each step as the leu beds are 
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increased by one is very small (0 or 1), the two-point companson requires fewer 

iterations than the three-point comparison to find the boundary. 

The quantity of ICU beds is kept constant and the search procedure is used to find the 

boundary point for ventilators as explained above. Similarly, the quantity of ventilators is 

kept constant to find the boundary for ICU beds. 

4.2.3 Numerical Results of Sensitivity Analysis 

The sensitivity analysis of the case study introduced in section 4.2 is presented here. This 

sensitivity analysis will help determine the impact of different quantities of additional 

resources on the system patient service in terms of travel distance. 

As discussed in section 4.2.2, all the possible combinations of different quantities of each 

type resource between the lower and upper bounds are under consideration in the 

sensitivity analysis. As the quantity of one resource type increases from its lower bound 

to its upper bound, the two-point and three-point methods can be used to find the 

boundary point beyond which the system performance will not be improved. Since all the 

possible combinations of different quantities of each resource type need to be examined, 

the simultaneous changes of different types of resources need to be investigated as well. 

In this case study, as seen from Table 7, the system would incur a resource shortage of 94 

non-ICU bed and 7 ventilators. Then it is assumed that additional resources become 

available and Model 5 from Chapter 3 can help to determine the allocation of additional 

resources among health care facilities. The quantities of additional resources are the right 

hand side of constraints (25) and (26) in Model 5 in Chapter 3. The sensitivity analysis is 

expected to determine how different quantities of additional resources would change the 
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service to the patients. The values of resource shortage represent the lower bound for 

each resource type, i.e. the minimum additional resource quantities needed to satisfy the 

patient demand. In addition, the upper bound is obtained as the maximum additional 

resource quantities needed to best serve the patients (i.e. each patient is assigned to the 

closest hospital). Upper bounds for this case study are 157 non-ICU beds, 14 ICU beds, 

and 20 ventilators. The upper bounds represent the maximum additional quantities of 

each resource type needed to best serve patients (i.e. assign all patients to their closest 

hospital). The lower and upper bounds for each resource type are summarized in Table 

15. 

Table 15. Lower bound and upper bound of each type resource level 

Non-ICU bed ICU bed Ventilator 
Lower bound 94 0 7 
Upper bound 157 14 20 

Since non-ICU beds are required by patient type 1 only, there is no correlation with the 

other resource types. Therefore, the increase of non-ICU bed quantities to the upper 

bound will always improve the performance. Since ICU beds and ventilators are 

correlated, the boundaries of both resource types can be found using sensitivity analysis. 

All the possible combinations of resource quantities between lower and upper bounds for 

both resource types are under investigation, therefore there are (14-0+ 1 )*(20-7 + 1) = 210 

possible points. 

Starting with the point (0 ICU beds, 7 ventilators), if additional ICU bed quantity remains 

at 0, the boundary for increasing ventilators is found to be 17, meaning increasing the 

quantity of ventilators above 17 does not improve system performance while the quantity 
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of leu beds remains at O. Similarly, if the ventilator quantity remains at 7, the boundary 

for increasing leU beds is found to be 5. The next step in the sensitivity analysis search 

increases the number of leu beds and ventilators by 1. This search method continues 

until the ventilator quantity reaches its upper bound of 20. The search range for 

ventilators (20 -7 +1) = 14 is smaller than the search range for leU beds (14-0+1) = 15, 

therefore ventilators reach their upper bound faster than leU beds. Then the search 

process stops since it considers all the possible combinations. 

Table 16 shows the results for the sensitivity analysis for the case study which has the 

search range of leu bed [0, 14], ventilator [7, 20]. It includes the starting point for each 

search iteration, objective function value of the starting point, boundary level and 

corresponding objective function value. The objective function value is the total patient 

travel distance (miles). Since non-leU bed is not related to leU bed and ventilator in 

terms of patient types 2 and 3, it is kept constant at 97. 

Table 16. Boundary summary 

Obj fn. leu bed level kept constant Ventilator level kept constant 
Starting Starting value Obj. fn. leu bed ventilator for Boundary 

value for 
Boundary Obj. fn. value 

level level staring level 
boundary 

level for leu for boundary 
point for ventilator 

point 
bed point 

0 7 2993.63 17 2960.75 5 2977.29 

1 8 2980.76 17 2957.48 6 2964.42 

2 9 2967.89 17 2954.22 7 2951.55 

3 10 2960.21 17 2950.95 8 2943.87 

4 11 2952.54 17 2947.68 9 2936.20 

5 12 2947.70 17 2944.41 10 2931.36 

6 13 2942.87 17 2941.15 11 2926.53 

7 14 2939.16 17 2937.88 12 2923.26 

8 15 2935.46 17 2934.61 13 2920.00 

9 16 2931.75 17 2931.34 14 2916.73 
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10 17 2928.07 17 2928.07 14 2916.29 

