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ABSTRACT 

THE ROLE OF GLYCOGEN SYNTHASE KINASE 3 BETA IN 
INTERFERON BETA BIOLOGY 

Huizhi Wang 

April 16, 2009 

It has been shown that GSK3 ~ plays a critical role in the inflammation response 

by differentially regulating MyD88-dependent pro- and anti-inflammatory cytokines 

production in TLR4-stimulated innate immune cells. The work included in this 

dissertation demonstrates that (I) GSK3~ negatively regulates the production of the TLR4 

dependent and MyD88-independent cytokine, IFN ~, by controlling the levels of total c-

Jun and thereby modulating the amount of c-Jun / ATF2 complexes, and (II) that IFN ~ 

induces IL-l 0 in dendritic cells by regulating GSK3 ~ activity. 

Part I: TLR4 stimulation of macrophages has been shown to induce the 

production of interferon-B (IFN-B) via the MyD88-independent pathway. Here we 

demonstrate that glycogen synthase kinase 3-~ (GSK3-~) plays a fundamental role in this 

process. Suppression of GSK3-B activity by pharmacological inhibition, siRNA-mediated 

gene silencing, or ectopic expression of a kinase-dead GSK3-B mutant, augmented IFN-B 

production by TLR4-stimulated macrophages. Conversely, ectopic expression of a 

constitutively active GSK3-B mutant severely attenuated IFN-B production. GSK3-B was 

found to negatively control the cellular levels of the transcription factor c-Jun and its 

nuclear association with ATF-2. siRNA-mediated knockdown of c-Jun levels abrogated 
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the ability of GSK3-~ inhibition to augment IFN-~ production by TLR4 stimulated 

macrophages. Inhibition of GSK3 in vivo resulted in potently augmenting the systemic 

levels of IFN-~ in mice that were administered LPS. These findings identified a novel 

regulatory pathway controlling IFN-~ production by TLR4-stimulated innate immune 

cells. 

Part II: IFN-~ is known to induce the production oflL-1 0 by innate immune cells, 

yet the underlying cellular mechanisms responsible for this effect are unknown. Here, we 

demonstrate that the constitutively active serine/threonine kinase, GSK3-f3, controls the 

IFN-~-mediated production oflL-1 0 by human dendritic cells. Stimulation of cells with 

IFN-f3 induced the activation of the phosphatidylinositol 3-kinase (PI3K) pathway and 

blockade of PI3K activity inhibited the ability of IFN-~ to induce IL-IO production. 

Assessment of downstream kinases within the PI3K pathway demonstrated that IFN-~ 

induced the phosphorylation and subsequent suppression of GSK3r) activity. Direct 

inhibition of GSK3 activity via pharmacological inhibition, siRNA-mediated knockdown 

of GSK3-f3, or ectopic expression of a kinase dead GSK3-f3 potently augmented the 

levels of IL-l 0 produced by type I IFN-stimulated dendritic cells, whereas no affect on 

the production of pro-inflammatory cytokines was observed. In contrast, ectopic 

expression of a constitutively active GSK3-f3 mutant severely attenuated the levels of IL-

10 produced by IFN-~-stimulated cells. Analysis of transcription factors involved in the 

regulation of IL-IO showed that IFN-f3 increased the nuclear levels of phospho-CREB 

and this effect was dependent upon the ability of IFN-f3 to induce PI3K activity and 

inactivate GSK3-~. These findings identify the cellular mechanism by which IFN-f3 

induces IL-l 0 production by innate immune cells. 
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Innate Immunity 

CHAPTER I 

INTRODUCTION 

The immune system of vertebrates consists of two broad components that comprise 

innate and adaptive immune immunity. The innate immune system is an ancient form of 

host defense and is conserved in all multicellular organisms (l). As the first line of 

defense against microbial pathogens, the innate immune system of mammals consists of 

surface barriers, humoral factors, macrophages, NK cells, and dendritic cells (Des) (2). 

Upon microbial invasion, distinct families of pattern-recognition receptors (PRRs) initiate 

intracellular signaling events that link the recognition of a pathogen to the nuclear 

transcription of host defense genes. The most widely studied and characterized PRRs 

include Toll-like receptors (TLRs) that recognize highly conserved molecular patterns 

derived from bacteria, viruses, protozoa and fungi (3). These receptors recruit adaptor 

molecules that create multi-protein platforms that then recruit and/or activate downstream 

kinases. These events, among others, lead to the engagement of several signaling 

pathways culminating in activation of nuclear transcription factor kappa B (NF-KB), 

mitogen-activated protein kinase (MAPK), and interferon regulatory factors (IRFs) that 

control the transcription of genes encoding inflammatory cytokines and type I interferon, 

which are important for eliminating invading pathogens. 



Toll was originally identified as receptor that is expressed by insects and was found 

to be essential for establishing dorsoventral polarity during embryogenesis (4). 

Subsequent studies revealed that Toll also played an essential role in the insect innate 

immune response against fungal infections (5). Homologues of Toll identified through 

database searches have identified at least 13 members ofTLRs (6). TLRI-9 are common 

to humans and mice. TLRI0 appears to be functional only in humans, whereas TLRII-13 

have been found in mouse and less characterized (7-9). Each TLR appears to recognize 

distinct PAMPs derived from various microorganisms including bacteria, viruses, 

protozoa and fungi. TLRs are classified as type I transmembrane proteins characterized 

by an ectodomain composed of leucine rich repeats (LRR) that are responsible for 

recognition of PAMPs and a cytoplasmic domain homologous to the cytoplasmic region 

of the IL-l receptor, known as the TIR domain, which is required for downstream 

signaling (10). TLRs are classified into several groups based on the types of PAMPs they 

recogmze. The first class contains TLRl, 2, 4 and 6 which recognize lipids. For 

example, TLR4, together with its extracellular components such as MD-2 and CDI4, 

recognizes lipopolysaccharide (LPS) from Gram-negative bacterial. TLR2 forms 

heterodimers with TLRI or TLR6, as well as non-TLRs such as CD36 to discriminate 

among a wide array of PAMPs, including peptidoglycan, lipopeptides and lipoproteins of 

Gram-positive bacteria, mycoplasma lipopeptides and fungal zymosan (11). In addition, 

human TLRI0 is thought to complex with TLR2 and TLRl, although a ligand for this 

complex remains unknown. The second class of TLRs contains TLR5 and TLR 11 and 

recognize protein ligands (12-14). TLR5 is expressed abundantly in intestinal CDllc

positive lamina propria cells where it senses bacterial flagellin (15). Mouse TLR 11 
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recogmzes an unknown component(s) of uropathogenic bacterial, and a profilin-like 

molecule of the protozoan parasite Toxoplasma gondii (16, 17). The third class of TLRs 

includes TLR3, 7, 8 and 9, which are localized intracellularly where they detect nucleic 

acids derived from viruses and bacteria (18, 19). TLR3 was shown to recognize double 

stranded RNA (dsRNA), which is produced by many viruses during replication. TLR7 

recognizes synthetic imidazoquinoline-like molecules, guanosine analogs, single stranded 

RNA (ssRNA) derived from various viruses and small interfering RNA (20). Human 

TLR8 is similar to TLR7 in that it recognizes imidazoquinolines and ssRNA (20). 

However, the ligands of mouse TLR8 are unknown. TLR9 recognizes CpG DNA motifs 

present in bacterial and viral genomes as well as non-nucleic acids such as hemozoin 

from the malaria parasite (11). 

Lipopolysaccharide (LPS), a membrane glycolipid of Gram-negative bacteria, is a 

mediator of inflammation (21). The ability of the TLR4 complex to recognize LPS 

depends upon several additional extracellular molecules including lipid-binding protein 

(LBP), CD14 and MD-2 that associate with TLR4 (22, 23). Lipid-binding protein (LBP), 

a plasma protein that binds the lipid A moiety of LPS and forms a complex that can lead 

to the recruitment of another LPS-binding molecule, CD 14 (21). Subsequent studies 

have identified that MD-2 is critical for optimal LPS-mediated NF-KB activation as well 

as surface expression of TLR4 (24). Upon activation of TLR4 by LPS, the 

TolllInterleukin-l receptor (TIR) domain, a conserved intracellular domain shared by all 

TLRs, recruits the adaptor, myeloid differentiation 88 (MyD88), which can then lead to 

the activation of several signal transduction that mediate various aspects of host defense 

(25,26). 
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Stimulation of the TLR4 complex by LPS can trigger a potent inflammatory 

response that can be classified as MyD88-dependent or MyD88-independent (27). The 

adaptor protein My D88 is utilized by most TLRs (except TLR3) to initiate the host 

inflammatory response via the recruitment of various downstream signaling molecules 

including lRAK-4, lRAK-l, TRAF6, and activation of the NF-KB complex (28). 

Although MyD88 plays a critical role in mediating the production of most pro- and anti

inflammatory cytokine production, studies using mice deficient in MyD88 have 

demonstrated the existence of a MyD88-independent pathway that regulates the 

production of type 1 interferons, including IFN-a and IFN-[3 upon TLR3- or TLR4-

stimulation (29, 30). This is characterized by delayed activation of NF-KB, MAPK(30), 

production oflFN-a/[3, Statl (Tyr70l), RANTES, IP-lO (27), and the upregulation of co

stimulatory molecules. In this regard, studies by two laboratories demonstrated that the 

TIR-containing adaptor protein TRIF was responsible for the activation of the TLR4-

mediated MyD88-independent pathway (31, 32). Furthermore, the ability of TLR4 to 

induce type I interferon in the absence of MyD88 has been shown to be dependent upon 

the recruitment of an additional adaptor molecule called TRIF -related adaptor molecule 

(TRAM) (33). The regulation of many MyD88-iridependent responses, including type I 

interferons, has been shown to be critically dependent upon the transcription factor IRF3. 

IRF3 is ubiquitously expressed in an inactive form in the cytoplasm (28). Upon TLR4-

signaling, TBK-1 and IKK-E have been shown to phosphorylate IRF3 on specific serine 

residues and are believed to function as the IRF3 kinases (34, 35). Indeed, upon 

phosphorylation, IRF3 undergoes homodimerization, translocates to the nucleus, 

associates with and activates a transcriptional complex involving the nuclear co-activator 
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of transcription CBP/p300 that initiates the transcription of type I IFNs (36). 

The PI3K pathway and function of GSK3 in the host inflammatory response 

Mammalian PI3Ks can be divided into three classes I, II, and III based on their 

primary sequences, mechanisms of regulation, and specificities of substrates they 

phosphorylate (37, 38). Class I PI3Ks exist as heterodimers consisting of one of four 

catalytic subunits (p 11 Oa,~,('),y) and one of two families of regulatory subunits (p8Sa,~) 

(39). This class of PI3K acts on phosphatidylinositol 4,S-bisphosphate (PIP2) to produce 

phosphatidylinositol 3,4,S-trisphosphate (PI(3,4,S)P3 (PIP3), and this process is reversed 

by the phosphatase PTEN that converts PIP3 to PIP2 (40). Class II PI3 Ks phosphorylate 

phosphatidylinositol and phosphatidylinositol 4-phosphate and class III PI3Ks 

phosphorylate only phosphatidylinositol to generate phosphatidylinositol 3-phospate (37). 

