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ABSTRACT 

RIP ARIAN CORRIDOR VEGETATION STRUCTURE AND SOIL FUNCTION 
ALONG URBAN, SUBURBAN, AND RURAL STREAMS IN LOUISVILLE, KY, 

USA 

R. Jonathan White 

May 13,2011 

Stream riparian zones are ecotones between terrestrial and aquatic environments. 

Studying these areas in urban environments is important since they lie adjacent to stream 

water supplies. I conducted a study of riparian woody and groundcover vegetation along 

urban, suburban, and rural streams (land-use designations based on % impervious 

surface) to assess how cities are affecting plant community structure. I also studied 

riparian soil gas flux (carbon dioxide, methane, and nitrous oxide) in relation to water 

table depth and groundwater nutrient concentrations spanning a 10-month period 

(January to October, 2008). I found distinct woody and groundcover communities 

associated with proportion of impervious surface surrounding the research sites. These 

communities differed regarding diversity and proportion of native, exotic, and wetland 

species distributions. The most urban communities generally had lower species richness, 

more exotic species, and fewer wetland species when compared to rural areas. Urban 

areas also exhibited the highest streambanks and lowest water tables. Carbon dioxide gas 

flux rates were higher in urban areas, but methane and nitrous oxide fluxes did not 

respond uniformly to site differences as classified by proportion of impervious surface. 
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Methane and nitrous oxide differences, in addition to seasonal variability, were more 

greatly affected by local site level differences in substrate and nutrient ratios as well as 

soil moisture. 
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CHAPTER 1: INTRODUCTION: THE ECOLOGICAL STRUCTURE AND 

FUNCTION OF RIPARIAN ZONES 

Riparian zone vegetation 

Stream riparian zones are ecotones at the interface between terrestrial and aquatic 

systems. Therefore, width of the riparian zone, its plant communities and ecosystem 

processes are influenced by stream size, geomorphology, watershed drainage patterns and 

conditions in the adjacent stream channel as well as those in the upland catchment and 

upstream tributaries, (Fig. 1-1) (Dunne and Leopold 1978, Kalliola and Puhakka 1988, 

Naiman and Decamps 1997, National Research Council 2002). Riparian plant species 

survival and establishment can also be affected by biological factors that occur within the 

riparian zone, such as herbivory and competition for limiting resources (Naiman and 

Decamps 1997). However, flooding and sedimentation processes have been found to be 

the major determinants of the distribution of plant species in riparian areas (Robertson et 

al. 1978, Nilsson 1981, Hupp 1982, Kalliola and Puhakka 1988, Naiman and Decamps 

1997). 

Floodwaters not only disturb vegetation, but also deposit seed and other 

reproductive plant parts to downstream locations (Bendix and Hupp 2000). Nilsson et al. 

(1991) demonstrated the importance of water regimes in colonizing sites with seeds, 

suggesting that rivers can be significant corridors for some species of plants. For 

example, a regulated river exhibited the same riparian plant species richness as a non-
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regulated river, but differed in plant species frequencies. Varied hydrological regimes can 

also alter success of seed dispersal and plant establishment. Greater flooding frequency 

may allow deposition of a greater number of water-vectored propagules. Studies within 

riparian wetlands in southeastern Alaska have shown that areas with intermediate flood 

disturbance supported more species than either permanently or rarely flooded sites 

(Pollock et al. 1998). As stream size increases, the areal extent of its influence on the land 

and vegetation also increases. 

Riparian zones: role in the environment 

Riparian systems and their vegetation can also affect the adjacent stream, 

influencing hydrological dynamics and chemistry, stream temperature, sediment load, 

and organic matter inputs (Fig. 1-1) (Naiman and Decamps 1997). Riparian zones filter 

nutrients and sediment from surface and ground-water flowing through them towards 

streams (Brenner et al. 1991, Gilliam 1994), thereby mitigating eutrophication of stream 

systems. Eutrophication of water bodies can have detrimental effects on water quality, 

which riparian vegetation buffers may act to mitigate. Vegetation in the riparian zone 

reduces the velocity and erosion potential of floodwater moving over the floodplain and 

prevents sediment from entering the stream (Wenger 1999, Easson and Yarbrough 2002, 

Geyer et al. 2003, Boothroyd et al. 2004). Plant litter, debris dams, and uprooted trees 

provide nutrients and habitat for stream organisms (Naiman and Decamps 1997, Wenger 

1999). Trees and shrubs provide shade, benefiting light sensitive and shade-tolerant 

riparian plants as well as stream organisms that depend on relatively cool stream 

temperatures for survival (Kiffney et al. 2004). Therefore, riparian environments provide 

2 



many ecosystem services for society (Gregory et al. 1991) by improving qual ity of water 

entering streams, maintaining stream secondary productivity and therefore providing 

many recreational and human health benefits. 

Riparian zones can act as effective sediment filters and nutrient sources or filters 

(Jacobs and Gilliam 1985a, Cooper et al. 1987, Lowrance et al. 1988) (Cooper et al. 

1987, Puckett 2004). Riparian soils, since they lie adjacent to streams, have a water table 

relatively close to the soil surface. Coupled with periodic flooding, soil microorganismal 

processes can change in response to these moisture conditions based on the presence or 

absence of oxygen (Steudler et al. 1989). In addition to common soil functions that 

include nitrification, N-mineralization, and soil respiration, riparian soil functions can 

shift towards lesser or greater soil nitrate (N03-) and nitrite (N02-) consumption, or 

methane production or consumption based on soil moisture. Greater soil saturation would 

result in increases in the anaerobic processes of denitrification and methanogenesis. 

Consumption of soil N03- and N02- and production ofN20 and N2 gases would result in 

removal of soil nutrients, but potentially contribute to atmospheric greenhouse gas 

concentrations ifN20 to N2 production ratios increase. Under aerobic conditions and 

when nitrification processes are high, however, N20 efflux from soils can be 

correspondingly high due to the "leaky pipe" phenomenon described by Davidson et al. 

(1993). Wet soils would also result in greater rates of methanogenesis, an anaerobic 

process producing the greenhouse gas, methane (CH4). However, overall rates would 

depend on substrate availability and gaseous diffusion rates into and through the soil 

(Dorr et al. 1993, Schimel et al. 1993). The opposing process of soil CH4 uptake by 

methanotrophic bacteria could dominate net CH4 fluxes when soils are drier. 
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Riparian zones: effects of impervious surfaces 

Urban and suburban land cover and land uses, both upstream and adjacent to a 

particular riparian stretch, can influence stream characteristics, riparian vegetation cover, 

and plant species composition (Fig. 1-1). Impervious surfaces in the catchment are 

largely responsible for the environmental effects of urbanization on streams and their 

riparian areas (Arnold and Gibbons 1996). Urbanization results in less water percolation 

into the soil and greater overland runoff and conduit flow that bypasses many of the 

water quality and water absorption services provided by riparian soils and vegetation 

(Paul and Meyer 2001, Zipperer 2002, Meyer et al. 2005). As compared to rural lands, 

urban and suburban riparian areas may contain higher species diversity, since overland 

flow is more frequent and intense (Walsh et al. 2005) due to greater amounts of runoff 

from impervious surfaces. Since increasing impervious cover causes an increase in the 

amount and proportion of overland vs. belowground water flow and increases water entry 

through stornl drains, streams in urban and suburban areas become characterized by 

higher amplitudes in stream flow volume during flooding (Walsh 2000). In non­

mountainous and non-coastal urban areas, frequent and smaller high stream flow events 

can cause deeper incision of stream banks and scouring of the streambeds than larger, 

infrequent events (Neller 1989, Walsh 2000). As incision increases, the water table in the 

riparian zone drops to coincide with the new lowered level of the stream surface 

(Groffman et al. 2002, Groffman et al. 2003). Urbanized watersheds with highly incised 

streams have the potential to severely lower the riparian water table, which changes the 

dynamics of processes within the upper layers of the soil environment. Exacerbating this 

are local-scale edge effects created by urbanization, which also contributes to soil drying 
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(Forman 1995, Zipperer 2002). As the amount of vegetation decreases within a riparian 

buffer, the amount of light that reaches the soil surface increases, which can alter the 

microclimate at the soil/atmosphere interface (Belnap et al. 2003). When this occurs, 

these once anaerobic, wet layers can more rapidly become aerobic, xeric layers, allowing 

organisms adapted to aerobic conditions to dominate the upper soil layers. This will 

therefore change nutrient cycling within riparian soils and, consequently, the chemical 

inputs from the riparian zone to the stream. Both lowered water tables and altered 

nutrient dynamics (i.e. carbon and nitrogen mineralization) can potentially change the 

types of plant species (e.g. wetland vs. upland species; proportion of nitrophilic species) 

that can persist within the altered riparian habitat. As the water table falls below the root 

zone, the ability of vegetation to sequester excess nutrients becomes more limited, 

thereby reducing the ecosystem services that they can provide (Groffman et al. 2002, 

Groffman et al. 2003, Groffman et al. 2004). Therefore, riparian vegetation and soil 

processes in urban and suburban areas are particularly important to study as they are key 

regulators of the aquatic-terrestrial linkage (Naiman and Decamps 1997). 