11 18 2924.81 18 2924.81 14 2915.85 

12 19 2921.54 19 2921.54 14 2915.41 

13 20 2918.27 20 2918.27 14 2915.00 

Based on the boundary results shown in Table 16, the solution space can be generated in 

which resource quantities improve the patient service. In other words, every solution in 

the space is not dominated by others. The solution space for additional leu beds and 

ventilators quantities is shown in Figure 2. For example, 2 points of (11 leu beds and 14 

ventilators) and (12 leu beds and 14 ventilators) are included in the solution space, 

which means the point of 12 leu beds gives a performance improvement compared to 11 

leu beds, while the point of (13 leu beds and 14 ventilators) is not included in the 

solution space, which means that 13 leu beds will not obtain performance improvement 

compared to 12 leu beds due to the amount of ventilators. 
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Figure 2. Sensitivity analysis solution space 

The computation time to complete the sensitivity analysis and generate the Figure 2 

solution space is compared among different methods using Matlab R20 lOa on a Pentium 

4 PC with 1 GB memory and shown in Table 17. 

Table 17. Computer run times for sensitivity analysis methods 

Sensitivity Analysis Method Run time (minutes) 
two-point comparison 10.07 

three-point comparison 6.66 
Combination of two-point & three-point comparison 3.07 

As mentioned above, the sensitivity analysis search range is from the lower to upper 

bound of each resource type, which could be very large. In reality, obtaining a large 
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additional quantity of resources may not be possible. Therefore, the search range can be 

modified by the users to consider a more reasonable and smaller range of possible 

additional resource quantities. In this way, the search time will be reduced. The decision 

makers can use sensitivity analysis to determine how different quantities of additional 

resources would change the service to the patients. 

4.3 Interface of Model Implementation 

A web-based application was developed by the members of a research team to include the 

models presented in the dissertation (Kelley et aI., 2011). The users have the capability to 

change the input assumptions, such as the pandemic scenario, dedicated medical 

resources levels, etc. Additionally, the web-based tool can be used to perform what-if 

analysis. The screen shots (Figures 3 through 10) are attached below to demonstrate how 

the web-based tool can assist decision makers. 

Figure 3 shows the planning input. Users can choose the planning horizon, planning 

regions, and planning hospitals. Figure 4 shows the map of the planning regions and 

hospitals. Figure 5 shows patient categories and resources required by each patient 

category. Figure 6 shows the demand assumptions. Users can choose the pandemic 

duration, gross attack rate, scenario (i.e. most likely, minimum, maximum), and 

proportion of each type patient, then demand is updated based on the input. Figure 7 

shows the resource capacity, including both equipment and personnel resources. Users 

can update the resource capacity. Figure 8 shows the result for the patient allocation, i.e. 

how many patients from an area is assigned to a specific hospital. Figure 9 shows the 

resource shortage if there is any, i.e. how many additional resources are required at a 
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certain day to meet the demand. Figure 10 shows the additional resources allocation. 

Based on the resource shortage predication from Figure 9, users are alerted to require 

more resources from other emergency agencies. Users can input the amount of additional 

resources, then the model gives the results for how to allocation the resources among 

hospitals. 
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CHAPTER 5 MULTI-OBJECTIVE OPTIMIZATION 

MODELS 

The models present in Chapter 3 are single-objective optimization models. The basic 

assumption is that the service quality of each healthcare facility is equitable and therefore 

the main concern of the patients is minimizing their travel distance. The single-objective 

is to minimize the total travel distance of all patients. In this chapter, multi-objective 

models are presented. The multi-objective nature of this problem relates to both the 

equity and efficiency of patient allocation among healthcare facilities. The two objectives 

conflict to some extent. An efficient system can be measured by the total travel distance 

between patients and healthcare facilities where the minimization of this total distance is 

the goal. However, a strictly efficient system may result in some patients incurring a 

relatively high cost or travel distance. Patients might incur a huge difference of service 

access cost based on where they reside. The equity objective is to obtain a more equitable 

distribution of "cost", i.e. travel distance among patients, which is expressed as the goal 

of minimizing the maximum distance that patients travel to access the healthcare 

facilities. 

The mathematical model presented in this chapter is developed to optimize the patient 

allocation among healthcare facilities considering two objectives related to patients' cost 

of access to healthcare services: 1) minimization of the total travel distance by patients to 
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hospitals; and 2) minimization of the maximum travel distance between patients and 

hospitals. As with the previous single-objective optimization models, the multi-objective 

model presented in this chapter predicts resource shortages during the planning horizon. 

In addition, the multi-objective model aids in the determination of the optimal allocation 

of the additional resources, when available, among hospitals by considering both 

objectives related to patients' cost of access to services. A case study from Metro 

Louisville, Kentucky is presented to demonstrate how the multi-objective model would 

aid in patient allocation during a pandemic influenza outbreak. 

5.1 Multi-Objective Patient Allocation Model 

As mentioned in Chapter 3, the models developed in this research assume that the patient 

demand and healthcare sites resource information can be obtained. Based on the demand 

and capacity information, the multi-objective model optimizes the patient allocation by 

considering two objectives: 1) minimization of the total patient travel distance between 

population areas and healthcare facilities 2) minimization of the maximum patient travel 

distance to allow a more equitable distribution of "cost," i.e. travel distance among 

patients. Multi-objective optimization model is build based on Models 4 in Chapter 3, to 

optimize the patient allocation with the consideration of possible resource shortage. 

