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ABSTRACT 

A ROLE FOR REGULATORY T CELLS IN 
GENDER-BIASED DISEASE SUSCEPTIBILITY 

TO MURINE LUPUS 

Colleen Tucker 

June 17,2010 

Females are more susceptible to autoimmune disease than males. In several 

mouse models of disease, castration of males exacerbates disease while androgen 

treatment ameliorates disease. These data suggest hormones can have an influence on 

disease susceptibility and progression. Regulatory T cells (Tregs), particularly the 

CD4+CD25+ Tregs, have been shown to be important in controlling autoimmune disease. 

Studies have shown that depleting regulatory T cells can cause severe autoimmune 

disease, and increasing regulatory T cell population size can protect from disease. We 

hypothesized that gender differences in regulatory T cell populations would correlate 

with differences in disease susceptibility. We used a spontaneous mouse model of 

systemic lupus erythematosus, (NZBxNZW)FI (BWFI), in which only females develop 

full-blown kidney disease to investigate gender differences in regulatory T cell 
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percentages and function between females and males and their relationship to disease 

development. 

First, we assessed differences in regulatory T cell function and number between 

young (before disease onset) female mice from four different strains, two autoimmune­

prone strains, BWFI and SJL, and two more autoimmune-resistant strains, CS7BLl6 and 

BALB/c. We found no differences in in vitro suppressive function by CD4+CD2S+ Tregs 

from any of the four strains when co-cultured with either syngeneic CD4+CD2Y 

responders and APCs or CS7BLl6 CD4+CD2Y responders and APCs. We did, however, 

find lower percentages of CD4+ cells that expressed Foxp3 (CD4+Foxp3+ cells) in the 

periphery ofBWFl mice when compared to the other three strains of mice. The 

CD4+CD2S+CDI03+ cells are a potent memory/effector subset of regulatory T cells that 

are better suppressors than CD4+CD2S+CDI03- Tregs both in vitro and in vivo. As found 

with the CD4+CD2S+ Tregs, we also found no differences in the suppressive function of 

CD4+CD2S+CD103+ cells from any of the four strains of mice. However, percentages of 

CD4+CD2S+CDI03+ cells were, again, decreased in the periphery ofBWFl mice 

compared to the other three strains. We found that reduced percentages of both 

CD4+Foxp3+ and CD4+CD2S+CD103+ cells in the periphery ofBWFl mice were not due 

to defects in either thymic production or homeostatic proliferation of these cells. These 

data suggest that it may be the decreased Treg:Teffector cell ratio, and not a defect in 

inherent suppressive function, that render BWFI mice more susceptible to autoimmune 

disease. 

We next examined gender differences in regulatory T cell function and number 

between young female and male mice of the four strains. We found no differences in the 
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suppressive ability of either CD4+CD25+ or CD4+CD25+CD103+ Tregs between females 

and males of any strain. BWFI mice were the only strain in which females had lower 

peripheral percentages of CD4+Foxp3+ cells than strain-matched males. Strikingly, 

females of all four strains had lower percentages of CD4+CD25+CDI 03+ cells in the 

periphery compared to strain-matched males. The lower percentages did not appear to be 

due to defects in either thymic production or homeostatic proliferation of the 

CD4+Foxp3+ or CD4+CD25+CDI 03+ cells in females of any strain studied. Taken 

together these data suggest that decreased percentages of Tregs in the periphery of female 

BWFI mice compared to BWFI males and other mouse strains, and not an inherent 

defect in Treg suppressive function, may contribute to their increased susceptibility to 

systemic lupus erythematosus. 

Finally, we assessed regulatory T cell function and number in BWFI mice with 

established disease and compared age-matched (~32-36 weeks of age) sick (with 

proteinuria ~300 mg/dl) females, non-sick females and males. We found no differences in 

suppressive function of either CD4+CD25+ or CD4+CD25+CDI03+ cells from sick 

female, non-sick female or male mice when co-cultured with male CD4+CD2Y 

responders and male APCs in vitro. Surprisingly, we found significantly higher 

percent~ges of both CD4+Foxp3+ and CD4+CD25+CD103+ cells in the periphery of sick 

females that were nearly three times that seen in non-sick females and males. To 

evaluate the relationship between progression of disease and regulatory T cell function 

and number, we examined regulatory T cells at several time-points throughout disease 

development. The lower percentages of both CD4+Foxp3+ and CD4+CD25+CDI03+ 

regulatory cells found in young (9 week-old) pre-disease female BWFI mice compared to 
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age-matched males disappeared as mice aged, i.e., by 20-24 weeks of age. We 

hypothesized that the 9 weeks time-point (before disease onset) may represent an 

important period during which having reduced proportions of the potent 

CD4+CD2S+CDI03+ Treg population could render females more susceptible to disease. 

To determine whether decreasing the CD4+CD2S+CDI03+ Tregs at this critical time­

point could impact disease development later on, we depleted CD 1 03 + cells by 

administration of anti-CD 1 03 antibody bi-weekly then bi-monthly beginning at 8 weeks 

of age in female and male BWFI mice. We found that CD 103+ cell depletion early on 

accelerated disease onset and death in female BWFI mice, and dramatically increased 

disease incidence and death in male BWFI mice. These data suggest that 9 weeks may be 

a critical time-point in disease development and that reduced regulatory T cell 

populations in young pre-disease mice may render female BWF 1 mice more susceptible 

to disease or alternatively, that higher regulatory T cell numbers in young pre-disease 

mice may help protect male BWFI mice from disease. 

The data presented in this dissertation suggest that reduced Treg:Teffector cell 

ratios and not an inherent defect in regulatory function may cause increased susceptibility 

to autoimmune disease. It also suggests that the potent CD4+CD2S+CDI03+ regulatory T 

cell population may be more sensitive to hormonal influences, as females of all four 

strains studied had lower peripheral percentages of these cells than strain-matched males. 

Finally, these data suggest that the early pre-disease time-point in BWFI disease 

progression represents a critical period of time where a reduction in regulatory T cells can 

accelerate disease and death. 
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INTRODUCTION 

Gender Differences in Autoimmune Disease 

Women are more susceptible than men to most autoimmune diseases (1). This 

observation has prompted much research into sex differences and their effect on 

autoimmune disease susceptibility, particularly the effect of the differing hormonal 

environment on the immune system and disease incidence and progression (2-5). Females 

have stronger immune responses in general. In fact, female mice produce higher IgM and 

IgG antibody titers in response to antigens than males (6). Female T cells are also more 

reactive in a mixed leukocyte reaction than male T cells (7). This increased strength of 

the female immune response is also seen in humans. Pre-pubertal females given the 

rubella vaccine have higher antibody titers than pre-pubertal males (8). Females have also 

been shown to have a higher CD4 to CD8 T cell ratio than males (9). Differences in the 

amounts and types of cytokines produced between males and females have also been seen 

in both humans and mice. Female BCG-sensitized mice challenged with PPD produce 

more IFN-y than males (10). CD4+ T cells from female multiple sclerosis patients can be 

induced to produce the anti-inflammatory cytokine IL-l 0 in response to high doses of 

estradiol, or the inflammatory cytokines IFN-y and TNF-a in response to low doses of 

estradiol, demonstrating a dose-dependent estrogen effect (11). Treatment of activated 

mouse T cells with the androgen dihydrotestosterone (DHT) resulted in decreased 
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production ofIL-4, IL-5, and IFN-y (12). The highly reactive female immune system is 

useful for fighting off infections and other foreign antigens, but presents a problem in 

individuals genetically predisposed to autoimmune disease where the immune system is 

primed to respond to self-antigens. 

Exposure to estrogens that are either produced naturally in females or present in 

estrogenic compounds such as oral contraceptives, fertilizers, insecticides and other man­

made compounds can increase the risk of autoimmune disease (13, 14). Estrogen 

promotes higher CD4 to CDS T cell ratios and increased antibody production by 

activated B cells (9, 15). Estrogen receptors (ER) are expressed on a variety of immune 

cells, indicating estrogens can directly influence the immune system. In fact, CD4+ T 

cells, CDS+ T cells, B cells, macrophages, and both splenic and bone marrow-derived 

dendritic cells (DCs) express ER (16, 17). Estrogen receptor expression, and thus, the 

ability of estrogen to influence immune cells, varies with cell type and developmental 

stage (16-1S). In fact, the differentiation of bone marrow cells into DCs requires 

physiological amounts of estradiol in vitro (19). The hormonal environment can affect the 

differentiation of B cells. The B cells from mice treated with estradiol develop into 

marginal zone cells, while B cells from mice treated with prolactin develop into follicular 

cells (20). Estradiol treatment may protect mice from developing experimental 

autoimmune encephalomyelitis (EAE) by reducing TNF-a production by CD4+ T cells 

and preventing recruitment of inflammatory T cells and macrophages into the central 

nervous system (CNS) (21). 

Androgens can also have an effect on immune cells. Androgens can indirectly 

promote thymocyte apoptosis (22). B cell populations increase after castration of male 
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C57BLl6 mice (23, 24). Castrated male mice also had decreased absolute numbers ofT 

cells in their spleens, however, the few T cells they did have were highly activated, 

producing high levels ofIL-2 and IFN-y (23). Exposure of pregnant female mice to 

dehydroepiandrosterone (DHEA), a weak androgen produced in response to stress, causes 

decreased function of T cells in their male offspring (25). Alternatively, it may be the 

androgen/estrogen balance and not the presence of estrogen or absence of androgen that 

causes autoimmune disease susceptibility. Rheumatoid arthritis (RA) patients tend to 

have low serum levels of testosterone and high levels of estrogens (26). This may be due 

to increased aromatase enzyme activity in RA patients converting androgens to estrogens 

(27). In fact, inflammatory cytokines like TNF-a and IL-6, known to be increased in 

autoimmune diseases like RA and lupus, have been shown to stimulate aromatase 

activity, thereby increasing estrogen production (28, 29). However, estrogens have been 

shown to induce inflammatory cytokine production (11), so it is difficult to determine 

cause and effect in this system. 

Gender is such a strong determining factor in autoimmune disease susceptibility 

that a significant amount of research has gone into hormonal treatments for several 

autoimmune diseases (30). Female SJL mice are more susceptible than males to 

adoptively transferred EAE, a mouse model of multiple sclerosis (MS) (31, 32). In fact, 

in an adoptive transfer model where myelin basic protein (MBP) specific T cells from 

females with EAE are transferred into non-diseased females and males, females develop 

more severe EAE (33). Female MBP-specific T cells, which have more of aT HI 

phenotype, are able to induce EAE with smaller numbers of adoptively transferred cells 

than male MBP-specific T cells, which have more of aT H2 phenotype (34). This T H2 bias 
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in SJL males may contribute to the fact that they do not have relapses in induced-EAE, 

while their female counterparts do (35). This indicates that it is something about the 

female environment that increases disease severity. Female SJL mice treated with DHT 

90-day release pellets develop less severe and eventually remitting disease than placebo­

treated females, that may be due in part to increased IL-l 0 production by MBP-specific T 

cells (31). Male SJL mice, which develop less severe disease in the adoptive transfer 

model of EAE, produce less IL-12 in draining lymph nodes than females with disease 

(36). Addition oflL-12 to male LN cells increases the MBP-specific response, indicating 

that IL-12 is an important cytokine in EAE disease progression (36). In a human study, 

10 male MS patients were treated with a testosterone-containing gel. This testosterone 

treatment decreased CD4+ T cell numbers and IL-2 production while increasing TGF-~ 

production (37). 

While there is no known gender bias in human type 1 diabetes, females 

predominantly develop disease in the non-obese diabetic (NOD) mouse model of type 1 

diabetes (38), and this model has been used extensively in hormonal studies. Androgen 

treatment can prevent islet destruction in adult female NOD mice (39). However, 

androgen treatment could not prevent NOD mice from developing diabetes through 

adoptive transfer of diabetic T cells (39). These data indicate that androgen treatment 

may prevent or reduce the induction of pathogenic T cell development in female NOD 

mice, resulting in decreased islet destruction (39). Castration increases the incidence of 

diabetes in male NOD mice, while oophorectomy decreases disease incidence in female 

NOD mice (40). Thus, androgens may have a protective effect in type I diabetes whereas 

estrogens may have a disease-enhancing effect. In fact, CD4+ T cells from NOD mice 
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treated with testosterone in vitro produce less of the inflammatory cytokine IFN-y in 

response to IL-12 while CD4+ T cells treated with estrogen in vitro produce more IL-12-

induced IFN-y (41). These data support the hypothesis that the female bias toward 

developing type 1 diabetes in NOD mice may be due to increased estrogens and 

decreased androgens in diabetic females. 

Rheumatoid arthritis (RA) is also more prevalent in females than males but is 

ameliorated during pregnancy, suggesting a role for sex hormones in disease 

susceptibility and progression (42, 43). Estrogens are present at high levels in the 

synovium of RA patients and are associated with increased inflammation at these sites 

(44). However, in rodent models ofRA, the gender bias and hormonal influence on 

disease are more complicated. Different models of rheumatoid arthritis have different 

sensitivities to treatment with hormones. Castrated male rats develop accelerated and 

more severe adjuvant-induced arthritis than non-castrated males (45). However, in a type 

II collagen-induced model of rheumatoid arthritis in (BI0QxDBN1)Fl mice, in which 

males are more susceptible to disease, estrogen treatment suppresses disease in both 

castrated and non-castrated males while oophorectomy or testosterone treatment 

increases disease incidence in females (46). Physiologic levels of estrogen have also been 

used to treat castrated female DBNl mice with collagen-induced arthritis, ameliorating 

disease by suppressing T cell responses and stimulating B cell activity (47). Hormone 

replacement therapy, most commonly used after menopause, in human rheumatoid 

arthritis patients has not been shown, as it has in other autoimmune diseases, to be 

associated with disease flares, and may, in fact, reduce disease symptoms (48). However, 

human studies of RA are difficult to interpret because of small experimental population 
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size (48). Thus, sex hormones may play an important, though complicated, role in 

rheumatoid arthritis development and/or treatment. 

Females develop systemic lupus erythematosus (SLE) far more often than males, 

and much research has focused on the influence of sex hormones on this disease (49, 50). 

In fact, SLE symptoms worsen during pregnancy, a time when estrogen and prolactin 

levels are high, and these hormones can have differing effects on B cell development into 

either marginal zone or follicular B cells, respectively (51). In a study of 94 non-pregnant 

female SLE patients, a high percentage of these women were found to have abnormal 

levels of many hormones, including estrogen and prolactin (52). In a study of 78 

pregnancies in SLE patients, 65% had increased flares during pregnancy (53). 

Administration of external estrogens, whether through use of oral contraceptives or 

estrogen replacement therapy in post-menopausal women, has been associated with 

increased SLE disease severity (54-58). Similar to RA patients, SLE patients tend to have 

higher serum levels of estrogen and lower serum levels of androgen, which may be due to 

increased aromatase activity, also seen in these patients (59). Estradiol, and synthetic 

estrogens and their metabolites can cause DNA damage, including strand breakage, 

oxidized base formation, and adduct formation (60). DNA that has been modified by 

estradiol is bound more readily by dsDNA autoantibodies in human lupus patients (61). 

SLE patients also have abnormal estrogen metabolism. Urine samples from SLE patients 

have been found to contain 16a-hydroxylated estradiol, a potent estrogen metabolite not 

normally found at high levels in urine (62, 63). Male patients suffering from SLE and 

Klinefelter's syndrome (XXY) have estrogen levels similar to female SLE patients (64). 

In one case study, a male Klinefelter's patient with SLE treated with physiologic levels of 
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testosterone had decreased lupus symptoms, including a lower titer of anti-DNA 

antibodies (65). While testosterone treatment causes many unwanted side effects, these 

data suggest that development of an androgenic compound that does not cause such 

severe side effects could be very useful for the treatment of lupus. 

(NZBxNZW)Fl (BWF1) is a mouse model ofSLE in which only females 

spontaneously develop disease (66, 67). Castration of male BWFI lupus-prone mice 

causes them to develop disease at similar rates and severity as BWFI females (68). In 

addition, both castrated male and ovariectomized female BWF 1 mice treated with 

estrogen show increased disease severity and decreased survival, while mice treated with 

androgens are protected from disease (68). Male BWFI fetuses have increased circulating 

estradiol compared to control C57BLl6 fetuses, and treatment with testosterone can 

decrease estradiol in BWF1, but not C57BLl6 fetuses (69). These data suggest that the 

BWF 1 background predisposes mice to produce high levels of inflammation-promoting 

estrogens, as even males have increased levels compared to other strains of mice (69). 

Estrogen has been shown to interact with the estrogen receptor in female lupus patients to 

promote T cell activation and B cell autoantibody production (70). Estrogen receptor-a 

(ERa) deficiency can attenuate disease in female BWFI mice (71). This attenuation may 

be due to decreased levels of the estrogen-regulated cytokine, IFN-y, high levels of which 

are present in the serum oflupus patients and lupus-prone mice (71). In BWFI mice, 

removal of estrogen ameliorates disease symptoms, as can be seen when these mice are 

treated with tamoxifen, an anti-oestrogen, which reduces autoantibody production (72). 

These data indicate an important role for sex hormones in susceptibility to SLE. 
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Differences in estrogen receptor signaling have also been found between strains 

of mice. Two lupus-prone mice, the BWFI and MRL/MP-lprllpr strains, have decreased 

ER expression measured in the cytosol of cells of both the liver and the thymus compared 

to less autoimmune-prone BALB/c mice (73, 74). However, ERs from both lupus-prone 

strains had a higher binding affinity than ERs from BALB/c mice (73, 74). These 

differences in ER number and binding affinity may underlie some of the defects in 

estrogen signaling and metabolism seen in lupus patients and contribute to the 

susceptibility of patients and lupus-prone mice. 

Systemic Lupus Erythematosus 

Systemic lupus erythematosus (SLE) is an autoimmune disease that 

predominantly affects women. There is evidence for a genetic basis for SLE (75, 76). Ten 

percent of lupus patients have at least one first degree relative with lupus (77). In a study 

of monozygotic twins, if one twin had lupus there was a 24-58% chance the second twin 

also had disease, while in dizygotic twins, it was only a 2-5% chance (78, 79). However, 

these data not only indicate that there is a strong genetic predisposition in lupus, but also 

suggest that there are strong environmental factors. 

In SLE, antibodies are produced against self-antigens such as double-stranded 

DNA, histones, chromatin, other nuclear proteins, etc (80). These antibodies combine 

with complement to form immune complexes, which deposit in the kidneys eventually 

causing glomerulonephritis and death (80). Many cytokines like IFN-a, TNF-a, and IL-

10 are increased in the serum of both lupus patients and lupus-prone mice (81). SLE is a 

difficult disease to treat because there are such a wide variety of symptoms (82). Some 
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patients develop CNS pathology or skin rashes, while others develop severe 

glomerulonephritis (83). This makes it difficult to identify potential therapeutic targets. 

Lupus patients and lupus-prone mice have a defect in their ability to clear 

apoptotic cells (84). In fact, in two lupus-prone strains of mice, the MRL/lpr and BWFI 

strains, disease manifestation is associated with decreased phagocytosis by macrophages 

(85). Accumulation of apoptotic cells can impact disease. For example, injection of 

apoptotic Band T cells into young lupus-prone BWFI mice results in increased IL-6 and 

IL-IO production by macrophages, increased lymphocyte recruitment to the site of 

injection, and acceleration of disease (86). Injection of apoptotic B cells, but not 

apoptotic T cells, induces a systemic T H2 response, resulting in B cell autoantibody 

production and acceleration of disease (86). 

Decreased apoptotic cell clearance may also affect DC function. DCs from lupus­

prone mice have a low activation threshold. High mobility group box protein 1 (HMGB 1) 

is a molecule associated with apoptotic cell chromatin that may participate in breaking 

tolerance to double stranded DNA (dsDNA) and nucleosomes (87). HMGB I-containing 

nucleosomes from apoptotic cells, which are found at high levels in the plasma of SLE 

patients, induce DC maturation and secretion of proinflammatory cytokines like IL-I~, 

IL-6, and IL-I 0 (87). DC from lupus-prone mice produce more inflammatory cytokines 

in response to anti-CD40 or LPS stimulation than wildtype mice (88). Defects in DC can 

also be seen in human lupus patients. Myeloid DC from human lupus patients display an 

abnormal phenotype that is characterized by increased expression of maturation markers 

and inflammatory cytokines, and consequently an increase in T cell proliferation (89). 

Kidney-infiltrating myeloid DC from lupus patients have been associated with increased 
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levels of C 1 q, a component of the classical complement pathway (90). C 1 q production in 

the kidneys is associated with disease and may lead to increased presentation of 

autoantigens (90). 

While defects in many cellular compartments are associated with disease in SLE, 

infiltration of T cells into the kidney is necessary for the development of end-stage 

kidney disease (91). In fact, male NZM2328 lupus-prone mice, which develop 

autoantibodies in their serum but not end-stage kidney disease, do not have detectable DC 

and T cell infiltration in their kidneys, whereas female NZM2328 mice, which develop 

full-blown disease, have detectable DC and T cell kidney infiltration (91). Furthermore, 

removal of T cells, either by thymectomy or antibody-mediated T cell depletion, prevents 

lupus development in the MRL-lprllpr mouse model of lupus (92, 93). Injecting kidney 

cells from sick mice into the thymi of MRL-lprllpr lupus-prone mice can delay 

glomerulonephritis development, but not autoantibody production, apparently by deleting 

kidney-specific, autoreactive T cells from the developing T cell pool (94). 

There are many genetic factors that contribute to the development of disease in 

lupus patients and lupus-prone mice, including polymorphisms of molecules involved in 

antigen presentation, cytokine production, and immune complex clearance (75). In a 

study of 91 caucasian families, an association between the class II MHC molecule HLA­

DR2 and lupus has been observed (95). HLA-DR2 has been linked with development of 

autoantibodies against dsDNA (96, 97). Variations in cytokine genes are also seen in 

lupus. Polymorphisms in the gene encoding TNF-a, a cytokine seen at reduced levels in 

the serum of both humans and mice with lupus compared to healthy controls, gene have 

also been found in both SLE patients and in lupus-prone mice (98-101). In another 
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example, expression of certain FcyRII and FcyRIII alleles has been associated with 

disease in humans (102-107). These disease-associated FcyR alleles may contribute to 

disease because these receptors bind less efficiently to IgG antibodies, preventing 

effective clearing of immune complexes (105, 108). 

Mouse models have also been used to determine genetic factors contributing to 

SLE disease susceptibility. Morel and colleagues have used congenic mice to identify 

several susceptibility loci, including Slel a, Slel b, and Slel e (109). These three loci break 

tolerance to chromatin and result in the production of anti-chromatin antibodies (110). 

Sleb is associated with polymorphisms in the signaling lymphocyte activation molecule 

(SLAM)/CD2 gene family, which plays a role in cell activation and signaling (111). 

Slel a and Slel e have been shown to be involved in autoreactive CD4+ T cell generation 

and a reduction in the size of the CD4+CD25+ regulatory T cell population (109, 112). 

Slele has been mapped to the NZM24 10 complement receptor 2 (Cr2) allele (112). 

Polymorphisms in the Cr2 gene have also been found in human lupus patients (113, 114). 

The presence of the Sleia locus alone causes a decrease in the number, but not function, 

of CD4+CD25+Foxp3+ Tregs, and causes DC to increase production oflL-6, rendering 

CD4 + CD2Y T cells resistant to suppression (115, 116). Sle I a has been broken down into 

two intervals, Sle I a.l and Sle I a. 2 (117). Expression of both intervals is necessary for the 

Slel a phenotypes (117). A strong candidate gene for Slel a.l is Pbxl, which encodes a 

nuclear transcriptional regulator, is expressed byB cells and macrophages, and whose 

gene expression is seen in murine and human T cells (117). A strong candidate gene for 

Slela.2 is Sh2dlb, which encodes Eat-2 (a SLAM associated protein involved in 

recruitment of Src kinases) and is expressed by natural killer cells, B cells, T cells, and 
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DC (117). As seen in human SLE patients, certain MHC class II hap10types have been 

associated with disease in lupus-prone mice on specific backgrounds. For example, H_2d/z 

is associated with disease susceptibility in BWF 1 mice (118-120). A deficiency in Fas, 

which mediates activation induced cell death, has also been associated with B cell 

production of autoantibodies in a mouse model oflupus (121, 122). 

Regulatory T Cells 

Regulatory T cells (Tregs) have been shown to be important in controlling 

autoimmune disease (123, 124). Tregs are CD4+ cells that constitutively express IL-2 

receptor a (CD25) (125). When CD4+CD2Y T cells are adoptively transferred into 

BALB/c athymic nude mice (nu/nu) mice, they cause severe autoimmune disease that can 

be prevented by cotransfer of CD4+CD25+ Tregs (125). CD25 is not an ideal marker for 

Tregs as it is also expressed on activated T cells and is not expressed on all Tregs (126). 

Foxp3 is a nuclear transcription factor with a forkhead-binding domain, encoded on the 

X-chromosome, and is the most reliable Treg marker, at least in mice (127, 128). Foxp3 

is required for Treg function and development (127, 129-134). In fact, Foxp3 deficient 

(scurfy) mice do not develop Tregs and males die of severe autoimmune/inflammatory 

disease by 21 days of age (127). Disease in scurfy mice is due to the absence of Tregs as 

these mice can be rescued from disease by adoptive transfer of CD4+CD25+ cells from 

wildtype mice (127). Immunodysregulation polyendocrinopathy enteropathy X-linked 

syndrome (lPEX), a severe disease affecting multiple organs, is also seen in humans with 

Foxp3 mutations (135). Foxp3 alone can confer regulatory ability. Retroviral gene 

transfer of Foxp3 into murine CD4+CD25- effector T cells causes them to develop a 
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regulatory phenotype and function (127,129). Foxp3's control of regulatory phenotype 

and function is dose-dependent. Ablation or attenuation of Foxp3 in Treg cells results in 

the loss of regulatory function and the development of severe autoimmune disease 

resembling that seen in scurfy mice (130, 132-134, 136). 