The PI3K pathway has been shown to be activated by various TLR ligands and can 

function as a positive or negative regulator of TLR responses depending on the cell type 

and the TLR agonists used (41). Of the multiple forms of phosphatidylinositol-3 kinases, 

the class IA PI3K consists of heterodimers made up of a p8S regulatory and a plIO 

catalytic subunit (42). Cytoplasmic PI3K can bind to and associate with phospho-receptor 

tyrosine kinase residues as well as adaptor molecules at the plasma membrane (42). Upon 

activation, PI3K phosphorylates and converts plasma lipid membrane phosphatidyl 

inositol 4,S-biphosphate (PIP2) to phosphatidyl inositol 3,4,S-triphosphate (PIP) which 

will recruit signaling proteins containing pleckstrin-homology (PH) domains like Akt, 

PDKland PDK2 (42). Association with PDK1I2 leads to the phosphorylation of Akt. 

Dual phosphorylation of Akt (Thr308/Ser473) leads to full activation and its ability to 
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subsequently phosphorylate downstream kinases, including the glycogen synthase kinase 

3 ~ (GSK3 ~) (43). 

GSK3 is a multifunctional serine/threonine kinase within the PI3K pathway and 

has been identified in all eukaryotic organisms (44). Although initially named due to its 

ability to phosphorylate glycogen synthase, GSK3 has subsequently been demonstrated to 

phosphorylate more than 40 different substrates (45). Thus, GSK3 activity can affect a 

number of different cellular processes and has been implicated in human diseases like 

Alzheimer's disease, diabetes, and various cancers (46). There are two highly 

homologous forms of GSK3 protein, GSK3u and GSK3~, which are critical factors 

involved in the regulation of a wide variety of signaling proteins and transcription factors 

including c-Jun, c-myc, cAMP response element binding protein, cyclin D 1, cyclin E ~

catenin and NF-AT (47). Despite their homology, GSK3u and GSK3~ are not 

functionally redundant, as mice deficient in the beta isoform die on embryonic day 16 

due to liver degeneration while the alpha isoform cannot compensate for this deficiency 

(48). GSK3 is a constitutively active kinase but can be inactivated by site specific serine 

phosphorylation (49). Phosphorylation GSK3~ at Ser9 or GSKu at Ser 21 causes the N

terminus of GSK3 occupy the priming site which impedes the substrate's accessibility to 

the active site of GSK3 (50). GSK3 does not auto-phosphorylate the Ser9/21 sites; 

Instead, other kinases like Akt (PKB), PKA, and P90RSK have been shown to 

phosphorylate GSK3, resulting in its inactivation (51) (52) (53). The consensus sequence 

for a GSK3 substrate is Ser/Thr-X-X-X-Ser/Thr, where the first Ser/Thr is the target 

residue for phosphorylation by GSK3 and X is any amino acid (54-56). Although GSK3 

can phosporylate "non-primed substrates, if the second Ser/Thr has been phosphorylated 
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by another "priming kinase", the efficiency of GSK3 phosphorylation IS greatly 

increased. 

Previous studies have demonstrated that the phosphatidylinositol-3 kinase (PI3K) 

pathway plays a fundamental role in regulating the host inf1ammatory response to a 

variety of TLR agonists (57-59). Our previous findings identified that the constitutively 

active serine/threonine kinase, glycogen synthase kinase 3 (GSK3), was the central 

kinase responsible for the ability of this pathway to differentially regulate the production 

of pro- and anti-inf1ammatory cytokines by TLR-stimulated innate immune cells (60). 

Moreover, we demonstrated that inhibition of GSK3~ regulates the inf1ammatory 

response via enhanced activation of CREB (S133) which displaces NF-KB p65 from 

binding to the common transcription factor CREB-binding protein (CBP) (60). Although 

GSK3~ plays a central role in regulating the production of MyD88-dependent cytokines, 

the ability of GSK3 to influence MyD88-independent cytokines, i.e. interferon beta 

(IFN~), and whether GSK3~ plays a functional role in the IFN~ signaling pathways 

induction of IL-IO are still largely unknown. Therefore, the work described in this 

dissertation focused on answering these two questions. 

Induction of Interferon beta (IFN ~) and its regulation 

IFN a/~ are classified as type I interferons (IFN s) (61) and have been extensively 

used to treat a variety of human diseases including multiple leukemia, chronic hepatitis B 

and C (62-64). Moreover, IFN-~ has been regarded as the first choice for the initial 

treatment of relapsing remitting multiple sclerosis (MS)(65-67). Macrophages have been 

shown to be a major cellular source of IFN-a/~ in the immune system, however, it has 
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also been demonstrated that IFN~ can be produced by other immune cells including, 

dendritic cells, fibroblasts, NK cells, and T cells in response to both pathogen nucleic 

acids and bacterial cell wall components such as lipopolysaccharide (LPS) (68). In innate 

immune cells, pattern-recognition-receptors (PRRs) are involved in the induction of 

IFN~, including Toll-like receptors (TLRs) and RIG-I-like receptors (RLRs). Five TLRs 

(TLR3, TLR4, TLR7, TLR8, TLR9) have been shown to potently promote type I IFNs 

(69). Four of these TLRs, TLR3, TLR7, TLR8, and TLR9, can be stimulated by nucleic 

acid agonists produced during viral or bacterial infections (70). Specifically, TLR3 can 

be activated by double stranded RNA (71); TLR7 and TLR8 (in humans only) can be 

activated by antiviral derivatives of nucleoside-like imidazoquinoline (72, 73), loxoribine 

(74) and GU-rich single-stranded (ss) RNAs (75-77). TLR9 can be activated by non

methylated double-stranded (ds) CpG-rich DNA (78, 79). TLR4, which recognizes LPS, 

can also induce the production of type I IFNs (80-82). 

The production of Type I IFNs has been demonstrated to be regulated at multiple 

steps, which include cellular processes involved both transcriptional and post

translational mechanisms (83-85). The enhancesome of interferon beta is the best model 

to understand the multiple levels of regulation involved in the production of type I IFNs. 

A multi-protein complex called an enhanceosome is assembled at the IFNP promoter in 

response to a viral or bacterial challenge (86). The enhanceosome consists of at least 

three families of transcription factors - ATF-2/c-Jun, nuclear factor (NF)-KB and 

interferon regulatory factor (IRFs). Of these, the activities of NF-KB and IRF3 are 

regulated by their subcellular localization and site-specific phosphorylation (87, 88). In 

the inactive state, NF-KB is held in the cytosol by inhibitory KB (IKB) family members 
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(89). Upon cellular stimulation, such as IL-l~, TNF-a, and bacterial or viral components, 

the IKB kinase (IKK) is activated and phosphorylates IKB. Once phosphorylated, IKB is 

ubiquitinated and subsequently degraded by the proteasome (89), free NF-KB then 

translocates into the nucleus and turns on its target genes. Similar to NF-KB, the inactive 

form of IRF3 is also cytosolic. In response to a bacterial or viral challenge, IRF3 is 

phosphorylated by the IKK-like kinases TBK-1 and IKK£ (34, 35). Phosphorylation of 

IRF3 leads to its dimerization and translocation into the nucleus. Viral infection also 

leads to activation of stress kinases such as JNK and p38 kinase, which phosphorylate 

ATF2/c-Jun in the nucleus (90). Together, with the nuclear architectural protein HMG-I 

(Y), NF -KB, IRF3 and ATF2/c-Jun assemble into a stereo-specific enhanceosome 

complex that remodels the chromatin within the promoter region of IFN~, resulting in its 

transcriptional initiation (91, 92). 

Type I IFN signaling and IL-IO production 

All type I IFNs are genetically and structurally similar and utilize the same 

receptor, IFNAR, that is composed of two subunits, IFNARI and IFNAR2 (93). Both 

subunits are necessary for most IFN-mediated cellular functions and if either of them is 

deficient, there is no high-affinity ligand binding and little to no biological effects (94). 

Type I IFNs have been shown to have a variety of cellular properties including antiviral, 

anti-proliferation, induction of apoptosis, and immunoregulation of both the innate and 

adaptive immune compartments (94, 95). Recently, type I IFNs have also been 

demonstrated to exert potent anti-inflammatory properties (96). 

The major intracellular signaling pathway used by Type I IFNs is the Janus 
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kinase-signal transducers and activators of transcription pathway (JAK-STAT) (97). 

IFNARI and IFNAR2 constitutively bind to a single specific member of the Janus Kinase 

(JAK) family, Tyk2 and Jak 1, respectively (97). Ligand binding induces the 

phosphorylation of Jakl and Tyk2, which leads to the activation of signal transducer and 

activator of transcription 1 (STAT1) and STAT2 to form a STAT1:STAT2 heterodimer 

that associates with the transcription factor interferon regulatory factor 9 (lRF9) to form a 

complex which binds to IFN-stimulated response elements (ISREs) present in the 

promoters of many IFN-stimulated genes (lSGs) (94), thereby inducing gene 

transcription. 

IL-IO has been shown to be a prototypical immunosuppressive cytokine produced 

by T cells, B cells, dendritic cells, and monocytes/macrophages (98). Interestingly, type I 

IFN s have been reported to playa crucial role in regulating the production of IL-l 0 by 

innate immune cells (99, 100). Previous studies by Chang et al. have demonstrated the 

fundamental role IFN-P plays in regulating the levels of IL-l 0 produced by Toll-like 

receptor (TLR)-stimulated innate immune cells (l 01). Several other studies have 

additionally shown that IFN-P can modulate the immune response to other cellular 

stimuli by positively controlling the production of IL-IO (102-104). Due to their 

immunomodulatory properties, type I IFNs have also been studied extensively for the 

initial treatment of relapsing remitting multiple sclerosis (MS) (65-67). Although the 

precise therapeutic mechanism of action of IFN-P in MS treatment is unclear, IFN-P 

treatment has been shown to increase the serum levels of IL-l 0 present in MS patients 

(100), and this effect is believed to play a fundamental role in the therapeutic value of 

type I IFN s in the treatment of MS patients (105). Despite the numerous reports linking 
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IFN -~ to the induction of IL-IO production, the underlying cellular mechanisms 

responsible for the ability of IFN-~ to induce IL-l 0 production is unresolved. 