Compared to the single-objective optimization model, additional variables are needed to 

conduct the second objective to minimize the maximum patient travel distance, as shown 

below. 

Decision variables: 

Yah = 1 if patients from area a are assigned to hospital h, otherwise 0 
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D maximum distance from patients to an assigned hospital 

Second objective function: 

MinD (29) 

Constraints related to second objective 

Va, h (30) 

I I X p,a,h,t ~ M * Ya.h Va,h(31) 
p t 

x >0 p,a,h,t - Vp,a,h,t (32) 

Ya,h = 0 or 1 Va, h (33) 

Second objective is defined in equation (29). Constraints (30) through (33) are the 

constraints to include the second objective to minimize the maximum travel distance of a 

patient. 

If the healthcare facilities have resource shortages during the outbreak and additional 

resources become available, the feature to optimize the allocation of additional new 

resources can be added in the model as well, considering the same two objectives related 

to patients' cost of access to services. Additional parameters and decision variables, 

compared to above model, are added, which are the same as in Model 5 in Chapter 3.' 

There are two general approaches for solving the multi-objectvie optimization problem. 

One solution technique is to combine the multiple objectives to a single composite 

function or move all but one objective to the constraint set. The other approach is to 
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generate a set of efficient solutions and allow the decision maker to evaluate the solutions 

and choose a desirable course of action. In this study, the first approach is used to solve 

the problem. There are many ways to transform a multi-objective problem to a single­

objective problem, including weighted-sum approach, goal programming, and constraint 

method. In this study the constraint method, which is the most commonly-used classical 

method of moving all but one objective to the constraint set, is employed to reformulate 

the multi-objective optimization problem to a single-objective function by keeping just 

one of the objectives and restricting the rest of the objectives within user-specified values 

(Deb, 2001). Using this method, the first objective is to be optimized while objective 2 is 

constrained to values that vary through a range of feasible values. 

The constraint method requires an upper limit with respect to patient travel distance to a 

hospital. Additional parameters are used below to conduct the constraint method. 

Distancemax 

Distance' ah 

the pre-specified threshold value for the maximum allowable travel 

distance between patients and healthcare facilities 

Distance' ah = Distanceah if Distanceah ~ Distancemax, otherwise 

Distance' ah = 00 

Then the multi-objective model is converted into a single objective problem by: 1) 

replacing Distanceah with Distance'ah in the first objective; 2) removing the second 

objective and the constraints which are associated with second objective (i.e. constraints 

(30), (31) and (33)). 

5.2 Case Study 
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A same case study as in section 4.1 is conducted for the multi-objective model. A 

pandemic with 35% gross clinical attack rate and 6-week duration is considered In 

Louisville-Jefferson, KY, and 25% of the hospital resources are dedicated to pandemic 

patients. The results in section 4.1 show that the system would occur non-ICU bed 

shortage from day 8 and ventilator shortage from day 13 from single-objective function, 

as seen from Table 7. To demonstrate how the multi-objective problem changes the 

results from single-objective problem. Both single-objective and multi-objective models 

are solved for the first week before the shortage occurs to see how the patient allocation 

results are different. Then both models are solved for the second week to see how the 

models obtain different results for resource shortage and additional resource allocation. 

Initially the model is used to generate a solution for the first week of the 6-week 

pandemic outbreak with the consideration of only the first objective to minimize the total 

travel distance. The model was solved in seconds using LINGO 11.0 on a Pentium 4 PC 

with 1 GB memory. To explain how the model can help decide the patient allocation, 

consider patient type 1 as an example to demonstrate the results. The allocation results 

are summarized in Table 18 which shows to which hospitals Type 1 patients from each 

area should be allocated. For example, new hospital admits of influenza Type 1 patients 

on day 5 from area 14 should be assigned to hospitals 1 and 6. As stated earlier, it is 

assumed these Type 1 patients will occupy a non-ICU bed for 5 days. 

Table 18. Patient type 1 allocation summary for single objective 

ToHospitalSummary Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 
Area 1 5 5 6 6 6 6 6 
Area 2 2,4 4 4 4 4 4 4 
Area 3 6 6 6 6 6 6 6 
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Area 4 4 4 4 4 4 4 4 
Area 5 5 5 5 5 5 5 5 
Area 6 1 1 6 2 2 1 1 
Area 7 1 1 6 6 6 5 5 
Area 8 2 2 2 2 2 2 2 
Area 9 2 2 4 4 2 2 2 
Area 10 2 2 2 2 2 2 2 
Area 11 3 3 3 3 3 3 3 
Area 12 7 7 7 7 7 7 7 
Area 13 7 7 7 7 4, 7 7 7 
Area 14 1 1 6 6 1,6 1 1 
Area 15 3 3 4 4 3 3 3 
Area 16 3 3 4 4 4 3,4 3,4 

Without considering the second objective to mInImIZe the maxImum patient travel 

distance, the total travel distance (objective 1) is 1325.03 miles which means that the 

average patient travel distance is 3.98 miles/patient (1325.03 miles/333 patients=3.98 

miles/patient), while the maximum distance is 11.37 miles for the patients who are from 

area 14 assigned to hospital 6. This maximum distance of 11.37 miles is almost three 

times the average travel distance. Therefore the model with the consideration of only the 

objective to minimize the total travel distance gives a solution with a wide variance of 

individual patient costs. Hence, the second objective is added to the model to minimize 

the maximum patient travel distance which helps to make the costs more equitable 

between patients. 