In humans, TCR engagement induces Foxp3 expression (137), and it has been 

shown that effector T cells can express Foxp3 transiently when they are activated (138). 

Epigenetic Foxp3 DNA methylation is one way to determine whether a Foxp3+ cell is a 

Treg or an activated T cell transiently expressing the transcription factor, as Tregs but not 

activated effector T cells are demethylated at the Foxp3 locus (139). This Treg-specific 

Foxp3 DNA methylation is not unique to human cells and has also been observed in mice 

(140, 141). 

It is unknown whether Tregs suppress effector T cell proliferation in vivo by 

directly suppressing the effector T cells or indirectly through interactions with DCs (124). 

Using 2-photon microscopy, Bluestone and colleagues were able to detect interactions of 

Tregs with DCs, but not with effector T cells (142). After interaction with Treg cells, 

DCs had shorter interactions with effector T cells (142). CTLA-4 is constitutively 

expressed on Tregs and on activated T cells, and interacts with DC through CD80 and 

CD86 (143-145). Addition ofa blocking anti-CTLA-4 mAb in vitro can prevent Treg 

suppression of effector T cell proliferation (146). Mice in which CTLA-4 has been 

conditionally knocked out develop severe autoimmune disease similar to that found in 

scurfy mice, suggesting that CTLA-4 is critical for Treg suppressive function in vivo 

(147). Tregs influence DC function but DCs can influence Treg function as well. High 
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levels of IL-6 production by DCs can render effector T cells resistant to Treg-mediated 

suppression (148). 

Another molecule expressed by CD4+CD25+ Tregs is the glucocorticoid-induced 

TNF receptor (GITR) (149,150). It has been shown that treatment with blocking anti­

GITR antibody can reduce Treg suppressive function both in vitro and in vivo (149, 150). 

However, GITR is also expressed on effector CD4+ and CD8+ T cells (149, 150). GITR 

acts as a costimulatory molecule for effector T cells, and treatment with anti-GITR 

antibody promotes proliferation and cytokine production (151). The decrease in Treg 

suppressive function seen with anti-GITR antibody treatment may in fact be due more to 

increased effector T cell proliferation. 

Many factors control and impact Treg function (152). Naturally occurring 

CD4+CD25+ Tregs are activated by self-peptides presented by the MHC class II molecule 

in vivo (153). This activation allows Tregs to suppress in vitro without further TCR 

stimulation as long as IL-2 is present in culture (153). This may have relevance in vivo, as 

previously activated Tregs can suppress in a non-antigen specific manner in the presence 

of high enough levels oflL-2 or other cytokines (153). An interesting new finding reports 

that Tregs co-express F oxp3 along with transcription factors specific for T HI or T H2 

responses, such as interferon regulatory factor-4 (IRF-4) a molecule necessary for T H2 

responses, to help them more selectively control the type of immune response occurring 

in the tissue in which they are located (154). MicroRNA molecules such as miRNA155 

that are small single-stranded RNA molecules found in the cytoplasm that degrade 

transcription products have also been found to be important in controlling Treg function 

both in vivo and in vitro (155, 156). 
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Tregs can also regulate B cells, a property that makes them an even more 

attractive target for SLE therapeutic treatment. Tregs have been shown to migrate to 

germinal centers and indirectly suppress B cells by suppressing the germinal center T­

helper cells whose help is necessary for B cell function (157). Tregs can also directly 

suppress B cell Ig class switching and antibody production by inducing B cell apoptosis 

in both mice and humans (158, 159). 

Regulatory T cells are a promising therapeutic target in SLE because they can 

interact with many different potentially autoreactive cell types and because reduced 

numbers of Tregs has been correlated with disease susceptibility in mice and disease 

progression in humans (160, 161). The correlation of Treg population size and function to 

disease in human lupus patients is controversial. Many groups have shown a reduced 

percentage of Tregs in the peripheral blood of active lupus patients as well as a reduction 

in regulatory function in suppression of cytokine production, in vitro suppression assays, 

and Foxp3 expression (162-164). Others have shown a reduction in Treg percentages in 

peripheral blood but no reduction in regulatory function or Foxp3 expression (165, 166). 

Still other groups have shown an increase in circulating CD4+Foxp3+ cells but a decrease 

in CD4+CD25hi cells (167, 168). Another group found increased CD4+CD25+ cells in the 

peripheral blood of active lupus patients (169). Increasing Tregs with either 

plasmapheresis treatment or treatment with corticosteroids correlated with decreases in 

disease activity (168-170). Different groups may find such differences in Treg 

percentages and function because they are defining active phases of lupus differently or 

because they are defining CD4+Foxp3+ or CD4+CD25+ and not CD4+CD25hi T cells as 

Tregs. The importance of distinguishing Tregs from activated T cells in these studies is 
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emphasized by the findings of Sakaguchi and colleagues. They have found a subset of 

human CD4+ T cells that co-express Foxp3 and RORC (an important transcription factor 

in T H17 cell development) and produce IL-17 (171). 

Tregs have been extensively studied in mouse models of lupus as well. 

(NZBxNZW)Fl (BWFl) and (NZBxSWR)Fl (SNFl) mice, mouse models oflupus, 

display lower percentages of CD4+CD25+ cells than non-auto immune-prone BALB/c and 

DBAII mice (172) or (DBAl2xNZW)Fl mice (173). However, these studies used CD25 

as a marker instead of the more specific Treg marker, Foxp3, and Foxp3 mRNA 

expression is shown in the CD4+CD2Y T cell subset of at least one of these studies (173). 

No difference in suppressive function was seen between BWFI and (DBAl2xNZW)Fl 

CD4+CD25+ cells in vitro (173). The reduction in CD4+CD25+ cell percentages seen in 

BWFI mice can be reversed by nasal tolerance induction with a histone peptide antigen 

H471 (172). Treatment of non-autoimmune (DBAl2xNZW)F 1 mice with anti-CD25 

monoclonal antibody increases serum levels of dsDNA autoantibodies (173), and 

treatment of female BWFI mice starting at 3 days of age with anti-CD25 monoclonal 

antibody results in accelerated disease, including early development of high dsDNA 

autoantibody titers, increased serum levels of inflammatory cytokines, and 

glomerulonephritis (174). Neonatal thymectomy (i.e. interrupts Tregs development) of 

lupus-prone NZM2328 mice causes accelerated disease development, and adoptive 

transfer of CD25+ Tregs from asymptomatic mice ameliorates disease symptoms (175). 

In fact, several studies have shown that increasing the Treg population in lupus-prone 

mice can delay and/or ameliorate disease (176-179). Increasing the CD4+CD25+ Treg 

population by tolerizing lupus-prone SNFI mice with a histone peptide antigen injected 
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subcutaneously every two weeks delays disease onset (176). Injection of a peptide based 

on the complementary-detennining region 1 (hCDRl) every other day for a week starting 

at 8 weeks of age increases both CD4+CD25+ Treg percentages and TGF-j3 production 

and ameliorates disease in lupus-prone BWFI mice (177). Adoptive transfer of ex vivo­

expanded Tregs delays or prevents lupus development in BWFI mice. (178, 179). 

Interactions of regulatory T cells and APC in lupus can impact Treg function. In 

humans, APC from active lupus patients produce high levels of IFN-a, which may render 

Tregs non-functional (180). Treg function is restored when they are cultured with APC 

from healthy control patients (180). Mice expressing the NZM241 0 lupus susceptibility 

locus Sle 1 a produce high levels of IL-6, rendering CD4+CD25- effector T cells resistant 

to suppression by Tregs (115). 

Tregs have been shown to be important in controlling many other autoimmune 

diseases. Decreased numbers of Tregs are also seen in the islets of a type 1 diabetes 

mouse model, the non-obese diabetic (NOD) mouse model (181). Reduced frequency of 

CD4+Foxp3+ Tregs and reduced Foxp3 expression per cell are seen in MS patients (182). 

Adoptive transfer of Tregs, which results in the doubling of the Treg population reduces 

disease severity in a model ofEAE (183). Cotransfer ofCD4+CD25+ Tregs with disease­

causing CD4+CD45RBhi
g

h T cells can prevent colitis (184). 

Natural Tregs develop in the thymus where they are positively selected on a high 

affinity TCR (185). TGF -13 signaling is required for thymic development of Tregs (186). 

Thymically-derived Tregs have high TCR diversity, allowing them to regulate a wide 

variety of potentially autoreactive T cells in the periphery (187). Thymic development of 

Tregs requires MHC class II, but an activated subset of Tregs can develop in the 
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periphery ofMHC class n-I
- mice (188, 189). Tregs can also develop independent of the 

thymus through peripheral conversion of CD4+CD2Y effector T cells to CD4+CD25+ 

Tregs (190, 191). This conversion requires TCR stimulation, TGF-f3, and B7 

co stimulation (190,191). In fact, these TGF-f3 converted cells, or inducible Tregs, 

function as well as natural Tregs to rescue scurfy mice from disease (192). It has been 

shown that, once activated, Tregs can suppress responder T cells in an antigen non­

specific manner (193). However, new evidence suggests that to promote organ-specific 

tolerance, antigen specific Tregs are critical (194). In fact, several studies have shown 

that antigen specific Tregs are better at preventing diabetes in NOD mice than polyclonal 

Tregs (195-197). 

CDI03 

The integrin aEf37 (CD 103) is a type I transmembrane protein expressed primarily 

on mucosal lymphocytes (198). The only known ligand for CDI03 is E-cadherin, which 

is expressed primarily on epithelial cells in the gut, skin, and thymus (199-202). E­

cadherin is expressed on medullary thymic epithelial cells, which are cells that have been 

shown to be necessary for Treg development in the thymus (202, 203). E-cadherin is 

upregulated during inflammation (204). There is also some evidence for E-cadherin­

independent binding of CD 1 03 to another unknown ligand expressed on human intestinal 

microvascular endothelial cells (205) and in oral epithelial and epidermal tissues (206). 

CD 1 03 expression identifies a very potent subset of regulatory T cells in both 

mice and humans (207-209). CDI03+ Tregs have a memory/effector phenotype (210) and 

the subset represents a small fraction of the peripheral CD4+CD25+ Tregs. CDI03+ Tregs 
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are better suppressors in vitro and in vivo than CDI03- Tregs (149, 207, 211). The 

increase in suppressive function does not appear to be due to increased IL-I 0 production 

by the CDI03+ Treg subset, as CDI03+ Tregs from IL-IO knockout mice are as 

suppressive as CD I 03+ Tregs from wildtype mice (211). The expression of CD I 03 on 

Tregs has been shown to function in retention of these cells at sites of inflammation 

(212). In fact, CD4+CD2S+ Tregs purified from CDI03-deficient mice were less effective 

than wildtype CD4+CD2S+ Tregs at homing to and accumulating in sites of dermal 

inflammation in a mouse model of Leishmania major infection (212). It is thought that 

CDI03 is induced and/or maintained at these sites of inflammation (207,212) and 

CDI03+ Tregs develop their increased suppressive function at sites of inflammation 

(213). CDI03+ Tregs that lack E/P-selectin ligands (i.e., cannot migrate to sites of 

inflammation) were not as suppressive in a DTH model as wildtype CD I 03+ Tregs that 

were able to enter inflamed sites, though they expressed similar levels of Foxp3 and other 

markers such as CD62L (213). Effector/memory CD 103+ Tregs, that have presumably 

been activated in vivo, can spontaneously (i.e., without additional activation) suppress 

CD4+CD2Y effector T cells in an in vitro suppression assay (189). 

The homing and maintenance of lymphocytes to specific locations, whether to 

lymphoid organs or to non-lymphoid tissues, is very important for proper immune 

function (214). CD4+CD2S+CDI03+ Tregs have an "inflammation-seeking" phenotype, 

expressing adhesion molecules like ICOS, P-selectin ligand, and E-selectin ligand and 

chemokine receptors that promote migration towards inflammatory chemokines such as 

CXCL9, CCLI7, and CCL20 (210). Expression ofCDI03 allows T cells to form 

filopodia and move towards E-cadherin (215). Migration to sites of inflammation is 
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necessary to suppress inflammatory reactions in vivo, but not to control the induction 

phase of an immune response in the lymph nodes (213). In fact, in bone marrow chimera 

studies where scurfy (Foxp3-deficient) bone marrow and CCR4-1
- bone marrow were 

transferred into Rag 1-1- recipients, the lack of CCR4 on CD 103+ Tregs prevented 

migration to the skin and resulted in severe inflammatory disease in the skin (216). 

The CD 1 03+ subset of Tregs is important in disease settings. In an adoptive 

transfer model of wasting disease, CD4+CD2S+CD103+ Tregs, but not 

CD4+CD2S+CD103- Tregs are able to prevent wasting disease (211). CD103-deficient 

(aE-1-) mice have reduced T lymphocyte numbers in gut and vaginal mucosal tissue (217). 

CD103-deficient mice develop inflammatory skin lesions spontaneously, and transfer of 

splenocytes from CD 1 03-deficient, but not wildtype, mice into scidlscid mice also 

induces skin inflammation (218). Donor CD103+ Tregs from DBAl2 mice transferred 

into recipient BALB/c mice with chronic graft-versus-host disease (OVHD) help reverse 

symptoms by trafficking to OVHD target tissues and suppressing donor CD4+ T cell 

proliferation (219). 

There are other cells that express CD103. A small percentage of circulating CD8+ 

cells express CD103, produce IL-10, and have suppressive function in a cell-cell contact 

dependent manner in vitro (220). The CD8+CD103+ Tregs can be expanded by exposure 

to alloantigen in vitro (220). These CD8+CD103+ Tregs are also involved in a model of 

induced tolerance referred to as anterior chamber-associated immune deviation (ACAID) 

(221). Cytotoxic CD8+ T cells have also been shown to express CD103 (222-224). These 

CD8+ CD 103 + cytotoxic T cells bind target E-cadherin expressing cells and cause them to 

apoptose and have been associated with tissue destruction of exocrine glands in Sjogren's 
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syndrome, tissue destruction of lungs in a lung transplant model and tumor regression in 

a brain tumor model (222-224). CD103 has also been shown to be important in the 

development of CD4-CD8+ thymocytes (225). CD 103 is a target of Runx3, a transcription 

factor responsible for the processes that downregulate CD4 on CD4+CD8+ thymocytes 

(225). 

A subset of DCs also expresses CD 1 03. They are found primarily in the gut, but a 

small subset can be found in the mesenteric lymph node (226). These CD103+ DCs from 

both gut and mesenteric lymph nodes can induce a gut-homing phenotype (CCR9+ U4f37+) 

in T lymphocytes (226). CD 1 03 expression on gut-associated DCs is necessary for 

protection against a T cell adoptive transfer model of colitis (227). CD 103+ DCs are 

thought to mediate conversion of CD4+CD2Y effector cells to CD4+CD25+ Tregs via 

secretion ofretinoic acid in the gut (228, 229). There is also a subset ofCD103+ DCs in 

the skin that is able to effectively cross-present viral and self antigens (230). An invariant 

NKT cell subset, found in the peripheral lymph nodes and in skin, produces IL-17 and 

also expresses CD 103 (231). So, while CD 103 is expressed on a subset of CD4+CD25+ 

Tregs, it is also expressed on a variety of other cell types in the immune system. Thus, 

one can reason that CD 1 03 itself does not confer regulatory function, but perhaps it is its 

role in retention and homing to specific tissues that gives CD103+ Tregs their increased 

suppressive function. 

CD103 can be induced by TGF-f3 (232). For most integrins, a proximal promoter 

confers cytokine responsiveness, but for CD 103, responsiveness is likely dependent on 

more distant control elements (233). One of these distant control elements may be the 

transcription factor Foxp3 because when CD4+CD2S- T cells are transduced with Foxp3, 
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they express CDI03 (129). Other factors control the size of the CD4+CD25+CDI03+ 

population of Tregs. CD47, whose ligands thrombospondin 1 (TSP-l) and SIRP-a are 

involved in inhibition of DC and T cell function, is important in controlling CDI03+ Treg 

homeostatic proliferation (234), as seen in CD47 knockout mice, which have increased 

percentages of these Tregs due to unrestrained proliferation (235). 

Strain Differences 

Genetically different strains of mice can have dramatically different immune 

systems, and thus, different immune responses to infection and autoimmune disease. 

Non-autoimmune prone strains of mice have dsDNA-specific autoreactive B cells that 

remain inactive, while lupus-prone BWFI mice have autoreactive B cells that produce 

high titers of anti-dsDNA antibodies (236). B cells from mice with a high affinity anti­

DNA H chain transgene on a C57BLl6 background produce anti-dsDNA antibodies while 

B cells from mice with this same transgene on a BALB/c background do not produce 

anti-dsDNA antibodies (237). This transgene on the C57BLl6 background promotes 

repertoire shifting to L chains, which allow better DNA binding (237), illustrating the 

impact genetic background can have on disease promoting symptoms. 

Some strains of mice are skewed to a more T HI or T H2 response (238). These 

differences can cause some mouse strains to be more susceptible to different types of 

infections (239-241) and autoimmune diseases (242-245). BALB/c mice, for example, 

have an immune system skewed towards aT H2 response (238), and are more susceptible 

to Mycobacterium avium infection, in which IL-l 0 has been shown to augment disease, 

than C57BLl6 mice, which have an immune system skewed more towards aT HI response 
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(241). Mice on a BALB/c background are less susceptible to Pseudomonas aeruginosa 

corneal infection than mice on a C57BLl6 background, indicating that aT HI skewed 

immune response renders mice more susceptible to this disease (239). 

Strain differences impact autoimmune disease susceptibility. In a mouse model of 

experimental autoimmune uveitis (EAU) susceptible strains of mice had a T HI immune 

response, producing high levels ofIFN-y, IL-12, and IgG2a antibodies (242). Female SJL 

mice develop more severe EAE and pristane-induced lupus than age-matched males, 

hypothesized to be due to enhanced T H2 cytokine production in females compared to 

males, however, C57BLl6 mice do not show this female bias for EAE (245). Another 

group found differences in disease severity and progression between SJL mice from 4 

different commercial vendors (246). They found that the strains had variation in gene 

copy numbers of inflammation-associated NaipJ (NaipJ mRNA was detected in SJL 

brain tissue and in a neuronal cell line ), and that these differences correlated with the 

development of either chronic or relapsing remitting disease patterns (246). Pre-diabetic 

NOD mice, a model of type 1 diabetes, had higher percentages of B cells, an important 

cell type in diabetes development, in their thymi than other non-diabetic strains (244). 

Strain differences in susceptibility to Grave's hyperthyroidism have been used to find 

candidate genes (associated with the immunoglobulin heavy chain variable region) 

responsible for the break in tolerance and the production of thyroid stimulating antibodies 

(247-251). Knockout of FcyRIIB on a C57BLl6 background results in lupus-like disease, 

while FcyRIIB knockout on a BALB/c background does not result in disease (252). This 

is due to the presence of a lupus-suppressor gene, sbb2(a), which restricts the production 

of pathogenic IgG antibody isotypes in BALB/c mice (253). 
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Regulatory T cells play an important role in controlling autoimmune disease (123, 

124). Variation in Treg populations of genetically different strains of mice may playa 

role in their susceptibility to autoimmune diseases. Howard and colleagues have reported 

that BALB/c mice have significantly higher percentages of CD4+CD25+ Tregs in the 

thymus and peripheral lymphoid organs than C57BLl6 mice, although both BALB/c and 

C57BLl6 CD4+CD25+ cells express similar levels of other regulatory markers like 

CD45RB, CDI03, GITR, CTLA-4, and Foxp3 (254,255). Interestingly, they also found 

that CD4+CD2Y responder cells from C57BLl6 mice are more resistant to suppression 

than BALB/c responder cells by CD4+CD25+ Tregs from both C57BLl6 and BALB/c 

mice in an in vitro suppression assay (254). Although Mathis et al. found no significant 

differences in CD4+CD25+ cell percentages in the thymus or periphery when comparing 

NOD mice to non-diabetic mice (244), a dramatically reduced TCR repertoire was seen 

in NOD Tregs when compared to C57BLl6 Tregs (256). Obviously, the size and quality 

of the immune response can vary dramatically between inbred strains of mice, and 

comparison between strains can be a very useful tool to discover susceptibility loci for a 

variety of autoimmune diseases. 

Gender differences exist for many autoimmune diseases. Sex hormones impact 

the immune system and can be used to treat autoimmune disease. Androgens tend to be 

immunosuppressive, while estrogens tend to be immunoenhansive. Regulatory T cells are 

important components in controlling autoimmune disease. Regulatory Treg populations 

can vary between females and males and between different inbred strains of mice. With 

this in mind, we have investigated regulatory T cell populations in a mouse model of 
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lupus, comparing percentages between female and male lupus-prone BWFI mice and 

comparing BWFI Treg populations to other autoimmune-prone and less autoimmune­

prone strains of mice. 
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MATERIALS AND METHODS 

Mice. 

Female C57BLl6, BALB/c, SJL, and (NZBxNZW)Fl (BWFl) mice were either 

purchased from The Jackson Laboratories (Bar Harbor, ME) or bred and maintained in 

our animal facility at the University of Louisville. Animals were maintained under the 

guidelines stipulated by the University of Louisville Institutional Animal Care and Use 

Committee. 

Antibodies and reagents. 

The following monoclonal antibodies were purchased from BD Pharmingen 

(CA): anti-CD4-PerCP, anti-CD8-APC, anti-CD25-APC, anti-CD25-PE, anti-CD25-PE­

Cy7, anti-CD103-FITC, anti-Ki67-PE, anti-CD62L-APC, and anti-CD3 (2Cll). Anti­

Foxp3-PE and anti-Foxp3-APC were purchased from Ebioscience (CA). 

Flow cytometric analysis. 

Single cell suspensions of 2x 1 06 lymph node, spleen, or thymus cells were 

incubated with Fc block for 15 minutes at 4°C and then labeled with appropriate 

monoclonal antibodies in staining buffer (DPBS, 1 % FCS, 0.1 % NaNG3) for 15 minutes 

at 4°C in the dark, washed twice, and fixed in 2% formalin. For intracellular staining, 

cells were fixed and permeabilized following manufacturer's instructions. Stained cells 

26 



were collected and analyzed on a F ACS caliber (BD Pharmingen) or an LSR (Beckon 

Dickinson). 

Cell purification. 

Spleen cells were purified using T cell enrichment columns (R&D Systems). 

These purified T cells were pooled with unfractionated LN cells and applied to CD4 

enrichment columns (R&D Systems). For separation of CD25+ cells, enriched CD4+ T 

cells were then labeled with CD25-PE antibody. Following a 15 minute incubation at 4°C 

and wash with Miltenyi MACS buffer, cells were labeled with anti-PE beads (Miltenyi). 

Labeled CD4+ cells were then applied to an MS magnetic bead column and CD4+CD2Y 

and CD4+CD25+ cells were collected. For cell sorting, cells were labeled appropriately 

and sorted by a high-speed cell sorter (FACS Vantage or FACS Aria, BD Biosciences, 

CA) to >95% purity. 

In vitro suppression assay. 

The suppressive ability of magnetic bead purified CD4+CD25+ or sorted 

CD4+CD25+CDI03+ cells was tested by culturing them with CD4+CD2Y responder T 

cells at varying ratios in the presence of lxl05 irradiated spleen cells and 0.5ug/ml anti­

CD3. Cells were cultured in super complete media (phenol red-free RPMI 1640, 10% 

heat-inactivated charcoal filtered FCS, 2mM glutamine, 10mM Hepes, 100U/ml 

penicillin G sodium, 100ug/ml streptomycin sulfate, and 10-5 M 2-mercaptoethanol) for 4 

days at 3rC in 5% C02. On Day 3, the cells were pulsed with eH] thymidine (0.5uCi) 
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for 18 hours. On Day 4, cells were harvested and radioactivity read on a scintillation 

counter. 

Measurement of proteinuria. 

Urine from female and male BWF 1 mice was tested for the presence of protein bi­

monthly starting at 20 weeks of age using Albustix® (Bayer). Urine was scored from 0 to 

5,0 indicating no protein detected in urine, 1 indicating 30mg/dL protein detected in 

urine, 2 indicating 100mg/dL protein detected in urine, 3 indicating 300mg/dL protein 

detected in urine, 4 indicating over 2000mg/dL detected in urine, and 5 indicating death. 

A mouse was considered sick when it scored 3 or above on two consecutive test dates. 

Measurement of BrdU incorporation. 

Mice were injected i.p. with 1mg BrdU every 12 hours for 3 days. After 72 hours, 

mice were sacrificed and their organs harvested. Single cell suspensions were surface 

labeled as described above, then intracellularly labeled with anti-BrdU fluorescent 

antibody following manufacturer's instructions (BD Pharmingen). 

In vivo depletion ofCDl03. 

8-week-old female and male BWFI mice were injected i.p. with 1mg anti-CD 1 03 

monoclonal antibody (M290, BioXCell) or control IgG2a. These mice were treated twice 

a week with 0.5mg anti-CD 103 antibody or control IgG2a from 8-12 weeks of age. Mice 

were then treated with a 0.5mg maintenance dose of anti-CD 1 03 antibody or control 
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IgG2a once every 2 weeks from 12-20 weeks of age. Urine was tested every week for the 

presence of protein starting at 8 weeks of age. 

