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ABSTRACT 

IMPROVED FABRICATION AND MODELING OF PIEZORESISTIVE 
MICROCANTILEVER BEAMS FOR GAS DETECTION AND SENSING 

Ni Wang 

December 5,2012 

Symmetric piezoresistive microcantilever beams have been demonstrated in 

previous research to be capable of sensing the presence of surrounding gas. This occurs 

as the damping effect of the gas changes the beam resonance behavior. Device sensitivity 

has been increased dramatically after changing the symmetric beam base to an 

asymmetric beam base. 

This dissertation seeks to improve on beam fabrication and simplify the 

fabrication procedure compared to earlier approaches. By changing to a polymer mask 

and using new equipment, an entire wafer can be fabricated in far less time compared to 

the previous approach. While this new approach shows great promise, additional research 

is needed to demonstrate consistent device quality comparable with earlier approaches. 

This dissertation also focuses on the continued development of such devices with ~n 

emphasis on modeling to better understand the resonant behavior in a gas. Past work at 

the University of Louisville and elsewhere has relied upon simplified fluid mechanics 

models to relate changes in resonance with gas properties. The current work considers a 

combination of Stokes' oscillating cylinder model and computational fluid dynamics 

simulation to better characterize the damping effect including the effect of the rectangular 
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cross-section and the presence of a boundary (the silicon handle layer) located 2 ~m 

below the beam. 

The beam is induced to vibrate by electrical attractive forces at the end that 

change with applied driving electrode voltage and beam voltage. The electrostatic 

force, the displacement of the beam tip, the change of resistance of beam base due to 

piezoresistive effects, and the resulting signal received by the lock-in amplifier is 

established by a combination of analytical models and finite element simulation. This 

simulated output signal provides valuable insights to address issues of proper parameters 

to use during testing. 

This new information developed in this dissertation helps to advance the state of 

the art for microresonating beams for gas detection. This information is expected to play 

a key role as the systems in this work are transitioned to use in practice. 
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CHAPTER 1. INTRODUCTION 

Piezoresistive microcantilever beams have been demonstrated in previous work 

by the researchers at the University of Louisville to be capable of sensing the presence of 

surrounding gas by changes in the resonance behavior of the beam. Several device 

improvements and modifications have been pursued over the past several years including 

alternate fabrication methods and asymmetric base configuration to improve sensitivity. 

However, a number of challenges remain to reach the point where devices can be reliably 

fabricated and operated in a consistent and repeatable manner in a gas environment. 

The ultimate goal of this device development is to create an integrated high­

sensitivity system for gas detection, with an intended application towards the early 

positive identification ofterrorist threats and hazardous materials. The work described in 

this dissertation is intended to overcome a number of the remaining difficulties; these 

include improvements to speed fabrication, fluid flow modeling to better address the drag 

forces which act on the oscillating beam, simulation of electrostatic forces acting on the 

beam and its associated vibration response. The purpose ofthese steps is to advance the 

state ofthe art in the area of microcantilevers beams used for gas sensing and detection. 

As such, they will represent an important step in realizing the potential for these devices 

for future applications. 



1.1 Background Review 

In recent years, rapid development in micro/nano actuation-based sensor 

technology has become widely used for gas detection and biochemical analysis. [1-2] 

Devices based on resonating cantilever beams represent one popular type of sensor due to 

its simple geometry, fast response times and high sensitivity.[3] Cantilever beams 

operating in a gas or fluid environment experience a resonance frequency shift and 

change in vibration amplitude around resonant frequency due to the damping effect.[4] 

Similarly, coated cantilever beams that selectively attach to various compounds will 

experience a resonance frequency shift due to the added mass.[5] 

In order to assess resonance, a method for monitoring the vibration amplitude is 

required. One common approach uses laser-based optical methods for this 

measurement.[4, 6-9] Another approach is to use piezoresistive methods to detect the 

beam vibration behavior.[ I 0-12] Piezoresistance-based microcantilever sensor are 

becoming more popular for they are convenient to calibrate, readily deployable into 

integrated electromechanical system and do not require external detection devices for 

measuring surface stress as a result of the binding of chemical and biological species.[13-

14] Although this method avoids complicated optical equipment, it also introduces other 

challenges due to the fact that it relies on understanding the stress state in the monitored 

structure requires knowledge of the piezoresistive material properties, and the results can 

be sensitive to temperature changes in the beam. 

As a gas sensor, the microncantilever beam system can be considered as 3 

components as shown in Figure I. The two inputs are the gas environment surrounding 

the beam and the electrical signal at the driving electrode that induces small periodic 
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forces in the region around the beam tip due to capacitive effects. The microcantilever 

beam and its base form the sensor. At certain driving electrode frequencies, the beam 

enters resonance; the magnitude and frequency of vibration are affected by the 

surrounding gas. The base legs that support the beam have induced periodic stresses due 

to the beam motion. The output of the sensor comes from the piezoresistive effect; base 

leg stresses cause periodic resistance change that can be measured via a DC circuit across 

them. The magnitude of this signal therefore provides a measure of the beam motion. 

Resonance can also be assessed using optical methods as will be shown in several images 

below; however, the long-term goal of these sensors is to avoid the need for complex 

microscopy or other equipment required for optical approaches. The observed beam 

motion can then be combined with suitable beam vibration and fluid mechanics models to 

estimate the damping effect of the underlying gas. 

( Input ] { Sensor ] { Output ] 
• Driving Electrode • Resonating • Voltage Signal at 

Voltage Microcantilever Piezoresistive Base 

• Gas Environment • Piezoresistive Base • Optical Image 

Figure 1. Schematic of microcantilever beam configuration as a gas sensor 

Past and current efforts have focused on improving various aspects the system 

above. One ofthese is the fabrication method used in the creation of the device. For 

piezoresistive microcantilever beam devices, common fabrication approaches include 

photolithography and combinations of dry or wet etching.[2] As the beam size reached 

the order of 0.5 -111m width, limitations of photolithography equipment initially 

3 



required the use of time-consuming methods such as e-beam lithography to create the 

necessary small feature sizes.[12] Recent work by the author has focused on using newer 

equipment to fabricate the sensors using alternate fabrication methods; these efforts have 

been achieved in reducing the fabrication time and increasing the number of operational 

devices achieved per wafer. However, this new method also leads some new problems 

that do not exist in old approaches. These new problems include variation of beam width 

crossing the whole wafer and leakage between the device and the handling layer. These 

issues need to be further investigated. 

Another area of interest is in improved device sensitivity. The original 

configuration at UofL, utilizing micro cantilever beams supported by symmetric 

piezoresistive base legs, has been demonstrated in previous research to be capable of 

sensing the presence of surrounding gas. Unfortunately, the symmetric configuration 

leads to very low sensitivity, with base leg resistance changes on the order of 10--6 times 

the unstressed resistance value. Research at UofL has utilized an asymmetric base 

arrangement in the sensor design; this has greatly improved device sensitivity.[15-16] 

Other researchers have pursued size reductions towards the nanoscale to increase 

sensitivity of beam sensors. [17-18] Similarly, other attempts have been made to improve 

the sensitivity and resolution of piezoresistive microcantilevers by reducing the beam 

thickness.[l9] Improved sensitivity offers the potential for identifying small changes in 

gas properties, thereby increasing the likelihood of detection of an undesirable 

component. 

Testing ofthe sensors offers another challenge as physical dimensions of devices 

are on the scale of microns and mechanical resonant frequencies are typically in the range 
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of 104 
- 105 Hz. As such, traditional vibration excitation techniques, such as impact 

hammer and shaker tables cannot be readily used to induce vibration in order to 

characterize microstructural response. Electrostatic excitation is one of the general 

excitation methods for microscale devices; in the current sensor design, electrostatic 

excitation forces are exerted by a driving electrode separated from the beam tip by a 

small gap. The disadvantages of this method are that electrostatic forces are nonlinear 

functions of structural motions and that there is coupling between electrostatic and 

structural fields. [20] In addition to the challenges of inducing vibration, microscale 

devices are quite sensitive to a host of effects, such as the viscosity of any surrounding 

gas, that could often be neglected when dealing with traditional macro structures. As such, 

the dynamic characteristics of a microstructure depend strongly on surface and interface 

effects compared to the volume or bulk effects of the microstructure itself.[21] 

The purpose of the sensor as described is to ultimately detect resonance changes 

caused by a surrounding fluid or gas. To accomplish this, suitable models must be 

identified that can relate the observed changes to appropriate media properties such as 

viscosity and density. Blom et al. in 1992 utilized a model based on spheres vibrating in 

an infinite media to assess damping effects for a cantilever beam; this model indicated 

that the shift in resonance frequency of a microcantilever was a function of the molar 

mass and gas pressure.[22] This finding provided an avenue to assess the molar mass of 

the gas could be obtained by measuring the resonance frequency shift.[12, 23] Of course, 

a cantilever beam of rectangular (or other) cross-section does not really resemble a series 

of spheres. As such, various researchers have created a variety of other fluid-structure 

models to assess the damping effect; these have included both inviscid and viscous fluid 
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models, cylindrical and thin blade geometries, and incorporation of the media flow rate in 

this assessment.[24-33] 

While each of these approaches may be useful, none of them consider the 

configuration used in the current sensor design - namely that the microcantilever beam is 

a plane that resides approximately 2 /lm above a fixed, flat surface (the handle layer of 

the SOl wafer). The approaches above consider resonating structure in an infinite fluid 

domain model, while the actual structure resembles as semi-infinite fluid domain 

problem. If the floor plays a significant role in terms of the viscous forces acting on the 

resonating beam, this effect wiIl not be captured using a model such as that developed by 

Blom et al. The approach considered in this dissertation utilizes a CFO model to estimate 

the effect of area-cross of cantilever beam (comparing cylinder to rectangular) and effect 

of wall due to floor presents. This model is useful in understanding the hydrodynamic 

drag on a microcantilever moving through a fluid at a constant speed [29]; it is also 

matched drag force with the one from Stokes' oscillating cylinder model. The effects of 

area-cross and floor can be expressed in formula after comparing the rectangular beam 

with floor with Stokes' oscillating cylinder beam. This effects then acts as a factor in 

calculation of coefficients of drag force. 

1.2 Past Research at UojL 

Research work by Yang Xu during her doctoral studies in Mechanical 

Engineering at the University of Louisville demonstrated methods to create narrow, 

piezoresistive microcantilever beams; these beams were demonstrated to be capable of 

detecting the presence of various gases via changes in the resonance characteristics of the 

beam. These structures were all symmetric about the beam midplane.[12, 23] One style of 
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microcantilever considered in Dr. Xu ' s work was the T-shaped resonator as shown in 

Figure 2. The beam (128 ~m long x 1.1 ~m wide x 3 ~m deep) is attached to a shorter 

base (9 ~m wide) that connects two electrodes. Near the end of the beam, a driving 

electrode is used to actuate the beam; by applying an AC voltage at the driving electrode, 

the beam will experience periodic electrostatic forces. It will enter a state of resonance 

when the AC frequency is equal to certain specific values that depend upon the geometry 

and material properties of system. 

Figure 2. SEM images of the T-shaped resonators: (left) top view; (b) tilted view [12] 

The material used (boron-doped silicon) was piezoresistive, meaning that a state 

of stress changes the resistance ofthe material. Deflections of the beam lead to stresses in 

the base and, hence, associated resistance changes in the base. When the AC voltage at 

the driving electrode causes the beam to vibrate at frequency J, the beam base resistance 

changes occur at frequency 2f since motion in either direction causes an identical change 

in resistance due to symmetry. The magnitude ofthis resistance change can be detected 

by passing a constant DC voltage across a circuit consisting of the beam base (varying 

resistance) and a fixed resistor; a lock-in amplifier seeks the value of the signal at 

frequency 2fwhich can then be correlated to beam deflection. 
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An example of aT-shaped beam in resonance and the associated experimental 

setup are shown in Figure 3; note that the atmosphere in which the beam is located (probe 

station chamber) can be varied from full vacuum to a desired pressure using various 

gases. An example of beam deflection amplitude (as observed by base resistance 

changes) versus frequency is shown in Figure 4 for a T-shaped resonator in methane gas 

at various pressures; this shows both the peak frequency shift as well as broadening of the 

response curve as the pressure (and hence viscous damping on the beam) increases. 

Figure 4 also shows the peak frequency shift relative to the vacuum case if / f 0) and 

demonstrates a different result for each gas considered; using the model by Blom et al 

[22], this shift was then shown to be related to the gas molar mass. 

Prob •• tation chll'nlMli -_ ._--------------_ ._-

Figure 3. T-shaped resonator experiment: (left) SEM image of beam in resonance; 

(right) experimental setup to monitor beam resonance (A is driving electrode)[34] 
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Figure 4. Experimental results for T-shaped resonators detecting gas presence: 

(left) base voltage as methane gas pressure varies from 0.01 - 760 Torr; 

(right) peak frequency shift observed for several gases at pressure indicated [34] 

While the results above are promising, there were several challenges that became 

apparent during this project. First, the piezoresistive changes the beam base were 

relatively low, meaning that beam resonance lead to relative resistance changes on the 

order of 1-10 parts per million (not far above the system noise level). Second, the 

fabrication method was complex and time consuming, involving many processing steps 

across multiple equipment pieces to create a device. 

Base resistance sensitivity has been improved using an asymmetric (or staggered 

leg) base arrangement. [n the original device, the beam base is in a state of bending and 

many of the resistance changes cancel out due to the tension/compression nature of the 

stress state. The alternate configuration reacts the base loads associated with beam 

deflection primarily via a force couple from each leg; this leads to both legs having a 

similar state of stress and therefore a much larger resistance change compared to the 

original device. This effect was studied using numerical methods to validate the concept; 

an example of a 3D finite element model and its associated current density plot used to 
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determine base resistance is shown in Figure 5.[35] These numerical studies indicated 

relative resistance changes on the order of 1 %, a 3-4 magnitude order increase compared 

to the original design. Limited experimental studies using this configuration have shown 

base resistance changes that are 15-200 times greater than the original design; this work 

was performed by Patrick Fletcher, an M.Eng. student in Mechanical Engineering who 

graduated in 2008.[ 16, 36] 

Figure 5. Finite element modeling of asymmetric cantilever: (left) coarse 3D mesh (part 

of beam shown); (right) current density plot in undeflected state[37] 

1.3 Overview of Dissertation 

As described above, the work of Xu and Fletcher provides a strong basis from 

which to further develop microcantilever beam systems for gas detection. However, these 

studies also indicated several of the limitations already described, including time­

consuming fabrication , low device sensitivity and reliance on fluid models using 

simplifications that may not be accurate for the configuration used. 

In order to address these issues, the author began work on the topic of 

improvements of micro cantilever beams for gas detection and sensing in 2008. The goal 

at the outset was to extend the work that was done by previous studies towards the long-

10 



term goal of developing gas detection systems based on arrays of microcantilever beams 

operating simultaneously and in real-time in a field setting. 

To move towards this goal, the author began the series of investigations intended 

to advance the state of the art in this area. The list below is a brief statement of each item 

of interest: 

Improved Fabrication Approach (Chapter 2) 

Modeling of Gas Damping Effects (Chapter 3) 

Modeling Electrostatic Forces Driving Resonance (Chapter 4) 

Beam Vibration Response (Chapter 5) 

Simulation of Voltage Signal at Lock-in Amplifier Simulation (Chapter 6) 

Chapter 2 presents fabrication methods developed in this research work as well as 

measurements of beam dimensions and device yield. Chapter 3 utilizes a combination of 

analytical models with computational fluid dynamic simulation to assess gas damping 

loads on the beam. Chapter 4 uses coupled-field finite element simulation to address 

electrostatic forces; these are then used to predict the beam load under a sinusoidal 

driving electrode voltage with constant beam voltage. Chapter 5 uses classical vibration 

models to assess the microcantilevers response during resonance to predict the beam 

response in operation. Chapter 6 simulate the voltage signal in lock-in amplifier using 

derived relationship between electrostatic force and displacement of beam tip, the 

displacement of beam tip and the change resistance of beam base, the change of 

resistance of beam base and voltage oflock-in amplifier. This signal calculation helps to 

understand the captured signal responding to the behavior of the cantilever beam. 
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CHAPTER 2. DEVICE FABRICATION AND OPERATION 

In this section, the focus is on dissertation topics related to device fabrication and 

operation in vacuum. This work achieved the goal of improving the speed the fabrication; 

however, several challenges remain that are also highlighted. 

2.1 Original Fabrication Method 

In both the original and new methods, a commercial 100 mm (4 in) silicon-on­

insulator (SOl) wafer, obtained from Ultrasil Corporation, is utilized for device 

fabrication. This wafer consists of three layers: a boron-doped silicon device layer (2 

microns thick); a buried silicon oxide layer (3 microns thick); and a silicon handle layer 

(500 microns thick). As shown in Figure 6, one wafer could be used to fabricate 60 

working dies (12 unusable due to straddling the wafer edge), with each die containing 10 

separate microcantilever beam sensors. 
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Figure 6. Device layout on wafer: (left) wafer view with 72 die (60 useable); (middle) 

single die with 10 microcantilever beams in an array; (right) single microcantilever 

beam sensor. 

Steps 1-3 in the original approach (shown in Figure 7(a)) and the new approach 

(shown in Figure 7(b)) are very similar; these create the gold leads and bonding pads 

used in the electrical circuitry and are completed using standard photolithography 

methods. For Step 4 of the original method, two PMMA layers are spun onto the wafer. 

The pattern for each beam is then written onto the PMMA layers using e-beam 

lithography; this approach was required since the photolithography mask system 

available at that time was not capable of feature sizes on the order of 1 micron. Due to the 

low magnification available in the e-beam lithography system, each microcantilever 

beam pattern had to be aligned and exposed separately. Therefore, the same manual 

procedure had to be repeated 10 times for each device on a die, leading to a total of 600 

identical operations for an entire wafer. It takes approximately 2 hours to write the beam 

pattern on a single die or approximately 120 hours for an entire wafer. After the PMMA 
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pattern is developed, a 5 nm thick iron layer is sputtered onto the die to serve as a DRIE 

mask; an acetone liftoff leaves behind the iron mask with the proper beam pattern. 

At this point, the wafer is cut into squares using a dicing saw. Step 5 uses deep 

reactive ion etching (DRlE) to create the beams by removing any unmasked silicon down 

to the silicon oxide layer; this method is chosen because it is capable offorming high 

aspect ratio vertical sidewalls in silicon without etching the silicon-dioxide layer. 

Buffered oxide etching followed by critical point drying eliminates the silicon oxide 

below the beam and leads to the final free-standing beam configuration; note that the iron 

layer remains once fabrication is complete. Detailed description of this fabrication 

approach is provided elsewhere.[12, 23] While this process was successful in fabricating 

both symmetric and asymmetric beam configurations, it was quite time-consuming and 

complex to use. 

illil;Qn. ~ silicon dioxide silicon dioxide 
(1) JiIiID. (1) 

__ i.2!!I. __ &2ls1 

(2) (2) 

__ &!lI!! J} __ &2ls1 

(3) (3) 

J} --~ (4) 

__ m 
(4) 

J} 

(5) (5) • 
2l!i.!k r<mov ed / No iron layer in beam surface 

Figure 7. Fabrication steps with the region of application indicated schematically (wafer 

or die) : (left) the original approach; (right) the new approach 
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2.2 Improved Fabrication Method - Details 

The improved fabrication method described in this paper is based upon the use of 

traditional photolithography methods to eliminate the need for e-beam lithography and 

iron layer masks; this approach was suggested by Mark Crain of the UofL Micro­

Nanotechnology Center. Two pieces of equipment permitted this change. The first is a 

Heidelberg DWL-66FS laser lithography system (FigureS(a»; this is used to generate the 

various masks used and is capable of a writing structure sizes down to 0.6 microns 

(below the 0.9 - 1.1 micron beam widths used in the microcantilevers beams). The 

second is the SUSS MA6 mask aligner system (FigureS(b» ; this permits vacuum contact 

between the mask and the substrate and permits the writing of submicron patterns. 

Finally, the use of Shipley IS05 photoresist was an improvement over the original 

process; this material proved sufficient to serve as the DRIE mask and thus eliminated the 

need for the iron mask layer. 

FigureS. New equipment used for writing beam pattern: (left) Heidelberg DWL-66FS 

laser lithography system; (right) SUSS MA6 mask aligner. 
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The new equipment and photoresist simplifies the overall fabrication process to 

three lithography steps. The three masks (metal lead mask, bond pad mask, beam pattern 

mask) used in the optical lithography process are shown in Figure 9. The first step creates 

the electrical leads wires (step 2 in Figure 7). Shipley 1827 positive photoresist is applied 

to the silicon surface using a wafer spinner, with a spread speed of 500 rpm for 0.2 

seconds and a spin speed of 3000 rpm for 10 seconds. The wafer is then soft baked on a 

hotplate for 1 minute at 115°C to remove excess solvent from the positive resist. Next, 

the substrate is exposed to UV light for 15 seconds using the SUSS MA6 with the mask 

shown in Figure 9(a). This pattern is then reversed in a YES oven for 45 minutes at 90°C 

followed by a floor exposure performed in the SUSS MA6 for 22 seconds. The resulting 

pattern was developed in MF 319 for 1 minute with lateral agitation, rinsed with DI 

water, and then dried. An adhesion layer of 10 nm thick chromium was RF sputtered onto 

the substrate at 350 W for 27 seconds; this was followed by a 35 nm thick layer of gold 

that was DC sputtered onto the substrate at 120 W for 30 seconds. After sputtering, a lift­

off process was performed by submerging the wafer in a recirculation acetone bath for 20 

minutes to remove the excess gold and chromium, leaving the desired electrode lead 

pattern on the substrate. The use of the YES oven reduces the time required for the liftoff 

procedure compared to the original method which did not perform the image reversal 

step. The identical procedure and parameters was used to create the bonding pads (step 3 

in Figure 7) except that the mask used is shown in Figure 9(b) and the DC sputtering time 

was increased to 103 seconds to increase the thickness of the gold pads to provide a 

suitable surface for bonding to external electrical connections. 
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Figure 9. Masks for device fabrication (10 beams when completed): (left) metal lead wire 

mask; (middle) bond pad mask; (right) beam pattern mask. 

The key improvement to the fabrication procedure is in the creation of the beam 

pattern mask used for the anisotropic deep reactive ion etching (ORlE) step to create the 

beams (step 4 in Figure 7). First, the wafer with gold leads and bonding pads was baked 

for 5 minutes at 115°C on a hotplate to remove excess moisture and promote photoresist 

adhesion. Shipley 1805 photoresist was then applied to the silicon surface using a wafer 

spinner at a spread speed of 500 rpm for 0.2 seconds and a spin speed of 3000 rpm for 10 

seconds; this resulted in a thickness of approximately 200 nm. The wafer is then soft 

baked at 115°C for I minute to remove excess solvent from the positive resist. The wafer 

is then exposed to UV light for 5 seconds using beam pattern mask (Figure 9(c» using 

the SUSS MA6. The resulting pattern was developed in MF 319 for 30 seconds and 

rinsed in DI water; agitation is not used during development and the rinse is done very 

gently to avoid detaching the mask from the wafer surface. Once developed, the beam 

pattern is checked using an optical microscope to ensure that the pattern is clear and neat; 

Figure 10 shows a typical pattern after completion ofthe beam mask step. Note there are 

several important distinctions between this approach and the original fabrication: 1) time-

consuming e-beam lithography is not required; 2) the need for an iron mask layer is 
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eliminated; and 3) the process can be performed on an entire wafer rather than on a single 

die. 

Figure 10. Pattern after beam mask is written and developed. 

DRIE is then performed to etch the silicon device layer of the wafer using a base 

pressure of 0.2 mTorr and a process pressure of 10 mTorr at room temperature. The 

DRIE process was performed in multiple short-time steps to prevent over-etching and 

damaging the cantilever beams, with optical monitoring ofthe wafer used to assess when 

the silicon oxide layer is reached via an observed color change. The average etch rate is 

- 0.17 11m/min, which generally resulted in a processing time of 12 minutes for the 2 11m 

thick silicon device layer in previous die etch method. For the wafer etch procedure, the 

etch rate varies from the center to the edge due to the etch area increasing dramatically 

(60 times area bigger than previous method). The purple silicon dioxide was visible flfst 

in the center of wafer area, and then extended to the edge of the wafer as the etching time 

increasing. The etching process is repeated for an additional 2 minutes until the silicon 

dioxide was completely visible for the whole wafer which resulted in a processing time of 
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about 18-20 minutes for the whole wafer DRIE. After etching, the SOl die substrates 

were imaged and measured in an SEM. Note there is also an important distinctions 

between this approach and the original fabrication: the process can be performed on an 

entire wafer rather than on a single die. 

The wafer is then diced using a dicing saw before the beams are released via wet 

etching; beam fabrication could be completed on the entire wafer at once but it is 

anticipated that subsequent sawing would likely lead to damaged beams. The die is then 

washed with acetone to both clean it and remove the DRIE mask; note that the original 

method does not remove the iron mask layer after DRIE. The cantilever beams are then 

released from the substrate through an isotropic buffered oxide wet etch that eliminates 

the silicon oxide layer below the beams; this step is timed to leave the silicon oxide 

below the electrical leads and bonding pads largely intact, thereby electrically isolating 

each beam device from one another. After rinsing the die, critical point drying using C02 

is performed using a SAMDRI-PVT-3D system; this prevents the cantilever beams from 

sticking to the substrate (as they tend to do if rinsing alone is used). 

2.3 Improved Fabrication Methods - Results 

One device using the improved fabrication method is shown in Figure 11 with a 

detailed side view of a beam shown in Figure 12. The free end of each microcantilever 

beam is separated from its associated driving electrode by a small gap (1-2 microns). The 

fixed end of the beam is supported by two silicon legs; in some cases, the legs form a z 

line which is the asymmetric base configuration designed to improve device sensitivity. 

Like the cantilever beam, the support legs are also freely-suspended above the silicon 
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handle layer; the legs are mounted between two sensing electrodes that assess beam 

motion via piezoresistive changes across the support legs. 

Figure 11 . SEM image of single die - top view 

Figure 12. SEM image of single beam - 3D view and close-up view of beam tip. 

The findings above demonstrate that the new fabrication method is capable of 

creating microcantilever beam devices that perform in a comparable fashion as those 

using the original method. This is accompanied by a dramatic reduction in fabrication 

20 



time as demonstrated in Table 1. The reductions in fabrication time are largely obtained 

in the beam pattern step (step 3 of Figure 7(b)); a single mask is used for whole wafer 

lithography via traditional methods. 

Time - Original Method Time - Improved Method 

Procedure Single Whole Single Whole 

Device Wafer Device Wafer 

Electrical Lead Writing NjA 3 NjA 3 

Bold Pad Writing NjA 3 NjA 3 

E-Beam 2 120 NjA NjA 

Beam Iron 
2 120 NjA NjA 

Pattern Evaporation 

Writing 1805 
NjA NjA NjA 0.2 

Photoresist 

DRIE 2 120 NjA 2 

Wet Etch 1 60 1 60 

Critical Point Dry 1 60 1 60 

Total Fabrication Time 14 486 8.2 128.2 

Table 1. Fabrication time (hrs) for original and improved fabrication methods. 

2.4 Improved Fabrication Methods -Discussion 

Fabricated devices were checked in the SEM to verify both that the beams are as 

desired and that they are freely suspended above the handle layer. Beam widths of 12 

devices are listed in Appendix A. The average width of beam for each device is shown in 

Table 2. It is obvious to see that the width of beam is not close to designed value in some 
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way. One of the beams is demonstrated in Figure 13, which is measured in SEM for its 

width. The reason of beam width variation needed to be investigated. 

Device number Designed width Average width 

1# 1.1f..lm 0.664 

2# 1.3f..lm 1.060 

3# 1.3f..lm 0.784 

4# 1.1f..lm 0.957 

5# 1.7f..lm 1.010 

6# 1.1f..lm 0.886 

7# 1.7f..lm 0.676 

8# 1.3f..lm 1.023 

9# 2.1f..lm 0.997 

11# 1.1f..lm 1.001 

12# 2.1f..lm 1.555 

14# 1.3f..lm 0.802 

Table 2. Average width of beam 

Figure 13. The beam of 1.3 f..lm width is measured in SEM 

After checking procedures step by step, two possible procedures may lead the 

beam to be over etched: DRIE and wet etching. The protocol is the exactly same in wet 

etching process as the earlier work. Therefore the first focus here is into DRIE. Etch 
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depths of hundreds of micrometers can be achieved with almost vertical sidewalls in 

DRIE process. In the current process, Multiple ASE (Advanced Silicon Etcher) is used 

for DRIE where two different gas compositions alternate in the reactor. The etch cycle is 

as shown in Figure 14 with following steps: (1) SF6 isotropic etch; (2) C4Fg passivation; 

(3) SF6 anisoptropic etch for floor cleaning. The C4Fg creates a polymer on the surface of 

the substrate, and the second gas composition (SF6 and 02) etches the substrate. [38] 

Etch 

Deposit Polymer 

Figure 14. Illustration of how DRIE works ([39]) 

The protective polymer layer is deposited on the sidewalls as well as on the 

bottom of the etch pit; however, the anisotropy of the etch removes the polymer at the 

bottom of the etch pit faster than the polymer is removed from the sidewalls. As such, 

the sidewalls are not entirely smooth under SEM inspection. The parameters set up 

during DRlE should depend on the amount of exposed silicon due to loading effects in 

the system, with larger exposed areas etching at a much faster rate compared to smaller 
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exposed areas.[39] As shown in Figure 11, the covered beam areas with photoresist are 

very small (1.1 /-Lm width and 128 /-Lm length per each beam). In the whole wafer scale, 

the covered beam areas are quite small compared with exposed area which needed to be 

etched. This could lead to great etching of the beam than desired. As the device layer is 

removed in the desired areas, exposed areas increase sharply compared to the initial state 

while etching through wafer in current process. But the parameters used in new process 

were kept same as used in the previous method (which only used a single dice in each 

DRIE step). In another words, the old etch rate of 0.17 /-Lm/min may not match that 

needed for successful completion in the new method. The real etch rate is likely to be 

much faster than 0.17 /-Lm/min. Using the old approach, it was estimated that about 16 

minutes were required to etch through the wafer; however, it likely takes less time for a 

wafer and results in over-etching. 