The following chapters detail our studies on the functional role of GSK3 ~ in 

TLR4-induced IFN~ production and its regulatory role in the IFN~ mediated signaling 

pathway. In the first part of my project, we demonstrated that GSK3~ activity plays a 

fundamental role in controlling the production of the MyD88-independent cytokine, IFN

~, by TLR4-stimulated innate cells and also defined the cellular mechanism by which 

GSK3 regulates the production of IFN~. In the second part of my project, we have 

elucidated and characterized how IFN~ signaling in innate immune cells is able to induce 

IL-IO production and have identified how this process is regulated at the transcriptional 

level. 
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CHAPTER II 

INTERFERON-BETA PRODUCTION BY TLR4-STIMULATED INNATE 

IMMUNE CELLS IS NEGATIVELY REGULATED BY GSK3-BETA 

Introduction 

Toll-like receptors (TLRs) are type I transmembrane receptors involved in the 

recognition of highly conserved microbial components (106). Activation of TLRs on 

innate immune cells can result in the recruitment of different downstream signaling 

adaptors that impart selectivity on the repertoire of cytokines produced (106). In this 

regard, the TLR4-signaling pathway can activate distinct innate immune responses via 

the recruitment of the adaptor molecules TlRAP-MyD88 or TRAM-TRIF (32, 33, 107, 

108). The production of pro- and anti-inflammatory cytokines by TLR4-stimulated 

innate immune cells has been shown to be dependent upon signaling events initiated by 

TlRAP-MyD88 (107-109). In contrast, the recruitment of the adaptor molecules TRAM 

and TRIF mediate a signaling cascade involving the activation of the two non-canonical 

IKB kinases, TBK-l and IKK-E, as well as the phospho-specific post-translational 

modifications of the transcription factors NF-KB, ATF-2/c-Jun, and IRF-3 that culminates 

in the production of type I interferons (IFNs), including IFN-f3 (31-33,110). Although 

the molecular mechanisms regulating NF-KB and IRF-3 activity, as well as their 

involvement in controlling IFN-f3 production by TLR4-stimulated innate immune cells 
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have been well described, the upstream signaling events that regulate the levels and 

activity of the transcriptional complex, ATF-2/c-Jun, and the role this complex plays in 

controlling IFN-~ production by TLR4-stimulated cells is poorly understood. 

Stimulation of TLR4 can activate the phosphatidylinositol-3 kinase (PI3K) 

pathway, which restrains the MyD88-dependent production of pro-inflammatory 

cytokines (57, 58, 111). In the presence of MyD88, the ability of the PI3K pathway to 

negatively regulate the production of pro-inflammatory cytokines, while augmenting the 

levels of the anti-inflammatory cytokine, IL-IO, is due to its ability to inactivate the 

constitutively active serine/threonine kinase, GSK3-~ in TLR4-stimulated cells (58, 60, 

112, 113). The serine 9 mediated inactivation of GSK3-~ results in the alteration of the 

transcriptional complex involving the co-activator of transcription CBP, and the 

transcription factors CREB and NF-KB (60). Although GSK3-~ has been shown to 

regulate MyD88-dependent cytokine responses, whether GSK3-~ plays a functional role 

in the regulation of the prototypical MyD88-independent cytokine, IFN-~, is currently 

unknown. 

In the present study, we show that GSK3-~ activity plays a fundamental role in 

regulating IFN-~ production. Specifically, we show that the phosphorylation of GSK3-~ 

(S9) in LPS-stimulated macrophages occurs in the absence of MyD88. Inhibition of 

GSK3-~ activity potently augmented the levels of IFN-~ in LPS-stimulated innate 

immune cells, whereas the ectopic expression of a constitutively active GSK3-p mutant 

reduced IFN-~ production. Inhibition of GSK3-p was found to control the cellular levels 

of the transcription factor c-Jun and this was demonstrated to be necessary for the ability 

of GSK3 to control IFN-~ production. The functional role of GSK3-~ in regulating IFN-
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~ was confirmed in vivo in which the inhibition of GSK3-~ potently enhanced the 

systemic levels of IFN-~ in mice administered LPS. Taken together, these findings 

identify GSK3-~ as a critical regulatory kinase controlling IFN-~ production. 
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Materials and Methods 

Mice and reagents 

C57BLl6 mice were purchased from The Jackson Laboratories. B6.MyD88-1
- mice were 

a gift from Shizuo Akira (via Ross Kedl, 3M Corporation) and were backcrossed > 6 

generations onto the C57BLl6 background. Mice were housed in a specific pathogen

free facility at the University of Louisville School of Medicine and the University of 

Louisville Institutional Animal Care and Use Committee approved all animal protocols. 

Ultra pure LPS from E. coli was purchased from Invivogen. All antibodies and 

recombinant cytokines were obtained from Cell Signaling Technology and R&D 

Systems, respectively. The anti-HA antibody used for immunoblots was purchased from 

eBioscience. The GSK3-specific inhibitor SB216763 was previously characterized and 

was shown to be highly specific for GSK3 without discernible effects on a panel of 24 

other kinases (114). SB216763 was purchased from Tocris. siRNAs were purchased 

from Dharmacon. The plasmid pcDNA3-GSK3~(S9A) and pcDNA3-GSK3~(K85A) 

were obtained from Addgene (plasmid numbers 14754 and 14755) and originally created 

by Dr. James Woodgett's laboratory (115). The nuclear levels ofNF-KB p65 and IRF-3 

were measured using the TransAM kit purchased from Active Motif. The amount of 

nuclear NF-B p65 or IRF-3 was normalized by the absorbance at 450 nm from 10 fAg 

(NF-B p65) or 20 fAg of nuclear lysate (IRF-3). 

Cell preparation 

Bone marrow derived macrophages (BM-DM) were prepared by culturing bone marrow 
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from the femursltibiae of 6-1O-wk-old mice in RPMI 1640 containing 5% FBS, 2 mM L

glutamine, 1 mM sodium pyruvate, 50 Ulml penicillin, 50 "",g/ml streptomycin, 10 nglml 

M-CSF, and 30% L929 conditioned medium. Non-adherent cells were collected after 24 

h and cultured for 7 days in Costar ultra low attachment polystyrene culture dishes with a 

media change on day 4. BM-DM were >85% CD 11 b +, as demonstrated by flow 

cytometry. 

In vivo levels of IFN-J3 

Male C57BLl6 mice (8-12 weeks of age; 20-28 g body weight) were injected 

intraperitoneally with a 5 "",gig of LPS in 100 "",1 of PBS containing 0.1 % DMSO. Mice 

were analyzed for systemic levels of IFN-/3 6 h after being administered LPS in the 

presence of 0.1% DMSO or 10 "",gig of SB216763. The Institutional Animal Care and 

Use Committee of the University of Louisville approved all studies. 

Transfections and IFN-J3 production 

BM-DM were transfected with non-targeting control (Ctrl) siRNA, siRNA-c-Jun, siRNA

GSK3-/3, pcDNA3-GSK3/3CS9A), pcDNA3-GSK3/3(K85A), or pcDNA3 (empty vector 

control) using Lipofectamine RNAiMAX (Invitrogen), or Lipofectamine LTX 

(Invitrogen) following the manufacturer's protocol. The levels of total c-Jun and GSK3-

/3 protein were assessed by Western blot on day 3. 2 x 105 BM-DM were cultured in 96-

well plates and pre-treated for 2h with 0.01% DMSO (organic solvent control for 

SB216763) or the GSK3 inhibitor SB216763 (SB216763 at 12 "",M) prior to LPS (1 

"",g/ml) stimulation. Transfected BM-DM were stimulated with LPS on day 3 post-
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transfection. Cell-free supernatants were assayed for IFN-~ levels by ELISA 20 h after 

the addition ofLPS (R&D Systems). 

RT-PCR, immunoprecipitation, immunoblots and statistical analysis 

Total RNA was isolated using the RNeasy Mini Kit (Qiagen) and real-time PCR was 

performed using an AB! 7500 system. GAPDH was used as the endogenous control and 

fold increase was calculated according to DDCT method. At the indicated time points, 

cells were harvested and analyzed by immunoblot or immunoprecipitation as previously 

described (60, 111). The Kodak 4000MM image system was used for obtaining all 

images and densitometer scans of the blots. The mouse True Blot kit (eBioscience) was 

used for all immunoprecipitations according to the manufacturer's protocol. A rabbit 

isotype control IgG antibody (Cell Signaling Technology) was used for all 

immunoprecipitations to ensure that the immunoprecipitation of ATF-2 and subsequent 

immunodetection of c-Jun were not due to non-specific interference. Data are expressed 

as mean ± SD of a minimum of three experiments. Statistical significance between 

groups was evaluated by ANOVA and the Tukey multiple comparison test (Instat 

Program). Differences were considered significant at P < 0.05. 
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Results 

TLR4-mediated phosphorylation of GSK3~ (S9) occurs in the absence of MyD88 

LPS stimulation of innate immune cells has been shown to promote GSK3-[3 

inactivation via the phosphorylation of serine 9 (S9) (58, 60). To assess whether MyD88 

is required for LPS to induce GSK3-[3 (S9) phosphorylation, wild-type and MyD88-

deficient cells were compared in their abilities to phosphorylate GSK3-[3 (S9) upon LPS 

stimulation (Fig. 1A). Both wild-type and MyD88-deficient macrophages demonstrated 

increased phospho-GSK3[3 (S9) levels after 30 and 60 min of culture in the presence of 

LPS, as compared to non-stimulated cells, (Fig. 1A). The phosphorylation of GSK3-[3 

(S9) in both wild type and MyD88-deficient cells was abrogated by the use of the PI3K 

inhibitors LY294002 or wortmannin (data not shown). A comparison of the ratios of 

phospho-GSK3-[3 (S9) to that of total [3-actin was similar between wild-type and 

MyD88-deficient cells (Fig. 1B, C). These results demonstrate that the phosphorylation 

of GSK3-[3 (S9) in LPS-stimulated macrophages occurs in the absence of MyD88. 

GSK3~ negatively regulates TLR4-induced IFN-fJ production 

Since LPS induced the phosphorylation of GSK3-[3 (S9) in the absence of MyD88 

(Fig. 1), we next investigated whether GSK3 played a role in the production of the 

MyD88-independent cytokine, IFN-[3. Pharmacological inactivation of GSK3 using the 

GSK3 inhibitor SB216763 (114) resulted in the loss of the GSK3-specific substrate 

phospho-glycogen synthase (Ser6401641), demonstrating the ability of SB216763 to 
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inactivate endogenous GSK3 activity In macrophages (Fig. 2A). GSK3-inactivated 

macrophages stimulated with LPS produced significantly (P<0.05) more IFN-~ protein 

and mRNA, as compared to cells stimulated with LPS alone (Fig. 2B, C). Moreover, 

LPS stimulation of macrophages treated with GSK3-~-specific siRNA (>80% total 

GSK3-~ protein knockdown, (Fig. 3A) exhibited more than a 3-fold increase (P<0.05) in 

secreted IFN-~ levels, as compared to cells treated with control siRNA and stimulated 

with LPS (Fig. 3B). TLR4-stimulation of macrophages expressing a kinase dead mutant 

of GSK3-~ (K85A) inhibited endogenous GSK3 activity (Fig. 3C, D) in macrophages 

and produced significantly (P<0.05) elevated levels of IFN-~, as compared to empty 

vector transfected cells stimulated with LPS (Fig. 3E). In contrast, the ectopic expression 

of a constitutively active GSK3-~ (S9A) mutant severely attenuated the production of 

IFN-~ by LPS stimulated macrophages, as compared to empty vector transfected cells 

stimulated with LPS (Fig. 3E). Taken together, these results demonstrate that GSK3-

~ activity plays a fundamental role in controlling the production of IFN-~ by TLR4-

stimulated macrophages. 

