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ABSTRACT 

BIOMECHANICS AND INJURY ASSESSMENT OF HOUSEHOLD FALLS IN 
CHILDREN: CLINICAL, ANTHROPOMORPHIC SURROGATE, AND COMPUTER 

SIMULA nON STUDIES 

Angela K. Thompson 

May 14,2011 

Pediatric short-distance falls, especially from beds or other furniture, are common 

false histories given by caretakers to cover up abusive trauma. However, short-distance 

falls are also a common occurrence in young children. Knowledge of the types and 

severity of injuries that can result from these short falls can aid clinicians in 

distinguishing between inflicted and non-inflicted injuries. Early detection of abuse may 

lead to prevention of further escalating injuries and, in some cases, prevent the death of 

the child. 

The purpose of this study was to describe relationships between biomechanical 

measures and injury potential in short-distance household falls. This study involved three 

components: case-based biomechanical fall assessments, fall simulations using an 

anthropomorphic test device (A TD), and development/validation of a computer 

simulation model used to investigate sensitivity of injury outcome measures to fall 

environment and child surrogate parameters. 

Overall, the risk of severe or life-threatening injury in short-distance household 

falls is low. Fractures of the skull and extremities commonly result from these falls 
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(21.5% of falls resulting in Emergency Department visits). 2 of79 fall cases involved 

small, contact-type subdural hematomas. These subjects both had unique fall dynamics 

that contributed to their injuries. Results of A TD experiments supported those from the 

clinical portion of the study with the exception of neck injury potential. Future studies 

are needed to both improve A TD neck biofidelity and determine more accurate pediatric 

neck injury thresholds. 

Fall environment parameters (fall height and impact surface type) have been 

shown previously to influence injury potential, but this is the first study to investigate the 

influence of child or surrogate parameters (body mass index, overall mass, head stiffness, 

and neck properties) on injury potential. Additionally, through a parametric sensitivity 

analysis, it was found that fall environment and surrogate parameters that altered fall 

dynamics had the greatest influence on injury potential. These results highlight the need 

for obtaining detailed case histories when making injury assessments that include not 

only environment and child factors, but descriptions of the fall dynamics and orientation 

of the child upon impact with the ground. 
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CHAPTER I 

INTRODUCTION 

Specific Aims 

Child abuse is the leading cause of trauma-related fatalities in children less than 

four years of age. l Children aged one year or less are particularly at risk with 

approximately one out of every 41 children in this age group suffering from abuse.2 In 

the United States alone in 2006, there were approximately 905,000 victims of child 

abuse. There were also approximately 1,530 fatalities due to child abuse with 78% of 

these cases involving children aged four years or less.2 These numbers may be 

underestimated since it has been suggested that as many as 50-60% of deaths related to 

child abuse go unrecorded.3 

Short-distance falls in children, especially from beds or other furniture, are a 

common false history given by caretakers to cover up abusive trauma. In up to 70% of 

cases of children with abusive injuries, the initial explanation for the injuries given by the 

caretakers is a fall.4
-
8 However, short household falls are also a common occurrence in 

young children. A study of emergency department visits by children less than one year of 

age found that 61% of accidental cases were injuries due to falls. 9 Knowledge of the 

types and severity of injuries that can result from these short falls is necessary since 

clinicians are commonly asked to determine whether a child's injuries are consistent with 
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the stated cause of the injuries, when attempting to distinguish between inflicted and non

inflicted injuries. Early detection of abuse may lead to prevention of further escalating 

injuries and, in some cases, prevent the death of the child. Additionally, there is 

continuing controversy in the medico-legal community over whether short distance falls 

can lead to severe injuries or death. 

The purpose of this study was to provide objective information about injury risk 

in short-distance falls to aid clinicians in distinguishing between inflicted and non

inflicted injuries in children. This was accomplished by investigating the injury 

outcomes and biomechanics associated with common household falls. Four specific aims 

were established to achieve this goal: 

1. Determine injury types and severities that are associated with short falls from 

horizontal furniture surfaces (i.e. fallfrom bed, crib, couch, table, etc) in children 

ages 0-4. 

2. Describe fall dynamics and determine biomechanical measures associated with 

pediatric falls from horizontal furniture surfaces. 

3. Describe relationships between biomechanical measures and injury severity 

outcomes in pediatric falls from horizontal furniture surfaces. 

4. Determine whether fall environment factors (height offall, impact surface), initial 

velocity and surrogate characteristics (mass, head properties, neck properties, 

soft tissue properties) influence fall dynamics and injury potential in falls from 

horizontal furniture surfaces. 
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The overall hypothesis was that short-distance falls involving young children have 

a low potential for severe injuries, and that injury potential is influenced by both fall 

environment and surrogate (fall victim) characteristics. 

This study involved three major methodological components to address the 

specific aims and obtain a better understanding of injury risk in short-distance household 

falls. The first component was a case-based biomechanical assessment of children who 

present to the emergency department of a metropolitan children's hospital with a history 

ofa fall from a bed or other similar furniture (Chapter 2). Descriptions of fall dynamics 

and fall environment characteristics were obtained through interviews with the caregivers 

and in-depth scene investigations. Relationships between biomechanical measures and 

injury severity outcomes were determined. 

The second component utilized an anthropomorphic test device (ATD), or human 

surrogate, representing a 12-month-old child to experimentally simulate falls from 

furniture surfaces in a laboratory setting (Chapter 3). The ATD was instrumented to 

obtain measures related to head, neck, and extremity injury potential. 

The final component involved development of a validated computer simulation 

model based upon the ATD experiments (Chapter 4). Once validated, the computer 

model extended beyond the A TD experiments by allowing variation in fall environment 

and ATD parameters as part ofa parametric sensitivity analysis (Chapter 5). 

Relationships between parameters and measures related to injury potential were 

described. 
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Background and Significance 

Characteristics of Abusive versus Accidental Injuries 

Head Injuries 

Much work has been done to identify and distinguish injury characteristics 

associated with child abuse with those from accidental causes. Perhaps among the earliest 

of these studies, was that of Caffey, 10 which defined the characteristics of "whiplash 

shaken infant syndrome" (also commonly called "shaken baby syndrome") to be severe 

head injuries, specifically subdural hematomas (SDH), and retinal hemorrhages (RH) 

without any external signs of trauma. Although "shaken baby syndrome" is not the only 

abusive mechanism, the characteristic injuries remain the same. 

Subdural hematomas are known to result from large rotational accelerations of the 

head. This causes the brain to move relative to the skull, rupturing the bridging veins. 11 

In a study by Geddes et al. 12
, SDH was found to be the most common injury among 

patients with abusive head injuries, present in 81 % of cases. Bechtel et al. 13 found a 

similar result with SDH in 80% of patients with abusive head trauma and only 27% of 

patients with accidental head trauma. SDHs have been reported in high-energy events 

such as motor vehicle accidents and falls from great heights. Duhaime et al.4 found three 

accidental cases ofSDH, all occurring in motor vehicle accidents. Billmire and Myers14 

found one case of SDH among 19 to be the result of a motor vehicle accident. Barlow et 

al. 15 reported 1 SDH in a fall from greater than three stories. Musemeche et al. 16 reported 

two SDHs in 70 falls from heights often feet or greater. 
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It has been estimated that between 65 and 95% of "shaken baby" cases involve 

retinal hemorrhage. 17 RHs are likely due to a rise in intracranial pressure secondary to 

traumatic brain injury.18 RHs have been recorded in accidental cases, but these are much 

rarer and often differ by type and location from those seen in abusive cases. In a study by 

Bechtel et al. l3
, 60% of patients classified as having abusive head trauma were found to 

have RH versus only 10% in the accidental cases. Multiple and bilateral RHs were more 

likely to occur in abuse cases. Abusive RH also more often involved the pre-retinal layer 

and extended to the periphery of the retina. Another study found RHs in 10 of 100 

children sustaining head injuries.4 Nine of the ten cases were classified as abusive, with 

the single accidental RH being the result of a high-speed motor vehicle accident. All 10 

patients also had SDH. Geddes et al. 12 found 71 % of 38 children with non-accidental 

head injury to have RHs. The authors also found a significant association between the 

presence ofRHs and SDH. 

Another brain injury commonly associated with abuse is diffuse axonal injury 

(DAI). DAI results from shear forces on the axons of neurons in the brain and can range 

from mild concussion to severe comas resulting in death. A recent study suggests that 

severe DAI is actually a rare result of abusive trauma. In a study of 37 infants with 

inflicted head injuries, only two were found to have severe DAI. 19 Concussion on the 

other hand, has been reported commonly in both abusive and accidental cases. One study 

documents 20 cases of concussion in head-injured infants, with 13 due to accidental 

causes, and two of those were from falls out of bed. 14 The remaining cases were due to 

motor vehicle accidents or falls from a caretaker's arms onto a hard surface. 
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Skull fractures have been shown to occur in both abusive and accidental trauma. 

Billmire and Myers 14 reported 78% of skull fractures occurring from accidental causes. 

However, 87% of the skull fractures were linear parietal fractures. Only four infants had 

complex, multiple fractures. All of these had associated intracranial hemorrhage and all 

were due to inflicted trauma. Another study reported 91 % of skull fractures occurring 

from accidental trauma. 13 Duhaime et al. 17 reported that autopsies detect fractures in 

25% of "shaken" infants. These fractures are most commonly in the posterior parietal 

bone or the occipital bone. Skull fractures have been documented frequently in falls. In 

a study of 66 free falls in children, there were 10 skull fractures, of which eight occurred 

from heights greater than two stories and two occurred from heights less than one story.20 

Lallier et al.21 also found 10 cases of skull fractures among 64 children who sustained 

falls greater than 10 feet. Among short-distance falls, 3 of 246 children who fell from a 

bed or sofa had skull fractures. 22 Two of the three children were 6 months of age or less. 

Age was not specified for the third child. Another study of bed falls reported one skull 

fracture in 207 falls. 23 Five skull fractures were reported in a study of 69 stairway falls. 24 

Neck Injuries 

Cervical spine and spinal cord injuries are rarely reported in cases of child abuse. 

However, they are of interest because the mechanisms of the "shaken baby syndrome" 

would seem likely to cause whiplash injuries to the neck. One study reported that in 

order to reach acceleration levels necessary to cause the severe head injuries described in 

shaken baby syndrome, the thresholds for neck injury would be exceeded.25 This 

publication was criticized however, and it was determined after attempts to repeat the 

6 



calculations, that neck forces were actually far below the threshold for injury.26 Few 

studies have reported cases of neck injuries after inflicted trauma. In a study by Hadley 

et al. 27, 5 of 6 abuse patients who had retinal and intracranial hemorrhages were also 

found to have injuries at the cervicomedullary junction after autopsy. These included 

subdural and epidural hematomas on the spinal cord and cervical spinal cord contusions. 

Ghatan and Ellenbogen28 reported a case an infant who sustained a vertebral atlantoaxial 

dislocation and rupture of the transverse ligament of the atlas. Another study reported 

cases of lower cervical spine injury in two infants as the result of abusive trauma,z9 One 

had a fracture of the C5 vertebral body and a resulting dislocation of C4 and spinal cord 

compression. The other infant had a fracture-dislocation of C5 onto C6. Although neck 

injuries are common in motor vehicle accidents, they are rarely reported in falls. 

Chiaviello et a1.24 reported that 1 of 69 children who fell down stairs sustained a C2 

fracture. Other studies report spine fractures in falls from heights of 10 feet or more but 

do not specify whether these are cervical spine injuries. 15-16, 21 

Fractures 

Fractures are commonly seen in child abuse, appearing in 25 - 55% of child abuse 

cases.7,30-34 In young non-ambulating children, fractures are strong indicators of abuse. 

Studies report that 26-56% of all fractures in children less than 1 year of age are 

inflicted.5.35-38 Younger children are at an even greater risk. Leventhal et al. 5 reported 

24% of fractures in children less than 3 years old were inflicted, but in children less than 

I year old, this number increased to 39%. Similarly, Skellem et a1. 35 reported 26% of 

fractures in children less than 1 year old as inflicted, but 50% of fractures in children less 
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than 4 months old were inflicted. Even still, fractures are commonly seen as a result of 

accidental trauma, such as a fall or motor vehicle accident, and many studies have 

attempted to distinguish fracture characteristics such as type and location in children with 

inflicted and non-inflicted injuries. 

Of particular interest are long bone injuries. Fractures of the extremities are 

among the most common injured sites in both abusive and accidental cases.5
. 31-35, 37. 39-42 

Although studies have varying results as to which long bone is most commonly fractured, 

most report no significant differences between children with inflicted and non-inflicted 

injuries regarding which bones are fractured. 5
, 31-32. 35. 37 Fractures of the femur and 

humerus account for approximately 20% of all fractures.5
, 32, 35, 39, 43 Additionally, a study 

by Leventhal et al. 5 found that 81 % of humerus fractures and 35% of femur fractures in 

children less than 3 years of age were abusive in nature. Among children less than 1 year 

of age, Leventhal reported that 82% of all extremity fractures were inflicted. 

Several studies have attempted to characterize and distinguish inflicted and non

inflicted long bone fractures based on the type and location of the fracture along the bone. 

There are several different types of long bone fractures that occur commonly in both 

abusive and accidental cases. These include spiral, buckle, transverse, oblique, and 

classic metaphyseal lesions (CML) or comer fractures. Each of these fracture types is 

associated with a different loading mechanism.44 Spiral fractures result from torsional 

loads, buckle fractures result from compression loads, transverse fractures result from 

tension or bending loads, oblique fractures result from a combination of bending or 

tension and torsional loads, and finally CMLs may result from shear or tensile loading. 

Spiral, transverse, and oblique fractures are generally midshaft while buckle and CML 
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fractures are typically in either the proximal or distal metaphyseal region of the bone.44 

Given that different fracture types are associated with different loading mechanisms, it is 

possible that fractures resulting from abusive mechanisms would appear different from 

those with accidental mechanisms. 

A few studies have found the type of humerus fracture to be significantly different 

in children with inflicted and non-inflicted injuries.5
, 7, 39, 45 In 14 cases of children less 

than 3 years of age with humerus fractures, Thomas et al.39 reported that all of the 

accidental fractures were supracondylar. Supracondylar fractures occur at the distal end 

of the bone in the metaphyseal region and typically result when children fall impacting 

their elbows. In contrast to the accidental group, no supracondylar fractures were seen in 

the abuse group. Instead the inflicted fractures were transverse and oblique fractures in 

the humeral midshaft or metaphyseal regions. Strait et al. 7 reported 3 of 10 humerus 

fractures in abused children were supracondylar. The remaining 7 fractures were spiral 

or oblique. In the accidental group (children less than 15 months old), there were 8 

supracondylar fractures and one each of the buckle, spiral, and transverse fracture types. 

Worlock et al. 45 reported that spiral fractures of the humerus were significantly more 

common in children with inflicted injuries than those with non-inflicted injuries, seen in 9 

of25 abused children but in none of 116 children with accidental fractures. Herndon46 

also reported spiral fractures to be the most common fracture type in abused children. 

Unlike humerus fractures, most studies have found no significant difference in the 

type and location of femur fractures between inflicted and non-inflicted children.5
, 39,47-48 

Rex and Ka/7 compared femur fractures in 14 children with inflicted injuries and 33 

children with non-inflicted injuries and found the midshaft to be the most common 
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fracture site in both groups (57% in the abuse group and 48% in the accidental group) and 

spiral fracture to be the most common fracture type in both groups (57% in the abuse 

group and 42% in the accidental group). Anderson49 also reported the midshaft to be the 

most common fracture location in occurring in 62% of 122 total femur fractures (includes 

both inflicted and non-inflicted fractures). However, he reported that transverse 

fractures, followed by oblique and spiral fractures are the most common fracture types in 

both inflicted and non-inflicted children. Scherl's results agreed closely with 

Anderson's. Scherl et a1. 8 reported that the most common fracture types in abused 

children were transverse (36%), spiral (36%), and oblique (7%). Comparatively, the 

most common fracture types in falls were spiral (37%), transverse (33%), and oblique 

(14%). CMLs, however, are highly associated with abuse. Beals and Tufts48 reported 4 

of 24 of femur fractures in abused children to be CML type fractures, but only 1 of 39 in 

children with accidental fractures was this type. Loder and Bookout50 reported that 28% 

of long bone fractures in abused children are CMLs, and Kleinman et a1.41 reported that 

CMLs were the most common fracture type in 31 fatally abused infants. 

Case-Based Fall Studies 

Several studies have focused on injuries and fatalities associated with falls in 

children. It has been well established that fatalities rarely occur in short distance falls. In 

an early study of34 free-falls in children, only two fatalities were reported. 51 One was a 

9-year-old who fell 40 feet; the other was an 8-month-old who fell nearly 37 feet head

first. Additionally, for feet-first falls from heights less than 25 feet, no injuries were 
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reported. In two additional studies, all children who fell three stories or less survived.15
-
16 

A few studies have reported deaths resulting from short-distance falls, but the validity of 

these results have been debated. Hall et al. 52 found 18 fatalities in falls from less than or 

equal to 3 feet, all due to severe head injuries. It has been argued that many of these 

deaths were actually due to abuse. 53 Chadwick et al. 54 found 7 fatalities from falls less 

than or equal to 4 feet, but only 1 fatality in 183 falls from 5 - 45 feet. However, the 

authors concluded that the 7 fatal falls from less than 4 feet likely had false histories. 

Plunkett55 reported 18 fatal cases of head injuries due to falls from 2 - 10 feet from 

playground equipment. Chadwick et al. reported a mortality rate of less than 0.48 deaths 

per 1 million young children per year in falls less than 1.5 m (4.9 ft).56 

A few studies have investigated the types of injuries associated with bed falls. 

The first studies of this kind were done by Helfer et al.22 and Nimityongskul and 

Anderson57
. Both of these studies reviewed records of in-hospital falls and found no 

serious or life-threatening injuries. Nimityongskul and Anderson57 found only one skull 

fracture and one tibia fracture in 76 cases. The remainder of the cases had no injuries or 

only minor swelling, contusions, bruises, and lacerations. Also, the tibia fracture 

occurred in a child with osteogenesis imperfecta. Helfer et al. 22 reported one skull 

fracture out of 85 cases, and also found an additional two skull fractures, a humeral 

fracture, and three clavicle fractures in a survey asking parents in private pediatricians 

offices to report fall incidents ( 161 cases). 

The studies by Helfer and Nimityonskul found serious injuries to be rare as a 

result of in-hospital bed falls. However, there are several other studies that found injuries 

from bed falls to be much more common.58
-
60 Hennrikus et al.59 found 115 patients with 
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orthopedic injuries resulting from bed falls or falls from other furniture surfaces over a 

20-month period. The injuries included fractures and dislocations primarily of the upper 

extremities. The estimated maximum fall height across all cases was four feet. Child 

abuse was suspected in six of the 115 cases. Other studies found an increased injury risk 

when including falls from bunk beds. Macgregor60 investigated 85 cases of falls from 

both upper and lower bunks as wells as falls from conventional beds and cots and found 

52% of the children to have significant injuries. Ten ofthe cases with significant injuries 

were due to falls from top bunks. In total, there were 25 fractures, 27 head injuries (no 

skull fractures or intracranial bleeding), 12 lacerations, and 21 soft tissue injuries. 

Belechri et al. 58 compared injury risk between falls from bunk beds and conventional 

beds. Out of 1881 reported bed fall injuries, 10.5% were from bunk beds, 10.4% were 

from cribs, 3.1 % were from cots, and 76.0% were from conventional beds. However, the 

injury severity associated with the bunk bed falls was greater than that for conventional 

bed falls, and bunk bed falls were more likely to require hospitalization. 

A study by Tarantino et al.61 investigated injuries resulting from short vertical 

falls (less than 4 feet) in infants less than 10 months of age. Of 167 subjects, 85% had 

minor or no injury and 15% had significant injuries. Significant injuries included seven 

long bone fractures (three femur, one humerus, two tibia, and one clavicle), and 18 closed 

head injuries. Two patients with intracranial hemorrhages were later determined to be 

victims of abuse. This study also compared injury outcomes by fall mechanism and 

discovered that being dropped by a caretaker was more likely to be associated with 

significant injury than rolling or falling from a bed or couch. 
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Although there are several studies that describe injuries associated with falls from 

beds and other furniture, few have attempted to describe falls biomechanically. Lyons 

and Oates23 used a case-based approach similar to the previously described studies, but 

also estimated the momentum associated with each of the falls. This study reviewed 207 

cases of in-hospital falls from a bed or crib, and based on the estimated fall height and 

weight of the child, the momentum at impact was calculated for each fall. The cases 

were separated into those with injuries (31 cases) and those without injuries, and the 

momentum was compared between the two groups. The injuries included 29 minor 

contusions or lacerations, one clavicle fracture, and one skull fracture. No significant 

difference was found in the impact momentum between the injured and non-injured 

groups. 

Limitations of Case-based Studies 

These studies provide a base of knowledge for the types of injuries that would be 

expected in falls or in cases of child abuse. However, they are limited by the fact that 

they rely on an assumption of whether the injuries are abusive or accidental. Incorrect 

assumptions can result in false conclusions, and cases of child abuse are commonly 

mistaken for accidental trauma. One study found 31 % of cases of abusive head trauma 

were missed by a physician.43 In some cases it took as many as 9 visits to the physician 

to recognize the abuse. Among the missed cases in this study, 28% suffered further 

injuries and 41 % suffered medical complications as a result of the missed diagnosis. 

Some studies have tried to correct for this error by using an algorithm that takes into 

account injury type, associated injuries, and the given history, but even this relies on the 

13 



assumption that certain injuries are indicative ofabuse.4 Another study of injuries 

resulting from free falls included only falls that were witnessed by someone other than 

the caretaker.62 A biomechanics approach, combined with a case-based approach, can 

provide vital information about relationships between fall characteristics, child 

characteristics, and injury potential that may aid clinicians in more accurate child abuse 

diagnoses. 