To fix this issue, a new beam mask has been designed to decrease exposed areas. 

As shown in Figure I5(a), both pad and lead patterns are covered, and gap between dies 

are covered also in 3rd mask (beam mask). More space is covered between leads as 

shown in Figure I5(b). In this case, the mask looks not neat and clear but it decreased 

exposed areas as much as possible. After determine the proper etching rate for etching 

through wafer, the etch must then be characterized for the exact mask feature and depth 

to obtain desirable results. According Liu's results[ 40], the parameters of etching cycle 

time, platen power, SF6 flow rate, ramp time, and over time effect the sidewall roughness 

should all be checked and adjusted to effectively improve the roughness. New beam 

dimensions are designed for each beam with changing width, length and shape of the 

beam. New beam dimensions for each die are listed in Appendix B. The bond pad label is 
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added to distinguish each other in order to convenient operation in testing. The new mask 

and the parameters for DRIE process could be performed when funding is available. 

(a) 

o 

Figure 15 . New beam mask to decrease exposed areas 
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2.5 Operation in Vacuum - Test Setup 

Once the beams on a single die have been created, the die can be placed in a probe 

station for testing. The probe station can operate either under a vacuum or with a 

specified atmosphere; all results in this Chapter take place under vacuum. The 

experimental setup is shown in Figure 16. The three probe tips are placed in contact with 

the driving electrode (A) and the beam base electrodes (B-C); these are then wired to the 

various components as shown. The function generator applies an AC voltage to the 

driving electrode of specified value and frequency; this signal serves as the reference for 

the lock-in amplifier. The DC power supply places a voltage across a series circuit 

consisting of the beam base and a fixed resistor (14 k.Q in Figure 16; varies depending on 

experimental setup). As the beam vibrates, stresses are induced in the beam base that 

depends on the displacement of the beam; this causes a change in the electrical resistance 

in the beam base resistance due to piezoresistive effects. The voltage at point is then 

provided to the lock-in amplifier as a signal to be analyzed; depending on the setting, the 

lock-in amplifier seeks for an AC signal in this input that is at frequency 1 f or 2fwhere f 

is the frequency of the reference signal (the AC voltage at the driving electrode). 

In order to determine the nature of the signal that the lock-in amplifier measures, 

several assumptions are made. First, the fixed resistor and the beam base are both 

considered as pure resistance with values Rf and Rb, respectively, when the system is not 

in operation; this implies that any capacitance or inductance in both items can be 

neglected. As the system operates, the beam tip will experience a periodic displacement 

u(t) which in tum induces a change in resistance of the beam base (~Rb). The details of 

~Rb determined from finite element analysis for several representative geometries are 
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presented in Section 2.6; for this section, all that is developed is the lock-in amplifier 

voltage if .:'1Rb is known. 

This relationship can be determined using Ohm's law. The entire resitance R of 

the circuit across which the DC voltage is applied is Rf + Rb + .:'1Rb, which is then 

rewritten as: 

(1) 

where the term 11 is constant and the term 'V varies with beam displacement. Calling V DC 

as the DC voltage provided by the DC power supply, the voltage to the lock-in amplifier 

V L is obtained as 

(2) 

This equation can be rewritten as: 

(3) 

which for small changes in beam base resistance ('1'« 1), the equation can be linearized 

by neglecting ~ to find: 

(4) 
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The first brace represents the voltage in the beam rest state ('V = 0) while the second 

represents that change in voltage due to beam motion. Subtracting the first leads to the 

change in the V L which can be normalized by V DC to find: 

(5) 

One question about the experimental setup is the optimal choice for the fixed resistor. 

The most sensitive device is the one which maximizes the term that multiplies 'V. The 

value of ~ that accomplishes this can be obtained by differentiating this term relative to m 

and finding the value of~ that causes this derivative to become O. This becomes: 

(6) 

Since ~ is positive, this equation is only satisfied when ~ = I; therefore, the maximum 

change in voltage provided for the lock-in amplifier (~V d occurs when Rb = Rf• 

The attached computer uses a Lab View instrument to direct the function generator 

to sweep the driving electrode frequency in a series of steps between two frequencies; it 

then captures the resulting lock-in amplifier voltage signal for each frequency. The 

voltage obtained from the lock-in amplifier for one microcantilevers beam is shown in 

Figure 17; the peak of the signal occurs when cantilever beam is resonating (at 

approximately 33.32 kHz). On addition to the setup not present in earlier work is DVD 

recorder attached to the probe station optical microscope; this permits later review ofthe 

visual behavior of the system if desired; a typical image is also shown in Figure 17. 
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Figure 16. Schematic of general instrumentation setup.[36] 

[(-) BNC Cable, (- - - -) GPIB Cable] 

Figure 18 shows that beam resonation is also captured using high speed digital 

video camera (HiSpec 2). The goal of using the Hispec 2 was to capture actual beam 

motion if possible. However, the light available in the probe station is not sufficient for 

high-speed video and the HiSpec 2 could achieve a frame rate of approximately 1 kHz, 

which is well below the beam frequency . 

The dark dots in picture are dusts on the surface of probe station. The drive 

frequency swept from 31 kHz to 35 kHz. The beam resonated while the drive frequency 

reached approximately 33.32 kHz. The drive frequency is input into the lock in amplifier 

as reference signal. The lock-in amplifier set as f mode which means the signal picked up 

by lock-in amplifier has the same frequency with the drive frequency. The output signal 

caused by movement of beam, so we could say that the beam resonating frequency is 

same as the drive frequency. 
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For each device tested, typically 6-8 of the 10 total cantilever beams could be 

made to resonate; this translates to a success rate of roughly 70%, with the failure cases 

attributed to either beam damage or other unknown causes. 

0.012 

0.01 

_ 0.008 

~ 
cu 
::,0 0.006 ... 

(5 

> 0.004 

0.002 

o 
30000 31000 32000 33000 34000 35000 36000 

Frequency (kHz) 

Figure 17. Voltage from lock-in amplifier during driving electrode frequency sweep. 

6/6/2012 1:35:22 PM -3250.1 ms] 000000003 
HiSpec 2 Fastec 320x198 @ 496fps 11221Js 
V1.0 .2.0 

Figure 18. Beam resonating captured with HiSpec 

30 



2.6 Operation in Vacuum - Beam Base Signal Frequency 

Xu Yang in her dissertation justified that the output signal twice the frequency of 

the reference in the symmetric base beams studies- since the beam is symmetric about its 

long axis, it provides an identical resistance change in the base whether the beam tip 

moves right or left. During a single resonant cycle, the beam tip moves to positions 0 

(rest), +dmax, 0 (rest), -dmax, 0 (rest). At these same points, the resistance would become R 

(rest value), R + ~Rmax, R (rest value), R + ~Rmax, R (rest value). Hence, it appears as a 

signal that occurs at twice the frequency of the beam motion frequency. In order to 

demonstrate this, the ANSYS finite element model shown in Figure 5 was modified 

utilized. The beam was 128 IJ,m long, 0.9 IJ,m wide with base legs each at 20 IJ,m long and 

symmetric (i.e. the two base legs lie along a common line). The model was assumed 

undamaged (i.e. the purple material has the same piezoresistive properties as the light 

blue material) and the tip displacement was prescribed as (in IJ,m) as d = 10 sin (21tp), 

where the parameter p varies from 0 - 1 for a single beam resonant cycle. The associated 

resistance change results shown in Figure 19 indicate that the resistance frequency is 

twice that of the beam displacement frequency. Note that only part ofthe model is shown 

as the beam is roughly 3 times longer than the distance between the electrodes in the view 

below. 
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Figure 19. Beam base resistance during tip displacement cycle for symmetric case: 

(top) ANSYS element model ; (bottom) normalized resistance change 

When Patrick Fletcher began testing asymmetric base beams, it was anticipated 

that the setting of the lock-in amplifier should be changed to the " If' setting (i.e. find a 

signal that is at the same frequency as the reference signal). This is because the loads in 

the support legs in the asymmetric case form a couple to withstand the overturning 

moment caused by tip displacement; the sign of these loads changes depending on 

whether the beam has moved left or right. Therefore, the anticipated base resistance 

during a single beam resonant cycle would become R (rest value), R + .1Rmax, R (rest 

value), R - .1Rmax, R (rest value). This is at the same frequency as the driving electrode 

signal. This was verified by repeating the analysis above using an asymmetric 
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configuration as shown in Figure 20; the signal is clearly at the same frequency as the tip 

displacement. These results further demonstrate the value ofthe asymmetric 

configuration since the normalized resistance values are roughly 2 orders of magnitude 

greater than those for the symmetric base configuration. These calculations were repeated 

for a variety of base leg separation distances; the results in Figure 21 show that the signal 

changes from 2fto Ifwith relatively small base leg separation values (on the order of 

0.01 microns). 
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Figure 20. Beam base resistance during tip displacement cycle for asymmetric case: 

(top) ANSYS element model; (bottom) normalized resistance change 
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Figure 21 . Beam base resistance during tip displacement cycle for asymmetric case 

as base leg separation is increased from 0 /-lm to 0.0125 /-lm 

The above findings would indicate that a "1/' setting is appropriate if the beam 

base configuration is asymmetric. The current device testing verified that the beam 

resonating at the drive frequency. However, in his work, Patrick Fletcher noted that the 

"1/' setting often did not provide a clear a lock-in amplifier signal compared to the "2/' 

setting; therefore, he continued to use the "2/' setting in his work as Yang Xu had done 

for symmetric base beams. Also several previous devices needed "2/' setting to capture 

the signal. The difference during operations is silver epoxy glue adopted in current 

operation. [n previous testing operating, the nonconductive double sided tape was used to 

stick device in the probe station. Currently, conductive silver epoxy glue is used to 

replace the tape and then beam is resonating in expected way. And the noise signal output 

from beam base (no matter input exists) disappeared. The conductive glue connect the 

handle layer grounded which works for the electrical circus. 
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The beam base resistance changes shown above will be used in later analyses to 

simulate the voltage provided to the lock-in amplifier for analysis. For this purpose, it is 

preferable to plot the normalized base resistance change versus tip displacement. These 

are shown for the symmetric and asymmetric (2 /-lm leg separation cases in Figure 22). 

The functions describing the behavior below can be most easily expressed by breaking 

the responses into odd and even functions as: 

( ) () R ()= R(u)-R(-u) 
Rodd u = - Rodd - U ---7 odd U 2 (7) 

Reven (u) = Reven (- u) ---7 Reven (u) = R(u) +2 R( -u) 
(8) 

where R(u) is the normalized beam base resistance change which can be expressed 

as the sum ofthe odd and even functions above (with appropriate sign change for 

the -u region). The odd and even functions along with trendline curve fits are show 

in Figure 23 and Figure 24, respectively. These plots show a couple of surprising 

features. First, the asymmetric beam case still has an even behavior to it that is 

almost of identical magnitude as the symmetric beam case; it seems reasonable that 

the difference is due to the longer current path in the asymmetric case but this is just 

speculation. Similarly, the symmetric beam case has an odd component to it but it is 

very small and is nearly 4 orders of magnitude smaller than the asymmetric beam 

case. 
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Figure 22. Normalized beam base resistance versus tip displacement: (left) symmetric 

case; (right) asymmetric case with 2 ~m leg separation 
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Figure 23 . Odd portion ~dd(U) of normalized beam base resistance versus tip 

displacement: (left) symmetric case; (right) asymmetric case with 2 ~m leg separation 
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Figure 24. Even portion Reven(u) of normalized beam base resistance versus tip 

displacement: (left) symmetric case; (right) asymmetric case with 2 J.1m leg separation 

The normalized beam base resistance change (call this Rs) can now be specified 

for the symmetric beam chase as: 

(9) 

where the first parentheses is the odd function, the second parentheses is the even 

function, u is the beam tip displacement in microns, and the 104 scale factor in the y axis 

ofthe earlier plots has been used to scale the trendline coefficients appropriately. The 

asymmetric beam case for 2 J.1m leg separation (call this RA) is similarly obtained as: 

(10) 

The actual beam base resistance is then calculated by adding I to the appropriate term 

(Rs, RA) and then multiplying by the beam base resistance in the rest position. This will 

be used in Chapter 5 to predict the signal provided to the lock-in amplifier for assessing 

the beam vibration response near resonance. 
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2.7 Operation in Vacuum - Beam Base / Driving Electrode Leakage 

Another issue that arose during testing was apparent leakage between the driving 

electrode and the beam base. This should not occur since both the driving electrode and 

the beam are separated from one another by the insulating silicon oxide layer on which 

each rests. However, if the oxide layer was not functioning effectively as an insulator, 

signal leakage from the driving electrode to the beam base could occur. 

Electrical measurements were taken using a DC circuit between various locations 

on several devices. The device was mounted in a probe station and each of two probes 

was touched to the location of interest (A, B, C, D or E) as shown in Figure 25. A series 

circuit was then created consisting of a fixed resistor (RFixed Resistor) and the resistance 

between the two probe station points (RProbe Station). A DC voltage was then applied to the 

circuit and the current flow in the system was measured (using voltage drop across the 

fixed resistor R). Figure 25 shows the current flow results for one device for probe station 

pairs A-B (beam base), B-C (beam base to driving electrode), A-D (beam base to handle 

silicon layer) and C-D (driving electrode to silicon handle layer) as a function of applied 

voltage. As expected, the current across A-B is fairly linear and consistent with the 

resistance across the beam base in the silicon device layer. For the remaining cases, any 

current flow must pass through the oxide layer (separates A, B from D, E and C from D, 

E). If the oxide layer were undamaged, it would be expected that no current would flow. 

However, at larger voltages, current flow is clearly evident. Thus, there is an electrical 

pathway between the driving electrode and the beam base that should not be present; this 

is the likely source of electrical noise evident. 
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Figure 25. Device resistance measurements: (lower left) SEM image of beam with 

labels A-D; (upper left) DC circuit consisting of resistance between probe station tips 

and fixed resistor; (right) current observed in circuit (should be 0 for all except A-B if 

oxide is not damaged) 
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At some point, the voltage across the oxide layer is sufficient to cause it to break 

down. This value is typically on the order of 12 MV /cm.[ 41] For devices in this 

dissertation, the oxide layer is 2-3 microns thick which would indicate a need for 2400-

3600 V to cause spontaneous oxide breakdown. As the voltages in Figure 25 are two 

orders of magnitude lower than this, it is unlikely that the current flow is being caused by 

the applied voltage. 

One possible source for the degradation in the oxide layer is the DRIE process. In 

this approach, ions are created that bombard the surface of the wafer that etch the silicon 

material away (sulphurhexaflouride (SF6) gas for devices created at UofL). As etching 

occurs, a passivating gas protects the sidewalls ofthe silicon to prevent further lateral 

etching (octafluorocyclobutane (C4Hg) for devices created at UofL). A schematic is 

shown in Figure 26. At present, the DRIE process is stopped based on visual monitoring 

- when the silicon oxide layer is reached, a perceptible color change is evident and the 

process is stopped. However, it is possible that the ions may damage the oxide layer by 

creating an electrical pathway through it; this would perhaps occur due to the net charge 

imbalance between the silicon handle layer (bottom of silicon wafer) and the oxide layer 

exposed to ion bombardment. 

40 



Figure 26. A schematic of the DRIE process: charged parallel plates (I , 4) are used with a 

gas (2) to create ions that bombard (3) the silicon wafer (5) 

[from http://en.wikipedia.org/wikiiFile:Riediagram.gif] 

At this point, it is uncertain ifthe oxide layer is experiencing a breakdown but no 

other sources have been identified for the signals seen above. If it is caused by the DRIE 

process, an alternate approach to the DRIE setup might prevent it. One idea is to 

electrically connect the device layer so that as DRIE progresses there remains an 

electrical path from the handle layer to ground other than through the oxide layer. 

Another one is discussed in Section 2.4 to decrease the exposure area in DRIE to avoid 

the overetch. 
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2.8 Operation in Vacuum -Avoidance of Stiction 

After DRIE and rinsing, critical point drying is used to eliminate the rinse agent. 

This step avoids a problem called "stiction" in which the beam tips are attached to the 

handle layer once drying is complete. In this configuration, the beam cannot be made to 

vibrate and it is essentially useless as a sensor. 

One of the findings from the beams resonating in vacuum is that the beam often 

ends in a state of stiction once the operation is concluded. This occurrence also seemed 

more frequent as the DC voltage applied to the beam base was increased to voltages in 

the range of20 V. It is believed that stiction in this case is caused by electrostatic forces 

between the beam tip (at the same voltage as the center of the beam support base) and the 

handle layer (not grounded, uncharged) as the experiment is terminated . 

If this is the explanation, one possible remedy is to place the beam and the handle 

layer at a common voltage; this is shown in Figure 27 assuming a voltage level of 5 volts. 

This can be accomplished by electrically contacting the handle layer and placing it in the 

DC circuit with the beam base such that the voltage level of the beam tip and the handle 

layer are approximately equal at all times. This alternate configuration will be tested in 

future studies see if it results in fewer stiction cases after testing. 

Figure 27. Schematic of proposed operation with charged handle layer to reduce the 

likelihood of stiction. 
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CHAPTER 3. EFFECT OF SUUROUNDING FLUID ON BEAM 

BEHAVIOR 

The goal of the devices pursued in this study is to ultimately detect and identify 

gases based on the observed resonance changes in the beam. In order to do so, a 

correlation between fluid properties and associated beam resonance changes is required. 

In this chapter, forces from the gas on the resonating beam are considered using both 

computational fluid dynamic simulation and analytical models. Once identified, these 

forces can be used with classical vibration models to predict beam resonance behavior. 

During operation, the gas properties that best agree with the observed physical beam 

behavior could then be calculated, with the expectation that these will be beneficial to 

identify the gas. 

3.1 Overview of Vibrating Microcantilever in a Gas Environment 

The fundamental structure of the sensors described in this dissertation is a 

microcantilever beam in a state of resonance. A schematic of such a beam is shown in 

Figure 28. In the current system, the driving electrode provides periodic electrostatic 

loading to the beam that causes resonance at proper frequencies. These forces are largely 

located near the beam tip and can be expressed any number of ways; further evaluation of 

this question is considered in Section 4.2 on electrostatic force modeling. In Figure 28, 

the electrostatic loading is considered as a transverse force (F d) at the end of the beam; it 

could also include a beam tip moment (not shown). 
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gas 

Figure 28. Schematic of cantilever beam resonating in a gas: (left) 3D view of beam with 

tip load Fd; (right) section view of beam at location x along beam with local distributed 

gas load fg. 

For the vibration problem, the beam is considered to translate in the plane defined 

by the beam and the sensor base (i .e. the silicon device layer). It is also assumed that the 

electrostatic load and the load due to gas viscous and inertial effects are in the same 

plane. Utilizing the simplifications ofa beam in pure bending, the motion of the entire 

beam shown in Figure 28 can be considered by a single function u(x,l), which is the 

lateral displacement of the point at the centroid of the beam at location x at time t. The 

velocity and acceleration of a segment ofthe beam at the same location can be obtained 

as u(x,t) and ii(x,t) , respectively, where the dots indicate time differentiation ca/at). For 

the model in Figure 28 for a beam of length L, the beam end conditions can be specified 

as boundary conditions, namely: 

u(O,t) = u'(O,I) = 0 

Elu"(L,tj = 0 

Elu'"(L,t) = Fd 

Fixed at base (x = 0) no translation or rotation 

Moment at beam tip is 0 (x = L) 

Shear is at beam tip (x = L) 

where the' symbol indicates spatial differentiation (a /ax). 
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The equation of motion for a segment of the beam at location x can be derived as: 

(11 ) 

where mB is the beam mass per unit length, E is the modulus of elasticity of the beam 

material, I is the moment of inertia for the beam bending in the plane of interest, /g is the 

force from the surrounding gas (per unit length), and fd is an externally applied 

distributed load (per unit length). In the case of the beam considered here operating in 

vacuum,/g = .fd =0 and the motion reduces to one of an undamped beam in a state of 

driven vibration (by tip force Fd). 

In order to characterize beam vibration in the presence of a gas, an understanding 

of the gas loads during vibration is required; to accomplish this, a model to predict the 

fluid flow around the beam must first be undertaken. In the most general sense, this 

would require a 30 analysis since there will be fluid flow in all directions, especially at 

the beam tip and base. However, the problem can be greatly simplified by making the 

assumption that a 20 fluid flow model would suffice. This implies that: 

1) The gas motion along the beam is largely in the plane of vibration. 

2) The out-of -plane gas motion at the tip and gas motion related at the base is 

small and can be neglected. 

3) The beam forces due to out-of -plane gas motion are small and can be 

neglected. 

Whether this is a good set of assumptions can be addressed using a 30 computational 

fluid dynamics (CFO) simulation. This is beyond the scope of this dissertation. However, 
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it should be noted that other researchers [22, 42] have simulated beam response using 

models based on similar assumptions (e.g. string of vibrating spheres model). 

In the 20 modeling scenario, each segment dx ofthe beam at location x can be 

treated as experiencing a distributed gas forces /g that is equivalent to an infinitely long 

beam undergoing the same motion as the segment. This permits the gas load to be 

assessed by 20 analytical and computational fluid dynamics models. 

One important non-dimensional parameter for fluid flow problems is the 

Reynolds number, which is defined as: 

Re= V D =pV D 
v Ii (12) 

where Vis the velocity of the flow, D is a size indicating the dimension of the feature of 

interest, and v is the kinematic viscosity, which is equal to Ii / P where Ii is the absolute 

(or dynamic) viscosity and p is the fluid density. The microcantilever beams studied here 

represent low Reynolds number problems as can be demonstrated by a quick example. 

Suppose the current system is operated in air at pressure p with a beam tip motion of ±4 

microns (consistent with the resonating shape shown in Figure 3) resonating at 80 kHz. 

Hence the tip displacement UTip (in meters) and tip velocity UTip (in meters per second) is 

thus given by: 

(13) 

(14) 

46 



For air, use the standard atmosphere absolute viscosity J1 = 17.89 x 10-6 N-s/m2 and 

density p = 1.225 kg/m3 [43] at temperature T=15°C at and pressure po = 101.3 kPa. 

Assume that the value of J1 applies for all pressures and that the density p changes 

linearly with pressure. Further assume a dimensional size D equal to the beam width (1.1 

microns) and set the velocity V equal to the peak velocity (0.64n m/s). With this, the 

Reynolds number becomes: 

(15) 

The Reynolds number is thus approximately 0.15 at atmospheric pressure and reduces 

from there at lower pressures. The investigations in this dissertation will focus on 

atmospheric pressure and below for beams with dimensions and operation similar to that 

above. Hence, the fluid flow regime is for low Reynolds number with Re below 0.15. 

The Navier-Stokes[44] equations are the basic differential equations describing 

fluid flow problems. For an incompressible Newtonian fluid, the Navier-Stokes equation 

can be written as: 

av 
p(-+ V· VV) = -Vp+ pg+ J1V 2V (16) at 

Due to the nonlinearity arising from the convective acceleration terms (V'VV), there are 

no general analytical methods for solving the general Navier-Stokes equation. 

There are, however, a few practical fluid flow problems can be solved using an 

exact analytical approach. First, the flow is typically assumed to be incompressible and a 
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Newtonian fluid. For general problems involving slow fluid or creeping flow, which has 

very low Reynolds number, the approaching flow is so slow that accelerations of the fluid 

as it passes around the beam can be ignored. In this case, the nonlinear convective 

acceleration terms become small and can be neglected as: 

V·VV=O 
(17) 

The modified Novier-Stokes equation becomes: 

av n n2 p- = -v p+ pg+ JLv V at (18) 

This equation can be solved analytically because it is now linear in velocity.[44] Under 

these low Reynolds number conditions in current study, several analytical models express 

the gas force on the beam in terms of the beam velocity and acceleration as: 

(19) 

where Cg and mg are coefficients provided by the associated model. These coefficients are 

independent of velocity and acceleration; therefore, once indentified they can be used to 

assess drag force under a variety of motions. These coefficients could be similarly 

derived through comparing Stokes oscillating cylinder model with results from a 

computational fluid dynamics (CFO) simulation; this will be one focus of this chapter, in 

which geometries that are not identical to those of the analytical model considered by 

Stokes. This form for the gas forces has particular benefit for vibrations modeling as it 

allows the equations to be rearranged as: 
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(20) 

This equation describe the cantilever beam in a gas environment as having an effective 

mass per unit length (mB + mg) with a damping term (cg). It is from this equation that 

developments of beam resonance response will be developed in Chapter 5. 

3.2 CFX - Overview and Validation Using Taneda Results 

ANSYS CFX is a commercial computational fluid dynamics (CFO) program, 

used to simulate fluid flow in a variety of applications. The author and her advisor have a 

great deal of past experience with ANSYS products and this lead to the choice for CFX 

as the modeling tool for the oscillating beam problem. The oscillating beam problem 

requires a complicated, time-varying solution. Before starting this more ambitious study, 

this dissertation begins with the simulation of a simpler, steady-state CFO problem that 

can be compared to experimentally established behavior. Specifically, the paper 

"Visualization of separating Stokes flows" by Sadatoshi Taneda [45] is used as 

comparison; this work considers low Reynolds number flow (Re = 0.010) around several 

geometries and configurations (spheres, cylinders, walls, etc.). The section below will 

demonstrate very similar findings between the experimental results and the ANSYS CFX 

results, providing confidence that the software and modeling conditions are being used 

appropriately. 

3.2.1 Overview of Taneda Experiments 

Two scenarios from the set of experiments presented in the Taneda paper were 

selected for modeling here. The simple schematic diagram ofthe first experiments is 

shown in Figure 29. Taneda used two circular cylinders with equal diameters placed 
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streamwise in a uniform flow. The cylinders move horizontally at the velocity of 0.2 

cm/s. The gap between the two cylinders was varied to observe the distance required to 

achieve flow separation. The second experiment is shown in Figure 30(a). A single 

cylinder is maintained at a fixed distance above a plate. The entire plate-cylinder unit 

moves at a constant velocity. The cylinder is sufficiently far from the plate edge that a 

fully-developed flow is established as shown in Figure 30(b). As in the first experiment, 

the gap between the cylinder and the wall was varied to observe the distance required to 

achieve flow separation. 

In both experiments, glycerin was used as the working fluid and the tank 

dimensions were 100 cm in length, 20 cm in width and 20 cm in depth. The kinematic 

viscosity was about 20 cm2/s, which corresponded to a Reynolds number of the order 

of10-2
• Reflecting particles were placed in the fluid and illuminated using lasers such 

that streamlines in the illuminated plane became visible. Results from these experiments 

will be compared to CFX modeling results below. 

~l 'II .. -- -
c.YWJO£ 

i - --I i I 
/oo cm 

Figure 29: Schematic diagram of the experiment in which two cylinders move 

to the left at constant velocity: (top) view looking down the cylinder axes; 

(bottom) side view with the illuminated layer indicated[ 45] 

50 



GLYCER CYU:\()ffi 
<:=J . FLAT PLATE 

3Oem -

-: 

~I 1 __ 
1 

IDDem 

Figure 30. Schematic diagram of the experiment in which a cylinder-wall pair move 

to the left at a constant velocity: (left top) view looking down the cylinder axis; 

(left bottom) side view with the illuminated layer indicated; particles that were initially 

in a straight vertical line as the cylinder-plate reaches them to indicate flow regime[45] 

3.2.2 Setup in CFX - Two Cylinder Experiment 

The geometry for the two cylinder experiment consists of a rectangular glycerin 

tank in which the middle of the tank is interrupted by two cylinders, and is shown as 

Figure 31. The front and back faces of the tank (normal to the cylinder axes) are defined 

as symmetry boundaries; this is equivalent to stating that there are no fluid flows in the 

cylinder axes direction and makes the 3D problem into a 2D problem for faster solution. 