GSK3 controls the nuclear levels of c-Junl ATF -2 complexes by regulating total c

Jun levels 

We next examined if serine/threonine phosphorylation by constitutively active 

GSK3 could be negatively affecting a downstream signaling molecule involved in the 

control of IFN-~ production. Previous studies have shown that c-Jun is a component of 

the IFN -~ enhanceosome (116) and that GSK3 can phosphory late the transcription factor 

c-Jun on threonine 239 that, in turn, promotes c-Jun degradation (117, 118). We 
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therefore tested whether GSK3 inhibition could affect the levels of phospho-c-Jun 

(Thr239) and total c-Jun in LPS-stimulated macrophages (Fig. 4A, B). Inactivation of 

GSK3 abrogated the ability of LPS stimulation to augment the levels of phospho-c-Jun 

(Thr239) in macrophages (Fig. 4A). Furthermore, the total levels of c-Jun were 

discernibly increased in GSK3-inactivated macrophages after 60 and especially 120 min 

of culture in the presence of LPS, as compared to non-stimulated or LPS-stimulated cells 

(Fig.4B). 

Since c-Jun has been shown to form a transcriptional complex with ATF-2 (116), 

we next examined whether GSK3-inhibition influenced the nuclear levels of c-JunJ ATF-2 

complexes. Pull-down of nuclear ATF-2 and subsequent probing for associated c-Jun by 

Western blot demonstrated that GSK3 inhibition increased the total levels of c-Jun 

associated with ATF-2, as compared to the levels observed in cells stimulated with only 

LPS (Fig. 4D). Due to the transcriptional activity of c-Jun being regulated by 

phosphorylation on serines 63 and 73 (119), we also assessed the phosphorylation levels 

of these residues (Fig. 4C). Immunoprecipitation of nuclear ATF-2 and immunoblotting 

for associated levels of phospho-c-Jun (Ser63/Ser73) demonstrated that the levels of c

Jun (Ser63) and c-Jun (Ser73) were both highly elevated, as compared to macrophages 

stimulated with LPS alone (Fig. 4C). No discernible differences were observed in the 

levels of ATF-2 between groups (Fig. 4C, D). In contrast to the increased nuclear levels 

of c-Jun observed in GSK3-inhibited macrophages stimulated with LPS, no significant 

changes in the nuclear levels of NF-KB p65 or IRF-3 were observed (Fig. 5A, B). 

Therefore, active GSK3 negatively regulates the total cellular levels of c-Jun as well as 

the nuclear levels of c-Jun associated with ATF-2 in LPS-stimulated macrophages. 
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GSK3 inhibits TLR-4 induced IFN-f:l production by regulating c-Jun levels 

To determine whether the increased c-Jun levels observed in GSK3 inhibited cells 

played a functional role in the ability of GSK3 to modulate IFN-~ levels by LPS

stimulated macrophages, c-Jun levels were knocked down by transfecting macrophages 

with c-Jun-specific siRNA (Fig. 6A). Transfection with c-Jun-specific siRNA reduced c

Jun levels by over 90%, as compared to non-transfected cells or cells transfected with 

control siRNA (Fig. 6A). The knockdown in c-Jun levels abrogated the ability of GSK3-

inhibition to significantly elevate the levels of IFN-~ produced by LPS-stimulated 

macrophages, as compared to control siRNA transfected cells stimulated with LPS (Fig. 

6B). In contrast, GSK3-inhibited macrophages transfected with control siRNA and 

stimulated with LPS exhibited a significant (P<0.05) increase in IFN-~ levels, as 

compared to cells treated with control siRNA and stimulated with LPS (Fig. 6B). Thus, 

the ability of GSK3 to regulate the production of IFN-~ by LPS-stimulated macrophages 

is dependent upon GSK3' s ability to modulate the cellular levels of c-Jun. 

GSK3 regulates the in vivo production of IFN-f:l 

We next wanted to determine if inhibiting GSK3 in vivo could modulate the 

induction of IFN-~ in mice given a sub-lethal dose of LPS. For this, mice were 

administered the GSK3 inhibitor SB216763 or DMSO 2 h before receiving LPS. The 

systemic levels of IFN-~ were monitored in mice 6 h after being given LPS (Fig. 7). 

Mice administered the GSK3 inhibitor SB216763 and challenged with LPS exhibited a 

significant increase in the levels of IFN-~, as compared to control mice that received 
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DMSO and LPS (Fig. 7). No detectable levels of IFN-~ were observed in mice given 

DMSO or SB216763 alone (Fig. 5). These findings demonstrate targeting GSK3 in vivo 

potently increases the levels of IFN-~ upon LPS challenge. 
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Discussion 

The TLR4-signaling pathway in innate immune cells has been shown to mediate 

the induction of two distinct molecular pathways based on the usage of MyD88. The 

ability of TLR4 to recruit TIRAP-MyD88 and TRAM-TRIF to its cytosolic domain 

results in the production of pro-inflammatory cytokines and type I IFNs, respectively (31-

33, 109, 110, 120). Past studies by our group and others have demonstrated that the 

levels of MyD88-dependent cytokines, including both pro- and anti-inflammatory 

cytokines, were intimately controlled by GSK3-~. Specifically, the inactivation of 

GSK3-~ has been shown to negatively influence the levels of pro-inflammatory cytokines 

while concurrently augmenting the levels of the anti-inflammatory cytokine IL-I0 in 

response to TLR4-stimulation (60, 112, 113). The present study extends these previous 

findings by demonstrating that the inactivation of GSK3-~ (Ser9) occurs in the absence 

of MyD88 and GSK3-~ activity was a critical component of the regulatory mechanism 

that controlled the levels of IFN-~ by TLR4-stimulated cells both in vitro and in vivo. 

Thus, while the TLR4 signaling complex can mediate the production of both pro/anti

inflammatory cytokines and IFN-~ via the recruitment of distinct adaptor molecules 

including TlRAP-MyD88 and TRAM-TRIF (31-33,110,120), respectively, the capacity 

of GSK3-~ to regulate both MyD88-dependent (60, 112, 113) and MyD88-independent 

cytokine responses highlights the central importance that GSK3-~ plays in the regulation 

of the host innate inflammatory response. 

The identification and characterization of the downstream cell-signaling events 

regulating the IFN-~ response have been shown to involve the activation of the kinases 
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TBK-l and IKK-£ that are involved in the phosphorylation of the transcription factor 

IRF-3 and its subsequent dimerization and translocation into the nucleus (35) (121) (122). 

The critical importance of TBK-l and IKK-£ in regulating IFN-~ via IRF-3 are 

highlighted by the findings that cells deficient in IRF-3 are unable to produce IFN

~ (123). In addition to IRF-3, studies analyzing the inf(3 promoter have revealed the 

presence of additional regulatory molecules that can bind one of the four positive 

regulatory domains within the !fn(3 promoter. In this regard, ATF-2 and c-Jun have been 

shown to bind the !fn(3 promoter via a heterodimeric complex within the positive 

regulatory domain IV of the ifn(3 promoter (116) (86) (91). Although the findings of the 

present study did not observe any discernible effects of GSK3 inhibition on the activity of 

IRF-3, the ability of GSK3 to regulate the cellular levels of c-Jun were found to be of 

critical importance for the ability of GSK3 to modulate IFN-~ production by LPS

stimulated innate immune cells. Moreover, siRNA-mediated knockdown of c-Jun levels 

in macrophages reduced the levels of IFN-~ produced by cells stimulated with LPS. 

These findings demonstrate a fundamental role for c-Jun in the regulation of IFN-~ and 

highlight the underlying molecular mechanism by which GSK3 regulates IFN-~ by LPS 

stimulated innate immune cells. 

The ability of GSK3 activity to differentially regulate the levels of MyD88-

dependent pro/anti-inflammatory cytokines while concurrently controlling the production 

of the MyD88-independent cytokine, IFN-~, demonstrated the existence of a crosstalk 

network between these two pathways mediated by GSK3. Interestingly, the downstream 

molecular mechanism by which GSK3-~ regulated MyD88-dependent and MyD88-

indpendent cytokine responses are unique. Studies by our laboratory were the first to 
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show active GSK3-~ negatively regulated the levels of the anti-inflammatory cytokine 

IL-IO while simultaneously promoting the production of pro-inflammatory cytokines by 

TLR-stimulated innate immune cells (60). Analysis of the mechanism by which GSK3-~ 

influenced the transcriptional control of MyD88-dependent cytokines revealed GSK3 

repressed the nuclear association of the transcription factor CREB (Ser133) with the co

activator of transcription CB P. Upon GSK3 inactivation, IL-IO production increased 

while pro-inflammatory cytokine production was severely suppressed due to the 

displacement ofNF-KB p65 from CBP by CREB (60). Although the inhibition of GSK3 

did exhibit similar effects on the nuclear levels of CREB as has been previously reported 

(60), knockdown in the levels of CREB within the context of the current study did not 

affect the ability of GSK3 inhibition to modulate IFN-~ production by LPS-stimulated 

innate immune cells (H. Wang and M. Martin, unpublished observations). However, 

GSK3 was found to also control c-Jun levels that resulted in increased nuclear levels of 

ATF-2/c-Jun complexes. siRNA-mediated gene silencing of c-Jun demonstrated that the 

ability of GSK3 to regulate IFN-~ production by TLR4-stimulated macrophages was 

dependent upon increased c-Jun levels. Thus, the ability of GSK3-~ to regulate both 

MyD88-dependent and MyD88-independent cytokine responses occur via different 

molecular mechanisms. 

In conclusion, we have demonstrated that the constitutively active kinase, GSK3, 

plays a fundamental role in controlling the production of IFN-~. Our results showed that 

the production ofIFN-~ by LPS-stimulated macrophages was regulated by the activity of 

GSK3-~ and its ability to affect the cellular and subsequent nuclear levels of the 

transcription factor c-Jun associated with ATF-2. Overall, the current findings identify 
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GSK3 as a fundamental kinase involved in the regulation of the MyD88-independent 

cytokine, IFN-~, and provide a rationale to modulate the levels of IFN-~ in vivo. 
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Figure 1. Stimulation of macrophages with LPS induces the phosphorylation of 

GSK3-~ (S9) in both wild-type and MyD88-deficient macrophages. (A) Wild-type 

and MyD88-deficient macrophages were stimulated with 1 f,lg/ml of LPS for 30 or 60 

min. To assess phospho-GSK3-~ (S9), 15 Ilg of total cell lysate was resolved on LDS

PAGE, immunoblotted with an anti-phospho GSK3-~ (S9) Ab, and developed by EeL. 