Urban influences on riparian vegetation 

Although impervious surfaces account for many of the environmental effects of 

urbanization on riparian vegetation, other urban influences on species diversity and exotic 

species composition are also important. These include increased fragmentation and edge 

effects, and shifts in abiotic and biotic influences from a highly altered matrix, including 

diverse and exotic seed sources from cultivated lots. Fragmented landscapes with a 

greater proportion of forest edges favor light-loving species over shade-tolerant species 
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that tend to grow within forest interiors (MacDougall and Kellman 1992). For example, 

the abundance of exotic plant species in forests has been directly linked to increased road 

density and use, and subsequent increased light availability. Parendes and Jones (2000) 

found light availability to be strongly correlated to habitat type within the H. 1. Andrews 

Experimental Forest, where sites along high-use roads had the greatest amount of light 

penetration. Consequently, the greatest numbers of exotic species occurred along these 

stretches of road. Canadian riparian areas studied along an urban-to-rural gradient 

showed a trend towards greater numbers of opportunistic species, which tended to be 

exotic annuals, within the urban riparian areas (Moffatt and McLachlan 2004). 

Vulnerable species, classified as perennial natives, occurred primarily at the rural end of 

the urbanization gradient in the Canadian study. Urban effects associated with density of 

humans can dramatically alter riparian vegetation dynamics. Species diversity and 

composition can be impacted by surrounding land use via seed dispersal from residential 

yards and other landscaped open spaces. Forest remnants and corridors in areas with 

higher densities of people could receive more plant propagules from landscaped areas, 

which tend to be exotics (Kendle and Forbes 1997, McKinney 2004). Areas with lower 

human density and fewer landscaped areas should be less vulnerable to these external 

plant inputs. Exotic, opportunistic species, therefore, may exhibit greater success within 

riparian areas that have been disturbed by such factors in the surrounding urban 

environment (Vidra et al. 2006). 
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Influence of proximate land use and riparian soil moisture on plant communities 

and soils processes 

Less understood factors related to riparian plant species dispersal and 

establishment include spheres of influence of different land-use types nearby (Fig. 1-1, 

Arrow 1), as well as differences in water table depths that differentially affect 

establishment (Fig. 1-1, Arrow Sa). Propagule dispersal and selection pressures on plant 

establishment differ for riparian and upland species, and depend on various spatial and 

environmental factors. Woody canopy species are more greatly influenced by macro­

scale environmental factors, while understory herbaceous and groundcover species are 

more greatly influenced by micro-scale environmental factors (Guillaume 2002). Also, 

with increasing forest fragmentation in urban areas (Zipperer 2002), corridors promoting 

propagule dispersal for native forest species may become limited, thereby reducing the 

native species pool. Increased forest edge density and lower riparian water tables in cities 

and suburbs could also differentially affect plant species establishment by changing light 

availability, nutrient cycling and surface soil moisture. These conditions could favor 

upland woody species that are better adapted to drier soils, or to soil moisture regimes 

that vary greatly intra- and inter-annually. 

The interaction of urbanization and physical properties of the riparian zone can 

also result in different attributes of the plant community. Plant diversity has been shown 

to vary with location within riparian zones. Lateral movement away from and 

longitudinal movement downstream have both been shown to relate to species diversity 

(Nilsson et al. 1994, Lite et al. 2005). A study of riparian plant species richness in arid 

environments in Arizona revealed decreasing herbaceous species richness moving 
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laterally from the stream channel during a dry year (Lite et al. 2005). This finding was 

attributed to lower water availability farther from the stream, as the water table was found 

to drop with lateral distance from the channel. Furthermore, the opposite was true 

following monsoon rains and flooding, as herbaceous species richness increased with 

distance from the stream channel following increases in the water table. A difference in 

plant species diversity with lateral distance from the stream between riparian areas with 

varying land-uses is less well understood. 

In addition, catchment area and longitudinal location along a stream from 

upstream to downstream has been shown to affect plant diversity. Nilsson et al. (1994) 

showed that a river in Sweden had a higher mean species richness along the main channel 

than the tributaries draining in to the channel. Explanations offered for differences in 

species richness were increases in mean annual discharge, and amount of peat and silt 

cover when comparing the main channel and its tributaries. In contrast, Lite et al. (2005) 

found a pattern of increasing mean plant species richness in an upstream direction 

following summer monsoon and flooding events in an arid environment as herbaceous 

annual species rapidly responded to limiting resource availability. Whether these patterns 

exist across a land-use gradient with changing resource availabilities and disturbances has 

yet to be determined. 

Riparian functional responses to urban and suburban land-use contexts that 

require further study include gas flux rates and soil processes in relation to urbanization 

and water table depths. These functional responses are important, because they determine 

whether riparian zones are sources or sinks for particular nutrients and greenhouse gases. 

As more people move into growing urban areas, these processes will grow ever more 
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important to climate modelers and land managers to formulate appropriate water 

management plans and atmospheric greenhouse gas predictions. 

Riparian projects within this dissertation 

I conducted three projects to determine riparian vegetation structure and gas flux 

dynamics along an urban-to-ruralland-use gradient within three adjacent watersheds. The 

first project involved characterizing woody riparian plant communities and statistical 

explorations of factors likely to influence species composition of those communities. I 

did the same with the second project using herbaceous and groundcover species (woody 

vines) to determine the differing effects of site environmental variables on their 

abundance and diversity. In addition, the influences of impervious surface and National 

Land Cover Dataset land-cover types were explored at varying buffer distances around 

the sites. I also wanted to determine the correlations between defining species of the 

groundcover layer and those within the woody vegetation communities. The final project 

was aimed at evaluating the effect of urbanization on riparian functions by assessing soil 

gas flux responses to land-cover variables, soil nutrients, water table depth, and soil 

moisture differences. 

The overarching goal of the first study was to determine how woody plant 

communities along streams in Louisville, Kentucky varied with degree of urban and 

suburban development in three watersheds. I accomplished this through a series of four 

objectives. The first objective was to determine differences in woody vegetation 

assemblages and investigate whether relationships with impervious surface cover and 

National Land Cover Database (NLCD) land-cover types could be detected at different 
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spatial scales. The second objective was to detennine whether differences in diversity and 

identity of plant species could be related to this urban-to-ruralland-use gradient. The 

third objective was to detennine the extent to which native and non-native woody 

vegetation was associated with the various land-use and -cover types in these catchments. 

The final objective was to detennine the extent to which wetland and upland species were 

associated with various land-use and -cover types. 

The overarching goal of the second study was to detennine how groundcover 

(herbs and vines) plant communities along streams vary with degree of urban and 

suburban development in three watersheds in Jefferson and Oldham counties in 

Kentucky. I proposed a series of five objectives to accomplish this goal. The first 

objective was to detennine whether potential relationships existed between riparian 

groundcover vegetation and variation in impervious surface cover and NLCD land-cover 

types at different spatial scales. The second objective was to detennine whether 

differences in plant species diversity could be related to changes in this urban-to-rural 

land-use, to increasing catchment area and to increasing lateral distance from the 

streambank. The third objective was to determine the extent to which native and non­

native groundcover vegetation was associated with varying land-use and -cover types. 

The fourth objective was to detennine the extent to which wetland and upland species 

were associated with various land-use and -cover types. The final objective was to 

determine whether groundcover species associations and diversity differed with the 

degree of colonization by the exotic shrub, Lonicera maackii. 