Statistical analysis. 

Data were subjected to analysis by student's t test or ANOVA and the Tukey­

Dramer multiple comparisons test. All experiments were performed at least two times, 

and most performed at least 5 times with similar results. A p-value s 0.05 is considered 

significant. * indicates p<0.05, ** indicates p<0.005, and *** indicates p<0.0005. 
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RESULTS 

SPECIFIC AIM I 

Assessing regulatory T cell populations in young autoimmune-prone and less­

autoimmune-prone strains of mice. 

The CD4+CD2S+Foxp3+ cells are important regulators of the immune response, 

and are particularly important for the control of autoreactive cells and the prevention of 

autoimmune diseases (123). A large number of studies that evaluate the number and 

function of CD4+CD2S+Foxp3+ regulatory cells have been conducted in both humans and 

mice that develop autoimmune/inflammatory diseases, including systemic lupus 

erythematosus, multiple sclerosis and type 1 diabetes, but the results have been 

inconclusive, i.e., some have found defects in numbers and/or function whereas others 

have not (160,162-169,172,173,244). In the current study, we compared the numbers 

and function of regulatory T cells from four different strains of mice that have varying 

predispositions to developing autoimmune diseases, including the (NZBxNZW)Fl 

(BWF1) and SJL strains which tend to be autoimmune disease-prone and the BALB/c 

and CS7BLl6 strains which are more autoimmune disease-resistant to determine whether 

differences in regulatory T cell number or function correlated with differences in 

susceptibility to disease. 

30 



CD4+CD2S+ regulatory cells from young female CS7BL/6, BALB/c, SJL and BWFI 

mice function similarly in an in vitro suppression assay. 

The CD4+CD25+ cells are the best studied of the regulatory T cells (123). Since 

their "discovery" in the mid-1990s, attention has focused on the relationship between 

CD4+CD25+ regulatory cell function/numbers and pre-disposition/susceptibility to 

autoimmune diseases (125,172-174,176,178,179). Female (NZBxNZW)Fl (BWF1) 

mice spontaneously develop systemic lupus erythematosus (SLE), and SJL mice are 

much more susceptible to induced autoimmune diseases than the C57BLl6 or BALB/c 

strains of mice (66,67). For this reason, we compared the characteristics of Tregs in 

these four strains of mice. The first question we addressed was whether there were 

qualitative differences in Treg function, i.e., differences in the ability of these cells to 

suppress responder T cell proliferation in vitro, between the different strains of mice. 

Although the classic in vitro assay for Treg-mediated suppression of responder cell 

proliferation may not always reflect the ability of Treg populations to regulate 

autoreactive cells in vivo, it is a measure of inherent Treg function and a defect in this 

function, even in vitro, would very likely translate into a defect in function in vivo. In the 

following experiments, we tested Treg function using two variations of the classic in vitro 

assay for regulatory cell function. First, using a protocol that standardized all of the 

potential variables except for the Tregs themselves, we tested the ability of CD4+CD25+ 

cells from the various strains of mice to suppress the same CD4+CD2Y responder 

cell/APC combination. For these experiments, varying numbers ofCD4+CD25+ cells 

from each of the four strains of mice were co-cultured with C57BLl6 CD4+CD25-

responder cells stimulated by C57BLl6 irradiated splenocytes as antigen presenting cells 
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(APC) and anti-CD3. We found that the Tregs from all four strains of mice suppressed 

proliferation of anti-CD3-activated CS7BLl6 responder cells equally effectively (Figure 

lA,7A). Next, we tested the ability ofCD4+CD2S+ cells from the various strains of mice 

to suppress their own CD4+CD2S- responder cell/APC combination (i.e., CD4+CD2Y 

responders and APC that were syngeneic to the Tregs) in the presence of anti-CD3 

antibody. As shown in Figure lB, we found that CD4+CD2S+ cells from all four strains 

of mice were equally effective at suppressing proliferation of anti-CD3-activated 

syngeneic responder cells in vitro (Figure lB, 7B). In summary, we found no 

consistently significant differences in the ability of CD4+CD2S+ Tregs from any of the 

four strains to suppress responder cell proliferation in vitro and we, therefore, concluded 

that there were no differences in inherent Treg function between the four strains of mice 

tested. 

BWFI mice have very low percentages of peripheral CD4+Foxp3+ cells by 

comparison to other strains of mice. 

In addition to issues with regulatory function by Tregs, another contributing factor 

to the predisposition of humans and particular strains of mice to autoimmune disease 

could be an imbalance between the effector CD4 and regulatory T cell populations. In 

the following experiments, we performed a quantitative analysis of Tregs in the four 

different strains of mice. CD4+ cells collected from lymph node (LN) and spleen from 

the four different strains, BWFl, SJL, CS7BLl6 and BALB/c, of young female mice were 

evaluated for expression of the transcription factor, Foxp3, a hallmark ofCD4+CD2S+ 

regulatory cells. In general, BWFI mice had by far the lowest percentages of 
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CD4+Foxp3+ cells (i.e., percentage ofCD4 cells expressing Foxp3) among the 4 strains 

evaluated, and in LN, had less than half the level found in C57BLl6 and BALB/c mice 

(Figure 2A). Although not quite as low, SJL mice also had low percentages of 

CD4+Foxp3+ cells in LN compared to BALB/c mice and C57BLl6, but fairly high 

percentages in spleen (Figure 2A). The patterns of percentages of CD4+CD25+ cells (i.e., 

percentages of CD4 cells expressing CD25) in both the LN and spleen were very similar 

to those found for CD4+Foxp3+ cells in all four strains (Figure 2C). The percentages of 

CD4+CD25+ cells that expressed Foxp3 were very similar in all four strains of mice 

(>90%, data not shown), and the level of Foxp3 expression (as indicated by the mean 

fluorescence intensity, MFI) in CD4+CD25+Foxp3+ cells was also similar for all four 

strains of mice (Figure 2D). Taken together, these data indicated that the Foxp3+ Treg to 

effector (Foxp3-) CD4 cell ratio (i.e., as reflected by the percentages of CD4+Foxp3+ 

cells) in the peripheral lymphoid organs differs between strains and tends to be lower in 

autoimmune-prone mice. 

The analysis described above evaluated percentages, but not numbers, of cells in 

the various populations. Analysis of the numbers is important because it can reveal 

whether it is relative decreases in the numbers of CD4+ Foxp3+ cells or increases in the 

CD4+Foxp3- cells that produce differences in the CD4+Foxp3+ to CD4+Foxp3- ratios. We 

found that the SJL mice had the highest total numbers of all cells (Table 1) as well as 

CD4+ cells (Figure 6B) in both LN and spleen among the four strains evaluated. The SJL 

mice also had the highest numbers of both CD4+Foxp3+ cells (>4-fold more; Figure 2B) 

in LN and spleen of all four strains. C57BLl6 and BWFI mice tended to have the lowest 

numbers of CD4+Foxp3+ cells (Figure 2B). Overall, the numbers of peripheral 
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CD4+Foxp3+, with the exception of SJL mice, did not vary dramatically between the 

strains, and we concluded that these lower numbers of CD4+Foxp3+ cells could not 

account for the differences in percentages. 

BWFl and SJL mice have low percentages of peripheral CD4+CD2S+CD103+ cells. 

A number of different markers have been associated with CD4+CD2S+ regulatory cell 

phenotype and function (12S, 127, 128, 143-147, 149, ISO), and variations in their 

expression could affect regulatory T cell function in vivo. The integrin, CD103 (aE~7)' is 

expressed on the surface of cells and is involved in retaining cells at sites of inflammation 

via interaction with its ligand, E-cadherin (198,199,212). In the CD4+CD2S+ regulatory 

cell population, CD 103 also identifies a highly potent subset that is thought to represent a 

memory/effector phenotype (207, 210). Because of the unique and potentially important 

disease-preventing properties of this population ofTregs, we compared the function and 

quantity ofCD4+CD2S+CD103+ cells between the four strains of mice. In the following 

experiments, the regulatory function of sorted CD4+ CD2S+ CD 1 03 + cells from the four 

strains of mice was evaluated using the in vitro assay described above in which varying 

numbers ofCD4+CD2S+CD103+ cells from the different strains were co-cultured with 

their own CD4+CD2Y responder cell/APC combination (i.e., syngeneic CD4+CD2Y 

responders and APC) in the presence of anti-CD3 antibody. As shown in Figure 3D, the 

CD4+CD2S+CD103+ cells from all four strains of mice were able to suppress syngeneic 

responders to the same extent (Figure 3D, 7C). We also performed a quantitative 

analysis of CD4 + CD2S+ CD 1 03 + cells in the lymphoid organs of the four strains of mice. 

The CD4+CD2S+ cells from LN and spleen of the four strains of mice were evaluated for 
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expression ofCD103. The percentages and numbers ofCD4+CD25+CD103+ cells (i.e., 

percentage ofCD4+CD25+ cells that express CDI03) were dramatically lower in the LN 

and spleen ofBWFl mice compared to the other three strains of mice (Figure 3A, 6C). 

The percentages of CD4+CD25+CDI 03+ cells were also quite low in the LN of SJL mice, 

although they were actually fairly high in the spleen (Figure 3A). On the other hand, the 

percentages of CD4+CD25+CD103+ cells in the spleen, but not LN, of C57BLl6 mice 

were very low (Figure 3A). Interestingly, CDI03 (MFI) expression in 

CD4+CD25+CDI03+ cells from the LN was significantly and consistently lower in BWFI 

mice than the other three strains and was also lower in cells from the spleen ofBWFl 

than either BALB/c or SJL mice (Figure 3B, 3C). There were no differences in the 

percentages ofCD4+CD25+CDl03+ cells that expressed Foxp3 (>90%) between any of 

the four strains or in the expression (MFI) of Foxp3 by this population (data not shown). 

Taken together, these data indicated that the autoimmune-prone strains of mice tended to 

have lower percentages ofCD4+CD25+CDl03+ cells at least in the LN, and in the case of 

B WF 1 mice, lower expression of CD 1 03. 

Neither thymic production nor proliferation rate appear to account for the 

differences in either CD4+Foxp3+ cells or CD4+CD2S+CDI03+ cells percentages in 

the periphery between strains. 

Several factors can influence the numbers/relative proportions of peripheral T cell 

populations, and these include thymic production of T cells and proliferation (non­

antigen-induced) of peripheral T cell populations (185, 257). We first examined thymus 

glands from each of the four strains of mice. The BWFI strain of mice had the highest 
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thymic weights and total cell numbers in the thymus, (Table 1), but not numbers of 

CD4+CD8- cells (Figure 6B). The SJL mice had very high percentages and numbers of 

CD4+CD8- cells in the thymus (Figure 6A, 6B). Importantly, the percentages of 

CD4+CD8-Foxp3+ cells in the thymus were comparable in the BALB/c, SJL and BWFI 

strains whereas C57BLl6 strain had low percentages (Figure 4A). The SJL mice had 

dramatically higher numbers of CD4+CD8-Foxp3+ cells in the thymus (Figure 2B) than 

the other strains of mice which is not surprising since as mentioned above, this strain also 

had considerably higher numbers of thymic CD4 cells than the other strains of mice. 

BWFI had comparable or even higher numbers ofCD4+CD8-Foxp3+ cells in the thymus 

than either C57BLl6 or BALB/c mice. 

Most evidence suggests that CD 103 is upregulated in Tregs after activation in the 

periphery hence the hypothesis that CD4+CD25+ that express CDI03 cells are effector 

and/or memory cells (207, 210, 212). However, CD4+CD25+CDI03+ cells can be found 

in the thymus and some evidence suggests that at least some of these cells may also be 

produced in the thymus (258). For this reason, we analyzed the thymus of the four 

different strains of mice for CD4+CD25+CDI 03+ cells. The CD103+ cells, albeit in small 

numbers, could be detected in the thymus, and C57BLl6 mice had very low and BALB/c 

mice very high percentages (>5-fold higher than C57BLl6 mice) ofCD4+CD25+CD103+ 

cells (Figure 4B). SJL mice had high numbers (Figure 6C) and moderately high 

percentages (Figure 4B; although still one-half of that found in BALB/c mice) of 

CD4+CD25+CDI03+ cells in the thymus. From these data, we concluded that there 

appeared to be little relationship between the thymic production of CD4+Foxp3+ cells and 

CD4+CD25+CDI03+ cells, at least in terms of their relative percentages in the periphery. 
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Furthermore, when we compared the proportion of CD4+Foxp3+ cells in the thymus to 

that in the periphery, we found that the thymic to peripheral CD4+Foxp3+ cell ratio in 

BWFI was twice that of the other three strains (Figure 4C), suggesting that it is not likely 

to be the ability of the BWFI thymus gland to produce CD4+Foxp3+ cells that is an issue 

here. 

T cells cycle, albeit slowly, in the absence of their cognate antigen in a non­

lymphopenic environment, and differences in proliferation rate of either the Tregs or 

effector cells could affect the Treg to effector T cell balance (i.e., the Treg percentages) 

in the periphery. To determine whether there were differences in the proliferation rate of 

T cell populations between the four strains of mice, LN and spleen cells from BWFl, 

CS7BLl6, BALB/c, and SJL mice were labeled for CD4, CD2S, Foxp3, CD103 and in 

order to identify actively proliferating cells, Ki67. The SJL mice tended to have greater 

percentages of both CD4+Foxp3+ cells and CD4+CD2S+CD103+ cells that expressed Ki67 

(i.e., cells that were in the active phases of the cell cycle) compared to the other three 

strains which all had comparable levels of proliferating cells (Figure SA, SC). The 

BALB/c, SJL and BWFI mice had comparable percentages ofCD4+Foxp3- cells that 

were proliferating whereas CS7BLl6 tended to have higher percentages of proliferating 

CD4+Foxp3- cells (Figure SB). To further examine the relationship between proliferating 

Tregs (CD4+Foxp3+ cells) and effector CD4 cells (CD4+Foxp3- cells), we analyzed the 

ratio between these two populations. As shown in Figure SD, the proliferating Treg to 

effector CD4 cell ratio tended to be somewhat higher in SJL mice compared to the other 

strains, and the differences in ratios did not correlate with differences in percentages of 

CD4+Foxp3+ cells in peripheral lymphoid organs. From these data, we concluded that 
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there did not appear to be any type of direct correlation or association between 

differences in effector or Treg CD4 cell proliferation and the percentages of CD4+Foxp3+ 

cells in the periphery. 

Summary 

In this study we compared regulatory T cell percentages and function between 

young females from four strains of mice. We found decreased percentages but not a 

decrease in inherent suppressive function of Tregs in BWFI mice compared to the other 

strains. Differences in thymic production and homeostatic proliferation could not account 

for the differences in peripheral percentages seen between four strains of mice. These 

data suggest that reduced percentages of both CD4+Foxp3+ and memory/effector 

CD4+CD25+CDI03+ subsets of Tregs in the periphery, and not decreased function, at 

least in vitro, appear to be an important difference between lupus-prone BWFI mice and 

other autoimmune-prone SJL mice and less-autoimmune prone C57BLl6 and BALB/c 

mIce. 
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Figure 1. Regulatory function of CD4+CD25+ cells from four strains of mice. 

CD4+CD25+ cells were purified from 9-week-old female C57BLl6, BALB/c, SJL, and 

BWFI mice and varying numbers co-cultured with a constant number of (A) C57BLl6 

CD4+CD2Y responder cells and APC (irradiated spleen cells) or (B) syngeneic 

CD4+CD2Y responder cells and APC and soluble anti-CD3 antibody. % suppression of 

positive control (responder cells alone) was calculated and the mean ± SEM presented for 

4-5 separate experiments. 
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Figure 2. Percentages and numbers of CD4+Foxp3+ cells in four strains of mice. Cells 

from lymph nodes (LN), spleen and thymus of 9-week-old female C57BLl6 (B6), 

BALBIc, SJL and (NZBxNZW)Fl (BWFl) mice were labeled with anti-CD4, anti-CD25, 

and anti-Foxp3 antibodies and analyzed by FACS®. (A) Labeled CD4+ cells were gated 

and analyzed for the percentages of cells expressing Foxp3 in LN and spleen. (B) The 

total numbers of CD4+Foxp3+ cells in lymph nodes, spleen, and thymus (n=16) are 

shown. (C) Labeled CD4+ T cells were gated and analyzed for the percentages of cells 

expressing CD25 in LN and spleen. CD) Histogram of Foxp3 expression in CD4+CD25+ 
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cells from a representative sample ofLN cells from B6, BALB/c, SJL, and BWFI mice. 

(A, C) A representative experiment of 5 performed is shown. Each symbol represents an 

individual animal. Statistical differences were analyzed using a student's t test or 

ANOVA and the Tukey-Kramer multiple comparisons test. * p<O.05, ** p<O.005, and 

*** p<O.0005. 
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Figure 3, Regulatory function and percentages of CD4+CD2S+CDI 03+ cells in the 

periphery of four strains of mice, Cells from lymph nodes (LN) and spleen of 9-week-old 

female C57BLl6 (B6), BALB/c, SJL and (NZBxNZW)Fl (BWFl) mice were labeled 
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with anti-CD4, anti-CD25, and anti-CD 103 antibodies and analyzed by FACS®. (A) 

Labeled CD4+CD25+ cells were gated and analyzed for the percentages of cells 

expressing CDI03 in LN and spleen. (B) Labeled CD4+CD25+ cells were gated and 

analyzed for the per cell expression of CD 1 03 in LN and spleen. (C) Histogram of 

CDI03 expression in CD4+CD25+ cells from a representative sample ofLN cells from 

B6, BALB/c, SJL and BWFI mice. (A, B) A representative experiment of 5 performed is 

shown. Each symbol represents an individual animal. (D) CD4+CD25+CDI03+ cells 

were purified from 9-week-old female C57BL/6, BALB/c, SJL, and BWFI mice and 

sorted and varying numbers co-cultured with a constant number of syngeneic 

CD4+CD2Y responder cells and APC and soluble anti-CD3 antibody. % suppression of 

positive control (responder cells alone) was calculated and the mean ± SEM presented for 

4-5 separate experiments. Statistical differences were analyzed using a student's t test or 

ANOVA and the Tukey-Kramer multiple comparisons test. * p<0.05, ** p<0.005, and 

*** p<0.0005. 
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Figure 4. Percentages ofCD4+Foxp3+ and CD4+CD25+CDI03+ cells in thymus of four 

strains of mice. Cells from thymus of9-week-old female C57BLl6 (B6), BALB/c, SJL 

and (NZBxNZW)FI (BWFI) mice were labeled with anti-CD4, anti-CDS, anti-CD25, 

anti-CD103 and anti-Foxp3 antibodies and analyzed by FACS®. (A) Labeled CD4+CDS-

cells were gated and analyzed for the percentages of cells expressing Foxp3 in thymus. 

(B) Labeled CD4+CDS-CD25+ cells were gated and analyzed for the percentages of cells 

expressing CD 1 03 in thymus. (C) Ratio of numbers of CD4 + CD8-F oxp3 + cells in the 
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thymus to numbers of CD4+Poxp3+ cells in the periphery (i.e., LN and spleen). (A, B) A 

representative experiment of S performed is shown. Each symbol represents an individual 

animal. Statistical differences were analyzed using a student's t test or ANOV A and the 

Tukey-Kramer multiple comparisons test. * p<O.OS, ** p<O.OOS, and *** p<O.OOOS. 
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Figure 5. Percentages of proliferating CD4+Foxp3+, CD4+Foxp3- and 

CD4+CD25+CDI03+ cells in the periphery of four strains of mice. Cells from lymph 

nodes (LN) and spleen of 9-week-old female C57BLl6 (B6), BALB/c, SJL and 

(NZBxNZW)Fl (BWFl) mice were labeled with anti-CD4, anti-CD25, anti-Foxp3, anti-

CDI03 and anti-Ki67 antibodies and analyzed by FACS®. (A) Labeled CD4+Foxp3+ cells 

were gated and analyzed for the percentages of cells expressing Ki67 in LN and spleen. 

(B) Labeled CD4+Foxp3- cells were gated and analyzed for the percentages of cells 

expressing Ki67 in LN and spleen. (C) Labeled CD4+CD25+CD103+ cells were gated and 

analyzed for the percentages of cells expressing Ki67 in LN and spleen. (D) Proliferation 

ratios were calculated by dividing the percentage of proliferating (Ki67+) CD4+Foxp3+ 

cells by the percentage of proliferating CD4+Foxp3- cells from LN and spleen (n=15). (A, 

B, C) A representative experiment of 3 performed is shown. Each symbol represents an 

individual animal. Statistical differences were analyzed using a student's t test or 

ANOVA and the Tukey-Kramer multiple comparisons test. * p<O.05, ** p<O.005, and 

*** p<O.0005. 

48 



A 

100 

75 

+ 

~ 50 u 
';t. 

25 

c 
"""' "'0 ..... 0.6 
x 
'-' 
+ 

("') 
o 
C 0.4 
u 

+ 
II) 
N 
C 
P 0.2 
'<t c 
U 
~ 

C57BU6 BALB/c SJL BWF1 

~ O-t-L......Io,",",+ 
{:. C57BU6 BALB/c SJL BWF1 

8 

....... 
"'0 

60 

";( 40 
'-' 
+ 
'<t 
C 
U 
~ 20 
iii 

~ 
o 

D 

"""' 80 
"'0 
..... 
~ 60 
("') 

Co 
x 

&f 40 
+ 
'<t 
C 
u 20 
~ 

III 

~ 0 

C57BU6 BALB/c SJL BWF1 

C57BU6 BALB/c SJL BWF1 

Figure 6. Percentages and numbers of CD4+ cells and numbers of CD4+CD25+CD 1 03+ 

cells. Cells from thymus, lymph nodes (LN) and spleen of 9-week-old female C57BLl6 

(B6), BALB/c, SJL and (NZBxNZW)Fl (BWFl) mice were labeled with anti-CD4, anti-

CD25, anti-CD 103 and anti-Foxp3 antibodies and analyzed by FACS®. (A) Percentages 

and (B) numbers of CD4 single positive cells were determined. (C) Labeled CD4+CD25+ 

cells (CD4+CD8+CD25+ cells in the thymus) were gated and numbers of cells expressing 

CDI03 were determined. (D) CD4+Foxp3- cells (CD4+CD8+Foxp3- cells in the thymus) 

were gated and numbers of cells were determined. 
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Figure 7. In vitro analysis of suppression by CD4+CD2S+ and CD4+CD2S+CDI03+ cells 

from four strains of mice. CD4+CD2S+ (A, B) or CD4+CD2S+CDI03+ (C) cells were 

purified from 9-week-old female CS7BLl6, BALB/c, SJL, and BWFI mice and varying 

numbers co-cultured with a constant number of (A, C) autologous or (B) CS7BLl6 

CD4+CD2Y responder cells and either (A, C) autologous or (B) CS7BLl6 irradiated 

spleen cells and soluble anti-CD3 antibody. A representative experiment from among 

(A) 4-S separate experiments or (B, C) 2-4 separate experiments is shown. Data are 

shown as mean counts per minute (CPM) ± SEM and statistical differences were 

analyzed using a student's t test or ANOVA and the Tukey-Kramer multiple comparisons 

test. * p<O.OS, ** p<O.005, *** p<O.0005 compared to control. 
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Table 1: Thymic Weiehts (me) and Total Cell #s (x106
) 

Thymic Weights 
Thymus Total 

LN Total Cell #s Spleen Total Cell 
Strains 

(mg) n=20 
Cell #s (xl06) 

(x106) n=16 #s (x106) n=16 
n=16 

C57BL/6 46.2 ± 2.3 149.3 ± 9.8 17.6 ± 1.0 106.5 ± 5.7 
BALB/c 38.1 ± 0.9 109.0 ± 6.2 21.2 ± 1.2 124.1 ± 5.4 

SJL 52.2 ± 2.4 121.7±9.1 106.8 ± 10.3 163.0 ± 6.4 
BWF1 78.9 ± 1.9 176.3 ± 10.6 26.4 ± 1.3 118.5 ± 6.9 

Table 1. Thymic weights and cell numbers in thymus, lymph nodes and spleen in four 

strains of mice. Thymus, lymph nodes and spleen were collected from 9-week-old female 

C57BLl6, BALB/c, SJL and BWFI mice and weights or cell numbers determined. 
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--------------------------------------------------------

SPECIFIC AIM II 

Decrease in regulatory T cell percentages, but not function, may contribute to 

female susceptibility to autoimmune disease. 

Women are more susceptible to many autoimmune diseases than men (1). For 

example, women are nine times more likely to develop systemic lupus erythematosus (1). 

This increased susceptibility to disease can be seen in many mouse models of 

autoimmunity as well (66, 67, 109, 172, 173). It has been shown that regulatory T cells 

are an important cell type in the control of autoimmune disease (123). Mice that lack 

functional Foxp3, and thus lack regulatory T cells, live only to 21 days of age and 

develop severe autoimmune disease (127). These mice can be rescued from disease by 

adoptive transfer of regulatory T cells (127). To determine how gender differences in 

regulatory T cells could contribute to autoimmune disease susceptibility, we investigated 

regulatory T cell function and percentages in females and males from four different 

strains of mice, two autoimmune-prone strains, the (NZBxNZW)F1 (BWF1) and SJL 

strains, and two less autoimmune-prone strains, the C57BLl6 and BALB/c strains. 

Female BWF1 mice develop lupus-like disease spontaneously whereas males only 

develop disease after castration. SJL mice are susceptible to multiple induced 

autoimmune diseases, while C57BLl6 and BALB/c mice are both relatively resistant to 

induced disease. 
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CD4+CD2S+ regulatory cells from young female CS7BL/6, BALB/c, SJL, and BWFI 

mice function similarly to strain-matched males in an in vitro suppression assay. 