Immunoblots were stripped and repro bed with an Ab to total ~-actin to ensure equal 

protein loading. (B, C) Densitometer scans of phospho-GSK3-~ (S9) and total ~-actin 

were performed and recorded as the ratio of phospho-GSK3-B (S9):total ~-actin. Data 

are representative of 3 separate experiments. 
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Figure 2 
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Figure 2. GSK~ negatively controls IFN-~ production by LPS-stimulated 

macrophages. (A) Macrophages treated with the GSK3 inhibitor SB216763 exhibited a 

loss in the phosphorylation levels of the GSK3-specific substrate glycogen synthase 

(Ser640/641). Macrophages were pre-treated with GSK3 inhibitor SB216763 for 2h and 

then stimulated with l/l-g/ml LPS. Inhibition of GSK3 augmented the (B) mRNA and (C) 

protein levels of IFN-~ produced by TLR4-stimulated macrophages. * indicates 

statistically significant differences at P < 0.05 between the indicated groups. Results 

represent the mean ± SD of three separate experiments. 
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Figure 3 
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Figure 3. LPS induced IFN ~ production is dependent on GSK3~. activity. siRNA

mediated knockdown of (A) GSK3-~ protein levels increased the production of (B) IFN

~ by LPS-stimulated (1 f!g/ml) macrophages. (C) HA expression levels in non

transfected macrophages or macrophages transfected with a kinase dead (K85A) or 

constitutively active (S9A) plasmid encoding GSK3-~. Levels of HA were detected by 

Western blot 48h after transfection. (D) Expression of the kinase dead (K85A) GSK3 

mutant in macrophages inhibited the endogenous phosphorylation of the GSK3-specific 

substrate ~-catenin (Ser33/3 7/Thr41) . (E) As compared to empty vector control 

macrophages stimulated with LPS (1 f!g/ml), the const~tutively active GSK3-~ (S9A) and 

kinase dead GSK3-~ (K85A) negatively and positively, respectively, regulated IFN-~ 

production by macrophages stimulated with LPS Of!g/ml). indicates statistically 

significant differences at P < 0.05 between the indicated groups. Results represent the 

mean ± SD of three separate experiments. 
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Figure 4. GSK3 negatively affects the levels of nuclear c-Junl ATF -2 heterodimer 

com plexes by controlling total c-Jun levels. Inhibition of GSK3 attenuates the levels of 

(A) phospho-c-Jun (Thr239) and increases (B) total c-Jun levels in LPS-stimulated 

macrophages. GSK3 inhibition increases the association of (D) total and (C) phospho-c

Jun (Ser63/73) to ATF-2 in LPS-stimulated macrophages. For A and B, celllysates were 

prepared at the given time points, and 15 ~g of total protein was analyzed by immunoblot 

using Abs to c-Jun (Thr239) or total c-Jun, stripped, and repro bed with an Ab to total ~-
I 

actin to ensure equal protein loading. (C, D) Nuclear lysates were prepared at the given 

time points, a rabbit isotype control (IC) IgG or tota~ ATF-2 was immunoprecipitated, 

and associated (C) total and (D) phospho-c-Jun (Ser63/73) were determined by 

immunoblot. (C, D) Total ATF-2 was monitored by immunoblot between groups to 

ensure equivalent pull-down of ATF-2. (C, D) No immunoreactive bands were detected 

at 43 or 48 kDa (c-Jun) or 65-75 kDa (ATF-2) when a rabbit isotype control (IC) 

antibody was used for immunoprecipitation. Data are representative of 3 separate 

experiments. 
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Figure 5 
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Figure 5. GSK3 has no discernible effect on the n,c1ear levels of the transcription 

factors NF -l( Band IRF -3. In contrast to the effect o~ GSK3 inhibition of c-Jun, GSK3 

inhibition did not discernibly affect the nuclear levels of the transcription factors (A) NF

KB or (B) IRF-3. The transcription factor binding levels of (A) NF-KB p65 using 10 Ilg 

of nuclear lysate or (B) IRF-3 using 20 Ilg of nuclear lysate were obtained from 

macrophages stimulated with LPS for 6h. Data represent the mean ± SD of three separate 

experiments. 
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Figure 6. GSK3 controls IFN-~ production by ~egulating c-Jun levels in LPS

stimulated macrophages. (A, B) The siRNA-mediated knockdown in c-Jun protein 

levels abrogates the ability of GSK3 inhibition to augment IFN-~ production by LPS

stimulated macrophages (1 !--lg/ml). For A, total c-Jun levels were determined 72 h post

transfection by immunoblot. For B, cell-free supernatants were harvested 20 h after LPS 

stimulation (1 !--lg/ml) and analyzed for IFN-~ levels qy ELISA. • indicates statistically 

significant differences at P < 0.05 between the indic(lJted groups. Results represent the 

mean ± SD of three separate experiments. 
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Figure 7. Inhibition of GSK3 augments the systemic levels of IFN-f3 by mice given 

LPS. Intraperitoneal administration of the GSK3 inhibitor SB216763 (1 a ~g/g) 

significantly increased the levels of IFN-~ by mice given 5 flg/g of LPS . Results 

represent the mean ± SD of five mice/group. In vivo levels of IFN-~ in plasma were 

measured by ELISA 6 h after mice were given LPS. Sham-immunized mice were given 

PBS containing 0.1 % DMSO. • indicates statistically significant differences at P < 0.05 

compared with control mice given LPS containing 0.1 % DMSO. All groups of mice 

were given PBS containing 0.1% DMSO with or without LPS or SB216763. 
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CHAPTER III 

INTERFERON-BETA INDUCES IL-IO PRODUCTION BY REGULATING 

GLYCOGEN SYNTHASE KINASE-3 BETA 

Introduction 

Interferon-f3 (IFN-f3) is a member of the type I IFN cytokine family (61). Although 

originally identified as playing a critical role in anti-viral immunity, type I IFNs are now 

recognized as important immunomodulators that playa crucial role in both the innate and 

adaptive immune systems (94, 95, 124). In this regard, past studies have highlighted the 

importance of type I IFNs in mediating the production of the anti-inflammatory cytokine 

IL-lO by innate immune cells (99, 100). Previous studies by Chang et al (101) have 

demonstrated a fundamental role for IFN-f3 in regulating the levels of IL-1 0 produced by 

Toll-like receptor (TLR)-stimulated innate immune cells. Several other studies have 

additionally shown that IFN-f3 can modulate the immune response to other cellular 

stimuli by positively controlling the production of IL-10 (102-104). Due to their 

immunomodulatory properties, type I IFNs have also been extensively for the initial 

treatment of relapsing remitting multiple sclerosis (MS) (65-67). Although the precise 

therapeutic mechanism of action of IFN-f3 in MS treatment is unclear, IFN-f3 treatment 

has been shown to increase the serum levels of IL-l 0 present in MS patients (100), and 

this effect is believed to play a role in the therapeutic value of type I IFNs in the 
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treatment of MS patients (105). Despite the numerous reports linking IFN-~ to the 

induction of IL-l 0 production, the underlying cellular mechanisms responsible for the 

ability of IFN-~ to induce IL-1 0 production remains unresolved. 

Previous studies have shown that type I IFNs can engage several signaling pathways 

including the Janus kinase-signal transducers and activators of transcription (JAK

STAT), p38 mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase 

(PI3K) pathways (97, 125, 126). The ability of type I IFNs to activate multiple signaling 

cascades is likely responsible for their pleiotropic biological effects on the immune 

system. Past studies by several groups have demonstrated that type I IFNs can induce the 

activation of the PI3K pathway and mediate the phosphorylation of several downstream 

kinases within this pathway, including AKT, mTOR, and p70S6K (51-53). Although 

previous studies have demonstrated a central role of the PI3K pathway in the regulation 

of IL-IO by Toll-like receptor (TLR) stimulated innate immune cells (111, 127), the 

functional role this pathway plays in the ability of type I IFNs to promote IL-10 

production by innate immune cells has not been previously investigated. 

Glycogen synthase kinase 3 (GSK3) is a constitutively active serine/threonine kinase 

that is downstream of the PI3K1 AKT pathway, and exists as two major isoforms, GSK3-

a and GSK3-~ (50). GSK3 has been recognized as a key regulator in a diverse number of 

biological processes, including the regulation of the host inflammatory response (60, 128, 

129). Specifically, past studies by our laboratory and others have demonstrated the 

pivotal role GSK3-~. plays in controlling IL-I0 production by TLR-stimulated cells. 

Given the importance of GSK3 in regulating IL-10 production (60, 113, 130), and the 

ability of type I IFNs to activate the PI3K pathway (131, 132), we investigated whether 
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type I IFNs regulated the activity of GSK3 and if this process played a functional role in 

their ability to induce IL-l O. 
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Materials and Methods 

Media and Reagents. 

Cells were cultured in RPMI 1640 medium supplemented with 10% FBS, 50 )lM 

2-mercaptoethanol, 1mM sodium pyruvate, 2 mM L-glutamine, 20 mM HEPES, 50 Ulml 

penicillin, and 50 )lg/ml streptomycin. Ultra pure LPS from E. coli 011 J :B4 was 

purchased from Invivogen. Neutralizing anti-IFN-j3 antibody was purchased from R&D 

Systems. All other antibodies and recombinant human IFN-j3 were obtained from Cell 

Signaling Technology and R&D Systems, respectively. Recombinant human interleukin-

4 (rhIL-4) and recombinant granulocyte macrophage-colony stimulating factor (rhGM

CSF) were purchased from R&D Systems. The GSK3 inhibitor SB216763 was 

previously characterized and was shown to be specific for GSK3 without discernible 

effects on a panel of24 other kinases (114). SB216763 and wortmannin (PI3K inhibitor) 

were purchased from Tocris and LC Laboratories, respectively. Non-targeting pools of 

siRNA and a mixture of four pre-validated siRNA duplexes specific for GSK3-b (ON 

TARGET-plus™) were purchased from Dharmacon. TaqMan probes were purchased 

from Applied Biosystems. The plasmid pcDNA3-GSK3-p(S9A) and pcDNA3-GSK3-

p(K85A) were obtained from Addgene (plasmid numbers 14754 and 14755) and 

originally created by Dr. James Woodgett's laboratory (115). Lipofectamine RNAiMAX 

and Lipofectamine LTX were obtained from Invitrogen. 

Human monocyte derived dendritic cells. 