The primary goal of the third study was to assess variation in soil gas fluxes in 

riparian soils in relation to soil nutrients, moisture, groundwater depth, and temperature. 
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Since depth to water table and soil moisture content is a known determinant of soil gas 

flux, the first objective, was to determine whether differences in nearstream water table 

depth existed in urban, suburban, and rural riparian zones. I predicted that urban riparian 

water tables would be lower when compared to suburban and rural reference riparian 

sites because of higher streambanks (see Dissertation Chapter 2). My second objective 

was to measure flux rates of three greenhouse gases (carbon dioxide (C02), methane 

(CH4), nitrous oxide (N20)) from urban, suburban, and rural riparian zones. Assuming 

that plant root density and organic matter content and lability in riparian soils varied 

similarly along the land-use gradient, I predicted that CO2 flux could be higher in urban 

areas due to the "urban heat island" effect whereby higher atmospheric temperatures 

would raise soil temperatures, thereby increasing microbial activity and root respiration. 

In addition drier soils should favor aerobic microbial activity over that of anaerobes, with 

the consequence that C02 efflux should dominate over CH4 efflux. I also predicted that 

net methane uptake (methanotrophy) would occur within urban riparian sites, as urban 

soils were predicted to be driest among the three land-use types and methanotrophs are 

obligate aerobes. Conversely, I predicted a net methane efflux (methanogenesis greater 

than methanotrophy) from soils in rural reference sites, because shallow water tables and 

subsequent anoxic soil should favor methanogens. Since denitrification is also an 

anaerobic process, I predicted the greatest N20 flux rates would occur in rural reference 

sites due to the shallower water table and higher soil moisture. However, because N20 

efflux from soil can also occur under aerobic conditions when nitrification rates are high, 

the direction and magnitude of the gradient effect on this process may not be as 

predictable. My third objective was to evaluate the influence of groundwater nitrate and 
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dissolved organic carbon (DOC) concentrations on N20 flux rates, because denitrifying 

bacteria depend on DOC as an energy source and N03 - as a final electron acceptor. 

Therefore, I predicted higher concentrations of groundwater DOC and nitrates would 

result in greater nitrous oxide flux rates from the soil under anaerobic conditions. The 

fourth objective was to evaluate the influence of soil properties on greenhouse gas flux 

rates. I predicted % clay and soil bulk density would be negatively correlated with CH4 

uptake due to their impact on gas diffusion rates into and through the soil from both 

deeper soil horizons and from CH4 in the atmosphere. I also predicted flux of C02 and 

N20 would follow patterns others have found with regards to bulk density (Xu and Qi 

2001), with decreasing flux rates at higher bulk densities due to fewer soil pore spaces for 

microbial activity. 
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Figure 1-1: Conceptual model of variables that affect and are affected by vegetation 
within a riparian area. In this study, I will focus on the arrow labeled 1. The land-use 
matrix can affect riparian vegetation both directly (arrow 1) and indirectly (arrows 2 and 
3), as illustrated. Stream hydrology and structure affect groundwater levels (arrow 4a), 
thereby indirectly affecting vegetation. Groundwater levels feed back on stream 
hydrology by determining stream depths and determining whether particular reaches are 
gaining or losing water (arrow 4b). Groundwater level can be altered through processes 
such as transpiration and degree of overland water flow and can determine which 
vegetation types can survive, depending on their root tolerance for wet, microaerophilic 
conditions (arrows 5a and 5b). The vegetation structure can affect the amount of light that 
permeates to the ground, and light affects the type of subcanopy vegetation that can grow 
based on light tolerance (arrow 6). Management decisions may be based on structure 
and/or water levels within the stream (arrow 7a), and some management decisions can 
affect stream levels and structure (arrow 7b). Highly incised streams have lowered water 
tables within the riparian zone. Management decisions or lack of management can 
determine dominant vegetation types (arrow 8a). Riparian species may be preferred over 
drier-adapted species when attempting to restore a riparian zone to a more natural 
vegetative state. Restoration management decisions are based on existing vegetation 
(arrow 8b). 
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CHAPTER 2: VARIATION IN WOODY STREAMBANK PLANT COMMUNITIES 

ALONG URBAN, SUBURBAN, AND RURAL STREAMS IN METRO LOUISVILLE, 

KENTUCKY 

Introduction 

Riparian zones adjacent to streams perform a number of valuable ecosystem 

services. As ecotones between terrestrial and aquatic systems, riparian areas act as 

sediment and nutrient filters (Brenner et al. 1991, Gilliam 1994), provide habitat and 

nutrients to stream and riparian organisms (Naiman and Decamps 1997, Wenger 1999), 

and reduce floodwater velocity and erosion potential (Wenger 1999, Easson and 

Yarbrough 2002, Geyer et al. 2003, Boothroyd et al. 2004). Riparian woody vegetation 

plays a significant role in providing these services (Brenner et al. 1991, Gilliam 1994, 

Naiman and Decamps 1997). Since riparian zones occur adjacent to streams and rivers, 

reductions of or alterations to these services would affect water quality, resulting in 

reduced recreation potential for swimming and fishing, and enhanced water treatment 

services and costs to towns and cities using these water sources for drinking. Because 

urban areas are growing and becoming more populous (Cordell and Macie 2002), the 

need to protect water resources from the effects of development will increase. Since 

woody vegetation within riparian zones provides such valuable services, it deserves 

particular attention to determine in what ways species structure will change as the land 

becomes more developed. In addition, depending on their sensitivity to land-use change, 
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riparian vegetation may also serve as an indicator of environmental change (Naiman and 

Decamps 1997). 

Riparian woody species are more greatly influenced by macro-scale 

anthropogenic disturbances due to forest and river management rather than micro-scale 

influences such as site-level soil nutrient and moisture differences (Guillaume 2002). 

Along a river system in Sweden riparian sites along the main channel had higher mean 

abundances of species than along smaller tributaries (Nilsson et al. 1994). Furthermore, 

the middle reaches of the main channel exhibited the highest species richness, which may 

have been related to flooding differences. Differential effects of flooding dynamics on 

woody species composition and diversity have also been observed in other systems. For 

example, studies within riparian wetlands in southeastern Alaska have shown that areas 

with intermediate flood disturbance supported more species than either permanently or 

rarely flooded sites (Pollock et al. 1998). 

Some of the ways urbanization can alter the environment that could then 

affect riparian woody species composition include lowering of the water table via 

stream incision (Groffman et al. 2003), increasing the proportion of forested edges 

(Forman 1995, Zipperer 2002), and producing more intense, flashy floods (Paul and 

Meyer 2001, Walsh et al. 2005). Water table depth changes are important since 

woody species vary in their ability to tolerate high moisture, low oxygen soil 

conditions (Naiman and Decamps 1997). Conversely, chronically low water tables 

can stress those species requiring higher moisture levels and favor species able to 

tolerate dryer conditions (Groffman et al. 2003). Forest edges, while contributing to 

species diversity, also attract non-native species (Fraver 1994, Zipperer 2002) due 
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to factors that include greater seed capture potential along forested edges 

(Cadenasso and Pickett 2001), higher light intensity and wind turbulence, greater 

temperature fluctuations, and lower soil moisture conditions (Gehlhausen et al. 

2000, Zipperer 2002). Changes in flooding regimes can affect riparian vegetation 

communities due to changes in minimum and maximum flows (Auble et al. 1994, 

Naiman and Decamps 1997). These changes can result in reduced establishment 

and resource conditions that favor specific woody species over others (Bren 1992, 

Johnson 1993, Naiman and Decamps 1997). All of these changes can occur in 

predictable ways along an urban-to-rural gradient, resulting in distinct woody plant 

communities. 

The overarching goal of this study was to determine how woody plant 

communities along streams in Louisville, Kentucky vary with degree of urban and 

suburban development in three watersheds. The first objective was to describe the woody 

vegetation assemblages and investigate whether relationships with impervious surface 

cover and National Land Cover Database (NLCD) land-cover types could be detected at 

different spatial scales. Specific predictions developed under this objective were that 

distinct woody vegetation communities existed that could be correlated with impervious 

surface cover, as an index of urbanization. The second prediction was that the sphere of 

influence of different land-use and land-cover types on woody vegetation communities 

would be scale-dependent and correlate more strongly at larger scales due to the 

relatively low magnitude of woody species response to microclimatic conditions 

(Guillaume 2002). The second objective was to determine whether predictable 

differences in diversity and identity of plant species existed along this urban-to-rural 
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land-use gradient. I predicted that woody plant diversity would be higher in suburban 

riparian areas than in either urban or rural riparian ones, because of the presumed 

availability of more diverse seed sources from low-density residential areas. The third 

objective was to determine the extent to which native and non-native woody vegetation 

was associated with the various land-use and -cover types in these catchments. Since one 

consequence of urbanization is creation of edges along vegetation patches, I predicted 

that native vegetation would dominate riparian assemblages associated with forested rural 

land-cover, and that exotic species would take on greater importance in riparian 

assemblages associated with urban land-use types. The final objective was to determine 

the extent to which wetland and upland species were associated with various land-use and 

-cover types. Because of greater impervious runoff and stream incision observed in cities, 

I proposed that higher streambanks would be found in urban areas, and that streambank 

height would be positively correlated with species adapted to drier soil conditions, and 

negatively correlated with wetland species. I specifically predicted that obligate and 

facultative wetland species would assume greater dominance in riparian assemblages 

associated with forested rural land-cover and that facultative upland and upland species 

would exhibit greater dominance in riparian assemblages associated with urban land­

cover types. 