Biomechanical Studies ofInjury Risk in Falls and Abuse 

Surrogate Studies 

Anthropomorphic surrogates have been utilized in studies to determine injury risk 

in falls as well as abusive events such as the shaken baby syndrome. Duhaime et al. 63 

first used anthropomorphic surrogates of a I-month-old infant in simulations of shakes 

and shakes with impact. In this study, dolls were modified to match the head and body 

weight of a I-month-old. The models were tested with and without an added "skull" for 

variable deformability of the head. Three different neck models were also tested (one 

hinge neck and two hollow rubber necks of different thickness and stiffness) to determine 

the effect of varying neck stiffness on the resulting parameters. Accelerations of the head 

were measured by a single accelerometer at the top of the head. The surrogates were 

vigorously shaken and then the back of the head was impacted against either a metal bar 

or a padded surface. The authors found that the accelerations associated with impact 

were much greater than those for shaking alone, and that the acceleration levels for 

shaking alone did not exceed injury thresholds for concussion, subdural hematoma, or 
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diffuse axonal injury. However, those accelerations resulting from impact exceeded 

thresholds for all three injury types. In shaking, the more flexible neck was associated 

with significantly greater accelerations and significantly shorter durations, but the neck 

condition had no effect in impact situations. The presence of the added skull was found 

to have no significant effect. Impacts against a padded surface had significantly smaller 

accelerations and significantly longer durations than impact onto a metal bar. 

A more recent study built upon that by Duhaime by using a more biofidelic infant 

surrogate. Prange et al.64 simulated shaking and shaking with impact as in the previous 

study, as well as several short distance falls using a 1.5-month-old surrogate. A hinged 

neck was used to represent a worst-case scenario, and the "skull" and "scalp" materials 

were chosen to represent infant skull properties. An angular rate sensor attached to the 

top of the head measured angular velocities. Angular accelerations were then calculated 

by taking the derivative of the velocity. Falls were simulated for three different fall 

heights (1, 3, and 5 feet) and three different surfaces (4 inch thick foam, 0.25 inch thick 

carpet pad, and a concrete floor). The same surfaces were also used in simulations of 

inflicted impacts, except a stone bench was used instead of the concrete floor. The 

surrogate was initially in a horizontal position for fall experiments with the head slightly 

lower than the body to ensure that the head would contact first. Overall, falls from 

greater heights and falls onto harder surfaces resulted in greater angular accelerations. 

For the shaking and impact scenarios, it was found that inflicted impacts against the 

carpet pad and stone surfaces resulted in significantly greater accelerations and lower 

time durations than those from impacts against foam or from shaking. The authors 

concluded that shakes produced responses similar to those from minor falls, but inflicted 
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impacts produced responses that were significantly higher, and therefore were more 

likely to be associated with brain injuries. 

Studies by Coats and Margulies65 and Ibrahim and Margulies66 investigated head 

injury potential in short-distance falls using 1.5-month-old infant and 18-month-old 

toddler surrogates, respectively. The skull and neck properties of the surrogates were 

designed to replicate that of a human child (using material property data obtained from 

pediatric cadaver specimens). In both studies, the surrogate was dropped from three 

heights (1, 2, and 3 ft) onto various surfaces (mattress, carpet pad, concrete). The 

surrogate was positioned so that the initial impact would occur to the occiput. Three

dimensional head angular accelerations were measured. Both studies reported increases 

in peak angular acceleration with increasing fall height and increasing surface stiffness. 

Additionally, peak axial rotation accelerations were as high as peak sagittal plane 

accelerations. Peak coronal plane accelerations were significantly lower than those for 

sagittal and axial rotations. Peak head angular accelerations for the toddler were nearly 

double those of the infant. Based on these comparisons, Ibrahim and Margulies 

concluded that the toddler is likely less vulnerable to skull fracture (due to a greater skull 

thickness) but more vulnerable to neurological injuries (due to greater peak accelerations) 

than the infant. 

There have been several studies by Bertocci to investigate injury risk associated 

with short-distance falls using anthropomorphic test dummies. In one study, Bertocci et 

a1.67 simulated bed falls using a Hybrid II 3-year-old test dummy. Feet-first free falls 

were simulated in another study using the same Hybrid II test dummy.68 In both studies, 

linear head acceleration, pelvis acceleration, and femur loads (including compression, 
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bending, and torsional loads) were measured. Head Injury Criteria (HIC) were calculated 

as a measure of head injury risk. Four different impact surfaces were tested (linoleum, 

wood, padded carpet, and playground foam), and for the free falls, three different heights 

were tested (27, 47, and 64 inches measured from the ground to center of mass of the 

dummy). Only one fall height (27 inches) was tested in the bed fall simulations. In free 

fall experiments, it was found that fall height had no significant effect on either head 

acceleration or HIC, although it did have some effect on femur loading. Impact surface 

type was found to have a significant effect on head acceleration and HIC in both studies 

with playground foam producing the lowest values. Despite these effects, there was a 

low risk of contact-type head injury for all surfaces and heights tested. 

Several studies have examined the effects of varying fall conditions on injury risk. 

In addition to fall height and impact surface which have been tested in the previously 

mentioned studies, Deemer et al. 69 also investigated the effects of falls onto wet versus 

dry surfaces. Using a 3-year-old Hybrid III test dummy, short-distance feet-first free falls 

onto wet and dry linoleum surfaces were simulated. It was found that head acceleration 

and HIC were significantly greater on the dry surface; however femur compressive and 

bending loads were significantly greater on the wet surface. Cory and Jones 70 developed 

a simulation system to test the head injury potential of different surface mixtures. 

Several top surface layers, including carpets and linoleums of various thicknesses and 

types, were tested over three underlying surfaces (wood, concrete, and chipboard). The 

authors found that while the top surface type and thickness has some effect, the 

underlying surface primarily dictates the risk of head injury. It was also found that 

locations on the floor directly over joists produced the greatest head injury risk. 
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Computer Simulation 

Computer simulation is a useful tool to investigate injury-producing events, and to 

study the effect of changing event parameters on injury risk. Computer simulation has 

been widely used by the automotive industry to study car crash events, and has also been 

used in a few studies to investigate falls. Several different software types exist including 

MADYMO (Mathematical Dynamic Models, TNO, Netherlands), Dynaman (GESAC, 

Boonsboro, Maryland), and Visual Nastran 4D (MSC software, Santa Anna, California). 

MADYMO is unique in that it can combine multi-body modeling and finite element 

techniques. Also, MADYMO contains a database of validated models of 

anthropomorphic test devices (ATDs) including the CRABI child dummies. 

Among the first studies that used computer simulation to investigate injury risk in 

falls was that by Mohan et al. 71. In this study, detailed investigations were performed for 

30 cases of head-first free falls in children aged 1-10 years old and for one head-first fall 

in a 21 year old adult. Seven of the cases were then selected for further analysis using 

computer simulation. These included six children aged 1.1 to 6.5 years falling from 

heights of 3.1-9.9 m and one 21 year old adult falling 3.4 m. The cases were reproduced 

using the MVMA Two-Dimensional Crash Victim Simulation Model. Since this was the 

first use of this software to simulate falls, free-fall experiments were performed with an 

instrumented anthropomorphic dummy and then used to validate the model. Head and 

pelvis accelerations and overall body kinematics in the model were found to correlate 

well with the dummy experiments. The 2-D model consisted of a nine mass, ten segment 

body linkage. For each case that was simulated, biomechanical data was used to define 

the material properties of the head and each body region, and based on the fall victim's 
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height and weight, anthropometric data was used to estimate segment masses, lengths, 

moments of inertia and joint properties. Head accelerations, peak head deflections, peak 

normal forces, and energy absorbed were calculated in each model. Additionally, impact 

angles and surface properties were varied to examine their effect on head response. The 

authors found a good correlation between increasing head acceleration and increasing 

head injury severity, except in the case of the youngest child (1.1 years old) who fell the 

greatest distance but suffered less injuries. Changing impact angle through 20 degrees 

had no significant effect on the head response in the six child cases. There was a greater 

effect of changing impact angle in the adult model likely due to the greater torso mass. 

For falls onto soil and sand surfaces, peak head accelerations were reduced to 30-50% 

and 15-20% of the rigid surface values, respectively. 

O'Riordain et al. 72 also used computer simulation to reconstruct falls. Four cases 

of falls that resulted in a focal head injury were modeled using MADYMO. The four 

cases included a 76 year old who fell backwards off a doorstep (13 cm tall), an 11 year 

old who fainted and fell directly backwards, a 37 year old who fell off a 136 cm gate 

impacting the lateral side of the head, and a 24 year old who was standing on a chair (44 

cm high) and fell forwards and to the right impacting the lateral side of the head. For 

each case, the accident site was investigated and witnesses were interviewed to determine 

the conditions of the fall and the environment. The pedestrian A TD model that most 

closely represented the fall victim in terms of height and weight was selected for the 

model. In each case, the initial velocity and head contact properties were varied so that a 

total of six simulations per case were run. The initial velocities tested included the actual 

value, and values 0.1 m1s and 0.1 radls higher and 0.1 m1s and 0.1 radls lower. Two sets 
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of head contact properties were used: the original characteristics for the ATDs in 

MADYMO and alternative force-deflection curves from another study of cadaveric head 

impacts. Peak linear and angular velocities, peak linear and angular accelerations, peak 

impact forces, and Head Injury Criteria (HIC) were calculated. The authors found that 

changing the head contact properties had a significant effect on the outcomes. The 

simulations using the original head contact properties produced higher accelerations and 

velocities than those using alternative head contact properties, and the injury severity in 

the simulations with the alternative properties was much closer to the injuries seen in the 

falls. Changes due to varying initial velocity were less significant and no specific trend 

was clear. 

Bertocci et al. 73 used computer to investigate the effects of stair characteristics on 

injury risk in stair falls. A computer simulation of a 3-year-old child falling down the 

stairs was developed using Working Model 3D. The child was developed to match the 

properties of the 3 year old Hybrid III ATD. The effect of varying stair properties 

(number of steps, slope of stairs, surface friction, and surface elasticity) on injury risk of 

the upper leg was determined. Upper leg impact velocity, energy, and momentum were 

determined. It was found that the potential of upper leg injury increases with an 

increasing number of steps, decreasing surface friction, decreasing surface elasticity, and 

increasing slope. 

In another study, a computer simulation of a pediatric bed fall was developed and 

validated.74 Bed fall experiments were first conducted using a 12-month-old CRAB! 

A TD. The A TD was initially placed horizontally on a 66 cm high surface, and pushed 

off onto the floor using a pneumatic actuator. The same fall was then recreated in Visual 
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Nastran 4D. The model was validated by adjusting joint stiffness values and contact 

properties of the head, torso, arms and legs until the head and torso acceleration curves 

matched what was measured experimentally. Validation of computer simulation models 

is necessary to ensure reliability of the results. Of the described studies, only those by 

Bialczak et al. and Mohan et al. were validated using controlled experiments.7l , 74 

Injury Criteria 

Head Injury 

The most widely accepted measure of head injury risk in impacts is the Head 

Injury Criterion (HIC). HIC was developed for use in the automotive industry to assess 

risk in motor vehicle crash testing. The HIC have also been used to assess head injury 

risk in falls, particularly in the playground safety area to determine critical fall heights for 

playground equipment. It has been stated that the HIC is "considered to be the best 

model available to predict the likelihood of injuries from falls".75 The HIC is based on 

the time-history of the linear head acceleration and is defined as 

(1) 

where art) is the resultant linear head acceleration measured in g's, and t/ and t2, the start 

and finish times of the acceleration spike. HIC values are calculated over 15 millisecond 

durations (HICI5) to compare with proposed thresholds. Tolerance limits have been 
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established by the National Highway Traffic Safety Administration (NHTSA) for ages 

and sizes corresponding to specific anthropomorphic test dummies (ATDs), including a 

large adult male, mid-size adult male, small adult female, 6-year-old child, 3-year-old 

child, and a l-year-old child (Table I-I). These limits represent a 31 % probability of 

skull fracture. 76 

Large Mid-size Small 6-year- 3-year- I-year-
Male Male Female old old old 
700 700 700 700 570 390 

Table 1-1. Suggested HICl51imits for various dummy sizes. 

Another method of assessing head injury risk has been to simply consider the 

maximum linear head acceleration recorded during an impact, sometimes called the 

"peak g" method. However, there is a wide range of tolerance limits suggested by the 

literature. Sturtz77 reported a critical load value of 83 g for impact durations greater than 

or equal to 3 ms based on reconstructions of pedestrian accidents. Above this load 

irreversible injuries are possible. By using computer simulations to reconstruct free falls 

resulting in serious head injuries, Mohan et ae1 proposed conservative tolerance limits of 

200 - 250 g peak accelerations for children. Others have reported tolerance limits for 

children ranging from 50 - 200 g where 50 g is the maximum before-injury threshold and 

200 g is the threshold for fatal injury.75 

Neither ofthe previously discussed methods account for head injury due to 

rotational loads, which often account for severe brain injuries. Subdural hematoma 

(SDH) and diffuse axonal injury (DAI) both result from exposure to rotational 
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acclerations. Sturtz77 proposed an angular acceleration limit of 2000 radls2 for impacts 

lasting 10 ms or longer. Most other studies have related rotational accelerations to 

particular injury types. Reported rotational accelerations necessary to cause concussion 

are 4,500 radls2 for an adult and 10,000 radls2 for an infant. 18 Similarly, accelerations 

necessary to cause severe (DAI) have been reported as approximately 18,000 radls2 for an 

adult and 40,000 radls2 for an infant. 18 Margulies and Thibaules established tolerance 

curves for DAI based on peak rotational acceleration and peak change in rotational 

velocities (Figure 1-1). These curves were derived from a combination of animal 

experiments, physical models, and analytical model simulations. Duhaime et a1.63 used a 

tolerance limit of approximately 35,000 rad/s2 for SDH in an infant with a 500 gram brain 

mass. It has been reported that accelerations necessary to cause acute SDH and deep 

intracerebral hemorrhage are much greater than those necessary to produce mild DAI. I8 

The injury potential is often dependent on the duration of the acceleration pulse. 

In general, the shorter the acceleration duration, the greater the acceleration necessary to 

cause injury. This is due to the viscoelastic nature of biological tissues. Also, for a given 

head acceleration, different types of brain injuries will occur for different durations. 

Three injury zones have been described for a constant acceleration.79 For very short 

durations (high strain rates), the brain experiences very little strain, so extremely high 

accelerations are necessary to cause injury. As the duration increases, strains occur on 

the surface of the brain and cause damage primarily to vascular tissue resulting in SDH, 

for example. Lastly, as the duration increases further, the strains penetrate deeper into 

the brain causing damage to the brain tissue. This produces injuries such as concussion 

and DAI. 

23 



c 
.9 
! 
13 
tl-",N 

U 
- &> '" ., 
§:o-.- ... - ... !I-
e. 
~ 
ct 

40000 

30000 

20000 

10000 

0 
0 100 200 300 

Peak change in rotational velocity 
(rad!sec) 

Figure 1-1. DAI thresholds for infant (500 g brain mass, heavy solid line) and adult 

(1067 g brain mass, solid line; 1400 g brain mass, dashed line). 

Neck Injury 

NHTSA has also established Neck Injury Criteria, or Nij values, to assess the risk 

of neck injuries.76 These are based on combined axial and rotational loading in the 

sagittal plane and can be calculated as follows: 

(2) 

where the subscripts ij represent the four combined loading mechanisms: tension-

extension (TE), tension-flexion (TF), compression-extension (CE), and compression-

flexion (CF). Fz and My are the axial force and flexion/extension moment, respectively, 

and Fint and M;nt are the critical load values. The critical load values are specific for age 

of the test dummy and are used to normalize the Nij values. These are presented in Table 

1-2. An Nij = I represents a 22% probability of an Abbreviated Injury Scale (AIS) 3 
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injury. Neck injuries may include "vertebral fractures, contusions, lacerations, and 

transections of the cord, as well as brain stem injuries and basilar skull fractures that 

occur as a result of loading to the neck. 76 

Dummy Tension (N) Compression (N) Flexion QJm} Extension (Nm) 
12-month-old 1465 1465 43 17 

3-year-old 2120 2120 68 27 
6-year-old 2800 2800 93 39 

Small female 3370 3370 155 62 
Mid-sized male 4500 4500 310 125 

Large male 5440 5440 415 166 

Table 1-2. Proposed critical intercept values for Nij calculation. 

Long Bone Fractures 

There are three main failure mechanisms in the long bones: compression, 

bending, and torsion. The strength of the bone depends upon the direction of the applied 

load. Adult bone strength has been well-studied and femur and humerus fracture 

thresholds are shown in Tables 1-3 and 1_4.80 Despite this, little information is available 

on pediatric bone strength. A few studies have investigated pediatric femur strength81 -84, 

but no known studies have investigated pediatric humeral strength. Pediatric bone is 

more plastic than adult bone, and certain fracture types are seen only in immature bone. 

For example, buckle fractures and greenstick fractures, a type of fracture that does not go 

through the entire width of the bone but only extends through the cortex, are more 

commonly seen in pediatric bones.8o 
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Male Female 
Compression (kN) 4.98 3.61 
Bendin~ Moment (Nm) 151 85 
Torque (Nm) 70 55 

Table 1-3. Adult Humerus Fracture Thresholds 

Male Female 
Compression (kN) 7.72 7.11 
Bending Moment (Nm) 310 180 
Torque (Nm) 175 136 

Table 1-4. Adult Femur Fracture Thresholds 

Currey and Butler81 performed static bending tests on cortical bone samples of 18 

subjects with ages ranging from 2 to 48 years. The samples from children had lower 

bending strengths and lower elastic moduli than the adult samples. For children less than 

five years of age, average bending strengths ranged from 150 to 177 MN/m2, and average 

elastic moduli ranged from 79 to 99 GN/m2
. For subjects greater than 5 years of age, 

average bending strengths ranged from 184 to 225 MN/m2, and average elastic moduli 

ranged from 115 to 162 GN/m2
• The authors also found that peak deflection was greater 

in children less than 5 years, with values ranging from about 1.7 to 1.9 mm, compared to 

1.5 to 1.6 mm in teenagers and 1.1 to 1.3 mm in adults. Martin and Atkinson85 also 

performed bending tests on femoral shaft specimens, and found, in one 2.5 year old 

subject, a bending strength of21.2 x 108 dynlcm2 (212 MN/m2) and maximum bending 

load of 5.3 dyn-cm (53 Nm). 

Hirsch and Evans82 investigated properties of femur cortical bone in seven infants 

ranging in age from a newborn to a six month old child. Unlike Curry, Hirsch and Evans 
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tested the bone specimens under tensile loads. They reported breaking loads and ultimate 

tensile strengths ranging from 10.5 to 19.5 kg (103-191 N) and 5.68 to 13.16 kg/mm2 

(56-129 MN/m2), respectively. 

Chung et al. 83 investigated the shear strength of the capital epiphyseal plate on the 

femoral head in children aged 5 days to 15 years old. The shear strength tended to 

increase with age ranging from 3.98 kg/cm2 (0.39 MN/m2) in the 5 day old specimen to 

14.51 kg/cm2 (1.42 MN/m2) in an 8 year old specimen. 

Using data from quasi-static bending and compression tests of pediatric femur 

specimens, Sturtz77 estimated the dynamic loads necessary to produce a fracture. This 

calculation was based on the assumption that dynamic load limits are 20% higher than 

quasi-static load limits. The dynamic bending fracture criteria for a 7 year old and 3.6 

year old child were 116-131 Nm and 62-73 Nm, respectively. Also the dynamic axial 

(compression) fracture criteria were 1800 and 1000 N for a 6 year old and 3 year old, 

respectively. 

Each of the above studies measured the strength of bone specimens removed from 

child femurs. Another study measured the load necessary for fracture in whole pediatric 

cadavers in both quasi-static and dynamic bending tests.84 In the quasi-static tests, the 

thighs 18 subjects ranging from 1 hour to 6 years old were loaded in 3 point bending to 

fracture. Fracture forces tended to increase with age ranging from 470 N (in a 6 day old 

child) to 2920 N (in the 6 year old child). Exceptions occurred for a 1 hour old infant and 

a fifteen month old child which required forces of2720 Nand 5700 N, respectively. 

Fractures types seen were transverse, oblique, metaphyseal, wedge, and fissure (hairline) 

fractures. Dynamic tests were performed on 10 subjects aged 2-27 months. In these 
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tests, the subjects were dropped from a height of 70-90 cm onto an impactor at the lateral 

mid-thigh. Impact forces ranged from 250 to 2370 N, and impact speeds ranged from 

13.3 to 16.8 kmIhr. A fracture occurred in only 2 cases. One was a transverse fracture in 

a 2 month old, and the other was a hairline fracture in a 9 month old. 

Limitations of Injury Criteria 

The injury tolerance of children is much different from that of adults due to 

differences in size, structural, and material properties. However, much of the injury 

tolerance information available for the pediatric popUlation, including the head and neck 

injury thresholds presented, has been scaled from adult data. This is due to a lack of 

cadaver and volunteer testing in children. Scaling often takes into account both 

geometric and material differences, but the information available is limited in its 

accuracy. Several studies have begun to investigate skull and brain tissue properties in 

children with the intent of better understanding pediatric tolerance to head injury.86-89 In 

a study of infant skull and suture properties investigating loading at rates similar to those 

that would occur in short falls, it was found that pediatric suture deforms 30 times more 

than pediatric cranial bone and 243 times more than adult cranial bone.86 Also, brain 

tissue properties have been found to be age-dependent. 88-89 Thibault and Margulies88 

applied scaling based on brain tissue properties to angular acceleration thresholds for 

concussion, subdural hematoma, and diffuse axonal injury originally derived from brain 

mass scaling alone, and found that the injury thresholds were reduced. Just as differences 

in skull and brain properties exist between adults and children, it is likely that differences 
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also exist in the neck, long bones, and other body regions. These differences need to be 

studied further to develop more accurate pediatric injury criteria. 