Table 19. Distance (miles) for the single 9bjective of minimization of total travel 
distance 

Total Distance Average Distance Maximum Distance 

1325.03 3.98 11.37 
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As mentioned, the constraint method is used to solve the multi-objective patient 

allocation model. This method requires an upper limit, which is pre-defined by users, for 

the patient travel distance to a hospital. In the model the user defined maximum distance 

Distancenwx and the definitions of Distance' ah illustrate the upper limit since Distance' ah 

= Distanceah if Distanceah:::; Distancenwx, otherwise Distance'ah = 00. The upper limit is 

provided by the decision makers to perform a what-if analysis by changing the upper 

limit within a certain range. For demonstration purpose, an upper limit of 9 miles (i.e. 

Distancenwx = 9 miles) was chosen to show the results and compare them to the single-

objective model. The patient allocation and travel distance summary of Type 1 patients 

for this multi-objective model are shown in Table 20. Again, the mathematical model 

was solved in seconds using LINGO 11.0 on a Pentium 4 PC with 1 GB memory. 

Table 20. Patient type 1 allocation summary for multi-objective patient allocation 
model 

ToHospitalSummary Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 
Area 1 5 5 6 6 6 6 6 
Area 2 2 2 4 4 4 4 4 
Area 3 6 6 6 6 6 6 6 
Area 4 4 4 4 4 4 4 4 
Area 5 5 5 5 5 5 5 5 
Area 6 1,2 1,2 6 6 2,6 2,6 1,2 
Area 7 5 5 6 6 6 5 5 
Area 8 2 2 2 2 2 2 2 
Area 9 2 2 4 4 2 2 2 

Area 10 2 2 2 2 2 2 2 
Area 11 3 3 3 3 3 3 3 
Area 12 7 7 7 7 7 7 7 
Area 13 7 7 7 7 4, 7 7 7 
Area 14 1 1 1 1 1 1 1 
Area 15 3 3 4 4 3 3 3 
Area 16 3 3 4 4 4 3,4 3,4 
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Table 21. Distance (miles) for multi-objective patient allocation model 

Total Distance Average Distance Maximum Distance 
1346.65 4.04 8.50 

It is noticed in Table 20, as compared to the results in Table 18, that patients from area 7 

are assigned to hospitals 5 and 6 instead of hospital 1, and patients from area 14 are only 

assigned to hospital 1. The multi-objective model reduces the maximum patient travel 

distance from 11.37 miles to 8.50 miles while the total distance is increased from 1325.03 

miles to 1346.65 miles (average patient travel distance increased from 3.98 miles to 4.04 

miles). The multi-objective approach results in a more equitable travel distance among 

individual patients. 

Continue to solve the models for the second week; resource shortage (cumulative 

shortage for all hospitals) would occur as shown in Table 7 in section 4.1.2. Then 

assuming that additional resources (94 non-ICU beds and 7 ventilators) become available 

based on the resource shortage prediction, and run the models again to compare how 

single-objective and multi-objective models generate resource allocation and 

corresponding patient allocation. 

To solve the single-objective optimization model, it gives the results that total travel 

distance is 1853.71 miles and maximum patient travel distance is 9.38 miles from patient 

type 3 from area 6 assigned to hospital 4. 

To solve the multi-objective optimization model with the same amount of additional 

resources (i.e. 94 non-ICU beds and 7 ventilators), and the distance threshold still is 9 
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miles, then it would not give a feasible solution, at least one patient has to be assigned to 

a hospital more than 9 miles away. 

If the additional ventilator quantity is increased by 1 to 8 ventilators, it would obtain a 

feasible solution with a total travel distance of 1855.90 miles and maximum patient travel 

distance of 8.50 miles from patient type 1 from area 16 assigned to hospital 4. Compared 

to single-objective model, it gets a slightly higher total travel distance (from 1853.71 to 

1855.90) and lower maximum travel distance (from 9.38 to 8.5), but the price is that one 

more ventilator is needed. 

If keeping the quantities of additional resources the same (94 non-ICU beds and 7 

ventilators), and increasing the distance threshold from 9 miles to 9.5 miles, it would 

obtain a result with a total travel distance of 1856.69 miles and maximum travel distance 

as 9.38 miles from patient type 3 from area 6 assigned to hospital 4. Compared to the 

single-objective model, the total travel distance is increased from 1853.71 to 1855.90 

miles, while the maximum travel distance is still the same 9.38 miles, which is a worse 

solution. 