Methods 

Study Area 

The study area consisted of three watersheds located within and adjacent to 

Louisville, Kentucky, USA (Latitude 38°15'N, Longitude 85°46'W), which has a 
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population of approximately 700,000 with a mean density of 695 people km-2 (U.S. 

Census Bureau 2008). These were the Beargrass Creek (Middle Fork), Goose Creek, and 

Harrods Creek (South Fork) watersheds. The watersheds lie adjacent to each other with 

all streams flowing in a primarily westerly direction and eventually emptying into the 

Ohio River (Fig. 2-1). 

The three watersheds are of approximately equivalent sizes, containing varying 

proportions of impervious surface cover (lSC; Table 2-1). Beargrass Creek watershed, 

located in the north-northeast portion of Jefferson County, KY, is approximately 65 km2 

(Metropolitan Sewer District 1999b) and contains the greatest proportion of impervious 

surface cover (33% ISC). This Middle Fork of Beargrass Creek joins the South Fork of 

Beargrass Creek before flowing into the Ohio River. Several stretches of this stream are 

featured on Kentucky's Division of Water 303d list, which list streams with impairment 

issues as well as the pollutant(s) causing the impairment (Kentucky Environmental and 

Public Protection Cabinet 2008). Since combined sewer overflows (CSOs) commonly 

occur in this stream, the presence of fecal coliform bacteria and sewage are stated as the 

problem pollutants within Beargrass Creek. 

Goose Creek is a 50-km2 watershed also in Jefferson County, in-between and 

adjacent to Beargrass and Harrods Creek watersheds (Metropolitan Sewer District 

1999a). Of the three watersheds in this study, impervious surface cover is intermediate 

(20% ISC). The creek is composed of a pair of forks that meet before emptying into the 

Ohio River. Goose Creek is also listed on the 303d list, with cadmium and fecal coliform 

levels stated as impairment issues. 
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South Fork Harrods Creek watershed (60-km2), which has the lowest impervious 

surface cover of the three (10% ISC), is located primarily in neighboring Oldham 

County, but extends into northeast Jefferson County. The South Fork of Harrods Creek 

eventually joins the North Fork of Harrods Creek to become Harrods Creek before 

flowing into the Ohio River. Sections of the larger Harrods Creek network were added to 

the 303d list in years past, specifically the portion passing through Jefferson County, 

which is a more developed area. As in the other two watersheds, fecal coliform levels 

have been a persistent problem (Metropolitan Sewer District 1999c). The current 303d 

list contains Harrods Creek with fecal coli forms as an impairment issue, although this 

information is for the stream section downstream of where the North Fork and the South 

Fork Harrods Creek join. 

Watershed classification 

Watersheds were chosen from digitized catchment layers downloaded from the 

Louisvillel1efferson County Information Consortium (LOJIC) database (LOJIC 2010). 

LOJIC is a multi-agency institution that maintains a geographic information systems 

(GIS) database to serve primarily Jefferson County, KY, although limited information is 

available for a portion of Oldham County, KY. After checking for topographical accuracy 

using topographical maps of the watersheds and ArcGIS 9.0 software, I divided 

watersheds into subcatchments based on stream order and topography from the original 

LOJIC layers. I further divided sub catchments of higher stream orders with longer 

reaches into two or three constituent subcatchments based on topographic boundaries. 
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Beargrass Creek watershed contained 13, Goose Creek watershed 12, and Harrods Creek 

watershed 14 subcatchments. 

Impervious land-cover classification was determined using three data layers from 

the LOJIC database digitized in 2001: buildings, miscellaneous transportation, and roads. 

The buildings-layer included all built structures, whether commercial or residential. The 

roads-layer included all paved road surfaces, excluding parking lots. The miscellaneous 

transportation-layer included secondary transportation features such as driveways, 

parking lots, and sidewalks. The area of land covered by impervious surfaces for each 

subcatchment was determined using ArcGIS 9 (ESRI, 2010) and was divided by the total 

land area for each subcatchment to determine the proportion of impervious surfaces. 

Categorization of subcatchments into urban, suburban, and rural land-use types 

was modified from Schuler (1994). For this study, urban subcatchments were defined as 

containing 2:30% impervious surface cover. Rural subcatchments contained ::::10% and 

suburban subcatchments between 10% and 30% impervious surface cover. Research 

sites were classified by land use based on impervious surface cover at three scales. The 

first and largest areal scale was the subcatchment level, where sites were classified as 

urban, suburban, or rural based on the % impervious cover for subcatchment in which 

they were located. Impervious surface cover was calculated at two additional smaller 

scales surrounding the sites. Site buffers were created using ArcGIS 9 at a radius of l-km 

and 500-m from the site center. The proportion of impervious surface cover was 

determined for these buffers in the same way as for the subcatchments. Sites were then 

classified into one of the three land-use categories in the same way as for the 
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subcatchment scale of analysis. Therefore, urban, suburban, and rural categorization of 

sites was changed depending on the scale at which impervious cover was calculated. 

Site selection and plot establishment 

Sites for plot establishment were chosen among riparian zones within the 

aforementioned subcatchments. A vertical line was drawn the length of the stream section 

within the subcatchment using ArcGIS 9.0 software and a digital map of the watersheds. 

A random number multiplied by 100 meters was used to find the location of the site along 

the vertical measurement line, starting at the downstream end. Sites were visited and 

chosen if they were at least partially covered with unmanaged vegetation and at least 100 

meters from the nearest fork to avoid sampling riparian zones from separate 

subcatchments. Riparian zones were defined by topography and structural confinements, 

such as roads. Areas of level ground between the streambank and either an upland slope, 

structural barrier (roads, parking lots, buildings), or other obstruction (grazed pasture, 

ephemeral stream channel) were considered as being within the riparian zone. Riparian 

zones located completely within regularly used pastures and those found to be mown to 

the edge of the streambank were not used for this study. Only one side of the stream was 

sampled at each site. If both sides contained vegetation, the larger side was chosen, if it 

fit the criteria above, if it was reachable, and if the proper permissions could be attained. 

If only one side of the stream contained vegetation then that side was chosen. Locations 

where at least one full plot could not be placed (riparian width < 12-m) were sampled 

with a partial plot due to the difficulty in acquiring entry permission at many of the sites, 

and to avoid potential biases of purposefully choosing a site of a particular width. The 
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distribution of riparian widths by stream order and land-use category is provided in Table 

2-2. 

After visiting the locations identified by ArcGIS selection, the location of the 

actual study plot or plots was chosen by taking a randomly determined number of steps 

parallel to the stream to establish the center of a transect. A compass was used to extend 

a transect tape perpendicular to and away from the stream channel up to 91 meters, if 

possible. Circular plot centers (plot radius = 5.64-m, plot area = 100-m2
) were established 

beginning at 6, 46, a~d 86 meters perpendicularly away from the stream channel. Three 

belt transects measuring lOx 2 meters were nested within the circular plots, with the long 

edge perpendicular to the stream. The distance between midlines of adjacent belt 

transects was four meters. Twelve 1 x 1 meter quadrats were nested within the belt 

transects (four quadrats per belt transect). Quadrats were placed every two meters down 

the midline of each belt transect, so that the centers of adjacent quadrats within a belt 

transect were three meters apart (Fig. 2-2). Trees> 1 m high and 2: 2.54 cm DBH were 

measured within the circular plots, living stem counts of shrubs and saplings (> I-m high, 

:::: 2.54-cm DBH) were measured in the belt transects, and tree seedlings were measured 

in the I_m2 quadrats. 