Child Restraint/Air Bag Interaction (CRABI) 12-month-old Test Dummy 

The CRABI 12-month-old anthropomorphic test device (ATD) represents a 50th 

percentile 12-month-old child in terms of overall height and weight, as well as weights 

and inertial properties for body segments. Table 1-5 lists weight specifications for the 

CRABI. Table 1-6 and Figure 1-2 describe the external dimensions of the CRABI.9o 

Biofidelic impact response requirements for the head and neck have been 

established for the CRABI l2-month-old.91 These were created by scaling the response 

requirements of the Hybrid III mid-size adult male A TD based on differences in size, 

mass, and material properties of bone. The original requirements for the Hybrid III adult 

A TD were derived from human volunteer and cadaver tests. The head impact response is 

based on drop tests in which the forehead impacts a flat rigid surface and peak resultant 

head accelerations are measured. The neck impact response is measured by mounting the 

A TD head and neck to the end of a pendulum. The pendulum is released and impacted 

with a block of aluminum honeycomb material. Requirements for neck flexion and 

extension exist as a function of head to torso angle and the moment about the occipital 

condyles. 
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Segment Assembly 
Specified Weight 

Metricikg) English Dbs 1 
Head Assembly 2.64 ± 0.05 5.81 ± 0.11 
Neck Assembly 0.38 ± 0.03 0.84 ± 0.07 
Torso Assembly 3.68 ± 0.10 8.10 ± 0.22 
Arm Assembly 0.60± 0.03 1.32 ± 0.07 
Leg Assembly 1.05 ± 0.03 2.31 ± 0.07 
Total Weight 10.00 ± 0.30 22.00 ± 0.66 

Table 1-5. Weight specifications for the CRAB! 12-month-old ATD. 
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Dimension DescriPtion Metric (mm) English (in) 
A Total sitting height 469.9 ± 7.6 18.25 ± 0.30 
B Shoulder pivot height 284.2 ± 7.6 11.19 ± 0.30 
C Hip pivot height 33.0 ± 5.1 1.30 ± 0.20 
D Hip pivot from back line 45.2 ± 5.1 1.78 ± 0.20 
E Shoulder pivot from back line 55.4 ± 5.1 2.18 ± 0.20 
F Thigh Clearance 68.1 ± 5.1 2.68 ± 0.20 
G Elbow pivot to fingertip 184.2 ± 7.6 7.25 ± 0.30 
I Shoulder pivot to elbow pivot 106.7 ± 7.6 4.20 ± 0.30 
J Elbow rest height 157.7 ± 7.6 6.21 ± 0.30 
K Buttock to knee length 210.3 ± 7.6 8.28 ± 0.30 
L Popliteal height (reference to seat) 146.3 ± 7.6 5.76 ± 0.30 
M Knee pivot height 172.7±7.6 6.80 ± 0.30 
N Buttock popliteal length 152.4 ± 7.6 6.00± 0.30 
0 Chest depth with jacket 115.1 ± 7.6 4.53 ± 0.30 
P Foot length 97.5 ± 5.1 3.84 ± 0.20 
Q Stature 740.4± 12.7 29.15 ± 0.50 
R Buttock to knee pivot length 183.6 ± 5.1 7.23 ± 0.20 
S Head breadth 129.5 ± 7.6 5.10 ± 0.30 
T Head depth 157.5 ± 7.6 6.20 ± 0.30 
U Hip breadth 166.1 ±7.6 6.54 ± 0.30 
V Shoulder breadth 208.3 ± 7.6 8.20 ± 0.30 
W Foot breadth 44.2 ± 5.1 1.74 ± 0.20 
Y Chest circumference with jacket 465.1 ± 12.7 18.31 ± 0.50 
Z Waist circumference 459.7 ± 12.7 18.10 ± 0.50 

AA Reference location for chest 261.6 ± 5.1 10.30 ± 0.20 
circumference and chest depth with jacket 

BB Reference location for waist 111.8±5.1 4.40 ± 0.20 
circumference 

CC Shoulder height 307.3 ± 7.6 12.10 ± 0.30 
DD Chin height 297.2 ± 7.6 11.70 ± 0.30 

Table 1-6. List of external dimensions for CRABI 12-month-old dummy. 
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Figure 1-2. Diagram of external dimensions for CRABI 12-month-old dummy. 

Summary 

Although several clinical studies have investigated injuries resulting from bed or 

other furniture falls, only one of these considered the effects of momentum on injury risk, 

and none have explored the effects of fall dynamics on injury risk. Additionally, a few 

biomechanical studies have investigated loading and injury risk associated with falls. 

However, these are limited by the biofidelity of the surrogates used and the simplicity of 

the falls studied. This study is unique because it utilizes computer simulation to 

investigate the biomechanics of pediatric falls. Computer simulation can be used to 

understand how slight variations in the fall characteristics can affect the dynamics and 

injury risk as well as improve upon the limitations of the surrogates used in experiments. 
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The proposed work will expand on present knowledge, and by investigating the falls from 

three different perspectives will provide a more complete understanding of the 

biomechanics of short household falls. The results of this study can be used to aid 

clinicians in distinguishing between inflicted and non-inflicted injuries. Since this 

decision often depends on the clinician's experience, objective information about injury 

risk in these falls will improve the likelihood of earlier identification of child abuse, and 

also prevent innocent families from false accusations of abuse. 
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CHAPTER II 

PEDIATRIC SHORT-DISTANCE HOUSEHOLD FALLS: BIOMECHANICS AND 

ASSOCIATED INJURY SEVERITY 

Overview 

Short-distance household falls are a common occurrence in young children, but 

are also a common false history given by caretakers to conceal abusive trauma. The 

purpose of this study was to determine the severity of injuries that result from accidental 

short-distance household falls in children, and to investigate the association of fall 

environment and biomechanical measures with injury outcomes. Children aged 0-4 years 

who presented to the Emergency Department with a history of a short furniture fall were 

included in the study. Detailed case-based biomechanical assessments were performed 

using data collected through medical records, interviews, and fall scene investigations. 

Injuries were rated using the Abbreviated Injury Scale (AIS). Each case was reviewed by 

a child abuse expert; cases with a vague or inconsistent history and cases being actively 

investigated for child abuse were excluded. Seventy-nine subjects were enrolled in the 

study; 15 had no injuries, 45 had minor (AIS 1) injuries, 17 had moderate (AIS 2) 

injuries, and 2 had serious (AIS 3) injuries. No subjects had injuries classified as AIS 4 

or higher, and there were no fatalities. Children with moderate or serious injuries 

resulting from a short-distance household fall tended to have fallen from greater heights, 
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have greater impact velocities, and have a lower body mass index than those with minor 

or no injuries. Children aged 0-4 years involved in a short-distance household fall did not 

sustain severe or life-threatening injuries, and no children in this study had moderate or 

serious injuries to multiple body regions. Biomechanical measures were found to be 

associated with injury severity outcomes in short-distance household falls. Knowledge of 

relationships between biomechanical measures and injury outcomes can aid clinicians 

when assessing whether a child's injuries were the result ofa short-distance fall or some 

other cause. 

Introduction 

Short falls in children, especially from beds or other furniture, are a common false 

history given by caretakers to conceal abusive trauma. In up to 70% of cases of children 

having abusive injuries, the initial explanation for the injuries given by the caretaker is a 

fall. 4
-
s However, short household falls are also a common occurrence in young children. 

A study of emergency department visits by children less than one year of age found that 

61 % of accidental cases were injuries due to falls. 9 Clinicians are commonly asked to 

distinguish between abusive and accidental injuries by determining whether a child's 

injuries are consistent with the stated cause of the injuries. An improved understanding 

ofbiomechanical factors and injury severity in short household falls may aid clinicians in 

this decision. Early detection of abuse may lead to prevention of further escalating 

injuries and, in some cases, prevent the death of the child. Additionally, there is 
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continuing controversy in the medico-legal community regarding whether short distance 

c: 11 1 d .., d h 52-55 92 la scan ea to severe lllJunes or eat. -, 

Several studies have investigated the types of injuries associated with bed falls 

and other short distance falls. 22
-
23

, 57-58, 60-62 However, few studies have investigated 

relationships between biomechanical factors and injury outcomes in short pediatric 

falls. 23
, 64, 68, 93 The purpose of this study was to determine the types and severity of 

injuries that result from short-distance household falls in children, and to investigate the 

influence of fall environment and biomechanical measures on injury outcomes. This was 

accomplished through detailed case-based biomechanical assessments of short-distance 

household falls in children who presented to the Emergency Department (ED) of a 

regional children's hospital. Based on a review of prior studies, the authors hypothesized 

that serious injuries would make up less than 10% of cases. 

Methods 

Study Design 

This was a prospective, descriptive study approved by the University of Louisville 

Institutional Review Board (IRB #08.0011) using an informed consent process. To 

determine injury types and severities occurring in children in common household falls, 

the medical records of children ages 0-4 years who presented to the ED with a given 

history of a fall from a bed or other similar furniture were obtained. Interviews with the 

caregivers and in-depth scene investigations were conducted to obtain information 
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regarding fall dynamics and to determine biomechanical measures associated with these 

falls. 

Study Setting and Population 

Children less than 4 years of age who presented to the ED of Kosair Childrens' 

Hospital (Louisville, KY) between May 2008 and July 2009 with a complaint of a 

household fall from a bed, sofa, or similar furniture were eligible for inclusion in the 

study. A research team was available 24 hours/day, 7 days/week and was notified by 

triage of eligible patients in the ED. Any children being actively investigated for 

suspicion of abuse were excluded from the study. Additionally, all cases were reviewed 

by a study physician with expertise in pediatric emergency medicine and child abuse 

diagnoses. Each case was rated on a six-point scale as definite abuse, likely abuse, 

questionable abuse, questionable accident, likely accident, or definite accident using 

predefined criteria.5
, 39 These criteria include: completeness and consistency of the given 

history, whether the injury was consistent with the history, whether there was a delay in 

seeking treatment, whether the fall was witnessed by someone other than the caregiver, 

and whether the child's behavior was consistent with the injury. Only cases meeting 

criteria for definite accident and likely accident were included in the data analysis. The 

parent/guardian could select one of three options for participation in this study: 

Option 1: Review of their child's medical records 

Option 2: Caregiver interview and review of child's medical records 

Option 3: Investigation of the fall scene at their home, caregiver interview, and 

review of their child's medical records 

37 



Study Protocol 

The type of data collected from the medical records, caregiver interviews, and fall 

scene investigations are shown in Table 2-1. For cases in which interviews and scene 

investigations were conducted, measurements obtained at the scene investigations were 

used in place of those obtained during interviews. Additionally, the reliability of the 

furniture height estimates provided by caregivers was evaluated to assess whether cases 

without fall scene investigations could be included in the biomechanical analysis. 

Medical Record Review Caregiver Interview Fall Scene Investigation 
Subject age Subject demographics Subject height and 

anthropomorphic measures 
Subject weight Detailed fall description (if not obtained during 

including pre-fall position, interview) 
Detailed description of post-fall position, and .. 

dynamics Furniture height mJunes 

Approximate height of Type of impact surface and 
furniture child fell from underlying subfloor 

construction 
Type of impact surface and 

underlying surface Surface coefficient of 
restitution (COR) 

Subject height and other 
key anthropomorphic 

measurements 

Table 2-1. Type of data obtained from medical record reviews, caregiver interviews, and 

fall scene investigations. 

At the fall scene investigations, surface coefficients of restitution (COR) were 

measured to quantify impact surface properties. COR is a measure of the conservation of 

kinetic energy in impacts. COR values were measured using a resiliency tester (lDM 
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Instruments, Victoria, Australia). The resiliency tester drops a steel ball (15 mm 

diameter) from a known height onto the impact surface (Figure 2-1). The steel ball 

bounce height was recorded, and the COR was calculated as the square root of the ratio 

of bounce height to drop height. Multiple measurements were taken over the impact area 

to account for variations in floor properties. Because COR is a measure of the interaction 

between two objects, the COR for a child/surface impact would likely differ from the 

steel ball/surface impact. However, the COR was measured in this study only for 

comparative purposes across various household surfaces. Surfaces with a higher COR 

deform more upon impact leading to longer impact durations (the fall victim comes to a 

stop more slowly). This reduces the peak accelerations transferred to the victim. 

Conversely, surfaces with a lower COR deform little and thus have shorter impact 

durations (the fall victim comes to a stop more rapidly) and greater peak accelerations.93 

Greater peak accelerations are generally associated with a greater injury risk. Therefore, 

injury risk tends to be greater on surfaces with low COR values than surfaces with high 

COR values. 

Measurements of each child's height and weight were used to determine body 

mass index (BMI). 
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Figure 2-1. Resiliency tester used to measure surface coefficients of restitution. 

Data Analysis 

Injury Assessment 

Subject injuries were rated according to the Abbreviated Injury Scale (AIS). The 

AIS describes injury severity on a six-point scale (Table 2-2). Injuries are rated using 

predefined criteria based on location, type (e.g. skeletal injury, vascular injury, muscular 

injury), and severity.94 Each injury was assigned an AIS severity score, and the 

maximum AIS (MAIS) was determined for each subject. 

AIS Code Description 
1 Minor injury 
2 Moderate injury 
3 Serious injury 
4 Severe injury 
5 Critical injury 
6 Maximal (currently untreatable) injury 

Table 2-2. Abbreviated Injury Scale Code Descriptions. 
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Biomechanical Assessment 

To better characterize the fall event, several biomechanical measures were 

assessed. The impact velocity was determined using 

(1) 

where g is the acceleration due to gravity (9.81 m1s2
), and h is the fall height. The fall 

height was defined as the distance from the child's center of mass at the start of the fall to 

the ground. The fall height was estimated based on the height of the furniture surface 

that the child fell from, the position of the child just prior to the fall, and anthropometric 

measures of the child. The potential energy was determined using 

E=mgh (2) 

where m is the mass of the child, h is the height of the fall, and g is the acceleration due 

to gravity. Finally, the change in momentum during impact was determined using 

M=mV(COR+l) 

where m, V, and COR are the mass of the child, impact velocity, and coefficient of 

restitution of the impact surface, respectively. 
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Statistical Analysis 

A power analysis was conducted using preliminary data to determine the sample 

size required to test the hypothesis that less than 10% of subjects would have serious 

injuries (MAIS 3 or greater). Using 85% power and alpha equal to 0.05, this analysis 

revealed a desired sample size of 76. To determine whether biomechanical variables were 

related to injury severity, subjects were divided into two injury severity groups: those 

with no or minor injuries (MAIS 0 and 1) and those with moderate or serious injuries 

(MAIS 2 or greater). For each of the continuous independent variables obtained (impact 

velocity, energy, change in momentum, fall height, impact surface COR, and child 

factors including mass, age, and body mass index), t-tests were performed to determine if 

there were significant differences between subjects with no/minor and moderate/serious 

injuries. In cases where the assumptions of normality were not met, the non-parametric 

equivalent test was used. For each of the categorical variables obtained (impact surface 

and sub-floor types, pre-fall and post-fall positions of the child, general fall dynamics, 

and whether or not the child was in motion prior to the fall), chi-square tests were 

performed to determine if the variables were significantly associated with injury severity 

level (no/minor vs. moderate/serious injuries). Statistical analysis was performed using 

SPSS vI2.0.I. Statistical significance was defined as p < 0.05. 

Results 

Figure 2-2 provides details of study participation. Seventy-nine cases met the 

criteria for analysis. The subjects ranged in age from 1-47 months with a mean age of 18 
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months. Fifty-four percent (54%) of the subjects were male. Sixty-five percent (65%) of 

subjects were White, 29% were African American, and 6% were Hispanic. 
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Figure 2-2. Flow diagram of subject progression through study. 

Injury Assessment 

Figure 2-3 shows the distribution of cases based upon MAIS injury level. No 

subjects had injuries classified as AIS 4 or higher. Injuries classified as AIS 1 included 
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mostly lacerations and contusions and 2 cases with radial head subluxation (Nursemaid's 

elbow). AIS 2 injuries consisted of fractures (6 skull, 2 clavicle, 3 radius and ulna, 4 

supracondylar humerus, 1 femur, and 1 metatarsal). There were two AIS 3 injuries which 

were both small isolated subdural hematomas. The first was a 3 mm subdural hematoma 

located in the left posterior frontal region. The second was a very thin right frontoparietal 

subdural hematoma accompanied by a right parietal minimally depressed skull fracture. 

Both children with subdural hematomas were clinically well-appearing and had no 

neurological abnormalities. No subjects had AIS 2 or greater injuries to more than one 

body region. 

Six cases were excluded from the study because the history was inconsistent or 

vague. These cases did not meet criteria for definite or likely accidents. These subjects 

were not excluded on the basis of injury severity; the injuries of the excluded subjects 

were no more severe than those of subjects included in the study. Of the 6 excluded 

cases, 5 children had injuries that were classified as MAIS 1 and 1 child had injuries that 

were classified as MAIS 2 (clavicle fracture). 

AIS 3 
2.5% AIS 0 

AIS 1 
57.0% 

N=79 

Figure 2-3. Distribution of accidental cases by Maximum Abbreviated Injury Scale 

(MAIS). 
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Reliability Analysis 

Impact velocity, potential energy, and change in momentum are dependent on 

measurements of furniture height and COR obtained at the fall scene investigations. 

Because only estimates of furniture height (from caregivers) were available for most 

cases (n = 42), the reliability of these estimates was evaluated. For 35 cases, both an 

estimate of the furniture height (obtained from caregiver during interview) and a 

measurement of the true furniture height (obtained during fall scene investigation) were 

available (Figure 2-4). The intraclass correlation coefficient (ICC) between these two 

data sets was 0.76. In general, caregivers tended to overestimate the height. To account 

for this bias, the linear relationship between the height estimates and height 

measurements was determined. This resulted in the following equation which was used 

to predict furniture height based on the caregiver-provided height estimate: 

Predictedfurniture height(cm) = 0.718 * Estimatedfurniture height(cm) + 11.736 (4) 

The coefficient of determination (R 2), a measure of the goodness of fit between the linear 

equation and height data, was 0.80. For each case without a scene investigation, the 

predicted height was calculated using the caregiver-estimated height collected during the 

interview. The predicted furniture heights were then used in the biomechanical analysis 

in place of the estimated heights. 
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Figure 2-4. Measured furniture height (from fall scene investigation) vs. estimated 

furniture height (from caregiver interview) for 35 cases. 

Biomechanical Assessment 

Several fall, environment, and child characteristics were investigated to determine 

whether there were significant differences between subjects with no or minor injuries and 

subjects with moderate or serious injuries (Table 2-3). 
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Subjects with no or minor Subjects with moderate or 
injuries serious injuries 

Measure Mean (95% Number Mean (95% Number 
confidence of confidence of 
interval) subjects interval) subjects 

Subject age (months) 17 (14-20) 60 21 (13-28) 19 
Subject mass (kg) 10.9 (10.0-11.7) 60 11.2 (9.4-13.0) 19 
Subject body mass index ' a 17.7 (17.2-18.3) 58 16.4 (15.3-17.6) 17 
Furniture height (cm) 62.0 (57.3-66.7) 60 75.6 (68.1-83.0) 19 
Fall height (cm)· 79.8 (73.6-86.0) 60 91.3 (83.9-98.8) 19 
Im~act velocity (m1s) 4.0 (3.8-4.2) 60 4.3 (4.2-4.5) 19 
Potential energy (Nm) 91.3 (79.6-

60 
107.3 (85.7-

19 
103.0) 128.9) 

Change in momentum 
(kgmls) b 

56.2 (48.1-64.3) 26 57.8 (40.4-75.1) 11 

Surface coefficient of 
0.39 (0.35-0.43) 26 0.39 (0.30-0.48) 11 

restitution b 

*. indicates a statistically significant difference (p < 0.05) 
a. body mass index was not calculated for four subjects due to missing subject height data 
b. includes only cases in which a fall scene investigation was conducted 

Table 2-3. Subject, fall environment, and biomechanical measure mean values by injury 

category. 

Fall Environment 

The frequency distributions of falls based upon type of furniture and impact 

surface are shown in Figures 2-5 and 2-6. Twelve subjects were initially placed in a car-

seat, bouncy seat, or adult's lap prior to the fall, but this factor was not found to be 

significantly associated with injury severity. Surface COR measurements were obtained 

for 37 cases. The mean COR for cases with similar surface/sub-floor combinations is 

shown in Table 2-4. Neither surface, subfloor, nor COR were found to be significantly 

associated with injury severity. 
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Figure 2-5. Frequency distribution of falls for each injury severity category based upon 

furniture type. N=79 
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Subfloor Surface 
Mean COR (standard Number 

deviation) of Falls 
Carpet 0.49 (0.05) 12 

Area rug over hardwood 0.41 (0.02) 5 
Wood Hardwood 0.33 (0.03) 9 

Linoleum 0.35 (0.08) 5 
Ceramic tile 0.44 1 

Carpet 0.51 I 

Concrete 
Hardwood 0.16 2 
Linoleum 0.17 1 

Ceramic tile 0.47 I 

Table 2-4. Mean coefficient of restitution (COR) measured for each impact surface-

subfloor combination. Measurements were obtained for only 37 cases where fall scene 

visits were conducted. 

Fall Characteristics 

Information regarding the child's position just prior to the fall was obtained in 69 

cases, and information regarding the child's position immediately after the fall was 

obtained in 67 cases (Table 2-5). However, a description of the fall dynamics was 

obtained in only 40 cases (Table 2-5). This is because nearly half of the falls were not 

witnessed (44%). Pre-fall position, post-fall position, and description of fall dynamics 

were not significantly associated with injury severity. Additionally, 25 subjects were 

noted to have been in motion prior to the fall (e.g., jumping, crawling, or rolling). 

However, this factor was not significantly associated with injury severity. 
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Pre-fall Number Fall Number of Post-fall Number 
Position of Cases D)'Ilamics Cases Position of Cases 

Lying prone 7 Head-first 16 Lying prone 26 
Lying supine 18 Feet-first 2 Lying supine 18 

Side-lying 1 Tumbling 14 Side-lying 13 
Sitting 21 Other 8 Sitting 7 

Standing 16 Other 3 
Other 6 

Table 2-5. Frequency distribution of falls based upon pre-fall positions, descriptions of 

fall dynamics, and post-fall positions. Information not available for all cases. 