The users can perform a what-if analysis by changing the upper limit for distance 

threshold, as demonstrated above, to see how patients can be better served. 
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CHAPTER 6 CONCLUSIONS AND FUTURE STUDIES 

6.1 Conclusions 

Pandemic influenza has been an important public health concern, considering recent 

incidents of HINI and the pandemic influenza cases in history. It is important to prepare 

healthcare response plans to react to a pandemic influenza outbreak. Such plans require 

collaboration among hospitals both in planning and in response. This dissertation focuses 

on patient and resource allocation among healthcare facilities in a healthcare network 

during a pandemic influenza outbreak. Previous work related to patient allocation mostly 

focuses on either long term planning (e.g. hospital network planning over a span of years) 

or short term planning (e.g., emergency disaster response, such as earthquake or 

hurricane, in a matter of hours or days). Since a pandemic outbreak usually lasts several 

months, it is considered to be a medium term planning problem. In this dissertation, 

several optimization models are formulated and solved to help decision makers address 

the patient and resource allocation issues faced by a multi-facility healthcare network in a 

medium term influenza outbreak. 

Both single-objective and multi-objective optimization models are developed to help 

determine the patient allocation and resource allocation among healthcare facilities. The 

single-objective optimization models are developed to optimize the patient allocation in 

terms of minimizing the travel distance between patients and healthcare facilities while 
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considering medical resource capacity constraints. The models also allow the decision 

makers to plan the allocation of patients over multiple planning horizons. During the 

pandemic development, the surge demand most likely would exhaust all the medical 

resources, at which time the models can help predict the potential resource shortage so an 

appropriate contingency plan can be developed. If additional quantities of resource 

become available, the models help to determine the best allocation of these resources 

among healthcare facilities. Different methods are proposed to conduct the sensitivity 

analysis to help decision makers determine the impact of different levels of each type of 

resource on the patient service. For the multi-objective optimization model it not only 

considers the objective of minimization of the total travel distance by patients to 

healthcare facilities, but also considers the balancing of the distribution of patients among 

healthcare facilities. A case study from Metro Louisville, KY is presented to demonstrate 

how the models would aid in patient allocation and resource during a pandemic influenza 

outbreak. A web-based application is implemented to apply the model for the decision 

makers. The users are able to change the values for input assumptions to do what-if 

analysis. 

This dissertation focuses on the medium-term planning during pandemic influenza 

outbreak, which is different from the long-term or short-term planning considered in most 

literature, in the following ways: 

• The planning horizon can be divided into several shorter planning horizons to 

reduce the solution run time and to allow the interjection of real changes in the 

system during the disease spread such as surge capacity increase and healthcare 
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personnel infection during the pandemic development. Most current research 

models utilize a single planning horizon; 

• The model considers the length of stay of the patients m hospitals or other 

alternative healthcare facilities, which is included explicitly in the capacity 

constraint, while most current research models simplify the stay of length by 

estimating a general capacity rate, such as number of patients per time unit (e.g. 

per year, per month). 

• Sensitivity analysis is applied to optimization models in order to determine how 

different levels of additional resource impact the service to the patients; 

• A multi-objective optimization model is developed to consider two objectives 

related to patients' cost of access to healthcare services, including minimization of 

the total travel distance by patients to service and balancing of the distribution of 

patients among hospitals. 

6.2 Future Studies 

The case study presented in this dissertation considered a network of several hospitals in 

Metro Louisville, Kentucky. Future studies will consider a system of various healthcare 

facilities in a state-wide or more generalized area. 

FluSurge is used to generate the patient demand for this study. Future studies can include 

the following aspects regarding relating to the prediction of patient demand: 

• Demand estimations can be generated from an improved disease spread model 

that considers more effects, such as social networking, and public policy with 

respect to mitigating the spread of influenza etc. 
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• Not only the outside demand but also the inside demand can be included into the 

model. Inside demand represents the patients who progress from one patient type 

to another, such as a patient who requires an ICU bed at first then is transferred to 

a non-ICU bed later. 

• The demand also considers the non-admitted patients as well as the admitted 

patients. 

• The stochastic nature of the patient demand also can be included. 

In this study, the capacity of the healthcare facilities is determined from a state-wide 

website WebEOC and only hospitals are considered in the case study. In future studies, 

the following can be considered regarding to the medical resource capacity: 

• Future research efforts include considering healthcare facilities other than 

hospitals, such as clinics and urgent care centers, in the model. This modification 

requires no changes to the model formulations, however acquiring the input 

information for each additional healthcare facility may be difficult to obtain. 

• In this research, the resources at each healthcare facility are not transferable, and 

only allow allocating the additional resources among the facilities. Future study 

can consider how resource transfer among facilities affects the patient service. In 

addition, the functional transfer between resources can be another future study, 

such as the conversion of an ICU bed to a non-ICU bed. 

• Future studies can consider not only current facilities, but also evaluate the impact 

of opening new facilities. 