F or each 100-m2 plot, I determined the diameter at breast height (DB H) and 

number of trees by species of all trees> 2.54-cm DBH. Trees were determined to be 

inside or outside of the circular plot using a ny-pole (Nyland and Remele 1973). This was 

a wooden pole wide enough to be seen clearly from 6 meters. Two horizontal lines were 

positioned at eye level using different colored tape so that they overlapped flush when 

viewed through a prism (10 BAF) held at 5.64 meters from the pole. Standing next to 
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each tree, one edge of the prism was used to view the ny-pole (positioned in the plot 

center). If the lines on the ny-pole did not overlap or overlapped slightly, then the tree 

was counted within the boundary. If the lines overlapped flush with each other, then the 

tree was considered at the boundary of the plot, and every other tree in that category was 

counted. If the lines extended past each other, so that the top line appeared on the bottom 

and the bottom line appeared on the top, then the tree was outside the boundary of the 

plot and was not counted. For each 20-m2 belt transect, shrub stem number (> I-m high) 

and sapling (> I meter high, < 2.54-cm DB H) number was recorded for each species 

using a meter stick held perpendicular to the transect tape with one end held directly over 

the tape. Any stem occurring beyond the far end of the meter stick was not counted. For 

tree and shrub seedling «I-m high) counts and their respective % cover, four l_m2 

quadrats were nested two meters apart within each of the three 20-m2 belt transects (12 

quadrats per circular plot). For all vegetation data, only livings stems were considered. 

Tree, sapling, and shrub sampling was conducted in 2005 (June through August) and in 

2006 (May to October). Tree seedling samples were made in 2006 (May - October). 

Plant identification and classification 

Plant identification was conducted in the field whenever possible. The primary 

source used for field identification was Wharton and Barbour (1973). Plants that could 

not be identified in the field were collected for later keying using Jones (2005). 

Collections included as many parts of the plant as possible, including stem, leaf, and 

flowering parts. However, the authority for all species names used here was the USDA 

PLANTS Database (2010). Native status at the continental level was determined using 
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Jones (2005) and the USDA PLANTS Database (2010). Three categories of species 

provenance at the continental scale were used: native, exotic, and naturalized. Term 

usage is as defined in the USDA Natural Resources Conservation Service (2009). Native 

plants are those that have developed prior to European settlement in an area (in this 

instance, the continental U.S.). Exotic plants are those introduced with human assistance 

to a continent on which they were not previously found during the pre-European era. 

Naturalized species are exotic species that do not need human assistance to successfully 

reproduce and establish, thereby maintaining populations over an unspecified period of 

time. Inclusion of the naturalized species category was to distinguish exotic species in 

urban and/or suburban areas that were ornamental species likely coming from yards or 

cultivated landscapes. 

Importance value and diversity 

Relative importance value (IV) for each tree species (> 2.54-cm DBH) was 

calculated at each site (Appendix 1) and for each land-use category (Table 2-3). For 

analytical purposes, the term 'site' refers to the combination of all plots at a particular 

research location, to distinguish from those instances when only the plot nearest the 

stream was used. The IV at the site level was calculated as the sum of relative density 

((Stem density for a single species (stems/ha)/Total stem density for all species 

(stems/ha)* 100) and relative dominance ((Basal area for single species (m2/ha)/Total 

basal area for all species (m2/ha))*100). 
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Eq.l 

Tree (> 2.S4-cm DBH) species % IV = ((species stems ha-1)/(total stems ha-1) + (species 

m2 ha-1/total m2 ha-1)) * 100 

Sapling (> I-m high, < 2.S4-cm DBH), tree seedling « I-m high) and shrub IV at the site 

level was calculated from relative density ((species stems ha-1)/(total stems/ha-1)) and 

relative frequency (species occurrence per sampling unit [quadrats or belt transects ]/total 

occurrences). For analytical purposes, only shrubs greater than one meter high were used 

to compute the IV's for each site, unless no shrubs of that species were present, in which 

case shrub seedlings « I-m high) were used. This was done to reduce the sampling bias 

caused by collecting stem counts at different scales (quadrat vs. belt transect) due to the 

clumping nature of shrub growth. 

Eq.2 

Sapling or Tree seedling or Shrub % IV = ((species stems ha-1)/(total stems/ha-1) + 

(species occurrence per sampling unit/total occurrences))* 100 

Species diversity was expressed using species richness, Shannon's (H') Index 

(Shannon 1948, Magurran 2004) and Simpson's Reciprocal (liD) Index (Simpson 1949, 

Magurran 2004). 
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Eq.3 

s 

H' = L (p,ln p) 
,=1 

Eq.4 

>f-1 7L (n, - 1) D = 1 - ..... ,- , , 
N(N - 1) 

Where S = species richness, Pi = proportion of an individual species, ni = number of 

stems for a species, and N is the total number of stems. Shannon's equitability index (Eh) 

was also computed as a measure of community evenness: 

Eq.5 

Eh=H'/ln(S), where H is Shannon's index and S is species richness. 

Because of different riparian widths and plot sizes, richness was calculated for all sites as 

well as solely for nearstream plots as the number of species divided by the log of the area 

sampled (Conner and McCoy 1979, Nilsson et al. 1997). Species richness was calculated 

by totaling the species across all plots for a site, and in some other comparisons by 

considering richness in only the plot nearest the stream. 

EstimateS (Colwell 2009) was used for computing diversity indices. Densities of 

woody species (trees, saplings, tree seedlings, and shrubs) were used to compute 

Simpson's reciprocal and Shannon's indexes for plots nearest the stream. Tree, sapling, 

and tree seedling information was collected at different spatial scales, so densities were 

computed separately for each life stage and added together where shared species existed 
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across life stages. In EstimateS, diversity index estimators were not used, so indices were 

computed using the observed species order within the input file. 

Metrics for wetland indicator status (WIS) and species provenance (NEZ; 

N=!!ative, E=~xotic, Z=naturali.?;ed) were determined for each site to assess correlations 

with various land-cover variables. Species were labeled with their WIS from the USDA 

PLANTS database as well as NEZ as described previously. WIS and NEZ codes and 

definitions are shown in Appendix 2. A numerical value was assigned to each site for 

each category of WIS and NEZ using the relative IV's calculated for each species in each 

site. Values were calculated by summing the IV's of the species in each category and 

adding a weighting factor to account for the number of species within that category. The 

weighting factor was the proportion of species within each category divided by the total 

number of species within the site. Being based upon relative IV's, the maximum value for 

any category, all others being zero, was 900 (200 each for trees, saplings, tree seedlings, 

and shrubs + 100 for the weighting factor). For example, the relative IV for Acer 

negundo, a native tree, would be 200 if it were the only tree species in a site. If it was 

also the only sapling and seedling species located at that site then those IV's would also 

be 200. Since A. negundo is a native species the computed metric for the category 

"native" would be: 

Tree IV + Sapling IV + Seedling IV + Shrub IV + Weighting factor [# native spp./Total # 

spp. * 100] = Native metric 
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200 (Tree IV) + 200 (Sapling IV) + 200 (Seedling IV) + 0 (Shrub IV) + 1 native spp'/2 

total spp. * 100 = 650 

If a naturalized species, such as Lonicera maackii, were the only shrub, it would have an 

IV of 200. The computed metric for the category "naturalized" in that same plot would 

be: 

Tree IV + Sapling IV + Seedling IV + Shrub IV + Weighting factor (# nat. spp'/Total # 

spp. * I 00) = Naturalized metric 

o (Tree IV) + 0 (Sapling IV) + 0 (Seedling IV) + 200 (Shrub IV) + (1 nat. spp/2 total 

spp.)* I 00 = 250. 

Data analysis 

Potential relationships between plant species composition, degree of 

imperviousness as well as other land-cover attributes, and other environmental 

parameters listed below were explored using non-parametric ordinations (PC-Ord v. 4.41) 

(McCune and Mefford 1999) and R v.2.11 software (R Development Core Team 2009), 

indicator species analysis, and cluster analyses (R v.2.11) (R Development Core Team 

2009). Scatterplots were used to explore relationships between diversity and abundance 

measures of the woody vegetation strata with % IS at the subcatchment scale. Non-metric 

multidimensional scaling (NMS) in PC-Ord was executed according to the recommended 

procedure outlined in McCune & Grace (2002). For each analysis, a separate starting 

configuration was supplied based on an initial analysis with the following configuration: 
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Sorensen distances, 50 runs with real and random data, a random starting configuration, 

and 200 iterations to evaluate stability of the final solution (stability criterion:::: 0.0005). 