Biomechanical Assessment of MAIS 3 Cases 

The fall that resulted in a 3 mm left posterior subdural hematoma was a fall from 

a sofa involving a 42- month-old female. The child was seated on the back of the sofa, 

approximately 1 meter high, and fell backwards. She landed on her side and hit her head 

on the hardwood floor. This child had a mass of 11.8 kg and a BMI of 12.7. She was in 

the 45th percentile for her age by height, but only the 5th percentile by mass. The 

estimated impact velocity, energy, and change in momentum for this fall were 4.7 mis, 

259 Nm, and 74 kgmls, respectively. 

The subject whose fall resulted in a thin right frontoparietal sudural hematoma 

and skull fracture was I-month-old male. In this case, the child was sleeping on his 

mother's chest while she was lying in bed. The mother fell asleep and rolled over 

causing the child to fall off the side of the bed. He struck his head on a humidifier that 

was adjacent to the bed and then landed supine on the carpeted floor. The fall scene 

investigation revealed a bed height of 86 cm and a COR of 0.56 for the carpet. These 

measurements produced impact velocity, energy, and change in momentum values of 4.6 
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mis, 118 Nm, and 40 kgmls, respectively. The child had a mass of 5.5 kg and a BMI of 

12.6. He was in the 95th percentile for his age by both height and mass. 

Discussion 

Serious injuries resulting from pediatric short household falls are rare. Less than 

3% ofthe cases seen in this study were classified as a serious injury (MAIS 3), and no 

severe or life-threatening injuries were seen. Seventy-six percent (76%) of the cases in 

this study had no injuries or only minor injuries. These results are consistent with other 

studies of injuries resulting from short distance pediatric falls. Previous studies report no 

severe or life-threatening injuries and fracture rates ranging from 1-29% (mean 13%).9,22-

23.57-58,60-61,95-96 The rate of fractures seen in our study (all AIS 2 injuries) was 21.5%. 

Very few studies have reported intracranial hemorrhages resulting from short distance 

falls. 52,55 The two subdural hematomas seen in this study were small contact type 

injuries. The clinical presentation and course for each of these children was benign. Both 

subdural hematomas resulted from falls from heights over I m (distance from floor to 

center of mass of the child). The impact velocities in these cases were similar. The sofa 

fall involving the 42-month-old child was associated with much greater energy and 

change in momentum values than the bed fall involving the l-month-old child. The child 

fell backwards off the sofa and likely landed directly on her head. Therefore, she was 

likely unable to have an active protective response to the fall. The I-month-old child 

likely struck his head on the edge of the humidifier. The smaller contact area on the edge 
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of the humidifier would have led to a greater, more concentrated impact force than ifhe 

had simply struck the floor. 

Our study rated injury severity using the AIS scale. To the authors' knowledge, 

only two other studies have used the AIS scale to categorize pediatric fall injuries. 

Morrison et aL97 investigated furniture-related injuries in children 0-5 years of age, and 

found 8% of injuries were AIS 1, 75% were AIS 2, 10% were AIS 3, and 1 % were AIS 4. 

However, Morrison et aL only included injuries that required hospital admission. Thus, 

the results are skewed towards more severe injuries. Chiaviello et aL24 used a modified 

AIS scale referred to as the Modified Injury Severity Scale (MISS) to rate stair fall 

injuries in children 0-5 years of age. The MISS is determined by summing the squares of 

the AIS scores for the three most severely injured body regions. Therefore, an MISS 2 

score represents a condition with only minor injuries (AIS 1) to two body regions. Only 

4% of subjects in the Chiaviello study had an MISS> 2. In our study, all subjects with an 

MAIS 2 or MAIS 3 injury would translate to an MISS> 2. Therefore, we found a much 

lower incidence of moderate and serious injuries than Morrison et aI., but a greater 

incidence of moderate/serious injuries than Chiaviello et aL 

In this study, the MAIS was used as an overall injury score for each subject. 

Another commonly used overall injury scoring system is the Injury Severity Score (ISS) 

which is calculated by summing the squares of the AIS scores for the three most severely 

injured body regions. MAIS was chosen rather than ISS because few subjects had 

injuries to multiple body regions and no subjects had injuries greater than AIS 1 to 

multiple body regions. 
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Of the fall environment factors studied, only furniture height and fall height were 

found to be significantly different in subjects with no/minor injuries compared to subjects 

with moderate/serious injuries. The mean fall height for subjects in the no/minor injuries 

category was 80 cm compared to 91 cm in the moderate/serious injury category. This 

illustrates that small differences in height (11 cm in this case) can have a significant 

influence on injury severity outcomes. Other biomechanical studies have shown that 

increasing fall height leads to an increasing risk of injury. 64,68 

Impact surface type was not found to be significantly associated with injury 

severity for the sample of pediatric falls evaluated in our study. Because there are many 

variations in surface type, surface COR was measured to quantify the resiliency of the 

surface-subfloor combinations. However, COR was not significantly different for the two 

injury severity categories. (We were only able to measure COR on a subset of cases; 

therefore the lack of significant differences may be due to an inadequate sample size.) 

Several biomechanical studies have shown impact surface to be associated with injury 

risk. 64,67-68,70,93 These studies investigated surface effects in a laboratory setting, where 

variations in fall dynamics and other environmental factors were controlled. In our study, 

there were many other factors that could contribute to injury (e.g., fall height, initial 

position of the child, fall dynamics, and child mass). 

In addition to fall environment factors, our study investigated fall dynamics and 

biomechanical measures. A previous study of short feet-first falls found that fall 

dynamics played a significant role in measures of head injury risk. 93 However, initial 

position and fall dynamics were not found to be significantly associated with injury 

severity our current study. Impact velocity, energy, and change in momentum were 
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detennined for each case to further characterize the fall. Only impact velocity was found 

to be significantly different across the two injury severity categories. Fall energy and 

change in momentum were detennined since they each account for a combination of 

child and fall characteristics, and it was predicted that these measures would be a better 

overall measure to compare with injury outcomes. In 25 cases, the subjects were said to 

have been in motion (jumping, rolling, etc) prior to the fall. However, due to the 

unreliability of such initial velocity estimates, it was assumed that every child was at rest 

prior to the fall. If initial velocities had been accounted for, this would lead to an 

increase in the impact velocity, energy, and momentum values for these cases. A study 

by Lyons and Oates23 also assessed impact momentum for pediatric falls and found no 

significant difference in momentum between the injured and non-injured subjects. With 

a greater number of subjects and more accurate measures of fall height and surface COR, 

it is possible that significant differences in energy and change in momentum values 

between subjects with no/minor injuries and subjects with moderate/serious injures would 

emerge. 

Child BMI was found to be significantly lower for subjects with moderate/serious 

injuries compared to subjects with no/minor injuries. Many studies have found a 

decreasing fracture risk with increasing BMI in adults.98-lo1 This is likely due to a 

protective effect of a greater soft tissue thickness in individuals with a higher BMI. 101 

Additionally, studies have shown that bone mineral density increases with increasing 

mass.99 Higher bone mineral density suggests a greater bone strength which is often 

associated with a decreased fracture risk. A few studies have compared BMI and injury 

outcomes in children. Brown et al. I02 compared injury outcomes in obese and non-obese 
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children (aged 6-19 years) who were admitted to the intensive care unit and found obese 

patients suffered less severe (lower AIS) head injuries than non-obese patients, but no 

significant differences were found in chest, abdominal, and extremity injuries. Rana et 

al. 103 found no significant differences in AIS scores between obese and non-obese 

children (ages 6-20 years) who suffered traumatic injuries but found a lower incidence of 

closed head injuries and abdominal injuries in the obese patients. Our study found that 

children with moderate and serious injuries had a lower mean BMI than children with no 

or only minor injuries. Studies of children have primarily focused on comparisons of 

obese to non-obese and did not investigate whether an underweight child may have a 

greater risk for injury. The relationship between BMI and injury severity outcomes in 

pediatric falls needs to be investigated further. 

Limitations 

Our study found 21.5% of pediatric falls resulted in moderate injury and 2.5% 

resulted in serious injury. This number is likely an overestimate of injury severity 

associated with household falls because only children who presented to the ED were 

included. Falls are a common occurrence in young children, and often result in no injuries 

or only minor injuries for which the parents do not seek care.22
, 104 

The sample size was relatively small. With a greater sample size, differences in 

energy, change in momentum, surface COR, and other variables could emerge for 

different levels of injury severity. Additionally, due to the small sample size, each of the 

variables was analyzed independently for relationships with injury severity. A greater 
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number of subjects would allow for a multi factor analysis in which interaction between 

variables could be investigated. In cases where scene investigations were not conducted 

(n = 42,53%), furniture heights were predicted based on estimates provided by the 

caregiver and measurements obtained in cases involving scene investigations. Due to this 

transfonnation of the height data, the confidence interval presented is likely 

underestimated. The predicted furniture heights were further used to detennine fall 

heights, impact velocities and potential energies which would introduce a source of error 

in these measures and their associated confidence intervals. 

Another limitation of this study is the possibility that cases of child abuse were 

misidentified and included in this study or true accidents were falsely excluded. Since 

this study sought to examine injury in short distance falls, any cases of abuse that were 

falsely included in the study could contaminate the findings. In an attempt to reduce this 

possibility, all cases were reviewed by a child abuse expert and judged to be accidental or 

abusive using predefined criteria.5 Any cases that did not meet criteria for a definite or 

likely accident were excluded from the data analysis. Six cases had vague or inconsistent 

histories and therefore, did not meet criteria for definite or likely accident. These cases 

were excluded from the study. It is worthwhile to note that the excluded cases were all 

classified as MAIS I (minor injuries only) except one which was MAIS 2 (clavicle 

fracture), and were not excluded on the basis of severe injury. 

In this study, COR was used to quantify surface properties. COR describes the 

interaction between two colliding objects (in this case, a steel ball and the floor surface) 

and does not represent properties of the surface alone. COR depends in part on the mass 

of the two colliding objects. Thus, different COR values would exist for the childlfloor 
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surface impact than those measured using the resiliency tester and steel ball. Stiffness and 

damping properties would better describe surface characteristics but were not easily 

obtainable in site visits. Future studies should investigate alternative methods for 

quantification of floor surface properties. 

Conclusions 

This study provides a comprehensive evaluation of the biomechanics of short

distance household falls and investigated the association ofbiomechanical and fall 

environment measures with injury severity. Children aged 0-4 years involved in a short

distance household fall did not sustain severe or life-threatening injuries. No children in 

this study had moderate or serious injuries to multiple body regions. Furniture height, 

impact velocity and child BMI were found to have the greatest influence on injury 

severity outcomes. Children with moderate or serious injuries tended to have fallen from 

greater heights, had greater impact velocities, and had a lower BMI than those with minor 

or no injuries. By identifying factors associated with injury outcomes, the results of this 

study provide first steps toward development of an injury prediction model for short

distance pediatric falls. 
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CHAPTER III 

ASSESSMENT OF INJURY POTENTIAL IN PEDIATRIC BED FALL 

EXPERIMENTS USING AN ANTHROPOMORPHIC TEST DEVICE 

Overview 

Falls from beds and other furniture are common scenarios provided to conceal 

child abuse but are also common occurrences in young children. To aid clinicians in 

distinguishing abusive from accidental injuries, this study investigated biomechanical 

outcomes related to injury potential in falls from beds and other horizontal surfaces using 

an anthropomorphic test device representing a 12-month-old child. The potential for 

head, neck, and extremity injuries and differences due to varying impact surface was 

determined. Linoleum over concrete was associated with the greatest risk of head and 

neck injury compared to other tested surfaces (linoleum over wood, carpet, wood, 

playground foam). The risk of severe head and extremity injuries in these falls was low. 

However, results suggest that fractures, particularly involving the skull and humerus, are 

possible in these falls. Neck injury potential in falls needs to be studied further as 

limitations in ATD biofidelity and neck injury thresholds based solely on sagittal plane 

motion may reduce accuracy in current pediatric neck injury assessments. 
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Introduction 

Falls from beds and other furniture are common scenarios provided to conceal 

child abuse.4
.
8 However, short-distance household falls are common occurrences in 

young children and sometimes result in injury. Because of this, clinicians may have 

difficulty distinguishing between accidental and inflicted injuries, particularly when the 

scenario provided is a household fall. Objective information about injury potential in 

these falls may aid clinicians in distinguishing between abusive and accidental injuries. 

The biomechanics associated with short falls has been investigated in previous studies, 

but was primarily focused on head injury outcomes.64
-
68

• 93 In this study, biomechanical 

outcomes relating to head, neck, and extremity injury were determined. 

To investigate biomechanical outcomes relating to injury potential in short 

household falls, simulations of falls from a horizontal surface (representing a bed or other 

elevated furniture surface) with a 12-month-old anthropomorphic test device (ATD) were 

performed. In Chapter II, rolling off of a bed or other horizontal surface was found to be 

the most common short-distance fall scenario in infants and toddlers. Therefore, in this 

study, the ATD was positioned to recreate this "rolling off the bed" scenario. The effect 

of different impact surfaces on injury potential was determined. 
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Methods 

Test Setup 

A Child Restraint Air Bag Interaction (CRAB!) 12-month-old ATD (First 

Technology Safety Systems, Plymouth, Michigan) was placed on the edge ofa 24 in (61 

cm) high horizontal surface representing a bed, couch, or other similar furniture (Figure 

3-1). The A TD was positioned on the bed in an initial side-lying position and pushed off 

the surface onto the floor using a pneumatic actuator. The actuator was positioned to 

impact the ATD in the center of the torso (approximately the center of mass location). 

The actuator provided a consistent initial force to ensure repeatability. Five different 

impact surfaces were tested. Nine drops were performed for each test scenario based 

upon a power analysis of prior experiments. 

Figure 3-1. CRAB! anthropomorphic test device (ATD) in side-lying initial position for 

bed fall experiments. The pneumatic actuator (used to deliver a force to the posterior 

torso of the A TD to push it from the surface) is shown behind the A TD. 
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ATD Instrumentation 

The CRABI A TD represents a 50th percentile 12-month-old child in terms of 

overall height and mass, as well as geometric and inertial properties of individual body 

segments. The A TD was instrumented with tri-axiallinear accelerometers (Endevco, 

Model 7264-2000) at the center of mass of the head, at the overall body center of mass in 

the torso, and in the pelvis. Additionally, two angular rate sensors (ATA Sensors, Model 

ARS-06) were placed at the center of mass of the head to measure angular velocities in 

the anterior-posterior (AP) and medial-lateral (ML) directions. Two six-axis load cells 

were located at the superior and inferior aspects of the neck (approximately the Cl and 

C7 vertebrae locations) to measure neck loads. Three uniaxial strain gages and one shear 

strain gage (Vishay Micro-Measurements) were adhered to each arm and leg at the center 

of a metal rod representing the humerus or femur. The strains from the three uniaxial 

gages (120 degrees apart around the rod circumference) were used to determine humerus 

and femur axial loads and moments, and the strain measured by the shear strain gage was 

used to determine torsional loads. 

Prior to each fall, A TD joint angles were adjusted using a goniometer to ensure 

repeated positioning for all testing. Joints were calibrated to manufacturer specifications 

which are to tighten the joints until the friction is just sufficient to support the weight of 

the limb. 

Impact Surfaces 

Five different impact surfaces were tested: playground foam, padded carpet, 

wood, and two types oflinoleum flooring. Carpet, wood, and one of the linoleum 
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surfaces were placed over a 6 x 6 ft (183 x 183 cm) wooden platform. The platform, built 

to standard building codes, consisted of3/4 inch plywood covering 2 x 4 in (5.1 x 10.2 

cm) joists spaced 16 in (40.6 cm) from the center of one joist to the center of the next. 

The carpet was open loop and 112 in (1.3 cm) thick with 3/8 in (1.0 cm) thick foam 

padding underneath and will be tacked to the platform. A layer of% in (1.9 cm) thick 

plywood served as the wood surface. The linoleum over the wooden sub floor was no

wax self-adhesive vinyl flooring adhered to the platform (0.039 in or 1 mm thick). The 

playground foam surface consisted of2 x 2 ft (61.0 x 61.0 cm) tiles, 2 in (5.1 cm) thick 

and was placed over a concrete subfloor. The other linoleum surface was linoleum tile 

118 in (0.32 cm) thick placed over a concrete floor (different from the linoleum used over 

the wood floor). Coefficients of friction and restitution for the tested surfaces were 

previously measured.93 

Motion Capture 

All falls were videotaped (30 Hz) to capture overall fall dynamics. Each fall was 

also captured using a three-dimensional digital motion capture system (Motion Analysis 

Co., Santa Rosa, CA). This system consisted of five infrared cameras using a 100 Hz 

frame rate. For these falls, 48 reflective markers were placed on the ATD (4-5 markers 

per body segment). 
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Data Acquisition and Analysis 

A Lab View program was created for data acquisition. Accelerometer, rate sensor, 

load cell, and strain data was sampled at 10,000 Hz and filtered according to SAE J211 

standards. I05 The filter was a 4th order low-pass Butterworth filter. Head acceleration, 

angular velocity, and neck force data were filtered with a 1,000 Hz cutoff frequency. 

Neck moments and femur and humerus strains were filtered with a 600 Hz cutoff. 

Head Injury Outcomes 

Linear head acceleration was evaluated by examining both the maximum resultant 

acceleration for each fall and by calculating Head Injury Criteria (HIC). The fonnula for 

HIC is defined as 

(1) 

where aCt) is the resultant linear head acceleration measured in g's, and tl and t2,' the start 

and finish times of the acceleration spike. HIC values were calculated over 15 

millisecond durations (HICI5) to compare with proposed injury criteria.76 

Angular head accelerations were detennined by differentiating (finite difference 

method) the measured angular head velocities from the angular rate sensors. Peak 

angular accelerations, peak change in angular velocities (for the primary impact), and 

impact durations were detennined for each fall for comparison with head injury 

thresholds. 
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Neck Injury Outcomes 

Peak neck loads at the occipital condyles (transformed from the upper neck load 

cell) were determined for comparison with proposed injury criteria. Also, neck forces 

and moments were used to calculate Neck Injury Criteria, or Nij values, for combined 

axial loading and moments as established by the National Highway Traffic Safety 

Administration (NHTSA).76 Nij were calculated as 

(2) 

where the subscripts ij represent the four combined loading mechanisms in the sagittal 

plane: tension-extension (TE), tension-flexion (TF), compression-extension (CE), and 

compression-flexion (CF). Fz and My are the tension/compression force and 

flexion/extension moment, respectively, measured at the occipital condyles and Fint and 

Mint are the critical load values (Table 3-1). 

Mechanism Critical Load 
1465 
1465 
43 
17 

Table 3-1. Critical intercept values for Nij calculation associated with the 12-month-old 

CRABIATD. 
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Upper and Lower Extremity Injury Outcomes 

The measured strains were used to determine the axial compression, bending 

moment, and torsional load in each humerus and femur 106. The axial compression loads 

(F) were calculated using 

and the bending moments (M) were calculated using 

and 

M = IE(c] -C3) 
fjr cos () 

where A is the cross-sectional area of the humerus/femur rod, E is the modulus of 

elasticity, I is the area moment of inertia, r is the radius of the humerus/femur rod, () is 

the angle from one of the gages to the axis about which the bending moment is acting, 

(6) 

(7) 

(8) 

and G/, G2, and G3 are the maximum, middle, and minimum measured strains, respectively. 

The torsional loads on the femurs and humeri were calculated directly from the shear 

strains measured by the shear strain gages using 
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T=JGy 
r 

where J is the polar moment of inertia, G is the shear modulus of the material, r is the 

radius, and)' is the measured shear strain. 

Statistical Analysis 

(9) 

Each of the outcome variables was analyzed separately using one-way analysis of 

variance (ANOVA) tests to determine if surface type led to significant differences in the 

outcome measures. Post-hoc Tukey tests were also conducted to further examine where 

significant differences occurred. Statistical significance was set at p :::; 0.05. SPSS 

v.12.0.1 was used to perform all statistical analysis. 

Results 

Fall Dynamics 

After actuator contact, the A TD rolled about the edge of the bed surface (Figure 

3-2). Initially, the longitudinal (mid-sagittal plane) axis of the body was parallel with the 

ground. During the fall, the A TD continued to rotate about its longitudinal axis and 

landed on its side with the head leading (feet still elevated above the floor at the time of 

impact). The head and left shoulder of the ATD impacted the floor surface at 

approximately the same time. After the initial impact with the floor, the A TD rebounded 

upward off the ground before finally coming to rest. 
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A digital motion capture system was used to quantify fall dynamics. However, a 

five-camera system proved to be insufficient in tracking fall dynamics. Markers were 

obscured from view by the bed, resulting in incomplete data. Therefore, data were used 

only for a qualitative description of fall dynamics. 
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Figure 3-2. Video and motion tracking image sequence of a representative fall onto the 

linoleum over wood impact surface. 
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Read Injury Outcome Measures 

The mean peak resultant linear head acceleration across all surfaces was 135.6g 

(Figure 3-3). Falls onto linoleum over concrete produced the greatest values, with a 

maximum of 423.3g. Linoleum over concrete was associated with significantly greater 

peak linear head acceleration values than all other surfaces (p < 0.001). Additionally, the 

wood impact surface was associated with significantly greater peak linear head 

accelerations than playground foam (p = 0.011) and carpet (p = 0.043). 

The mean RIelS value across all trials was 160 (Figure 3-3). A maximum RIelS 

of 334 occurred in a fall onto linoleum over concrete. Linoleum over concrete associated 

with significantly greater RIelS values than all other surfaces (p < 0.001). There were no 

other significant differences between other impact surfaces. 

The mean peak angular head accelerations across all surfaces were 3,675 rad/s2 

and 6,172 rad/s2 for AP and ML directions, respectively (Figure 3-4). Peak angular head 

accelerations were generally greater in the ML direction than in the AP direction. The 

greatest peak ML angular head acceleration was 11,730 rad/s2 and occurred in a fall onto 

linoleum over concrete. As with linear head accelerations, linoleum over concrete was 

associated with significantly greater peak AP and ML angular head accelerations than all 

other surfaces (p < 0.001). Additionally, wood and linoleum over wood were associated 

with significantly greater peak ML angular head accelerations than playground foam and 

carpet surfaces (p < 0.001). Wood was associated with significantly greater peak AP 

angular head accelerations than linoleum over wood (p = 0.007), playground foam (p < 

0.001), and carpet (p < 0.001). Linoleum over wood was associated with significantly 

69 



greater peak AP angular head accelerations than playground foam and carpet (p < 0.001). 

ML peak angular head accelerations have been plotted along with peak change in angular 

velocity for comparison with proposed injury thresholds (Figure 3-5). 

Head impact durations ranged from 2.7-19.1 ms with a mean of 11.5 ms (Figure 

3-6). Linoleum over concrete was associated with significantly shorter impact durations 

than all other surfaces (p < 0.001). Linoleum over wood and wood were associated with 

significantly shorter impact durations than playground foam and carpet (p < 0.001). 
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Figure 3-3. Peak resultant linear head acceleration and corresponding HIC15 values for 

falls onto various surfaces. Error bars represent 95% confidence intervals. 
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velocity: experimental data compared to diffuse axonal injury (DAI) thresholds 78. 
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95% confidence intervals. 