• In this research, when patients encounter resource shortages, they are rejected by 

the facilities. However, in reality, they can be delayed to be admitted to the 
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healthcare facilities, which can be included In future study. In this case the 

objective may be minimizing the delay time. 
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APPENDIX 

Table 22. Demand estimation for 6-week pandemic duration, 35 % gross attack rate, 
most likely scenario (day 1- 14) 

Demand 01 02 03 04 05 06 07 08 09 010 011 012 013 014 
A1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 
A2 2 2 2 2 2 2 2 3 3 3 3 3 3 4 
A3 1 1 2 2 2 2 2 2 2 2 2 2 2 2 
A4 2 2 2 3 3 3 3 3 3 4 4 4 4 4 
A5 4 4 4 4 4 4 4 5 5 5 6 6 6 6 
A6 5 5 5 6 6 6 6 7 7 8 8 8 8 9 
A7 2 2 2 2 2 3 3 3 3 3 3 3 4 4 

P1 
A8 2 2 2 2 2 2 2 3 3 3 3 3 3 3 
A9 2 2 2 2 2 2 2 3 3 3 3 3 3 3 
A10 1 2 2 2 2 2 2 2 2 2 2 2 2 3 
A11 4 4 4 4 4 4 4 5 5 6 6 6 6 6 
A12 3 3 3 3 3 3 3 4 4 4 4 4 4 4 
A13 3 3 3 3 3 3 3 4 4 4 4 4 5 5 
A14 4 4 4 4 5 5 5 6 6 6 6 7 7 7 
A15 3 3 3 3 3 4 4 4 4 5 5 5 5 5 
A16 3 3 3 4 4 4 4 5 5 5 5 5 5 6 
A1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A5 0 0 0 0 0 0 0 0 0 0 0 1 1 1 
A6 0 0 0 0 1 1 1 1 1 1 1 1 1 1 
A7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P2 
A8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A11 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
A12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A14 0 0 0 0 0 0 0 1 1 1 1 1 1 1 
A15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P3 
A2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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AS 0 0 0 0 0 0 0 0 0 0 0 1 1 1 

A6 0 0 0 0 1 1 1 1 1 1 1 1 1 1 
A7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

A10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A11 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
A12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A14 0 0 0 0 0 0 0 1 1 1 1 1 1 1 
A1S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Table 23. Demand estimation for 6-week pandemic duration, 35 % gross attack rate, 
most likely scenario (day 15- 28) 

Demand 015 016 017 018 019 020 021 022 023 024 025 026 027 028 
A1 2 2 2 3 3 3 3 3 3 3 3 2 2 2 
A2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
A3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
A4 4 4 4 4 5 5 5 5 5 5 4 4 4 4 
A5 6 6 7 7 7 7 8 8 7 7 7 7 6 6 
A6 9 9 9 10 10 10 11 11 10 10 10 9 9 9 
A7 4 4 4 4 4 4 5 5 4 4 4 4 4 4 

P1 
A8 3 3 3 4 4 4 4 4 4 4 4 3 3 3 
A9 3 4 4 4 4 4 4 4 4 4 4 4 4 3 

A10 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
A11 7 7 7 7 7 8 8 8 8 7 7 7 7 7 
A12 4 5 5 5 5 5 5 5 5 5 5 5 5 4 
A13 5 5 5 5 6 6 6 6 6 6 5 5 5 5 
A14 7 7 8 8 8 8 9 9 8 8 8 8 7 7 
A15 5 5 6 6 6 6 6 6 6 6 6 6 5 5 
A16 6 6 6 6 6 7 7 7 7 6 6 6 6 6 
A1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
A6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

P2 
A7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

A10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
A12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A13 0 0 0 0 0 1 1 1 1 0 0 0 0 0 
A14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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A15 0 0 0 1 1 1 1 1 1 1 1 0 0 
A16 1 1 1 1 1 1 1 1 1 1 1 1 1 
Al 0 0 0 0 0 0 0 0 0 0 0 0 0 
A2 0 0 0 0 0 0 0 0 0 0 0 0 0 
A3 0 0 0 0 0 0 0 0 0 0 0 0 0 
A4 0 0 0 0 0 0 0 0 0 0 0 0 0 
A5 1 1 1 1 1 1 1 1 1 1 1 1 1 
A6 1 1 1 1 1 1 1 1 1 1 1 1 1 
A7 0 0 0 0 0 0 0 0 0 0 0 0 0 

P3 
AS 0 0 0 0 0 0 0 0 0 0 0 0 0 
A9 0 0 0 0 0 0 0 0 0 0 0 0 0 
Al0 0 0 0 0 0 0 0 0 0 0 0 0 0 
All 1 1 1 1 1 1 1 1 1 1 1 1 1 
A12 0 0 0 0 0 0 0 0 0 0 0 0 0 
A13 0 0 0 0 0 1 1 1 1 0 0 0 0 
A14 1 1 1 1 1 1 1 1 1 1 1 1 1 
A15 0 0 0 1 1 1 1 1 1 1 1 0 0 
A16 1 1 1 1 1 1 1 1 1 1 1 1 1 

Table 24. Demand estimation for 6-week pandemic duration, 35 % gross attack rate, 
most likely scenario (day 29-42) 
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Demand 029 030 031 032 033 034 035 036 037 038 039 040 041 042 
A1 2 2 2 2 2 2 2 2 2 2 1 1 1 1 
A2 4 3 3 3 3 3 3 2 2 2 2 2 2 2 
A3 2 2 2 2 2 2 2 2 2 2 2 2 1 1 
A4 4 4 4 4 4 3 3 3 3 3 3 2 2 2 
A5 6 6 6 6 5 5 5 4 4 4 4 4 4 4 
A6 9 8 8 8 8 7 7 6 6 6 6 5 5 5 
A7 4 4 3 3 3 3 3 3 3 2 2 2 2 2 