Dimensionality was assessed using a Monte Carlo test for significance, with a p-value 

indicating the probability of finding the computed stress value for a specific number of 

dimensions by chance (based on 1000 permutations). Final solutions were completed 

using one run with real data. Ordinations run using R were given an optimal geometric 

starting configuration based on principal coordinates analysis. 

The goal of cluster analysis was to obtain groupings of study sites based on 

commonalities in species composition. To do this, a site dissimilarity matrix was 

constructed based on woody species composition. Several dissimilarity measures and 

clustering techniques were applied to the data in an attempt to achieve the best cluster 

configuration for the sites. A clustering technique known as optimal partitioning was 

decided upon as it produced the highest within-to-among cluster similarity value (Partana 

ratio). To accomplish this, the Bray-Curtis distance measure was used to create a 

dissimilarity matrix of the sites prior to cluster analysis. To decide on the number of 

groupings and assess their overall quality, I used the Partana ratio, as mentioned, as well 

as silhouette plots. Figure 2-3 shows an example of a silhouette plot for three groupings. 

Silhouette plots assign numerical values termed "silhouette widths" (SD to each site (i) 

with a value between -1 and 1 within a cluster. The silhouette width is obtained by 

comparing a site's mean similarity to other sites within the cluster, followed by 

comparison to its mean similarity to sites within the nearest cluster. A silhouette width of 

1 means the within-cluster similarity is much higher than between-cluster similarity, 

indicating a good fit of that site to the cluster. A value of -1 means the between-cluster 
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similarity is much higher than within-cluster similarity, indicating a poor fit of that site to 

the cluster. An average silhouette width is computed for each cluster to compare quality 

of the groupings. An overall silhouette width is computed for the whole graph to compare 

different numbers of groupings, where the goal is to obtain a value as high as possible 

without compromising the quality of the individual clusters. 

Indicator species analysis (ISA) is a useful method for evaluating different species 

as indicators of environmental conditions. ISA is a statistical technique for species 

comparisons across two or more groups of sample units (sites, quadrats), taking into 

account abundance and frequency of each species within a group. An indicator value is 

assigned to each species in each group, and the value is tested for significance using a 

randomization procedure (Monte Carlo). Indicator values range from 0 to 1, where '0' 

means the species is not present in the group and' 1 ' means it is always present within 

and exclusive to that group (Dufrene and Legendre 1997). 

To determine whether measures of environmental degradation (i.e., bank height) 

and measures of abundance and species diversity (stem density, diversity indices) varied 

with the proportion of land cover, a single factor model (ANOY A, R v.2.11) was used for 

partitioning variance among land-use categories (urban, suburban, rural). Tukeys HSD 

pairwise comparisons were used for determining statistical significance of the variance 

between land-use categories. Data were assessed for homoscedasticity and homogeneity 

of variance prior to analysis and were transformed to better meet those assumptions, if 

necessary. In addition, any potential outliers were identified using quantile by quantile 

(Q-Q) plots and graphs of leverage vs. standardized residuals plotted with Cook's 

distance. Points appearing to assert a disproportional influence on the data were 
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sequentially eliminated from the analysis to assess effects on the statistical assumptions 

of homoscedasticity and homogeneity of variance. Data points were permanently 

removed from the analyses if their elimination improved these statistical assumptions. 

Environmental parameters 

Several environmental and socio-economic variables external to the plots were 

used to explore their ability to explain variation in plant species composition among 

plots. These were % impervious surface cover (at three scales: the subcatchment, within 

l-km radius and within a O.5-km radius of site center), canopy openness, bank height, 

plot size and distance from stream, stream order, cumulative upstream catchment area, 

and monetary value of residential property. Impervious surface cover was determined as 

described previously and the three scales were used to explore which scale better 

predicted plant community composition. Since canopy openness and hence light can also 

be a determinant of species presence and dominance, a spherical densiometer (Lemmon 

1956, 1957), held over the middle of each I_m2 quadrat at each plot, was used to 

determine this measure. These values were averaged to obtain percent canopy openness 

for each plot. Cumulative catchment area was determined by adding subcatchment areas 

upstream of the site to the area of the subcatchment in which the site was located. This 

was done because catchment size is believed to affect stream conditions including flood 

potential, and therefore, it could be important for riparian plant composition. Bank height 

was measured from the first terrace out of the channel and referenced to the depth at the 

middle of the stream bed. Where the center of the channel was not reachable from the 

bank or by wading, bank height was measured at arm's reach. Bank height was measured 
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once at the midline of each plot nearest the streambank. These measurements were used 

as a proxy for depth to groundwater to determine correlations with species composition at 

the sites. Additional measurements were taken 50 meters to either side of the plot midline 

at 13 of the 41 sites where studies of depth to ground water and soil trace gas fluxes were 

conducted. These 13 additional measurements were averaged with the 41 site 

measurements to assess differences in overall bank height by land-use category. 

To explore relationships between species identity, percent exotic species, and the 

measures of community diversity with a measure of socio-economic status ofland 

owners, property value determinations were made from information at the Property 

Valuation Adminstrator offices in Jefferson and Oldham counties. The value of the parcel 

of land in which the site was located was taken as the property value. In instances where 

the site was located on the edge of a park abutting residential housing units or businesses, 

the average values of surrounding privately owned parcels was taken as the property 

value. Where sites were located in the interior of a park or natural area, the property was 

assigned a value of $1 to indicate no private monetary value. 

Finer-grained land-cover categorizations were also obtained using the U.S. 

Geological Survey's National Land Cover Database from 2001 (NLCD 2001; Appendix 

3) acquired through LOJIC. NLCD 2001 is a database developed from a consortium 

initiated by the u.S. Geological Survey to interpret land-cover attribute categories from 

Landsat 5 and 7 images (Homer et al. 2004). Pixels from these images were assigned 

digitized land-cover attribute categories with a spatial resolution of 30-m. This digitized 

layer was used to determine the areal proportion of land represented by each land-cover 

category surrounding each study site within two circular areas of different sizes (l-km 
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and 500-m radius buffers). The proportions of these land-cover categories were entered 

as environmental variables into an ordination analysis for species composition at each site 

to determine which landscape scale correlated most strongly with species composition. 

Results 

Subcatchment delineation & class(fication 

Forty sub catchments were delineated based on topography within and near the 

three main catchments. Sites were classified into land-use categories based on % 

impervious surface cover (lSC) at three scales: subcatchment, I-km and 500-m radius site 

buffers (Table 2-1). Twelve subcatchments were classified as urban, with one in Goose 

Creek watershed and eleven in Beargrass Creek watershed. Rural subcatchments included 

eleven in Harrods and three in Goose Creek. Suburban subcatchments spanned all three 

catchments, with eight in Goose and three each in Beargrass and Harrods Creek 

watersheds (Table 2-1). Impervious surfaces within 500-m and l-km of each site 

generally decreased compared with values at the subcatchment scale. Therefore, as the 

scale of the buffer distance around each site decreased, the number of sites classified as 

urban fell, while sites classified as suburban and rural increased (Table 2-1). One site in 

Beargrass Creek watershed on a privately owned farm was reclassified as rural when 

analyzed using the 500-m radius site buffer. The site was kept primarily in mown grass, 

with a thin strip of woody vegetation allowed to persist adjacent to the creek. All sites 

with ~ 30% ISC within l-km and 500-m radii of a site were located in Beargrass Creek 

watershed. 
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Riparian bank height and zone width variation 

Bank height at each site ranged from 15- to 230-cm. Average bank height was 

found to vary among the three land uses (p = 0.08; Fig. 2-4). Pairwise comparisons 

revealed urban streambanks (mean = 122-cm) were higher than suburban streambanks 

(mean = 86-cm; p = 0.068). Mean rural streambank height was 96-cm. Bank height 

followed a general upstream-to-downstream pattern of lower-to-higher banks among all 

land-use categories, with banks getting higher as upstream cumulative catchment area 

increased (data not shown). 

Riparian width was measured at each site to determine the number of plots to 

establish per site. Suburban sites exhibited the smallest overall width, while rural sites 

were widest, thus permitting the greatest number of multi-plot sites (Table 2-2). Six of 

fourteen rural sites, four of fifteen suburban and three of twelve urban sites were less than 

12 meters wide, resulting in smaller plot sizes in these sites. Only two urban sites 

contained more than one plot. One of the sites, located in a city park (Cherokee Park), 

contained two plots. The other site accomodated three plots, since it extended 

approximately 100-m before meeting a highway. All suburban sites contained only 1 plot 

as all vegetated riparian sites were less than 30 meters wide. 