Peripheral blood mononuclear cells (PBMCs) were obtained from healthy donors 
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as per protocols approved by the University of Louisville, Institutional Review Board, 

Human Subjects Protection Program, study number 503.05. Monocytes were isolated by 

negative selection using the human monocyte isolation kit II from Miltenyi Biotec 

Incorporated. The purity of monocytes was routinely > 90%, as determined by flow 

cytometry using a FITC-Iabeled anti-CD14 antibody. Purified monocytes were cultured 

in 6-well tissue culture plates at 2x 1 06 Iml in culture medium supplemented with 50 

nglml of rhGM-CSF and 100 nglml of rhIL-4. The medium was replaced on day 4. On 

day 9, cells were harvested, washed 2 times with OPBS, and rested overnight before 

being used in experiments. On day 9, the levels of CDla were typically greater than 

80%, as determined by flow cytometry. 

Cell transfection, Western blot, and IL-IO production. 

OCs were transfected with non-targeting control (Ctrl) siRNA, siRNA-GSK3-b, 

pcDNA3-GSK-3b(S9A), pcONA3-GSK3-b(K85A), or pcONA3 (empty vector control) 

using Lipofectamine RNAiMAX or Lipofectamine LTX following the manufacturer's 

protocol (Invitrogen). Cell lysates were prepared as previously described (111) (60). 

Twenty micrograms of total cellular protein from each group was suspended in lithium 

dodecyl sulfate (LOS) butTer, heated for 10 min at 70°C, resolved by LDS-PAGE, and 

then transferred to polyvinylidene difluoride membranes using the Novex system 

(Invitrogen). Probing and visualization of immunoreactive bands were performed using 

the ECL Plus kit (Amersham Pharmacia) by following the manufacturer's protocol. 

Images were acquired using the Kodak Image Station 4000MM system (Eastman Kodak, 

New Haven, CT). For siRNA studies, the levels of total GSK3-b and b-actin were 
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assessed by Western blot on day 3. Cells were pre-treated for 2h with 0.01 % DMSO 

(organic solvent control for SB216763 or wortmannin) or the GSK3 inhibitor SB216763 

(10 mM) or wortmannin (2S0 nM) prior to IFN-~ (lOOOU/ml) stimulation. Transfected 

DC were stimulated with IFN-~ on day 3 post-transfection and cell-free supernatants 

were assayed for IL-l 0 levels by ELISA 20 h after the addition oflFN-~ (R&D Systems). 

RT-PCR and Western Blot analysis. 

RN A extraction and first strand cDN A synthesis was performed using the S Prime 

PerfectPure RNA Cultured Cell Kit and High-Capacity cDNA Archive kit (Applied 

Biosystems). Real-time PCR was performed using an ABI 7S00 system. GAPDH mRNA 

levels were determined for each time point and used as the endogenous control. Fold 

increase was calculated according to DDCT method (133). 

Flow Cytomctric Analysis 

Cells were plated at 2.Sx 105 cells/well in a 96-well flat bottom plate. Cells were 

pre-treated with the indicated pharmacological inhibitor, siRNA, or anti- IFN-~ antibody. 

For the detection of intracellular phospho-GSK3-~, cells were harvested at the given time 

points, transferred to S ml polystyrene round-bottom tubes, washed twice with 2 ml of 

FACS buffer (PBS containing 2% FBS and 0.01 % sodium azide), and then fixed by 

adding 500 ml of formaldehyde to a final concentration of 4% in PBS for 10 min at room 

temperature. Cells were washed once in PBS and re-suspended in SOO ml of 90% 

methanol and incubated on ice for 10 min. Cells were then washed in PBS containing 

2% FBS, and then re-suspended in PBS containing 2% FBS containing an anti-phospho-

40 



GSK3-~ antibody (Cell signaling) or isotype control antibody. Cells were incubated at 

room temperature for 30 minutes, washed twice in PBS containing 2% FBS, and 

analyzed immediately by flow cytometry. For the detection of intracellular IL-l 0 levels, 

the levels of IL-IO were assessed by adding monensin during the last 6h of a 20 h 

stimulation. Cells were fixed in 4% paraformaldehdye, permeabilized using eBioscience 

Perm buffer, and incubated with anti-human IL-IO-FITC antibody for 30 minutes. 

Samples were then washed twice with Perm buffer and analyzed immediately by flow 

cytometry. 

Statistical analysis 

Statistical significance between groups was evaluated by the analysis of variance 

and the Tukey multiple comparison test using the InStat program (GraphPad, San Diego, 

Calif.). DitIerences between groups were considered significant at the level of P values < 

0.05. 
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Results 

LPS-mediated IFN-j3 enhances IL-IO production from Des 

Chang et al. (l 01) recently reported that IFN-~ played an important role in the 

ability of LPS-stimulated mouse bone marrow derived macrophages to produce IL-l O. In 

order to determine whether IFN-~ mediated a similar role in human DCs, cells were pre

treated with anti-interferon ~ or isotype control antibody for 2 h and then stimulated with 

LPS (Fig. 8A). DCs stimulated with LPS in the presence of an anti-IFN-j3 antibody 

exhibited a significant (***, P<O.OOI) decrease in the levels of IL-lO, as compared to 

cells stimulated with LPS in the presence of an isotype control antibody (Fig. 8A). 

Moreover, as determined by t10w cytometry, cells stimulated with LPS exhibited greater 

than a two-fold increase in the levels ofIL-I 0, as compared to DC stimulated with LPS in 

the presence of an anti-IFN-j3 antibody (Fig. 8B). Since these studies demonstrated that 

IFN -13 played an important role in LPS-mediated IL-IO production, we next assessed if 

IFN-j3 alone was capable of inducing IL-IO from human DC. As compared with 

untreated cells, the addition of IFN-j3 significantly (P<0.05) enhanced the production of 

IL-I0 at all concentrations tested, whereas no effect was observed with respect to the 

levels of the pro-int1ammatory cytokines, TNFu, IL-Ib, IL-12 p40, or IL-23 (Fig. 9A-D). 

These results demonstrate that IFN-j3 produced by LPS-stimulated cells, or in isolation, 

plays an important role in the ability of DC to produce IL-l o. 

IFN-j3 activates the PI3K pathway and mediates the subsequent inactivation of 

GSK3-j3 
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Previous studies have reported that type I IFNs can engage the PI3K pathway and 

activate downstream effector kinases, such as AKT, mTOR, and p70S6K (52) (53). 

Since the induction of IL-l 0 from innate immune cells upon TLR stimulation is critically 

dependent on the ability of PI3K pathway to mediate the phosphorylation dependent

inactivation of GSK3 ~, we next investigated whether GSK3b is inactivated upon IFN-~ 

stimulation of human Des and if this process was dependent on the activity of PI3K. For 

this, Des were stimulated with IFN-~ in the presence or absence of a PI3K inhibitor 

(L Y294002) and the levels of phospho-Akt (Thr 308 and Ser4 73) and phospho-GSK3-~ 

(Ser9) were assessed by Western blot and flow cytometry. Optimal physiological 

activation or repression of Akt and GSK3 activity, respectively, is dependent on the 

phosphorylation of the sites Thr308 and Ser473 on Akt and Ser9 on GSK3-~(60). As 

shown in figure 10, IFN-~ stimulated Des exhibited increased levels of both phospho

Akt (Thr308 and Ser473) and phospho-GSK3-b~ (Ser 9), as compared to non-stimulated 

cells. Furthermore, inhibition of PI3K activity abrogated the ability of IFN-~ to induce 

the phosphorylation of both Akt and GSK3-~. (Fig. 1 OA-B). We further examined the 

levels of phospho-GSK3-~ in IFN-~-stimulated Des at the single cell level by flow 

cytometry. As shown in figure 11, IFN-~ stimulation increased the percent of Des 

expressing phospho-GSK3-~ from 0.63% in the non-stimulated control cells to over 

31.3% in IFN-~ stimulated cells. Moreover inhibition of PI3K activity attenuated the 

increased levels of phospho-GSK3-b observed in IFN-~ stimulated Des. Thus, IFN-~ 

mediates the PI3K-dependent phospho-inactivation of GSK3-~ in human dendritic cells. 

Suppression of GSK3-fl activity is critical for IFN-fl-induces IL-IO production 
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Given the importance of GSK3 in regulating IL-l ° production (60, 113, 130), and 

the ability of IFN-~ to induce phospho-inactivation of GSK3-~ in a PI3K dependent 

manner (Fig. lOB), we next investigated whether this process played a functional role in 

the ability of IFN-~ to induce IL-IO from human DCs. To initially test this possibility, 

DCs were stimulated with IFN-~ in the presence or absence of a PI3K inhibitor, and the 

production of IL-l 0 was monitored by ELISA and flow cytometry. As shown in figures 

12A and B, inhibition of PI3K significantly (P<O.Ol) decreased the levels of IL-IO 

produced by IFN-~ stimulated DC. To directly assess whether GSK3 plays a functional 

role in the ability of IFN -~ to induce IL-IO, we next pre-treated human DCs with the 

GSK3 inhibitor SB216763 and subsequently stimulated with IFN-~. Inhibition of GSK3 

significantly (P<O.Ol) enhanced both the steady state levels of IL-IO mRNA and the 

amount of IL-l 0 protein produced upon IFN-~ stimulation of DCs, as compared to cells 

treated with IFN-~ alone (Fig. 12C, D). 

We next used siRNA-mediated gene silencing to confirm the functional role of 

the GSK3-~ isoform in suppressing IL-I0 production from IFN-~ treated cells. Human 

DCs exhibiting a knockdown in the cellular levels of GSK3-~ protein produced 

significantly (P<0.05) elevated levels of IL-l 0 upon stimulation with IFN-~. (Fig. 13B), 

as compared to cells transfected with non-targeting siRNA and stimulated with IFN-~. In 

addition, IFN-~-stimulation of DC expressing a kinase dead mutant of GSK3-~ (K85A) 

inhibited endogenous basal GSK3 activity (data not shown) and produced significantly 

(P<0.05) elevated levels of IL-IO, as compared with empty vector transfected cells 

stimulated with IFN-~ (Fig. 13C). In contrast, the ectopic expression of a constitutively 

active GSK3-~ (S9A) mutant severely attenuated the ability of IFN-~ to stimulate human 
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DC to produce IL-10, as compared with empty vector transfected cells stimulated by 

IFN-~ (Fig. 13C). Taken together, these results demonstrate that the repression of GSK3-

pactivity in human DCs observed upon IFN-~-stimulation is a fundamental process 

involved in the regulation of IFN-~ induced IL-1 0 production. 