This method can be used when geometry, mesh and fluid flows are invariant in the 
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direction normal to the symmetry surface, as can be reasonably argued is the case for 

these experiments. It should be noted that CFX does not contain options to directly 

simulate 2D problems; a 3D problem with suitable boundary conditions must be used. 

Outlet 

~1" Q.3QO 1m) 

0015 om 

Figure 31. The geometry consists of a 2D tank and two cylinders. 

The height H of channel equals the width of the tank in Figure 29. The length of 

channel is 100 cm, and the diameter D of cylinders is I cm. So the channel length is 

100D with the cylinders placed in the center; this simulates the inlet and outlet being 

infinitely far from the cylindrical disturbance. The two cylinders in the fluid are fixed and 

defined as smooth with no slip walls. In the actual experiment, the fluid is quiescent and 

the cylinders move at a steady speed of 0.2 cm/s. According to Panton, an identical 

solution to the problem is obtained if solved in terms of a coordinate system attached to 

the cylinder ("Section 10.7 Invariance ofIncompressible Flow Equations Under 

Unsteady Motion").[46] In this approach, the cylinder has at rest in a fluid with a 

constant far field velocity of 0.2 cm/s. Hence, the fluid profile in both inlet and outlet of 

channel are constant at this speed, the bottom and top ofthe channel are defined as free 

52 



slip walls which simulates constant velocity infinitely far above and below the cylindrical 

disturbance. The parameters for the fluid are shown in Table 3; the Reynolds number 

based on the cylinder diameter is 0.0 I m. 

Molar mass 92.0938 kg/lanol 

Density 1261.3 kg/mJ 

Specific heat capacity 2430 J/kgoK 

Dynamic viscosity 2.522 Pa's 

Table 3. Parameters for fluid used in experiment.3 .2.3 Setup in CFX - Cylinder with wall 

experiment 

In order to simulate the experiment with a cylinder above a fixed wall, fully 

developed flow is chosen for defining the velocity profile in CFX. As shown in Figure 32 

, directly after a pipe entrance, velocity profiles are initially almost uniform. However, 

viscous effects cause slowing in the velocities, beginning near the walls and then 

extending deeper into the flow. Finally, a fully developed laminar flow is established and 

will remain so thereafter; this represents a flow regime with a velocity profile that does 

not vary as it moves down the pipe. Using this in CFX matches the velocity profile 

shown in the time line image of Figure 30(b). 

Figure 32. Boundary-layer growth at pipe entrance.[44] 
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In the model, a circular cylinder is placed near the bottom of channel. The cylinder, 

bottom surface and top surface, shown in Figure 33, are all defined as smooth wall with 

no slip. Without the cylinder present, the simulation would correspond to 20 flow in a 

slot of height H that is infinitely deep in the out-of-plane direction. The fully developed 

velocity profiles in inlet and outlet that correspond to this condition are defined with 

equation: 

(21) 

where the top and bottom ofthe channel are at y values of ~H and -~H, respectively. 

o 0110 0.100.., - -0011 om 

Figure 33. The geometry consists of a 20 tank and one cylinder near bottom. 

For a 20 planar geometry, a thickness of approximately 1ilOOth the length of the 

largest dimension in the model generally provides a nice mesh with good quality cells. [n 

our case, the thickness oftank should choose 1 cm. Since the model is a 2D 
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representation, a single cell thickness is used in the 3rd dimension . Only the 20 face is 

meshed . The mesh result for two cylinder experiment is shown in Figure 34. 

Figure 34. Mesh result of the model. 

3.2.3 Results - Two Cylinder Experiment 

Modeling results for fluid flows through the two fixed cylinders are listed below 

with gap E ranges from 1.50, 10, 0.30 and 00 where 0 is the diameter ofthe cylinder (I 

cm). Compared with the pictures captured by Taneda (shown in black and white on the 

left panel)[ 45], the current modeling arrives at excellent agreement. It is observed that, as 

in the experiment, the flow separation vortex clearly occurs when EID is less than 0.5. 
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(a) 

(b) 

(c) 

(d) 

Figure 35 . Streamline patterns around two equal circular cylinders: 

(a) £/0 = 1.5; (b) £/0 = 1.0; (c) £ID = 0.5; (d) £!D = 0.0 
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Another point of validation of the CFX model can be obtained from analytical 

models based on low Reynolds number flow around a cylinder. Stokes developed a 

model to determine the force acting on a sphere but was unable to extend this approach to 

a cylinder. In that case, Stokes noted [47] (as quoted by Lamb[48]): 

The pressure ofthe cylinder on the fluid continually tends to increase the 

quantity of fluid which it carries with it, while the friction of the fluid at a 

distance from the cylinder continually tends to diminish it. In the case of a 

sphere, these two causes eventually counteract each other, and the motion 

becomes uniform. But in the case of a cylinder, the increase in the quantity 

of fluid carried continually gains on the decrease due to the friction of the 

surrounding fluid, and the quantity carried increases indefinitely as the 

cylinder moves on. 

Oseen proposed changes to the Stokes method for the cylinder that successfully resolve 

this problem; the drag force per unit length of the cylinder can then be calculated using 

following equation: 

F = 41rf.1U 
X - r -In (X ka ) (22) 

where /-l is dynamic viscosity, U is velocity of flow, y is Euler's constant (0.577216 ... ), 

k = U/2v, v is the kinematic viscosity. and a is the radius of the cylinder.[48] 

For the current studied problem, the drag force using this equation becomes 0.025 N/m. 

The force on each cylinder in the CFX model can be calculated as well; the results as a 

function of the gap between each cylinder is shown in Figure 36. The figure clearly 

shows that the drag forces are similar for both the front and rear cylinders, and that they 
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approach a constant value as the gap between two cylinders increases (approximately 

0.025 N/m). This is reasonable as two cylinders far apart should individually approach 

the behavior of individual cylinders (i.e. the force value will not change with further 

separation). 

It was anticipated that this force would be in good agreement with the Oseen 

model; however, the result obtained but the CFX model leads to force values that are 

roughly 4 times less. One possible explanation for this difference is in the finite element 

model boundary conditions. The model matches that of the experiment, such that the total 

width of the tank is 20D. However, the velocity profile shown in Figure 37 indicates that 

that the boundary is not acting as though it were infinitely far from the cylinders; in that 

case, the velocity vectors would remain in a straight line near the boundary and they 

clearly do not. Another possibility is that further mesh refinement is needed. These 

questions will be investigated using a larger domain with various mesh sizes/densities 

during the dissertation studies. 
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Figure 36. Drag force on each cylinders from CFX simulation compared with the Oseen 

equation 
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Figure 37. Velocity vectors for two cylinder model (dO = 5) 
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3.2.4 Results - Cylinder Near Wall Experiment 

Modeling results for fluid flows past a fixed cylinder near the bottom of the fixed 

plate are listed below with gap E ranges from 0.60, 0.250, 0.10 and 00, where ° is the 

cylinder diameter (1 cm). The results look very similar to those obtained by the 

experimental study. 
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Figure 38. Stream patterns around a circular cylinder placed near a flat plate: 

(a) E/D = 1.5; (b) E/D = 1.0; (c) EID = 0.5; (d) ElD = 0.0 
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3.2.5 Summary - Validation ofCFX Using Taneda Experiments 

Based on the findings above for two different experiments, it is evident that the 

approach used with CFX to simulate them leads to comparable results. Differences in 

terms of the force on the cylinder and the force predicted by the analytical model of 

Oseen need to be investigated further. However, it is reasonable to could that CFX can be 

used as a tool to simulate the phenomena of interest in this proposal, namely the force 

acting on an oscillating cross-section representing a cantilever beam resonating in a fluid. 

3.3 Studies of 2D Beam Resonating in the Fluid 

The goal of introducing CFD modeling using ANSYS CFX into this project is to 

evaluate the effect that cross-section shape and the presence of the "flow" handle layer 

(i.e.) have upon the forces acting on the beam due to a surrounding gas. Past work by Xu 

[42] has assumed that the beam can be approximated by an oscillating string of spheres; 

this approach is identical to that used by 810m et al [22,42] based on the oscillating 

sphere model in an infinite fluid developed by stokes [49]. In terms of shape, the 

rectangular cross-section looks closer to a cylinder than a string of spheres. There is also 

an analytical solution to developed by stokes [49]; it is much more difficult to use 

compared to the sphere version. 

For many cases, the sphere model also can provide a good approximate to the 

cylinder model as will be demonstrated later. In reality, the cross-section is rectangular in 

this device and the flow is bounded on the bottom by a flat plane (silicon handle layer) 

extending in all directions. The use of CFD provides an opportunity to assess the effect of 

cross-section and the handle layer boundary in terms of fluid forces acting on the beam. 
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CFD modeling combines the multiple software which includes SolidWorks for 

input geometry, lCEM for input mesh file, and ANSYS CFX to define and solve. The 

case of a cylinder without floor (no presence of the handle layer) is studied first and 

compared with Stokes' model of an infinitely long cylinder resonating in a fluid. Then 

three more cases are considered: cylinder with floor; and rectangle without floor; and 

rectangle with floor. Each of these is compared to the Stokes' model and to each other to 

evaluate the effect of cross-section shape and the presence of the handle layer. 

3.3.1 Creating Input Geometry 

This creating ofthe input geometry is done in SolidWorks 2011, and is then used 

for building the input geometry file for the mesh tool. As an initial study, a model similar 

to the one studied by Stokes was considered. Since the real beam in this study has a 

rectanglular cross section with dimensions of 1.1 Ilm x 2.0 Ilm, the cylinder cases 

adopted a dimension of diameter of 1.673 Ilm, which has an equivalent cross section area 

with actual beam cross-section. The geometry for the case of a resonating cylinder 

without floor is shown in Figure 39; in this case a square tank filled with air is interrupted 

by a cylinder in its center. The dimension of square tank is tested and adjusted to ensure 

that it is big enough so that no flow effect occurs due to side-walls. This test will be 

discussed in later section. Based on the geometry of cylinder without floor, the geometry 

of other three cases could be achieved by changing the shape to rectangular and/or the 

gap between cylinder/rectangle and the bottom of the tank. The geometry is then saved as 

".par" file to use for the next step. 
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Figure 39. Geometry of cylinder resonating in a fluid 

3.3.2 Creating Input Mesh 

In CFD simulation, mesh size/shape plays a very important role; the quality of the 

mesh can affect results of the simulation dramatically. ANSYS ICEM CFD is a popular 

proprietary software package used for CAD and mesh generation. It can create structured, 

unstructured, multi-block, and hybrid grids with different cell geometries. ICEM CFD is 

utilized as mesh tool for CFD modeling in this dissertation. 

The ".par" geometry file created in SolidWorks 2011 is imported into ICEM CFD 

by the Workbench Readers menu tool. ICEM creates a structured grid by first saving the 

geometry as a ".tin" file. For the current case, the geometry is very simple so the 

geometry could also be created in ICEM; however, it is preferable to use Solid works 

because it is more convenient to change dimensions of geometry in input file. Different 

parts of the grid are saved under a "part name". Interface (representing beam's cross 

section), top oftank, bottom of tank and inlet and outlet of tank are defined. This step is 
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necessary and important because it related the definition of boundary in conditions and 

loading CFX. 

Once the geometry is created, the next step is to create a block by using the 

"blocking" tab. A 20 plane block, which is shown below in Figure 40, is then created 

around the entire geometry and then split up into sections. In Figure 40, the block is 

combined with 4 squares with dimensions ofl0, 20, 100, 400, and xD (x is the 

dimension of the tank we choose, 0 is diameter of cylinder). In each section, the mesh is 

created by specifying the distribution of points along the edges ofthe blocks. Therefore, 

more blocks means more flexibility changing the distribution of element along the edges. 

The edges and vertices of the blocks must be associated with the geometry curves and 

points. The section which is more close to the circle gets the more fine mesh for the 

interface area is what is of greatest interested. The square with the dimension of 1 0 will 

related with the circle which help to make the meshed curve. 

Figure 40. 20 plane block for mesh. 
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Once the blocks have been created and all the required points and curves 

associated, the number of points and the distribution can be set along each edge. In the 

case studied here, mesh density in the area close to interface should be high to best 

approximate the gas load, whereas to save time, the sections further should have lower 

mesh density. There are various types of distribution that can be used. The default set 

"BigGeometric" is chosen for distribution type. The element size for the different area is 

listed in the Table 4 for the mesh shown in the Figure 41. We still need to take the test to 

see if the mesh is fine enough for the calculation which will discuss in the later section. 

The premesh tool can then be used to view the meshing, and there is also a quality check 

tool, where we can check if there are any negative, which would suggest that the grid 

crosses into solid surfaces and will be ejected during CFX solving. 

Figure 41. 2D plane block with mesh. 
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Parts V4 of circle line 1 line 2 line 3 

Element size(nm) 66.8 145 2170 9440 

Node number 20 100 20 10 

Table 4. The mesh parameters for blocks. 

The mesh then was transferred to unstructured mesh and loaded from block, and 

the 20 mesh file is saved as a 3D "fluent 6" file by extruding the model a certain distance 

in the z direction. By this approach, one element is defined in the z direction 

automatically. The "fluent 6" file could then be imported into CFX and treated similarly 

as other mesh files. The reason the file is saved as "fluent 6" instead of"CFX 5" is that 

the "fluent 6" type will keep all the labels as defined previously use for as the boundary 

definition in CFX. The "CFX 5" format will extrude the 20 mesh in the z direction 

manually; after it is imported into CFX, the block is treated as one part and could not be 

used to define the boundaries. 

3.3.3 Set Up in CFX-Pre 

The model simulated a cylinder resonating in the air within a container (rectangle 

box) with a frequency of 40 KHz; This value is chosen as it is the reported frequency 

range for some of the devices tested by Yang [42]. CFX is used to define and specify the 

simulation settings and physical parameters required to describe the flow problem. The 

mesh file (* .mesh) created in ICEM CFO with "fluent 6" format is imported into CFX. 

This input file could not be opened directly. A new CFX-Pre file needs to be created first 

and imported using the "File->import->mesh". 
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Setting up a simulation typically requires defining: materials, domain, simulation 

type, boundary conditions, and solver control. Air at 25 DC is chosen from the "material 

group" list. The material properties are listed in Figure 42. The most important properties 

to include are density (under Equation of State) and dynamic viscosity (under Transport 

Properties). In the Outline workspace, "Simulation Type" should be transient simulation 

for the cylinder resonating in air with the force acting on the cylinder changes with time. 

For transient simulations, Time Duration and the Timesteps of the simulation have to be 

specified. Time Duration is a user-specified limit on the length of real time the simulation 

is to run. Timesteps sets the frequency at which the solver solves the governing 

equations, (e.g. every 1 J..ls). 

CFX-Pre generates a default domain automatically. The volume named Fluid in 

ICEM is chosen in Location and "Fluid Domain" is selected for Domain Type. Select air 

at 25 DC, non buoyancy, stationary domain motion, and regions of motion specified for 

mesh deformation from list. For heat transfer, select isothermal type with 25 DC. Because 

the Reynolds number is very small in this case (about 0.15 the behavior of the flow is 

treated as laminar. Select "None (Laminar)" option for turbulence function. The 

initialization tab defines initial conditions for the simulation, with "Automatic with 

values" setting the initial velocity and static pressure equal to O. 
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Figure 42. Property parameters set-up for fluid 
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To create a boundary condition, use the "Create a boundary condition" command 

and enter a name for the boundary. Boundary conditions are created as interface (beam), 

inlet, outlet, top wall, bottom wall and symmetry planes. 

According to the CFX Help, when the wall velocity is made relative to the 

boundary frame, only the specified wall velocity is assumed by the flow. When the wall 

velocity is made relative to the mesh motion, the velocity due to mesh motion is super-

imposed on the specified wall velocity. In our case, a zero velocity, no slip condition 

would be applied to all walls. The wall velocity would typically be made relative to the 
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mesh motion for the moving cylinder boundary, and relative to the boundary frame for 

the tank side-walls. This would ensure that the fluid is properly affected by the motion of 

the cylinder, and that it is not dragged by the motion of the mesh on the tank side-walls. 
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Figure 43. Set-up for interface definition 

The set-up for interface is shown in Figure 43. Interface is defined as No Slip 

Wall with velocity related with mesh motion. The wall velocity for different direction all 

sets as O. Mesh motion is selected specified displacement with X component equals Sx, Y 

and Z components set as O. Sx is defined in CCL as Sx = So (cos (oot)-I ). The reason 

define the displacement like that is to make the initial velocity equal to O. 

Figure 44 shows the set-up for tank side-walls. The no slip wall is defined for all 

walls with velocity relative to boundary frame. The mesh motion for inlet and outlet is 
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defined as "stationary", otherwise it is defined as "unspecified" for bottom and top. This 

will allow for the nodes on the bottom and top surface to move ifneeded. 

Front and back of tank is defined as symmetry plane which makes the 3D problem 

behave as a 2D problem to make the computation much faster. 
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Figure 44 Set-up for tank side-walls definition. (a) Top and bottom; (b) Inlet and outlet. 

In solver control, because this case is not very complicated to solve, the default 

values suffice. In convergence criteria, the most important measure of convergence is the 

residual. The residual is a measure ofthe local imbalance of each equation being solved, 
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so ideally the residual should decrease as the solution proceeds approaching the final 

solution. CFX-Solver will terminate each solution step run when the equation residuals 

calculated are below the residual target value. The Root Mean Square (RMS) type of 

residual is used, with the default RMS target of 0.0001 used. For transient simulations, 

the Solver solves the governing equations at regular time intervals. To achieve 

convergence at each time step, a number of loop iterations have to be performed. Once 

convergence has been achieved at one time step, or the maximum number of loops is 

reached, the solver proceeds to the next time step, and repeats the process. 

Output control panel is used to manage the way files are written by the solver. 

The transient results are written at specified time intervals in addition to the full results 

file. When the simulation set-up is complete, a definition file needs to be written which 

defines all the simulation using the "Write Solver Input File" icon from the toolbar. 

3.3.4 Patch Test 

The patch test in the finite element method is a simple indicator of the quality of a 

finite element model. The patch test uses a partial differential equation on a domain 

consisting from several elements set up so that the exact solution is known. Typically in 

mechanics, this prescribes the exact solution as displacements that vary as linear function 

in space (called a constant strain solution). The elements pass the patch test if the finite 

element solution is the same as the exact solution. It was long conjectured that passing 

that patch test is sufficient for the convergence ofthe finite element; that is, to ensure that 

the solutions from the finite element method converge to the exact solution of the partial 

differential equation as the finite element mesh is refined. However, this is not the case, 

and the patch test is neither sufficient nor necessary for convergence.[50] 
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The same idea as the patch test is used here to determine the proper set-up in 

modeling. This section will test and discuss several possible factors (dimension of the 

tank boundaries, element size along the cylinder, refine level, the transient timesteps and 

the maximum mesh movement So) that might playa role in the simulation. The force 

acting in the cylinder surface in x direction is used as a validity check to see whether the 

set-up is enough for convergence. This force is calculated by the CFX function equation 

"force_x@interface". To get the force per unit length, it needs to be divided by the model 

depth in the z direction. 

3.3.4.1 Dimension of the boundaries 

The outer box surface is defined as no slip wall. The dimension should be in a 

proper scale because (a) if it is too small, the simulation results will be dramatically 

affected by the wall, (b) but if it is too big, it will lead to longer simulation time with little 

benefit or improvement in solution. The first goal is to identify a proper dimension. For 

this goal, different length on the edges of the rectangle box was tried as 500, 1000, 1500 

and 2000 where 0 is the diameter ofthe cylinder. 

In ICEM CFO, a block is used to divide the model into 3 regions. The first one is 

the critical area closest to the cylinder (inside the dark green square of Figure 2) and is 

defined as a square with edge of 100. The second one is next to the first one and defined 

as a square with edge of 400. The rest outside of the second region is the third one and it 

is the size that is varied. The mesh for the first region and the second region stays exactly 

the same no matter what the outer box size is. The third region is meshed by the same 

element length in all cases. Two sample blocks are shown in Figure 45 with dimensions 
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of 1000 and 1500. The nodes chosen along the dialog (halt) of the square and element 

size chosen for different region are listed in Table 5. 

(a) (b) 

Figure 45. Block of mesh: (a) 1000; (b) 1500 

Node count per edge Element Length(nm) 

Part 1 100 145 

Part 2 20 2170 

Part 3 varies 9440 

Table 5. Nodes number and element length along the dialog of square 

The maximum mesh movement So ofO.21.lm, "timesteps" of I j..ls, and "total 

time" of 10 cycles are defined for resonating in CFX-Pre. The results of modeling set-up 

discussed above are displayed in Figure 46. This shows force acting at the interface in the 

x direction convergent to the value about 4.4 j..lN/m when the dimension of tank boundary 

is 1000 or greater. It is clear that 1000 is big enough to avoid the wall effect. A small 
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size of 500 was also tested, but time step of I Ils is too big for 500 and results are not 

reliable and are listed in Figure 46. 
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Figure 46. Maximum drag force of each cycle in cylinder surface according to different 

boundary dimension 

3.3.4.2 Element number along the cylinder 

The edge of the cylinder is divided into 4 parts by the block and each one parallels 

to the related square edges of block (as shown in Figure 41). Each edge could be meshed 

using different element number. Figure 47 shows 40 elements and 60 elements on each 

edge. Element counts of 20, 40, 60, 80, and 100 on each quarter of the interface were 

tested to check ifthis could be a factor that affects the simulation results. The dimension 

of tank boundaries is set as 1000, which was already determined in the previous section. 

The other were repeated same for this test. Calculation results show that when the edge is 

divided in more than 60 elements, the "timesteps" of 1 Ils is not small enough to get the 

expected results. According to this phenomenon, "timesteps" was changed to a smaller 
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one and after several different values were tried, "timesteps" of 0.1 J.ls is chosen to do the 

comparison. 

(a) (b) 

Figure 47. Mesh block of different element number along edge. (a) 40; (b) 60. 

As shown in Figure 48, the drag force in the cylinder becomes smaller when 

increasing the number of elements. However this change is relatively small. Table 6 

listed mesh element number and related calculation time for the different set-up. It is 

obvious that the more elements divide the edge, the more elements get produced in the 

model. Thus time for calculation increase significantly when more elements get involved 

in the model. What need to be addressed is to find the balance of quality and efficiency. 

For timestep equals 1e-7s, the 20 elements or 40 along the rectangle edge are a good set­

up to achieve some fine results. 
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Figure 48. Maximum drag force for each cycle in the cylinder surface according to the 

different element number along the boundary edge. 

Timestep Number of Number of 
Number of division Refine level Calculation time (s) 

(JIs) cycles elements 

20 elements 19304 5.13E+03 

0.10 6 40 elements 39624 8.99E+03 

lOOn 60 elements 59944 1.06E+04 

6 20 elements level 2 77216 5.69E+03 
1.00 

10 20 elements level 1 19304 3.32E+03 

150n 1.00 10 20 elements 20368 3.48E+03 

200n 1.00 10 20 elements 21584 2.46E+03 

Table 6. Summary of mesh element number and calculation time 

3.3.4.3 Refine level 

rn rCEM CFD, there are refine functions available to refine the mesh. The refme 

level I and 2 are tried for comparison which is shown in Figure 49. Table 6 demonstrated 

the mesh elements and calculation time both get increased (almost doubled), while the 
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simulation results in Figure 50 demonstrated that the result is convergent using level 1; 

therefore it is assumed that refine level 1 is good enough to be used for calculation. 

(a) (b) 

Figure 49. Mesh block of different refine level. (a) level 1; (b) level 2 
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Figure 50. Maximum drag force for each cycle in cylinder surface according to different 

refine levels 

78 



3.3.4.4 Time step 

Time dependent behavior for transient simulations in ANSYS CFX is specified 

through "Time Duration" and "Timesteps" . The "Timesteps" option provides a way for 

ANSYS CFX to track the progress of real time during the simulation. During simulation, 

not all "Timesteps" values were proper for calculation. For example, "timestep=O.1 J.ls", 

and "timestep=0.25 J.ls" set-ups for boundary dimension of 50D with 20 elements will 

lead to very different results of drag force as shown in Figure 51. 
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Figure 51 . Drag force in the cylinder surface according to the different timestep set-up. 
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According the choice in boundary dimension, 1000 of20 elements are tried for 

different "Timesteps" set-up. The simulation results are shown in Figure 52 which shows 

that the "Timesteps" of 0.25 !ls is only slightly different from others. "Timesteps" of 0.1 

!ls and 0.1 !ls is pretty close. Considering significant increase of calculation time, 

"Timesteps" of 1 !ls is chosen as the best choice to provide both an accurate solution in 

the least time. 
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Figure 52. Maximum Drag force for each cycle in the cylinder surface according to the 

different timesteps in calculation. 

The drag force acting at the cylinder surface in x direction for set up of 

"Timesteps" =" 10 e-7" is shown in Figure 53 (a) which changes with time. The shape of 

drag force is not exactly sinusoidal because the time step is too big to capture the small 

change in detail. After time step switched to 1 e-7, the result changed dramatically and the 

drag force changed sinusoidal with time as shown in Figure 53 (b). If the accurate change 

detail of drag force is required, the "timestep" should be le-7 (or less); this certainly will 

take more time to calculate than a large time step size. 
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Figure 53. Drag force in x direction per unit length versus with time for So =0.2 /-tm. 

(a) time step= l OE-7; (b) time step= l E-7. 

3.3.4.5 Maximum mesh cylinder movement 

Maximum mesh cylinder movement, So, was also checked to see how it affects 

the simulation. According to Stokes' s model, the force should scale linearly with velocity 

and accelerate (Equation (6)). So of2 /-tm, 0.2 /-tm and 0.02 /-tm were chosen for trial. The 

results show that the peak drag force changes linearly with So; this shows that So equal to 

0.2 /-tm is a reasonable value for solution. 

81 



s.OOE-Os 
.t: • s: 4.s0E-Os ::I y = 2E-05x - 4E-08 /' ... 

4.00E-Os QI 

/' Q. 

5 _ 3.50E-Os 

/ .- E ti '- 3.00E-Os 
/' QI Z 

:ij ;; 2.50E-Os 
/ J • Seriesl I .~ ~ 2.00E-Os /' I --Linear (Seriesl) QI 1.s0E-Os QI-

/' u ... 
1.00E-Os 0 

/' .... 
tIC s.00E-06 III V ... 
0 O.OOE+OO 

0 0.5 1 1.5 2 2.5 

Initial resonating distance (I-Im) 

Figure 54. Drag force in the cylinder surface according to the different initial resonating 

distance. 

To summarize the findings in this simulation study, the mesh and calculation set-

up with a boundary dimension of 100D, 20 elements along the edge of the boundary, 

refine level 1, and "Timesteps" of 1 ~s, and So of 0.2 ~m are proper for simulating the 

cylinder resonating in the air when surrounded by a square container. The maximum 

force acting at interface in x direction per unit length converges to the value of 4.58 

~N/m . The force acting at interface in x direction per unit length changes with time, and 

shows in Figure 53 (a). For boundary dimension of 150D, 20 elements along the edge of 

the boundary, refine level I , "Timestep" of 10e-7 and So of 0.2, the drag maximum drag 

force per unit length is 4.61 ~N/m. We will compare these values to the Stokes theory. 

3.4 Comparison with Stokes Model 

In previous research, Yang cited the model by Blom et al for the damping analysis 

of the microcantilever beams. As noted earlier, the assumption was made that the beam 

could be considered as a string of spheres. If the spheres are assumed to vibrate 
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independently of each other, each with infinite separation from its neighbors, the 

resulting drag force per unit length is the drag force on a single sphere divided by the 

distance between each sphere. 

This approach is useful as there is an existing analytical model derived by Stokes 

and presented in the form below by Lamb. In this case, the sphere is assumed to be a ball 

that is oscillating on a pendulum in an infinite mass of fluid. The pendulum motion is 

assumed to be small, which causes the motion be oscillatory in a single direction; any 

effects of the pendulum cable are neglected, the fluid is assumed to be incompressible, 

and the flow is such that the Reynolds number is low. The force on the sphere is periodic 

and has the form: 

1 9 
k=-+--

2 4/lR 

F'Phere = -m, k ~ - m,k'mU 

k' = _9_ (1 + _1_) . m, = '!... "pR 3 

4/lR /lR' 3 
/l= 1m 

~2;; 
(23) 

where U and dU/dt are the velocity and acceleration ofthe sphere, respectively, p and v 

are the density and dynamic viscosity of the fluid, respectively, R is the radius of the 

sphere, ms is the mass ofthe fluid displaced by the sphere, ro is the frequency of 

oscillation. The first term is used to provide an additive mass for the actual sphere, 

representing the effective mass of fluid that is accelerated with the sphere during 

oscillation. The second term provides a damping force due to fluid viscous forces acting 

on the sphere. Blom et al ultimately neglected the inertia term, based on the argument 

that the effective mass of the gas is much smaller than the mass of the vibrating beam. 