To compare inherent Treg function between females and males, we cultured 

varying numbers of bead-purified CD4+CD2S+ cells from 8-9-week-old female and male 

mice of each strain in a standard in vitro suppression assay, using syngeneic male 

CD4+CD2Y T cells as responders, syngeneic male irradiated spleen cells as APC, and 

anti-CD3 antibody to stimulate. While in vitro suppression assays do not necessarily 

reflect exactly what is happening in vivo, they do allow for comparison of the suppressive 

function of regulatory T cells between groups in a controlled environment. We found no 

significant differences between female and male CD4+CD2S+ Treg suppressive function 

in vitro in any of the four strains studied (Figure 8). This result was surprising for BWFI 

mice in particular, as females are more susceptible to disease in this strain. These data 

suggest that there is no inherent defect in female Treg suppressive function in the 

autoimmune-prone and less autoimmune-prone strains in this study, although this does 

not rule out the possibility that differences in female and male Treg function exist in vivo. 

Female lupus-prone BWFI mice have significantly lower percentages of 

CD4+Foxp3+ Tregs than BWFI males. 

The CD4+CD2S+ regulatory T cells from female autoimmune-prone mice did not 

show decreased suppressive function in vitro compared to males (Figure 8). This led us to 

hypothesize that perhaps it was a decreased ratio or absolute number of Tregs in female 

mice and not a defect in their function that contributed to their disease susceptibility. 

Although there were no differences in the percentages of CD4+ T cells between female 
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and male mice of any of the four strains studied in either LN or spleen (Table 2), female 

BWFI mice did have significantly lower CD4+Foxp3+ cell percentages in the LN, but not 

spleen, than males (Figure 9A). No consistent gender differences were seen in the 

percentages of CD4+Foxp3+ cells in either LN or spleen of C57BLl6, BALB/c, or SJL 

mice, however C57BLl6 females trended toward having lower percentages in 

experiments even when they were not actually significantly lower (Figure 9A, Table 3). 

Although the percentage of CD4+Foxp3+ cells was significantly lower in the LN 

of female BWFI mice, there were no differences between female and male mice in the 

total cell number of CD4+Foxp3+ cells in LN or spleen (Figure 9B). Interestingly, in the 

LN of both SJL and BALB/c mice, females tended to have statistically higher total 

CD4+Foxp3+ cell numbers than males, although not always significant (Figure 9B, Table 

4A). This increase in CD4+Foxp3+ cell numbers in LN of female SJL and BALB/c mice 

compared to male mice is no doubt due to the greater number of CD4+ cells found in LN, 

in general, in female compared to male SJL mice (Table 5A). C57BLl6 mice showed no 

gender difference in CD4+Foxp3+ total cell number (Figure 9B, Table 4). Similar to 

CD4+Foxp3+ cell percentages, BWFI females had significantly lower percentages of 

CD4+CD25+ cells in LN, but not spleen, while none of the other strains showed a gender 

difference in percentages of these cells (Figure 9C). There were no gender differences in 

per cell expression of Foxp3 in CD4+CD25+ T cells in any of the four strains studied 

(Figure 9D, Table 6). Together, these data suggest that in BWFI mice, in which females 

are more susceptible to disease, a lower Treg:effector cell ratio in female mice could 

contribute to increased disease susceptibility. 
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Female mice from all four strains have significantly lower percentages of the potent 

CD4+CD2S+CDI03+ regulatory T cell subset. 

CD 103 (aE~7) is an integrin expressed on the surface of a more potent 

subset of Tregs that are thought to represent a memory/effector population (207-209). 

CD4+CD25+CDI03+ Tregs have been shown to be more potent suppressors than 

CD4+CD25+CDI03- Tregs both in vitro and in vivo in mouse models of autoimmune 

disease (149, 207, 211). CDI03 helps retain Tregs at sites of inflammation where they are 

thought to receive activation signals contributing to their memory/effector Treg 

phenotype (212). To evaluate CDI03+ Treg function in vitro, we cultured varying 

numbers of sorted CD4+CD25+CDI03+ cells from female and male mice of each strain in 

a standard in vitro suppression assay, using syngeneic male CD4+CD2Y T cells as 

responders, syngeneic male irradiated spleen cells as APC, and stimulated by anti-CD3 

antibody. Again, as with the CD4+CD25+ Tregs, we found no significant differences 

between female and male CD4+CD25+CDI03+ Treg suppressive function in vitro in any 

of the four strains studied (Figure 10D). Thus, an inherent defect in female Treg 

suppressive function is not responsible for increased female susceptibility to disease, 

although this does not rule out the possibility that differences in female and male Treg 

function exist in vivo. 

Females of all four strains of mice studied, which included both autoimmune­

prone and less autoimmune-prone strains of mice, had significantly lower percentages of 

CD4+CD25+CDI03+ cells in their LN compared to their male counterparts (Figure lOA). 

Interestingly, only lupus-prone female BWFI mice had significantly lower percentages of 

CD4+CD25+CDI03+ cells in spleens than male BWFI mice (Figure lOA). Females from 
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both CS7BLl6 and BWFI mouse strains had significantly lower total 

CD4+CD2S+CDI03+ cell numbers than strain-matched males in LN, but not spleen 

(Table 7). Interestingly, not only did females of each strain have lower percentages of 

CD4+CD2S+CDI03+ cells in LN compared to males, but female BWFI and C57BLl6 

mice also expressed lower levels ofCDI03 than males in LN (Figure lOB, IOC, Table 8). 

These data together suggest that, particularly in the LN, gender may strongly influence 

CD4+CD2S+CD 1 03+ Treg populations. Gender differences, presumably hormonal 

differences, appear to impact this CDI03+ Treg population more than the CD4+Foxp3+ 

Tregs in general. 

Thymic production of CD4+Foxp3+ or CD4+CD2S+CDI03+ Tregs does not playa 

role in the lower percentages of these cells in the periphery. 

To determine whether a defect in thymic CD4+Foxp3+ and/or 

CD4+CD25+CDI03+ cell production was the cause of decreased Treg percentages in the 

periphery in females, we examined Treg populations in the thymus. We found no 

differences between female and male thymic percentages of CD4+Foxp3+ cells in the 

thymus of any of the four strains studied (Figure llA, Table 3C). Interestingly, we found 

that both BALB/c and SJL mice had higher total CD4+Foxp3+ cell numbers in females 

than males, and while not always significant, both C57BLl6 and BWFI females tended to 

have higher total CD4+Foxp3+ cell numbers as well (Figure 9B, Table 4C). Although 

females had higher thymic total cell numbers in all four strains, only female SJL and 

female BWFI mice had higher thymic weights than strain-matched males (Table 9A). 
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There were no differences in percentages of thymic CD4+CD25+CDI03+ cells 

between females and males in any of the four strains studied (Figure lIB). It is unclear 

whether the CD4+CD25+CDI03+ cells found in the thymus develop there or have simply 

re-entered from the periphery, so we cannot completely rule out gender differences in 

thymic production (259). However, these data together suggest that it is unlikely that a 

defect in thymic production of Tregs is responsible for the decreased percentages of 

CD4+Foxp3+ cells seen in BWFI females and the decreased percentages of 

CD4+CD25+CDI03+ cells found in females of all four strains in the periphery. 

Differences in non-Treg proliferation in vivo may account for decreased 

CD4+Foxp3+ peripheral percentages in female BWFI mice, but proliferation does 

not appear to playa role in decreased female CD4+CD2S+CDI03+ peripheral 

percentages. 

T cells cycle in the periphery, and it is, in part, through this mechanism that 

peripheral T cell populations, including Tregs, are maintained (257). A higher 

proliferation rate of male CD4+Foxp3+ and CD4+CD25+CDI03+ cells in vivo compared to 

females could account for lower peripheral Treg percentages in females. Alternatively, if 

the CD4+Foxp3- (non-Treg) proliferation rate is higher in females than males, this could 

also account for decreased percentages of Tregs in the periphery of females. To detect 

proliferating cells, we used the Ki67 marker, which identifies cells in active cell cycle. It 

was only the BALB/c strain that exhibited differences in percentages of proliferating 

CD4+Foxp3+ cells in either the LN or spleen (Figure 12A). However, the BALB/c strain 

does not have a gender difference in CD4+Foxp3+ percentages in the periphery, so the 
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significance of the differences in the proliferation rate is unclear. Interestingly, in the LN, 

female BWFI mice had a higher percentage of proliferating CD4+Foxp3- cells (non-Treg) 

than males, which, as discussed above, may contribute to the decreased ratio of 

CD4+Foxp3+:CD4+Foxp3- cells found in the periphery in these mice (Figure 12B). None 

of the other three strains of mice showed gender differences in CD4+Foxp3- proliferation 

in the LN (Figure 12B). SJL mice were the only strain with gender differences in the 

percentages of proliferating CD4+Foxp3- cells in the spleen, with more proliferating 

CD4+Foxp3- cells in females than males (Figure 12B). However, there were no gender 

differences in the percentage of CD4+Foxp3+ cells in the periphery (either LN or spleen) 

of SJL mice. Interestingly, there were no gender differences in the percentages of 

proliferating CD4+CD25+CDI03+ cells in any of the four strains studied in the LN or 

spleen (Figure 12C). This indicates that differences in proliferation of these cells in vivo 

do not account for gender differences in peripheral percentages of CD4 + CD25+ CD 1 03 + 

cells. 

BWFI mice were the only strain of the four studied where females had decreased 

percentages of CD4+Foxp3+ cells in the LN when compared to age- and strain-matched 

males (Figure 9A). Interestingly, BWFI mice were also the only strain in which the ratio 

of proliferating Foxp3+:Foxp3- cells was significantly lower than the proliferation ratio in 

BWFI males (Figure 12D). These data together suggest that increased proliferation of 

CD4+Foxp3- non-Tregs, which decreases the Foxp3+:Foxp3- proliferation ratio, in female 

BWFI mice compared to males may contribute to the decreased CD4+Foxp3+ 

percentages seen in the LN. Furthermore, although one of the characteristics of 

CD4+CD2S+CDI03+ cells is that they proliferate at a much greater rate than 
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CD4+CD2S+CD103- cells, the lower percentages of these cells in the periphery of females 

was not due to a lower proliferation rate among these cells. 

Summary 

In this study, we have found that regulatory:effector T cell ratio and not inherent 

suppressive function of Tregs, are reduced in the periphery of autoimmune-prone mice. 

The potent CD4+CD2S+CDI03+ regulatory T cell subset may be most sensitive to 

hormonal influence, as these cells are found at lower percentages in the periphery of 

female mice of all four strains studied in comparison to strain-matched males. Neither a 

defect in thymic production or differences in homeostatic proliferation could account for 

the differences in peripheral percentages seen between females and males. Other 

mechanisms will need to be explored to explain the lower CD4+CD2S+CD103+ Treg 

percentages seen in female mice and will be discussed further in the general discussion. 
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Figure 8. Regulatory function of female vs. male CD4+CD2S+ cells from four strains of 

mice. CD4+CD2S+ cells were purified from 8-9-week-old female and male CS7BLl6, 

BALB/c, SJL, and BWFI mice and varying numbers co-cultured with a constant number 

of syngeneic male CD4+CD25" responder cells and male APC and soluble anti-CD3 

antibody. % suppression of positive control (responder cells alone) was calculated and 

the mean ± SEM presented. Statistical differences were analyzed using a student's t test 

or ANOVA and the Tukey-Kramer multiple comparisons test. * p<O.OS, ** p<O.OOS, and 

*** p<O.OOOS. 
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Figure 9. Percentages and numbers ofCD4+Foxp3+ cells in four strains of mice. Cells 

from lymph nodes (LN) and spleen of 8-9-week-old female and male C57BLl6 (B6), 

BALB/c, SJL and (NZBxNZW)FI (BWFI) mice were labeled with anti-CD4, anti-CD25, 

and anti-Foxp3 antibodies and analyzed by F ACS®. (A) Labeled CD4+ cells were gated 

and analyzed for the percentages of cells expressing Foxp3 in LN and spleen. (B) The 

total numbers of CD4+Foxp3+ cells in lymph nodes, spleen, and thymus are shown. (C) 

Labeled CD4+ cells were gated and analyzed for the percentages of cells expressing 

CD25 in LN and spleen. (D) A sample histogram showing Foxp3 expression on 

CD4+CD25+ cells in LN is shown. (A, C) A representative experiment of 4-9 performed 

is shown. Each symbol represents an individual animal. Statistical differences were 

analyzed using a student's t test or ANOVA and the Tukey-Kramer multiple comparisons 

test. * p<O.05, ** p<O.005, and *** p<O.0005. 
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Figure 10. Percentages and suppressive function in vitro ofCD4+CD25+CDl03+ cells in 

four strains of mice. Cells from lymph nodes (LN) and spleen of 8-9-week-old female 

and male C57BLl6 (B6), BALB/c, SJL and (NZBxNZW)Fl (BWFl) mice were labeled 

with anti-CD4, anti-CD25, and anti-CD 1 03 antibodies and analyzed by FACS®. (A) 

Labeled CD4+CD25+ cells were gated and analyzed for the percentages of cells 

expressing CDl03 in LN and spleen, (B) Labeled CD4+CD25+ cells were gated and 

analyzed for the per cell expression of CD 103 in LN and spleen. (C) A sample histogram 
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showing CDI03 expression on CD4+CD25+ cells in LN is shown. (D) 

CD4+CD25+CDI03+ cells were purified from female and male C57BL/6, BALB/c, SJL, 

and BWFI mice and varying numbers co-cultured with a constant number of syngeneic 

male CD4+CD2Y responder cells and APC and soluble anti-CD3 antibody. % 

suppression of positive control (responder cells alone) was calculated and the mean ± 

SEM presented. (A,B) A representative experiment of 4-9 performed is shown. Each 

symbol represents an individual animal. Statistical differences were analyzed using a 

student's t test or ANOVA and the Tukey-Kramer multiple comparisons test. * p<O.05, 

** p<O.005, and *** p<O.0005. 
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Figure 11. Percentages ofCD4+Foxp3+ and CD4+CD2S+CDI03+ cells in thymus in four 

strains of mice. Cells from lymph nodes (LN) and spleen of 8-9-week-old female and 

male CS7BLl6 (B6), BALB/c, SJL and (NZBxNZW)FI (BWFl) mice were labeled with 

anti-CD4, anti-CD2S, anti-CDI03, and anti-Foxp3 antibodies and analyzed by FACS®. 

Labeled cells were gated and analyzed for (A) percentages of CD4+ cells expressing 

Foxp3 and (B) percentages ofCD4+CD2S+ cells expressing CDI03. A representative 

experiment of 4 performed is shown. Each symbol represents an individual animal. 

Statistical differences were analyzed using a student's t test or ANOVA and the Tukey-

Kramer multiple comparisons test. * p<O.OS, ** p<O.OOS, and *** p<O.OOOS. 

69 



A 
LN 

30 

+,... 25 i+-
+~ 20 + r+ r.+ r+ 
~ --t- ++ o 15 
Ll. 

+ 10 
~ 
(.) 

rJe 5 

o~~~~~~~~~~~ 
FMFM FMFM 

B6 BALB/c SJL BWF1 

B 
LN 

10 

6 

4 

2 

o~~~~~~~~~~~ 
FMFMFMFM 

B6 BALB/c SJL BWF1 

c 
LN 

60 + ,... 

+~ 50 + + r+ 
~ 40 r+ + -I- r+ i+-
P 30 11 
It) 
N 
C 20 (.) 

+ 

~ 10 
(.) 

rJe O~~~~~~~~~~~~ 
FMFM FMFM 

B6 BALB/c SJL BWF1 

40 

+ 35 ,... 
~ 30 

+C") 25 
Q. 

~ 20 
+Ll. 15 

8 10 
rJe 5 

Spleen 

O~~~~~~~~~~~ 
FMFMFMFM 

+ ,... 

20 

CD 15 
i: 
'C") 
Q. 

~ 10 
Ll. 

+ 

i!i (.) 5 
rJe 

B6 BALB/c SJL BWF1 

Spleen 

o~~~~~~~~~~~ 
FM.,L!! FM FM 

+ ,... 
CD 

50 

i: 40 + 
C") 
o 
C 30 
(.) 

+ 
It) 

N 20 c 
(.) 

+ 
~ 10 
(.) 

B6 BALB/c SJL BWF1 

Spleen 

rJe O~~~~~~~~~~~~ 
FM.,L!!FM FM 

B6 BALB/c SJL BWF1 

70 



D 
LN Spleen 

0 0 .. 8 I'G ... 
.. 4 E 

C c 
0 0 .. 6 I'G ... 
~ 
"0 

4 ... 
Q. 

'M 
Q. 
>< 2 0 

++ * r-1 

r+- r+ 
r+-+r+ r+-

.. 3 I'G ... 
~ 
"0 

2 ... 
Q. 

'M 
Q. 
>< 1 0 

LL LL .. .. 
+ + 
M M 
Q. 

0 >< 
0 Ii'MIi'MFMFM 

Q. 
0 >< 

0 F M F M F M F M 
LL B6 BALB/c SJL BWF1 LL B6 BALB/c SJL BWF1 

Figure 12. Percentages of proliferating CD4+Foxp3+, CD4+Foxp3- and 

CD4+CD25+CD103+ cells in the periphery of four strains of mice. Cells from lymph 

nodes (LN) and spleen of 9-week-old female and male C57BLl6 (B6), BALB/c, SJL and 

(NZBxNZW)F1 (BWF1) mice were labeled with anti-CD4, anti-CD25, anti-Foxp3, anti-

CD103 and anti-Ki67 antibodies and analyzed by FACS®. (A) Labeled CD4+Foxp3+ cells 

were gated and analyzed for the percentages of cells expressing Ki67 in LN and spleen. 

(B) Labeled CD4+Foxp3- cells were gated and analyzed for the percentages of cells 

expressing Ki67 in LN and spleen. (C) Labeled CD4+CD25+CD103+ cells were gated and 

analyzed for the percentages of cells expressing Ki67 in LN and spleen. (D) Labeled 

CD4+Foxp3+ and CD4+Foxp3- cells were gated and analyzed for the percentages of cells 

expressing Ki67 in LN and spleen. Proliferation ratios were calculated by dividing the 

percentage of proliferating (Ki67+) CD4+Foxp3+ cells by the percentage of proliferating 

CD4+Foxp3- cells from LN and spleen. Statistical differences were analyzed using a 

student's t test or ANOVA and the Tukey-Kramer multiple comparisons test (n=15). * 

p<O.OS, ** p<O.OOS, and *** p<O.OOOS 
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-------------------------------------------------------------------------------------------------------------

Table 2A: LN % CD4+ 

Strains Gender 
Expt. #1 Expt. #2 Expt. #3 Expt. #4 Expt. #5 Expt. #6 Expt. #7 Expt. #8 Expt. #9 

33.0 ± 35.4 ± 33.4 ± **38.4 ± 37.1 ± 
35.1 ± 1.4 

31.5 ± 37.8 ± 28.8 ± 
C57BL/6 Female 2.3 1.5 1.8 0.4 3.1 2.6 0.8 2.3 

25.5 ± 32.9 ± 27.7 ± 34.5 ± 34.1 ± 
31.9 ± 1.0 

31.4 ± 37.9 ± 30.5 ± 
Male 3.1 1.6 2.9 0.8 2.8 1.0 0.8 1.1 

**50.6 ± 49.9 ± 51.4 ± 56.5 ± 55.9 ± 
53.4 ± 1.5 

60.4 ± 
BALB/c Female 1.2 1.9 3.8 0.6 1.0 1.0 

44.1 ± 47.9 ± 41.0 ± 55.5 ± 55.2 ± 
52.7 ± 3.1 

58.5 ± 
Male 1.4 2.1 3.1 1.0 0.9 1.0 

44.2 ± 52.2 ± 36.0 ± 50.6 ± 25.7 ± 
24.2 ± 3.6 

49.3 ± 51.9 ± 53.5 ± 
SJL Female 2.1 1.2 5.1 0.8 3.2 1.3 1.6 0.6 

49.0 ± 47.6 ± 47.2 ± 50.3 ± 31.6 ± 
28.4 ± 1.6 

49.2 ± 51.9 ± 53.1 ± 
Male 3.7 2.5 3.1 0.6 1.0 1.3 0.9 0.7 

46.1 ± 59.4 ± 55.3 ± 63.6 ± 65.0 ± *62.2 ± 65.5 ± 65.1 ± 
BWFl Female 6.5 1.9 4.8 0.3 0.7 0.9 0.6 0.8 

58.5 ± 57.3 ± 55.7 ± 64.2 ± 62.0 ± 
58.7 ± 0.3 64.0 ± 64.5 ± 

Male 3.2 3.6 1.0 2.0 2.0 0.8 0.6 

Table 2B: Spleen % CD4+ 

Strains Gender 
Expt. #1 Expt. #2 Expt. #3 Expt. #4 Expt. #5 Expt. #6 Expt. #7 Expt. #8 Expt. #9 

7.9 ± 0.6 
16.5 ± 11.6 ± 17.4 ± 17.3 ± 

23.7 ± 4.4 
*19.2 ± *19.8 ± 13.4± 

C57BL/6 Female 1.0 1.0 0.4 1.1 0.5 0.4 1.6 

7.0 ± 0.7 
15.3 ± 12.3 ± 16.6 ± 18.0 ± 

18.3 ± 0.5 
17.1 ± 21.4 ± 16.1 ± 

Male 0.6 0.5 1.1 1.3 0.7 0.5 0.6 
12.7 ± **23.4 ± 17.0 ± **30.8 ± 29.0 ± 

26.1 ± 1.0 
29.8 ± 

BALB/c Female 1.6 0.4 2.1 1.0 1.0 1.3 
11.1 ± 19.4 ± 13.1 ± 25.9 ± 29.7 ± 

26.9 ± 1.2 
27.0 ± 

Male 0.7 0.9 1.0 0.8 1.7 0.8 
13.6 ± 24.2 ± 19.2 ± 31.6 ± 19.5 ± 

19.7 ± 1.4 
28.5 ± 29.7 ± 28.6 ± 

SJL Female 0.7 2.1 1.8 0.9 1.3 1.0 1.3 1.5 
13.3 ± 24.5 ± 19.5 ± 29.1 ± 20.3 ± 

18.2 ± 0.8 27.5 ± 27.3 ± 27.4 ± 
Male 0.7 1.2 1.8 1.1 0.7 1.0 0.6 0.7 

12.3 ± 22.3 ± 17.0 ± 31.4 ± 33.0 ± 
26.0 ± 2.2 

*32.2 ± 31.2 ± 
BWFl Female 1.0 1.5 2.5 0.8 0.3 0.6 1.8 

10.1 ± 21.0 ± 18.3 ± 28.6 ± 33.0 ± 
29.1 ± 1.2 

29.8 ± 31.9 ± 
Male 2.0 1.7 2.4 1.6 1.4 0.7 1.3 
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Table 2C: Thymus % CD4+CD8-

Strains Gender 
Expt. #1 Expt. #2 Expt. #3 Expt. #4 Expt. #5 Expt. #6 Expt. #7 Expt. #8 Expt. #9 

5.9 ± 0.2 6.8 ± 004 5.0 ± 0.3 7.5 ± 004 
*8.7 ± *40.2 ± **8.2 ± *6.8 ± 

C57BL/6 Female 0.3 0.7 0.5 0.9 

Male 
5.5 ± 0.1 7.6 ± 0.2 SA ± 0.3 7.9 ± 0.2 7.9 ± 0.2 35.7 ± 1.6 6.5 ± 004 9.7 ± 0.7 

9.2 ± 0.3 9.7 ± 0.3 
**6.0 ± 12.7 ± 

BALB/c Female 0.2 0.6 

8.2 ± 004 
10.6 ± 10.2 ± 12.0 ± 

Male 0.2 1.2 0.7 
*20.0 ± **20.5 ± 17.6 ± ***26.3 

6.1 ± 0.4 35.0 ± 4.2 
20.5 ± 22.5 ± 

SlL Female 1.5 1.7 0.6 + 0.9 1.7 104 
15.8 ± 17.6 ± 18.2 ± 20.2 ± 

8.5 ± 1.7 24.7 ± 1.5 
17.5 ± 21.9 ± 

Male 1.0 0.6 0.6 0.5 0.9 0.9 

8.2 ± 0.7 8.5 ± 004 8.1 ± 0.6 
**1004 ± lOA ± 12.7 ± 

BWFl Female 0.2 0.2 004 

9.0 ± 004 
lOA ± 

7.9 ± 004 
12.2 ± llA± 11.9 ± 

Male 004 004 0.6 0.8 

Table 2. Percentages of CD4+ cells in four strains of mice. Cells from lymph nodes (LN), 

spleen, and thymus of 8-9-week-old female and male CS7BLl6 (B6), BALB/c, SJL and 

(NZBxNZW)Fl (BWFl) mice were labeled with anti-CD4 antibody and analyzed by 

F ACS®. Lymphocytes were gated and analyzed for the percentage of cells expressing 

CD4 in (A) LN, (B) spleen, and (C) thymus. Statistical differences were analyzed using a 

student's t test or ANOVA and the Tukey-Kramer multiple comparisons test. * p<O.OS, 

** p<O.OOS, and *** p<O.OOOS. 
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Table 3A: LN % CD4+FoXD3+ 

Strains Gender 
Expt. #1 Expt. #2 Expt. #3 Expt. #4 Expt. #5 Expt. #6 Expt. #7 Expt. #8 Expt. #9 