IFN-~ induces partial but not complete inactivation of GSK3-b activity 

The data from the current study demonstrates that IFNb increased the 

phosphorylation of GSK3-~ (Ser9) and preventing this phospho-inactivation of GSK3-b 

abrogated the ability of IFN-~ to induce IL-10 by human DCs. Moreover, our findings 

obtained from both pharmacological inhibition and siRNA-mediated knockdown of 

GSK3 demonstrated that a further reduction in GSK3- activity enhanced the levels of IL-

10 by IFN-~-stimulated cells, as compared to cells stimulated with IFN-~ alone. Thus, as 

compared to cells stimulated with IFN-~ alone, the findings that either pharmacological 

inhibition or siRNA-mediated knockdown of GSK3 significantly (P<O.O 1) increased the 

levels of IL-1 0 produced by IFN-~ stimulated cells, suggest that the differences in IL-1 0 

levels are due to differences in their ability to inactivate GSK3-~. To test this possibility, 

we monitored the relative level of GSK3 activity by assessing the phospho-levels of the 

GSK3-specific substrate, glycogen Synthase (GS) (134, 135). As compared to non

stimulated DCs, the levels of GSK3~-mediated phospho-GS were substantially reduced 

«42%) after IFN b stimulation (Fig. 14A-B). Moreover, treatment of DCs with the 

GSK3 inhibitor SB216763 completely abrogated GS phosporylation as evident by the 

100% reduction in the phosphorylation levels of GS, as compared to non-stimulated 

controls (Fig. 14A-B). Thus, whereas IFN ~-stimulated DC did exhibit a partial 
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reduction in GSK3 activity, it did not completely abolish the activity of GSK3, as noted 

with the GSK3 inhibitor SB216763. 

IFN-~ enhances the activity of the transcription factor CREB 

The present study demonstrated that IFN-~ was capable of reducing GSK3-

bactivity and that this process was critical for the ability of IFN-~ to induce IL-IO by 

human DCs. Since GSK3-~ has previously been shown to regulate the activity of the 

transcription factor CREB and that CREB is involved in regulating IL-IO production by 

TLR-stimulated cells, we next investigated whether IFN-~-mediated GSK3 inhibition 

influenced the nuclear levels of CREB (Ser133). We have previously demonstrated that 

the inhibition of GSK3~ activity by way of TLR-stimulation leads to an increase in the 

level of nuclear phospho-CREB at serinel33. The phosphorylatio of this site has 

previously been demonstrated to enhance CREB' s interaction with the transcription 

coactivator CBP. As compared to non-stimulated control, neither the GSK3 inhibitor 

SB216763 nor PI3K inhibitor LY294002 substantially affected the levels of nuclear 

phosphorylated CREB (Ser 133) in non-stimulated cells (Fig. 14C). In contrast, the DNA 

binding properties of CREB (Ser 133) were significantly (P<O.O 1) enhanced in IFN-~ 

stimulated DC, as compared to non-stimulated control cells (Fig. 14C). Moreover, cells 

pre-treated with the GSK3 inhibitor SB216763 significantly (P<O.O 1) enhanced the 

nuclear levels of CREB(Serl33), whereas blockade of PI3K activity abrogated the ability 

of IFN-~ to increase CREB(Serl33) DNA-binding activity, as compared to cells 

stimulated with IFN-~ (Fig. 14C). These findings demonstrate that the ability of IFN-~ 

to augment the nuclear levels and DNA binding of CREB (Serl33) are dependent upon 

its engagement of the PI3K pathway and its ability to suppress GSK3 activity. 
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Discussion 

The ability of IFN-~ to induces the anti-inflammatory cytokine IL-I0 is believed 

to play a critical role in its therapeutic value for the treatment of MS (l00, 105). 

Although previous studies have documented a multitude of signaling cascades that can be 

activated by IFN-~ including the Jak-STAT, PI3K, P38, MAPKs and NF-KB pathways, 

the cellular mechanisms responsible for the ability of IFN-~ to stimulate the production 

of IL-I0 has remained largely unknown (97, 125, 126, 136). Our present findings 

demonstrated that IFN-~ activates the PI3K pathway and that this process is required for 

IFN-~ induces IL-lO production. Moreover, we demonstrated that IFN-~ is able to 

regulate the activity of the constitutively active serine/threonine kinase GSK3-Ra 

downstream signaling component within the PI3K pathway, and that the suppression of 

GSK3 activity is required for IFN-~ to induce IL-lO from human DCs. 

GSK3-~ is a constitutively activated serine/threonine kinase within the PI3K 

pathway (50). Past studies have shown that inhibiting its GSK3 kinase activity 

negatively influences the levels of proinflammatory cytokines while concurrently 

augmenting the level of the anti-inflammatory cytokine IL-I0 in TLR-stimulated cells 

(60). A recent study by Cheng et al. (101) has shown that IFN-~ produced upon LPS 

stimulation was required for LPS-induced IL-l O. However, the underlying cell-signaling 

pathway engaged by this positive feedback loop responsible for IL-l 0 induction was not 

clear. The findings of the current study extend Chang et ai's findings by demonstrating 

that the ability of IFN-~ to partially repress GSK3-~ activity is a necessary step in the 

induction of IL-l 0 upon IFN-~ stimulation. Indeed, preventing the phospho-inactivation 
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of GSK3-f3 either by blocking PI3K activity or by the overexpression of a constitutively 

active mutant of GSK3-p(S9A) inhibited the ability of IFN-f3 to stimulate IL-10 

production from human DCs. Moreover, the observed higher levels of IL-1 0 induced by 

IFN-f3 stimulation in the presence of GSK3 inhibition, as compared to IFN-f3 alone, 

suggested IFN-f3 stimulation reduces rather than abolishes the cellular pool of activate 

GSK3. Indeed, an assessment of endogenous GSK3 activity by measuring the levels of 

phospho-glycogen synthase revealed that IFN-f3 is incapable of fully inactivating GSK3 

in human DCs. Thus, although IFN-f3 mediated suppression of GSK3 activity is 

responsible for IFN - f3 's ability to induce IL-IO, this effect on IL-IO production can be 

further modulated by other stimuli that can further repress GSK3 activity. 

Type I IFNs have been shown to playa crucial role in host defenses against 

various pathogenic bacteria by differentially modulating the production of some 

important immunomodulatory cytokines (137) (138) (139). Past studies have shown that 

type I IFNs can inhibit the production of IL-12 and enhance the immunosuppressive 

cytokine IL-J 0 in vitro and in vivo (99, 104, 140). It has additionally been shown that 

IFNAR deficient mice exhibited a hyperinflammatory response in vivo to LPS challenge 

and had significantly lower levels of IL-l 0, as compared to wild-type mice (141, 142). 

Since IL-IO is a well-known immunosuppressive cytokine and plays a crucial role in 

modulating the immune response against various pathogenic bacteria (98, 143-145), our 

current findings identifying how IFN-f3 induces IL-IO production by way of GSK3-f3 

coupled with our previous work demonstrating the ability of GSK3-f3 to differentially 

regulate IL-l 0 and IL-12 levels, provides insight into the cellular mechanism responsible 

for the inhibitory effect of type I IFNs on the host inflammatory response. 
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In conclusion, the present study identified that IFN-f3 activated the PBK pathway 

and induced the partial inactivation of the constitutively active serine/threonine kinase, 

GSK3-f3. This process was found to play a critical role in the regulation of the anti

inflammatory cytokine IL-IO production by IFN-f3-stimulated Des. Interestingly, the 

cell-signaling pathway by which IFN-f3 suppresses GSK3 activity appeared to be 

selective for the induction of IL-J 0, and thus mimics some of the characteristics GSK3 

plays in enhancing IL-IO production by TLR-stimulated innate immune cells. The 

current findings further characterized and identified the underlying cellular mechanisms 

by which IFN-f3 induces the production of IL-l 0 by innate immune cells and underscored 

the importance of GSK3 regulation in the induction of IL-l 0 by IFN-f3. Since IFN-~ 

treatment has been shown to increase the serum levels of IL-I 0 present in MS patients 

(100), and this effect is believed to play an important role in the therapeutic value of type 

I IFN s in the treatment of MS patients (105), our results indicate that GSK3 inhibition 

may be a therapeutic target candidate for enhancing the therapeutic value of systemically 

administered IFN-f3. 
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Figure 8. IFN-~ is required for LPS-induced IL-IO production from DCs. (A) Des 

were pretreated with anti-IFN~ or isotype control antibody (100ng/ml) for 2h, stimulated 

for 20 h with or without LPS (1 ).lg/ml), and cell-free supernatants were analyzed for IL-

10 levels by ELISA. (B) Des were pretreated with anti-IFN~ or isotype control antibody 

for 2h and then stimulated with LPS (l).lg/ml) for 20 h. Monensin was added during the 

last 12h of the assay and cells were analyzed for intracellular IL-l 0 by flow cytometry. 

(C) Des were stimulated with the indicated concentration of IFN-~ for 24 h and cell-free 

supernatants were analyzed for IL-IO by ELISA. *, p<O.OI as determined by ANOVA 

and post hoc Tukey test. Data represent the mean ±SD of three separate experiments. 
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Figure 9 
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Figure 9. DCs were pretreated for 2 h with DMSO (0.1%), SB216763 (12IlM) or 

L Y294002 (50IlM) and then stimulated with IFN-B (5000 IU/ml)_ Cell-free supernatants 

were collected 20 h after IFNB stimulation and assayed for TNF-a (D), IL-l B (E) , IL-23 

(F), and IL-12p40 (G) levels by ELISA. *,p<O.Ol as determined by ANOVA and post 

hoc Tukey test. Data represent the mean ±SD of three separate experiments. 
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Figure 10 
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Figure 10. IFN-~ induces PI3K-dependent phosphorylation of Akt and GSK3~ in 

DCs. Des were pretreated with the PI3K inhibitor, LY294002 (50f-1,M), or DMSO 

(0.1 %) for 2 h and then stimulated with IFN-~ for 30 or 60 min. Total cell lysates were 

probed for phospho-Akt (S473 or T308) (A) or phospho-GSK3~ (S9) (B) levels by 

Western blot and subsequently repro bed for total GSK3-~ and total ~-actin . (C) 

Densitometry scans of total and phospho-GSK3~ (S9) were performed and recorded as 

the ratio of phospho-GSK3~ (S9) to total GSK3~. Data are representative of three 

separate experiments. 
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Figure 11 
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Figure 11. Des were pretreated for 2h with LY294002 (50flM) or DMSO (0.1 %) and 

then stimulated with IFN-~ for 60 min and the levels of phospho-GSK3~ (S9) were 

analyzed by flow cytometry. Data are representative of three separate experiments. 
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Figure 12. Regulation of IFN-~ induced IL-I0 production by PI3K and GSK3. (A) 

DCs were pretreated for 2h with DMSO (0.1 %) or LY294002 (50flM) and then 

stimulated with IFN ~ (5000 IU/ml) for 20h with the resultant Cell-free supernatants 

were analyzed for IL-l 0 levels by ELISA. (B) DCs were stimulated as indicated above 

with the exception that monesin was added during the last 12 hours of stimulation and 

cells were subsequently analyzed for intracellular IL-10 by flow cytometry_ (C and D) 

DCs were pretreated for 2h with DMSO (0.1%) or SB216763 (12flM) and then 

stimulated with IFN-~. IL-10 protein and steady-state mRNA levels were determined by 