The distribution of riparian widths at urban and rural multi-plot sites was similar 

(Table 2-2). In rural subcatchments, two of the multi-plot sites were along 1 sl order 

reaches, one occurred along a 2nd order reach, and two lay adjacent to yd order streams. 

One of the rural multi-plot sites along a 1 sl order reach appeared to have an altered stream 

flowpath, as it was located along a residential street and directly abutted an adjacent 
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upland slope. The two multi-plot sites in the urban subcatchments occurred along 2nd and 

3rd order reaches. 

The distribution of narrow riparian zones with respect to stream order showed 

more variation between land-use categories (Table 2-2). Seven of the sites with riparian 

widths less than 12 meters were found along first and second order streams. In suburban 

subcatchments, three of the smaller plots were located along 15t order streams, and one 

was located along a 3rd order stream. Two of the urban riparian sites with less than 12-

meter riparian widths were located along 15t order streams, and one along a 3 rd order 

stream. Both of the narrow sites along 3rd order streams (one along urban and one along a 

suburban stream) appeared to have been dramatically altered, possibly to contain 

floodwaters. In the urban area, the first terrace out of the stream channel contained a 

narrow riparian zone « 12-m wide) which ended at a vertical incline leading to a second 

terrace approximately 6 feet above the first terrace. The opposite bank was practically 

identical. 

Plant Communities In Relation To Land-cover 

The distribution of vegetative cover was uneven among the three land-use 

categories. Three rural sites and four rural nearstream plots had no trees. Two suburban 

sites had no trees, and all suburban sites were only wide enough for one plot. All urban 

sites and nearstream plots contained trees. Four rural, six suburban and four urban sites 

contained no saplings. When only nearstream plots were considered, the pattern remained 

the same. Two rural, two suburban and three urban sites contained no tree seedlings. The 
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distribution of tree seedlings was again the same for nearstream plots. Shrubs were absent 

from three suburban sites, but all other sites contained shrubs. 

Urban, suburban, and rural woody species composition showed distinct patterns, 

but with common themes across categories. Each land-use category contained unique 

dominant woody species (Table 2-3). In addition, the most dominant species within land­

use categories changed among woody vegetation strata, indicating some measure of 

succession is occurring within the three categories. The most abundant species also 

tended to be the more ubiquitous species across land-use categories, and woody species 

that were unique to a particular land-use category occurred in low frequencies (one or 

two sites; Tables 2-4 to 2-7). Shared species across all land-use categories included Acer 

negundo and Celtis occidentalis (Table 2-3 and 2-4). Both species had the lowest tree 

densities in rural riparian areas. A. negundo was also present in all woody vegetation 

strata across land-use categories (Tables 2-3 to 2-6). The most frequently occurring shrub 

species was the invasive exotic, Lonicera maackii (Table 2-7). It was located in a 

majority of all sampled sites and occurred in all urban locations. The mean density of L. 

maackii in urban sites was three times greater than in either suburban or rural areas. The 

only facultative wetland (F ACW) shrub species, Lindera benzoin, occurred in all land­

use categories, but it occurred most frequently and with the greatest density in rural areas. 

An obligate wetland (OBL) species, Rosa palustris, occurred in only one site, which was 

urban. 

Tree diameter distributions also showed some patterns across land-use categories. 

Most trees ranged between 2.5- and 25-cm in diameter at breast height (DBH) (Table 2-8, 

Fig. 2-5). Rural riparian areas contained nearly half the number of trees as urban or 
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suburban areas in the 5-10 and the 1O-25-cm diameter categories. Suburban areas 

contained the fewest trees greater than 35-cm DBH. In urban and rural subcatchments, 

Platanus occidentalis (FACW) only occurred in the higher diameter classes (>30-cm 

DB H) and only in the smaller diameter classes in suburban areas (5-10-cm DBH). 

Species richness of woody vegetation can differ dramatically along an urban-to­

rural gradient (Burton et al. 2005, Burton and Samuelson 2008). As such, species 

richness for woody plant communities was computed as one measure of species diversity 

and was computed individually for trees, saplings, tree seedlings, and shrubs. As area 

sampled differed among nearstream plots and among sites due to variation in number of 

plots per site, species richness was transformed as in Nilsson (1997) (species 

richness/log(area sampled)). Analysis at the nearstream scale was conducted to control 

for any differences in species diversity caused by varying riparian widths (site scale) 

across land-use categories, and also to more fully capture riparian plant diversity across 

the width of the riparian zone (site scale). Regressions of species richness of the various 

woody vegetation strata against %IS at the subcatchment scale revealed no strong trends. 

However, species richness patterns within limited ranges of impervious surface were 

evident. To explore these patterns I grouped site and nearstream plots into land-use 

categories based on proportion of impervious surface at the sub catchment scale. No 

significant differences in richness were evident among land-use categories for trees ~ 

2.54 DBH, saplings, or shrubs (Table 2-9). Seedling richness, however, differed 

significantly among land-use types at both the nearstream and site scales of analysis (Fig. 

2-6, Table 2-9). Tukey's HSD pairwise comparisons revealed suburban sites contained 

nearly twice the seedling richness (site and nearstream mean = 2.8 species) of urban sites 
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(site mean = 1.5 species; nearstream mean = 1.3 species) at both the site and nearstream 

scales (Table 2-10). Acer negundo and Celtis occidentalis were the most frequently 

occurring tree seedling species in urban (42% and 33% site occurrence, respectively), 

suburban (60% site occurrence for both species), and rural (43% and 36% site 

occurrence, respectively) riparian zones. These two species were also the densest in urban 

riparian zones (A. negundo - 3935 stems/ha; C. occidentalis - 1389 stems/ha). C. 

occidentalis (2556 stemlha) and Asimina triloba (1444 stems/ha) were the densest in 

suburban riparian areas. In rural riparian zones, F. americana (1647 stems/ha) and A. 

negundo (1210 stems/ha) were the densest (Table 2-6). 

Additional structural and community characteristics for woody species used for 

exploring relationships with land-cover attributes were stem density, tree diameter, and 

diversity indices (Shannon's, Simpson's reciprocal, Shannon's equitability). As with 

species richness, I used regression analysis to explore relationships with %IS at the 

sub catchment scale. Again, no strong correlations were found, so I grouped nearstream 

plots into the three land-use categories (urban, suburban, and rural) to further explore 

these relationships. Tree, sapling, shrub, and tree seedling densities were statistically 

analyzed at both site and nearstream scales within urban, suburban, and rural land-use 

categories (subcatchment scale). No statistically significant differences between land-use 

types (mean site-scale densities reported) were revealed in sapling (U = 521, S = 2092, R 

= 577 stems/ha), tree seedling (U = 5729, S = 11879, R = 5595 stems/ha), or shrub 

densities (U = 20219, S = 10276, R = 15920 stems/ha) even after eliminating differences 

in plot size by considering only full-size nearstream plots (n = 27 plots). I tested whether 

tree density and DBH varied by land-use category at the nearstream and site levels by 
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first using all sites and nearstream plots, and second using only treed sites and nearstream 

plots. Significant differences at the alpha ::;0.1 level were found among tree (;:: 2.54-cm 

DB H) densities between land-use categories at the nearstream scale when all nearstream 

plots were used. Mean tree density (477 stems/ha) in rural plots was about half that in 

urban plots (mean = 954 stems/ha, p = 0.073; Fig. 2-7), with suburban plots being 

intermediate (705 stems/ha). When only treed plots were used no statistically significant 

differences were evident in tree densities among land-use categories. All urban 

nearstream plots contained trees ~.54 cm DBH. Two non-treed nearstream plots 

occurred in rural subcatchments (one was a 100-m2 full size plot and the other was 50-

m2
). Four non-treed nearstream plots occurred in suburban subcatchments (two were in 

100-m2 full size plots and two were in plots smaller than 100-m2
). All woody species 

(trees, saplings, seedlings, and shrubs) from nearstream plots were used to compute 

Shannon's diversity and Simpson's reciprocal indices, as well as Shannon's equitability 

index. No significant differences were observed among land-use categories for Shannon's 

and Simpson's diversity indices. Shannon's equitability index did, however, differ 

significantly among land-use types (p = 0.047), as urban sites demonstrated lower 

evenness than suburban sites (mean = 0.54 and 0.77, respectively) as determined by 

Tukey's HSD pairwise comparisons (p = 0.037; Fig. 2-8). 