This model was shown to match experimental beam resonance data by both Blom et al 
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and Xu when a suitable value ofR is chosen (a fitting parameter). Yang also reported that 

a single value of R once shosen predicted experimental findings for a number of gases 

and pressure.[42] 

Stokes also pursued a similar model for an infinitely long cylinder on a pendulum; 

this becomes a 20 model which is solved by an infinite series approach. Lamb notes that 

this approach is analogous to using complex polar coordinates with Bessel functions 

having argument (1 - i) pR.[48] The solution for the force per unit length acting on the 

cylinder takes a similar form as above: 

dU , 
F;Yilnder = -me k- - me k OJU 

dt 

where R is the cylinder radius, p is the fluid density, and me is the mass of the gas 

(24) 

displaced by the cylinder (per unit length). Unlike the sphere case, however, the terms of 

k and k' cannot be expressed by a compact algebraic form in terms of PRo Instead, these 

take the form of 8 complex infinite series. These are combined in a particular ratio, with 

some in the numerator and some in the denominator; the result is then evaluated,with k 

and k' becoming the real and imaginary parts, respectively. These are tabulated by 

Stokes; the result is shown in Table 7 in terms of the parameter m = Y2 R (ro/V)1/2. 
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m k k' 
(J Z Z 

-119.70 48.63 
.29.166 16.73 
.36.166 9.258 

4.771 6.185 
.53.968 .... 567 
.63.445 3.589 
- 3.082 2.936 
.~2.812 2.-l77 
.g~.604 2.137 

I.(J 2.439 1.876 
1.1 2.306 1.678 
1.2 2.194 1.503 
1.3 2.102 1.365 
lA 2.021 1.250 
1.5 1.951 1.163 
U 1.891 1.069 
1. 1.838 .9965 
1.8 1.791 .9332 
1.9 1.749 .8767 
2.0 1.711 .8268 

m1k 

0 
.1970 
.3666 
5549 
.7633 
.9920 

1.240 
1.510 
1.800 
2.110 
2.439 
2.790 
3.160 
3552 
3.961 
·t389 
4.841 
5.312 
5.8(» 
6.314 
6.845 

.. 

.. 

m1k' m 
o 2.1 
4863 2.2 
6691 '.3 
8832 2.4 
9896 25 
1.142 2.6 
1.292 '.7 
1.439 2.8 
1585 2.9 
1.731 3.0 
1.876 3.1 
2.021 3.2 
2.164 3.3 
2.307 3.4 
2A50 35 
2595 3.6 
2.739 3.7 
2.880 3.8 
3.024 3.9 
3.165 .0 
3.307 z . 

k 
1.677 
1.646 
1.618 
1592 
1.568 
1.546 
1526 
1.507 
lA89 
lA73 
1.-l57 
1.4-13 
U30 
lA17 
lA05 
1.394 
1.383 
1.373 
1.363 
1.354 

1 

k' m1k 

.7822 7.395 

.7421 7.966 

.7059 8557 

.6730 9.168 

.6430 9.799 

.6154 lOA5 
5902 11.12 
5669 11.81 
5453 12.52 
.5253 13.25 
.5068 1·'-01 
A895 14.78 
.4732 1557 
A581 16.38 
A·B9 17.21 
A305 18.06 
A179 18.93 
.4060 19.82 
.3948 20.73 
.3841 21.67 

0 z 

Table 7. Numerical calculation ofk and k' for different value ofm. 

m 1k' 
3.450 
3592 
3.734 
3.877 
4.019 
4.160 
4.303 
4A44 
4.586 
4.728 
4.870 
5.012 
5.154 
5.296 
5A37 
5580 
5.721 
5.863 
6.005 
6.145 

z 

Stokes notes that for values of m > 0.3 that the values ofk and k' approximate an 

algebraic form in terms of m that is quite similar to that for the sphere. As such, the 

spherical case can likely approximate the cylinder case with appropriate choices of 

effective radius, a finding consistent with those ofBlom et al and Xu [22,42]. The use of 

the cylinder approach is also complicated, as pointed out by Lamb in declining to derive 

the relationships[48]: 

In view of the length of the necessary investigations, and of the fact that 

the problems in question are inferior in interest to those which relate to a 

spherical boundary, we content ourselves with a reference to the original 

papers by Stokes. 
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As shown small values ofm below, the values ofk and k' deviate quite 

dramatically from the spherical relationships and it becomes important to use the cylinder 

relationships to obtain correct force values. 

This part points out one additional difference between the work by Blom et al and 

that by Xu, Fletcher and the current research. The size scale for Blom et allead to values 

of m that are in the range in which the spherical approximation is a good one. However, 

the small scale of the current beam operating at 50 - 100 kHz leads to values ofm that is 

well below 0.10. For example, the case considered in modeling above corresponds to a 

value ofm equal to 0.0533 for air at 1 atmosphere; it will decrease from this value if the 

pressure is reduced since kinematic viscosity decreases as pressure decreases. 

All parameters used in stokes' equation, which are same as the set up in CFX 

modeling, are listed in Table 8. The values ofk and k' are achieved using MathCad 

program which created by Dr. Bradshaw (see Appendix C). The drag force versus time 

according stokes equation is shown in Figure 55. 
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Height (~lm) H 2.00 

Width (~m) W 1.10 

Effective diameter ~m) D 1.67 

Effective Radius (~m) R 0.835 

Density of air (kg/m3) P 1.19 

Viscosity (kg/s·m) ~ 1.83E-05 

Frequency (kHz) f 40 

Angular speed (rad/s) ro 2.51E+05 

Kinetic viscosity (m2 / s) 
v 1.55E-05 

Maximum displacement (~m) So 0.2 

Mass of fluid replaced by 

cylinder per unit length mc=1t.p'R2 2.59425E-12 

(kg/~m) 

m =1I2·R·--j (ro/v) 0.0533 

k 42.918 

k' 135.00 

Velocity U= -roSosin( rot) 

Acceleration U'= -ro2Socos( rot) 

F=-mckU' -mck' roU 

Table 8. Parameters used in calculation of force acting at the cylinder. 
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Figure 55. Force vs. Time for resonating cylinder from Stoke equation. 

Drag force in x direction per unit length are calculated using CFX and the Stokes 

cylinder equation. Table 9 and Figure 56 demonstrate that these two results are in the 

same phase and the magnitude of maximum drag force is very close. The drag force from 

stoke equation is 4.63 IlN/m, and the value from the CFX calculation is 4.58 IlN/m . The 

variation is about 1 % ; this indicates that the CFX model matches closely to the theory 

case. As such, it is reasonable to conclude that CFX can be used to determine the loads 

acting on a cylinder (or other cross-section shape) resonating in similar conditions. 

Stokes model CFX 

Minimum Maximum Minimum Maximum 

1 -4. 6336E-06 4. 6336E-06 -4. 6360E-06 4.2828E-06 

2 -4. 6336E-06 4. 6336E-06 -4.S8SSE-06 4.S322E-06 

3 -4. 6336E-06 4.6336E-06 -4.S681E-06 4.S417E-06 

4 -4. 6336E-06 4. 6336E-06 -4.S627E-06 4.SS1SE-06 

5 -4. 6336E-06 4. 6336E-06 -4.S614E-06 4.S626E-06 

6 -4.6336E-06 4.6336E-06 -4.SS66E-06 4.5567E-06 

Table 9. Comparison of peak results from stoke equation and from CFX 
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Figure 56. Comparison of results from stoke equation and from CFX. 

3.5 Curve Fit of Stokes' Oscillating Cylinder Model 

8 

While the MathCad document referenced above and reprinted in the Appendix 

can perform the calculations required for k and k', it is tedious to embed in a standalone 

code (such as Matlab) to perform general vibration simulations. It is also quite involved 

so there are many opportunities for mistakes during coding that must be eliminated and 

the results carefully checked. The data generated from the MathCad document has 

already been fully verified to match the results provided in the original Stokes' paper so 

there is strong confidence in its correctness. 

Instead of recreating the mathematics of the MathCad document, it was used to 

generate a data set that could be studied to identify a suitable curve fit that could be easily 

coded in any program for general vibration simulation. This approach begins with two 

approximations that were noted by Stokes in the original paper. For m ---7 0, the solution 

for k and k' can be obtained using: 

L(m)=ln(m)+r r = 0.5772157 .. . (Euler's constant) 
(25) 
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k=l+ 2 2 

4m L{mY +( :) 
k'= 

1 L{m) 

m
2 

L{m)2 +(: J (26) 

The MathCad document was used to verifY the limits at which this fit was 

sufficiently accurate. For the curve fitting purposes below, it was judged that this 

approximation would be used for k for m s 0.016 and for k' for m s 0.060. The percent 

error between the approximation above and the full Stokes' model calculation was 

1.135% for k (m = 0.016) and -0.345% for k' (m = 0.060); the percent error reduces from 

this value as m decreases. Smaller limits ofm could be chosen that lead to less error at 

the associated maximum value of m; however, this increases the error in the curve fit that 

is developed below for larger values of m. The limits chosen here were determined in a 

trial-and-error fashion to minimize the overall error in k and k' (as will be presented 

below). 

As was mentioned in the previous section, Stokes noted that the k and k' values 

developed for the cylinder model can be well approximated by functions of a form 

analogous to those for the oscillating sphere model when m was sufficiently large (on the 

order of 0.3 - 0.4 per the original paper). The equations in this case take the form: 

k' = J2 +_1_ 
m 2m2 (27) 

The MathCad document was used to verifY the limits at which this fit was 

sufficiently accurate. The original limits from Stokes' paper corresponded to roughly 

10% error, which was deemed too large for use here. Instead, the limit m ~ 2.00 is chosen 
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for both k and k' for the curve fit below; this corresponds to a percent error between the 

approximation above and the full Stokes' model calculation of -0.236% and 0.634% for 

k and k', respectively, at m = 2.00; the percent error decreases from these values as m 

increases. 

These two approximation cases leave a region of m between 0.016 and 2.00 

(henceforth referred to as the central region) to be modeled with a curve fit. Stokes 

developed the approximation for large m by noting that the value m2 (k - 1) and m2 k' 

could each be approximated by a line (i.e. A + B m, where A and B are suitable 

constants) for m > 0.30. This inspired a similar choice for the fit in the central region; 

namely, the values for k and k' were multiplied by mP where p is a positive non-integer 

constant. The resulting data sets were plotted versus m for the region of interest (0.016 -

2.00 for k; 0.060 - 2.00 for k'). The ideal value ofp was chosen for each data set as the 

one which best caused the reSUlting data set to appear as though it could be well-fit by a 

parabola. An example is shown for k mP in Figure 57 below. Small values ofp is lead to a 

noticeable upturn at small m while large values of p lead to a downturn at small m and 

more curvature. The smallest value of p that eliminated the upturn was chosen; this was 

1.55 for k and 2.55 for k' and caused the data to appear linear or parabolic. Hence, such 

data could be well-fit with a polynomial. * 
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Figure 57. Values ofk mP for various p for mE [0.016, 2.00] 

Data sets were generated of k m 1.55 and k' m2
.
55 were developed for the central 

region between m E [mo, 2.00] for k and m E [m ' 0, 2.00] for k', where mo and m' 0 are the 

central region lower limits (0.016 and 0.060 for k and k', respectively). These data sets 

were then fit with a polynomial of the form : 

(28) 

f '() I I ( I ) I ( I )2 I ( I )3 m =Co +C1 m-mo + C2 m-mo +C3 m-mo (29) 

wheref(m) andf'(m) are the optimal fitting functions for the data sets developed for k and 

k', respectively; the coefficients C/ , C2, C3, C ' I, C'2 and C '3 were developed using the 

generalized fitting function in MathCad with the values of Co and c 'o set such that the 

approx imation in the central region will be continuous with that for small values ofm at 
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the corresponding lower limit (mo or m' 0). The values are given in Table 10 below. The 

parameters k(m) and k'(m) can then be approximated as: 

1+ 
1[ 1 

m~mo 

4m
2 

L(m}2+(:r 

k(m}= m-' [~c, (m-m,Y 1 mo <m<2.00 
(30) 

1+ J2 m~2.00 
m 

mo <m<2.00 
(31) 

m~2.00 

where L(m) is the function given previously. 
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Fit For k(m) Fit For k'(m) 

Label Value Label Value 

rno 0.016 rn'o 0.060 

Co 0.38199 c'o 0.08471 

Cl 1.97554 C'l 1.26919 

C2 0.06255 C'2 0.73687 

C3 0.06052 C'3 -0.06579 

p 1.55 p' 2.55 

Table 10. Fitting model coefficients for Stokes' cylinder model 

The functions for k and k' as functions are m are plotted below in Figure 58 and 

Figure 61, respectively, using the approximate functions above; the results are virtually 

indistinguishable from the original Stokes' model equation values (not shown). One way 

to compare the approximation above to the original Stokes' model equations is in terms 

ofthe percentage error between the approximation and the original equations; this is 

shown in Figure 59 and Figure 61, respectively, for k and k'. Also shown in Figure 58 

and Figure 61 are the spherical model approximations (i.e. using the function above 

corresponding to m ~ 2.00 for all values ofm); it is clear that significant error occurs 

when the sphere approximation is used for values ofm < 0.3 - 1.0. 
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Figure 61 . Percent error between fitting function for k' and k' from Stokes' model 

The approximations above can be used to predict k(m) and k' (m) for general 

vibration simulations. These studies also indicate the difficulties that occur with the 
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spherical model approximation when applied to cylinders ifm is sufficiently small. Many 

ofthe device configurations considered in this dissertation will violate this condition, as 

m is well less than 0.1 for most cases. 

Note that the analysis and text in this section was largely done by the Dr. Roger 

Bradshaw, the Ph.D. advisor of the author. 

3.6 Microcantilever Beam Fluid Simulation 

The results in the Section 3.3 represent a first step in modeling the beam loads 

that occur during oscillatory motion via CFD; the resulting loads are verified by Stokes 

theory. The next step focuses on beams with size and properties similar to those of the 

microcantilever sensor. The goal of these studies is to consider four fundamental cases: 

1) Cylinder oscillating without a floor 

2) Cylinder oscillating with a floor 

3) Rectangle oscillating without a floor 

4) Rectangle oscillating with a floor 

In each of these cases, the analysis is performed with several velocities and 

frequencies. This permits the assessment of a model of beam forces expressed in terms of 

the beam velocity and acceleration (similar to existing analytical models). Comparisons 

between analytical models will also be pursued; these are the Stokes' solutions for an 

oscillating sphere and an oscillating cylinder produced in the last section. The results will 

then be used to assess whether the analytical models can be used to approximate the 

observed behaviors with suitable changes. For example, perhaps the Stokes cylinder 

model using an effective diameter will represent the data for a rectangular cross-section 

operating without a floor. 
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3.6.1 Cylinder Oscillating Without a Floor 

All models discussed in Sections 3.3 considered cylinder oscillating without a 

floor. The results verified that beam forces could be expressed in terms of the beam 

velocity and acceleration. To improve accuracy, the 1500 dimension will be used in this 

section; this has force about 4.61 )lN/m, which is closer to the theory value than 1000 

dimension set-up. Although this increases solution time somewhat, the gain in accuracy 

will benefit in the expression of drag force for different cases. Figure 63 shows drag force 

acting on the cylinder in x direction changes sinusoidally with time . . Figure 62 shows the 

mesh for case of cylinder resonating in middle. In following sections, the effect of the 

change the shape of the beam cross-section and the effect of wall will be considered by 

comparing the drag force between different cases 

Figure 62. Mesh for case of cylinder resonating in middle 
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Figure 63. Drag force per unit length vs. time for case of cylinder resonating in middle 

3.6.2 Cylinder Oscillating With a Floor 

In this case the cylinder is moved to the bottom of the tank, 2 J..lm above the 

bottom. Alternately the distance between cylinder and bottom could be reduced to 2 J..Lm 

to increase the computational economy; this was not considered to avoid needing to 

repeat the effect of overall model size on CFD results done in Section 3.3. The mesh 

density and element size is kept the same as previous case. The mesh file for case of 

cylinder resonating with floor is shown in Figure 64. 
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Figure 64. Mesh for cylinder resonating with floor 

Drag force per unit length is calculated through CFX and plotted in Figure 65 . 

The curve of drag force verse time for cylinder with floor is not entirely sinusoidal, 

perhaps due to the timestep of 10e-7 not being sufficient for this case. The maximum 

drag force in each cycle compared between case of cylinder with floor and case of 

cylinder without floor. In Table 11 and Figure 66, the value of drag force for case of 

cylinder with floor is 6.45 IlN/m which is significantly larger than the value of drag force 

for case of cylinder without floor (4.58IlN/m). The effect of viscous effects due to the 

floor makes the cylinder harder to translate due to force acting on it. 
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Figure 65. Drag force per unit length vs. time for case of cylinder resonating with floor 

Cylinder with floor Cylinder without floor 

Minimum Maximum Minimum Maximum 

1 -4.S7894E-06 4.2327E-06 -4.5 7894E -06 4.2327E-06 

2 -4.S2S99E-06 4.46797E-06 -4.S2S99E-06 4.46797E-06 

3 -4.S1018E-06 4.49784E-06 -4.S1018E-06 4.49784E-06 

4 -4.S0923E-06 4.S0439E-06 -4.S0923E-06 4.S0439E-06 

5 -4.49903E-06 4.50349E-06 -4.49903E-06 4.S0349E-06 

6 -4.S07S3E-06 4.S04S3E-06 -4.S07S3E-06 4 .S04S3E-06 

Table 11. Peak of drag force compared between cylinder without floor and with floor 
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Figure 66. Peak of drag force compared between cylinder without floor and with floor 
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3.6.3 Rectangle Oscillating Without a Floor 

In this section, the relationship between shape of cross section and the calculation 

result is presented. The shape of cross section changes from cylinder to rectangle (width 

1.1 !J,m x length 2 !J,m) which is shown in Figure 67. The cross-section areas of the 

cylinder and rectangle are indentical. The drag force acting on the rectangle also changes 

sinusoidally versus time as shown in Figure 68; the maximum value of drag force for 

each cycle is 5.06 !J,N/m which a little bigger than cylinder case without a floor. 

The comparison of maximum value of drag force for each cycle is listed in Table 

12 and Figure 69 to show the relationship between the shape of cross section and results. 

Figure 67. Mesh for case of rectangle without floor 
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Figure 68. Drag force per unit length vs. time for case of rectangle resonating without 

floor 

Rectangluar without floor Cylinder without floor 

Minimum Maximum Minimum Maximum 

1 -S.1096E-06 4.70422E-06 -4.5 7894E -06 4.2327E-06 

2 -S.0426E-06 4.98702E-06 -4.S2S99E-06 4.46797E-06 

3 -S.0372E-06 S.0137SE-06 -4.S1018E-06 4.49784E-06 

4 -S.032SSE-06 S.0273SE-06 -4.S0923E-06 4.S0439E-06 

5 -S.0317E-06 S.0277SE-06 -4.49903E-06 4.S0349E-06 

6 -S.0308E-06 S.0366SE-06 -4.S07S3E-06 4.S04S3E-06 

Table 12. Peak of drag force compared between rectangle without floor and cylinder 

without floor 
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Figure 69. Peak of drag force compared between rectangle without floor and cylinder 

without floor 

3.6.4 Rectangle Oscillating With a Floor 

In this case, the shape of beam cross section is rectangular which is resonating 2 

Jlm above a floor. This case simulates the real working environment for the pizeoresistive 

microcantilever beam. This case could be obtained ideally change case via a cylinder 

without floor to cylinder with floor (adding effect of wall effects in this step) then to a 

rectangular with floor (adding change of cross section). The mesh file for case of 

rectangle resonating with floor is shown in Figure 70. As in the cylinder with floor case, 

the half of the tank is used to speed the calculation. 
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Figure 70 Mesh for case of rectangle resonating with floor 

The drag force per unit length is plotted in Figure 71. The drag force versus time 

is not perfectly sinusoidal, which may be due to the non-sufficient time step set-up. As 

with the cylinder, the rectangle with floor has a bigger drag force value then the rectangle 

without floor due to the effect of wall viscosity. The comparison of drag force per unit 

length for each cycle is shown in Table 13 and Figure 72. 
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Figure 71. Drag force per unit length vs. time for case of rectangle with floor 
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Rectangle without floor Rectangle with floor 

Minimum Maximum Minimum Maximum 

1 -S.1096E-06 4.70422E-06 -7.4099E-06 7.2978SE-06 

2 -S.0426E-06 4.98702E-06 -7.3241E-06 7.3218E-06 

3 -S.0372E-06 S.0137SE-06 -7.3227SE-06 7.3819SE-06 

4 -S.032SSE-06 S.0273SE-06 -7.3S9SE-06 7.3S11SE-06 

5 -S.0317E-06 S.0277SE-06 -7. 3871E-06 7.3S2SSE-06 

6 -S.0308E-06 S.0366SE-06 -7.36S8E-06 7.3083E-06 

Table 13. Drag force compared between case rectangle with or without floor 
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Figure 72. Drag force compared between case rectangle with or without floor 

3.6.5 Comparison 

Drag forces for four cases discussed above are listed in Table 14. The middle 

column considers of cylinder ratio of (cylinder with floor to cylinder without floor), and 

cases of rectangle ratio of (rectangle with floor and rectangle without floor). This 

considering common shape of cross section with only the effect of wall viscosity. A 

single factor could be achieved by considering common floor cases, as ratios 

cylinder/rectangle with floor and cylinder/rectangle without floor shown in the right 

column of Table 14. For cylinder group, the factor is 1.4083; for rectangle group, the 
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factor is 1.4274. The factor ofthe cylinder group and the rectangle group are very close. 

This means that the drag force increased significantly with floor presented. The minor 

difference between them may caused by difference shape of cross section or the chose 

time step. 

Peak drag force per Effect of floor (with Effect of shape 

unit length (IlN/m) floor/without floor) (Rectangle/cylinder) 

Cylinder without floor 1.4083 1.0983 
4.58 

(A) (B/A) (CIA) 

Cylinder with floor 1.1132 
6.45 

(B) (DIB) 

Rectangle without floor 1.4274 
5.03 

(C) (D/C) 

Rectangle with floor 
7.18 

(D) 

Table 14.Summary of drag force for four cases 

By grouping the without floor cases (cylinder without floor and rectangle without 

floor) and the with floor cases (cylinder with floor and cylinder without floor), the effect 

of wall viscosity, and effect from shape of cross-section is left over. Another factor could 

also be achieved by dividing the rectangle with/without floor by the cylinder withlwithout 

floor. For the without floor group, the factor due to cross-section shape is 1.0983, while 

the with floor group is 1.1132. Both of these are very close to 1, which means the change 

of shape of cross section has a real but minor effect on the result. Note that these realist 

107 



are set up the resonating frequency of 40 kHz. The next section, investigates the 

relationship between drag force and different velocities (via resonating frequencies). 

3.6.6 Effect of Different Frequency (Velocity) 

The four cases discussed above are performed with several frequencies, such as 

30 kHz, 40 kHz, 60 kHz, 80 kHz, and 90 kHz. The purpose of doing so is achieving a 

force expression in terms of the beam velocity and acceleration. Considering the set up of 

time-steps in CFX is an important factor which will cause variation in results; therefore 

the time-steps for different frequencies is chosen according to the number of the time 

steps. Time steps of25 is chosen for each frequency, and the time during (T=l/f) will 

divide by the number of time steps. The answer of this division will be determined as set 

up oftime-steps for each frequency. The set up oftime-steps for each frequency is 

showed in Table 15. 

Frequency(Hz) Time Duration (s) Steps Time steps Time of 6 cycles(s) 

30000 3.33E-05 25 1.33E-06 2.00E-04 

40000 2.50E-05 25 1.00E-06 1.50E-04 

50000 2.00E-05 25 8.00E-07 1.20E-04 

60000 1.67E-05 25 6.67E-07 1.00E-04 

70000 1.43E-05 25 S.71E-07 8.S7E-05 

80000 1.25E-05 25 5.00E-07 7.50E-05 

90000 1.11E-05 25 4.44E-07 6.67E-05 

Table 15. Setup of time-steps for different frequencies 
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The model chosen in calculation has following set-ups: 150D (box dimension is 

150 times bigger than cylinder's diameter), 20 elements (elements number used to divide 

quarter of circle, or one edge of rectangle), level I (mesh refine level), time-steps of 1 e-6s 

(calculation steps in CFX keeps 25 for each case), and So of 0.2 ~m (So is the maximum 

displacement of beam). Four cases (cylinder without floor, rectangle without floor, 

cylinder with floor, and rectangle with floor) were all tested in five different frequencies 

(30 kHz, 40 kHz, 60 kHz, 80 kHz, and 90 kHz). The peak force acting on the beam in the 

x direction is used as the key test result to compare. The force acting on the beam in the x 

direction is achieved from CFX-Post; this is then divided by the thickness ofthe model 

(z) to obtain force per unit length. The thickness of the model is selected automatically by 

CFX during extrusion; its value does not affect the force results when So normalized. The 

value ofz is 3e-6 ~m for cylinder without floor and rectangle without floor; and 1.53e-6 

~m for cylinder with floor and rectangle with floor. The value changed due to the 

difference size of the box. Which changed from square of 150Dx150D to rectangle 

of1500x(150+~). The change is reasonable because the (1/2)* 1500 from top in the cans 

without floor is big enough to ignore any viscous effect from the top wall. Therefore the 

floor model keeps this distance on top and only changes the distance between the beam 

and the bottom well. The force acting on the beam is listed in Table 16 for different cases 

and different frequencies. The value of peak force listed in the table is the maximum 

force of a resonating cycle and has units of Newton per meter. 
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Frequency Cylinder without Rectangle Cylinder with Rectangle with 

(kHz) floor without floor floor floor 

30 3.28E-06 3.57E-06 4.64E-06 5.20E-06 

40 4.61E-06 5.05E-06 6.45E-06 7.16E-06 

60 7.51E-06 8.28E-06 9.98E-06 1. 12E-05 

80 1.06E-05 1.18E-05 1.37E-05 1.54E-05 

90 1.22E-05 1.37E-05 1.56E-05 1.76E-05 

Table 16. Peak drag force per unit length (N/m) for four cases and different frequencies 

The drag forces per unit length of each case for different frequencies also are 

plotted in Figure 73. It is clear that the drag force varies linearly with frequencies 

regardless ofthe cross section or the presence of the wall. 
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Figure 73 . Drag force vs. frequencies for four cases. 
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Stokes' equation for calculation of force per unit length acting on the cylinder is 

listed in Equation 2; In this case, it becomes: 

(32) 

where u is the velocity and k and k' are the Stokes' model parameters (which also vary 

with (0). 

3.6.7 Effect of Shape of Beam Cross Section 

In this section, the effect from the change of beam cross section is considered. In 

the case of cylinder without floor, the diameter of cylinder is determined by the effective 

diameter, which makes the area of cylinder the same as that ofthe rectangle. Therefore, 

the area of beam cross section is the same in both cases and only the shape changed from 

cylinder to rectangle. Table 17 lists the ratio of drag forces of cylinder and rectangle. 

There are two cases: one is without floor; another is with floor. For the first case, the drag 

forces of the rectangle without floor are divided by those of the cylinder without floor; 

these are in the range of 1.09-1.12 when frequencies changed from 30 kHz to 90 kHz. 

The same ratio for the cases with the floor vary from 1.11-1.13. It appears that the effect 

of cross-sectioon is similar for different frequencies, and that the ratio does not vary 

much due to floor presence. The average of the rate for different cases and different 

frequencies is 1.11. This Stokes cylinder model using an effective diameter can represent 

the force data for a rectangular cross-section for the parameters used here where scaled 

by 1.11. 
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Effect of shape (Rectangle/Cylinder) 

30kHz 40kHz 60kHz 80kHz 90kHz 

Cylinder without floor 
1.09 1.10 1.10 1.11 1.12 

Rectangle without floor 

Cylinder with floor 
1.12 1.11 1.12 1.12 1.13 

Rectangle with floor 

Table 17. Ratio of drag forces of rectangle and cylinder. 

3.6.8 Viscous Effect of Bottom Wall 

Stokes theory considered a cylinder resonating in an infinite fluid. However, the 

microcantilever beam in this case resonates 2 !Jm above the floor (handle layer). The 

effect of the floor is studied in this section. 

The four cases are divided into two groups: one is cylinder with or without floor; 

another is rectangle with or without floor. In each group, the shape of beam cross section 

is same but one involved floor viscositylboundary effects and the other does not. The rate 

of drag forces of without and with floor is used to show the effect of the floor. In the 

cylinder group, the ratio of maximum drag force per unit length decreased from 1.41 to 

1.28 as frequency increased from 30 kHz to 90 kHz. The rectangle group should a similar 

ration decrease from 1.46 to 1.28. The ratios are listed in Table 18; the data also are 

plotted in Figure 74; data is approximately fit by a line but there is some scatter present. 

However, this data clearly shows the trend that the increase in force due to the floor 

decreases. 
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Effect of wall (with floor/without floor) 

30 kHz 40kHz 60kHz 80 kHz 90kHz 

Cylinder without floor 
1.41 1.40 1.33 1.29 1.28 

Cylinder with floor 

Rectangle without floor 
1.46 1.42 1.35 1.31 1.28 

Rectangle with floor 

Table 18. Ratio of drag forces with floor to those without floor versus frequency 
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Figure 74. Ratio of drag forces with floor to those without floor. 