**8.0 ± 
8.2 ± 0.3 9.1 ± 0.3 

**10.0 ± *10.1 ± 22.2 ± 3.1 *10.1 ± 12.5 ± 
8.1 ± 0.8 

C57BL/6 Female 0.2 0.3 0.4 0.4 0.5 

9.9 ± 0.5 8.5 ± 0.5 9.9 ± 0.3 12.6 ± 11.7± 22.1 ± 4.6 12.1 ± 14.0 ± 
8.0 ± 1.0 

Male 0.5 0.5 0.7 1.0 

8.4 ± 0.4 
10.2 ± 10.2 ± 11.7 ± 12.3 ± *7.3 ± 0.7 

12.6 ± 
BALB/c Female 0.2 0.4 0.1 0.6 0.7 

9.5 ± 0.5 10.2 ± 9.9 ± 0.1 11.6 ± 12.9 ± 9.7 ± 0.7 13.3 ± 
Male 0.4 0.5 0.4 0.7 

6.7 ± 0.4 7.0 ± 0.2 7.4 ± 0.4 9.4 ± 0.3 8.3 ± 0.4 13.1 ± 0.8 
12.2 ± 11.0 ± 7.7 ± 0.2 

SlL Female 1.0 1.3 

7.1 ± 0.2 7.1 ± 0.4 7.8 ± 0.2 9.9 ± 0.3 B.6 ± 0.6 10.1 ± 1.2 12.0 ± 12.2 ± 7.5 ± 0.4 
Male 0.5 0.4 

4.8 ± 0.8 
*4.0 ± ***3.9 ± **4.9 ± 

4.5 ± 0.4 *4.6 ± 0.1 **6.8 ± **4.7 ± 
BWF1 Female 0.1 0.1 0.1 0.4 0.2 

Male 4.1 ± 0.1 4.5 ± 0.2 4.8 ± 0.1 5.5 ± 0.1 4.9 ± 0.3 5.3 ± 0.2 8.8 ± 0.3 6.1 ± 0.3 

Table 3B: Spleen % CD4+Foxp3+ 

Strains Gender 
Expt. #1 Expt. #2 Expt. #3 Expt. #4 Expt. #5 Expt. #6 Expt. #7 Expt. #8 Expt. #9 

10.7 ± 
7.5 ± 0.4 

11.6 ± 10.9 ± 11.1 ± 
28.5 ± 6.5 

**11.4 ± 13.6 ± 
9.9 ± 0.9 

C57BL/6 Female 0.6 0.3 0.3 0.7 0.4 0.4 
12.5 ± 

6.8 ± 0.4 
12.2 ± 10.9 ± 11.1 ± 

18.2 ± 1.9 
14.8 ± 13.6 ± 

9.6 ± 0.8 
Male 0.9 0.6 0.2 0.8 0.9 0.5 

15.9 ± 11.0 ± 18.6 ± 14.0 ± 14.2 ± *11.8 ± 15.3 ± 
BALB/c Female 0.7 0.2 1.0 0.2 0.3 0.7 1.5 

15.5 ± 
9.9 ± 0.5 

15.7 ± 14.6 ± 13.4 ± 8.9 ± 0.7 
15.9 ± 

Male 1.7 1.1 0.6 0.5 0.2 
22.2 ± 12.4 ± 16.2 ± **17.0 ± 19.3 ± 

20.9 ± 0.8 
22.8 ± 21.4 ± 14.9 ± 

SlL Female 1.5 0.7 0.6 0.4 0.8 0.9 0.7 0.6 
18.3 ± 12.7 ± 17.7 ± 18.7 ± 18.2 ± 

19.3 ± 0.6 
21.6 ± 22.4 ± 15.3 ± 

Male 1.4 0.8 0.8 0.3 0.6 0.4 1.5 0.4 
11.2 ± *6.6 ± 

9.6 ± 0.2 9.8 ± 0.4 8.4 ± 0.2 12.3 ± 0.7 7.8 ± 0.3 9.0 ± 0.2 BWF1 Female 1.0 0.2 
10.4 ± 

7.4 ± 0.3 9.7±0.7 10.4 ± 
8.7 ± 0.5 11.4 ± 0.5 8.7 ± 0.5 8.9 ± 0.4 Male 0.9 0.4 
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Table 3C: Thymus % CD4+Foxp3+ 

Strains Gender 
Expt. #1 Expt. #2 Expt. #3 Expt. #4 Expt. #S Expt. #6 Expt. #7 Expt. #8 Expt. #9 

1.5 ± 0.2 3.8 ± 0.5 2.3 ± 0.2 3.8 ± 0.2 2.8 ± 0.1 9.2 ± 0.7 
**6.7 ± 

0.5 ± 0.1 
C57BL/6 Female 0.2 

Male 
1.1 ± 0.1 3.1 ± 0.2 2.4 ± 0.2 4.0 ± 0.1 2.7 ± 0.2 11.1 ± 1.4 5.3 ± 0.2 0.4 ± 0.1 

1.8 ± 0.4 5.6 ± 0.6 4.0 ± 0.2 
***6.8 ± 

BALB/c Female 0.3 

Male 
2.0 ± 0.1 4.9 ± 0.4 3.1±0.3 4.5 ± 0.2 

2.5 ± 0.3 4.7 ± 0.2 
*3.7 ± ***7.5 ± 12.8 ± 

5.5 ± 0.2 7.2 ± 0.3 7.3 ± 0.5 
SJL Female 0.2 0.3 0.4 

2.6 ± 0.1 5.8 ± 0.6 4.7 ± 0.3 5.6 ± 0.2 
12.9 ± 

6.0 ± 0.2 7.5 ± 0.3 6.3 ± 0.4 
Male 0.6 

BWF1 Female 
3.3 ± 0.2 5.2 ± 0.4 4.8 ± 0.2 6.7 ± 0.3 5.6 ± 0.2 7.9 ± 0.3 

Male 
3.2 ± 0.4 4.7 ± 0.2 5.0 ± 0.3 6.3 ± 0.3 5.7 ± 0.2 7.0 ± 0.3 

Table 3. Percentages of CD4+ cells that are Foxp3+ in four strains of mice. Cells from 

lymph nodes (LN), spleen, and thymus of 8-9-week-old female and male C57BLl6 (B6), 

BALB/c, SJL and (NZBxNZW)FI (BWFI) mice were labeled with anti-CD4 and anti-

Foxp3 antibodies and analyzed by FACS®. Labeled CD4+ cells were gated and analyzed 

for the percentages of cells expressing Foxp3 in (A) LN, (B) spleen, and (C) thymus. 

Statistical differences were analyzed using a student's t test or ANOVA and the Tukey-

Kramer multiple comparisons test. * p<O.05, ** p<O.005, and *** p<O.0005. 
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Table 4A: LN CD4+Foxp3+ Cell #s (x106
) 

Strains Gender Expt. #1 Expt. #2 Expt. #3 
Expt. #4 Expt. #5 Expt. #6 Expt. #7 Expt. #8 Expt. #9 

0.400 ± 0.462 ± 0.751 ± 0.714 ± 
C57BL/6 Female 0.037 0.052 0.060 0.050 

0.467 ± 0.432 ± 0.845 ± 0.611 ± 
Male 0.086 0.035 0.126 0.049 

0.741 ± *1.123 ± 1.113 ± 1.212 ± 
BALB/e Female 0.097 0.107 0.123 0.128 

0.482 ± 0.578 ± 0.877 ± 1.177 ± 
Male 0.055 0.073 0.089 0.149 

2.811 ± 1.461 ± *5.783 ± 2.683 ± 
SlL Female 0.290 0.200 0.745 0.248 

1.824 ± 1.821 ± 3.191 ± 1.841 ± 
Male 0.292 0.099 0.455 0.267 

0.380 ± *0.399 ± 0.785 ± 0.704 ± 1.240 ± 0.902 ± 
BWF1 Female 0.030 0.061 0.096 0.083 0.151 0.067 

0.473 ± 0.697 ± 0.696 ± 0.966 ± 1.516 ± 0.955 ± 
Male 0.100 0.035 0.029 0.232 0.176 0.132 

Table 4B: Spleen CD4+Foxp3+ Cell #s (x106
) 

Strains Gender Expt. #1 Expt. #2 Expt. #3 Expt. #4 Expt. #5 Expt. #6 Expt. #7 Expt. #8 Expt. #9 

1.033 ± 0.994 ± 2.094 ± 
C57BL/6 Female 0.144 0.150 0.055 

0.778 ± 1.124 ± 1.914 ± 
Male 0.100 0.120 0.136 

**1.806 1.922 ± ***4.882 3.740 ± 

BALB/e Female 
± 0.188 0.535 ± 0.201 0.695 

0.887 ± 1.647 ± 3.336 ± 3.639 ± 
Male 0.064 0.161 0.131 0.294 

3.238 ± 3.580 ± 7.116 ± 
SlL Female 0.837 0.800 0.435 

3.158 ± 3.442 ± 7.683 ± 
Male 0.567 0.582 0.445 

0.937 ± 1.140 ± *3.244 ± 2.335 ± 2.213 ± *2.177 ± 
BWF1 Female 0.211 0.218 0.258 0.179 0.115 0.120 

1.054 ± 1.017 ± 2.391 ± 2.424 ± 2.391 ± 1.808 ± 
Male 0.175 0.068 0.104 0.080 0.212 0.084 
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Table 4C: Thymus CD4+Fox 3+ Cell #s (xl06
) 

Strains Gender Expt. #1 Expt. #2 Expt. #3 Expt. #4 Expt. #5 Expt. #6 Expt. #7 Expt. #8 Expt. #9 

0.286 ± 0.177 ± 0.456 ± 0.352 ± 
C57BL/6 Female 0.047 0.032 0.030 0.015 

0.197 ± 0.186 ± 0.362 ± 0.265 ± 
Male 0.025 0.043 0.029 0.044 

0.364 ± 0.233 ± ***0.892 

BALB/c Female 
0.076 0.020 ± 0.045 

0.260 ± 0.173 ± 0.342 ± 
Male 0.029 0.042 0.030 

0.900 ± 0.784 ± **1.632 *1.286 ± 
SlL Female 0.271 0.086 ± 0.152 0.141 

0.398 ± 0.555 ± 0.897 ± 0.756 ± 
Male 0.062 0.161 0.088 0.089 

0.527 ± 0.467 ± **1.010 1.039 ± **1.465 
BWFl Female 0.091 0.064 + 0.136 0.062 + 0.lD1 

0.442 ± 0.671 ± 0.487 ± 1.030 ± 0.878 ± 
Male 0.093 0.208 0.066 0.076 0.107 

Table 4. Numbers ofCD4+ cells that are Foxp3+ in four strains of mice. Cells from lymph 

nodes (LN), spleen, and thymus of 8-9-week-old female and male CS7BLl6 (B6), 

BALB/c, SJL and (NZBxNZW)FI (BWFI) mice were labeled with anti-CD4 and anti-

Foxp3 antibodies and analyzed by FACS®. The total numbers ofCD4+ cells that express 

Foxp3 in (A) lymph nodes, (B) spleen, and (C) thymus are shown. Statistical differences 

were analyzed using a student's t test or ANOVA and the Tukey-Kramer multiple 

comparisons test. * p<O.OS, ** p<O.OOS, and *** p<O.OOOS. 
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Table SA: LN CD4+ Cell #s (x106
) 

Strains Gender Expt. #1 EXDt. #2 
Expt. #3 Expt. #4 Expt. #5 Expt. #6 Expt. #7 Expt. #8 

C57BL/6 Female 
4.8 ± 0.3 5.1 ± 0.4 7.6 ± 0.7 7.1 ± 0.7 

Male 
5.0 ± 0.8 4.3 ± 0.4 6.7 ± 0.9 5.3 ± 0.5 

7.3 ± 0.8 
**10.7 ± 

9.5 ± 1.0 
BALB/c Female 0.5 

9.7 ± 0.8 

Male 
4.8 ± 0.5 5.8 ± 0.7 7.5 ± 0.6 8.8 ± 0.8 

*40.4 + 19.7 + **62.2 ± **32.3 ± 
SJL Female 3.4 1.3 8.1 1.8 

23.4 + 23.0 ± 31.8 ± 21.0 ± 
Male 3.7 1.9 3.5 1.7 

9.5 ± 0.6 
10.4 ± 16.0 ± 15.6 ± 19.2 ± 

BWF1 Female 1.6 1.8 1.2 
18.1 ± 1.6 

1.5 
10.2 + 14.6 + 12.6 ± 19.4 ± 15.4 ± 

Male 2.1 1.2 0.5 4.1 
17.1 ± 1.7 

1.4 

Table 5B: SDleen CD4+ Cell #s (x106
) 

Strains Gender Expt. #1 EXDt. #2 
Expt. #3 Expt. #4 Expt. #5 Expt. #6 Expt. #7 Expt. #8 

12.7 + 
8.4 ± 1.3 

19.3 ± 
C57BL/6 Female 1.4 0.7 

11.6 + 
8.8 ± 1.1 

18.0 ± 
Male 1.5 1.2 

*16.6 + 
9.5 ± 2.4 

***35.0 
BALB/c Female 1.4 + 1.6 

23.9 + 3.1 

9.5 ± 0.8 9.5 ± 0.5 
22.9 ± 

Male 1.2 
22.8 ± 1.7 

24.1 + 21.2 + 42.1 ± 
SJL Female 5.1 5.2 3.0 

23.1 + 19.8 + 41.2 ± 
Male 3.4 4.1 2.7 

13.9 + 11.8 + ***33.0 27.9 ± 24.3 ± 
BWFl Female 3.2 2.0 + 1.5 2.2 

29.0 ± 0.9 
1.7 

13.8 + 10.0 + 23.0 ± 28.2 ± 20.6 ± 
Male 1.6 1.0 0.7 2.1 

27.3 ± 1.8 
1.6 
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Table 5C: Thymus CD4+CDS- Cell #s (xl06
) 

Strains Gender Expt. #1 Expt. #2 Expt. #3 Expt. #4 Expt. #5 Expt. #6 Expt. #7 Expt. #S 

8.2 ± 0.8 7.1 ± 1.4 
**12.1 ± *12.5 ± 

C57BL/6 Female 0.6 0.5 

Male 6.1 ± 0.5 7.5 ± 0.5 9.0 ± 0.6 9.6 ± 0.9 

6.8 ± 0.7 5.7 ± 0.7 
***13.2 

BALB/c Female + 0.9 

Male 5.6 ± 0.6 5.7 ± 1.1 7.6 ± 0.6 

*18.7 ± 20.8 ± *21.9 ± *10.0 ± 
SJL Female 3.9 1.5 2.1 1.0 

6.2 ± 0.2 
12.1 ± 16.0 ± 

5.9 ± 0.7 Male 4.0 1.2 
10.6 ± 

9.4 ± 0.8 
**14.9 ± 

18.7 ± 0.5 
*18.5 ± 

BWFl Female 0.6 1.5 1.3 

8.8 ± 1.7 
13.0 ± 

7.7 ± 1.0 18.0 ± 1.2 
12.6 ± 

Male 3.2 1.4 

Table S. Numbers ofCD4+ cells in four strains of mice. Cells from lymph nodes (LN), 

spleen, and thymus of 8-9-week-old female and male CS7BLl6 (B6), BALB/c, SJL and 

(NZBxNZW)FI (BWFI) mice were labeled with anti-CD4 antibody and analyzed by 

F ACS®. The total numbers of CD4+ in (A) lymph nodes, (B) spleen, and (C) thymus are 

shown. Statistical differences were analyzed using a student's t test or ANOVA and the 

Tukey-Kramer multiple comparisons test. * p<O.OS, ** p<O.OOS, and *** p<O.OOOS. 
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Table 6A: LN MFI CD4+FoXIl3+ 

Strains Gender Expt. #1 Expt. #2 Expt. #3 
Expt. #4 Expt. #5 Expt. #6 Expt. #7 Expt. #8 Expt. #9 

126.2 ± 120.6 ± 169.4 ± *340.4 ± 535.8 ± 497.1 ± *247.5 ± 312.5 ± 549.0 ± 
C57BL/6 Female 2.9 2.2 3.9 7.0 6.3 7.5 4.8 9.0 7.2 

123.2 ± 121.8 ± 162.2 ± 366.8 ± 520.1 ± 541.0 ± 227.4 ± 429.6 ± 676.3 ± 
Male 1.2 3.6 6.2 7.8 10.7 36.1 7.1 97.6 66.1 

112.0 ± 122.4 ± 153.4 ± *347.0 ± 433.2 ± 407.8 ± 65.0 ± 
BALB/c Female 2.7 1.8 1.8 4.1 14.9 21.8 1.9 

117.0 ± 123.2 ± 150.0 ± 299.6 ± 471.8 ± 421.6 ± 66.8 ± 
Male 2.3 1.9 3.8 14.3 13.2 32.9 2.9 

109.8 ± 125.8 ± 147.8 ± 314.7 ± 462.0 ± 747.9 ± 304.0 ± 159.8 ± 528.7 ± 
SlL Female 1.8 2.6 4.8 14.0 14.8 37.0 3.7 5.4 8.1 

112.6 ± 118.6 ± 148.6 ± 346.2 ± 450.5 ± 697.4 ± 323.6 ± 147.2 ± 558.9 ± 
Male 2.2 5.2 3.2 6.8 3.7 37.4 7.9 6.1 14.4 

119.2 ± 123.8 ± **152.4 342.2 ± 289.0 ± 348.9 ± 160.5 ± **250.7 
BWFI Female 2.5 2.8 ± 2.8 2.0 2.7 15.8 3.8 ± 9.5 

119.0 ± 125.6 ± 164.0 ± 333.0 ± 287.7 ± 357.9 ± 265.3 ± 386.9 ± 
Male 1.1 3.7 1.4 14.1 9.1 19.3 73.6 39.3 

Table 6B: Spleen MFI CD4+Foxp3+ 

Strains Gender Expt. #1 Expt. #2 Expt. #3 
Expt. #4 Expt. #5 Expt. #6 Expt. #7 Expt. #8 Expt. #9 

98.9 ± 93.5 ± 139.4 ± 282.2 ± *567.2 ± 885.7 ± 271.4 ± 324.5 ± 547.3 ± 
C57BL/6 Female 2.1 3.7 3.9 11.0 11.9 346.1 6.8 8.0 22.8 

98.6 ± 89.9 ± 126.4 ± 279.8 ± 506.3 ± 538.8 ± 298.1 ± 300.3 ± 536.9 ± 
Male 1.1 1.2 4.3 7.7 22.8 9.3 20.8 8.2 7.7 

99.9 ± 92.3 ± 131.0 ± 296.1 ± 403.4 ± 378.6 ± 64.6 ± 
BALB/c Female 1.5 2.0 3.7 3.7 13.2 4.1 3.5 

100.4 ± 87.0 ± 119.6 ± 267.0 ± 381.2 ± 356.9 ± 62.7 ± 
Male 1.5 3.8 4.8 13.0 16.5 19.6 1.0 

***104.2 91.4 ± 126.2 ± *265.2 ± 456.8 ± 694.6 ± 301.4 ± 158.0 ± 560.2 ± 
SlL Female + 1.0 2.2 3.6 9.7 16.1 24.9 8.2 5.3 14.7 

98.3 ± 84.7 ± 125.8 ± 290.6 ± 440.1 ± 667.7 ± 286.6 ± 153.6 ± 545.1 ± 
Male 0.4 3.2 2.8 3.1 22.8 17.9 6.0 3.0 23.7 

99.6 ± 86.9 ± 126.4 ± 253.6 ± 268.5 ± 349.2 ± 209.2 ± *227.4 ± 
BWF1 Female 1.4 1.8 3.3 4.4 9.4 11.6 13.0 4.6 

97.6 ± 94.0 ± 127.0 ± 265.1 ± 286.6 ± 321.5 ± 209.0 ± 349.3 ± 
Male 1.2 3.1 3.0 4.4 5.0 9.0 9.0 38.7 

Table 6. Per cell expression of Foxp3 on CD4+ cells in four strains of mice. Cells from 

lymph nodes (LN) and spleen of 8-9-week-old female and male CS7BLl6 (B6), BALB/c, 

SJL and (NZBxNZW)FI (BWFI) mice were labeled with anti-CD4 and anti-Foxp3 

antibodies and analyzed by F ACS®. Labeled CD4+ cells were gated and analyzed for the 

per cell expression (MFI) of Foxp3 in (A) LN and (B) spleen. Statistical differences were 

analyzed using a student's t test or ANOVA and the Tukey-Kramer multiple comparisons 

test. * p<O.OS, ** p<O.OOS, and *** p<O.OOOS. 

80 



Table 7A: LN CD4+CD25+CD103+ Cell #s (x10' 

Strains Gender Expt. #1 Expt. #2 Expt. #3 
Expt. #4 Expt. #5 Expt. #6 Expt. #7 Expt. #8 Expt. #9 

0.052 ± 0.059 ± 0.085 ± 0.120 ± 
C57BL/6 Female 0.010 0.008 0.007 0.018 

0.076 ± 0.077 ± 0.136 ± 0.122 ± 
Male 0.008 0.005 0.023 0.007 

0.151 ± 0.194 ± 0.107 ± 0.105 ± 
BALB/c Female 0.016 0.030 0.014 0.013 

0.108 ± 0.131 ± 0.140 ± 0.117 ± 
Male 0.013 0.023 0.017 0.015 

0.398 ± 0.164 ± 0.322 ± 0.187 :J: 

SJL Female 0.096 0.014 0.064 0.012 
0.227 ± 0.159 ± 0.255 ± 0.172 :J: 

Male 0.035 0.005 0.058 0.038 
0.024 ± *0.019 ± 0.031 ± 0.016 :J: 0.042 ± 0.059 ± 

BWFl Female 0.002 0.003 0.004 0.002 0.005 0.007 
0.033 ± 0.052 ± 0.039 ± 0.024 :J: 0.058 ± 0.066 ± 

Male 0.008 0.007 0.004 0.005 0.008 0.008 

Table 7B: Spleen CD4+CD25+CD103+ Cell #s (x10') 

Strains Gender Expt. #1 EXDt. #2 Expt. #3 Expt. #4 Expt. #5 Expt. #6 Expt. #7 Expt. #8 Expt. #9 

0.026 ± 0.032 ± 0.095 ± 
C57BL/6 Female 0.004 0.006 0.007 

0.013 ± 0.047 ± 0.077 ± 
Male 0.004 0.009 0.007 

*0.234 ± 0.282 ± 0.470 ± 0.224 ± 
BALB/c Female 0.030 0.077 0.038 0.030 

0.120 ± 0.203 ± 0.437 ± 0.197 ± 
Male 0.027 0.015 0.023 0.016 

**0.268 0.240 ± *0.248 ± 
SJL Female ± 0.015 0.035 0.019 

0.133 ± 0.153 ± 0.317 ± 
Male 0.025 0.009 0.013 

0.036 ± 0.030 ± 0.086 ± 0.031 :J: 0.144 ± **0.120 
BWFl Female 0.007 0.008 0.009 0.010 0.010 + 0.009 

0.016 ± 0.032 ± 0.084 ± 0.040 :J: 0.123 ± 0.087 ± 
Male 0.002 0.008 0.011 0.002 0.007 0.002 
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Table 7C: Thymus CD4+CD25+CD103+ Cell #s (xl06 ) 

Strains Gender Expt. #1 Expt. #2 Expt. #3 
Expt. #4 Expt. #5 Expt. #6 Expt. #7 Expt. #8 Expt. #9 

*0.022 ± 0.010 ± 0.057 ± 
C57BL/6 Female 0.001 0.003 0.006 

0.011 ± 0.017 ± 0.041 ± 
Male 0.003 0.002 0.004 

0.069 ± *0.065 ± **0.166 
BALB/c Female 0.014 0.010 ± 0.028 

0.041 ± 0.034 ± 0.063 ± 
Male 0.009 0.003 0.005 

0.147 ± 0.107 ± *0.176± 
SlL Female 0.060 0.018 0.023 

0.068 ± 0.076 ± 0.101 ± 
Male 0.009 0.025 0.015 

0.032 ± 0.028 ± *0.105 ± 
BWFl Female 0.008 0.003 0.021 

0.040 ± 0.029 ± 0.040 ± 
Male 0.008 0.003 0.007 

Table 7. Numbers ofCD4+CD2S+CDl03+ cells in four strains of mice. Cells from lymph 

nodes (LN), spleen, and thymus of 8-9-week-old female and male CS7BLl6 (B6), 

BALB/c, SJL and (NZBxNZW)Fl (BWFl) mice were labeled with anti-CD4, anti-CD2S, 

and anti-CDI03 antibodies and analyzed by FACS®. Labeled CD4+CD2S+ cells 

(CD4+CD8+CD2S+ cells in the thymus) were gated and numbers of cells expressing 

CDI03 were determined in (A) LN, (B) spleen, and (C) thymus. Statistical differences 

were analyzed using a student's t test or ANOVA and the Tukey-Kramer multiple 

comparisons test. * p<O.OS, ** p<O.OOS, and *** p<O.OOOS. 
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Table 8A: LN MFI CD4+CD25+CD103+ 

Strains Gender EXDt. #1 EXDt. #2 EXDt. #3 
Expt. #4 Expt. #5 Expt. #6 Expt. #7 Expt. #8 Expt. #9 

**48.2 ± 82.1 ± 91.1± *54.3 ± *55.8 ± 
78.9 ± 2.0 49.4 ± **43.3 ± 65.8 ± 

C57BL/6 Female 2.1 5.1 3.3 1.1 1.8 0.9 1.3 1.5 
57.8 ± 90.5 ± 93.8 ± 57.7 ± 61.6 ± 