Neck Injury Outcome Measures 

The mean peak neck axial compression force across all trials was 779 N (Figure 

3-7). The greatest bending.moments occurred in the lateral direction with a mean of 13.4 

Nm (Figure 3-8). Falls onto linoleum over concrete produced the greatest neck loads in 

all measured directions. Peak neck loads were as follows: axial compression - 1,504 N, 

flexion - 17.9 Nm, extension - 4.2 Nm, lateral bending - 19.2 Nm, torsion - 4.1 Nm. 

Linoleum over concrete was associated with significantly greater peak neck compression 

forces than linoleum over wood (p = 0.006), playground foam (p < 0.001), and carpet (p 

= 0.017). Linoleum over concrete was associated with significantly greater peak neck 

flexion moments than carpet (p = 0.019). Linoleum over concrete was associated with 

significantly greater peak neck extension moments than wood (p = 0.003) and carpet (p = 

0.002). No significant differences in lateral bending moments were found between the 

72 



tested surfaces. Linoleum over concrete was associated with significantly greater peak 

neck torsion moments than linoleum (p = 0.020) and carpet (p = 0.002). Playground 

foam was associated with significantly greater peak neck torsion moments carpet (p = 

0.031). 

Nij calculations were performed to evaluate combined loading mechanisms in the 

sagittal plane. The greatest Nij values occurred for the compression-flexion loading 

mechanism (NCF) (Figure 3-9). The mean NCF value across all surfaces was 0.7. Five of 

the nine falls onto linoleum over concrete produced NCF values greater than one 

(maximum 1.3), and one fall onto the linoleum over wood surface produced an NCF equal 

to 1.0. 

~ 1400 
Q) 

e 1200 0 u.. 
c 1000 0 
"iii 
<fl 800 Q) 

a. 
E 600 
0 
() 400 ..>:: 
u 
Q) 200 z 

..>:: 
(1) 0 Q) 

a.. 
.. D_ 

Linoleum Plaj4Jround 
over Wood foam 

Carpet Wood Linoleum 
over 

Concrete 

Figure 3-7. Peak neck compression force for falls onto various surfaces. Error bars 

represent 95% confidence intervals. 
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Extremity Injury Outcome Measures 

Mean peak compression forces were much greater in the arms than in the legs 

(Figure 3-10). The greatest compression forces occurred in the left arm and in falls onto 

linoleum over wood (maximum of6,712 N). Unlike head and neck outcome measures, 

surface trends were less evident in extremity loads. The only significant differences in 

compression forces across surfaces occurred for the left leg. Left leg compression forces 

in falls onto linoleum over concrete were significantly greater than those in falls onto 

linoleum over wood (p = 0.040), wood (p = 0.047), and carpet (p = 0.013). 

Mean peak bending and torsion moments were also highest in the left arm 

(Figures 3-11 and 3-12). The maximum bending moment across all trials was 26.1 Nm 

and occurred in a fall onto linoleum over concrete. The maximum torsion moment was 

23.6 Nm and occurred in a fall onto linoleum over wood. Linoleum over concrete was 

associated with significantly lower right leg peak bending moments than wood (p = 

0.020), playground foam (p = 0.012), and carpet (p = 0.040). Linoleum over concrete 

was associated with significantly greater left leg peak bending moments than linoleum 

over wood (p = 0.016) and carpet (p = 0.001). Linoleum over concrete was associated 

with significantly greater left arm peak bending moments than playground foam (p = 

0.045) and carpet (p = 0.022). 
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Figure 3-10. Peak axial compression force for each extremity and for falls onto various 

surfaces. Error bars represent 95% confidence intervals. 
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Figure 3-12. Peak torsional moment for each extremity and for falls onto various 
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Discussion 

Effect of Surface 

Significant differences in outcome measures were found across the evaluated 

surfaces. Linoleum over concrete was associated with significantly greater linear and 

angular head accelerations, mc1S values, and shorter impact durations than all other 

surfaces. Since greater accelerations and shorter impact durations are generally 

associated with an increased risk of head injury, the greatest head injury risk in short-

distance horizontal falls would be for linoleum over concrete or similar surfaces. 

Additionally, wood and linoleum over wood are associated with a greater risk of head 

injury than carpet or playground foam surfaces. Similarly, linoleum over concrete was 

associated greater neck forces and moments (and thus a greater risk of neck injury) in 
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these falls. Few differences in extremity loads were found across the various impact 

surfaces. This is likely due to the high variation in these measures. Nine trials per 

scenario were conducted based upon a power analysis of head injury outcome measures 

in previous fall experiments using the CRAB! ATD. The results of these experiments, 

however, suggest that a greater number of trials would be necessary for investigation of 

extremity loads. In future studies, additional fall trials should be conducted to further 

elicit differences across various impact surfaces. 

Head Injury Potential 

To determine the potential for head injury in these falls, the results can be 

compared to published injury thresholds. Head injury thresholds can be separated into 

two types: those based on linear acceleration (which generally predict the potential for 

focal or contact-type head injuries) and those based on angular or rotational acceleration 

(which generally predict the potential for inertial or diffuse brain injury). In this study 

HIC values were determined. The HIC was developed for use in the automotive industry 

to assess head injury risk in motor vehicle crash testing, and today is the most widely 

accepted measure of head injury risk in impacts. HIC have also been used in several 

studies to assess head injury risk in falls 67,70-71. 93,107. The proposed HICI5 limit for the 

CRABI 12-month-old ATD is 390 76. For a HIC I5 of390, the risk of skull fracture is 

approximately 31 % 76. The maximum HICI5 in this study was 334 which occurred in a 

fall onto linoleum over concrete. All other surfaces were associated with HIC I5 values 

less than or equal to 200. This suggests a risk of skull fracture less than 31 % in falls from 
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the studied height onto linoleum over concrete, and a very low risk of skull fracture for 

falls onto other surfaces. 

A large range of injury thresholds based on the peak linear acceleration have been 

proposed for children. Sturtz 77 proposed tolerance limits of 83g (6-7 year-old children) 

for impact durations greater than or equal to 3 ms based on reconstructions of pedestrian 

accidents. Above this load Abbreviated Injury Scale (AIS) level 2+ injuries are possible. 

By using computer simulations to reconstruct free falls resulting in serious head injuries, 

Mohan et al. 71 proposed conservative tolerance limits of 200 - 250g peak accelerations 

for children. Others have reported tolerance limits for children ranging from 50 - 200g 

where 50g is the maximum before-injury threshold and 200g is the threshold for fatal 

injury 75. Peak linear accelerations fell at or below 200g for all surfaces except linoleum 

over concrete. Linoleum over concrete produced a maximum linear head acceleration of 

423g. There is such disagreement in the thresholds, however, that the risk of head injury 

in these falls is difficult to assess using linear acceleration alone. Additionally, peak g 

thresholds do not account for the duration of impact. Longer impact durations generally 

increase the injury risk. Although linoleum over concrete was associated with the 

greatest peak linear accelerations, these falls also produced the shortest impact durations 

(mean duration 5.4 ms). 

As with linear head acceleration, many angular acceleration tolerance limits for 

head injury have been proposed and are often specific to injury type. Additionally, the 

direction of head motion is important, as some thresholds differ depending on the 

direction of the load. The brain is more susceptible to diffuse axonal injury (DAI) under 

lateral rotation than anterior-posterior rotation 79. However, subdural hematomas are 
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more likely to result from rotation in the sagittal plane (anterior-posterior). For this 

reason, both anterior-posterior and medial-lateral angular accelerations were measured in 

this study. Reported concussion thresholds are approximately 6,500 radls2 for a young 

child (800 gm brain mass) and 10,000 radls2 for an infant (400 gm brain mass) 18. 

Similarly, accelerations necessary to cause mild diffuse axonal injury (DAI) have been 

reported as approximately 18,000 radls2 for a young child and 30,000 radls2 for an infant. 

Margulies and Thibault 78 established tolerance curves for moderate DAI based on peak 

angular acceleration and peak change in angular velocities (Figure 3-5). These curves 

were derived from a combination of animal experiments, physical models, and analytical 

model simulations. Duhaime et al.63 used a tolerance limit of approximately 35,000 

radls2 and 40,000 rad/s2 for subdural hematoma (SDH) and DAI, respectively, in an 

infant with a 500 gram brain mass. Depreitere et al. 108 proposed a SDH tolerance level 

of approximately 10,000 radls2 for impact durations less than 10 ms based on adult 

cadaver impact tests. In our study, ML angular accelerations were generally greater than 

AP angular accelerations (because the A TD landed on the side of its head). The 

maximum ML angular acceleration across all tested surfaces was 11,730 radls2 (occurred 

in a fall onto linoleum over concrete). Falls onto surfaces other than linoleum over 

concrete produced ML angular head accelerations less than 7,400 radls2
. In comparing 

our results to proposed thresholds, DAI would not be expected in these falls as all data 

fell below proposed pediatric thresholds. However, concussion is possible, particularly 

for falls onto linoleum over concrete where several trials exceeded 10,000 radls2
• The 

maximum AP angular acceleration was 9,322 radls2 (occurred in a fall onto linoleum over 

concrete). AP angular accelerations were below 5,000 for all tested surfaces except 
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linoleum over concrete. As these results fall below proposed SDH thresholds, the risk of 

SDH in these falls is low. 

Neck Injury Potential 

Neck injury has been studied much less than head injury, particularly in infants, 

and thus there are fewer published pediatric neck injury thresholds. One of the most 

commonly used neck injury assessment thresholds is the Nij criteria. The Nij criteria, like 

the HIC, were developed for use in the automotive industry to assess injury risk in frontal 

impact motor vehicle crash testing. In this study, compression-flexion was the primary 

loading mechanism (of the four included in Nij). Several falls onto linoleum over 

concrete exceeded the threshold and one fall onto linoleum over wood met the Nij 

threshold of 1.0. An Nij = 1 represents a 22% probability of AIS 3 (serious) neck injury, 

suggesting that serious neck injuries are possible in these falls 76. These results are 

particularly concerning since Nij is only calculated for sagittal motion and the primary 

loading direction in our experiments was in the coronal plane. No published injury 

thresholds were found for lateral bending and torsional neck loading. 

Extremity Injury Potential 

In general, peak loads in the upper extremities were greater than those in the 

lower extremities, and peak loads on the impact (left) side ofthe body were greater than 

those on the non-impact (right) side. The fall dynamics were such that the ATD initially 
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landed on the left side of the body, causing left upper extremity and left lower extremity 

forces and moments to be greater than those on the right side of the body. Additionally, 

the ATD's left shoulder impacted the ground approximately the same time or just after 

head impact (before the remainder of the body) leading to substantially greater loads in 

the left upper extremity compared to the other extremities. Upper extremity loads tended 

to be greater than lower extremity loads, possibly due to the larger mass of the lower 

extremities and thus more soft tissue. The metal rods representing the humeri and femurs 

were the same diameter (0.25 in), but the overall lower and upper extremity diameters 

(including the soft tissue material) were approximately 2.5 in and 1.5 in, respectively. 

Greater thickness of soft tissue in the lower extremity combined with an increased air 

cavity between the "bone" and soft tissue would allow for more cushioning and 

subsequently reduce the peak loads experienced by the lower extremity as compared to 

the upper extremity. 

Adult bone strength has been well studied, and femur and humerus fracture 

thresholds are shown in Table 3-2 80. Femur and tibia injury criteria for adult ATDs have 

been established to assess injury risk in automotive crash testing. Femur compression 

thresholds for the adult Hybrid III 50th percentile (male) and 5th percentile (female) ATDs 

are 10 kN and 6.8 kN, respectively 76. Proposed tibia compression thresholds for the 

adult Hybrid III 50th and 5th percentile ATDs are 35.9 kN and 22.9 kN, respectively. 

Proposed tibia bending moment thresholds for the adult Hybrid III 50th and 5th percentile 

A TDs are 225 Nm and 115 Nm, respectively 76. Little information is available on 

pediatric bone strength. A few studies have investigated pediatric femur strength, but no 

known studies have investigated pediatric humeral strength 81-84. Using data from quasi-
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static bending and compression tests of pediatric femur specimens, Sturtz 77 estimated the 

dynamic loads necessary to produce a fracture. This calculation was based on the 

assumption that dynamic fracture thresholds are 20% higher than quasi-static thresholds. 

The dynamic bending fracture criteria for a 7 year old and 3.6 year old child were 116-

131 Nm and 62-73 Nm, respectively. Also the dynamic axial (compression) fracture 

criteria were 1800 and 1000 N for a 6 year old and 3 year old, respectively. 

Load Mechanism 
Femur Thresholds Humerus Thresholds 
Male Female Male Female 

Compression (kN) 7.72 7.11 4.98 3.61 
Bending Moment (Nm) 310 180 151 85 

Torque (Nm) 175 136 70 55 

Table 3-2. Fracture thresholds for the adult femur and humerus bones 80. 

The peak femur compression force, bending moment, and torque across all trials 

were 647 N, 6.8 Nm, and 8.5 Nm, respectively. These values fall well below femur 

fracture thresholds for the adult and the pediatric thresholds proposed by Sturtz. 

Therefore, a low risk of femur fracture is associated with the tested fall scenario. Peak 

humerus compression force, bending moment, and torque across all trials were 6712 N, 

26.1 Nm, and 23.6 Nm, respectively. Humerus bending moments and torques are below 

adult injury thresholds. However, the maximum humerus compression load exceeds 

fracture thresholds for the adult (Table 3-2). As humerus fracture thresholds for the 

child would likely fall below fracture thresholds for adults, this suggests a risk of 

humerus fracture due to compressive loading in these falls. 
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Comparison to other Biomechanical Studies 
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Bertocci et al. 67 simulated bed falls from a 0.68 m high horizontal surface using a Hybrid 

II 3-year-old ATD. Although a similar initial position was used by Bertocci et al. as 

compared to our study, the legs or pelvis of the 3-year-old ATD made first contact with 

the ground rather than the head. Peak head accelerations and HICl5 values were 

comparable to those measured in our study. Angular head accelerations were not 

measured. Femur compression and bending loads measured by Bertocci were 

comparable to those measured in our study. However, torsional loads measured by 

Bertocci were up to ten times the values measured in this study. This is likely due to the 

feet-first impact orientation seen in those falls. 

Ibrahim and Margulies 66 simulated falls using an I8-month-old surrogate. The 

surrogate was dropped from various heights (1-3 ft) onto carpet pad and concrete. The 

surrogate was initially suspended above the floor in a supine position with the head 

slightly below the rest of the body (so that the head would impact the ground first). This 

differs from our study which simulated the entire fall event (rolling off the bed). Peak 

angular accelerations for the primary head loading direction (medial-lateral rotation in 

our study versus anterior-posterior rotation in the Ibrahim study due to different impact 

orientations) were compared. Peak angular accelerations reported by Ibrahim and 

Margulies were more than double those measured in our study. This is likely due to 

differing skull and neck properties of the surrogates. In particular, the CRABI neck is 
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stiffer than Ibrahim's surrogate model (approximately 0.115 Nmldegree versus 0.0637 

Nmldegree in flexion and lateral bending). 

Comparison to Clinical Studies 

The results of this study are consistent with epidemiological studies of pediatric 

falls. Two studies of bed falls found no serious head injuries in a combined 512 cases 22. 

57. There were four skull fractures reported in these studies, but all were of a non-serious 

nature. Additionally, one humeral fracture and three clavicle fractures were reported by 

Helfer et al. A study by Tarantino et al. 61 investigated injuries resulting from short falls 

(less than 4 feet) in infants less than 10 months of age. Of 167 subjects, 85% had minor 

or no injury and 15% had significant injuries. Significant injuries included seven long 

bone fractures (three femur, one humerus, two tibia, and one clavicle), and 18 closed 

head injuries. Two patients had intracranial hemorrhages but were later determined to be 

victims of abuse. Hennrikus et al. 59 found 115 patients with orthopedic injuries resulting 

from bed falls or falls from other furniture surfaces over a 20-month period. The injuries 

included fractures and dislocations primarily of the upper extremities. A previous study 

of fall cases (Chapter II), which reported injuries in 79 clinical cases of household falls, 

found 6 skull fractures, 9 upper extremity fractures, and 2 lower extremity fractures. This 

study also reported 2 small isolated SDH. One of the falls that produced a SDH involved 

a l-month-old rolling of an 83 cm high bed. However, this child also hit his head on the 

edge of a humidifier placed next to the bed. The second case occurred when a 42-month

old child fell rearward from the back of a couch. In both cases, the children recovered 
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fully. The results of previous studies are consistent with our study which found a 

moderate (less than 30%) risk of skull fracture, and a very low risk for more severe head 

injuries (such as SDH). A moderate risk of humerus fracture was found in our study, 

which is consistent with other studies that report injuries to the upper extremities 

commonly resulting from short-distance falls. However, the risk of femur fracture in this 

study was very low. 

Our study also found a small potential for neck injuries in bed falls. However, 

neck injuries have rarely been reported in short falls. Chiaviello et al. 24 reported that 1 

of69 children who fell down stairs sustained a C2 vertebral fracture. To the authors' 

knowledge, no neck injuries have been reported from bed falls or other short-distance 

furniture falls. The neck loads reported in this study should be interpreted with caution as 

the CRABI neck is stiffer than an actual 12-month-old child's neck. Additionally, the 

CRABI neck was designed to investigate injury risk in frontal impact motor vehicle crash 

tests. Therefore, neck response in lateral bending or axial compression (the two primary 

loading mechanisms in the simulated falls) were not of interest for biofidelity 

requirements in A TD design. 

Limitations 

This study has several limitations. First, the biofidelity of the CRABI 12-month

old A TD has been questioned. As previously mentioned, the CRABI neck is likely too 

stiff. A more flexible neck would allow for increased head rotation on impact. 

Therefore, the head accelerations reported in this study (particularly angular 
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accelerations) may be underestimated. Conversely, increased neck flexibility would 

likely decrease neck forces and moments. This suggests that the neck loads reported in 

this study may be overestimated compared to those experienced by a 12-month-old child. 

The biofidelity of the CRABI head impact response has similarly been questioned 66,91. 

One study compared the head impact response of a CRAB I 6-month-old ATD to that of 

pediatric cadaveric specimens in drop tests and found the results to be comparable in 

vertex, occiput, and forehead impacts 110. However, the impact response of the CRAB! in 

lateral impacts was much stiffer than that of the cadaveric specimens. Therefore, the 

peak linear head accelerations and HIC values reported in this study may be 

overestimated compared to what would be experienced by a 12-month-old child. As with 

the head and neck, the CRAB! soft tissue is stiffer than that of a human child. A previous 

clinical study of household falls (Chapter II) found significant differences in child body 

mass index (BMI) between children with minor or more severe injuries. This suggests 

that soft tissue may have a protective or cushioning effect. In addition to questions of 

head, neck, and soft tissue biofidelity, ATD joints (shoulders, elbows, hips, and knees) 

are limited to motion in the sagittal plane. As the impact orientation in the simulated falls 

occurred primarily in the coronal plane, the joint constraints may have affected the 

fall/impact dynamics and thus the resulting injury outcome measures. Of particular 

interest are constraints of the left shoulder. With shoulder motion constrained to a single 

pin joint in the sagittal plane, additional loads may have been transferred to the left arm 

which may have otherwise been absorbed through shoulder motion in other directions. 

Therefore, the upper extremity loads in this study may be overestimated. 
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In addition to limitations of the A TD, assessments of injury risk are based on 

injury criteria that have primarily been determined through scaling of adult or primate 

data. This is due to the paucity of information concerning material properties of pediatric 

tissues and pediatric injury tolerance. Scaling generally accounts for mass differences, 

but in some cases (the HIC for example) may account for differences in geometry and 

material properties. Angular head acceleration thresholds for pediatric brain injury were 

determined through mass scaling alone. However, Thibault and Margulies 88 found that 

including differences in brain tissue material properties reduced thresholds for 

concussion, DAI, and SDH. More accurate pediatric injury criteria are needed to 

improve assessments of injury potential in falls. 

It should be noted that only one initial position was simulated in these falls (side

lying to simulate a rolling motion from the bed surface). Changing initial positions 

would likely change the orientation of the A TD upon impact, leading to differences in the 

injury outcome measures. Additionally, the rate at which the ATD was pushed from the 

bed surface was held constant. Changes to the initial velocity of the A TD or the push 

force would likely affect the fall dynamics and injury outcome measures. Any significant 

deviation from the simulated scenario (a 12-month-old child rolling off the bed) would 

require further investigation to more accurately assess injury potential. 

Conclusions 

This study investigated biomechanical outcomes relating to injury potential in 

falls from beds and other horizontal surfaces using an ATD representing a 12-month-old 
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child. The potential for head, neck, and extremity injuries was determined. Differences 

in injury outcome measures due to varying impact surfaces were also investigated. The 

risk of severe head and extremity injuries in these falls was low. However, fractures, 

particularly involving the skull and humerus, are possible in these falls. Neck injury 

potential in pediatric falls should be studied further as limitations in A TD biofidelity and 

neck injury thresholds based solely on sagittal plane motion may reduce accuracy in 

current pediatric neck injury assessments. Linoleum over concrete was associated with 

the greatest risk of head and neck injury compared to other evaluated surfaces (linoleum 

over wood, carpet, wood, playground foam). These results may aid clinicians in 

distinguishing between abusive and accidental injuries when the stated cause of the 

injuries is a short-distance household fall and further highlight the importance of 

obtaining a detailed history when assessing compatibility between injury and the stated 

cause. 
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CHAPTER IV 

PEDIATRIC BED FALL COMPUTER SIMULATION MODEL PART I: 

DEVELOPMENT AND V ALIDA TION 

Overview 

Falls from beds and other household furniture are common scenarios stated to 

conceal child abuse. Knowledge of the biomechanics associated with short-distance falls 

may aid clinicians in distinguishing between abusive and accidental injuries. Computer 

simulation is a useful tool to investigate injury-producing events, and to study the effect 

of altering event parameters on injury risk. In this study, a pediatric bed fall computer 

simulation model was developed and validated. The simulation was created within 

MADYMO® software using the CRAB! 12-month-old anthropomorphic test device 

(ATD) to represent the fall victim and validated using data from physical fall experiments 

of the same scenario with an instrumented CRAB! ATD. Validation was conducted 

using both observational and statistical comparisons. Future parametric sensitivity 

studies using this model will lead to an improved understanding of relationships between 

child (fall victim) parameters, fall environment parameters, and injury potential. 
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Introduction 

Falls from beds and other household furniture are common scenarios stated to 

conceal child abuse.4
-
8 A better understanding of the true injury risk associated with 

these falls is needed to aid clinicians in distinguishing between abusive and accidental 

injuries. Fall environment factors, such as fall height and impact surface, as well as child 

factors, such as body mass index, have been shown in previous studies to be related to 
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the biofidelity of anthropomorphic surrogates used to represent the fall victim. 64-68, 93 

Moreover, little information is available regarding the injury tolerance and biomechanical 

response of children. Therefore, most pediatric surrogates are based on scaled adult 

cadaver or primate data and may not accurately represent a human child, particularly in 

low-energy events such as falls. 