3.6.9 Comparison to Stokes' Equation 

From above, the forces of a resonating cylinder without floor were obtained. The 

values for maximum drag force per unit length in a cycle for different frequencies is 

listed Table 19. It is clear that the two sets of values are very close. The maximum drag 

force per unit length in a cycle is also compared with Stokes' equation value for a 

cylinder without floor which is listed in Table 20 and Table 21 . These data are also 

plotted in Figure 75. In this plot, the data about the ratio of drag force of rectangle with 
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floor and cylinder without floor is plotted by trend line. And the trend line, with is 

expressed by the equation 

(33) 

where ro represents the frequency and Y stands for the ratio of drag forces of rectangle 

with floor and cylinder without floor. 

Drag force per unit length (J.lN/m) 

30kHz 40kHz 60kHz 80kHz 90kHz 

Stoke equation 3.31 4.62 7.52 1.07 1.22 

Cylinder without floor 3.28 4.61 7.51 1.06 1.22 

Table 19. Compare Stokes equation and cylinder without floor 

Compare with theory equation 

30kHz 40kHz 60kHz 80kHz 90kHz 

Stoke equation 
1.57 1.55 1.49 1.44 1.44 

Rectangle with floor 

Table 20. Compare the Stokes equation with rectangle with floor 
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rectangle with floor vs.cylinder without floor 

30kHz 40kHz 60kHz 80kHz 

Cylinder without floor 
1.59 1.55 1.49 1.45 

Rectangle with floor 

Table 21. Compare the cylinder without floor and rectangle with floor 
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Figure 75. Rectangle with floor compared with Stokes ' equation and cylinder without 

floor. 

From this equation, we could tell that there are some relationship between case of 

rectangle with floor and case of cylinder without floor. The case of cylinder without floor 

changed to case of rectangle with floor by changing beam cross section and adding the 

floor viscositylboundary effect. These two factors lead the results of rectangle with floor 

to differe from the case discussed in Stokes' theory. Using this model, the drag force for 

gas sensor can be predicted. First, the Stokes' equation calculats the drag force for 

cylinder without floor. Second, the equation for Y is used to calculate the ratio of force in 

rectangle with floor to cylinder without floor at certain frequency. Third, the ratio is used 
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to scale the theory result to get the drag force for rectangle with floor. While the final 

results will not be an exact match, it should be in the acceptable range. 

This force, the drag force of rectangle with floor could be expressed as: 

dU = -soui cos(ax);U = -Socosin(ax) 
dt 

Freetanxle = Y(-me k ~ -me k' coU) = Y[mc kSoco2 cos(ax)+me k'Soco2 
sin(ax)] 

Y = 20( CO )2 -5.4 CO + 1.7257 
2n- . 1000 2n- . 1000 

3.6.10 Effect of Distance to Floor 

(34) 

When devices are manufactured, the distance to the floor is set by the oxide layer 

thickness. Since future devices may use something other than 2 ~m, it is important to also 

understand how this distance (b) affects the drag force results. Models were solved using 

the same set up as the case of cylinder with floor except changing the parameter b. Figure 

76 shows the geometry with mesh for b = 0.5, 1,4,8, and 16. The resonating maximum 

drag force per unit length is listed in Table 22 and plotted in Figure 77. 
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(b) 
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Figure 76. Geometry of cylinder resonating near floor with various values of o. (a) 0=0.5 

11m, (b) 1 11m, (c) 4 11m, (d) 811m, (e) 16 11m, where 0 is the gap between the bottom of 

cylinder and the floor. 
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Elevation from bottom(J..lm) force per unit length (~N/m) 

0.5 11.1 

1 8.32 

2 6.48 

4 5.40 

8 4.99 

16 4.89 

Table 22. Drag force of cylinder with various 8 at 40 kHz. 
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Figure 77. The maximum drag force versus 8 at 40 kHz. 
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Figure 77 shows that when the cylinder is closer to the floor, the floor effects 

become larger. However as 8 becomes bigger (>8 ~m), the value of drag force 

approaches that of the cylinder without a floor 4.61 ~N/m as shown in Table 19. In the 

case of choosing wafer for fabrication, a layer thickness of Si02 greater than 8 ~m should 

largely avoid viscosity/boundary effects due to the floor. 
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3.6.11 Summary of Viscosity Loads on Resonating Beam 

A microcantilever beam resonating in a fluid has been modeled by using 

SolidWorks, ICEM, and ANSYS CFX. The drag force of cylinder resonating without 

floor is determined and shown to agree with Stokes' equation. Two effects that differ 

from the stokes' model but are present in the sensor was evaluated: the shape of the 

cross-section being rectangular; and the presence of a floor. The cases used different 

frequencies and found relationship between drag force and frequency. This equation 

could express the drag force with terms of velocity and acceleration when combined with 

the Stokes' model. Another approach for model prediction is to simply use CFX directly­

the results presented here show that this should lead to accurate values since the 

analytical model is matched very well. 
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CHAPTER 4. ELECTROSTATIC FORCE 

This section will focus on modeling the electrostatic force to better understand the 

external load acting on the resonating beam system. The goal of this work is to ultimately 

incorporate these forces into a driven vibration model. 

4.1 Electrostatic Force 

Due to the small scale of micro mechanical systems, the electrostatic force can 

become relatively large compared with the elastic force of the mechanical structure and 

the damping force of the surrounding air. It is nonlinear with the distance of separation 

between the charged surfaces, which may cause severe nonlinearity or instability 

problems in a vibrating system. [51] 

Consider the cantilever beam system resonating about the driving electrode end 

(as shown in Figure 78 (right)). The model of two parallel plates which are separated by a 

gap x was adopted to approximate this system. One plate of the capacitor is fixed and 

another is movable which is shown in Figure 78 (left). 
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Figure 78. Comparison of parallel-plate actuator (left) to current device at driving 

electrode (right).[51] 

The force applied on the movable plate of the capacitor is 

F - aE(x) _ Acco V 2 
N -----ax---~ (35) 

where £ the relative permittivity ofthe medium between two electrodes, which is 

approximately equal to unity for air and Eo the permittivity of a vacuum. [52] The model 

supposes that system is connected with a battery imparting a voltage Y. It is clear that 

electrostatic force related directly with y2 which is equal to the square of the voltage 

difference between the two plates. Based on Equation (35), the force is attractive since 

the negative in the equation indicates that FN is in the opposite direction as shown. 

Figure 79. Schematic of beam tip 
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This section seeks to approximate the beam tip-driving electrode pair as a parallel 

plate capacitor. For the device in this study, assume d is 1.4 /-Lm, 11 V is Velectrode -Vbeam, 

and that the line between corners is 45° as shown in Figure 79. It is now assumed that the 

beam-electrode pair acts like a parallel plate separated by gap d of 1.4 /-Lm with area 

A=h'w where h is the depth normal to the figure and w is to be determined. 

v~eF 
~(\d _ 45· 

) / \) Electrode 

W\ / beam 

Figure 80. Schematic of beam-electrode pair and vectorial representation of resulting 

attractive force. 

To maintain d, a force F must be applied as: 

A CEo 2 

F = 2d 2 ( V eleClrode - V beam ) (36) 

For a gas Co :::: 1, so this becomes: 

whc V -V F = __ 0 ( electrode beam ) 2 

2 d (37) 

The vertical component of F as shown in Figure 80 (Right) is the tangential force Ft that 

is perpendicular to the beam. This is clearly Ft=FI "";2. The other force Fa is a load along 

the beam axis; it does not affect lateral deflection except in large displacement so it could 

be ignored. 
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For cantilever beam, the tip displacement of beam is as: 

Now substitute to find 

£ = Veleclrode - V beam = electric field 
d 

After simplifying Equation (39), h is cleared out which means that answer does not 

depend on beam thickness normal to the vibration plane (thickness of device layer). 

- 10V 
For ~ V=l 0 V, E = -- and E, b, to, Land 8 are all known; therefore w could be 

1.4,um 

obtained as: 

Eb 3 g 
W = (J2L3 co) (£)2 

(38) 

(39) 

(40) 

(41) 

From the ANSYS results (discussed in the next section), 8=0.011979 J1,m for ~V=10V. 

Substitution all parameters into Equation (28) leads to w of2.0112 J1,m. This means the 

beam deflects like a parallel plate capacitor that is 2.0112 J1,m wide with an electrical 

field is 7.14 V/J1,m. This value will be compared to the ANSYS results in next section. 
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4.2 Modeling of Electrostatic Beam Tip Forces 

When a voltage difference exists between the beam and the driving electrode, a 

charge distribution is induced on each surface. These charges lead to electrostatic forces 

that can cause the beam to deflect. It is conceivable that this deflection itself changes the 

charge distribution which would then alter the force. Presumably, an equilibrium state 

would be obtained when the forces due to the beam defection and the surface charges 

balance each other. 

The relationship between beam deflection and the electrostatic forces can be 

obtained by the solution of coupled field finite element analysis incorporating both 

mechanical and electrostatic components. A preliminary study has been performed by 

Dr. Bradshaw using dimensions similar to the beams currently under study. An example 

of the model and results are shown in Figure 81; the entire beam is modeled (not shown) 

but only the region near the beam tip and the driving electrode are used in the 

electrostatic simulation to speed solution time. The deflection observed in the beam tip 

can be used to estimate an effective load at the beam tip as either a transverse force or a 

combination oftransverse force and tip moment. 
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Figure 81. Coupled mechanical-electrostatic model of beam and driving electrode: 

(top) model ofthe beam and driving electrode; (middle) voltage contours at lOV at 

driving electrode and beam tip at 0 V; (bottom) associated electrical field. 
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o . b98 
'1 .81 10 .0 ., 

Figure 82. Zoom-in on tip region of associated electrical field . 

Figure 82 shows that the electric field in the region of the tip is on the order of 4-7 

v/Ilm. The width ofthis zone of high electric field is roughly 2-4 11m in width. So the 

displacement results from ANSYS are entirely consistent with those caused for a 

cantilever beam subjected to a force equal to that from the parallel plate model using an 

effective width w=2.0 11 11m divided by 11--.12. 

A simulation was performed in which the driving electrode voltages varied 

between +/- 10 V and the response of beam tip was calculated for several beam voltages. 

As shown in Figure 83, when Vbeam is 0 V, the displacement response is at frequency 2f 

(where f is the driving electrode frequency). For any other voltage, the displacement 

response is a combination of functions at f and 2f. 
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When the data from Figure 83 is plotted parametrically as tip displacement versus 

(I::. V)2 where I::. V is the voltage difference (VelectTode-V beam), a linear relationship is 

observed. This is shown in Figure 84. Hence, the force approx..imately follows the same 

relationship as in parallel plate model (Equation (22)). 

The findings thus far indicate that the tip deflection is quite small (0.0120 m, or 

0.0094% of beam length), indicating that the force available to drive resonance is 

similarly small (0.321 nN per beam theory for I::.V=lOV). The parabolic curve shown in 

Figure 85 shows the relationship between the beam tip displacement and the voltage 

applied at the driving electrode. 
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Figure 85. Beam tip displacement in microns versus voltage applied at the driving 

electrode when beam is at OV. 

One interesting feature of Figure 85 is that the same result is obtained if the 

voltage at the driving electrode is varied from 0 V to -10 V (instead of + 1 0 V). This is 

because the electrostatic forces are related to the square ofthe voltage difference; hence 

the forces are attractive whether the Ll V between the driving electrode and beam tip is 

positive or negative. This relates the odd feature that has existed in the microcantilevers 

beams studied at the University of Louisville to date, in which they appear to resonate at 

a driving electrode frequency that is Y2 of the expected value. For example, the first 

natural frequency of a beam of a typical size studied in this study can be obtained by the 

calculation (performed as per unit depth for the beam): 
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-7 It = 92.378 kHz 

(42) 

The microcantilevers beams tend to resonate when the driving electrode signal is 

in the 40-50 kHz range based on previous studies[42]. Since the electrostatic forces are 

identical for both a positive and a negative 5V voltage difference, the beam tip will 

experience forces that are at a frequency 2f if the driving electrode is supplied with an 

AC signal at frequency f (as shown in Figure 86). 

t 

Drive Signal VA 

Beam Base Output Signal VB (Actual) 

Figure 86. Driving electrode voltage and beam tip load versus time. 
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Another complicating factor in device performance is that the loads induced by 

the electrostatic forces between the driving electrode and the beam tip are likely to be 

affected by beam tip displacement. For example, as the beam resonates, the beam tip is in 

a dramatically altered position from the rest state. This new configuration likely has 

different electrostatic forces than those evident in Figure 86 using beam theory. This 

dissertation only focuses on beam tip loads in the rest state (Le. beam not deflected). 

Incorporation of beam displacement into the tip force causes the model to become 

nonlinear; analysis of such effects is beyond the scope of this dissertation. 

4.3 Driving Electrode Force Model 

From ANSYS the relationship between the tip displacement ()o for a given voltage 

difference L1 Vo could be as: 

(43) 

This could becomes 

(44) 

Since it is a cantilever beam, we can determine the force applied to the beam to be 

(45) 
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Because the force could be express as F = (~)Fa' according Equation above, F then 
Fa 

becomes 

If defined k=K(Eh)(~)3 which is constant, and F=k·~V2. In experiment, the voltage 
4 L 

varies at the driving electrode in a sinusoidal manner while the beam voltage is 

(46) 

maintained at a constant value. Hence ~V = (VE·sin(wt) + Vo) - VB, where VE is the peak 

driving electrode voltage and VB is the beam voltage. Vo is DC voltage offset. If square 

this term and make an expansion, 

(47) 

Rearrange above equation, 

~V2 = ha + ~ sine ax) - h2 cos(2ax) 

2 1 2 
ha = (Va - VB) +2"(VF) (48) 

h2 =(~)(VF)2 
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Figure 87 which generated by Dr. Bradshaw shows that it is a single cycle for 

different voltage differences. This matches what we found in ANSYS simulation. 

According the relationship between force and voltage difference F=k·!)' y 2, the 

electrostatic force could be as: 

F = kho + kh. sin(at) - khz cos(2at) 

(49) 
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4.4 Conclusion 

The microcantilever beam has been assessed using a finite element model that 

combines both electrostatics and structural analysis. The driving electrode at lOV leads to 

relatively small tip displacements and therefore corresponds to relatively small tip loads. 

It is not surprising that resonance in gas may be difficult to achieve as the energy input 

per cycle is small; if damping effects remove more energy than is gained per cycle, 

resonance cannot be achieved. It may be that alternate forms to induce resonance could 

lead to greater energy input per cycle and achieve resonance more easily in the presence 

of gas. The electrostatic modeling also provides a way to explain the unusual result found 

that some beams resonate at roughly half ofthe frequency at which resonance would be 

expected based on beam vibration theory. The nature of the electrostatic loading between 

the beam tip and the driving electrode leads to forces which cause beam resonance at 

frequencies equal to roughly half the expected resonance frequency. This explanation is 

based on an assumption that the beam and the driving electrode are connected by a 

battery. New silver glue provides a way to connect the handle layer to the ground. In this 

case, the beam and the driving electrode are two parts separately. And the electrostatic 

force acting on the beam tip has the same frequency as the driving signal. 
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CHAPTER 5. VIBRATION MODELING 

The final step of this research focuses on modeling to better understand the 

overall behavior of the resonating beam system. This begins with the derivation of the 

undamped and damped free vibration of a cantilever beam into mode shapes and 

associated sinusoidal natural frequencies. This model is then extended to describe 

vibration and the system behavior due to electrostatic forces are investigated. The goal of 

this section will be to relate the predicted magnitude of frequency shift and/or resonance 

curve shape change to the properties of the gas in which it is operating utilizing the 

assumptions described in earlier chapters. 

5.1 Model and Governing Equation of Microcantilever Beam Resonation 

Resonance of the microcantilever beam is caused by a sinusoidal voltage signal at 

the drive electrode; this leads to repetitive electrostatic forces (have been discussed in 

Chapter 4). For known interaction forces, the dynamics of the microcantilever beam can 

be accurately described by a fourth order partial differential equation: 

(50) 

where u is the beam lateral displacement, x is the position along the beam length, t is 

time, E is the Young's modulus of the beam, I is the moment of inertia of the beam, mB 
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is the beam mass per unit length, fd (x, t) is the distributed load per unit length and 

ig(x,t) is the fluid viscous per unit length, which accounts for the effect of gas 

damping. 

The gas dynamic load ig(x,t) can be determined by 

(51 ) 

where cg and mg are the effective damping and additive mass from the gas per unit length, 

respectively, as derived in Chapter 3 for a rectangle cross-section beam and resonating 

above a floor. As the equation above shows, the fluid load has two components: one is in-

phase with the velocity, cg au / at, which is denominated by viscous damping; and the 

other is in-phase with the acceleration, mg a2u / a2
t , which is denominated by added 

mass that effectively "clings" to the beam as it resonates. The viscous coefficient C g 

affects the quality factor Q and shifts the peak resonant frequency of the beam, while mg 

only produces a small shift in the resonance frequency of the beam. [53] Substituting 

Equation (51)into Equation (50), and the beam governing equation is rearranged as: 

(52) 

The boundary value problem presented above can then be solved numerically. Based on 

methods using by several textbooks, the above equation is solved in the next section.[54-

55] 
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5.1.1 Free Vibration of The Beam 

Begin first with the case of free vibration, in which fAx,t) = 0, the differential 

equation of motion reduces to 

(53) 

where 

(54) 

Using the method of separation of variables, we assume a solution of the form 

u(X,t) = ¢(x)q(t) 
(55) 

where ¢(x) is a function which depends only on space and q(t) depends only on time. 

Substituting Equation (53)into Equation (55), we obtain 

(56) 

Divide through by ¢xi and pull all terms with time dependence to the right hand side 

leads to: 

(57) 
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Since the left hand side is a function of X, and the right hand side is a function of time, the 

equation can only be true if both sides are equal to a constant to be determined. Calling 

this value OJn 2 , Equation (57) can be rewritten as: 

(58) 

and 

(59) 

where 

(60) 

The general solutions of Equation (59) and (60) are given as 

¢(x) = c1 sin(/Jx) + c2 cos(/Jx) + c3 sinh(/Jx) + c4 cosh(/Jx) (61) 

and 

(62) 

5.1.2 Constraint At Beam Base 

The base arrangement of the actual microcantilever beam system is quite 

complicated, consisting of either 2 support legs in a tee configuration (see Figure 2 ) or a 

staggered leg arrangement (see Figure 2 ). Due to this arrangement, there is clearly a 
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finite stiffness present at the beam base since without deformation of the support legs no 

signal would be measured. However, this work assumes that the beam base is fixed, 

allowing neither rotation or translation. One important question is whether this 

assumption is valid; if so, how much difference would it make to use an alternate 

arrangement that incorporates base stiffness into the model? 

The beam base resistance finite element model presented earlier (see Figure 19 

and Figure 20) contains the fully stiffness behavior of both the beam and the support 

base. During that solution, the model also calculates the 15t and 2nd natural frequency of 

the beam. Variations in the 15t natural frequency provide a measure of the effect that 

beam base stiffness is likely to have in the resonant frequencies of the beam as fabricated. 

According to the model, the natural frequencies do change somewhat with different base 

configurations; this is demonstrated in Figure 88 below. These results indicate that 

variation of 15t natural frequency on the order of 1-3% occurs due to beam base 

configuration. In this work, the effect of beam base stiffness will be neglected and the 

beam is modeled as fixed at the base. The effect of beam base stiffness could be included 

in future vibration models. 
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5.1.3 Mode Shapes of Cantilever Beam 

For a cantilever beam with length L, fixed at x=o and free at end x=L, the 

boundary conditions are: 

1. The displacement and the slope of the beam at the fixed end are zero, and 

2. The moment and the shear force on the beam at the free end are zero. 

These conditions can be written in mathematical form as: 

au a 2u a3u 
u(O,t) =-(O,t) =-2 (L,t) =-3 (L,t)=O 

ax ax ax (63) 

Equation (63) implies that: 

¢(O) = a¢ (0) = a
2

¢ (L) = a
3

¢ (L) = 0 
ax ax2 ax3 (64) 

Differentiating Equation (61) three times with respect to x leads to: 
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~: = {3(c] cos({3x) - C2 sin({3x) + c3 cosh({3x) + c4 sinh({3x)) 

d2~ = {32 (-c] sin(f3x) - c2 cos(f3x) + c3 sinh(f3x) + c4 cosh(f3x)) 
dx 

d3~ = {3\ -c] cos(f3x) + c2 sin(f3x) + c3 cosh(f3x) + c4 sinh(f3x)) 
dx-

Substituting Equation (64) into Equations. (61), (65),(66) and (67) leads to: 

- c] sin({3L) - c2 cos({3L) - c] sinh({3L) - c2 cosh({3L) = 0 

- c] cos({3L) + c2 sin({3L) - c] cosh({3L) - c2 sinh({3L) = 0 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 

Equation (68) and (69) require c 2 = -c] and C 4 = -c2 ' leaving only two unknowns (c], 

C2) to be determined. Equation (70) and (71) can be written in matrix form as 

(72) 

where a]], a]2, a2], a22 are given as 

a]] = sin({3L) + sinh({3L) (73) 
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a l2 = cos({3L) + cosh({3L) (74) 

a21 = cos({3L) + cosh({3L) (75) 

a22 = - sin({3L) + sinh({3L) (76) 

For nontrivial solution, the determinant of the matrix in Equation (72) must be O. This 

leads to 

(77) 

which is only satisfied by: 

cos({3L) cosh({3L) + 1 = 0 (78) 

This is a nonlinear equation which has an infinite number of roots ~L with which satisfy 

the first 4 being: 

PL = l.8751, 4.6941, 7.8548, 10.9955 
(79) 

For the rectangular beam considered here, 1= hbj(2 and ms = pbh ,where b is the 

beam width in plane of vibration, h is the beam height normal to the plane of vibration 

thickness of device layer, and p is the density of the beam material. Using Equation 

(60)and the expressions for I and m leads to: 

(80) 
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or 

(81) 

This can be compared with the frequency of free vibration of a cantilever beam without 

gas and damping: 

(82) 

Hence, it is clear that <On in Equation (81) is identical to the natural frequency of an 

undamped beam in which the beam mass per unit length has been augmented by an 

additional mass mg due to the gas (i.e. with mB replaced by mB + mg). If the gas causes no 

damping of the beam (i.e. cg = 0), the value <On will represent a natural frequency of the 

resonating cantilever beam. For systems in which detection is accomplished by mass 

adsorption onto the surface of the beam, this added mass is source of the frequency shift. 

For the system considered in this dissertation, the gas is damping the beam (i.e. cg * 0) 

and its presence leads to an inertial load component that can be considered as an additive 

mass mg traveling with beam (but not adsorbed to the beam surface). In both cases, the 

value <On then represents the undamped natural frequency (roo). The damped natural 

frequency rod is calculated in terms of this value using Equation (79); if the damping 

parameter a2 is non-zero, the value rod will be less than <On from Equation (81). 

Using Equation (70), the ratio of C2 to c] can be written as 
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2 = sin({JL) + sinh({JL) 

c, cos({JL) + cosh({JL) 

Substituting c] = - C3 and C4 = - C2 into Eq. (71) leads to: 

¢>(x) = c, {(sin({Jx) - sinh({Jx) + C 2 [cos({Jx) - cosh({Jx)]} 
c, 

(83) 

(84) 

Each different value of~ leads to a different form of¢>(x); there are known as the mode 

shape of the resonating microcantilever beam. 

5.1.4 Properties of The Mode Shapes 

Now represent the different mode shapes as ¢>} (x), j=l, ... , 00. Where j=l 

corresponds to ~L= 1.8751, j=2 corresponds to ~L=4.694, etc. Note that these mode 

shapes satisty Equation (55), or: 

(85) 

MUltiplying both sides by ¢>k (x) and integrating from 0 to L leads to: 

d
2
¢>;Cx) d¢>k(X) L (86) 

dx 2 dx 0 

Using the boundary conditions of Equation (63) and (64), Equation (86) reduces to: 
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(87) 

Switching the role of ¢; (x) and ¢k (x) leads to a related equation: 

(88) 

Subtraction of Equation (88) from Equation (87) leads to 

(89) 

From this, it is clear that if j =I k that 

(90) 

and from Equation (88) that: 

(91) 

For j = k, f: ¢;¢kdx = r (¢1 (X))2 dx is an arbitrary constant. If cdn Equation (84) is 

selected such that 

(92) 

the first four roots of C1 are then obtained as: 
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C1 = 64.8857, 90.0204, 88.3191, 88.3918 
(93) 

These values of c1 satisfies Equation (84) and the associated mode shapes <j>lx), j = 1, ... , 

00 , are referred to as the normalized mode shapes. 

5.1.5 Forced Resonance: F = Fo·sinCro·t) 

Of particular interest to this dissertation is the care of resonance induced by time-

varying end load. For the case of general distributed loading along the beam by f(x,t), the 

governing differential equation becomes: 

(94) 

Using the method of separation of variables, the displacement y can be written as 

~ 

u(x,t) = L¢j(x)qj(t) 
j=1 (95) 

where <j>lx) are the normalized mode shapes determined above. Substituting this into 

Equation (94), we obtain 

(96) 

Multiplying Equation (96) both sides by <hex) and integrating from 0 to L, we obtain 
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(97) 

r" All items in Equation (97) with j i- k on left hand side are zero and Jo ¢'/A = 1 with j = k. 

The equation can then be rearranged as: 

(98) 

where k has been replaced with j after simplification. Note that for a given value of j, 

Equation (98) represents force vibration of a single degree-of -freedom spring-mass-

damping system. Since j varies from 1 to 00, a cantilever beam can be thought of as a 

system of an infinite number of single degree-of-freedom spring-mass-damping systems. 

Consequently, the response of a vibrating cantilever beam may have an infinite number 

of individual vibration terms. 

To get a better understanding of the system and the response of the system, 

assume that the beam is initially in rest position and subjected to a point force F(t) acting 

at a point Xo. In this case, the initial conditions and the force f (x, t) can be written as 

u(x,O) = au~:,o) = 0 
(99) 

f(x,t) = O(x-xo)F(t) 
(100) 
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where 5( x - xo) is the Dirac delta function, which Dirac delta function can be 

characterized by two properties: 

Since, Equation (99) must be satisfied at all points of the beam, using Equation (55) leads 

to: 

q (0) = dqj(O) = 0 
} dt (101) 

Substituting Equation (100) into Equation (98), the right hand side of equation yields: 

1 il
. 1 iL 

¢/x)f(x,t)dx = ¢j(x)5(x - xo)F(t)dx 
m +m 0 . m +m 0 . 

B g B g 

= F(t) f /·¢(x)5(x-xo)dx= F(t) ¢(xo) 
m +m Jo } m +m } 

B g B g 

This result is due to the sifting property of the Dirac Delta function since 5(x-xo) has 

the effect of sifting the value ¢;Cxo) out ofthe integral of ¢} on [0, L]. [55] Equation 

(98) can now be expressed as: 

(102) 

In this dissertation, the electrostatic force applies at the end (xo = L) and the part 

of harmonic the force, F(t) = Fosin(ffit) is considered first, and Equation (102) reduces to: 

(103) 
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where Fo is the peak amplitude ofthe force. In an underdamped system (the only type 

considered in this dissertation), the solution of this equation is then expressed by the 

particular solution: 

q PI = K j cos(m t) + MI sin(m t) 

dq P·I = m (_ K j sine m t) + M.,. cos( m t) 
dt . 

d 2q ---fL = m2 (-K j cos(m t) - M) sin({O t) 
dt 

(104) 

where Kj and Mj are to be determined. Substitute Equation (104) into Equation (102), and 

collect the cosine and sine terms. Since there is no cosine term in F(t), the cosine terms 

must equal zero. Similarly, the sine terms must equal the forcing function on the right. 