85.2 ± 3.7 
54.4 ± 48.6 ± 62.7 ± 

Male 1.1 6.6 6.7 0.9 1.3 4.3 0.8 2.3 
55.4 ± **69.9 ± 94.5 ± 51.6 ± 48.9 ± *63.9 ± 273.1 ± 

BALB/c Female 3.0 2.4 4.9 0.5 1.0 3.7 21.0 
54.7 ± 79.5 ± 111.0 ± 55.1 ± 46.8 ± 

52.0 ± 2.5 
304.3 ± 

Male 2.4 1.2 7.1 2.4 3.9 15.7 
60.6 ± **78.2 ± *146.0 ± 56.4 ± 70.2 ± 

66.9 ± 2.8 
**80.5 ± **58.7 ± *49.7 ± 

SJL Female 4.1 4.0 8.5 1.8 2.7 0.9 2.7 0.9 
63.8 ± 98.5 ± 119.0 ± 61.2 ± 79.6 ± 

76.3 ± 3.3 95.7 ± 70.6 ± 53.7 ± 
Male 2.5 1.2 4.5 1.6 5.7 3.2 1.0 1.5 

*37.1 ± 49.4 ± 70.4 ± 45.0 ± 29.9 ± ***44.3 ± 422.4 ± **34.4 ± 
BWFl Female 1.2 2.5 6.3 0.8 2.7 0.9 20.1 1.2 

44.7 ± 55.7 ± 81.7 ± 44.8 ± 40.1 ± 
52.8 ± 1.2 

457.9 ± 38.5 ± 
Male 2.2 3.9 3.1 0.5 3.9 14.8 0.4 

Table 8B: Spleen MFI CD4+CD25+CD103+ 

Strains Gender EXDt. #1 EXDt. #2 EXDt. #3 
Expt. #4 Expt. #5 Expt. #6 Expt. #7 Expt. #8 Expt. #9 

49.1 ± **60.1 ± 43.4 ± 31.8 ± **36.1 ± 77.6 ± 31.6 ± 28.1 ± 46.8 ± 
C57BL/6 Female 6.3 2.5 1.1 1.0 1.0 20.9 0.7 0.6 10.1 

43.4 ± 74.5 ± 47.7 ± 33.6 ± 41.0 ± 
56.9 ± 1.6 30.3 ± 28.5 ± 50.3 ± 

Male 2.5 2.9 4.0 1.4 1.0 1.6 0.4 3.5 
*43.6 ± *69.4 ± 73.1 ± *35.6 ± 37.4 ± 

34.8 ± 1.1 
145.0 ± 

BALB/c Female 1.0 1.6 7.1 0.2 0.6 6.1 
50.3 ± 89.7 ± 100.6 ± 36.7 ± 38.1 ± 

33.5 ± 0.4 155.6 ± 
Male 2.2 8.1 18.5 0.3 0.4 13.2 

45.7 ± 74.2 ± 61.4 ± *36.2 ± 46.2 ± 
59.5 ± 4.9 57.2 ± 42.5 ± 35.1 ± 

SJL Female 3.5 6.4 3.4 0.6 0.7 1.2 0.4 0.6 
63.8 ± 70.0 ± 52.6 ± 38.0 ± 44.7 ± 

50.0 ± 1.1 
60.9 ± 44.1 ± 34.5 ± 

Male 14.6 7.2 2.3 0.4 2.7 3.6 0.9 0.5 
37.6 ± *55.2 ± 46.6 ± **30.0 ± 21.7 ± *33.4 ± 350.5 ± 22.5 ± 

BWFl Female 2.3 4.0 2.3 0.7 0.9 1.1 3.4 0.6 
41.2 ± 81.0 ± 100.1 ± 32.6 ± 22.3 ± 

38.5 ± 1.0 
348.4 ± 23.1 ± 

Male 5.6 7.4 49.6 0.3 1.6 11.1 0.6 

Table 8. Per cell expression of CD 103 of CD4+CD25+ cells in four strains of mice. Cells 

from lymph nodes (LN) and spleen of 8-9-week-old female and male C57BLl6 (B6), 

BALB/c, SJL and (NZBxNZW)Fl (BWFl) mice were labeled with anti-CD4, anti-CD25, 

and anti-CD 103 antibodies and analyzed by FACS®. Labeled CD4+CD25+ cells were 

gated and analyzed for the per cell expression (MFI) ofCD103 in (A) LN and (B) spleen. 

Statistical differences were analyzed using a student's t test or ANOVA and the Tukey-

Kramer multiple comparisons test. * p<O.05, ** p<O.005, and *** p<O.0005. 
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Table 9A: Thvmic Weights {mg} 

Strains Gender 
Expt. #1 

Expt. #2 Expt. #3 
Expt. #4 Expt. #5 Expt. #6 Expt. #7 Expt. #8 Expt. #9 

51.0 ± 51.6 ± 47 .8 ± *52.4 ± 
C57BL/6 Female 4 .1 3.8 1.4 2 .0 

54.4 ± 40 .6 ± 44 .8 ± 41.4 ± 
Male 1.8 4 .8 3.0 3.0 

34.4 ± 37 .2 ± **40 .0 ± 
BALB/c Female 2 .0 1.6 1. 7 

33.4 ± 35.4 ± 26 .8 ± 
Male 3 .3 3 .2 3.3 

*53 .2 ± **49.4 ± 47 .2 ± ***69 .2 
SJL Female 4 .7 4 .0 3 .0 + 2.0 

36.0 ± 28 .8 ± 37.2 ± 35.3 ± 
Male 3.0 4 .0 4 .9 2 .8 

*78.4 ± **80.4 ± *81.6 ± ***69 .2 
BWFl Female 4 .3 3 .1 4.6 + 2.5 

59.4 ± 66.4 ± 66 .6 ± 47 .8 ± 
Male 4 .0 2 .0 3 .3 2 .6 

Table 9B: LN Cell #s ( x106) 

Strains Gender 
Expt. #1 

Expt. #2 Expt. #3 
Expt. #4 Expt. #5 Expt. #6 Expt. #7 Expt. #8 Expt. #9 

17.8 ± *16.9 ± 20.8 ± 21.0 ± 
C57BL/6 Female 1.9 0 .9 1.9 1.3 

19.9 ± 21.5 ± 21. 1 ± 17 .8 ± 
Male 3.4 1.2 3 .1 0.4 

*19.7 ± 22 .8 ± 17.8 ± 17 .2 ± 
BALB/c Female 1. 8 2 .3 1.9 1.6 

13 .5 ± 19 .3 ± 14.4 ± 15 .8 ± 
Male 1. 1 2.7 1.2 1.5 

*99 .7 ± 56.5 ± **133 .9 *156.6 ± 
SJL Female 11.2 4.0 ± 17.7 24.1 

65.8 ± 51.0 ± 68 .2 ± 77 .6 ± 
Male 3 .9 2.6 7.5 4 .9 

20 .7 ± 26.4 ± 26.4 ± 29.0 ± 31.3 ± 30.9 ± 
BWFl Female 1.8 1.2 2.9 1.1 2 .9 2.4 

22 .7 ± 29 .7 ± 21.6 ± 34.6 ± 31.8 ± 25.3 ± 
Male 1.8 2.7 0.7 8 .5 3 .2 2. 5 
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Table 9C: Spleen Cell #s (xlO6
) 

Strains Gender 
Expt. #1 

Expt. #2 Expt. #3 
Expt. #4 Expt. #5 Expt. #6 Expt. #7 Expt. #8 Expt. #9 

117.7 ± 107.0 ± 120.7 ± 
C57BL/6 Female 9.2 4.2 4.1 

120.3 ± 118.3 ± 116.1 ± 
Male 13.1 8.4 4.1 

117.7 ± **100.3 ***125.0 97.6 ± 
BALB/c Female 15.4 ± 5.6 ± 1.6 12.7 

93.3 ± 134.7 ± 97.4 ± 89.0 ± 
Male 8.0 4.3 3.1 6.9 

192.3 ± *161.7 ± 152.3 ± 
SJL Female 11.9 9.8 8.5 

199.0 ± 252.3 ± 161.8 ± 
Male 26.2 20.1 3.5 

145.3 ± 91.3 ± *116.5 ± 90.2 ± 105.6 ±± *82.1 ± 
BWFI Female 14.7 7.7 5.9 6.9 3.9 3.3 

104.0 ± 95.7 ± 92.5 ± 92.4 ± 107.0 ± 67.6 ± 
Male 16.1 4.9 7.1 4.4 8.0 4.0 

Table 90: Thymus Cell #s (xl06
) 

Strains Gender 
Expt. #1 Expt. #2 Expt. #3 Expt. #4 Expt. #5 Expt. #6 Expt. #7 Expt. #8 Expt. #9 

**146.3 160.0 ± **180.9 153.2 ± 
C57BL/6 Female ± 6.2 12.9 ± 8.9 10.0 

93.3 ± 157.2 ± 128.7 ± 129.4 ± 
Male 8.3 14.1 8.5 10.7 

*89.2 ± 115.2 ± **119.5 
BALB/c Female 4.0 13.3 ± 11.7 

66.7 ± 66.8 ± 72.6 ± 
Male 5.8 21.2 6.0 

122.7 ± 129.6 ± 93.9 ± **182.4 
SJL Female 33.1 13.8 10.6 ± 13.6 

45.0 ± 77.6 ± 89.3 ± 86.0 ± 
Male 1.6 23.6 8.9 18.7 

158.0 ± 152.0 ± **158.4 188.2 ± *148.2 ± 
BWFI Female 10.8 22.7 ± 14.3 6.2 9.6 

108.8 ± 180.0 ± 75.0 ± 166.3 ± 108.4 ± 
Male 22.7 35.6 10.4 13.4 9.3 

Table 9. Thymic weights and cell numbers in thymus, lymph nodes and spleen in four 

strains of mice. Thymus, lymph nodes and spleen were collected from 8-9-week-old 

female and male C57BLl6, BALB/c, SJL and BWFI mice and weights or cell numbers 

determined. Statistical differences were analyzed using a student's t test or ANOVA and 

the Tukey-Kramer multiple comparisons test. * p<O.05, ** p<O.005, and *** p<O.0005. 
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SPECIFIC AIM III 

Assessing regulatory T cell changes throughout disease progression in lupus-prone 

(NZBxNZW)Fl mice. 

The (NZBxNZW)Fl (BWF1) strain of mice is used as a model of systemic lupus 

erythematosus in which females spontaneously develop disease (66 , 67). Antibodies 

against self-antigens, such as dsDNA and histones, are produced and associate with 

complement to form immune complexes (80). These antibodies can be detected in the 

serum at approximately 16 weeks of age in female BWFI mice in our facility. Immune 

complexes deposit in the kidney glomeruli and cause kidney failure (80). Infiltration of T 

cells into the kidney has been shown to be necessary for end-stage kidney disease 

development (91). Glomerulonephritis is detected by the presence of protein in urine. 

We begin analyzing for protein in the urine when BWFI mice are approximately 28 

weeks of age in our facility. Male BWFI mice also develop antibodies, but they do so 

later than females, and rarely develop full-blown SLE/glomerulonephritis. In our facility, 

approximately 50% of female BWFI mice have developed disease by 32 weeks of age, 

while 0% of males have disease at this timepoint (Figure 13). Accumulating evidence 

indicates that regulatory T cells (Tregs) play an important role in controlling autoimmune 

disease (123). Here we have investigated the differences in Treg populations between 

females and males throughout disease progression to determine whether differences in 

these cells were associated with susceptibility to disease. 
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Sick female BWFI mice had no defect in suppressive function in vitro, and had 

higher percentages of CD4+Foxp3+ cells in the periphery than age-matched non-sick 

females and males. 

B WF 1 mice were considered "sick" when protein levels in urine reached 

~300mg/dL and were maintained for two consecutive weeks. Regulatory T cells have 

been shown to be important in controlling autoimmune disease (123), so we hypothesized 

that perhaps there was some inherent defect in sick female Treg suppressive function 

allowing for disease development and progression. We compared suppressive function of 

Tregs from sick females, non-sick females, and males in a standard in vitro suppression 

assay. We co-cultured bead-purified CD4+CD25+ cells from age-matched sick females, 

non-sick females, and males at varying ratios with male CD4+CD2Y responder T cells, 

irradiated male spleen cells for APC, and anti-CD3. We found no differences in the 

suppressive function of CD4+CD25+ cells in vitro between sick females, non-sick 

females, and males (Figure 14A). 

In another mouse model of systemic lupus erythematosus derived from the BWFI 

strain, Morel and colleagues also found no defect in the suppressive function of sick 

female Tregs, but did find that sick female CD4+CD2Y responder cells were resistant to 

suppression (115, 116). This resistance to suppression was mediated by increased IL-6 

production by bone marrow-derived DC (115, 116). With this in mind, we compared 

CD4+CD2Y responder cell susceptibility to suppression as well as the ability of APC to 

support suppression between age-matched sick females, non-sick females, and males. We 

found that sick female CD4+CD25- responder cells were suppressed at similar levels to 
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non-sick female and male CD4+CD25- responder cells (Figure 14B). Morel and 

colleagues found excess IL-6 production by DC caused CD4+CD2Y responder cells to 

become resistant to suppression in vitro (115, 116). However, we found no defect in the 

ability of sick female APC to support suppression compared to age-matched non-sick 

female and male APC, i.e., APC from sick females did not confer resistance to 

suppression on responder cells (Figure 14C). These data together indicate that there are 

no inherent defects in the ability of sick CD4+CD2Y responder cells to be suppressed or 

in the ability of APC from sick female mice to support suppression of sick female Tregs 

to suppress disease. 

Foxp3, the best Treg marker to date, is a transcription factor necessary for Treg 

function (127). Interestingly, 32-36-week-old sick females had significantly higher 

percentages of CD4+ T cells that were Foxp3+ in lymph nodes (LN) and spleen than age­

matched non-sick females and males, whose percentages in LN and spleen were similar 

to one another (Figure 15A). Sick females also had higher total CD4+Foxp3+ cell 

numbers than age-matched non-sick females and males in LN (Figure 15B). This is 

consistent with higher total cell numbers in general in LN and spleen in sick female mice 

compared to age-matched non-sick female and male total cell numbers (Table 10). We 

found similar differences in the percentages of CD4+ cells that express CD25 as we did in 

percentages of CD4+ cells that express Foxp3, i.e. sick females had the highest 

percentages (Figure 15C). However, we found no difference in per cell Foxp3 expression 

by CD4+CD25+ cells between sick females and age-matched non-sick females and males 

in LN or spleen (Figure 15D, Table II). Thus, sick female BWFI mice have higher 
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percentages of Tregs than age-matched non-sick females and males, and these cells are 

functional suppressors in vitro. 

Sick females had a higher percentage of CD4+CD2S+CDI03+ cells than age-matched 

non-sick females and males with no defect in suppressive function in vitro. 

A subset of very potent Tregs expresses the integrin, UE/37 (CDI03) (207). CDI03 

is thought to be involved in retention of this subset of Tregs at sites of inflammation 

(212). CDI03+ Tregs are more potent suppressors than CDI03- Tregs, both in vitro and in 

vivo, and are considered an effector/memory subset of Tregs (149,207,210,211). This 

subset of CD 1 03+ Tregs has been shown to be effective at controlling 

autoimmune/inflammatory diseases such as wasting disease and colitis (211). As we did 

with the CD4+CD25+ cells, we compared the suppressive function of 

CD4+CD25+CDI03+ cells between age-matched sick females, non-sick females, and 

males using a standard in vitro suppression assay. We co-cultured CD4+CD25+CDI03+ 

cells sorted to >95% purity from sick females, non-sick females, and males at varying 

ratios with male CD4+CD2Y responder cells, male irradiated spleen cells as APCs, and 

anti-CD3. We found no significant difference in suppressive ability of 

CD4+CD25+CDI03+ cells between age-matched sick females, non-sick females, and 

males (Figure 16D). 

Consistent with data found for CD4+Foxp3+ cells as a whole, we found that 32-36 

week-old sick female mice had significantly higher percentages and total cell numbers of 

the potent CD4+CD25+CDI03+ cells than age-matched non-sick females and males in LN 

and spleen (Figure 16A, Table 12). Sick females had similar per cell CD103 expression 

89 



on CD4+CD25+CD103+ cells as non-sick females and males in LN and spleen (Figs. 16B 

& C). Thus, there were no inherent defects in CD4+CD25+CD103+ suppressive function 

in sick females, and the CD4+CD25+CD103+ cell population was actually increased in 

sick BWF1 mice. 

Although it is not clear whether the thymus is actually a major source of 

CD4+CD25+CD103+ cells, we next investig~ted whether sick females had defects in 

thymic production of these cells. We found that, as in the periphery, sick females had 

higher percentages of both CD4+Foxp3+ and CD4+CD25+CD103+ subsets in the thymus 

(Figure 17). All types of T cells can traffic into the thymus from the periphery (259), so 

while our data did not suggest a defect in thymic CD4+CD25+CD103+ cell production in 

sick females, it does not rule out the possibility that CD4+CD25+CD1 03+ cells from the 

periphery, in which sick females have a higher percentages ofCD4+CD25+CD103+ cells, 

are trafficking back into the thymus. 

Sick female Tregs were unable to control effector T cell proliferation in vivo. 

To determine whether differences in homeostatic proliferation were responsible 

for differences in peripheral Treg percentages between 32-36-week-old sick female, non­

sick female, and male BWF1 mice, we stained LN and spleen cells with an antibody 

against Ki67, a marker for proliferating cells. Although sick females had higher 

percentages of both CD4+Foxp3+ and CD4+CD25+CD103+ cells in LN and spleen (Figure 

15A, 16A), their CD4+Foxp3+ and CD4+CD25+CD103+ cells did not proliferate more in 

vivo than in age-matched non-sick females and males (Figure 18A, 18C). However, 

CD4+Foxp3- effector T cells did proliferate significantly more in sick female LN and 
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tended to proliferate more in spleen than in age-matched non-sick females and males 

(Figure 18B). The Ki67 proliferation data were confirmed with BrdU staining. Further 

analysis showed that the Foxp3+:Foxp3- proliferation ratio was significantly lower in both 

the LN and spleen of sick female mice by comparison to both non-sick female and male 

BWFI mice (Figure 18D). These data suggest two things. First, the high percentages of 

CD4+Foxp3+ and CD4+CD2S+CD103+ cells found in the periphery of sick female BWFI 

mice are not due to either increased proliferation of these cells or a decreased 

proliferation of the CD4+Foxp3- cells. Secondly, the increased proliferation of the 

CD4+Foxp3- cells in sick female mice suggest that sick female Tregs, while able to 

suppress proliferation of CD4+CD2S- cells in vitro (Figure 14A), appear unable to 

suppress proliferation of the same population in vivo. 

Sick female Tregs were able to traffic to kidney LN 

We next examined the ability of sick female Tregs to traffic to sites where their 

suppressive function would likely be needed in late stage disease. T cell infiltration into 

the kidney is necessary for end stage kidney disease (91), so the lymphoid organs 

draining the kidney may be an important site for Tregs to carry out their suppressive 

function. For this purpose, we analyzed kidney LN for the presence of CD4+Foxp3+ and 

CD4+CD2S+CDI03+ cells. We found that sick females had higher percentages of both 

CD4+Foxp3+ and CD4+CD2S+CD103+ cells in the kidney LN compared to age-matched 

non-sick females and males (Figure 19), suggesting that the Tregs were getting to the site 

where the Treg targets, the kidney-specific effector T cells, would likely be induced. 
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However, these data do not rule out the possibility that the Tregs are not infiltrating the 

kidney itself where they may also be required to suppress pathogenic T cell function. 

Downregulation of CD62L is required for T cell egress from LN (260). 

CD4+CD2S+CD103+ cells are known as a memory/effector subset of Tregs that can 

traffic to and are retained at sites of inflammation (210,212). If these CD103+ Tregs are 

unable to downregulate CD62L and leave the LN, they may be unable to traffic to 

inflammatory sites, which may prevent them from performing important regulatory 

functions and thus, protect from disease. We evaluated CD62L expression on 

CD4+CD2S+CD103+ Tregs, and found that sick females actually had lower percentages 

of CD4+CD2S+CD1 03+CD62L hi cells and, therefore, more CD6io cells than age-matched 

non-sick females and males in both LN and spleen (Figure 20), suggesting that this 

population can and does downregulate CD62L and is, therefore, not "stuck" in the LN 

because of its inability to properly regulate CD62L expression. 

Regulatory T cell percentages change with disease progression in BWFI mice. 

As discussed above, we found that sick females had much higher percentages and 

numbers of both CD4+Foxp3+ and CD4+CD2S+CDI03+ Tregs in the periphery than age­

matched non-sick females and males (Figure lSA & B, 16A, Table 12). To determine 

how these populations change over time, we compared CD4+Foxp3+ and 

CD4+CD2S+CD103+ cell populations in female and male BWF1 mice at different time­

points during disease development, i.e., at 9, 20, 24-28, and 32-36 weeks of age. As 

reported in specific aim 2, at 9 weeks, females had significantly lower percentages of 

CD4+ cells that are Foxp3+ (CD4+Foxp3+) than males in LN (21). At 20 weeks of age, 
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female and male percentages of CD4+Foxp3+ cells in LN were not significantly different, 

but the percentages still tended to be lower in females than males (Figure 21). By 24-28 

weeks, there were no differences in percentages of CD4+Foxp3+ cells in LN between 

females and males (Figure 21). At 32-36 weeks of age, sick females had significantly 

higher percentages of CD4+Foxp3+ cells in the LN than age-matched non-sick females 

arid males (Figure 21). In the spleen, there were no differences between female and male 

percentages ofCD4+Foxp3+ cells at 9 weeks, 20 weeks, or 24-28 weeks (data not shown). 

It was not until 32-36 weeks that differences were seen in the spleen, with sick females 

having significantly higher percentages of CD4+Foxp3+ cells (Figure 15A). Percentages 

ofCD4+CD25+CDI03+ cells in the LN followed the same pattern as percentages of 

CD4+Foxp3+ cells; at 9 weeks, females were significantly lower; there was no difference 

at 20 weeks but females trended lower; and at 24-28 weeks there was no difference 

between females and males (Figure 22). Again, at 32-36 weeks, sick females had 

significantly higher percentages ofCD4+CD25+CDI03+ cells than age-matched non-sick 

females and males (Figure 22). In spleen, 9 week old BWFI females had significantly 

lower CD4+CD25+CDI03+ percentages than males, there was no significant difference at 

20 weeks or 24-28 weeks of age, and at 32-36 weeks, sick females had significantly 

higher percentages ofCD4+CD25+CD103+ cells than age-matched non-sick females and 

males (data not shown). In addition, we found no difference in suppressive function of 

CD4+CD25+CDI03+ Tregs in vitro between females and males at any age tested (Figure 

23). These data suggest that 9 weeks of age may be an important time-point during 

disease development and the appropriate Treg to effector T cell balance may be critical 

(Fig. 24). 
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At nine weeks of age, pre-disease female BWFI mice had no defect in Treg 

suppressive function in vitro but may be unable to control effector T cell 

proliferation in vivo. 

We found that 9 weeks of age (pre-disease) may represent an interesting and 

important time-point during disease development when gender differences in Treg 

populations may set the scene for gender differences in disease susceptibility later in life. 

As shown in specific aim 2 and discussed above, both CD4+CD25+ and 

CD4+CD25+CDI03+ cells from 9-week-old female BWFI mice were as effective as male 

cells in suppressing CD4+CD2Y responders (Figure 8, 10D, 23A). To normalize the 

experimental conditions so that results between females and males were comparable, 

regulatory function by female and male Tregs in those experiments were tested using 

male responders and APCs. As mentioned previously, Morel and colleagues found 

CD4+CD2Y responder cells from sick females were resistant to suppression in another 

mouse model of lupus, which appeared to be due to increased IL-6 production by DC 

(115, 116). For this reason, we first compared sensitivity of female and male CD4+CD25-

responder T cells to suppression by Tregs in vitro. We co-cultured varying numbers of 

bead-purified CD4+CD25+ cells from 9-week-old BWFI male mice with a fixed number 

of female or male CD4+CD2Y responder cells, male irradiated spleen cells as APCs, and 

anti-CD3. Interestingly, we found that female CD4+CD2Y responder cells appeared to be 

more susceptible to suppression than male cells (Figure 25A). To determine whether sick 

female DC could render CD4+CD2Y responder cells resistant to suppression, we co­

cultured varying numbers of bead-purified CD4+CD2S+ cells from males with male 
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CD4+CD25- responder cells, female or male irradiated spleen cells as APCs, and anti­

CD3. We found no significant differences between the ability of9-week-old female and 

male APCs to support suppression in vitro (Figure 25B). Finally, to determine whether 

suppressive function of female Tregs in an environment where all cell components of the 

assay were either from females or males, we co-cultured varying numbers of bead­

purified CD4+CD25+ cells from females or males with gender-matched CD4+CD2Y 

responder cells and irradiated spleen cells as APCs, and anti-CD3. We found no 

differences in Treg suppressive function in the all female group compared to the all male 

environment in vitro (Figure 25C). These data together suggest that females do not have 

a defect in inherent suppressive function or in the ability of their responder T cells to be 

suppressed, but do have reduced Treg percentages and numbers when compared to males 

that could influence their susceptibility to disease. However, CD4+Foxp3- effector T 

cells proliferated more in vivo in 9-week-old females than in males (Figure 12B). These 

data may suggest that while the female Tregs are functional, the responder T cells 

sensitive to suppression and the APC capable of supporting suppression in vitro, there 

may be some other factor(s) that may interfere with the ability of Tregs to function 

properly in vivo. And this appears to be true at both the early time-point before disease 

onset at 9 weeks of age as well as after disease is established by 32-36 weeks of age, and 

may be indicative of early uncontrolled activation of T cells. 
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Pre-disease CDI03-depletion in vivo accelerated and enhanced disease in female and 

male lupus-prone BWFl mice. 