Computer simulation is a useful tool that can be used to investigate injury-

producing events, and to study the effect of changing event parameters on injury risk. 

Computer simulation has been widely used by the automotive industry to study motor 

vehicle crash events, and has also been used in a few studies to investigate falls.n , 111-115 

Development of a pediatric bed fall computer model can lead to a deeper understanding 

of relationships between biomechanical factors, fall environment parameters, child 

parameters and potential for injury. Additionally, a computer model can extend beyond 

surrogate experiments by allowing the user to vary surrogate properties. The purpose of 

this study was to develop a validated 3D computer model simulating an anthropomorphic 

test device (ATD) representing a 12-month-old child falling from a horizontal surface 
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such as a bed. In Chapter II, rolling off of a bed or other horizontal surface was found to 

be the most common short-distance fall scenario in infants and toddlers. Therefore, in 

this study, a computer simulation model was developed to recreate the "rolling off the 

bed" scenario. This model wi11later be used to investigate the effect of changing fall 

environment and A TD (fall victim) parameters on biomechanical measures and potential 

for injury (Chapter V). 

Methods 

A computer simulation model of a pediatric bed fall was developed using 

MADYMO® version 7.0 (MAthematical DYnamic Modeling; TNO, Netherlands). 

MADYMO® is a rigid-body dynamics software. One advantage ofMADYMO® is that 

it contains a built-in database of models representing the anthropomorphic test devices 

(ATD). For this study, the Child Restraint Air-Bag Interaction (CRAB!) 12-month-old 

anthropomorphic test device (A TD) was selected to represent the fall victim. This ATD 

represents a 50th percentile 12-month-old child in terms of overall height (74 cm) and 

mass (10 kg), as well as geometric and inertial properties of individual body segments. 

The model was validated using results from physical bed fall experiments with an 

instrumented CRAB! 12-month-old ATD (Chapter III). Once validated, the predictive 

capability of the model was assessed by changing the impact surface type and comparing 

the outcome measures with experimental results. 

92 



ATD Fall Experiments 

Bed fall experiments were performed using the CRABI ATD (First Technology 

Safety Systems, Plymouth, MI). The A TD was placed in a side-lying position on a 

horizontal surface representing a bed (Figure 4-1). The bed was 61 cm (24 in) above the 

ground. Before each fall, A TD joint angles were adjusted using a goniometer to ensure 

repeated positioning for all testing. Joints were calibrated to manufacturer specifications 

whereby the joint was tightened until the friction was just sufficient to support the weight 

of the limb. A pneumatic actuator was mounted to the horizontal surface representing the 

bed and used to push the A TD off the edge of the bed (Figure 4-1). Nine falls were 

conducted onto two different impact surfaces (playground foam and linoleum) for a total 

of 18 falls. The playground foam surface consisted of rubber tiles 61 x 61 cm, 5.1 cm 

thick. The linoleum surface was self-adhesive vinyl flooring 0.1 cm thick. The linoleum 

was adhered to a wood sub floor (1.5 cm thick plywood), while the playground foam was 

placed over concrete. 

The A TD was instrumented with tri-axial accelerometers (Endevco, Model 7264-

2000) at the center of mass of the head, overall A TD center of mass located at the midline 

within the torso, and the pelvis. Two angular rate sensors (AT A Sensors, Model ARS-06) 

were also positioned in the head to measure head angular velocity in the anterior

posterior and medial-lateral directions. Additionally, a six-axis load cell (First 

Technology Safety Systems, Model IF-954) was located at the superior aspect of the neck 

(approximately the Cl vertebrae location). Accelerometer and load cell data were 

sampled at 10,000 Hz and filtered according to the SAE J211 standards. I05 Data were 
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filtered using a 4th order low-pass Butterworth filter with cutoff frequencies of 1000 Hz 

(accelerations, angular velocities, and neck forces) and 600 Hz (neck moments). 

Figure 4-1. CRABI anthropomorphic test device (ATD) in side-lying initial position for 

bed fall experiments. The pneumatic actuator (used to deliver a force to the posterior 

torso of the ATD to push it from the surface) is shown behind the ATD. 

Each fall experiment was videotaped and captured using a three-dimensional 

digital motion capture system (Motion Analysis Co., Santa Rosa, CA) to record fall 

dynamics. This system uses five infrared cameras at a 100 Hz frame rate. Forty-eight 

reflective markers (4-5 per body segment) were placed on the ATD, and one marker was 

placed on the actuator to determine actuator kinematics. 
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Model Development 

Fall Environment 

The fall environment used in the A TD experiments was recreated in the computer 

simulation model using rigid body planes and ellipsoids to represent the bed surface and 

impact surface. Appropriate geometry and surface properties were specified in the 

model. Initially, the model was created using properties of playground foam as the 

impact surface. A rigid ellipsoid was created to represent the actuator. The velocity and 

acceleration of the actuator were specified to match that measured in the experiments. 

ATD Properties 

The 12-month-old CRAB! ATD ellipsoid model from the MADYMO® database 

was imported into the model and positioned on the bed surface as in the experiments. 

The CRABI model consists of 32 bodies and was created with geometric and inertial 

properties to match the physical ATD. The CRAB! model, developed by TNO

MADYMO®, was created by scaling down the Hybrid III 50th percentile adult A TD 

model. Anthropometric measurements on the physical A TD were also included in model 

development by TNO-MADYMO®. The Hybrid III adult ATD model within the 

MADYMO® database was previously validated through both component tests and full

body sled impact tests 116. However, no specific validation was performed by TNO

MADYMO® for the CRABI model after scaling. Due to the lack of validation of the 

CRABI model and the poor performance of the A TD model (in comparing model 

outcome measures with results from ATD fall experiments) without any modifications, 
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head and neck properties were measured through component testing of the physical A TD 

to improve the CRABI model. Additionally, segment masses in the original CRABI 

model differed from those of the physical ATD and were updated accordingly. Head 

contact properties used in our model were determined using an experimental head drop 

test as a part of our study. In this test, the instrumented head of the ATD was dropped 

from a height of 61 cm (same fall height used in experiments with the full A TD) onto a 

concrete surface. The head was positioned so that the impact orientation was similar to 

that found in the A TD fall experiments and the model (impacting on the left parietal 

aspect of the head). Three trials were conducted. A computer model of the head drop 

test was created using MADYMO®, and head stiffness properties were adjusted until the 

resultant head acceleration from the head drop model matched those in the experiments. 

The resulting load-deformation curve for the head (Figure 4-2) was then imported into 

our bed fall model. 
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Figure 4-2. Load-deformation characteristic for CRABI head used in our computer model 

based upon head drop experiments. 
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Neck stiffness was determined using static testing whereby the neck was adjusted 

to a known angle and the bending moment was recorded using a load cell positioned at 

the superior aspect of the neck. The base of the neck was fixed and rotation angles were 

recorded using a goniometer (positioned at the center of the superior aspect of the neck). 

Stiffness was determined for flexion, extension, lateral bending, and torsion (Figure 4-3). 

The MADYMO® CRAB! ATD model includes two spherical joints (three rotational 

degrees of freedom) at the superior and inferior aspects of the neck. Due to the head-first 

nature of the fall, an additional translation joint was added to the neck in our computer 

model to allow for neck compression. 
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Figure 4-3. Moment vs. rotational displacement characteristics for CRAB! neck used in 

our model based upon experimental evaluation. 

Impact Surface Properties 

In order to determine contact properties between the evaluated impact surfaces 

and the ATD, additional head drop experiments were performed. Head drop tests were 
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used because the ATD impacted the ground head-first in each of the experimental trials. 

Three head drop tests were performed onto each of the impact surfaces (playground foam 

and linoleum). The stiffness and damping properties of the impact surface in the model 

were then adjusted until the resulting head acceleration time histories matched those from 

the physical head drop experiments. The resulting surface stiffness values were 206 

N/mm for playground foam and 867 N/mm for linoleum. A constant damping coefficient 

was insufficient to describe the interaction between the head and impact surface. 

Therefore damping was specified as a nonlinear function of both the velocity and 

penetration (deformation of the surface upon contact). The resulting damping force was 

calculated using 

Fd = c·k ·x·v (1) 

where c is the damping coefficient (0.15 for playground foam, 0.30 for linoleum), k is the 

combined contact stiffness for the head and impact surface, x is the penetration, and v is 

the velocity. The resulting damping characteristics for the two impact surfaces are shown 

in Figure 4-4. Note that damping properties were determined for the ATD head-impact 

surface interaction and do not necessarily represent properties of the surfaces alone. 

Stiffness and damping properties resulting from the head drop tests were imported into 

the bed fall model. Friction coefficients were set to 0.88 and 0.87 for playground foam 

and linoleum, respectively, as previously measured. 93 
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Figure 4-4. Damping force vs. velocity for head impact onto playground foam and 

linoleum surfaces. 

Model Validation 

The first step in the validation process was a visual comparison of the fall 

dynamics. The initial position of the A TD was adjusted until the ATD dynamics in the 

model matched those seen in the experiments. Next, outcome measures from the model 

were compared to those from the experiments. The measures selected for comparison 

were the head, torso, and pelvis resultant linear accelerations, head angular velocity in the 

anterior-posterior and medial-lateral directions, and upper neck resultant force and 

resultant moment. Only the primary impact event was investigated. For each outcome 

measure, the time-history curves from the nine experiments were used to create a min-

max corridor. The model time-history curve was then overlaid onto this corridor to 

compare general curve profiles. The model was tuned until the curve profiles and peaks 

were similar. Parameters that were tuned include A TD position and orientation, stiffness 
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properties for body segments (other than the head) and joints, including neck stiffness 

and damping properties. Although neck bending stiffnesses were measured for the 

physical A TD, these were measured under static (rather than dynamic) loading conditions 

and were therefore used only as a starting point in the model. 

The model outcome measures were statistically compared to the mean of the nine 

experimental trials using the playground foam surface. Four statistical tests were chosen 

to evaluate different aspects of the time-history comparison: 

1. Mean value comparison - The mean value of the model over the time window of 

the primary impact was compared to that of the mean of the experimental trials. 

The percent difference between the two mean values was determined. 

2. Peak value comparison - The peak value and time occurrence of the peak value 

(in relation to the start of the primary impact) were compared between the model 

and experimental mean. The percent difference in magnitude and the time 

difference between the two peak values were determined. 

3. Relative error - The mean relative error, standard deviation of the relative error, 

and maximum relative error were computed to assess the error magnitude 

between the model and experimental mean over the entire duration of the primary 

impact. 

4. Correlation coefficient - The extent of a linear relationship between the model 

and experimental time-history curves was determined over the time window of 

the primary impact. 
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For each statistical test, criteria for validation were determined based on the range of 

variation measured in the bed fall experiments. Each of the nine experimental trials was 

compared to the mean of the nine trials using the four tests described above. The 

maximum percent difference in mean value, maximum percent difference in peak value, 

maximum relative error, and minimum correlation coefficient for the nine trials were 

used as acceptance criteria for model validation. This was repeated for each of the seven 

outcome measures. Then the model was compared to the experimental mean using the 

same four statistical tests. Ifthe results of the statistical tests between the model and the 

experimental mean were as good or better than the acceptance criteria, the model was 

considered valid. Statistical comparison was performed for the primary impact event 

only. This began at the moment of impact and ended when the signal leveled off near 

zero (change in signal magnitude beyond this end point was less than 1 % of the peak 

value). 

Assessment of Model Predictive Capability 

Once the model was validated using playground foam impact surface properties, 

the surface contact properties were altered to represent the linoleum surface. Without 

making any additional changes to the model, the model outcomes were statistically 

compared to the mean of the experimental bed fall trials conducted onto linoleum using 

the four statistical tests described above. As with the validation tests performed for falls 

onto playground foam, the acceptance criteria for linoleum falls were determined by 

comparing each experimental trial to the mean of the experimental trials. Ifthe results of 
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the statistical tests between the model and the experimental mean were as good or better 

than the results of the statistical comparisons between experimental trials and the 

experimental mean, the model was considered valid. 

Results 

The first step in model validation was to visually compare fall dynamics between 

the model and ATD experiments. Figure 4-5 shows a time sequence of one of the 

experimental falls onto the playground foam surface along with the corresponding 

sequence generated from the computer model. Fall dynamics were found to be 

comparable between the computer model and experiments. In both the model and 

experiments, the A TD was initially in a side-lying position with the right arm placed 

beneath the head. The A TD rolled off the horizontal "bed" surface and impacted the 

floor surface on the lateral aspect of the head first followed by shoulder contact with the 

surface. 
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Figure 4-5. Time sequence comparison of ATD bed fall experiment and computer 

simulation model fall dynamics. 
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After visual comparison of the fall dynamics, outcome measures were compared 

both qualitatively and quantitatively between the simulation and experimental mean. 

Simulation model output, experimental mean, and experimental min-max corridor time 

histories of the seven outcome measures for falls onto the playground foam surface were 

compared (Figures 4-6 through 4-8). 
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Figure 4-6. Computer simulation model and experimental time history comparisons for 

falls onto playground foam: (a) resultant linear head acceleration, (b) resultant linear 

torso acceleration, (c) resultant linear pelvis acceleration. 
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Figure 4-8. Computer simulation model and experimental time history comparisons for 

falls onto playground foam: (a) resultant upper neck force, (b) resultant upper neck 

moment. 
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Table 4-1 shows the results of the validation statistical tests comparing the model 

and experimental means along with acceptance criteria for falls onto playground foam. 

The model outcomes passed the acceptance criteria for each of the statistical tests. 

Statistical Test and Acceptance Criteria* 
Mean 

Peak Value Relative Error 
Value 

Outcome 
Time Standard 

Correlation 
Measure Difference Difference 

Difference 
Mean 

Deviation 
Maximum Coefficient 

(%) (%) 
(ms) 

(%) (%) (%) 

Head 8.8 4.9 0.6 35.0 34.0 149.2 0.98 
Acceleration (12.2) (12.7) (1.5) (35.3) (58.8) (464.6) (0.97) 

Torso 15.5 14.3 0.0 42.2 22.0 86.8 0.92 
Acceleration (15.8) (54.3) (4.9) (76.0) (76.0) (235.4) (0.87) 

Pelvis 1.3 20.7 11.2 54.4 26.6 131.4 0.71 
Acceleration (9.5) (129.1) (31.2) (80.6) (74.6) (366.8) (-0.27) 

Head 
Anterior-

19.7 32.1 6.9 289.5 1283.4 22958.4 0.76 
Posterior 

(39.3) (34.9) (8.7) (304.0) (2220.4) (55285.3) (0.70) 
Angular 
Velocity 

Head 
Medial-

2.6 8.5 12.3 722.6 4020.2 58897.65 0.77 
Lateral 

(88.4) (63.4) (25.6) (1637.1) (9675.0) (138761.9) (0.41 ) 
Angular 
Velocity 

Upper Neck 2.5 2.8 1.2 21.0 18.5 89.6 0.98 
Force (36.8) (43.6) (1.2) (50.2) (31.4) (115.4) (0.93) 

Upper Neck 5.6 3.2 0.9 12.0 11.5 56.8 0.97 
Moment (30.4) (48.6) (2.0) (34.5) (28.l ) (110.6) (0.91 ) 

* Acceptance criteria shown in parentheses 

Table 4-1. Results of statistical tests to evaluate model validation; computer model vs. 

experimental mean for fall onto playground foam surface. 

Simulation model output, experimental mean, and experimental min-max corridor 

time histories for each outcome measure were compared for falls onto the linoleum 

surface (Figures 4-9 through 4-11). Table 4-2 shows the results of the validation 
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statistical tests between the model and experimental means along with the acceptance 

criteria. The comparison of the model outcomes with the experimental means passed all 

statistical tests except one (the torso acceleration mean value test). 

160 

:§ 140 ] 
§ 120 

~ 100 
Q) 

Q) 80 -4 

~ 60 ~ 
-0 40 ~ 
ro 

-1!. 20 -Il--.J~.~"II-""&"''''' ___ _ o -
o 10 20 30 40 50 60 70 80 90 

60 ~ 

Ci 
.§ 50 1 

"§ 40 l 

~ 20 
o 

Time (ms) 

(a) 

1 
30

1 
~ 10 

~ o ]l~~~~~~~~~~~ 
o 10 20 30 40 50 60 70 80 90 

Time (ms) 

(b) 

60 -
Ci 
~ 50 
o 
~ 40 
Q) 

~ 30 
u 
~ 20 
.!!l 
~ 10 

o 

Computer Simulation 

Experimental Mean 

Experimental Min-Max 
Corridor 

~ O ~~~~~~~~~~~ 
o 10 20 30 40 50 60 70 80 90 

Time (ms) 

(c) 

Figure 4-9. Computer simulation model and experimental time history comparisons for 

falls onto linoleum: (a) resultant linear head acceleration, (b) resultant linear torso 

acceleration, (c) resultant linear pelvis acceleration. 

107 



Computer Simulation 

Experimental Mean 

~ 
25 

'"' 
30 D Experimental Min-Max 

'" '" :0 20 :0 Corridor 
ItJ ItJ 20 -=- 15 -=-
>- >-
"'" "" u 10 u 10 ..Q ..Q 
Q) 5 II) 

> > 
~ 

0 ffi 0 
:s :s 
01 -5 01 
c c -10 « « 
Cl. -10 ....J 
« ::2 

-20 -15 

1ime (ms) Time (rrs ) 

(a) (b) 
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Figure 4-1 1. Computer simulation model and experimental time history comparisons for 

falls onto linoleum: (a) resultant upper neck force, (b) resultant upper neck moment. 
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Statistical Test and Acceptance Criteria* 
Mean 

Peak Value Relative Error 
Outcome 

Value 
Correlation 

Measure Difference Difference 
Time 

Mean 
Standard 

Maximum Coefficient 
Difference Deviation 

(%) (%) (ms) (%) (%) (%) 

Head 7.3 5.2 1.1 26.2 16.9 82.3 0.94 
Acceleration (11.4) (38.0) (1.8) (55.7) (40.1) (144.9) (0.82) 

Torso 16.8 11.7 2.1 54.0 29.1 168.6 0.83 
Acceleration (14.7) (50.0) (6.7) (73.3) (83.3) (327.8) (0.83) 

Pelvis 0.9 28.2 10.5 84.0 51.4 273.6 0.42 
Acceleration (8.5) (129.1) (44.7) (88.5) (80.0) (319.4) (0.16) 

Head 
Anterior-

2.8 17.3 7.9 186.5 1603.1 49693.0 0.82 
Posterior 

(91.4) (73.1 ) (9.2) (281.2) (2558.1 ) (79399.8) (0.57) 
Angular 
Velocity 

Head 
Medial-

103.8 18.3 9.1 64.4 210.1 5910.0 0.87 
Lateral 

(252.6) (54.8) (13.0) (161.8) (1597.3) (50354.5) (0.43) 
Angular 
Velocity 

Upper Neck 20.5 14.2 1.0 30.2 16.1 78.0 0.95 
Force (31.8) (40.5) (2.2) (45.4) (39.5) (270.7) (0.87) 

Upper Neck 13.0 6.4 0.8 17.5 12.3 55.8 0.98 
Moment (30.9) (27.1) (4.4) (43.6) (28.7) (122.4) (0.85) 

* Acceptance criteria shown in parentheses 
Note: Shaded cell indicates validation criteria not met. 

Table 4-2. Results of statistical tests to evaluate model predictive capability; computer 

model vs. experimental mean for fall onto linoleum surface. 

Discussion 

In this study, a computer simulation of a pediatric bed fall was developed and 

validated using experiments with a pediatric A TO. To the authors ' knowledge, this is the 

first study that developed a computer simulation model of a short-distance fall using a 12-

month-old A TO to represent the fall victim. The model was validated using both 
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qualitative and quantitative methods, and the predictive capability of the model was 

assessed by altering surface properties and verifying model outcome measures. A 

validated computer model of pediatric falls will be useful for future investigation of the 

influence of model parameters on injury outcome measures. Findings from such a study 

can provide an improved understanding of the relationships between fall parameters 

(including both child and environment characteristics) and injury potential in these falls. 

During the model validation process, it was necessary to make several 

modifications to the 12-month-old CRABI model available within the MADYMO® 

database for use in our simulation model. In our simulated falls, the A TD rolled laterally 

off the "bed" surface and landed head-first with the lateral aspect of its head impacting 

the floor. Because of the head-first impact, a compression joint was added to the neck. 

Additionally, since the CRAB I model was developed for use in high-energy motor 

vehicle crashes, head and neck properties were adjusted to more accurately represent the 

properties of the CRABI in short-distance falls (a relatively low-energy event). 

Components tests of the head and neck were conducted to determine more accurate 

mechanical properties for fall simulations. 