This becomes: 

_ ,...,2M _ 2 K 2M = Fo n. (L) 
LV I a (O ) + (Onj I 'r) 

rn B +rng 

- (O2 K) + a 2{O M, + (Onl 2 K) = 0 
(105) 

The solutions ofMj and Kj are 

(106) 

Equation (104) can also be written in the form of 

q PI (t) = C)' sin(at -17)) 
(107) 
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where the amplitude C/* and the angle llj are given by 

C* =~M 2+K 2 = Fo 1 rjJ(L) 
J J J (ms + mg) ~(Wn/ -Oi)2 +(a2w)2 J 

M OJ 2 _w2 

tan77 . = _J = _n·c-J -::--_ 
I K a 20J 

I 

(108) 

It is now possible to write q PJ in the form 

qp)t) = K/ cos(w t) + M
J 

sinew t) = 
F, a 2w ° rjJ(xo)cos(wt)+ 

(ms +mg) (Wn/ _(2)2 +(a2w)2 J (109) 

F, (OJ2 -w 2) 
_-----'0'------_ J rjJ (Xo) sin( OJ t) 
(ms +mg) (wn/ _(2)2 + (a2w)2 J 

Now consider the solution to the homogeneous version of Equation (103), namely that 

with the right hand side equal to 0 

(110) 

This has the homogeneous solution q hj ; for underdamped system this becomes: 

(Ill) 

1 22 
~ 24 a 2 ~ a. where OJdj = - 40Jn I - a = OJn.J 1-(--) = OJn /" 1- ;- and;- = -- IS the 
2· 2OJ

nJ
· 2wnj 

damping ratio. The restriction of underdamped response means that the damping ratio E is 
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less than the critical value of 1. Since q j (t) = q hj (t) + q pj (t) is also a solution to 

Equation (94), the general solution is obtained as: 

(112) 

The Cs and C6 are determined from the initial conditions. The second condition gives 

q/O)=cs -C; =O...-?cs =-Kj 

dq/O) ;: -;{j)nKj +{j)Mj -'--- = -,:>{j)nc S + c 6 {j)d + (j)M, = 0 ...-? C 6 = ------'---"-m . % 
(113) 

From Equation (112) the general response of the underdampedjth mode becomes: 

Substituting Equation (100) into Equation (82), the beam displacement is obtained as: 

u(x,t) = I f{J/x)q/t) = 

~ <fl) I -;01nK. +01M . . 
L.J¢/x)[e - nJ (-K,COS{j)dt+ j j sm{j)dt)+Kjcos(01t)+Mjsm(01t)] 
/=0 {j)d 

F (01n 2 _012) 
where M = 0 Y ¢ (L) 

, (mR +m
l
) (01n/ _{j)2)2 + (a 2{j)) 2 j 

(115) 

F _a2{j) 
K = 0 ¢(L) 

, (mR+m
l
) (01n/-012)2+(a201)2 .I 

An example ofu(x, t) is plotted using Matlab in Figure 89 for a particular 

solution. The lateral vibration of cantilever beam is demonstrated in 3D which includes 
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changes of displacement u (m), time (s), and beam position x (m). The driving frequency 

in this case is set as 86 kHz which is closed to the natural frequency (oon). The vibration 

starts a beat signal in first several cycles and then goes harmonic vibration. 
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Figure 89. Vertical displacement of cantilever beam changes with time. (Left) 2 cycles; 

(Right) 40 cycles 

5.1.6 Forced Resonance: F = Fo·cos(oo·t) 

When force equals Fo·cos(oo·t), the derivation of beam behavior is similar for 

sinusoidal force as discussed in Section 5.1.3 . However, Equation (106) in this case 

becomes as: 

-aiM) -a2m K j +m,,/M ) =0 

-m2K j +a2mMj +mn/ K j = Fo ¢j (L) 
m8 + mg 

(116) 

The solutions ofMj and Kj are as: 
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2 

M = FO a3 . OJ ¢J(L) 
31 (m + m ) (OJ 2 _ OJ2)2 + ( 2. OJ)2 ) 

B g3 nl3 a3 

F (OJ 2 _ OJ2 ) 
K = 0 nj3 ¢J(L) 

31 (m +m )(OJ. 2 _OJ2)2+(a 2 .OJ)2 ) 
B g3 nl3 3 

(117) 

The form of expression ofu(x,t) corresponding to F = Fo· cos((co·t) is similar with u(x,t) 

corresponding to F=Fo·sin(co·t) in Equation (115). Except the change value ofMj and Kj 

which are shown in Equation (117). 

5.1. 7 Steady State Solution of Forced Resonance 

The general solution ofthe nonhomogeneous equation is q = qh + q p; this called 

the transient solution. The solution of homogeneous equation (qh) approaches zero as t 

goes to infinity if any damping is present (~>O). Practically, it is zero after a sufficiently 

long time. Therefore, as t~oo, q~ q p • Hence, after a sufficiently long time, the output 

will become steady state, corresponding to a purely sinusoidal input leading to a 

harmonic oscillation whose frequency is identical to that of the input. This is what 

happens in practice, because no physical system is completely undamped. [55] 

Resonance of the microcantilever beam which can be observed visually and 

experimentally is due to long-term forced resonance. In this case, the homogeneous 

solution part in Equation (115) could be cleared out. The long-term solution for F = 

Fo·sin(ro·t) is as: 

~ 

u2 = L rp/x)qp(t) = L¢J/x )[K2} cosOJt+M2JsinOJt)] 
j 1=0 

(118) 
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The long-term solution of beam for F = Fo·cos(ro·t) is as: 

= 

U 3 = I (fJ,(x)qp(t) = I¢/x)[K3jcosmt+M3 jsinmt)] 
.I j=O 

(119) 

The peak magnitude of beam tip displacement for u2 and u3 are same which could be 

expressed as: 

= = 

u= (I¢/L)*K)2+(I¢j(L)*M j )2 
1=0 j=O 

(120) 

The steady-state amplitude for cantilever beam is U
I 

= F; . L3 . This will correspond to 
3El 

ro~O. The system U goes to 00 when ro = ffin. Figure 90 shows the curve ofU vs. 

frequencies for F = Fo·sin( ro·t) . The cantilever beam resonates in air at room temperature 

in 1 atm. The frequency is swept from 80 kHz to 100 kHz. The frequency corresponding 

to the peak ofthe curve is the resonance frequency of cantilever beam. 
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Figure 90. Response of a vibration cantilever beam versus frequencies : F = Fo·sin( ro·t) . 

As discussed in Section 4.3, the electrostatic force including a sinusoidal force 

and also a cosine force. The cosine force has frequency of2ro. The U versus frequency is 

plotted in Figure 91 . Due to microcantilever beam being driven by 2ro, it resonates at 

frequency of ro which Y2 ofthe driving frequency. 

10.8 ,--_..,-_---.-_---, __ .---_-,-_--,-_---,-_-----, 

10.8 '--_--'-_---"-_--1 __ -'--_--'-_----'-_----'_-----' 
0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 

Driving frequency/resonating frequency 

Figure 91. Response ofa vibration cantilever beam versus frequencies: F = Fo·cos(ro·t) . 
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5.2 Device Behavior Under Driving Electrode Actuation 

In this section, the long-term displacement of micro cantilever beam responding to 

driving electrostatic force is considered. The electrostatic force as shown is: 

F = kilo + k~ sin(ax) - k~ cos(2ax) 
(121) 

Then the displacement of microcantilever beam responding to the electrostatic 

force shown above is expressed as: 

(122) 

Substituting u2 and u3 into Equation (118) and (119) to get long term solution, 

then the expression becomes: 

u = coo + cIO sin(ax) + CII cos(ax) + c20sin(2ax) + c21 cos(2ax) 

FL3 = = 
_I - + L¢/x)[K2 / cosO) t + M2J sin 0) t)] + L¢j (X)[K3j cosO) t + M3J sin 0) t)] (123) 
3n ~ J~ 

where 

= = 

c20 = L¢/x)M3 /, c2l = L¢/x)K3j 
(124) 

]=0 j=O 

where 
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~ = kho, F2 = kh1, F3 = kh2 

k = K(Eh)(!?"')3 K = 80 

4 L' (LlVO)2 

2 1 2 1 2 
hO = (Vo - VB) +2"(VH) , h1 = 2VH(VO - VB)' h2 = (2")(VH) 

Vo = OV, VB = 5V, Vii = 10V 

80 = 0.0 12,um, LlVo = 10V 

(125) 

Once the factors of Equation (124) are determined, the resonance behavior of 

microcantilever beam could be achieved. By using equations above, the displacement 

factors calculated for microcantilever beam driven by series different frequencies. Those 

factor values corresponding to different driven frequency individually listed in Table 23. 

The static row in the table corresponds to beam response with no inertial effects; in this 

case, the displacement factors are not available for this case. Driven frequencies of 1 kHz 

(low frequency well below OJn ), OJn /3, OJn /2, and OJn are chosen for demonstration below 

Coo clO Cll C20 C 2l 

Static - - - - -

1kHz 9.0000E-09 -1. 1995E-08 2.9458E-12 -3.1953E-12 -5.9997E-09 

OJn /3 9.0000E-09 -1.3502E-08 1.8502E-1O -5.4575E-1O -1.0809E-08 

OJn 9.0000E-09 8.0521E-08 2.2763E-07 -6.6638E-ll 1.7232E-09 

OJn /2 9.0000E-09 -1.5999E-08 4.2032E-10 -1.1382E-07 4.0260E-08 

Table 23. Displacement factors (in m) versus different frequency. 

For F(t)=kLly2, Lly2=(Ye- YBi, Ye =YEsin (rot) is the driving sinusoidal signal. Figure 

92,Figure 93 and Figure 94 shown the Ll y2 versus time corresponding to VB = 0, VB = 5 

and VB = 10 separately. The setting of VB = 5 leads most complex shape of Ll y2 changing 

with time and is chosen to be the setting for following plots. 
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Figure 92. Square of 11 V = (Ve - VBi for VE =10, VB =0. 
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Figure 93. Square of I1V = (Ve - VBi for VE = 10, VB =5. 
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Figure 94. Square of /)'Y = (Ye - y B) 2 for VE =10, VB =10. 

The Figure 95,Figure 96,Figure 97,Figure 98 and Figure 99 shows the plots of 

displacement of microcantilever beam versus time for the case of VE =10, VB =5 when 

the beam is in air at 1 atm. When driven frequency is very low relative to the first natural 

frequency (m"l = 92.768 kHz), the displacement of beam tip over time (Figure 95) is 

nearly identical to the static displacement under the identical F(t), which is simply a 

scaled version of /). y 2 (Figure 96). Cook [56] mentions that for a cyclic forcing function 

that if the frequency is less than one-third the first natural frequency of the structure, it 

will produce an undamped maximum response only about 10% greater than the static 

response to the amplitude of the load. Figure 97 shows that corresponding displacement 

of beam which driven by m,,/3 has the same curve shape of response of static force which 

is shown in Figure 95. The approximate displacement' s peak value from above plot 

shows that m,,/3 leads about 20% greater maximum response than the static case. As 

expected, when the driving electrode frequency equals mIl' a much larger displacement 
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occurs than in the static case (Figure 98). Of particular interest to the devices in this 

study, however, is the displacement for the case when the driven frequency is {J)n12 

(Figure 99); in this case, large displacements at a frequency equal to twice times of the 

driving frequency occur due to the portion ofthe driving force that is proportional to cos 

2mt. 

X 10.8 

3.5 ;.;-c:-,--------,------,-------,------,--r--,-----, 

3 

2.5 

2 

" 1.5 

7 

Figure 95. Beam displacement for VE =10, VB =5 with driving electrode voltage 

frequency of I kHz. 
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Figure 96. Beam displacement for static force for VE = 10, VB =5. 
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Figure 97. Beam displacement for VE = 10, VB =5 with driving electrode voltage 

frequency of COn /3. 
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Figure 98. Beam displacement for VE = 10, VB =5 with driving electrode voltage 

frequency of ffin. 
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Figure 99. Beam displacement for VE = 10, VB =5 with driving electrode voltage 

frequency of ffin/2. 

The peak displacement of tip beam, u, versus swept frequency is shown in Figure 

100 where the frequency is swept from 40 to 50 kHz, 80 to 100 kHz, and 40 to 100 kHz. 
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This result shows the clear resonant peaks in the regions near a driving electrode 

frequency of both ffin and ffin/2. This is significant because it demonstrates a clear 

mechanism by which beams which have a theoretical first natural frequency ffinl in the 80 

- 100 kHz range can be made to resonate using a driving electrode voltage in the 40-50 

kHz range (as occurs with beams studied in this dissertation and in previous related work 

at the University of Louisville). 
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Figure 100. Peak of displacement versus frequency for u: frequency swept (a) from 40-50 

kHz; (b) from 80-100 kHz; (c) from 20-120 kHz. 
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5.3 Damping Effect Characterization 

The undamped system driven by a sinusoidal force will tend to V I Vo ~ 00 as 

ro~<.On. However, the presence of damping leads to a finite peak value V I Vo at a 

frequency ro < <.On for frequencies in the region around <.On. For validation purposes, the 

displacement solution at any frequency can also be compared to the static solution which 

is identical to the case ro~ 0; for the cantilever beam with an end shear load this becomes 

5.3.1 Viscosity - Ideal Gas 

An ideal gas has a dynamic viscosity )l that is constant versus pressure; this was 

demonstrated by Maxwell using the kinetic theory of gas molecules [57]. In this case, the 

damping load acting on the beam due to the viscous effect of a surrounding gas from 

Equation (123) can be used to find the beam displacement via Mj and Kj, both of which 

c Y . me . k'·O} 
are related with a 2 = " = Since me = pbh and k' is a function of 

mB +m" mB +m" . 

~ W; , it is clear that a2 is dependent on p. It is clear that the beam under full vacuum 

should experience no damping effects (i.e. a2 ~ 0). This was considered using the 

analysis based on vibration theory and Stokes oscillating cylinder model with the 

dynamic viscosity kept constant and the density p = N po, where N is the number of 

atmospheres of air surrounding the beam and po is the density of air at 1 atmosphere; in 

this case, the value me similarly scales as me = N po b h. Since Y, mB and ware constant 
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as the density changes and the value of mg is small relative to mB, the undamped case 

will only occur if the product me k' tends to 0 as N ~ O. This is not the case, however, as 

demonstrated and listed in Table 24; these results also show that the damping load (cg) 

does not become 0 even at infinitesimally low pressures nor does the peak displacement 

tend towards a large value even though the system is driven at the first natural frequency. 

This indicates that there is a problem with simply using the damping loads developed 

using a fluid dynamics approach with gas viscosity that is constant even down to 

extremely low pressures. 

Pressure k'me cg bmax 

(atm) (N/m) (N/s) (m} 
1 1.77E-I0 1.34E-04 2.37E-07 

0.1 1.25E-I0 1.02E-04 3.43E-07 
0.01 9.05E-ll 7.36E-05 4.75E-07 

0.0001 5.98E-ll 4.86E-05 7.20E-07 
1.00E-06 4.45E-ll 3.62E-05 9.67E-07 
1.00E-09 3.21 E-ll 2.61E-05 1.34E-06 
l.OOE-12 2.51E-l1 2.04E-05 1.71E-06 
l.00E-15 2.06E-ll 1.68E-05 2.07E-06 

Table 24. Parameters versus pressure. 

5.3.2 Viscosity - Rarefied Gas and Knudsen Number 

Blom [22] indicated three regimes of beam damping behavior: 1) intrinsic; 2) 

molecular (or Knudsen); and 3) viscous. The intrinsic domain corresponds to extremely 

low pressure in which damping effects are entirely negligible. The viscous region is at a 

higher pressure where traditional viscosity relationships apply such as those used in the 

previous section (i.e. dynamic viscosity is independent of pressure). Between these lies 

the molecular (or Knudsen) region. In this domain, the kinetic theory of gases is used to 

develop an alternative set of damping loads that differ from those of traditional viscosity. 
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For the devices considered by Blom, with beam width of 0.5 mm, the molecular region 

was defined as pressure p = 1 - 100 Pa, with the regions above and below corresponding 

to viscous and intrinsic regions, respectively. 

The change of behavior from the viscous to the Knudsen regime is accompanied 

by a drop in the effective viscosity of the gas. Recently, Michalis et al [58] performed 

Monte Carlo simulations of nitrogen molecules traveling in a nanoscale channel at 

3000 K; using the resulting wall loads, an effective viscosity was calculated as a function 

ofthe Knudsen number, which is defined as: 

K = A 
n L (126) 

where "the mean free path A is the distance a molecule travels, on the average, between 

collisions" and L is a characteristic body dimension. For air, A = 2.27 xl 0.5 Tip, where T 

is the temperature in Kelvin and p is the pressure in Pa. [43] After reviewing several 

theories ofthe behavior oflow-pressure gas behavior, Michalis et al [58] recommend 

drag effects be calculated using an effective viscosity )1e of the form: 

/1e = /10 1 K +a n (127) 

where)1o is the traditional dynamic viscosity of the gas (independent of pressure) and a is 

a parameter that may vary depending on the gas; the value of a = 2 worked well for the 

nitrogen simulation and seems consistent with other theories that are compared in the 

article. This leads to a dramatic drop in viscosity as Knudsen number goes from small 
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values (viscous region) to large values (molecular / Knudsen region) as shown in Figure 

101. 
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Figure 101 . Effective viscosity me for nitrogen at 3000 K from simulation and compared 

to several models; the solid line corresponds to Eq. (127) with a = 2. [58] 

The findings described by Blom are consistent with those of the effective 

viscosity model above. Assuming properties similar to air at 3000 K using the 

recommended parameter of a = 2 leads to an effective viscosity of: 

p=lPa L=0.500mm ~ Kn=13.62 ~ ,ue =0.03541,uo 

p = 100 Pa L=0.500 mm ~ Kn = 0.1362 ~ ,ue = 0.78592 ,uo (128) 

which entirely consistent with the reported range of 1 - 100 Pa representing the 

molecular (Knudsen) region for the devices considered in Blom. 

The devices studied at the University of Louisville are roughly 300 times smaller 

than those studied by Blom; therefore, the Knudsen regime will be encountered at a much 

higher pressure. Using a characteristic length L in the Knudsen number equal to the 
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effective diameter of the beam cross-section (1.674 ~m), the effective viscosity can be 

estimated as: 

K = 0.03923 
n N ---7 fle = flo 1 + 0.0784~ (129) 

where N is the number of atmospheres of the air surrounding the beam. The effective 

viscosity drops to 90% of the pressure-independent value for N = 0.706 (537 Torr) and to 

10% of that same value when N = 0.00872 (6.6 Torr). If this model is adopted, the values 

ofk"m c and cg both decrease sharply as the pressure of the air surrounding the beam 

tends towards 0 as shown in Table 25. 

Pressure N k'm e 

(atm) (N/m) 
Cg 

1.00E-OS 4.S963E-IS 7.4712E-09 

1.00E-06 4.S963E-16 7.4716E-I0 

1.00E-IS 4.S963E-2S 7.47I6E-19 

Table 25. Damping parameters versus pressure after using effective viscosity formula 

based on Knudsen number for air at 300oK. 

5.3.2 Pressure Dependence 

The peak of displacement of microcantilever beam tip is plotted in Figure 102 

versus driving frequencies corresponding to different pressures. There are 7 curves 

corresponding for 7 different pressures individually. From flat curve to sharp (bottom to 

top), the pressure are 1, 1/3, 0.1,0.01, 10-3
, 10-4 and 10-5 atm. The last three curves (l0-3

, 

10-4 and 10-5 atm) are very similar to each other and cannot be clearly distinguished in 

Figure 102. Clearly, however, the value of ~max is more realistic than the earlier version 

using constant viscosity for all pressure values (see Table 25 in terms of peak 

169 



displacement omax). As expected, the peak resonant frequency shifts to lower frequency as 

the pressure increases and the sharpness of the peak increases as the pressure decreases. 

Another indication that these results are reasonable can be found in the experimental data 

from Yang [42] , shown in Figure 103 for lock-in amplifier signal amplitude, which looks 

quite similar in shape and character to the displacement data. The code of Matlab which 

plot the figure below is listed in Appendix D. 

10.3 .-------.--------r---,------.------r-----,--_______, 

1 e-5 atm 

1 e-4 atm 

1 e-3 atm 

\ 

~ 0.1 atm .. 
• ' atm 

1 atm 
1 0.7 L.-__ --'-__ ---'-___ ~ __ -'--__ ----'-__ ----''__ _ ___l 

0.97 0.98 0.99 1.01 1.02 1.03 1.04 
Driving frequency/resonance requenc y 

Figure 102. Peak amplitude of displacement vs. frequency with pressure as parameter. 
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Figure 103. Response curve for different pressures from Yang's experiment data. [42] 
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CHAPTER 6. SIMULATION OF SIGNAL AT LOCK-IN AMPLIFIER 

From all of the work done in the previous chapters, the voltage signal can be 

derived provided to the lock-in amplifier during beam sensor operation can be simulated. 

In this section, the derivation of relationship between electrostatic force, beam 

displacement, change of resistance at the base, and the voltage signal that goes to the 

lock-in amplifier is discussed in detail. 

6.1 Summary of the Relationship Developed 

The relationship between electrostatic force and displacement of beam tip was 

discussed in Section 5.2, and the Equation (123) shows as: 

u = coo + clO sin(OJt) + Cll cos(OJt) + c20sin(20Jt) + c21 cos(20Jt) 

FL3 ~ ~ 

_1_+ L9/x)[K2jcOsmf+M2jsinoU)]+ L9j(x)[K3jcOSmf+M3jsinmf)] 
3E1 ;=0 j=O 

F = kho + kh, sin(OJt) - k~ cos(20Jt) 

The relationship between displacement of beam tip and change of resistance of 

the beam base was discussed in Section 2.6. The normalized changes of resistance for 

symmetric base configuration and asymmetric base configuration (with a leg separate 

gam of2 Jlm)are expressed by Equation (9) and Equation (10), respectively. 
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where u is the tip displacement (in /lm). The relationship between change of resistance of 

beam base and voltage signal was discussed in Section 2.5. The Equation (5) is expressed 

as: 

where 

where 'l' is appropriate normalized beam base resistance change (either Rs or RA, 

depending on the beam base configuration). 

6.2 Simulation of the Signal to the Lock-In Amplifier 

Using the relationships expressed above, the signal in lock-in amplifier can be 

determined. One case is considered below in detail, corresponding to a driving electrode 

voltage of 10 sin rot, a beam voltage of 5 V and the beam operating in air at 1 atm. The 

tip displacement u will be periodic with time duration 2n/ro; this displacement can be 

provided to the obtain the change in beam base resistance over the same period (Rs or 

RA), which in tum allows the change in the lock-in amplifier signal L1 VL (i.e. the entire 

voltage minus the constant value corresponding to 0 beam tip displacement) to be 

determined. This signal can then be considered in term of optimal lock-in amplifier 
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settings, especially whether the " 1 f' or "2f' button (or some other arrangement) is most 

appropriate for the given experimental configuration. 

The peak displacement of beam tip run as a function of driving electrode 

frequency is shown in by frequency sweep, and shown that the microcantilever beam 

resonating at both frequencies of 00 and 2·00. The reason for the peak at 00 = OOnl / 2 was 

previously been demonstrated in Section 5.1.5 as being due to the component of the 

driving force that contains the cos(2·00·t) term. 

1D~~--~----~--~--~~--~--~----~ 
0.4 0.5 0.6 0.7 0.8 0.9 1.1 

Driving frequency/resonating frequency 

Figure 104. Peak displacement during a cycle as a function of driving electrode frequency 

(normalized by OOnl = 92.378 kHz) for VE = 10 and VB = 5. 

6.2.1 Simulation at 1 atm 

Both symmetric and asymmetric beam base are considered below for a beam 

operating in air at 1 atm. Because the maximum change in voltage provided for the lock-

in amplifier (Ll V L) occurs when Rb = Rr., it is assumed below that Rb = Rr= 14 kQ. 
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The system driven by frequency of (() is first considered. The electrostatic force 

F(t), displacement of beam tip u(t), the normalized change of beam base resistance Rs(t) 

and RA(t), and the voltage provided to the lock-in amplifier for the symmetric (~V LS) and 

asymmetric (~VLA) cases are are plotted in Figure 105,Figure 106,Figure 107,Figure 

108,Figure 109, and Figure 110, respectively, for a single driving electrode cycle period 

when operating at f = 92.378 kHz. For this driving frequency data at f= 92.378 kHz, the 

frequency of displacement the voltage at the lock-in amplifier is at the same frequency, 

although the symmetric base has some components that also appear to be at 2f. 

x 10·
g 

1.5 ~-----r----.----.--------r----.---------. 

0.5 

0.6 0.6 1.2 

x 10·' 

Figure 105. Electrostatic force (in N) versus time for f = fn! = 92.378 kHz 

175 



X 10.7 

3.----.-----.-----.-----.----~--~ 

2 

-1 

-2 

-3oL-------'0.2-----o...l..4-----o-'-.6-----o"-.B-----"-------'1.2 

X 10.5 

Figure 106. Displacement of beam tip (in m) versus time for f= fnt = 92.378 kHz. 
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Figure 107. Change of normalized symmetric base resistance versus time for f= fnt = 

92.378 kHz. 
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Figure 108. Change of normalized asymmetric beam base resistance versus time for f = 

fn l = 92.378 kHz. 
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Figure 109. Voltage change measured by lock-in amplifier for symmetric beam base 

versus time for f = fnl = 92.378 kHz. 
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Figure 110_ Voltage change measured by lock-in amplifier for asymmetric beam base 

versus time for f = fnl = 92.378 kHz. 

According the lock-in amplifier manual, the modal 5210 has limit frequency of 

internal oscillator which is from 5 Hz to 120kHz. So if2fis set in this test, the value of2f 

is 184.756 kHz which is bigger than the up limit oflock-in amplifier, no results will show 

up; therefore, only the " 1 f' setting can be chosen for the lock-in amplifier in this case. 

When system is driven by a driving electrode frequency f = (ffin I /2) I 21t, the 

system can still can be resonated. The electrostatic force F(t), displacement of beam tip 

u(t), the normalized change of beam base resistance Rs(t) and RA(t), and the voltage 

provided to the lock-in amplifier for the symmetric (L1 V LS) and asymmetric (L1 V LA) cases 

are plotted in Figure 105,Figure III ,Figure l12,Figure 113,Figure lI4,Figure 115, and 

Figure 116 separately. Note that the duration of each plot is twice that of the previous set 

of plots since the driven frequency is half the earlier value; as such, the time window 

corresponds to 2 periods at frequency f= COni I 21t. In this case, the frequency of 

displacement of beam tip, change of resistors, and voltage oflock-in amplifier all at a 
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frequency f = (Onl 121t or twice that of the driving frequency; the asymmetric base 

configuration also appears to include some components at twice this value (i.e. four times 

the driving frequency). 
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Figure 111. Electrostatic force versus time for f= 1ifnl = 36.189 kHz. 
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Figure 112. Displacement of beam tip versus time for f= 1ifnl = 36.189 kHz. 
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Figure 114. Change of normalized asymmetric base resistance versus time for f = Yz fnl = 

46.189 kHz. 
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Figure 116. Voltage change measured by lock-in amplifier for asymmetric beam base 

versus time for f = Y2 fn I = 46.189 kHz. 

Since the frequency ofthe signal received by the lock-in amplifier is double that 

of the driving (reference) frequency, the setting "2f ' must be set for lock-in amplifier for 
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the signal to can be captured clearly. Alternately, if " 1 f ' is set, then no signal will be 

captured. This finding explains well why both the symmetric base and asymmetric base 

configurations must both use the "2f' setting to capture the signal. 

6.2.2 Simulation at 1 E-5 atm 

The beam behavior is different due to the damping that exists in the earlier case. 

The calculations are now repeated to simulate the received lock-in amplifier voltage in 

the case of low damping forces due to the near-vacuum condition. The system response 

for both a driven frequency off= fnl = 92.368 kHz (left side images) and a driven 

frequency off= !Ii fnl = 46.189 kHz (right side figures). As in the earlier figures, the time 

duration is equal to one period ofthe driving electrode signal ; therefore, the figures on 

the right are for twice the duration of those on the left. 
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Figure 117. Displacement of beam tip versus time: (left) f = fnl ; (right) f =!Ii fnl . 
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Figure 119. Change of nonnalized beam base resistance for asymmetric base versus time: 
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Figure 121. Voltage into lock-in amplifier for symmetric base versus time: (left) f= fn1 ; 

(right) f = Y2 fn1 • 

The results shows that in vacuum cases, the frequency voltage of asymmetric base 

is the same as driving frequency when input is 00, and double when input is 00/2. 

The frequency voltage of symmetric base is double of the driving frequency when 

driven by frequency of 00. In this situation, the voltage signal could be captured by "2f'. 

When driven frequency is changed to 00/2, the responding frequency is 200 which equals 4 

times driven frequency. 
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6.3 Conclusion 

This new understanding of the lock-in amplifier signal during resonance is an 

important finding. From the driving signal at the electrode, through electrostatic force, 

displacement of beam tip, change of resistor of base, then the signal transferred to the 

lock-in amplifier is estimated. This finding makes it clear why the signal can be found 

when the driving electrode is at the half of the resonance frequency of the beam only 

when the lock-in amplifier is set as '2f'. This provides a good foundation for further 

testing. 
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CHAPTER 7. CONCLUSION 

This dissertation describes several important research investigations into the use 

ofpiezoresistive microcantilevers beams as a gas sensor. This began with a new 

fabrication method that is beneficial in simplifying the approach and reducing the time 

required in the fabrication process. The new approach, while promising, also raised 

several new problems like width variation ofthe beams across the whole wafer and 

device leakage. The reason for those problems was investigated and thought to be due to 

the ORIE procedure, as the large exposed area of wafer may cause an overetch in ORIE. 

A new beam mask was designed as a possible way to fix the problem. Due to a shortage 

of both time and funds, the new mask has not been tested and this remains the subject of 

future work. The operation of the sensors in vacuum was shown to indicate that 

resonance is possible with devices made using the new approach. 