ELISA following a 20h stimulation and by RT-PCR, respectively. *, p<0_01 as 

determined by ANOVA and post hoc Tukey test Data represent the mean ±SD of three 

separate experiments. 
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Figure 13 
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Figure 13. IFN-j3 induced IL-IO production is dependent on GSK3j3 activity. (A) 

DCs were either mock transfected, transfected with nontargeting siRNA, or transfected 

with GSK3f3-specific siRNA. Cellular lysates were prepared and day 3 and analyzed by 

Western blot. (B) Transfected cells were stimulated with IFN-f3 and IL-IO levels from 

cell-free supernatants were analyzed by ELISA. (C) DCs were transfected with pcDNA3 

(empty vector control), pDNA3 encoding a constitutively active mutant of GSK3-f3 

(S9A), or pcDNA3 encoding a kinase dead mutant of GSK3-f3 (K85A). On day 2, 

transfected cells were stimulated for 20h with IFN-f3 and IL" 1 0 levels from cell-free 

supernatants were analyzed by ELISA. *,p<O.Ol as determined by ANOVA and post hoc 

Tukey test. Data represent the mean ±SD of three separate experiments. 
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Figure 14 
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Figure 14. IFN-~ stimulation of Des alters the phospho-levels of the GSK3~ 

substrates glycogen synthase and eREB. DCs were pretreated with DMSO (0.1 %), the 

GSK3 inhibitor SB216763 (12f-lM), or the PI3K inhibitor LY294002 (50f-lm) and then 

stimulated with IFN-~. (A) Cells was harvested after 30 min stimulation and probed for 

phospho-Glycogen Synthase (Ser641) and ~-actin by Western blot. (B) Densitometer 

scans of blots from Figure 14A. (e) Nuclear extracts (10 f-lg) were prepared from DCs 

after IFN ~ stimulation and analyzed for binding activity of CREB using an ELISA-based 

transcription factor binding assay. *, p<O.O 1 as determined by ANO VA and post hoc 

Tukey test. Data represent the mean ±SD of three separate experiments. 
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CHAPTER IV 

CONCLUSIONS 

TLRs initiate various signal transduction cascades that activate and regulate the 

host's Immune response. As a result, a common set of genes are expressed which 

produce essential molecules for the activation and the regulation of both innate and 

adaptive immunity, such as pro- and anti- inflammatory cytokines, chemokines and co

stimulatory molecules (146-148). This resultant inflammatory response is essential for 

the eradication of infectious microorganisms. However, excessive or prolonged activation 

of TLRs can lead to detrimental inflammatory reactions, tissue/cell damage, and even 

death (149). Therefore, it is crucial to identifY and characterize specific regulatory 

molecules and pathways involved in controlling the host inflammatory response. The 

work presented herein identified two new regulatory pathways that characterized the 

cellular processes by which GSK3 regulates the production of the prototypical MyD88-

independent cytokine, IFN~, as well as how IFN~ acts via a autocrine/paracrine 

feedback mechanism to induce IL-l 0 production by innate immune cells. 

GSK3-~ is a constitutively activated serine/threonine kinase within the PI3K 

pathway (50). Past studies have shown that inhibition of GSK3 kinase activity negatively 

influences the levels of proinflammatory cytokines while concurrently augmenting the 

level of the anti-inflammatory cytokine IL-I0 produced by TLR-stimulated cells 
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(60). A recent study by Cheng et al. (101) has shown that IFN-~ was involved in the 

production of IL-10 by LPS-stimulated cells due to a positive feedback mechanism 

involving IFN~. The findings of the current study extend these findings by 

demonstrating that the ability of IFN-~ to partially repress GSK3-~ activity was 

necessary for the induction ofIL-lO by IFN -~ stimulated cells. Preventing the phospho

inactivation of GSK3-~ inhibited the ability of IFN-~ to stimulate IL-l 0 production from 

DC. The observed increase in the levels of IL-lO induced by IFN-~ in the presence of 

GSK3 inhibition, as compared to IFN-~ alone, suggested IFN-~ alone may not have 

inactivated GSK3 to the levels mediated by the GSK3 inhibitor. Indeed, an assessment of 

GSK3 inactivation revealed that IFN-~ was capable of partially inactivating the ability of 

GSK3 to phosphorylate a specific GSK3 substrate, as compared to complete inhibition 

observed with the GSK3 inhibitor. Thus, IFN-~ mediated suppression in GSK3 activity 

is responsible for its ability to induce IL-10, and this effect on IL-10 production can be 

further enhanced by inactivating GSK3 activity. 

The identification and characterization of the downstream cell-signaling events 

regulating the IFN-~ response have been shown to involve the activation of the kinases 

TBK-1 and IKK-£ that are involved in the phosphorylation of the transcription factor 

IRF-3 and its subsequent dimerization and translocation into the nucleus (35) (121) (122). 

In addition to IRF-3, studies analyzing the inff3 promoter have revealed the presence of 

additional regulatory molecules that can bind one of the four positive regulatory domains 

within the [lnf3 promoter. In this regard, ATF-2 and c·Jun have been shown to bind the 

[lnf3 promoter via a heterodimeric complex within the positive regulatory domain IV of 

the ifnf3 promoter (116) (86) (91). Although the findings of the present study did not 
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observe any discernible effects of GSK3 inhibition on the activity of IRF-3, the ability of 

GSK3 to regulate the cellular levels of c-Jun were found to be of critical importance for 

the ability of GSK3 to modulate IFN-~ production by LPS-stimulated innate immune 

cells. Moreover, siRNA-mediated knockdown of c-Jun levels in macrophages reduced 

the levels ofIFN-~ produced by cells stimulated with LPS. These findings demonstrate a 

fundamental role for c-Jun in the regulation of IFN-~ and highlight the underlying 

molecular mechanism by which GSK3 regulates IFN-~ by LPS stimulated innate immune 

cells. 

Past studies have shown that type I IFNs could inhibit the production ofIL-12 and 

enhance the immunosuppressive cytokine IL-I0 in vitro and in vivo (99, 104, 140). It has 

additionally been shown that IFNAR deficient mice exhibited a hyper-inflammatory 

response In VIVO to LPS challenge and had significantly lower levels of IL-I0, as 

compared to wild-type mIce (141, 142). Since IL-10 IS a well-known 

immunosuppressive cytokine and plays a crucial role in modulating the immune response 

against various pathogenic bacteria (98, 143-145), our current findings identifying how 

IFN -~ induced IL-I0 production is mediated via partial inhibition of GSK3-~ and the 

ability of GSK3-~ to differentially regulate IL-l 0 and IL-12 levels, provides insight into 

the cellular mechanism responsible for the inhibitory effect of type I IFNs on the host 

inflammatory response. 

There are two major molecular pathways activated by TLR4 and are classified as 

MyD88-dependent and MyD88-independent (31, 33, 110). Previous studies by our 

laboratory and others demonstrated that GSK3 ~, a downstream serine-threonine kinase 

within the PI3K pathway, differentially regulates the levels of MyD88-dependent 
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cytokines, including both pro- and anti-inflammatory cytokines by TLR4-mediated innate 

immune cells (60). Specifically, the inactivation of GSK3-~ was shown to negatively 

influence the levels of pro-inflammatory cytokines while concurrently augmenting the 

levels of the anti-inf1ammatory cytokine IL-I0 in response to TLR4-stimulation (60). 

The current findings extend these observations by demonstrating that the inactivation of 

GSK3-~ (Ser9) occurs in the absence of MyD88 and that GSK3-~ activity was a critical 

component of the regulatory mechanism that controlled the levels of IFN-~ by TLR4-

stimulated cells both in vitro and in vivo. Interestingly, the cellular mechanisms by which 

GSK3 regulated the prototypical MyD88-independent cytokine, IFN-~, differed from that 

by which GSK3 regulates the production of MyD88-dependent pro- and anti

inf1ammatory cytokines. In the current study, we showed that the inhibition of GSK3~ 

augmented the levels of the transcription factor c-Jun and thereby increased the amount 

of c-Jun I ATF2 complexes that were responsible for the ability of GSK3 inhibition to 

augment the production of IFN~. In contrast, GSK3 differentially regulated the 

production of MyD88-dependent cytokines via increases in nuclear levels of CREB 

(S 133) and thus enhanced the formation of the transcriptional complex CREB/CBP that 

promoted the transcriptional regulation ofIL-l 0 while attenuating the production of NF-

KB-dependent pro-inf1ammatory cytokines (60). Taken together, these studies 

highlighted the capacity of GSK3~ to regulate both MyD88-dependent (112, 113, 119) 

and MyD88-independent cytokine responses and further characterized the fundamental 

role that GSK3-~ played in the regulation of the host inf1ammatory response. 

IL-J 0 has long been recognized to be a prototypical immunosuppressive cytokine 

and involved in the regulation of immune homeostasis due to its broad anti-inf1ammatory 
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properties on cells of both innate and adaptive immune system (98). Dys-regulation of 

IL-lO has been shown to mediate or contribute to many chronic inflammatory diseases 

such as Chrohn's disease, multiple sclerosis, and allergic contact dermatitis (150). There 

are several aspects of IL-I 0 gene regulation that are conserved among all cells, while 

other mechanisms appear to be cell-type specific (151, 152). In this regard, the promoter 

region in all IL-lO-producing cells is essentially the same and the transcription factors 

that initiate IL-lO transcription are conserved (152). Transcription factors reported to 

bind the IL-IO promoter include Spl/3, STAT3, C/EBP, IRF-I, c-Maf, AP-I, CREB, and 

NF -KB (152). In contrast to these conserved transcription factors, the signaling pathways 

that induce IL-l 0 are generally unique to each cell type. In innate immune cells, several 

studies have shown that GSK3 regulated the production of IL-IO in a CBP-CREB 

dependent manner in which GSK3 inactivation increases the nuclear levels of CREB 

(Sl33) and displaces NF-KB p65 from the transcriptional complex. Subsequent studies 

have also shown that the Epstein Barr Viral Protein, LMP I, induces IL-IO production 

from B cells through the inactivation of GSK3 and an increase in CREB activity (153). 

Studies by others have confirmed these initial observations by demonstrating that GSK3 

activity regulated the IL-lO production in response to stimulation by Anti-ribosomal 

phosphoprotein autoantibodies in both macrophage cell-lines and primary human 

macrophages (130). In contrast, the cellular mechanism by which GSK3 controls IL-l 0 

production in human memory CD4+ T cells is divergent. Specifically, GSK3 inactivation 

potently increases IL-IO production by memory CD4+ T cells by increasing the cellular 

levels of the transcription factor, c-Jun. Interestingly, GSK3 inactivation in memory 

CD4+ T cells exhibited no effect on the nuclear levels or transcriptional binding 
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properties of CREB (S 133) (154). Thus, the ability of GSK3 to regulate the production 

of IL-l 0 appears to be conserved among cells comprising both the innate and adaptive 

immune compartments. However, the underlying cellular mechanisms by which GSK3 

controls IL-l 0 production in different cellular lineages differ. 
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