P1 
A8 3 3 3 3 3 3 3 2 2 2 2 2 2 2 
A9 3 3 3 3 3 3 3 2 2 2 2 2 2 2 
A10 3 2 2 2 2 2 2 2 2 2 2 2 2 1 
A11 6 6 6 6 6 5 5 4 4 4 4 4 4 4 
A12 4 4 4 4 4 4 4 3 3 3 3 3 3 3 
A13 5 5 4 4 4 4 4 3 3 3 3 3 3 3 
A14 7 7 7 6 6 6 6 5 5 5 4 4 4 4 
A15 5 5 5 5 5 4 4 4 4 3 3 3 3 3 
A16 6 5 5 5 5 5 5 4 4 4 4 3 3 3 
A1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P2 A5 1 1 1 0 0 0 0 0 0 0 0 0 0 0 
A6 1 1 1 1 1 1 1 1 1 1 0 0 0 0 
A7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
A9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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A10 0 0 0 0 0 0 0 0 0 0 0 0 0 
A11 1 1 1 1 0 0 0 0 0 0 0 0 0 
A12 0 0 0 0 0 0 0 0 0 0 0 0 0 
A13 0 0 0 0 0 0 0 0 0 0 0 0 0 
A14 1 1 1 1 1 1 1 0 0 0 0 0 0 
A15 0 0 0 0 0 0 0 0 0 0 0 0 0 
A16 0 0 0 0 0 0 0 0 0 0 0 0 0 
A1 0 0 0 0 0 0 0 0 0 0 0 0 0 
A2 0 0 0 0 0 0 0 0 0 0 0 0 0 
A3 0 0 0 0 0 0 0 0 0 0 0 0 0 
A4 0 0 0 0 0 0 0 0 0 0 0 0 0 
A5 1 1 1 0 0 0 0 0 0 0 0 0 0 
A6 1 1 1 1 1 1 1 1 1 1 0 0 0 
A7 0 0 0 0 0 0 0 0 0 0 0 0 0 
A8 0 0 0 0 0 0 0 0 0 0 0 0 0 

P3 
A9 0 0 0 0 0 0 0 0 0 0 0 0 0 
A10 0 0 0 0 0 0 0 0 0 0 0 0 0 
A11 1 1 1 1 0 0 0 0 0 0 0 0 0 
A12 0 0 0 0 0 0 0 0 0 0 0 0 0 
A13 0 0 0 0 0 0 0 0 0 0 0 0 0 
A14 1 1 1 1 1 1 1 0 0 0 0 0 0 
A15 0 0 0 0 0 0 0 0 0 0 0 0 0 
A16 0 0 0 0 0 0 0 0 0 0 0 0 0 

Table 25. Allocation of patient type 1 for 6-week pandemic duration, 35% gross 
attack rate, most likely scenario (day 1-14) 

X 01 02 03 04 05 06 07 08 09 010 011 012 013 014 

A1 H6 1 1 1 1 2 2 2 2 2 2 2 2 2 2 

A2 H4 2 2 2 2 2 2 2 3 3 3 3 3 3 4 

A3 H6 1 1 2 2 2 2 2 2 2 2 2 2 2 2 

A4 H4 2 2 2 3 3 3 3 3 3 4 4 4 4 4 

A5 H5 4 4 4 4 2 4 4 5 5 2 6 6 6 6 

A5 H6 0 0 0 0 2 0 0 0 0 3 0 0 0 0 

A6 H1 3 4 0 3 0 2 3 4 7 0 7 8 4 7 

A6 H2 2 1 5 0 4 2 1 2 0 3 1 0 4 2 

A6 H6 0 0 0 3 2 2 2 1 0 5 0 0 0 0 

A7 H5 2 2 2 2 0 2 2 1 1 0 0 0 0 0 

A7 H6 0 0 0 0 2 1 1 2 2 3 3 3 3 2 

A7 OH 0 0 0 0 0 0 0 0 0 0 0 0 1 2 

A8 H2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 

A9 H2 2 2 1 2 0 1 2 3 1 0 1 2 1 1 

A9 H3 0 0 0 0 0 0 0 0 0 0 2 1 1 0 

A9 H4 0 0 1 0 2 1 0 0 2 3 0 0 1 2 

A10 H2 1 2 2 2 2 2 2 2 2 2 2 2 2 0 
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A10 DH 0 0 0 0 0 0 0 0 0 0 0 0 0 3 