Our pediatric bed fall model was validated following a rigorous procedure, and 

was based on those originally described by Dsouza and Bertocci 117 and Salipur and 

Bertocci 118. This validation procedure first qualitatively compared the event dynamics, 

followed by statistical methods to compare outcome measures between the simulation 

and physical experiments. Four statistical tests were used to compare different aspects of 

the simulation and experimental time-history curves. Validation criteria for each 

statistical test were based on the experimental range. This study used unique criteria for 
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each test and each outcome measure based on experimental variation in the fall scenario 

being modelled. Although the model passed each ofthe statistical validation tests, it was 

still necessary to assess of the predictive capability of the model. This was done by 

altering impact surface properties, running the fall simulation, and repeating the 

validation statistical tests. The results of this predictive assessment showed that the 

model was valid for all outcome measures except one (torso acceleration). The 

difference in the mean value of the torso acceleration did not meet the acceptance criteria 

for the model simulating a fall onto linoleum. However, the difference between the 

model result and criteria was fairly small (2.1 %). For the purposes of this study, the 

peak value, relative error and correlation tests represent more important aspects of 

comparison than the mean value test. The peak value is an important factor in assessing 

injury potential, and the relative error and correlation tests compare the outcome measure 

time histories over the entire impact duration. Since the torso acceleration (in the 

linoleum fall) passes the peak value, relative error, and correlation tests, and the time 

history profiles are in reasonable agreement (Figure 4-9), we consider this outcome 

measure valid along with the others that were assessed. In terms of the seven model 

outcome measures evaluated (head linear acceleration, torso linear acceleration, pelvis 

linear acceleration, head anterior-posterior angular velocity, head medial-lateral angular 

velocity, upper neck force, upper neck moment), our model provided a reasonable 

prediction of a 12-month-old CRABI fall onto a linoleum surface. 

Although several studies have evaluated falls using computer simulation, most 

have focused on reconstructions of real-world fall events. Forero Rueda and Gilchrist 112, 

O'Riordain et al. 72, Doorly and Gilchrist 114, and Adamec et al. III reconstructed falls in 
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MADYMO® based on eye-witness accounts and information collected from the scene of 

the fall. The subjects in these studies ranged in age from 6 to 76 years. These studies use 

human body (non-A TD) models within MADYMO® to represent the subjects. Within 

MADYMO®, these human body models have been validated. However, no additional 

validation was performed by the authors of those studies for the fall scenario being 

modelled. After initial reconstruction of the fall event, the sensitivity of the model to 

initial conditions was investigated. These studies provide useful information about fall 

dynamics and model sensitivity to input parameters. However, the results are limited 

because no validation was performed of the specific scenario being modelled. 

In a study by Schulz, a bed fall model of a Hybrid III adult A TD was created 

using LifeMOD software (LifeModeler, Inc; San Clemente, California), and the results 

were compared to a physical bed fall experiment with the A TD. The ATD was initially 

lying supine on a bed, and was rolled from the bed surface so that it impacted the floor 

head-first. Although the outcomes of the computer model were compared to the 

experimental outcomes, no validation process was conducted. Rather, several 

simulations were performed to determine the effect of 2-dimensional versus 3-

dimensional modelling techniques as well as simulations beginning just before impact 

versus simulations of the entire fall. It was found that 3-dimensional simulations of the 

entire fall event provided head acceleration results most similar to those measured in the 

physical experiments. 

Our computer simulation model has several limitations. Most importantly, the 

model was based on A TD experiments and thus retains any biofidelity limitations of the 

A TD in terms of representing a human child. This model is not intended to provide 
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absolute predictions of injury in pediatric falls. Rather the model was developed to study 

relationships between fall environment and A TD parameters and measures related to 

injury potential. Although the predictive capability of our model was assessed by altering 

a single parameter (impact surface), the model's predictive capability may be diminished 

with simultaneous changes in multiple input parameters. Additionally, our model's 

predictive capabilities are specific to the investigated scenario and are not generalizable 

to all types of pediatric falls or to children of varying ages experiencing a bed fall. In this 

study, seven outcome measures (head acceleration, torso acceleration, pelvis acceleration, 

head anterior-posterior angular velocity, head medial-lateral angular velocity, neck force, 

and neck moment) were used to validate the model. These outcome measures were 

selected because fall dynamics and head and neck injury measures will be investigated in 

future parametric sensitivity studies. In order to study other outcome measures (for 

example, extremity loading), those measures must also be included in the validation 

process. Lastly, it should be noted that computer simulations are simplified and 

discretized representations of real world events, and therefore may lack accuracy in 

predicting these events. 

Conclusions 

A computer simulation model of a I2-month-old child surrogate falling from a 

horizontal surface representing a bed has been developed. The model was validated 

using data from physical fall experiments conducted using a I2-month-old CRABI A TD 

to represent the fall victim. General comparison of fall dynamics, statistical comparison 
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of key outcome measures, and assessment of the model predictive capabilities were 

included in the validation process. This model will serve as a useful tool for studying 

relationships between fall parameters and injury potential. In future sensitivity analyses, 

fall environment and ATD parameters will be varied to investigate their effect on injury 

outcome measures (Chapter V). In particular, altering ATD properties within the model 

may lead to an improved understanding of child (fall victim) characteristics as they relate 

to injury risk in short-distance falls. 
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CHAPTER V 

PEDIATRIC BED FALL COMPUTER SIMULATION MODEL PART II: 

PARAMETRIC SENSITIVITY ANALYSIS 

Overview 

Falls from beds and other household furniture are common scenarios stated to 

conceal child abuse. Knowledge of the biomechanics associated with short-distance falls 

may aid clinicians in distinguishing between abusive and accidental injuries. In this 

study, a validated pediatric bed fall computer simulation model was used to investigate 

the effect of altering fall environment parameters (fall height, impact surface stiffness, 

initial force used to initiate the fall) and child surrogate parameters (overall mass, head 

stiffuess, neck stiffuess, soft tissue stiffness) on injury potential. The sensitivity of head 

and neck injury outcome measures to model parameters was determined. Parameters 

associated with the greatest sensitivity values (fall height, initiating force, and surrogate 

mass) significantly altered fall dynamics and impact orientation. This suggests that fall 

dynamics and impact orientation playa key role in head and neck injury potential. With 

the exception of surrogate mass, injury outcome measures tended to be more sensitive to 

changes in environmental parameters (bed height, impact surface stiffness, and initiating 

force) than surrogate parameters (head stiffness, neck stiffness, soft tissue stiffuess). 

115 



Introduction 

Falls from beds and other household furniture are common scenarios stated to 

conceal child abuse. A better understanding of the true injury potential associated with 

these falls is needed to aid clinicians in distinguishing between abusive and accidental 

injuries. Fall environment and child (fall victim) factors have been shown in previous 

studies to be related to injury potential in short falls 64.68,93. However, many of these 

studies have been limited by the biofidelity of anthropomorphic surrogates used to 

represent the fall victim 64.68,93. Moreover, little information is available regarding the 

injury tolerance and biomechanical response of children. Therefore, most pediatric 

surrogates are based on scaled adult cadaver or primate data and may not accurately 

represent a human child, particularly in low-energy events such as falls. 

Computer simulation is a useful tool that can be used to investigate injury

producing events, and to study the effect of changing event parameters on injury 

potential. Parameters that can be altered include not only fall environment parameters 

(such as fall height and impact surface) but also child surrogate parameters (such as mass 

and mechanical properties of joints and tissues) which are not easily altered 

experimentally. By altering surrogate properties, this study will take a first step at 

addressing the issue of surrogate biofidelity. Computer simulation has been widely used 

by the automotive industry to study motor vehicle crash events, and has also been used in 

a few studies to investigate falls 71.72,111.115. A computer simulation model of a 12-

month-old child surrogate falling from an elevated horizontal surface such as a bed was 

previously developed and validated (Chapter IV). The purpose of this study was to use 
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the validated model to investigate the effect of altering fall environment and surrogate 

(fall victim) parameters on biomechanical measures and potential for injury. 

Methods 

A computer simulation model of a pediatric bed fall was previously developed 

using MADYMO® version 7.0 (MAthematical DYnamic Modeling; TNO, Netherlands) 

and validated using results from physical bed fall experiments with the Child Restraint 

Air-Bag Interaction (CRAB!) 12-month-old anthropomorphic test device (ATD) (Chapter 

IV). In this study, the validated model was used to conduct a parametric sensitivity 

analysis. The purpose of this analysis was to investigate relationships between model 

parameters and injury potential. Fall environment and surrogate parameters were varied 

in the model, and the sensitivity of injury outcome measures to model parameters was 

determined. 

Model Parameters 

Eleven parameters were selected for variation (Table 5-1). Each parameter was 

varied individually in MADYMO® while all other parameters were held constant at their 

initial values from the validated model (baseline level). For the sensitivity analysis, each 

parameter was altered to +50%, +25%, -25%, and -50% of the baseline value. Once the 

parameter was altered, the computer simulation was run with the new values. This 

resulted in four simulation runs for each parameter (in addition to the baseline run which 
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was the original validated model). Additionally, parameter values from clinical and 

human cadaver studies were determined and the maximum and minimum values were 

used for additional computer simulation runs. This was done to include a real-world 

range of parameter values in the analysis. Details regarding each parameter are presented 

below. 

Parameters Injury Outcome Measures 
Horizontal surface (bed) height Peak resultant linear head acceleration 
Impact surface (floor) stiffness Head Injury Criterion (HIC) 
Initial force (to initiate fall) Peak resultant angular head acceleration 
Surrogate mass Peak resultant upper neck force 
Surrogate head stiffness Peak resultant upper neck moment 
Surrogate neck stiffness (4 orientations): 

Axial compression 
Flexion/extension bending 
Lateral bending 
Torsional bending 

Surrogate neck damping 
Surrogate soft tissue stiffness 

Table 5-1. Altered computer model parameters and outcome measures used in sensitivity 

analysis. 

1. Horizontal surface (bed) height - Height has been shown in biomechanical studies to 

influence injury risk in pediatric falls 64-66.68.93.109. A clinical study of pediatric 

falls from horizontal surfaces was used to provide a real-world range of fall 

heights for simulation 109. The minimum (330 mm) and maximum (890 mm) 

surface heights measured in the clinical study were input into the model in addition 

to runs with ±50% and ±25% of the baseline bed height. The baseline surface 

height in the validated model was 608 mm. 
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2. Impact surface (floor) stiffness - Impact surface has been shown in biomechanical 

d · . fl . . . l' d' '.Co 11 64-66 68 93 Th .Co stu les to In uence Injury potentIa In pe latnc la s ". e surlace 

stiffness in the baseline model was specified to match that of playground foam 

(206 N/mm). Surface stiffness was adjusted to +50%, +25%, -25%, -50% of the 

baseline value for analysis. 

3. Initial Force (to initiate fall) - To initiate the fall in both the model and physical 

experiments with the surrogate, an actuator impacted the posterior torso of the 

surrogate. The impact velocity of the actuator was measured in the experiments 

and replicated in the computer simulation As initial force and velocity are not 

measurable parameters in most clinical falls, no information was found to establish 

a clinical range (based on real-world falls) for simulation. Therefore, initial force 

was only simulated at +50%, +25%, -25%, -50% of the baseline value. The 

baseline force was 140 N. 

4. Surrogate mass - In the computer simulation, the surrogate represents a 50th 

percentile 12-month-old child (overall mass of9.9 kg). For the sensitivity 

analysis, the overall mass was adjusted without any changes to mass distribution or 

body segment geometries. Realistically, mass distribution and body size would 

likely change with increasing or decreasing mass. However, for the purposes of 

this study, the effect of mass changes alone was investigated. In addition to the 

predetermined incremental mass changes (±50% and ±25% of the baseline value), 
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the 5th (8.3 kg) and 95th (11.9 kg) percentile values for a 12-month-old child 119 

were also evaluated. 

5. Surrogate head stiffness - The surrogate in the computer model is based on the 

CRABI 12-month-old ATD. Some have questioned the biofidelity of the CRABI 

head particularly in low-energy impacts such as falls 66,91. The biomechanical 

properties of the head and skull (represented in the model by a stiffness or force

displacement curve) are important when considering injury potential, particularly 

in head-first falls. In addition to the predefined incremental values, cadaveric 

studies reporting skull properties were used to define head stiffness values for 

analysis. Prange et al. 110 conducted compression tests on three heads (ages 1-11 

days) in two orientations (anterior-posterior compression and lateral compression). 

Skull stiffness did not appear to be dependent on orientation, but was found to be 

dependent on loading velocity (maximum velocity tested was 50 mmls). 

Yoganandan et al. 120 tested six adult heads in compression (multiple orientations) 

under quasi-static loading and dynamic loading (7.1-8.0 m1s). The mean 

(dynamic values only) of the infant stiffness curves (Prange et al.) and adult 

stiffness curves (Y oganandan et al.) were used as minimum and maximum head 

stiffness properties for analysis. Figure 5-1 shows the head force-displacement 

curve used in the validated bed fall model (baseline) compared to experimentally 

determined cadaver data. 
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Figure 5-1 . Head stiffness comparison for baseline (validated) bed fall model with adult 

cadaver experimental data 120 and infant cadaver experimental data 110. 

6. Surrogate Neck Stiffness - Just as head stiffness is expected to playa major role in 

head injury potential, neck stiffness is expected to affect neck injury potential. 

The baseline neck properties in the validated model match the stiffness properties 

of the CRABI neck. The CRABI neck is likely stiffer than a 12-month-old child' s 

neck, particularly in low-energy events such as short-distance falls (the CRABI 

was designed to study injury in high-energy automobile crashes). The computer 

model neck stiffness properties are represented by force-displacement and 

moment-rotation curves for four orientations: axial compression, 

flexion/extension, lateral bending, and torsion. Each neck parameter was varied 

independently. In addition to the predefined incremental values, human cadaveric 

data were used to define neck stiffness values for analysis. It should be noted that 
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cadaveric data presented below were measured quasi-statically. The dynamic neck 

stiffness would likely be greater than static stiffness due to the visco-elastic nature 

of human tissues. Therefore, it should be noted that the properties used in the 

analysis represent a lower bound of neck behavior. 

a. Flexion/Extension -Wheeldon et al. 121 reported load-displacement curves for 

seven healthy adult subjects (ages 20-51 years) (Figure 5-2). Studies by 

Panjabi et al. 122 and Schwab et al. 123 report similar or lower adult 

flexion/extension stiffnesses compared to those by Wheeldon. Therefore, the 

Wheeldon adult stiffness properties were used as the upper bound for neck 

flexion/extension stiffness in the parametric analysis. Ouyang et al. 124 

reported load-displacement properties in flexion and extension for ten 

pediatric cervical spine cadaveric specimens (ages 2-12 years). Data for the 

youngest specimen (age 2) is shown in Figure 5-2. No other studies were 

found that report measured pediatric neck properties. However, several 

studies have used scaling parameters to study pediatric neck behavior. 

Kumaresan et al. 125 used a finite element model to study age differences in 

neck stiffness due to size, structure and material differences. This study 

estimated that the neck of a l-year-old child is 175% more flexible than an 

adult neck in flexion and 400% more flexible in extension. Using this 

information, the adult properties (Wheeldon et al.) were scaled for a l-year

old child. The scaled l-year-old data is more flexible than the 2-year-old 
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cadaver data and was therefore used as a lower bound of neck stiffness in the 

parametric analysis (Figure 5-2). 
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Figure 5-2. Neck flexion/extension stiffness properties for baseline (validated) bed fall 

model and cadaver experimental data for an adult 12 1, 2 year-old child 124, and scaled 

results for a 1 year-old child. 

b. Laterai bending -Schwab et al. 123 describes stiffness for the adult neck in 

lateral motion (Figure 5-3). No pediatric data or scaling factors were found 

for lateral motion. Therefore, only adult stiffness properties (in addition to the 

predefined incremental values) were evaluated in the parametric analysis. 

123 



4 

3.5 " ---Baseline 

- - Adult Cada-.er 

-~ 2.5 ~ 

C 2 .., 
Q) 

E 

~ 1.: ] 
0.5 J 

----------------
o ~' ~==--------,_----------~----------_,----------~ 

o 5 10 15 20 

Rotation Angle (deg) 

Figure 5-3 . Neck lateral bending stiffness properties for baseline (validated) bed fall 

model and adult cadaver experimental data 123. 

c. Torsion - Schwab et al. 123 describes stiffness for the adult neck in torsion 

(Figure 5-4). No pediatric data or scaling factors were found for torsional 

loading. Therefore, only adult stiffness properties (in addition to the 

predefined incremental values) were evaluated in the parametric analysis. 
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Figure 5-4. Neck torsional stiffness properties for baseline (validated) bed fall model and 

adult cadaver experimental data 123. 

d. Axial Compression - Shea et al. 126 describes adult neck stiffness in axial 

compression (Figure 5-5). Additionally, the finite element study by 

Kumaresan et al. 125 estimated that the neck of a 1 year-old child is 500% 

more flexible than an adult neck in compression. Using this scaling factor, the 

stiffness properties found by Shea et al. were scaled to estimate a l-year-old 

child's neck compression stiffness (Figure 5-5). Both the adult and scaled 

infant properties were included in the analysis. 
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Figure 5-5. Neck compression stiffness properties for baseline (validated) bed fall model, 

adult cadaver experimental data 126, and scaled results for a l-year-old child. 

7. Surrogate Neck Damping Coefficient - In the computer simulation model, joint 

properties (including neck properties) are represented by both stiffness and 

damping coefficient parameters. Stiffness relates force to the amount of 

displacement in joint, and damping relates force to the joint velocity. The 

damping coefficient is a dynamic property that creates a rate-dependent force 

opposing joint motion. Unlike neck stiffness properties, damping coefficients for 

cadaveric neck specimens have not been measured. However, damping properties 

are an important component in mathematical or computer models to define rate-

dependent material behavior. The neck damping coefficient was altered to +50%, 

+25%, -25%, -50% of the baseline value which was 0.4. Note that in the validated 

model, the damping coefficient is uniform for all neck bending orientations. 
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8. Surrogate Soft Tissue Stiffness - Obesity is a growing problem in children, but the 

effect of child weight and body fat content on injury risk in falls is unclear. 

Thompson et al. 109 reported that in short-distance falls , children with more severe 

injuries had a significantly lower body mass index (BMI) than children with minor 

injuries. It is likely that these differences were due in part to soft tissue stiffness. 

Additionally, the soft tissue stiffness of the CRABI ATD is greater than that of a 

human child. This is because the A TD was designed to withstand repeated impact 

tests and soft tissue injuries were not of interest in this type of testing. A few 

studies have measured soft tissue stiffness of adult subjects using indentation tests 

127- 129 . However, these tests were done for small skin indentations/displacements 

« 5 mm). The results of the skin indentation tests could not be extrapolated for 

the parametric analysis because of the non-linear nature of soft tissue stiffness 

properties. The baseline soft tissue stiffness properties used in the validated bed 

fall model are shown in Figure 5-6. 
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Figure 5-6. Soft tissue stiffness for the baseline (validated) bed fall model. 
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Outcome Measures 

Changes in fall dynamics due to changing input parameters were qualitatively 

assessed. Additionally, five outcome measures relating to head and neck injury potential 

were assessed (Table 5-1). Head linear and angular accelerations were measured at the 

center of mass of the head. Neck forces and moments were measured at the superior 

aspect of the neck (approximately the C1 vertebrae location). The Head Injury Criterion 

(HIC) is measure of head injury risk in impacts. HIC15 values are calculated using the 

linear head acceleration time-history. 

Sensitivity Analysis 

Sensitivity was defined as the ratio of change in the outcome measure over the 

change in the input parameter. Because several of the input parameters are represented 

by curves rather than single values, the changes were specified as a percentage of the 

baseline value. Greater sensitivities indicate a greater change in the outcome measure for 

a particular parameter. Additionally, a positive sensitivity indicates a positive or direct 

relationship between the parameter and outcome measure (e.g. increasing parameter 

resulted in increasing outcome measure). Conversely, a negative sensitivity indicates a 

negative or inverse relationship between the parameter and outcome measure (e.g. 

increasing parameter resulted in decreasing outcome measure). Sensitivity values were 

calculated for all combinations of parameters and outcome measures (except fall 

dynamics). Since each parameter was associated with multiple sensitivity values (for 
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simulation runs at +50%, +25%, -25%, and -50% ofthe baseline value), the mean 

sensitivity for each parameter was determined and used for parameter sensitivity 

compansons. 

Results 

The results of all simulation runs are shown in Figures 5-7 through 5-12. 

Additionally, the sensitivity values of the outcome measures to each parameter are shown 

in Table 5-2. 

Fall Dynamics 

Changes in bed height, the initial force to initiate the fall, and surrogate mass 

produced considerable changes in fall dynamics (Figure 5-7). With increasing bed 

height, the surrogate had more time to rotate about its longitudinal (superior-inferior) axis 

before impact and thus, landed more on its side. In falls with bed heights less than the 

baseline value, the surrogate landed in a more prone position. 

The initial force of the fall affected the manor in which the surrogate left the bed 

surface. In the baseline model, the surrogate was impacted with enough force to initiate 

the rolling motion, but once the surrogate reached the edge of the bed surface, the 

actuator was no longer in contact with the torso, and the force of gravity caused the 

surrogate to fall from the bed. In simulations with initial forces greater than the baseline 

value, the increased force applied at the mid-torso caused the legs of the surrogate to lead 
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in the fall, so that the surrogate landed feet-first (rather than head-first). In the simulation 

with an initial force set at -25% ofthe baseline value, the surrogate landed head-first at a 

slightly greater angle of impact relative to the ground (feet were higher at moment of 

impact). In the simulation of -50% of the baseline initial force, there was not a great 

enough force to push the surrogate from the bed surface. Therefore, this simulation was 

not included in the results. 

Surrogate mass changes affected the impact orientation. Simulations with 

increasing mass resulted in a greater angle of impact (feet higher at the moment of 

impact), and simulations with decreasing mass resulted in a smaller angle at impact (feet 

closer to the ground at the moment of impact). In the simulation with the smallest mass 

(-50% of baseline), the surrogate's feet impacted the ground before the head. 

No visible changes in fall dynamics were present for variations in any of the other 

parameters (surface stiffness, head stiffness, neck stiffnesses, neck damping coefficient, 

and soft tissue stiffuess). 
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Figure 5-7. Orientation of the surrogate upon impact with the floor surface for parameters 

that significantly altered fall dynamics: ( a) baseline (validated) model, (b) model with 

bed height set at -25% of the baseline, (c) model with bed height set at +25% of the 

baseline, (d) model with initial force set at -25% of the baseline, (e) model with initial 

force set at +25% of the baseline, (f) model with surrogate mass set at -25% of the 

baseline, (g) model with surrogate mass set at +25% of the baseline value. 