We found reduced proportions of Tregs in the peripheral lymphoid organs of9-

week-old female BWF1 mice compared to males (Figure 9A, lOA, 21, 22), and we 

propose that this is a critical early timepoint during disease development. Previous 

studies have shown that depletion ofCD25+ cells in female BWF1 with an anti-CD25 

monoclonal antibody at 3 days of age resulted in increased dsDNA production and urine 

protein levels (~ 300mg/dL) by 4.5 months of age (174), suggesting that early depletion 

of CD25+ cells could accelerate disease in this strain of mice. We were interested in 

determining whether depleting the CD103+ Treg population had an impact on disease 

progression in both females and males during the period of development when females 

had lower percentages of this population. For this experiment, we depleted CD1 03+ cells 

using a depleting monoclonal antibody. Anti-CDlO3 antibody or an isotype control 

antibody was administered to female and male mice twice a week from 8-12 weeks of 

age and twice a month from 12-20 weeks of age (Figure 24). This treatment regimen 

almost completely depleted all CD 1 03+ cells during this time-period in the blood (Figure 

26). We found that COlO3 depletion accelerated disease in both females and males when 

compared to isotype-treated animals (Figure 27 A, 27C). In females, both disease onset 

and death were accelerated in anti-CD103-treated compared to isotype-treated mice 

(Figure 27). In fact, 100% of anti-COl 03 treated females in experiment #1 were dead by 

42 weeks of age, whereas the same percent mortality was not seen in isotype antibody­

treated females until 53 weeks of age (Figure 27B, 27D). However, the most striking data 
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were seen in the males. Although anti-nucleic antibodies can be detected in males fairly 

early on, we rarely see full-blown disease, and if we do it is after 60 weeks of age. After 

treatment with anti-CD 1 03 antibody, we saw a dramatic increase in both disease 

incidence (SO-70% by SO weeks) and mortality (30-70% by 60 weeks; Figure 27). These 

data indicate that loss of CD 1 03+ Tregs early on can impact disease development and 

severity and give support to the hypothesis that reduced female Treg numbers and 

percentages at 9 weeks of age compared to males may set the stage for their increased 

disease susceptibility later in life. 

Summary 

In this study, we found that 32-36-week-old sick female mice have higher 

percentages of both CD4+Foxp3+ and CD4+CD2S+CDI03+ cells in the periphery when 

compared to age-matched non-sick females and males. Sick female Tregs do not show a 

defect in suppressive function. We found 9-week-old females had lower percentages of 

CD4+Foxp3+ and CD4+CD2S+CD103+ cells in the periphery compared to age-matched 

males. Nine weeks appears to be an important time period in disease progression. 

Depletion of CD 1 03 + cells in females and males starting at 8 weeks decreased time to 

disease and increased death in both female and male BWFI mice. Thus, decreased Treg 

numbers and percentages in female BWFI mice early in development may increase their 

susceptibility to disease. 
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Figure 13. Disease progression in our facility. Urine from female and male BWFI mice 

was tested for protein starting at 20 weeks of age. Mice were considered "sick" when the 

protein in their urine reached a score of 3 (~300mg/dL) for two consecutive weeks. (A) 

Disease incidence. (B) Survival. (females n=20, males n=5). 
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Figure 14, Regulatory function in vitro in 32-36-week-old BWFI mice, (A) To test for 

CD4+CD2S+ regulatory function, CD4+CD2S+ cells were purified from 32-36-week-old 

sick female, non-sick female, and male BWFI mice and varying numbers co-cultured 

with a constant number of male CD4+CD2Y responder cells, male APC, and soluble anti-

CD3 antibody, % suppression of positive control (responder cells without Tregs) was 

calculated and the mean ± SEM presented, (B) To test for CD4+CD2Y responder cell 

sensitivity to suppression, CD4+CD2S+ cells were purified from male 32-36-week-old 
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BWFI mice and varying numbers co-cultured with a constant number of 32-36-week-old 

sick female, non-sick female, and male CD4+CD2S- responder cells, male APCs, and 

soluble anti-CD3 antibody. % suppression of positive control (responder cells without 

Tregs) was calculated and the mean ± SEM presented. (C) To test for the ability of APCs 

to support suppression, CD4+CD25+ cells were purified from male 32-36-week-old 

BWFI mice and varying numbers co cultured with a constant number of male 

CD4+CD25- responder cells, sick female, non-sick female, or male APCs, and soluble 

anti-CD3 antibody. % suppression of positive control (responder cells without Tregs) was 

calculated and the mean ± SEM presented. A representative experiment of 3 performed is 

shown. Statistical differences were analyzed using a student's t test or ANOVA and the 

Tukey-Kramer multiple comparisons test. * p<0.05, ** p<0.005, and *** p<0.0005. 
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Figure IS. Percentages and numbers of CD4+Foxp3+ cells in 32-36-week-old BWFI 

mice. Cells from lymph nodes (LN), spleen, and thymus of 32-36-week-old sick female, 

non-sick female, and male BWFI mice were labeled with anti-CD4, anti-CD2S, and anti-

Foxp3 antibodies and analyzed by FACS®. (A) Labeled CD4+ cells were gated and 

analyzed for the percentages of cells expressing Foxp3 in LN and spleen. (B) The total 

numbers of CD4+Foxp3+ cells are shown in LN and spleen. (C) Labeled CD4+ cells were 

gated and analyzed for the percentages of cells expressing CD2S in LN and spleen. (D) A 

sample histogram showing Foxp3 expression on CD4+CD2S+ cells in LN is shown. (A,C) 

A representative experiment of 4-6 performed is shown. Each symbol represents an 

individual animal. Statistical differences were analyzed using a student' s t test or 

ANOVA and the Tukey-Kramer multiple comparisons test. * p<O.OS, ** p<O.OOS, and 

*** p<O.OOOS. 
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Figure 16. Percentages and in vitro suppressive function ofCD4+CD25+CD103+ cells in 

32-36-week-old BWFI mice. Cells from lymph nodes (LN) and spleen of 32-36-week-

old sick female, non-sick female, and male BWFI mice were labeled with anti-CD4, anti-

CD25, and anti-CDI03 antibodies and analyzed by FACS®. (A) Labeled CD4+CD25+ 

cells were gated and analyzed for the percentages of cells expressing CD 1 03 in LN and 

spleen. (B) Labeled CD4+CD25+ cells were gated and analyzed for the per cell expression 

of CD 103 in LN and spleen. (C) A sample histogram showing CD 103 expression on 

CD4+CD25+ cells in LN is shown. (D) CD4+CD25+CDI03+ cells were purified from 32-

36-week-old sick female, non-sick female, and male BWFI mice and varying numbers 

co-cultured with a constant number of male CD4+CD25- responder cells, male APC, and 

soluble anti-CD3 antibody. % suppression of positive control (responder cells alone) was 

calculated and the mean ± SEM presented. (A,B) A representative experiment of 3-7 

performed is shown. Each symbol represents an individual animal. Statistical differences 

were analyzed using a student's t test or ANOVA and the Tukey-Kramer multiple 

comparisons test. * p<0.05, ** p<0.005, and *** p<0.0005. 
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Figure 17. Percentages of CD4+Foxp3+ and CD4+CD2S+CD1 03+ cells in thymus of 32-

36-week-01d BWF1 mice. Cells from the thymus of 32-36-week-old sick female, non-

sick female, and male BWF1 mice were labeled with anti-CD4, anti-CD2S, anti-CD103, 

and anti-Foxp3 antibodies and analyzed by F ACS®. Labeled cells were gated and 

analyzed for (A) percentages of CD4+ cells expressing Foxp3 and (B) percentages of 

CD4+CD2S+ cells expressing CD103. A representative experiment of 3-7 performed is 

shown. Each symbol represents an individual animal. Statistical differences were 

analyzed using a student's t test or ANOVA and the Tukey-Kramer multiple comparisons 

test. * p<O.OS, ** p<O.OOS, and *** p<O.OOOS. 
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Figure 18. Percentages of proliferating CD4+Foxp3+, CD4+Foxp3-, and 

CD4+CD25+CDI03+ cells in the periphery of 32-36-week-old sick female, non-sick 

female, and male BWF 1 mice. Cells from LN and spleen of 32-36-week-old sick female, 

non-sick female, and male BWFI mice were labeled with anti-CD4, andti-CD25, anti-

CD103, anti-Foxp3, and anti-Ki67 antibodies and analyzed by FACS®. (A) Labeled 

CD4+Foxp3+ cells were gated and analyzed for the percentages of cells expressing Ki67 

in LN and spleen. (B) Labeled CD4+Foxp3- cells were gated and analyzed for the 

percentages of cells expressing Ki67 in LN and spleen. (C) Labeled CD4+CD2S+CDI03+ 
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cells were gated and analyzed for the percentages of cells expressing Ki67 in LN and 

spleen. (D) Proliferation ratios were calculated by dividing the percentage of proliferating 

(Ki67+) CD4+Foxp3+ cells by the percentage of proliferating CD4+Foxp3- cells from LN 

and spleen. A representative experiment of 3 performed is shown. (A-C) Each symbol 

represents an individual animal. Statistical differences were analyzed using a student's t 

test or ANOVA and the Tukey-Kramer multiple comparisons test. * p<O.OS, ** p<O.OOS, 

and *** p<O.OOOS. 
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Figure 19. Regulatory T cell percentages in kidney draining LN from 32-36-week-old 

BWFI mice. Cells from kidney draining LN of 32-36-week-old sick female, non-sick 

female, and male BWFI mice were labeled with anti-CD4, anti-CD2S, anti-CDI03, and 

anti-Foxp3 antibodies and analyzed by FACS®. (A) Labeled CD4+ cells were gated and 

analyzed for the percentages of cells expressing Foxp3 and (B) Labeled CD4+CD2S+ 

cells were gated and analyzed for the percentages of cells expressing CD 1 03. A 

representative experiment of 2 performed is shown. Each symbol represents an individual 

animal. Statistical differences were analyzed using a student's t test or ANOV A and the 

Tukey-Kramer multiple comparisons test. * p<O.OS, ** p<O.OOS, and *** p<O.OOOS. 
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Figure 20. Percentages of CD4+CD2S+CD 103+CD62L hi cells in 32-36-week-old BWF 1 

mice. Cells from lymph nodes (LN) and spleen of 32-36-week-old sick female, non-sick 

female, and male BWFI mice were labeled with anti-CD4, anti-CD2S, anti-CD 1 03, and 

anti-CD62L antibodies and analyzed by FACS®. Labeled CD4+CD2S+CDI03+ cells were 

gated and analyzed for the percentages of cells expressing CD62L hi in (A) LN and (B) 

spleen. A representative experiment of 4 is shown. Each symbol represents an individual 

animal. Statistical differences were analyzed using a student's t test or ANOVA and the 

Tukey-Kramer multiple comparisons test. * p<O.OS, ** p<O.OOS, and *** p<O.OOOS. 
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Figure 21. Percentages ofCD4+Foxp3+ cells in BWF1 mice. Cells from lymph nodes 

(LN) of female and male 9-week-old, 20-week-old, 24-28-week-old, and sick female, 

non-sick female, and male 32-36-week-old mice were labeled with anti-CD4 and anti-

Foxp3 antibodies and analyzed by F ACS®. Labeled CD4+ cells were gated and analyzed 

for the percentages of cells expressing Foxp3. A representative experiment is shown. 

Each symbol represents an individual animal. Statistical differences were analyzed using 

a student's t test or ANOVA and the Tukey-Kramer multiple comparisons test. * p<O.OS, 

** p<O.OOS, and *** p<O.OOOS. 
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Figure 22. Percentages ofCD4+CD2S+CDl03+ cells in BWFI mice. Cells from lymph 

nodes (LN) of female and male 9-week-old, 20-week-old, 24-28-week-old, and sick 

female, non-sick female, and male 32-36-week-old mice were labeled with anti-CD4, 

anti-CD2S, and anti-CD 1 03 antibodies and analyzed by FACS®. Labeled CD4+CD2S+ 

cells were gated and analyzed for the percentages of cells expressing CD 1 03. A 

representative experiment is shown. Each symbol represents an individual animal. 

Statistical differences were analyzed using a student's t test or ANOVA and the Tukey-

Kramer multiple comparisons test. * p<O.OS, ** p<O.OOS, and *** p<O.OOOS. 
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Figure 23. In vitro suppressive function ofCD103+ Tregs from BWFI mice. To test for 

regulatory function CD4+CD2S+CDI03+ cells were purified from (A) 9-week-old, (B) 20-

week-old, (C) 24-28-week-old, and (D) 32-36-week-old sick female, non-sick female, 

and male BWFI mice and varying numbers co-cultured with a constant number male 

CD4+CD25" responder cells, male APC, and soluble anti-CD3 antibody. (A,D) A 

representative experiment of 3 performed is shown. (B) A representative experiment of 2 

performed is shown. (C) 24-28-week-old CD4+CD2S+CDI03+ cells were further sorted 

into CD62L hi and CD62L1o populations. CPM is presented as mean ± SEM. Statistical 
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differences were analyzed using a student's t test or ANOVA and the Tukey-Kramer 

multiple comparisons test. * p<O.OS, ** p<O.OOS, and *** p<O.OOOS. 
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Figure 24. Disease timeline and anti-CD 103 monoclonal antibody treatment in BWF1 

mice. A schematic of lupus symptom development is shown, including initiation of 

autoantibody production and detection of proteinuria. The anti-CD103 monoclonal 

antibody treatment protocol is also shown (results are shown in Figure 26). 
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Figure 25. Regulatory function in vitro of cells from 9-week-old BWFI mice. (A) To test 

for CD4+CD2Y responder cell sensitivity to suppression, CD4+CD2S+ cells were purified 

from male 9-week-old BWFI mice and varying numbers co-cultured with a constant 

number of9-week-old female or male CD4+CD25- responder cells, male APCs, and 

soluble anti-CD3 antibody. % suppression of positive control (responder cells alone) was 

calculated and the mean ± SEM presented. (B) To test for the ability of APCs to support 

suppression, CD4+CD2S+ cells were purified from male 9-week-old BWFI mice and 
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varying numbers co-cultured with a constant number of male CD4+CD2S- responder 

cells, female or male APCs, and soluble anti-CD3 antibody. % suppression of positive 

control (responder cells alone) was calculated and the mean ± SEM presented. (C) To test 

for suppressive function with all female or all male cells, CD4+CD2S+ cells were purified 

from female or male 9-week-old BWFI mice and varying numbers co-cultured with a 

constant number of gender-matched CD4+CD2S- responder cells, gender-matched APCs, 

and soluble anti-CD3 antibody. A representative experiment of3 performed is shown. 

Statistical differences were analyzed using a student's t test or ANOVA and the Tukey­

Kramer multiple comparisons test. * p<O.OS, ** p<O.OOS, and *** p<O.OOOS. 
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Figure 26. In vivo CD103-depletion in pre-diseased BWFI mice. 8wk old female and 

male BWFI mice were treated twice weekly with O.Smg anti-CD103 for 4 weeks, then 

twice monthly until 20wks of age. Mice were considered sick when they had a 

proteinuria score of 3 for two consecutive weeks. Sample FACS figure comparing 

CDI03 expression in the blood of anti-CD103-treated versus isotype-treated mice. 
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Figure 27. Disease incidence and survival in CD103-depleted BWF1 mice. Eight-wk-old 

female and male BWF1 mice were treated twice weekly with O.Smg anti-CD 103 for 4 

weeks, then twice monthly until 20 wks of age. Mice were considered sick when they had 

a proteinuria score of 3 for two consecutive weeks. (A) Percent disease incidence. (B) 

Percent survival. (C) Kaplan-Meier disease incidence curves. (Experiment #1: control vs 

treated male Chi square 1.266, p=0.26; control vs treated female Chi square 3.023, 

121 



p=0.08; and Experiment #2: control vs treated male Chi square 1.009, p=0.32; control vs 

treated female Chi square 1.812, p=0.18) (D) Kaplan-Meier survival curves. (Experiment 

#1: control vs treated male Chi square 0.5225, p=0.47; control vs treated female Chi 

square 6.682, ** p=O.OI; and Experiment #2: control vs treated male Chi square 1.950, 

p=0.1626; control vs treated female Chi square 4.795, * p=0.03). 
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Table lOA: Thymic WeiGhts (mal 

Expt. #1 
Expt. Expt. 

Expt. #4 
Expt. Expt. 

Expt. #7 
#2 #3 #5 #6 

Male 
70.0 ± 39.0 ± 26.6 ± 

11.3 12.0 2.0 
Non-

64.0 ± *68.0 ± *50.8 ± 
Sick 

7.1 1.0 2.6 
Female 

Sick 54.4 ± 28.7 ± 27.2 ± 
Female 11.3 9.6 9.2 

Table UIB~ LN C,e #~(xl-rl6\ 

Expt. #1 
Expt. Expt. 

Expt. #4 
Expt. Expt. 

Expt. #7 
#2 #3 #5 #6 

Male 
24.2 ± 17.2 ± 29.5 ± 29.5 ± 18.7 ± 39.6 ± 

5.2 1.2 9.4 9.4 5.7 23.5 
Non-

24.8 ± 22.7 ± 31.6 ± 31.6 ± 47.5 ± 20.6 ± 
Sick 

Female 
2.4 1.8 4.1 4.1 16.4 2.5 

Sick 46.9 ± 133.1 ± 40.9 ± 40.9 ± 14.9 ± 101.4 ± 
Female 17.4 74.3 7.0 7.0 7.3 52.8 

Tabl,e UIC~ C,ell #s 'xl06 \ 

Expt. #1 
Expt. Expt. 

Expt. #4 
Expt. Expt. 

Expt. #7 
#2 #3 #5 #6 

Male 
68.4 ± 68.4 ± 66.8 ± 84.7 ± 81.7 ± 

6.4 14.5 2.1 3.8 24.8 
Non-

77.8 ± 71.4 ± 97.2 ± 178.3 ± 112.3 ± 
Sick 

9.1 20.9 10.0 78.0 23.4 
Female 

Sick 181.0 ± **216.5 ***133.0 166.2 ± 175.2 ± 
Female 56.3 ± 41.9 ± 7.1 51.7 51.5 

iTable 10D: .. L Cell #~ flcl06
} 

Expt. #1 
Expt. Expt. 

Expt. #4 
Expt. Expt. 

Expt. #7 
#2 #3 #5 #6 

Male 
52.9 ± 47.6 ± 51.1 ± 

4.7 19.3 11.9 
Non-

56.0 ± 41.4 ± 57.0 ± 
Sick 

6.1 6.8 10.2 
Female 

Sick 46.6 ± 9.7 ± 117.9 ± 
Female 7.0 6.5 97.3 

Table 10. Thymic weights and cell numbers in thymus, lymph nodes and spleen of 32-36-

week-old BWFI mice. Thymus, lymph nodes and spleen were collected from 32-36wk 

old sick female, non-sick female, and male BWFI mice and weights or cell numbers 

determined. Statistical differences were analyzed using a student's t test or ANOVA and 

the Tukey-Kramer mUltiple comparisons test. * p<O.OS, ** p<O.OOS, and *** p<O.OOOS. 
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Table 1 ~.A· LN MFI CD4+Fl ~D3+ 

Expt. #1 
Expt. Expt. 

Expt. #4 
Expt. Expt. 

Expt. #7 
#2 #3 #5 #6 

Male 
9187.4 ± 725.4 ± 992.6 ± 496.5 ± 467.8 ± 164.8 ± 

289.6 24.4 121.2 120.6 36.3 7.2 
Non-

8966.8 ± 733.2 ± 862.2 ± 438.8 ± 521.2 ± 148.1 ± 
Sick 

225.4 30.8 85.6 14.7 27.0 4.6 
Female 

Sick 8915.2 ± 756.7 ± 648.2 ± 373.8 ± 473.6 ± 153.0 ± 
Female 733.2 19.3 37.9 24.3 23.1 4.9 

Table 1 .8· 5Dleel MFI CD.I +FoxD3+ 

Expt. #1 
Expt. Expt. 

Expt. #4 
Expt. Expt. 

Expt. #7 
#2 #3 #5 #6 

Male 
7043.0 ± 643.5 ± *651.7 ± 337.3 ± 542.5 ± 123.6 ± 

254.8 17.2 13.7 10.1 103.9 1.6 
Non-

7549.5 ± 662.2 ± 621.1 ± 362.2 ± 398.7 ± 133.9 ± 
Sick 

274.5 16.7 14.1 25.1 22.9 2.6 
Female 

Sick 7317.0 ± 694.4 ± 562.7 ± 370.8 ± 477.2 ± 139.4 ± 
Female 408.2 17.6 23.3 8.6 22.9 7.3 

Table II. Mean fluorescence intensity of Foxp3 on CD4+ cells in 32-36-week-old BWFI 

mice. Cells from lymph nodes (LN) and spleen of 32-36-week-old sick female, non-sick 

female, and male BWFI mice were labeled with anti-CD4 and anti-Foxp3 antibodies and 

analyzed by F ACS®. Labeled CD4+ cells were gated and analyzed for the per cell 

expression of Foxp3 in (A) LN and (B) spleen. Statistical differences were analyzed 

using a student's t test or ANOVA and the Tukey-Kramer multiple comparisons test. * 

p<O.OS, ** p<O.OOS, and *** p<O.OOOS. 
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Table 1"tA· LN CD4+CD25+r:D103+ Cell #5 (x106 ) 

Expt. #1 
Expt. Expt. 

Expt. #4 
Expt. Expt. 

Expt. #7 
#2 #3 #5 #6 

Male 
0.050 ± 0.084 ± *0.083 ± 0.122 ± 0.076 ± 0.416 ± 
0.014 0.022 0.031 0.078 0.017 0.343 

Non-
0.054 ± 0.122 ± 0.086 ± 0.090 ± 0.585 ± 0.095 ± 

Sick 
Female 

0.009 0.048 0.016 0.029 0.392 0.014 

Sick 0.273 ± 3.282 ± 0.863 ± 0.403 ± 0.110 ± 2.095 ± 
Female 0.139 1.995 0.325 0.144 0.056 1.211 

Table 1 ~B· Snleel CD4+CD25+CD10:1+ Cell #s (x106 , 

Expt. #1 
Expt. Expt. 

Expt. #4 
Expt. Expt. 

Expt. #7 
#2 #3 #5 #6 

Male 
*0.133 ± **0.261 ***0.105 0.343 ± 1.343 ± 

0.032 ± 0.105 ± 0.029 0.113 0.610 

Non-
0.193 ± 0.509 ± 0.266 ± 2.632 ± 2.051 ± Sick 

Female 
0.038 0.300 0.060 2.049 0.524 

Sick 1.051 ± 3.986 ± 1.246 ± 2.097 ± 5.885 ± 
Female 0.401 1.196 0.280 1.043 2.483 

Table 12. Numbers ofCD4+CD25+CDI03+ cells in 32-36-week-old BWFI mice. Cells 

from lymph nodes (LN), spleen, and thymus of 32-36-week-old sick female, non-sick 

female, and male BWFI mice were labeled with anti-CD4, anti-CD25, and anti-CD 103 

antibodies and analyzed by FACS®. The total numbers ofCD4+CD25+CDI03+ cells are 

shown in (A) LN, (B) spleen, and (C) thymus. Statistical differences were analyzed using 

a student's t test or ANOVA and the Tukey-Kramer multiple comparisons test. * p<O.05, 

** p<O.005, and *** p<O.0005. 
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Table 1~IA· LN % ":D4+ 

Expt. #1 
Expt. Expt. 

Expt. #4 
Expt. Expt. 

Expt. #7 
#2 #1 #5 #6 

Male 
56.2 ± 46.6 ± *46.5 ± 45.0 ± 49.6 ± 49.6 ± 57.4 ± 

1.4 1.2 2.1 5.9 6.0 3.7 1.9 
Non-

54.4 ± 46.7 ± 54.9 ± 46.6 ± 51.5 ± 54.7 ± 61.3 ± 
Sick 

2.1 3.1 1.4 3.4 1.8 2.3 1.1 
Female 

Sick **47.2 ± 45.5 ± 51.5 ± 37.6 ± 49.8 ± 44.9 ± 52.2 ± 
Female 1.7 2.8 2.2 4.2 2.9 3.9 4.0 

Table 1~IB~ SDleel 0/0 CD4+ 

Expt. #1 
Expt. Expt. 

Expt. #4 
Expt. Expt. 

Expt. #7 
#2 #3 #5 #6 

Male 
**30.7 ± 26.0 ± *28.7 ± 25.7 ± 28.3 ± 29.6 ± 25.9 ± 

0.5 1.1 0.9 0.7 2.1 0.6 1.4 
Non-

35.3 ± 28.7 ± 35.6 ± 27.3 ± 32.7 ± 31.4 ± 29.5 ± 
Sick 

0.9 1.7 0.8 2.6 3.6 1.7 0.9 
Female 

Sick 34.5 ± 28.1 ± 35.6 ± 22.3 ± 28.9 ± 29.4 ± 27.2 ± 
Female 0.6 2.9 2.2 0.7 1.4 2.1 3.5 

Table l~tC~ Thvmlls % CD4+CDS-

Expt. #1 
Expt. Expt. 

Expt. #4 
Expt. Expt. 