A11 H3 4 4 4 4 2 4 4 5 5 2 6 6 6 6 

A11 H4 0 0 0 0 2 0 0 0 0 4 0 0 0 0 

A12 H7 3 3 3 3 3 3 3 4 4 4 4 4 4 4 

A13 H3 0 0 0 0 0 0 0 0 0 0 1 2 0 0 

A13 H4 0 0 0 0 2 0 0 2 2 4 1 0 0 0 

A13 H7 3 3 3 3 1 3 3 2 2 0 2 2 2 2 

A13 DH 0 0 0 0 0 0 0 0 0 0 0 0 3 

A14 H1 4 4 4 4 0 5 5 0 0 0 0 0 0 

A14 H6 0 0 0 0 5 0 0 0 0 0 0 0 0 

A14 DH 0 0 0 0 0 0 0 6 6 6 6 7 7 

A15 H3 3 3 3 2 0 4 4 2 1 0 1 1 0 

A15 H4 0 0 0 1 3 0 0 0 0 0 0 0 0 

A15 DH 0 0 0 0 0 0 0 2 3 5 4 4 5 

A16 H3 3 3 0 0 0 2 2 0 0 0 0 0 0 

A16 H4 0 0 3 4 4 2 2 0 0 0 0 0 0 

A16 DH 0 0 0 0 0 0 0 5 5 5 5 5 5 

Table 26. Allocation of patient type 2 for 6-week pandemic duration, 35 % gross 
attack rate, most likely scenario (day 1-14) 

3 

0 

0 

7 

0 

0 

5 

0 

0 

6 

X D1 D2 D3 D4 D5 D6 D7 DB D9 D10 D11 D12 D13 D14 

A5 H5 0 0 0 0 0 0 0 0 0 0 0 1 1 

A6 H1 0 0 0 0 1 1 1 1 1 1 1 1 1 

A11 H3 0 0 0 0 0 0 0 0 0 0 1 1 1 

A14 H1 0 0 0 0 0 0 0 1 1 1 1 1 1 

Table 27. Allocation of patient type 3 for 6-week pandemic duration, 35 % gross 
attack rate, most likely scenario (day 1-14) 
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1 
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X D1 D2 D3 D4 D5 D6 D7 DB D9 D10 D11 D12 D13 D14 

A5 H5 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

A5 DH 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

A6 H2 0 0 0 0 1 0 0 0 1 1 0 0 0 0 

A6 H4 0 0 0 0 0 1 1 1 0 0 1 1 0 0 

A6 DH 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

A11 H3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

A11 H7 0 0 0 0 0 0 0 0 0 0 1 1 0 0 

A11 DH 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

A14 H1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

A14 H5 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

A14 H6 0 0 0 0 0 0 0 1 0 1 0 1 0 0 

A14 DH 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
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Table 28. Allocation of patient type 1 with additional resource allocation for 6-week 
pandemic duration, 35% gross attack rate, most likely scenario (day 1-14) 

X 01 02 03 04 05 06 07 08 09 010 011 012 013 014 

Al H5 1 1 1 1 2 2 

Al H6 2 2 2 2 2 2 2 2 

A2 H2 2 2 2 2 2 2 2 3 3 

A2 H6 3 3 3 3 4 

A3 H6 1 1 2 2 2 2 2 2 2 2 2 2 2 2 

A4 H4 2 2 2 3 3 3 3 3 3 4 4 4 4 4 

AS H5 4 4 4 4 4 4 4 5 5 4 6 6 4 6 

AS H6 1 2 

A6 Hl 5 5 5 6 6 6 6 7 7 8 8 8 8 9 
A7 Hl 2 2 2 2 2 3 3 3 3 3 3 3 4 4 
A8 H2 2 2 2 2 2 2 2 3 3 1 3 2 3 3 
A8 H6 2 1 

A9 H2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 
AlO Hl 1 2 2 2 2 2 2 2 2 1 

AI0 H2 2 2 1 2 3 
All H3 4 4 4 4 4 4 4 5 5 6 6 6 6 6 
A12 H7 3 3 3 3 3 3 3 4 4 4 4 4 4 4 
A13 H7 3 3 3 3 3 3 3 4 4 4 4 4 5 5 
A14 Hl 4 4 4 4 5 5 5 6 6 6 6 7 7 7 
A15 H2 1 
A15 H3 3 3 3 3 3 4 4 4 4 1 4 5 4 5 
A15 H4 4 1 

A16 H3 3 3 3 4 3 2 1 2 

A16 H4 4 1 2 4 3 5 5 5 5 6 

Table 29. Allocation of patient type 2 with additional resource allocation for 6-week 
pandemic duration, 35% gross attack rate, most likely scenario (day 1-14) 

X 01 02 03 04 05 06 07 08 09 010 011 012 013 014 
AS H5 1 1 1 
A6 Hl 1 1 1 1 1 
A6 H2 1 1 1 1 1 
All H3 1 1 1 1 
A14 Hl 1 1 1 1 1 1 1 
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Table 30. Allocation of patient type 3 with additional resource allocation for 6-week 
pandemic duration, 35% gross attack rate, most likely scenario (day 1-14) 

X 01 02 03 04 05 06 07 08 09 010 011 012 013 014 

AS HS 1 1 

AS H6 1 

A6 H1 1 

A6 H2 1 1 1 
A6 H4 1 1 1 1 

A6 H6 1 1 
All H3 1 
All H4 1 
All H7 1 1 
A14 H1 1 1 1 1 1 1 1 
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