Simulation using 20 computational fluid dynamics modeling has indicated that 

an accurate representation of fluid forces can be obtained under both steady state and 

oscillatory motion; this dissertation investigated into the effect of items of interest (beam 

cross-section, effect of handle layer below beam) to better understand the impact these 

have on the fluid forces. The forces for each case were calculated and compared to obtain 

a factor for the cross-section effect and the floor effect. These CFO efforts have been 

compared with the oscillating cylinder model developed by Stokes to predict the 

coefficients cg and mg to determine the drag force acting at the end of the resonating 

beam. The relationship between Stokes' theory value and CFO showed outstanding 
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agreement. Therefore, the factors for the cross-section and floor effects can be applied to 

Stokes' model mg and cg values with confidence. 

An understanding of the nature of the driving force for resonance (electrostatic 

attraction between the beam tip and the driving electrode) has also been modeled using 

finite element analysis. The response ofthe system to this load was then obtained. This 

provides a valuable insight into the likely reason why beams tend to vibrate when the 

driving electrode frequency is one half of the anticipated beam natural frequency. The 

behavior of a beam resonating in air at 92 kHz is developed to show the beam motion 

with time. The damping effect characterization is studied and has the same character as 

data presented in previous research. 

One important finding from the modeling effort relates to the voltage at the lock­

in amplifier. This work demonstrates clearly how the signal changes with time 

corresponding to the input voltage at the driving electrode and beam base. Those 

findings explained why the resonance signal is captured in the lock-in amplifier when the 

driving electrode is driven at one-half of the resonant frequency of the beam only using 

the "2f" setting, regardless of the style of beam base configuration. 

This research provides a good foundation to better understand the fabrication, 

modeling and operation of the piezoresistive microcantilever beams considered in this 

research study. It is anticipated that this work will foster the future development of gas 

sensors based on this technology. 
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APPENDIX A 

This Appendix contains measurements made in the SEM for beams on the devices 

indicated. A narrative of the testing history is also provided below. 

width1# 1.1 11m 2# 1.3 11m 

beam 1 0.6767 beam 1 broken 

beam 2 0.7181 beam 2 1.045 

beam 3 0.7507 beam 3 1.054 

beam 4 0.6891 beam 4 0.9805 

beam 5 0.6891 beam 5 0.9805 

beam 6 0.635 beam 6 broken 

beam 7 0.7234 beam 7 0.9534 

beam 8 0.5603 beam 8 1.036 

beam 9 0.5293 beam 9 1.095 
beam 10 base broken beam 10 1.095 

3# 1.3 11m #4 1.1 11m 
beam 1 0.7592 beam 1 0.9359 

beam 2 0.806 beam 2 0.9896 

beam 3 0.567 beam 3 0.9805 

beam4 0.7062 beam 4 base broken 

beam 5 0.7848 beam 5 base broken 
beam 6 0.7848 beam 6 0.7937 

beam 7 0.7952 beam 7 0.9338 
beam 8 broken beam 8 0.8863 

beam 9 broken beam 9 0.9481 

beam 10 0.551 beam 10 1.045 
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#5 1.7 1lm #6 1.11lm 

beam 1 0.9719 beam 1 0.9178 

beam 2 1.021 beam 2 0.8146 

beam 3 0.8484 beam 3 broken 

beam 4 1.028 beam 4 broken 

beam 5 0.893 beam 5 0.7005 

beam 6 0.9907 beam 6 0.8923 

beam 7 0.9641 beam 7 0.8137 

beam 8 1.07 beam 8 0.9133 

beam 9 0.9181 beam 9 0.9016 

beam 10 0.7056 beam 10 0.9164 

#7 1.7 1lm #8 1.31lm 

beam 1 0.5464 beam 1 broken 

beam 2 0.5056 beam 2 1.061 

beam 3 0.4675 beam 3 1.039 

beam 4 0.5862 beam 4 1.039 

beam 5 0.6208 beam 5 0.8853 

beam 6 0.5549 beam 6 broken 

beam 7 0.5826 beam 7 0.9558 

beam 8 0.553 beam 8 0.9094 

beam 9 0.5761 beam 9 1.008 

beam 10 0.7381 
beam 

1.008 
10 

#9 2.11lm #11 1.11lm 

beam 1 0.6589 beam 1 
base 

broken 

beam 2 0.6753 beam 2 1.061 

beam 3 0.8412 beam 3 1.039 

beam4 0.7582 beam 4 1.039 

beam 5 0.8502 beam 5 0.8853 

beam 6 1.129 beam 6 broken 

beam 7 0.9157 beam 7 0.9558 

beam 8 1.044 beam 8 0.9094 

beam 9 1.099 beam 9 1.008 

beam 
0.8952 

beam 
1.008 

10 10 
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#12 2.1 11m #14 1.3 11m 

beam 1 broken beam 1 0.7834 

beam 2 
1.129 base over 

beam 2 0.7834 
ethch 

beam 3 1.082 beam 3 0.7719 

beam 4 1.77 beam 4 0.7477 

beam 5 1.77 beam 5 broken 

beam 6 1.271 beam 6 0.7203 

beam 7 1.238 beam 7 0.7398 

beam 8 1.204 beam 8 0.7398 

beam 9 1.736 beam 9 0.6834 

beam 
1.821 

beam 
0.7477 

10 10 

Device Test History 

Device was tested in probe station for different purposes: 1) For each beam's 

resonating frequency; in this case, the beam's frequency was recorded and listed in the 

following tables. 2) Other tests like for signal analysis using oscilloscope, pressure 

leakage in probe station, leakage test for S02 layer, DC effect and AC effect in frequency 

shift, and pressure effect etc. In these tests, a bunch of beams were put into tests, but the 

frequencies were not recorded clearly. 

Wafer A 

Unit: kHz 1.3Jlm 1.1Jlm 1.3Jlm 

beam 1 56.89 x 32.47 

beam 2 56.34 45.74 x 
beam 3 x 36.8 x 
beam 4 56.17 46.35 31.83 

beam 5 broken electrode broken 35.46 

beam 6 35.8 x 38.5 

beam 7 x 40.25 32.53 

beam 8 x 35.83 33.18 

beam 9 47.57 37.4 32.2 

beam 10 54.31 38.8 x 
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Wafer A 

Unit: kHz 1.3Jlm 1.3Jlm 1.1Jlm 

beam 1 x x x broken 

beam 2 38.85 31.13 x 39.98 

beam 3 36.18 30.11 36.7 35.94 

beam 4 x 24.42 x broken 

beam 5 x x 37.24 broken 

beam 6 x x 37.4 33.67 

beam 7 34.89 28.35 36.13 32.4 

beam 8 32.2 x 35.5 33.12 

beam 9 33.2 70 33.2 33.2 

beam 10 33.5 20.35 broken dust 

Wafer B 

Unit: kHz 1.1Jlm 1.1Jlm 

beam 1 x x 
beam 2 x x 
beam 3 broken x 
beam 4 x x 
beam 5 stick x 
beam 6 48.74 31.82 

beam 7 x x 
beam 8 x x 
beam 9 x x 

beam 10 x x 

Among 9 devices which were testing for natural frequency, the device from 

wafer B is hard to be resonated. The reason should be investigated. The devices from 

wafer A are mainly about 1.1 and 1.3 /lm of beam width. Most driving electrode 

frequencies are in the range of 30-40 kHz; however, some devices had as high a value as 

55 kHz and others had as low as 20 kHz. It should be noted that the 20 kHz case was 

obtained accidently; it was tried after the beam resonated at 40 kHz. It is possible that 

other devices have a lower resonating frequency similar to this one; this was not tested in 
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the interest of time. Another possibility is that 40 kHz could represent the resonant 

frequency ofthe beam and then 20 kHz was the second peak for driving at one-half the 

beam resonant frequency; this would be feasible ifthe beam width was well below the 

intended value (perhaps on the order of 0.6 - 0.7I...1m). 
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APPENDIXB 

Below are images for future device masks 

, 

, 
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APPENDIXC 

This section contains the MathCad document used to generate the Stokes 

oscillating cylinder model values for k and k' as functions of parameter m. The 

verification of the values as well as the details of the curve fit are presented. Each page of 

the MathCad printout is reproduced here as an embedded image. 
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Calculation of Stokes ' Model Parameters - Oscillating Cylinder 
Roger Bradshaw, 4 March 2011 

Update, 28 NClIIember 2012 - Added Curve Fits 
Update, 11 December 2012 - Dissertation Vers ion 

This document implements the Stokes oscillating cylinder model . The model and all scanned text below were taken from 
the paper "Stokes, G.G. On the effect of the intemal friction of fluids on the motion of pendulums. Transactions of the 
Cambridge Philosophical Society, 1850. Vol . IX, p. 8", from http://www.nawcc-index.netJArticlesIStokes-lntemaIFriction.pdf. 
A better reference is to use Stokes' collected papers : G.G. Stokes. Mathematical and Physical Papers, Vol. III , 1901 , 
Cambridge at the University Press (accessed as digitized version from the University of \Msconsln volume). 

SI - Equation (86) 

i 
. ~ 1 

S(l):= L.. -:- S(I ) = 1 S(2) = 1.5 S(3) = 1.833 S(4) = 2083 

j = I J 

Power Advance Terms - these convert j into appropriate powers for next equations 

p(j) := 4'J - 2 

q(j) := 4 'J 

p(l) = 2 

q(l) = 4 

p(2) = 6 

q(2) = 8 

p(3) = 10 

q(3) = 12 

MOl - Equation (103) - This is one term where powers advance 2, 6, 10, etc. 

MO(m,j ):= (2'J- I J IT k2 .(2j-ll-1 

k=1 

M0(2 , 1)= 4 

22 
- =4 
1 

M0(2,2) = -5.333 

26 
-- =-5.333 

223 

MOPI - Equation (103) - This is one term where powers advance 2, 6. 10, etc. 

MOP(2.1) = 4 

22 
- = 4 
1 

MOp(2.2) = -1.778 

2
6 

--= -1.778 
2232 

M0(2,3) = 0.356 

2
10 

--- =0.356 
2232.42 5 

MOP(2.3) = 0.071 

2
10 

0.071 

NOI - Equation (103) - This is one term where powers advance 2. 6, 10, etc. and with S terms 

NOTE - for mI. I!U!!. m"' I. I Qpg In S«!kn. It indicates Si terms advanced 1, 2, 3 but they do not in 
the NO' sequence (there they go 1. 3,5, ... ). Using the corrected version for NO using S1 , S3. S5, ... leads to 
answers identical to the Stokes table on p. 34. The results match for all values of m given. 

. (-1 ~+lmp(j) S(2j - I ) 

NO(m.J) := (2'J-1 J 
kI] k

2 
·(2j If I 

N0(2, I ) = 4 

2
2

S(1) 
-- = 4 

1 

N0(2.2) = -9.778 

2
6

'S(2) 
--- =-8 

223 

N0(2, 3) = 0.812 

2
IO

S(3) 
--- =0.652 
2232 42 5 

NOI1- Equalion (103) - This is one term where powers advance 2, 6, 10. etc. and with S terms 

. (-l~+I . mp(j)S(2j-l) 
NOp(m,j):= ( J 2.J- I 

IT k
2 

k= I 

NOp(2.1) = 4 

22S( 1) 
-- = 4 

I 

NOp(2,2) = - 3.259 

26S(3) 
- -- =-3.259 

2232 

203 

NOp(2,3) = 0.162 

2
1
0.S(5) = 0.162 

2232 42 52 



Me; - Equation (103) - This is one term where powers advance 4. 8, 12, etc. 

Me(2, 1) ~ 8 

24 
-~8 
1·2 

Me(2, 2) ~ -I 778 

2~ 
---~-1.778 

2232 4 

Mep; - Equation (103) - This IS one term where powers advance 4, 8, 12, etc 

Mep(2, I) ~ 4 Mep(2,2) ~ -0.444 

2
8 

---- ~ -D444 
2232 42 

Me(2. 3) ~ 0.047 

212 
--"--- ~ 0.047 

2232 42 52 6 

-3 
Mep(2,3) ~ 7.901 x 10 

Ne; - Equation (103) - This IS one term where powers advance 4,8, 12, etc. and with S terms 

Ne(2.j)-12 Ke(2,2) - -3.704 Ne(2,3) - 0.116 

2
12

S(6) ----==--='-- ~ 0.116 
2232 42 52 6 

Nep; - Equation (103) - This IS one term where powers advance 4,8, 12, etc. and with S terms 

Nep(2, I) ~ 6 

2
4

S(2) 
--~6 

1.22 

Nep(2,2) ~ -0.926 

2
8

S(4) 
~--=---O.926 

2232 42 

Nep(2,3) ~ 0.019 

2
12

S(6) 
---'--'-- ~ 0.019 

2232 42 52 62 

Now add up the indi~dual terms to get the terms needed for the next step (add S for sum). 

N 

MOS(m,N) :~ L MO(m.j) 

j ~ I 

N 

NOS(m,N):~ L NO(m,j) 

j ~ I 

N 

MeS(m,N):~ L Me(m,j) 

j ~ I 

l\ 

NeS(m,N):~ L Ne(m,j) 

j ~ I 

N 

MOpS(m,N):~ L MOp(m,J) 

j ~ I 

N 

KOpS(m,N):~ L NOp(m,J) 

j ~ I 

l\ 

MepS(m,N)'~ L Mep(m,j) 

j ~ I 

N 

KepS(m,N):~ L Ncp(m,j) 

j~ I 

gamma:~ "t float --> O.577215664S1JI53286061 L(m) :~ In(m) + gamma 
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Create kFuU as a single term using various product series . The desired terms k and k' will then result as the real and 

imaginary parts of this term, respectively. 

KPtI(m.N):; -I..(m) MOS(m.N) + 2: ' MeS(m.N) - L MOpS(m , N) + OS(m.N) 
4 2 

KPt2(m,N):; ~ .MOS(m,N) + L(m)·MeS(m.N) - .!. '( I - MepS(m .N)) - NeS(m,N) 
4 2 

KPI3(m, N):; --2: .MOpS(m ,N) + L(m)·( 1 - MepS(m.N)) + Nep (m,N) 
4 

KPt4(m,N):; -I..(m}MOpS(m,N) - 2:.( 1 - M""S(m , N)) + NOpS(m ,N) 
4 

KFuIl(m, N):; I + 2... KPt I(m ,N) + KPI2(m.N) p 
m2 KPt3(m.N) + KI'14(m.N)'.J=T 

K_Rc-(m,N):; Re(KFull(m .N)) I n Stokes' paper, k is the real part of KFull - call it K_Re 

Kp_lm(m, N) :; Im(KFull(m , N)) In Stokes' paper, k' is the imaginary part of KFull - call it Kp_l m 

Can test several values here: mval :; 0.30 K_Re(mvnl ,40) ; 6. 166 Kp -'m(mval. 40) ; 9.258 

Compare these to the table printed in Stokes' paper. 

1ft k lr' 1ft
2k 1ft 2k' 1ft k Ie' 

0 "" X> 0 0 2.1 1.671 .7m 
-119.70 48.63 .1970 .4863 21 1.646 .7421 
.1 9.166 16.73 .3666 .6691 23 1.618 .7059 
.3 6.166 9.258 .5549 .8832 2.4 1.592 .6730 
.4~.771 6.185 .7633 .9896 2.5 1.568 .6430 
.53.968 4.567 .9920 1.142 2.6 1.546 .6154 
.63.445 3.589 1.240 1.292 2.7 1.526 .5902 
- / 3.082 2.936 1.510 1.439 2.8 1.507 .5669 
.8 2.812 2.477 1.800 1.585 2.9 1.489 .5453 
.9 2 .~ 2.137 2.110 1.731 3.0 1.473 .5253 

1.0 2.439 1.876 2439 1.876 3.1 1.457 .5068 
1.1 2.306 1.678 2790 2021 3.2 1443 4&95 
I....! 2.194 1.503 3.160 2.1~ 3.3 1.430 .4732 
1. 2.102 1365 3.552 2.307 3.4 1.417 .4581 
1.4 2.021 1.250 3.961 1.450 3.5 1.405 .4439 
1.~ 1.951 1.163 4389 2.595 3.6 1394 .4305 
1.6 1.891 1.069 4.841 2.739 3.7 1383 .4179 
1. 1.838 .9965 5312 2.880 3.8 1373 .4060 
1.8 1.791 9332 5.804 3024 3.9 1363 3948 
1.9 1.749 .8767 6314 3.165 4.0 1354 3841 
2 0 1.711 .8268 6.945 3307 OD 1 0 

Now compare the tables side by side to ensure good match: 

p :; 1 .. 40 Ap.O :; 0.1 P 

AO.O:; 0 

A
p

.
1 
:; K_Re(O. I·p.40) 

Au, I :; 
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1ft ' k 1ft 2k' 
739:) 3.4:)0 
7.966 3.592 
8.557 3.734 
9 168 3.an 
9.799 4.019 
10.45 4.160 
11.12 4.303 
11.81 4.444 
1152 4.586 
13.25 4.nB 
14.01 4.870 
14.78 5.012 
15.57 5.154 
16.38 5.296 
17.21 5.437 
18.06 5.580 
18.93 5.721 
19.82 5.863 
20.13 6.005 
21.67 6.145 

00 QI) 

A
p

.
2

:; Kp_lm(O. I·p,40) 

Ao.2 :; 



m k' 

0.0000 1.0000' 10307 1.0000 '10307 

0.1000 19.6995 46.6296 

0.2000 9.1655 16.7263 

0.3000 6.1660 9.2564 

0,4000 4 .7706 6.1649 

0.5000 3.9660 4.5666 

0.6000 3. 4472 3.5663 

0.7000 3.0822 2.9363 

0.8000 2.8122 2,4769 

0.9000 2.6044 2.1368 

1.0000 2.4395 1.8757 

1.1000 2 .3054 1.6695 

1.2000 2. 1943 1.5028 

1.3000 2.1007 1.3655 

1.4000 2.0207 1.2505 

1.5000 1.9516 1.1529 

1.6000 1.8913 1.0692 

1.7000 1.8382 0.9965 

1.8000 I. 7910 0.9329 

1.9000 1.7490 0.8767 
A_ 2.0000 I. 7111 0.8269 

2.1000 1.6770 0.7823 

2.2000 1.6459 0.7422 

2.3000 1.6176 0.7059 

2,4000 1.5917 0.6730 

2.5000 1.5679 0.6430 

2.6000 1.5459 0.6155 

2.7000 1.5255 0.5902 

2.8000 1.5067 0.5669 

2.9000 1.4891 0.5454 

3.0000 1.4727 0.5254 

3.1000 1.4574 0.5068 

3.2000 1.4430 0.4895 

3.3000 1.4296 0,4733 

3.4000 1.4169 0.4581 

3.5000 1.4049 0.4439 

3.6000 1.3936 0.4305 

3.7000 1.3829 0.4179 

3.6000 1.3728 0.4060 

3.9000 1.3632 0.3948 

4.0000 1.3541 0.3841 

Side by side comp8!ison sh0'<\6 e:ox:ellent agreement bet\l\een the stokes origina l tables and the current functions . 
Therefore, there is high con~dence that the current approach accLll'8lely reflects the original stokes model . 
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Now consider the development r:I a curve fit of k and k'. This will be based on two approximations that stokes noted 
in his original paper for very small values of m and large values of m. The region in between is where the current 
curve fit will be pursued. 

The beginning r:I the table can be approximated as . 

Whm m is \'8}' small \\"t DIIY DtgIect tilt powm of . in tilt IIIIIIIfDtor md delmliDator of tilt fndim m 

tilt ngIII-bmd ~ of ~ (lOS), Imming aaly tilt 1apriIbms IDd tilt CIDStIZII tmIIS. We IiIII !ft 

.' (i-I). L' }'(l,..ji' -L 
ri~ - [j + (~)' ... {llS), 

Lets try this as an approximation (letter S = small for small values of m) 

-4..l 
mS. ·= 10 8 

) 
Small values of m, evenly spaced in log m between 0.0001 and 10 j:= 0 .. 40 

AS 2:= Kp Im(mS .40) 
) , ) 

Stokes Equations AS := mS 
), 0 ) 

AS . 3 := kSapp(mS.) 
) , ) 

AS. 4 := kpS.pp(mS.) 
) . ) 

Approx Equations 

AS 3- AS . 1 
AS . := 100· ) ' ) , 

) , 5 ASj ,1 

AS. 4 - AS. 2 
AS. := 100· ) ' ) , 

) , 6 ASp 
Percent Error 
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m k kp kS app kpS app k PetErr kp PetErr 

1'10-4 1.045'106 1.149'107 1.045'106 1.149'107 2.146'10-4 -2.029'10-7 

1.334'10-4 6.286'105 6.679'106 6.286'105 6.679'106 3.582'10-4 -3.745'10-7 

1.778'10-4 3.79'105 3.888'106 3.79'105 3.888'106 5.966'10-4 -6.923'10-7 

2.371'10-4 2.29'105 2.266'106 2.29'105 2.266'106 9.916'10-4 -1.282'10-6 

3.162'10-4 1.388'105 1.322'106 1.388'105 1.322'106 1.644'10-3 -2.377'10-6 

4.217'10-4 8.433·1()4 7.725'105 8.433·1()4 7.725'105 2.719'10-3 -4.416'10-6 

5.623'10-4 5.141·1()4 4.52'105 5.141·1()4 4.52'105 4.486'10-3 -8.221'10-6 

7.499'10-4 3.144·1()4 2.65'105 3.144·1()4 2.65'105 7.379'10-3 -1.533'10-5 

1'10-3 1.93·1()4 1.556'105 1.93·1()4 1.556'105 0.012 -2.867'10-5 

1.334'10-3 1.189·1()4 9.152'104 1.19·1()4 9.152·1()4 0.02 -5.375'10-5 

1.778'10-3 7.361'103 5.394'104 7.363'103 5.394·1()4 0.032 -1.01'10-4 

2.371' 10-3 4.577'103 3.187'104 4.579'103 3.187·1()4 0.052 -1.905'10-4 

3.162'10-3 2.861'103 1.887'104 2.863'103 1.887·1()4 0.084 -3.604'10-4 

4.217'10-3 1.798'103 1.121'104 1.801'103 1.121·1()4 0.136 -6.846'10-4 

5.623'10-3 1.137'103 6.675'103 1.14'103 6.675'103 0.217 -1.306'10-3 

7.499'10-3 724.311 3.988'103 726.808 3.988'103 0.345 -2.503'10-3 

0.01 464.82 2.392'103 467.353 2.392'103 0.545 -4.825'10-3 

0.013 300.B21 1.44'103 303.396 1.44'103 0.856 -9.358'10-3 

0.018 196.51 871.074 199.133 870.914 1.335 -0.D18 

0.024 129.7 529.533 132.378 529.342 2.065 -0.036 
AS~ 0.032 86.582 323.742 89.326 323.51 3.17 -0.072 

0.042 58.523 199.197 61.345 198.91 4.B22 -0.144 

0.056 40.099 123.451 43.014 123.0B9 7.268 -0.293 

0.075 27.884 77.13 30.90B 76.663 10.B4B -0.606 

0.1 19.7 48.63 22.B55 48.01 16.016 -1.274 

0.133 14.156 30.973 17.459 30.126 23.337 -2.734 

0.178 10.357 19.948 13.811 18.753 33.353 -5.99 

0.237 7.722 13.005 11.272 11.272 45.963 -13.327 

0.316 5.874 8.59 9.299 6.066 58.307 -29.387 

0.422 4.562 5.752 7.32 2.304 60.471 -59.952 

0.562 3.62 3.906 5.026 -8.045'10-3 38.836 -100.206 

0.75 2.938 2.689 2.994 -0.735 1.886 -127.32 

1 2.439 1.876 1.827 -0.608 -25.119 -132.392 

1.334 2.072 1.325 1.324 -0.356 -36.138 -126.899 

1.778 1.801 0.946 1.128 -0.187 -37.382 -119.804 

2.371 1.599 0.682 1.052 -0.095 -34.213 -113.95 

3.162 1.448 0.496 1.022 -0.048 -29.451 -109.671 

4.217 1.336 0.363 1.009 -0.024 -24.436 -106.673 

5.623 1.252 0.267 1.004 -0.012 -19.774 -104.604 

7.499 1.189 0.197 1.002 -6.284'10-3 -15.713 -103.184 

10 1.144 0.145 1.001 -3.232'10-3 -12.481 -102.232 

Small error for m < 0.01 (around 0.55% for k and 0005% for kp) 
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Now repeat tre process for k and k' using tre approximation with the form similar to the sphere equation: 

From m ~ .3 or .4 to me end of~ table, tbe fint difference of each of tile f\wctious in m' (k - I ) BUd m'k) 
will fellJaW n"",rly <oustom. Hmce fol' • cousiderable l1luge of valli" of ... <Bell of me functions way be exp!""""d 
Pl'crty accurately by .~ + am Wheu m is at aU large. ~ frrst IWO letm in the 2nd Ind 3rd of tile formulae (113) 
will give" aDd k' wim eOllSlckrabl. aCCIU'BCY. bee.u . indqJeuckutly of the d<crea of tb. succcs ive Quantiti 
m" m" m ·l .... ~ cocfficU!1l.1S m" and m" are considerably larger lban those of se0m:'81 of the S\lc~!! 
powers. If we neglect in ~e formula. ~ tcullS • ftcr ,;, w< get 

k= 1 + "'2 . ai', "'="'2 ...... +i III". 

It Ulay be rOlJalkcd llIat rl1= approximare cxp,cssious. regarded as tluJctlou ot the radJus n, bave prcd~1y ~ 
ame form as We cxact c"pressions obmiued for. sphere. the eocffieicurs only being differcnt. 

Lets calculate Ire constants as described below: 

m Bv. :~ 0.25 + 1. 
J 8 

j :~ 0 .. 46 Points evenly spaced between 0.25 and 6.00 

Trese are from stokes model 

(N added since normalized t:Jy m2) 

F~ th is data with a line: CkNv :~ line(mBv, kNv) CkpNv :~ line(mBv,I.:pNv) 

CkN} ~ (0.029 1.41) Very close to (k - l )-m2 ~ 0 + ..f2.m which becomes k = I + :!i 
m 

CkpNv T ~ (0.45 1.423) Very Close to WI1lcn oecomes kp =:Ii + _1-

m 2.m2 

We can n<:JN plot each of trese with a linear fit as (using stokes approximation not line f~s above): 

IOIr---------------------------~----------------------~----~ 

_~~~J 
{ i..mBVJ 

1 
-+f2.mBvj 
2 

1 

mBvJ 

Deviations are easierto see on log-log plot - appears to be around m = 1 is good stopping point. 

As before, create a table of values for comparison (use letter B for big values of m): 

AB. - AB. 
AB :~ 100. J , 3 J, I 

J , 5 AB 
j , l 

AB. 4 - AB. 2 
AB. :~ 100. J . J , 

J,6 AB. 
J ,2 
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Stokes Equations 

Approx Equa1ions 

Percent Error 



0.25 7.333 12.04 

0.375 5.044 6.763 

0.5 3.968 4.567 

0.625 3.344 3.4 

0.75 2.938 2.688 

0.875 2.652 2.213 

1 2.439 1.876 

1.125 2.276 1.625 

1.25 2.146 1.431 

1.375 2.04 1.277 

1.5 1.952 1.153 

1.625 1.877 1.05 

1.75 1.814 0.964 

1.875 1.759 0.89 

2 1.711 0.827 

2.125 1.669 0.772 

2.25 1.631 0.724 

2.375 1.598 0.681 

2.5 1.568 0.643 

2.625 1.541 0.609 

2.75 1.516 0.578 

2.875 1.493 0.551 

3 1.473 0.525 

3.125 1.454 0.502 

3.25 1.436 0.481 

3.375 1.42 0.462 

3.5 1.405 0.444 

3.625 1.391 0.427 

3.75 1.378 0.412 

3.875 1.366 0.398 

4 1.354 0.384 

4.125 1.343 0.372 

4.25 1.333 0.36 

4.375 1.324 0.349 

4.5 1.315 0.338 

4.625 1.306 0.329 

4.75 1.298 0.319 

4.875 1.29 0.311 

5 1.283 0.302 

5.125 1.276 0.295 

5.25 1.27 0.287 

5.375 1.263 0.28 

5.5 1.257 0.273 

5.625 1.252 0.267 

5.75 1.246 0.261 

5.875 1.241 0.255 

6 1.236 0.249 

6.657 13.657 -9.22 

4.771 7.327 -5.41 

3.828 4.828 -3.518 

3.263 3.543 -2.443 

2.886 2.775 -1.777 

2.616 2.269 -1.338 

2.414 1.914 -1.036 

2.257 1.652 -0.82 

2.131 1.451 -0.661 

2.029 1.293 -0.541 

1.943 1.165 -0.449 

1.87 1.06 -0.377 

1.808 0.971 -0.32 

1.754 0.896 -0.274 

1.707 0.832 -0.236 

1.666 0.776 -0.205 

1.629 0.727 -0.179 

1.595 0.684 -0.158 

1.566 0.646 -0.14 

1.539 0.611 -0.124 

1.514 0.58 -0.111 

1.492 0.552 -0.099 

1.471 0.527 -0.089 

1.453 0.504 -0.081 

1.435 0.482 -0.073 

1.419 0.463 -0.067 

1.404 0.445 -0.061 

1.39 0.428 -0.056 

1.377 0.413 -0.051 

1.365 0.398 -0.047 

1.354 0.385 -0.043 

1.343 0.372 -0.04 

1.333 0.36 -0.037 

1.323 0.349 -0.034 

1.314 0.339 -0.032 

1.306 0.329 -0.03 

1.298 0.32 -0.028 

1.29 0.311 -0.026 

1.283 0.303 -0.024 

1.276 0.295 -0.023 

1.269 0.288 -0.021 

1.263 0.28 -0.02 

1.257 0.274 -0.019 

1.251 0.267 -0.018 

1.246 0.261 -0.017 

1.241 0.255 -0.016 

1.236 0.25 -0.015 
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13.427 

8.342 

5.734 

4.197 

3.21 

2.535 

2.054 

1.697 

1.427 

1.216 

1.048 

0.913 

0.802 

0.711 

0.634 

0.569 

0.513 

0.465 

0.424 

0.387 

0.356 

0.328 

0.303 

0.281 

0.261 

0.243 

0.227 

0.213 

0.2 

0.188 

0.177 

0.167 

0.157 

0.149 

0.141 

0.134 

0.127 

0.121 

0.115 

0.11 

0.105 

0.101 

0.096 

0.092 

0.088 

0.085 

0.081 

Columns from left to right are: 

m k k' k9a k'9a kPcl k'Pct 

where k9a and k'9a are the 
approximations from Stokes 
paper for large m (> 0.30) 

Results are quite good for m > 2 
(.0236% and 0.634% error). 