Expt. #7 
#2 #3 #5 #6 

Male 
10.2 ± 18.0 ± 

8.2 ± 0.3 
17.4 ± 

0.5 0.7 4.1 
Non-

13.0 ± 17.3 ± 
Sick 8.9 ± 0.6 

1.6 
8.2 ± 0.2 

3.0 
Female 

Sick **36.3 ± 5.3 ± **13.7 ± **36.8 ± 
Female 8.2 0.7 2.0 4.2 

Table 13. Percentages ofCD4+ cells in 32-36-week-old BWFI mice. Cells from lymph 

nodes (LN), spleen, and thymus of 32-36-week-old sick female, non-sick female, and 

male BWFI mice were labeled with anti-CD4 antibody and analyzed by FACS®. Labeled 

T cells were gated and analyzed for the percentages of cells expressing CD4 in (A) LN, 

(B) spleen, and (C) thymus. Statistical differences were analyzed using a student's t test 

or ANOV A and the Tukey-Kramer multiple comparisons test. * p<O.OS, ** p<O.OOS, and 

*** p<O.OOOS. 
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Table 1 ~A~ IN CD' + Cell #1 {xl06 , 

Expt. #1 
Expt. Expt. 

Expt. #4 
Expt. Expt. 

Expt. #7 
#2 #3 #5 #6 

Male 
9.890 ± 7.039 ± 11.347 ± 8.435 ± 15.878 ± 

1.784 0.663 3.888 3.409 7.704 
Non-

10.367 ± 9.419 ± 14.266 ± 18.999 ± 10.371 ± Sick 
Female 

1.357 0.981 2.844 5.751 1.505 

Sick 14.726 ± 48.773 ± 17.188 ± 5.647 ± 36.911 ± 
Female 5.476 25.196 1.531 2.600 17.721 

Table 1 :B~ SDleel CD4+ CE II #s {xl )6, 

Expt. #1 
Expt. Expt. 

Expt. #4 
Expt. Expt. 

Expt. #7 
#2 #3 #5 #6 

Male 
14.194 ± 14.865 ± 18.991 ± 23.254 ± 

1.491 2.688 1.703 6.562 
Non-

15.445 ± 15.735 ± 37.557 ± 33.051 ± 
Sick 

Female 
2.009 3.201 15.696 5.299 

Sick 29.019 ± 
**50.41 

33.886 ± 47.835 ± 
Female 9.438 2± 

8.833 13.878 
10.460 

ITable 1 .C: Thvmlls CD4+CI1S- Cell #s {xl06 , 

Expt. #1 
Expt. Expt. 

Expt. #4 
Expt. Expt. 

Expt. #7 
#2 #3 #5 #6 

Male 
2.373 ± 7.231 ± 

0.389 1.136 
Non-

1.609 ± 8.678 ± 
Sick 

0.538 0.709 
Female 

Sick **0.271 28030 ± 
Female ± 0.059 20.190 

Table 14. Numbers ofCD4+ cells in 32-36-week-old BWFI mice. Cells from lymph 

nodes (LN), spleen, and thymus of 32-36-week-old sick female, non-sick female, and 

male BWFI mice were labeled with anti-CD4 antibody and analyzed by FACS®. The 

total numbers of CD4+ cells are shown in (A) LN, (B) spleen, and (C) thymus. Statistical 

differences were analyzed using a student's t test or ANOVA and the Tukey-Kramer 

multiple comparisons test. * p<O.OS, ** p<O.OOS, and *** p<O.OOOS. 
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DISCUSSION 

Regulatory T cells have been shown to be important in controlling autoimmune 

disease (123, 124). Females are generally more susceptible to autoimmune disease, 

including systemic lupus erythematosus (SLE), in which women are nine times more 

likely to develop disease than men (I). We hypothesized that gender differences in 

regulatory T cell populations are associated with differences in disease susceptibility. We 

used a spontaneous mouse model ofSLE, (NZBxNZW)FI (BWFI), in which females 

predominantly develop disease, to investigate gender differences in regulatory T cell 

populations. We also compared Treg populations in autoimmune-prone BWFI mice to 

other autoimmune-prone and more resistant strains. 

Strain differences in regulatory T cell percentages correlate with disease 

susceptibility . 

Strains of mice with different genetic backgrounds have varying susceptibility to 

disease. Previous studies have found differences in regulatory T cell populations, either in 

number or function, between "more" and "less susceptible" strains (244, 254, 255). In a 

2005 study by Howard and colleagues, the authors describe C57BLl6 mice as more 

susceptible to autoimmune disease than BALB/c mice and show that C57BLl6 mice have 

significantly lower percentages of CD4+CD2S+ Tregs in the thymus and peripheral 
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lymphoid organs than BALB/c mice (254). We also found that BALB/c mice had a 

higher percentage of Tregs (although we used the more specific Treg marker, Foxp3, to 

distinguish Tregs) than C57BLl6 mice in thymus, LN, and spleen (Figure 2A). Whereas 

it is true that autoimmune disease can be induced in C57BLl6 mice (i.e. MOG-induced 

EAE (261)), it can also be induced in BALB/c mice (i.e. collagen-induced arthritis 

(262)), and by comparison to other strains, such as the highly autoimmune-prone strains, 

BWF1 and SJL mice, the C57BLl6 and BALB/c strains of mice rank extremely low on 

the autoimmune disease susceptibility scale. We, therefore, believe that it is significant 

that lupus-prone BWF1 mice had dramatically lower percentages of Tregs than the other 

three strains studied (Figure 2A). With regard to functional differences in Tregs between 

strains, Chen et al. found apparent differences in Treg suppressive function between 

C57BLl6 and BALB/c mice in vitro (254). When cultured with syngeneic CD4+CD25-

responder cells, C57BLl6 CD4+CD25+ Tregs did not suppress as well as CD4+CD25+ 

BALB/c Tregs, and the difference in suppressive function between C57BLl6 and 

BALB/c Tregs was due to the increased resistance of C57BLl6 CD4+CD25- responder 

cells to suppression (254). We found no differences in the suppressive ability of 

CD4+CD25+ Tregs between any of the four strains studied when co-cultured with either 

syngeneic or C57BLl6 CD4+CD25- responder cells (Figure 1). Furthermore, C57BLl6 

responder cells seemed to be as sensitive to suppression as responder cells from any of 

the three other strains. We cannot account for these differences other than to suggest that 

there may be differences in protocol or mouse colony conditions. Morel and colleagues 

also found CD4+CD2Y resistance to suppression in NZB2410 mice, a congenic mouse 

model on a C57BLl6 background that expresses the lupus susceptibility locus Sle 1 a of 
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BWFI mice (115). They found that high levels ofIL-6 produced by bone marrow-derived 

DCs rendered CD4+CD2Y responder cells resistant to suppression by Tregs (115). In our 

study, we did not see any evidence of resistance ofBWFl responders to suppression by 

Tregs or evidence that the female BWFI APCs were any more capable of conferring any 

kind of resistance onto the responders (Figure 14B & 14C, 25B). The discrepancies in 

the results between the studies could be due to 1) the APCs that we tested in the B WF 1 

model were endogenous spleen cells and not the bone marrow-derived DC that Morel and 

colleagues tested and 2) the mouse model used by the Morel group was a congenic strain 

ofBWFl that was primarily on a C57BLl6 background. 

While other groups have looked at regulatory T cell populations in different 

strains of mice, and even compared autoimmune-prone and less autoimmune-prone 

strains of mice, they have not systematically studied the CD 1 03 + Treg subset in these 

mouse strains. CD 1 03+ Tregs are a very potent subset of Tregs that are thought to have a 

memory/effector phenotype and are found in both mice and humans (207-210). These 

CD 103+ Tregs are better suppressors both in vitro and in vivo than CDI03- Tregs (149, 

207,211). We found that both autoimmune-prone strains, BWFI and SJL, have lower 

percentages ofCD4+CD25+CDI03+ Tregs in LN than the less autoimmune-prone strains, 

C57BLl6 and BALB/c (Figure 3A). Again we found no difference in the ability of 

CD4+CD25+CDI03+ Tregs to suppress syngeneic CD4+CD25- responder cells between 

strains in vitro (Figure 3D). These data suggest that lower Treg ratios may be important 

in disease susceptibility. 

Reddy et al. have reported that while SJL mice, which are susceptible to PLP 139-

lSI-induced EAE, and B10.S mice, which are resistant to PLP 139-1S1-induced EAE, 
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have similar percentages ofCD4+CD25+ Tregs, BlO.S mice have a 3X higher PLP 139-

151 antigen-specific Treg to antigen-specific effector T cell ratio than SJL mice, (263). 

When CD4+CD25+ Tregs in BI0.S mice were eliminated using a depleting CD25 

antibody, antigen-specific effector T cells were uncontrolled and able to proliferate, 

causing these mice to develop EAE (263). These data support the hypothesis that reduced 

percentages of Tregs in BWFI mice, when compared to other mouse strains, may be 

unable to control autoreactive T cell proliferation and expansion well enough to prevent 

disease. We found no significant differences in homeostatic proliferation of CD4+Foxp3-

effector T cells in vivo between strains in young mice (Figure 5B). However, since we do 

not have the tools to analyze antigen-specific T cells in wildtype mice, we cannot rule out 

the possibility that autoreactive T cells are proliferating more in autoimmune-prone mice. 

Gender differences in regulatory T cell percentages in autoimmune-prone and less 

autoimmune-prone mouse strains. 

Women are more susceptible to many autoimmune diseases than men (1). This is 

especially true for systemic lupus erythematosus (49,50). Females have a stronger 

immune response in general compared to males. They produce higher antibody titers in 

response to antigens (6), have more activated T cells (7), and produce more IFN-y in 

response to antigens (10). In fact, inflammatory cytokine production is increased when 

CD4+ T cells are treated with estradiol and decreased when treated with the androgen in 

vitro (11, 12). Exposure to estrogens, either produced naturally in females or present in 

estrogenic compounds such as oral contraceptives and fertilizers, has been associated 

with an increased risk of autoimmune disease (13). Androgens have been shown to be 
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protective in some autoimmune disease settings. Treatment of SJL mice with adoptively 

transferred EAE with DHT 90-day release pellets resulted in less severe and eventually 

remitting disease (31). Castration of male non-obese diabetic (NOD), a mouse model of 

type 1 diabetes and (NZBxNZW)Fl (BWF1) mice resulted in disease similar to that seen 

in females (40,68). Androgen treatment of female NOD or BWFI mice protects these 

mice from disease (39,68). The BWFI mouse model of lupus mirrors human disease in 

two ways: first, disease develops spontaneously, and second, BWFI mice also have a 

female bias for development of disease (66,67). We evaluated 9-week-old female and 

male BWFI mice, which do not yet exhibit disease symptoms (e.g., circulating dsDNA 

antibodies and proteinuria) to investigate gender differences in Treg populations. We also 

looked at female and male Treg populations in age-matched mice from three other 

strains, another autoimmune-prone strain, SJL, and two less autoimmune-prone strains, 

C57BLl6 and BALB/c. We found that of all four strains studied, only BWFI females 

had lower percentages and numbers of CD4+Foxp3+ Tregs than males in the periphery 

(Figure 9A & 9B). CD4+CD25+ regulatory cells have been shown to be important in 

disease prevention in BWFI mice, since depletion of these cells by anti-CD25 antibody 

treatment (i.e. Treg depletion) in vivo significantly accelerates disease (174). In another 

mouse model of lupus, NZM2328, removal of Tregs through pre-pubertal thymectomy 

also accelerated disease and adoptive transfer of CD25+ Tregs from non-sick mice could 

rescue from disease (175). These data support our hypothesis that the reduction we see in 

CD4+Foxp3+ Tregs in female BWFI mice when compared to males may be an important 

contributing factor to their increased disease susceptibility. 
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Females of all four strains we studied had lower percentages and numbers of 

CD4+CD2S+CD103+ Tregs in the periphery (Figure lOA, Table 7). This is interesting and 

may suggest that the potent CD4+CD2S+CD103+ subset of Tregs is sensitive to hormonal 

influences. We found no differences in either CD4+CD2S+ or CD4+CD2S+CD103+ Treg 

function in vitro between young female and male BWF1 mice (Figure 8, 10D), 

suggesting that it may be the decreased ratio of Tregs:Teffector cells and not a defect in 

inherent suppressive function that increases female disease incidence. 

Natural Tregs develop in the thymus through positive selection on a high affinity 

TCR (18S). In all four strains studied, we saw no differences between female and male 

thymic percentages or numbers of either CD4+Foxp3+ Tregs or the CD4+CD2S+CD103+ 

subset of Tregs (Figure 11), indicating that there was no defect in thymic production of 

these cells. It is true that Tregs can develop extra-thymically through conversion in the 

periphery (190, 191), and it would be interesting to compare female and male conversion 

both in vitro and in vivo, especially in the BWF1 mice, in the future to determine whether 

female BWF1 mice, or BWF1 mice in general compared to other mouse strains, have a 

defect in conversion. 

We looked at proliferation in vivo ofCD4+Foxp3+ Tregs, CD4+CD2S+CD103+ 

Tregs, and CD4+Foxp3- non-Tregs from 9-week-old mice. The only strain with gender 

differences in proliferation ratios ofCD4+Foxp3+:CD4+Foxp3- T cells was the BWF1 

strain (Figure 12D). Female BWF1 mice had a lower CD4+Foxp3+:CD4+Foxp3-

proliferation ratio than BWF1 males in the LN because the Foxp3- cells were 

proliferating more and not because the Foxp3+ cells were proliferating less in females 

(Figure 12). So the question becomes, are the Foxp3- effector cells proliferating in 
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female BWFI mice because there are too few Foxp3+ Tregs to control them or are the 

Tregs dysfunctional thus allowing the Foxp3- effector cells to proliferate and creating the 

imbalance in the Foxp3+:Foxp3- ratio. Perhaps by looking at earlier time-points in BWFI 

mice we may be able to distinguish between these two possibilities. 

Hormones impact the development of autoimmune disease. It has been shown that 

castration of male BWFI mice induces disease comparable to female disease (68). 

Estrogen treatment of castrated male or ovariectomized BWFI mice increases disease 

severity while androgen treatment protects from disease (68). Though we don't 

understand the mechanism, our lab has also found that androgen-treated BWFI females 

have increased Treg percentages, both CD4+CD25+ and CD4+CD25+CD103+ Treg 

subsets, comparable to levels seen in age-matched males, and that castrated male Treg 

percentages are comparable to percentages found in females (unpublished data). We 

hypothesize that androgens in males increase the numbers (perhaps by increasing survival 

or conversion/induction of these cells), and possibly the function, of Tregs by comparison 

to females, and it is through this mechanism, at least in part, that androgens protect males 

from the development of autoimmune disease even when they have a genetic 

predisposition for disease, as in BWFI mice. 

Regulatory T cell populations change with disease progression. 

Regulatory T cell populations have been shown to be important in systemic lupus 

erythematosus (SLE) in both humans and mice (160, 161). In humans, some studies have 

found reduced Treg percentages and function in SLE patients (162-164), whereas other 

studies have found reduced percentages, but not function of Tregs (165, 166). Still others 
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have found increased Treg percentages in SLE patients (167-169). The discrepancy in 

data on Treg percentages and function in humans may be due to the fact that human SLE 

patients present with a wide array of symptoms for which they receive a variety of 

different treatments that could impact Treg populations. Also, the distinction between 

active and inactive SLE patients is not made clear in the literature, so different research 

groups may define them differently and, thus find different results. Another important 

factor when looking at human Tregs is that activated CD4+ T cells in humans transiently 

express Foxp3 (138) and some Foxp3+ cells may actually be the IL-17-producing Foxp3+ 

cells described by Sakaguchi and colleagues (171), so any study defining Tregs as 

CD4+Foxp3+ may also include some activated T cells. It is, therefore, still not clear 

whether defects, either quantitative or qualitative, in Tregs in lupus patients are common 

and whether they playa role in pathogenesis. As more research tools become available, 

this issue will become clearer. In the meantime, mouse studies are critical to fill in the 

gaps in our knowledge. 

In mice, there has been a great deal of research directed at depleting or increasing 

Treg populations and determining the impact on disease. As mentioned earlier, Treg 

depletion using an anti-CD25 monoclonal antibody in BWFI mice accelerated disease 

(174). Removal of Tregs through pre-pubertal thymectomy in lupus-prone NZM2328 

mice also accelerated disease and mice could be rescued from disease through adoptive 

transfer of CD4+CD25+ from non-sick mice (175). Increasing Treg populations, whether 

through adoptive transfer of Tregs or through treatment with tolerizing peptides, could 

delay or prevent lupus development in lupus-prone mice (176-179). These data together 

highlight the importance of Tregs in lupus development. 
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In our facility, approximately SO% of female BWFI mice develop severe kidney 

disease by 32 weeks of age while 0% of males have developed disease at this age (Figure 

13). Autoantibodies can be detected in the serum of females beginning at about 16 weeks 

of age and we begin measuring proteinuria in female BWFI mice at about 28 weeks of 

age (Figure 24). When we compared Treg populations in sick female, non-sick female, 

and male 32-36-week-old BWFI mice, we found that sick females had significantly 

higher percentages of both CD4+Foxp3+ and the CD4+CD2S+CDI03+ cells (Figure ISA, 

16A). This was surprising because, as stated above, many groups have found that 

decreased Treg percentages are associated with acceleration and severity of disease and 

increased Treg percentages are associated with protection from disease. Interestingly, 

these sick female Tregs, both CD4+CD2S+ cells and the CD4+CD2S+CD103+ subset, 

suppressed as well in vitro as non-sick female and male Tregs (Figure 14A, 16D). Morel 

and colleagues found that CD4+CD2S- were resistant to suppression in NZB241 0 mice, a 

congenic mouse model on a CS7BLl6 background that expresses the lupus susceptibility 

locus Sieia (lIS). However, when we compared CD4+CD2Y susceptibility to 

suppression, we found no differences between sick female, non-sick female, and male 

susceptibility to suppression in vitro (Figure 14B). Morel and colleagues also found that 

increased IL-6 production by bone marrow-derived DC in vitro rendered CD4+CD2Y 

responder cells resistant to suppression by CD4+CD2S+ Tregs (lIS). However, we found 

no difference in the ability of APCs to support in vitro suppression between sick females 

and age-matched non-sick females and males (Figure 14C). Although these data do not 

rule out the possibility that Tregs in sick female mice function abnormally in vivo, it does 
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indicate that neither the Tregs, the CD4+CD2S- responders nor the APC have inherent 

defects that are detectable in vitro. 

It is difficult to determine where in the body Treg suppressive function is needed 

to control/prevent lupus. Lupus presents with a wide variety of symptoms and immune 

defects making the identification of the important sites where suppression is needed in 

vivo very difficult (82). It has been shown, however, that T cell infiltration into the 

kidney is absolutely required for development of end-stage kidney disease (91), so the 

kidney, and particularly the kidney-draining LN, may represent important sites for Treg 

suppressive function. Thus, we examined the kidney-draining LN to determine whether 

sick female Tregs were able to traffic to this organ. We found that, as in the periphery, 

sick females had higher percentages of both CD4+Foxp3+ and CD4+CD2S+CD103+ Tregs 

in kidney-draining LN (Figure 19). We next looked at CD62L expression, since this 

molecule must be downregulated before T cells can traffic out of the LN. We did not find 

that sick female Tregs expressed any more CD62L than non-sick female and male Tregs 

(Figure 20). In the future, it will be necessary to investigate other Treg trafficking 

molecules (e.g., chemokines) expressed by sick female Tregs in comparison to age­

matched non-sick females and males. 

We could not explain the abundance of Tregs in sick female mice at 32-36 weeks 

of age, so we decided to investigate Treg populations in BWFI mice from 9 to 32-36 

weeks of age to see how they change with age. As discussed earlier, we found that 9-

week-old females had lower percentages of both CD4+Foxp3+ and CD4+CD2S+CD103+ 

Tregs compared to age-matched males (Figure 9A lOA, 21, 22). By 20 weeks of age, 

female and male Treg percentages were not significantly different, however female 
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percentages still trended lower (Figure 21, 22). At 24-28 weeks of age, female and male 

BWF1 mice had similar percentages of Tregs, and by 32-36 weeks of age sick females 

had significantly higher Treg percentages that age-matched non-sick females and males 

(Figure 15A, 16A, 21, 22). These data suggested that 9 weeks may be an important 

period in time during which gender differences can influence disease development. 

Accordingly, we examined female and male 9-week-old mice in greater depth. As 

discussed previously, 9-week-old female BWF1 mice have decreased percentages of both 

CD4+Foxp3+ and CD4+CD25+CD103+ Treg subsets when compared to age-matched 

males (Figure 9A, lOA). These female Tregs suppress as well as male Tregs in vitro, 

however the CD4+CD25- effector cells proliferate more in vivo in females than males, 

suggesting Tregs may be unable to control effector cell proliferation/activation in vivo 

(Figure 8, 12B). We had found that there were no differences in CD4+CD25- resistance to 

suppression in vitro between 32-36-week-old sick female, non-sick female, and male 

mice (Figure 14B). However, there was a possibility that young 9-week-old female 

CD4+CD2Y cells were resistant to suppression at this critical period oftime, and for this 

reason, compared CD4+CD2Y resistance to suppression in vitro between 9-week-old 

females and males. We did not find that female CD4+CD25- responder cells were more 

resistant to suppression than males, in fact, if anything they were more susceptible to 

suppression in vitro (Figure 25A). We also found no difference between the ability of 9-

week-old female and male APCs to support suppression in vitro (Figure 25B). These data 

suggest that it may be a decreased ratio and not a defect in suppressive function that 

underlies gender differences in disease susceptibility. 
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To add further support to our hypothesis that the pre-disease 9-week-old time­

point is important in setting up gender differences in disease development later on, we 

depleted CDI03+ cells in these young mice. Mice were treated with depleting antibody 

twice a week from 8-12 weeks of age then given a maintenance dose twice a month from 

12-20 weeks of age. We found that CD 1 03-depletion decreased time to disease onset and 

accelerated death in both female and male BWFI mice (Figure 27). These results suggest 

a role for CDI03+ cells in protection from disease, as depletion of these cells induced 

disease in males, and males don't normally develop full-blown disease without castration. 

Other immune cells express CD103 besides the potent CD4+CD2S+CD103+ subset 

ofTregs. A small percentage of regulatory CD8+ cells that express CDI03 have been 

reported (220,221). However, cytotoxic CD8+ T cells express CDI03 as well (222-224). 

A subset ofDCs found primarily in the gut, also expresses CD103 (226). These DCs 

induce a gut-homing phenotype on T cells (226) and are thought to mediate conversion of 

CD4+CD2S- effector cells to CD4+CD2S+ Tregs in the gut (228,229). A subset of 

CD 1 03+ DCs is also found in the skin (230). A small invariant NKT cell subset found in 

LN and skin express CD 1 03 and have been found to produce IL-17 (231). We have not 

yet ruled out the possibility that depletion of any of these cell types may playa role in 

disease development in our CD 1 03-depleted mice. However, depletion of cytotoxic CD8+ 

T cells or IL-17 -producing NKT cells would presumably reduce inflammation and 

increase time to disease as well as survival. The CD8+CDI03+ regulatory T cells 

represent a very small percentage and have been reported to playa role in a model of 

tolerance induced in vivo referred to as anterior chamber-associated immune deviation 

(ACAID) and it is not clear whether they exist naturally (221). Therefore, we would not 
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expect depletion of these cells to have an appreciable impact on disease in BWF 1 mice. 

Depletion ofCDllc+CD103+ DCs using anti-CD 103 antibody in a model of Bordetella 

pertussis infection causes decreased inflammatory cellular infiltration in the lung and 

delayed bacterial clearance (264) suggesting that again, if anything, these DCs are 

involved in inflammation and not tolerance. This is also true for the prolongation of 

MHC-mismatched islet allograft survival after depletion ofCD103+ cells (265). CD103-

deficient mice on a C57BLl6 background have reduced T cell numbers in the gut (217) 

and develop skin lesions (218), and although they are more susceptible to adoptive 

transfer of colitis, they do not develop colitis spontaneously (227). Therefore, depletion 

of CD 1 03+ DCs in the gut and skin could potentially cause mice to develop colitis or skin 

lesions, however, we saw no evidence of either in our CDI03-depleted BWFI mice. 

Taken together, these data suggest that the majority of immune cells other than Tregs that 

express CD 103 mediate inflammatory rather than tolerogenic responses and it is more 

likely that their depletion would, therefore, have a positive, rather than the negative effect 

that we see on prevention of disease. The only tolerogenic CDI03+ populations appear to 

reside in the skin and gut, and should have a local and not a systemic effect, and in fact, 

we did not even see any evidence of a local (no skin or gut lesions) effect in our anti­

CDI03-treated mice. Therefore, we believe that it is depletion of the 

CD4+CD25+CDI03+ cells that is affecting disease incidence and mortality in anti-CD103 

antibody-treated BWFI mice. 

In summary, these data suggest that the proportion of regulatory T cells in the 

peripheral lymphoid organs of mice plays an important role in disease susceptibility very 

early in the disease process, but not after disease is already established. The data also 
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suggest that factors associated with gender play an important role in the development 

and/or maintenance ofthe potent CD4+CD2S+CDI03+ Treg population in mice, in 

general, and very likely contribute to the propensity for females to develop autoimmune 

disease (or the protection of males from disease) through this mechanism. Future work 

will focus on other potential critical periods of time during disease development and on 

how altering Treg populations can impact disease. Further investigation will also focus 

on potential environmental factors and trafficking issues in newly sick female BWFI 

mice that could be limiting the effectiveness of their abundant Treg populations and what 

influence hormones might have on this system. 
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