Head Injury Measures 

Peak linear head acceleration and RIe l5 values were most sensitive to changes in 

surrogate mass (Table 5-2). Additionally, there was an inverse relationship between mass 
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and head injury outcome measures. Increasing the surrogate's mass resulted in 

decreasing peak linear accelerations, peak angular head accelerations and mC l5 values. 

Angular head accelerations were most sensitive to the initial force used to initiate the fall; 

increasing the initial force resulted in increasing peak angular head accelerations. The 

influence of initial force on linear head accelerations, however, was less pronounced. Bed 

fall height, surface stiffness, and surrogate head stiffness had direct relationships with 

head injury outcome measures (increasing fall height, increasing surface stiffness, and 

increasing head stiffness resulted in increasing peak linear head accelerations, peak 

angular head accelerations, and mC15 values). Altering neck properties and soft tissue 

stiffness had little influence on head injury outcome measures. 
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Figure 5-8. Peak resultant linear head acceleration for varying input parameter ranges: the 

horizontal line represents the baseline value; the shaded bar represents the range for 

parameter values +/-50% of the baseline; the square and circle markers indicate the 

outcome values associated with the maximum and minimum parameter values from the 

literature, respectively. 
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the baseline value; the shaded bar represents the range for parameter values +/-50% of the 

baseline; the square and circle markers indicate the outcome values associated with the 

maximum and minimum parameter values from the literature, respectively. 
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Figure 5-10. Peak resultant angular head acceleration for varying input parameter ranges: 

the horizontal line represents the baseline value; the shaded bar represents the range for 

parameter values +/-50% of the baseline; the square and circle markers indicate the 

outcome values associated with the maximum and minimum parameter values from the 

literature, respectively. 
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Neck Injury Measures 

Peak resultant neck force was most sensitive to changes in the initial force used to 

initiate the fall and peak neck moment was most sensitive to neck damping coefficient. 

Unlike the head injury measures, however, initial force had an inverse relationship with 

neck forces and moments (increasing initial force resulted in decreasing neck forces and 

neck moments). Surrogate mass had a direct relationship with neck loads (increasing 

mass resulted in increasing neck forces and neck moments). With the exception of neck 

compression stiffness, which had a direct relationship with peak resultant neck force, and 

neck damping coefficient, which had a direct relationship with peak resultant neck 

moment, neck parameters had little influence on neck loads. Additionally, bed height, 

surface stiffness, and soft tissue stiffness had small influences on neck forces and neck 

moments. 
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line represents the baseline value; the shaded bar represents the range for parameter 
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Outcome Measures 

Peak Resultant Peak Resultant Peak 
Peak 

Parameters Resultant 
Head Linear HIC l5 Head Angular Resultant 

Neck 
Acceleration Acceleration Neck Force 

Moment 
Fall Height 0.31 0.90 0.49 0.05 -0.16 

Surface Stiffness 0.36 0.52 0.22 0.17 0.07 
Initiating Force 0.11 0.30 2.83 -0.50 -0.39 
Surrogate Mass -0.56 -0.95 -0.79 0.33 0.28 
Head Stiffness 0.15 0.23 0.09 0.08 0.05 

Neck Compression 
0.00 0.00 0.01 0.20 0.04 

Stiffness 
Neck Flexion! 

0.01 0.03 0.05 -0.01 0.04 
Extension Stiffness 

Neck Lateral Stiffness 0.03 0.08 0.10 0.00 0.05 
Neck Torsion Stiffness 0.01 0.02 -0.03 0.00 0.02 

Neck Damping 
-0.02 -0.05 -0.06 0.13 0.58 

Coefficient 
Soft Tissue Stiffness -0.02 -0.05 -0.03 0.05 0.07 

Table 5-2. Mean sensitivity of outcome measures to each model input parameter. 

Discussion 

With the exception of surrogate mass and neck damping coefficient, injury 

outcome measures tended to be more sensitive to changes in environmental parameters 

(bed height, impact surface stiffness, initial force) than surrogate parameters (head 

stiffness, neck stiffness, soft tissue stiffness). Increasing bed height and increasing 

surface stiffness led to increases in the head injury measures. This is consistent with 

previous studies that have shown fall height and impact surface to significantly affect 

head injury risk in short-distance falls 64-68,93. Increasing the initial force or initial 

velocity of the child prior to the fall tended to increase head injury measures, but decrease 

the neck injury measures. The neck loads were likely reduced in falls with increasing 

initial force due to changes in impact dynamics. With a more horizontal impact 

orientation, less force is transferred through the neck as the left arm and torso impact the 
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ground sooner. Relationships between initial force or initial velocity of the child prior to 

the fall and injury potential have not been studied previously. Factors that could increase 

the initial velocity of the child in a real fall could include the child being pushed from the 

surface or the child playing/moving around on the bed (or other elevated surface). 

Increases in initial force resulted in substantial increases in peak head angular 

acceleration (up to 160%) and should therefore be considered in future assessments of 

head injury potential. 

Three parameters were found to influence fall dynamics: bed height, initial force, 

and surrogate mass. These three parameters also tended to have the largest influence on 

the outcome measures. This suggests that fall dynamics, particularly the orientation of 

the surrogate upon impact with the ground, playa significant role in head and neck injury 

potential in falls. This has been shown previously in free fall experiments with a 12-

month-old A TD 93. Thompson et al. found that slight changes in fall dynamics due to 

changes in the overall fall height significantly influenced head injury risk. 

Of the surrogate parameters varied, mass had the largest influence on head and 

neck injury outcome measures. Increasing surrogate mass tended to decrease head injury 

measures but increase neck injury measures. This is counterintuitive because increasing 

mass generally results in acceleration increases. . Two factors contributed to this 

finding. First, in all simulations with changing mass, actuator kinematics were held 

constant. Therefore, the increased mass of the surrogate likely reduced the load 

transmitted from the actuator to the surrogate. This, in combination with increased 

friction between the surrogate and bed surface, reduced the initial velocity of the 

surrogate (after contact with the actuator but just prior to the fall). The second factor 
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contributing to the inverse masslhead acceleration relationship was impact orientation. In 

falls with increasing mass, the surrogate impacted the ground at a greater angle (feet 

higher above ground at moment of impact). With this greater impact angle, the impact 

force was transferred primarily from the head through the neck (as no other body 

segments were in contact with the ground) which also explains the increased neck loads. 

The neck stiffness is much lower than the head stiffness, and this effectively increased 

the head impact duration (Figure 5-13). Larger impact durations have been shown to be 

associated with reductions in peak linear and angular head accelerations in falls 93. It 

should be noted that despite decreases in head acceleration measures with increasing 

mass, the head contact force increased with increasing mass (Table 5-3). These results 

suggest that acceleration alone may not be sufficient for predicting head injury potential 

in impacts. Acceleration measures and HIe do not account for variations in head or 

surrogate mass. It should also be noted that the range of surrogate mass used in the 

sensitivity analysis exceeds the normal range for a 12-month-old child. Simulations of 

mass values for a 5th percentile and 95th percentile 12-month-old child resulted in a 

smaller range for all outcome measures than results indicated by the simulations with 

mass ±50% ofthe baseline (50th percentile 12-month-old child) mass. Therefore, the 

influence of surrogate mass on injury potential may be exaggerated in this study. 
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Figure 5-13. Peak resultant linear head acceleration time-histories for baseline (validated) 

bed fall model and simulations with surrogate mass set at ±25% of the baseline value. 

Surrogate Mass (kg) 
Peak Resultant Head 

Impact Force (N) 
9.9 (baseline) 2771 

4.9 (-50% of baseline) 1800 
7.4 (-25% of baseline) 2406 

12.3 (+25% of baseline) 3131 
14.8 (+50% of baseline) 3449 

Table 5-3. Peak resultant head impact force versus surrogate mass. 

Surrogate head stiffness influenced peak linear head accelerations and RIe l5 

values, but had little influence on peak angular head accelerations and neck injury 

measures. As expected, increases in head stiffness resulted in increases in peak linear 

head accelerations. Head stiffness properties from the literature describing skull stiffness 

of infant and adult cadaver specimens were included in the analysis. This resulted in a 
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much larger range for all outcome measures than results of the analysis with ±50% of the 

baseline head stiffness. This suggests the influence of head stiffness on injury potential 

may be underestimated in this study. 

Neck parameters, with the exception of axial compression stiffness and neck 

damping coefficient, and soft tissue stiffness had little effect on head and neck injury 

outcome measures. Increases in neck compression stiffness led to increases in the peak 

neck force. Because of the head-first impact orientation in the baseline (validated) 

model, the forces transmitted through the neck were primarily in the axial direction. 

Thus, compression of the neck dominated the resultant neck force. Increases in the neck 

damping coefficient led to increases in the peak neck moment. Because the damping 

load opposes joint motion, increasing the damping coefficient effectively reduced neck 

bending motion. The reduced neck motion led to increases in the neck moments. In the 

computer simulation model, neck bending moments were more sensitive to neck damping 

parameters than neck stiffness parameters. In experimental studies of neck properties, 

however, only neck stiffnesses are measured. Future work investigating rate-dependent 

neck properties is needed to improve accuracy in modeling surrogate neck properties. 

A few studies have investigated the effect of fall parameters on injury risk using 

computer simulation 71-72, 112. Mohan et al. reconstructed seven real-world head-first free 

falls (six subjects were children ages 1-10 years and one subject was a 21-year-old adult) 

using a 2-D computer model. Impact angles were varied over 20 degrees, but were found 

to have a minimal effect on head impact response outcomes in the children, and a more 

pronounced effect in the adult fall simulation. These results differ from our study, but the 

Mohan surrogate model was much more simplistic (body represented by nine masses 
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separated by ten linkages and detailed anthropometric measurements such as head 

geometry were not included). Additionally, Mohan et al. reported reduced head impact 

response outcomes with reduced surface stiffness. O'Riordain et al. and Forero Rueda 

and Gilchrist reconstructed real-world falls in MADYMO®. O'Riordain et al. 72 

simulated four falls (subjects aged 11-76) with varying head stiffness properties and 

initial velocities. As with our study, reducing the head stiffness led to reductions in peak 

head linear and angular accelerations. Effects of initial velocity were less pronounced 

than those of head stiffness. Initial velocities were adjusted by ±O.l m/s (linear) and ±0.1 

radls (angular), but actual velocities were not presented. Therefore, it is possible that the 

changes in initial velocity simulated by O'Riordain were less than the 25% and 50% 

changes used in our study. O'Riordain et al found that increasing initial velocities led to 

decreases in the peak linear head accelerations. This was attributed to changes in fall 

dynamics and energy absorption by other parts of the body. Forero Rueda and Gilchrist 

112 simulated a fall by a 6-year-old child from a playground frame. Surface properties 

and impact orientation parameters were varied, and both were found to have a significant 

effect. Reductions in surface stiffnesses reduced head injury outcome measures. Impact 

orientations with the surrogate in a horizontal prone position were associated with a 

greater head injury risk than side-lying, supine, or feet-first postures. Orientations with 

the head leading were not simulated. No studies were found that investigated the effect 

of neck properties or soft tissue properties on injury risk. 

This study has many limitations. First, the results should not be used to make 

absolute predictions of injury occurrence in pediatric falls. Rather, relationships between 

model parameters and injury potential were of interest. Due to the lack of information 
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regarding pediatric injury tolerance and biomechanical response of pediatric tissues, the 

model simulates an anthropomorphic test device (CRABI) representing a child but with 

limited biofidelity. The CRAB I is anthropometric ally similar to a 12-month-old child, 

but the head and neck are stiffer than an actual child's. This study attempted to address 

concerns about CRABI biofidelity by investigating the effect of varying head and neck 

properties on injury outcome measures. Results of changing surrogate mass are limited 

in that they did not include any changes in anthropometrics, overall size or mass 

distribution. Additionally, it should be noted that joint properties (as with the neck) and 

contact characteristics (as with head and other body segments contacting the ground 

surface) are defined by both stiffness and damping parameters. Neck loads were 

influenced by damping properties, and the combination of stiffness and damping effects 

should be studied further. Similarly, damping coefficients of head, soft tissue, and 

surface properties may influence injury outcome measures but were not investigated in 

this study. Finally, parameters in this study were varied individually, and thus, no 

interaction effects between parameters were determined. However, multiple parameter 

changes simultaneously may affect the model validity, and were therefore not simulated 

in this study. 

Conclusion 

In this study, a validated computer simulation model of an anthropomorphic 

surrogate representing a 12-month-old child rolling off of a bed or other horizontal 

surface was used to investigate the influence of fall environment and child surrogate 
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parameters on injury potential. The sensitivity of head and neck injury outcome 

measures to model parameters was determined. Parameters associated with the greatest 

sensitivity values (fall height, initiating force, and surrogate mass) significantly altered 

fall dynamics and impact orientation. This suggests that fall dynamics and impact 

orientation playa key role in head and neck injury potential. With the exception of 

surrogate mass and neck damping, injury outcome measures tended to be more sensitive 

to changes in environmental parameters (bed height, impact surface stiffness, initiating 

force) than surrogate parameters (head stiffness, neck stiffness, soft tissue stiffness). This 

has important implications for ATD biofidelity. Differences in head, neck, and soft tissue 

properties between the CRAB! A TD and an actual human child may playa smaller role 

in injury risk assessments of short falls than previously thought, especially in comparison 

to fall environment parameters. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

Key Findings and Clinical Implications 

The purpose of this study was to provide objective infonnation about injury 

potential in short-distance household falls that can aid clinicians in distinguishing 

between inflicted and non-inflicted injuries in children. This study involved three 

methodological components. The first component was a prospective case-based 

biomechanical assessment of children who presented to the emergency department of a 

metropolitan children's hospital with a history of a fall from a bed or other similar 

furniture. Descriptions of fall dynamics and fall environment were obtained through 

interviews with the caregivers and in-depth scene investigations. The second component 

utilized an anthropomorphic test device (ATD), or human surrogate, representing a 12-

month-old child, to experimentally simulate falls from furniture surfaces in a laboratory 

setting. The final component involved development of a validated computer model based 

upon the A TD experiments. The computer model extended beyond the experiments by 

allowing variation in fall parameters and A TD characteristics. 

Overall, the risk of severe or life-threatening injury in short-distance household 

falls is low. Fractures of the skull and extremities may result from these falls (21.5% of 

falls resulting in Emergency Department visits). 2 of 79 fall cases involved small, 
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contact-type subdural hematomas (SDH). It should be noted that the clinical presentation 

and course for these children was benign. Very few studies have reported intracranial 

hemorrhages resulting from short-distance falls. 52, 55 The 2 cases with SDH in our study 

both had unique fall dynamics that contributed to their injuries. Both resulted from fall 

heights greater than 1 m. One child (initially seated on the back of sofa) rotated rearward 

off the back of a sofa and landed directly on her head. The second child struck his head 

on a hard object (humidifier) during the fall. 

Results of A TD experiments regarding injury potential in short-distance falls 

support those from the clinical study with the exception of neck injury potential. Based 

on the experimentally measured neck loads, published pediatric neck injury thresholds 

suggest a substantial risk of AIS 3 neck injury. However, this is not consistent with 

epidemiological studies that suggest neck injuries in short-distance falls are rare. 

Limitations in surrogate neck biofidelity and published pediatric neck injury thresholds 

likely contribute to this discrepancy. Future studies are needed to both improve ATD 

neck biofidelity and determine more accurate pediatric neck injury thresholds. 

In each study component (clinical, anthropomorphic surrogate experiments, 

computer simulation), relationships between fall environment and child/surrogate 

parameters and injury potential were investigated. As with previous biomechanical 

studies of falls 64-67,93, fall environment parameters (fall height and impact surface type) 

were found to influence injury potential. To our knowledge, this is the first study to 

investigate the influence of child or surrogate parameters on injury potential. 

Child/surrogate body mass index, overall mass, head stiffness, and neck properties 

influenced injury potential in these falls. 
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Through the parametric sensitivity analysis, it was found that fall environment 

and surrogate parameters that altered fall dynamics had the greatest influence on head 

and neck injury potential. In a previous study of feet-first free falls with a 12-month-old 

anthropomorphic surrogate93
, differences in fall dynamics due to changing fall height 

resulted in a unique finding regarding head injury potential; increasing fall heights were 

associated with reduced head accelerations. Similarly in the present study, changes in 

fall dynamics produced results that were initially counterintuitive. In the parametric 

sensitivity analysis, increasing surrogate mass resulted in changes to fall dynamics that 

effectively reduced head accelerations. This implies that increasing surrogate mass 

reduces head injury potential (as greater accelerations are generally associated with a 

greater risk of head injury). However, despite reduced head accelerations, the head 

contact force with the ground surface increased with increasing mass. These results 

suggest that head accelerations alone may not be sufficient in predictions of head injury 

potential in impacts. New pediatric head injury criteria are needed that account for the 

mass of the child/surrogate. 

The results of this study may aid clinicians in assessing compatibility between a 

child's injuries and the stated cause when the scenario provided is a short-distance fall, 

thus improving accuracy in child abuse diagnoses. Additionally, results highlight the 

heed for detailed case histories when making injury assessments that include fall 

environment factors (fall height and impact surface type), child factors (age, mass, body 

mass index), and descriptions of the fall dynamics and impact orientation of the child. 
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Limitations and Recommendations for Future Work 

This study applied biomechanical techniques and knowledge to investigations of 

injury potential in short-distance pediatric falls. However, the approaches used have 

limitations in their applicability. Future studies are recommended to address some of the 

limitations of this work. 

The first component of this work involved case-based assessments of real-world 

pediatric falls. The prospective design of this study allowed detailed biomechanical 

assessments including fall scene investigations. This built upon previous epidemiological 

fall studies that were limited to information contained in medical records. However, the 

sample size in this study was relatively small (79 cases). Few biomechanical measures 

(fall height, impact velocity, and child body mass index) were significantly related to 

injury severity outcomes. With a greater sample size, additional relationships between 

biomechanical measures and injury severity could emerge. Additionally, fall scene 

investigations were not possible for all cases. Therefore, results were dependent upon 

estimates of fall height in some cases. A larger sample size could also allow for a 

multi factor analysis in which interactions between fall variables could be investigated. 

Fall experiments with the anthropomorphic surrogate expanded upon results from 

the case-based study because fall environment and surrogate parameters could be 

controlled. Additionally, biomechanical measures relating to injury potential (e.g. 

acceleration) were obtained. Therefore, specific relationships between parameters and 

injury outcome measures could be investigated. However, these experiments were 

limited by surrogate biofidelity. Further development of a more biofidelic 
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anthropomorphic surrogate is needed to improve accuracy in results. A few studies have 

developed child surrogates using skull and neck properties obtained from pediatric 

cadaver specimens.65
-
66 However, more information is needed to development surrogates 

with full-body biofidelity. For example, pediatric joint properties should be investigated 

as they would likely affect fall dynamics. 

Results of the case-based assessments suggested that BMI plays a significant role 

in injury potential. Children with more severe injuries tended to have higher BMI values. 

The extra soft tissue in children with higher BMI values likely has a cushioning or 

protective effect. Results of the parametric sensitivity analysis indicated that soft tissue 

stiffness has a very small or negligible effect on head and neck injury risk. However, 

most of the moderate and serious injuries in the case-based assessments were extremity 

fractures which were not investigated in the computer model. Future studies should 

further investigate the role of soft tissue in pediatric injury potential. Anthropomorphic 

surrogates with more realistic soft tissue properties should be developed. Additionally, 

the computer model of a pediatric bed fall should be expanded to include investigation of 

extremity injury potential. This could be accomplished through validation of extremity 

loads in the model by comparing results to those obtained experimentally with the 

CRABIATD. 

In addition to surrogate biofidelity, the assessments of injury potential in the fall 

experiments are limited by the injury criteria used in comparisons. Much of the 

published pediatric injury thresholds are scaled from adult or primate data. In particular, 

neck injury thresholds and fracture thresholds for the extremities are questionable due to 

limited information on material properties of the pediatric neck and long bones. Further 
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work is needed to obtain more accurate pediatric injury criteria. Due to the rare 

availability of pediatric tissue specimens, studies should focus on the use of animal 

models and computer modeling techniques to better understand age-related changes in 

pediatric tissue structure and properties. 

Results of the parametric sensitivity analysis suggested that head acceleration 

alone may be insufficient in predictions of head injury potential in impacts. Thus, more 

accurate head injury criteria are needed. Incorporation of impact force, impact energy, 

and the head mass into head injury models should be considered. 

It should also be noted that in the fall experiments, only one initial position was 

simulated. Changes in initial position may affect fall dynamics and subsequently, injury 

potential. Simulations of additional positions using both surrogate experiments and 

computer modeling should be conducted for comparisons of fall dynamics and injury 

potential. In this study, the A TD was initially positioned on its side causing the A TD to 

also land primarily on its side. Simulations with the ATD initially positioned in a prone 

or supine position should be investigated to better understand the sensitivity of injury 

outcome measures to impact orientation. Additionally, simulations with the ATD 

initially seated or standing on the horizontal surface will give further insight into fall 

dynamics. 

A digital motion capture system was used to track fall dynamics in the A TD 

experiments. However, data was insufficient to allow a detailed quantitative description 

of fall dynamics (for example, joint angles and positions and segment velocities 

throughout the fall). Future studies should attempt to collect more accurate data with 

additional cameras (a five-camera system was used in this study). Quantitative 
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descriptions of fall dynamics will enable more detailed and more accurate comparisons of 

dynamics and impact orientations across fall scenarios to further understand relationships 

between fall dynamics and injury potential. 

The computer simulation model contributed important information about the 

biomechanics of short-distance pediatric falls. In particular, variations in surrogate 

parameters (that would be difficult to achieve experimentally) were investigated. 

Although a rigorous validation process was used, validation was only conducted for one 

fall scenario, and results obtained from deviations from the validated scenario are limited 

in their accuracy. Additionally, further validation is recommended that includes 

additional outcome measures (for example, head angular accelerations and extremity 

loads). This will improve model accuracy and enable investigation of model parameters 

on injury potential of the extremities. 

In this dissertation, several fall and child characteristics relating to injury potential 

have been identified. This work may serve as first steps toward development of an injury 

prediction model for short-distance pediatric falls. The injury prediction model could 

serve as a clinical tool to determine the likelihood of injury associated with a particular 

fall scenario and thus increase accuracy in diagnoses of abuse or accidental injury. An 

injury prediction model could also be used in the medico-legal community for more case

specific injury assessments. 
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