Now lets consider the space in between the two approximations (m < 0..0.15 for small m approximation and 
m > 2 for big m approximation, with each case having less than 0..65% error throughout for both k and k'). 

Note that the big value approximation wor!<ed by multiplying by m2 and then doing a line fit. Lets try a similar 

approach, multipl~ng by mP where p IS some non-Integer power and then using a 2nd order fit and see what happens. 
It turns out that different limits and powers war!< for k and k' so these are done separately below 

rnO := 0.016 mF := 2 aO := tog(rnO) aF := log(mF) 

mPk := 1.55 mPkp := 2.55 

J:= 0 .. 40 

aF- aO 
aOt-oj 

mM.:= 10 40 
J 

kNVj:= K_Re(mMj , 40) .(rnMj)rnpk kpNvj := Kp_Jm(~ , 40)(mMtPkp 

k, k' Multiplied By ml\p, ml\pk, Respectively 

.............................•.......... ..-. ..-... 

.' 
-"" .. , 

",,,,, .. ,,,,, 
-~""-,, 

0.5 

.' .' 
.' .' 

............ 
. ' 

These both look very much like polynomials of 2nd ord 3rd order. Note that k is multiplied by m1.55 while k' is 

multiplied by m2.55 These choices were obtained by attempting to make the approach to m = 0. 0.15 be approximately 
linear in slope. other values of m lead to different outcomes such as sharp dcmnturn or uptum as approach 0..0.1. 

Now enforce the condition at m = 0..0.1 as follows Subtract from mM the value 0..0.15 - this will be x for the polynomial 
curve that follows. Subtract from the data to be fit the value r:l the first point (the value at 0. 0.15) from the small 
m approximation - thiS ensures that our m approximation is continuous. This becomes: 

kNAv .:= kNv . - kSO 
J J 

kpSO := kpsapp(mMo)-(mMorpkp 

kpNAv
J 

:= kpNvj - kpSO 

kSO = 0.38199 kpSO = 0.02757 

Fit this data set Wlth a polynomial of 3rd order with the constant term eliminated. Hence: 

k (Re) data fit : cR := genfit(mMA.kNAv.cRg,kF) cRT = (1.9755 0.0626 0.0605) 

k' (1m) datafi!: cIg := eRg cI := genfit(mMA ,kpNAv , eRg ,kF) cIT = ( 1.2185 0.7283 --0.0602) 
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Lets compare these Visually to the given data and see how it looks: 

kNvJ 

kpNvj 

kF( mMAj , cRO)+kSO 

kF( mMAj , cl)+kpSO 

0.5 

mMj 

These look pretty gOOd. Lets do a table now and compare the error to the known values. It is a little complicated 
as fits go so hopefully it will be mrth itl We can alter things just a bit as follows : 

kFF(m.c):= Co + cl 'm + cim2 + c
3
·m3 Adds in the constant term which we enforced manually 

cRFO := kSO 

cIFo:= kpSO 

cRF I := cRa cRF2 := cR) 

cIF2 := cl ) 

cRF3 := c~ 

cIF3 := cS 

kMapp(m):= kFF(m - mO, cRF)' m- mPk kpMapp(m) := kFF(m - mO, clF).m - mPkp 

AMj , 3 := kMapp(rru'vlj ) AMj.4 := kpMapp(mMj) 

AM . 3 - AM. 1 
AM. := 100. J . J . 

J . 5 AM
j
.
1 

AM. 4 - AM. 2 
AM. := 100. J . J . 

J .6 AM 
j .2 
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cRFT = ( 0.382 1.9755 0.0626 0.06(5 ) 

cIFT = ( 0.0276 1.2185 0.7283 - 0.0602 

Stokes Equat ions 

Approx Equat ions 

Percent Error 



m kp kM app kpM app k PctErr kp PctErr 

0.016 229.489 1.047·1()3 232.093 1.047'103 1.135 -0.014 

0.018 192.231 848.562 194.533 839.425 1.197 -1.077 

0.02 161.316 688.33 163.251 675.155 1.199 -1.914 

0.023 135.63 558.878 137.185 544.63 1.146 ·2.549 

0.026 114.26 454.219 115.451 440.567 1.043 -3.006 

0.029 96.455 369.542 97.319 357.334 0.896 -3.304 

0.033 81.599 300.978 82.181 290.553 0.713 -3.464 

0.037 69.184 245.416 69.531 236.814 0.502 -3.505 

0.042 58.794 200.351 58.953 193.448 0.27 -3.445 

0.047 50.084 163.769 50.097 158.36 0.027 -3.303 

0.053 42.769 134.044 42.675 129.898 -0.22 -3.093 

0.06 36.617 109.867 36.448 106.756 -0.46 -2.832 

0.068 31.432 90.184 31.217 87.899 -0.687 -2.533 

0.077 27.056 74.14 26.815 72.501 -0.891 -2.21 

0.087 23.354 61.049 23.105 59.904 -1.065 -1.876 

0.098 20.217 50.355 19.974 49.579 -1.204 -1.541 

0.11 17.553 41.607 17.325 41.101 -1.301 -1.216 

0.125 15.287 34.443 15.08 34.129 -1.353 -0.91 

0.141 13.355 28.567 13.174 28.387 -1.359 -0.629 

0.159 11.705 23.741 11.551 23.65 -1.318 -0.38 
AM~ 0.179 10.292 19.771 10.165 19.738 -1.231 -0.167 

0.202 9.08 16.5 8.98 16.501 -1.102 5.886'10-3 

0.228 8.038 13.801 7.963 13.82 -0.938 0.139 

0.257 7.141 11.57 7.087 11.597 -0.746 0.231 

0.29 6.366 9.722 6.332 9.75 -0.535 0.285 

0.327 5.696 8.189 5.678 8.214 -0.316 0.304 

0.369 5.115 6.914 5.11 6.934 -0.102 0.293 

0.416 4.61 5.852 4.615 5.867 0.095 0.257 

0.47 4.172 4.965 4.183 4.975 0.264 0.205 

0.53 3.789 4.223 3.804 4.229 0.392 0.142 

0.598 3.455 3.601 3.471 3.604 0.471 0.077 

0.675 3.163 3.078 3.179 3.078 0.493 0.018 

0.761 2.908 2.637 2.921 2.636 0.458 -0.03 

0.859 2.683 2.264 2.693 2.263 0.367 -0.06 

0.969 2.486 1.949 2.492 1.948 0.232 -0.07 

1.094 2.313 1.681 2.315 1.68 0.069 -0.06 

1.234 2.161 1.453 2.159 1.453 -0.095 -0.034 

1.392 2.026 1.259 2.022 1.259 -0.22 1.327'10-3 

1.571 1.908 1.092 1.903 1.093 -0.259 0.031 

1.773 1.803 0.95 1.801 0.95 -0.146 0.033 

2 1.711 0.827 1.715 0.827 0.196 -0.019 

Keep these for k 
Try someth I ng else for k' 

CkF:~ cRF CkF4:~ rnO CkF5:~ mPk 

CkFT ~ (0.38199 1.97554 0.06255 0.06052 0.01600 1550(0) 
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Now lets consider the space In between the two approximations (m < 0.080 for small m approximation and 
m > 2 for big m approximation, with each case having less than 0.65% error throughout for both k and k'). 

Note that the big value approximation worked by multiplYIng by m2 and then doing a line fit. Lets try a s imilar 

approach , multiplying by m3 and then using a 2nd order m and see what happens . 

rnO:; 0.060 

J := 0 .. 40 

rnF :; 2 • 0 :; log(rnO) 

aF- aO 
ai}+- j 

mM.:; 10 40 
J 

aF :; 108(011') 

ml'k :; 1.55 mPkp :; 2.55 

kpNvj 0= KP_Im(rnMj , 40).(mMj )mPkP 

k, k' Multiplied By ml\p, ml\pk, Respectively 

0.5 u 

These both look very much like polynomials of 2nd ord 3rd order. Note that k is multiplied by m1.55 while k' is 

multipl ied by m2.55. These choices were obtained by attempting to make the approach to m ; 0.015 be approXimately 
linear in slope. other values of m lead to different outcomes such as sharp dcmntum or uptum as approach 0.01. 

Now enforce the condit ion at m = 0.01 as follows. Subtract from mM the value 0.015 - this will be x for the polynomial 
curve that follows. Subtract from the data to be fit the value a the first point (the value at 0.015) from the small 
m approximation - this ensures that our m approximation is continuous. This becomes: 

kNAv . :; kNv . - kSO 
J J 

kpSO :; kpSapp(mMO) (mMofPkp 

kpNAv
J 

:; kpNv
j 

- kpSO 

kSO = 0.5a!66 kpSO ; 0.~471 

Fit thiS data set With a polynomial of 3rd order wrth the constant term elim inated. Hence: 

k (Re) data fit: 
eRPm eR :; genfit(mMA , kNAv , eRg,kF) cRT = ( 1.7747 0.3136 -0.01 73 ) 

k' (1m) data fit: eJg 0= eRg cI ", genfit(mMA,kpNAv ,cRg,kF) cIT = ( 1.2692 0.7369 - 0.0658 ) 
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Lets compare these visually to the given data and see how it looks: 

kNvJ 

kpNvj 

kF( mMAj , cRO)+kSO 

kF( mMAj , cI)+kpSO 

05 1 5 

mMj 

These look pretty good Lets do a table oow and compare the error to the koown values. It is a little complicated 
as fits go so hopefully it will be worth itl We can alter things Just a bit as follows: 

kFF(m.c):= Co + c
1
·m + cim2 + c

3
·m3 Adds in the constant term which we enforced manual ly 

cRFO := kSO 

cIFo:= kpSO 

cRFI := oRo cRF3 := c~ 

cIF3 := c~ 

- mPk 
kMapp(m):= kFF(m - rnO,cRF)'m kpMapp(m) := kFF(m - mO. clF) m - mPkp 

AM) , 1 := K R~mMj . 40) 

AMj •3 := kMaPP(IIL\4j) 

AM . 3 - AM. 1 
AM. := 100· ) ' ) , 

) , 5 .<\Mj , I 

AMj.4 := kpMapp(mMj) 

AM. 4 - AM. 2 
AM. := 100) ' J . 

) , 6 AM 
j, 2 
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cRFT = (0.5087 1.7747 0.3136 - 0.0173 

cIFT ~ (0.0847 1.2692 0.7369 - 0.0658 ' 

Stokes Equations 

ApprO)( Equat ions 

Percent Error 



m kp kM app kpM app k PctErr kp PctErr 

0.06 36.9 110.961 39.837 110.578 7.961 -0.345 

0.065 33.015 96.119 35.444 95.734 7.356 -0.401 

0.071 29.582 83.33 31.578 82.977 6.749 -0.424 

0.078 26.544 72.301 28.175 72 6.145 -0.418 

0.085 23.853 62.787 25.177 62.543 5.549 -0.388 

0.093 21.468 54.572 22.534 54.386 4.964 -0.341 

0.102 19.351 47.476 20.202 47.342 4.395 -0.281 

0.111 17.471 41.341 18.143 41.253 3.846 -0.213 

0.121 15.798 36.034 16.323 35.984 3.32 '0.14 

0.132 14.31 31.44 14.713 31.42 2.821 ·0.066 

0.144 12.983 27.46 13.288 27.462 2.351 6.027'10-3 

0.157 11.799 24.01 12.025 24.027 1.914 0.073 

0.172 10.741 21.016 10.904 21.043 1.512 0.132 

0.188 9.796 18.415 9.908 18.449 1.146 0.183 

0.205 8.949 16.156 9.023 16.192 0.818 0.223 

0.223 8.191 14.19 8.234 14.225 0.528 0.251 

0.244 7.51 12.478 7.531 12.511 0.277 0.268 

0.266 6.899 10.986 6.904 11.016 0.064 0.273 

0.291 6.35 9.684 6.343 9.71 -0.11 0.267 

0.317 5.855 8.548 5.84 8.569 -0.249 0.25 

0.346 5.409 7.554 5.39 7.571 -0.353 0.224 

0.378 5.008 6.685 4.986 6.697 -0.424 0.191 

0.413 4.645 5.923 4.623 5.932 -0.466 0.152 

0.451 4.317 5.255 4.296 5.26 -0.48 0.109 

0.492 4.02 4.668 4.001 4.671 -0.472 0.066 

0.537 3.751 4.152 3.735 4.153 -0.443 0.023 

0.586 3.508 3.698 3.494 3.697 -0.398 -0.016 

0.64 3.287 3.298 3.276 3.296 ·0.34 -0.05 

0.698 3.087 2.944 3.078 2.942 -0.274 -0.076 

0.762 2.905 2.632 2.899 2.63 -0.203 -0.093 

0.832 2.739 2.356 2.736 2.354 -0.131 -0.1 

0.909 2.589 2.112 2.587 2.11 -0.062 -0.095 

0.992 2.452 1.895 2.452 1.893 1.134'10-4 '0.081 

1.083 2.327 1.702 2.328 1.701 0.053 -0.057 

1.182 2.213 1.53 2.215 1.53 0.093 -0.027 

1.29 2.109 1.378 2.112 1.378 0.117 5.936'10'3 

1.408 2.014 1.242 2.017 1.242 0.122 0.036 

1.537 1.928 1.12 1.93 1.121 0.106 0.056 

1.678 1.849 1.011 1.85 1.012 0.065 0.056 

1.832 1.777 0.914 1.777 0.914 -2.906'10.3 0.025 

2 1.711 0.827 1.709 0.826 -0.102 -0.052 

Keep these for k' CkpF := elf CkpF 4 := rnO CkpF 5 := rnPkp 

CkpFT = (008471 1.26919 0.73687 -006579 0.06000 2.55000) 
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We are now prepared to define our fitting function for k and k' - each consists of 3 parts' 

First define the middle region function using CkF and CkpF having 6 terms as: 

kMF(m,c):= [co + ct'(m - c4) + ci(m - c4)2 + c
3

"(m - c4)3}m- C5 

Recall the individual parameters for each middle region function: 

Ckr:r ~ (0.3g199 1.97554 0.06255 0.06052 0.01600 1.55000) 

CkpFT ~ (0.08471 1.26919 0.73687 -0.06579 006000 255(00) 

Remem ber - in MathGad, the slots of vectors 
begin with Index 0 (I.e. CkFo = 0.38199) 

Now also bring forward our two functions that were established by Stokes: 

gamma:~ '1 float -> 0.57721566490153286061 

kBapp(m) :~ I + :Ii 
m 

Now define each term sequentially: 

L(m) :~ In(m) + gamma 

-L(m) 
kpSapp(m) :~ [ 2] 

2 2 (") m· LCm) + "4 

kpBapp(m):~ L(..fi + ~) 
m 2·m 

Approximations 
for small values of m 

Approximations 
for big values of m 

kA(m)'~ if(m < 0.0l6,kSapp(m).if(m > 2 ,kBapp(m), kMF(m, CkF») 
For k, use small version for m < 0.016, big 
version for m > 2 and middle version for other m 

kpA(ml:~ ifCm < o 060,kpSapp(m),if(m > 2,kpBapp(m),kMFCm,CkpF») 
For k', use small version for m < 0.060, big 
version for m > 2 and middle version for other m 

Lets check a few values to make sure it is working properly (especially for the middle region): 

stokes k Approx k stokes k' Approx k' 

m:- 0.005 K_Re(m,40) - 1370.083 kA(m) - 1372.536 Kp_lm(m,40) - 8244.514 kpA(m) - 8244.431 

m:~ 0.010 K_Re(m, 40) ~ 464.82 kA(m) ~ 467.353 Kp_Im(m, 40) ~ 2391.832 kpA(m) ~ 2391.717 

m:~ 0.020 K Re(m, 40) ~ 165.635 kA(m) ~ 167.628 KplmCm,40) ~ 710.443 kpA(m) ~ 71 0.272 

m:~ 0.040 K_Re(m,40) ~ 62.823 kA(m) ~ 63.053 Kp_ImCm,40) ~ 217.654 kpA(m) ~ 217.379 

m:~ 0.080 K_Re(m,40) ~ 25. 753 kA(m) ~ 25.507 Kp_Im(m,40) ~ 69478 kpACm) ~ 69.193 

m:~ 0.160 K Ye(m, 40) ~ 11.59 kA(m) ~ 11.438 Kp_lm(m,40) ~ 23.412 kpA(m) ~ 23.432 

m:= 0.32 K_Re(m,40) ~ 5.811 kA(m) ~ 5.790 Kp_Im(m,40) ~ 8.447 kpA(m) ~ 8.468 

m:= 0.64 K_Re(m,40) ~ 3.287 kA(m) ~ 3.303 Kp_Im(m,40) ~ 3.297 kpA(m) ~ 3.295 

m:~ 1.28 K Re(m,40) ~ 2.118 kA(m) ~ 2.115 Kp Im(m, 40) ~ 1.391 kpA(m) ~ 1.391 

m:~ 2.5 K_Re(m,40) ~ 1.568 kA(m) ~ 1.566 Kp_Im(m,40) = 0.643 kpA(m) ~ 0.646 

m:= 5 K_Re(m,40) ~ 1.283 kA(m) ~ 1.283 Kp_lm(m,40) ~ 0.302 kpA( m) ~ 0.303 

m:~ 10 K_Re(m,40) ~ 1.144 kA(m) ~ 1.141 Kp_Im(m,40) ~ 0145 kpA(m) ~ 0.146 

Look very good - thiS will work and also make usage of the Stokes cylinder model much, much easier! 
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i:~ 0 .. 312 Lets end with a plot of the beha\ior of k and k' across many m scales and also plot the error for 
each term as well as a percent error between the new fitting function and the full solution developed 
by Stokes. For completeness , also plot the sphere approximation O.e. kB for all values of m): 
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Lets end with a plot of the behavior of k and k' across many m scales and also plot the error for 
each term as well as a percent error between the new fitting function and the full solution dewlopec 
by Stokes. For completeness, also plot the sphere approximation 0.e. kB for all values of m): 
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Generate addit ional plot for dissertation - effect of p on k 

rnO :; 0.016 rnF :; 2 .0 :; log(mO) of :; log( mF) 

of- aD 
aO+- j 

j :; 0 .. 40 mM.:; 10 40 
J 

mPk :; 1.55 

kNv
J
:; K_Re(ntMj'40) ' (mMJnPk 

mPkp :; 2.55 

kpNvj :; Kp_lm(ntMj' 40) . (mMjr
PkP 
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APPENDIXD 

%This is the main file to plot the damping effects of microcantilever beam 

ak=2; %ak is the factor 2 before knudsen number 

Nt=400; to=1/92378; 
dt=tO/Nt; t=O:dt:tO; 

fO=90000; fn=95000; Nf=800; %frequency swept from fO to fn 
df=(fn-fO)/Nf; f=fO:df:fn; 

mcO=2.61e-12; %mass of fluid per unit length mc=density of fluid*b*h at latm 
mc=mcO; 
ufl=zeros(l,length(f)) ; 
for k=l:length(f) 

[u]=vibFactorU(t, f(l,k) ,mc,ak); %displacement of tip beam at latm 
ufl(l,k)=max(abs(u)); %maximum value of u 

end 

mc=1.Oe-2*mcO; tat le-2 atm 
uf2=zeros(1,length(f)) ; 
for k=l:length(f) 

[u]=vibFactorU(t, f(l,k) ,mc,ak); 
uf2(l,k)=max(abs(u)) ; 

end 

mc=l.Oe-l*mcO; tat le-l atm 
uf3=zeros(l,length(f)); 
for k=l:length(f) 

[u]=vibFactorU(t, f(l,k) ,mc,ak); 
uf3(1,k)=max(abs(u)) ; 

end 
mc=1.Oe-5*mcO; 
uf4=zeros(l,length(f)); tat le-5 atm 
for k=l:length(f) 

[u]=vibFactorU(t, f(l,k) ,mc,ak); 
uf4(1,k)=max(abs(u)) ; 

end 
mc=1.Oe-4*mcO; tat le-4 atm 
uf5=zeros(I,length(f)) ; 
for k=l:length(f) 

[u]=vibFactorU(t, f(l,k) ,mc,ak); 
uf5(1,k)=max(abs(u)) ; 

end 
mc=1.Oe-3*mcO; %le- 3 atm 

uf6=zeros(1,length(f)) ; 
for k=l:length(f) 

[u]=vibFactorU(t, f(l,k) ,mc,ak); 
uf6(1,k)=max(abs(u)); 

end 
mC=1/3*mcO; tat 1/3 atm 
uf7=zeros(1,length(f)) ; 
for k=l:length(f) 
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[ul=vibFactorU(t, f(l,k) ,mc,ak); 
uf7(1,k)=max(abs(u)) ; 

end 
%[ul=vFactorU(t,f,mc,ak) ; 
%z=max (abs (u) ) 

%Plot displacement of frequency responding to 7 pressures 
semilogy(f/92378,ufl,f/92378,uf2,f/92378,uf3,f/92378,uf4,f/92378,uf5,f/92378,uf6,f/9 
2378,uf7) ; 

xlabel( 'Driving frequency/resonance requency' ); ylabel( 'Displacement (m) , ); 
%add labels to plotted curves 
text(0.99,2e-7, 'I atm' ); 
text(0.995,3e-7, '1/3 atm' ); 
text (0.996,4 .6e-7, '0.1 atm' ); 
text(0.996,le-6, '0 . 01 atm' ); 
text(1.002,2e-5, 'le-3 atm' ); 
text(1.003,le-4, 'le-4 atm' ); 
text(1.001,2e-4, 'le-5 atm' ); 

%This is the middle function 
function [ul=vibFactorU(t,f,mc,ak) 

%mc=2.61e- 12; 
%mc=1*2 . 61e- 12 
L=128.0e-6; %length of the beam (m) 

E=1.6gell; %young's modulus of beam 
b=1.le-6; h=2e-6; %b is width of beam, h is thickness of beam 
I=h*bA3/12.0; %moment of inertial 

%This section is to calculate the electrostatic force 
VO=0;VB=5;VE=10; %input voltages 
delta_0=0.012e-6; dVO=lO; 

KK=delta 0/(dVO A2) 
kV=KK*E*h/4*(b/L)A3 

hO=(VO-VB)A2+O. 5*VEA2; 
hl=2*VE*(VO-VB) ; 
h2=-0.5*VEA2; 

Fl=kv*hO; %static force 
F2=kv*hl; %sine force 
F3=kv*h2; %cosine force 

cOO=Fl*LA3/(3*E*I) ; 
[clO,clll=vibFactor2(f,L,mc,F2,ak); %factors of clO and cll 
[c20,c211=vibFactor4(2*f,L,mc,F3,ak); %factors of c20 and c21 

ot=2*pi*f*t; %wt 

st=clO*sin(ot) ; 
ct=cll*cos(ot) ; 
st2=c20*sin(2*ot) ; 
ct2=c21*cos(2*ot) ; 

u = st + ct + st2 + ct2 + cOO %responding displacement 
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%This is calculation of eq 119 for sine force 
function [ciO,ci1] = vibFactor2(f,L,mc , FO,ak) 
% 
%c1 in mode shape function 
c1=[64.8857, 90 . 0204, 88.3191, 88.3918]; 

E=1.6ge11; %E:kg/m*sA2 
b=1.1e-6; %b:m 
h=2e-6; %h:m 
mB=5.12e-9; % kg/m; mass of beam per unit length 
ro=2.32ge3;% kg/mA3; density of beam 

Y=1.4; %effect factor of beam area-cross and with floor 

omega=2.0*pi*f %w, driving frequency 

%this section is for calculation of k and k' 
ap=1.673e-6/2.0; %radius 
upe=18.3e-6; %dynamic viscosity 

mc1=2.61e-12; 
np=mc/mc1; 
pp=1.185*np; %density of air 

knu=ak*0 . 039230/np; %knudsen number 

up=upe*l/(l+knU); %viscosity changes with pressure 
%pp=1.185; % air density 
gamma=0.57721566490153286061; 

mu=up/pp; %kinematic viscosity 
m=ap/2*sqrt(omega/mu) % m determines k, and k' 

m2=mA2; 
Lm=log(m)+gamma; 
Lm2=LmA2; 
Lm3=Lm2+(pi/4.0)A2 ; 
kkp=m2*Lm3 ; 
kkp1=1. O/kkp; 

k01=pi/4.0*kkp1; 

ks=k01+1.0; 
kps=-Lm*kkp1; 

cOk=0.38199; 
c1k=1.97554; 
c2k=0.06255; 
c3k=0.06052; 
c4k=0.016; 
c5k=1.55; 

cOkp=0 . 08471; 
c1kp=1.26919; 
c2kp=0.73687; 
c3kp=-0 . 06579; 
c4kp=0.06; 
c5kp=2.55; 

if (m<O. 016) 
k = ks; 
kp=kps; 
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elseif (m>2) 
kb=sqrt(2)/m; 
kb1=1/ (m2*2) ; 

k = kb+1; 
kp=kb+kb1; 

else 
z5=mA (-c5k) ; 
zO=m-c4k; 
z1=zO*c1k; 
Z2=ZO A2*c2k; 
Z3= ZO A3*c3k; 
z4=z1+z2+z3+cOk ; 
k=z5*z4 

% k = (cOk+c1k* (m-c4k)+c2k* (m*1-c4k) A2+c3 k* (m*1-c4k)A3 ) *mA(_ c5k); 
zp5=mA (-c5kp) ; 
zpO=m-c4kp; 
zp1=zpO*c1kp; 
zp2=ZpO A2*c2kp; 
zp3=ZpO A3*c3kp; 
zp4=zp1+zp2+zp3+cOkp; 
kp=zp5*zp4 

%kp = (cOkp+c1kp*(m-c4kp)+c2kp*(m*1-c4kp)A2+c3kp*(m*1-c4kp)A 3)*mA(-c5kp); 
end 

%calculate cg and mg 
Cg = Y*mc*kp*omega 

mckp=kp*mc 
mg = Y*mc*k; 

mBg=mB+mg; 
%mBgR=1.0/(mB+mg) 
mBgR =1.0/mBg; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%mB=5.12e-9; % kg/m;%ro * b * h; 
I=h*bA3/12.0; % 
betaL = [1.8751,4.6941,7.8548,10.9955); 
beta=betaL. /L; 

%%%%%%%%%%% Mj; Kj 
xO=L; 
pxO = Fn(xO,L); 

ciO=O; ci1=0; 
for kO=1:length(betaL) 

rO=betaL (1,kO) ; 

r1=-(sin(rO)+sinh(rO))/(cos(rO)+cosh(rO)) ; 
r2=(sin(rO)-sinh(rO)) + r1*(cos(rO)-cosh(rO)); 
pjL = c1(1,kO)*r2; %shape at L 

%omega_j = betaL. A2 / sqrt(12.0) * b / (L*L) * sqrt(E*b*h*mBgR)) 
hnO=rO A2/sqrt(12.0) *b/L/L*sqrt (E*b*h*mBgR) ; %omega_j 

g1=hnO A2-omegaA2 
a2=Cg*mBgR 
g2=-a2*omega; 
g22=g1 A2+g2 A2 

%omega~A2-omegaA2 

% 

cjL = FO*mBgR*pxO(kO,1); %FO/(mB+mg)*pj (xO); 
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end 

Mj=cjL*gl / g22; 
Kj=cjL*g2 / g22; 

ciO = ciO + Mj*pjL; 
cil = cil + Kj*pjL; 
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