Most of the exotic species found were shrub species (Appendix 4). Scatterplots 

revealed an increasing proportion of exotic shrub species (p = 0.0003, Pearson's r = 0.53) 

and abundances (p = 0.0003, Pearson's r = 0.54) with increasing % ISC (subcatchment 

scale; Fig. 2-9). Above 10% ISC, at least half of the shrub species occurring within the 

sites were exotic (Fig. 2-9a). Above 30% ISC, at least 40% of all shrub stems were from 
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exotic species, with most sites containing 80% or greater exotic stem densities (Fig. 2-

9b). 

To control for differences in vegetation that could be related with stream order, I 

chose sites along first order streams to explore whether patterns in diversity and 

abundance could be detected by land use (Appendix 5). The strongest trend was a 

negative relationship between tree seedling density and %IS (subcatchment scale; p = 

0.07, Pearson's r = 0.39). A similar negative correlation was observed between tree 

species richness and bank height (p = 0.055, Pearson's r = 0.39); however, this 

relationship was caused by a single influential point with the greatest proportion of 

impervious surface. 

NMS & Cluster analysis 

I conducted a cluster analysis to obtain groupings of research sites based on 

commonalities in species composition. I computed Partana ratios and silhouette widths 

for two to ten clusters to determine the number of clusters to use (Fig. 2-10). The 2-

cluster configuration gave the highest Partana ratio, but when applied, all but one of the 

research sites were placed into a single cluster. Partana ratios were similar for three to ten 

cluster configurations, but overall silhouette widths differed more dramatically. I decided 

to use cluster regimes with three and five site groupings, since they exhibited the highest 

overall silhouette widths (0.18 and 0.16, respectively). The quality of the groupings can 

be seen in silhouette plots for the 3-cluster (Fig. 2-3) and 5-cluster configuration (Fig. 2-

11). The 3-cluster configuration contained one cluster with 26 sites, a second cluster with 

12 and a third cluster with 3 sites. The 5-cluster configuration resulted in more evenly 
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sized clusters (Fig. 2-11). Three of the clusters had fewer than ten sites each, with the 

largest cluster containing 20 sites. One of the clusters (Cluster-4) contained two sites and 

had a negative average silhouette width, indicating a poor grouping likely containing 

outliers. 

Clusters were analyzed for differences in species composition using frequency of 

occurrence and indicator species analysis. Species composition of the 3-cluster 

configuration was relatively unique for each cluster (Table 2-11). The dominant species 

in cluster-l was Symphoricarpos orbiculata, a native shrub. Cluster-2 was dominated by 

Lindera benzoin (native shrub) and Asimina triloba (native tree). Major species in 

cluster-3 were Lonicera maackii (exotic, invasive shrub) and Celtis occidentalis (native 

tree). Those species with significant frequencies of occurrence in each of the clusters (p :::: 

0.05), determined using indicator species analysis, are shown in Tables 7 and 8. The 

shrub layer was found to be important in defining groupings, as each cluster contained a 

significant indicator shrub species, but not necessarily a tree, sapling, or tree seedling 

speCIes. 

The 5-cluster configuration showed similar species assemblages, but with more 

overlapping species assignments (Table 2-12). The L. benzoin/A. triloba cluster remained 

intact as cluster-I, with other notable species including Aesculus glabra and Ulmus rubra 

(native trees). Cluster-3 was the L. maackii-dominated cluster, also containing the nearly 

ubiquitous species, A. negundo and C. occidentalis. This was also the largest cluster in 

the configuration, containing 20 sites. Clusters -2 and -5 shared a common dominant 

species, A. negundo, although the form of the species differed among the groups, with 

trees dominating cluster-2 and seedlings dominating cluster-5. Both cluster-2 and cluster-
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5 shared species with cluster-I, with L. benzoin in cluster-2 and the less frequent 

Ligustrum sinense (exotic shrub) in cluster-5. 

Non-metric multidimensional scaling (NMS) was used to determine cluster 

associations with environmental variables and species attributes (e.g., native status, 

wetland indicator status). NMS was run using the 41 sites organized into a distance 

matrix using Sorensen's index based on woody species Importance Values (IV's). A 

three-dimensional configuration was chosen, achieving a final stress of 17.7 and 

instability of 0.00048 for the final configuration. No site overlap occurred in 3-cluster or 

5-cluster groupings in three dimensions, indicating satisfactory agreement between the 

cluster analysis and the NMS solution (Fig. 2-12 & 2-13). 

Clusters were analyzed in relation to environmental variables that might correlate 

with and potentially help explain the observed variation in species composition among 

clusters (Table 2-13). Environmental variables calculated for each site were entered into a 

site-by-variable matrix and included as a secondary matrix in NMS using PC-Ord. The 

biplot feature in PC-Ord was used to generate a line for each variable with an r2 ::: 0.15 

for one or more axes, with the direction of the line corresponding to the direction of 

positive correlation of the variable, and the length of the line indicating the strength of the 

correlation along one or more axes. Implied in the ordination plot but not visible, a vector 

of equal length but opposing sign points in the opposite direction to indicate a negative 

correlation. 

Percent impervious surface and NLCD categories were included in the NMS as 

environmental variables (Fig. 2-14a-b) to evaluate cluster identity correlations with 

coarse and fine scale land-cover variables (Table 2-13; Fig. 2-14b). Cluster-3, having the 
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exotic shrub Lonicera maackii as its indicator species in the 3-cluster configuration, was 

the most "urban" of the clusters, being most strongly correlated with % IS within a SOO-m 

radius of each plot, as indicated by the length of this vector (Fig. 2-14a). At this smallest 

scale, low-intensity developed land most strongly correlated with this cluster (Fig. 2-

14b). This type of land-cover is typically composed of single-family residential housing, 

and was the most frequently observed impervious land-cover type found in this study. To 

a lesser extent, medium-intensity and open-space developed land also positively 

correlated with the species composition of cluster-3, followed by high-intensity 

developed land, which occurred around a few of the most urban sites. Cluster-2, having 

the native shrub Lindera benzoin as its indicator species, was most positively correlated 

with the proportion of deciduous forest cover. Cluster-l with another native shrub 

Symphoricarpos orbiculata as its indicator species, was most visibly associated with the 

proportion of pasture covering the land within SOO-m, with two of the sites containing the 

greatest proportion of pasture than any of the other sites (not shown). 

The NMS configuration was the same for the S-cluster assignment even as site 

cluster identities changed the perceived layout. Cluster-3 was the most "urban" cluster in 

the S-cluster configuration (Fig. 2-1Sa). Clusters -1 and -2 were the "deciduous forest" 

clusters, and cluster-S contained the two sites with the highest proportion of pasture (Fig. 

2-1Sb.). Figure 2-12 also demonstrates that %ISC at the SOO-m buffer most strongly 

explained the variation among clusters. Clusters-l and -2 contained IS% or less ISC 

within SOO-m of each site. Cluster-3 communities were surrounded by IS% or more ISC 

at each site. Sites in Cluster-S were intermediately placed in ordination space and were 

associated with between 10 and 20% ISC within a SOO-m radius. Association of %ISC 
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with Cluster-4 was not considered, as it was thought to be a poor cluster with two outlier 

sites. 

Unique indicator species among the deciduous forest and urban clusters in the 3-

cluster and 5-cluster configurations include the native species, L. benzoin and A. triloba, 

in the deciduous forest clusters (Cluster-2 and Cluster-I, respectively) and the exotic 

shrub, L. maackii, in the urban clusters (Cluster-3 in both configurations; Tables 7 & 8). 

The tree species, C. occidentalis, also occurred most frequently in the urban clusters. L. 

maackii is an exotic invasive shrub growing ubiquitously across the landscape in both 

riparian and upland habitats. It is considered a naturalized species as it successfully 

propagates itself independently of human interference. The other three species are native 

to the area. L. benzoin is also a facultative wetland species, occurring most frequently in 

wetland habitats (Appendices 2 & 4). 

Wetland indicator and native status for each species (Appendix 2) was included in 

the analyses as environmental variables to assess which categories were associated with 

the same site clusters as the land-cover variables. In this wayan indirect correlation could 

be drawn between these species attributes and land-cover variables. Figure 2-16a-b shows 

the direction of correlation of these attributes in relation to the various site clusters. 

Facultative wetland (F ACW) and native species attributes most strongly correlated with 

the deciduous forest clusters (Clusters-2 and -1 in the 3- and 5-cluster configuration). 

Facultative upland species did not positively associate with any particular grouping of 

sites. L. maackii, while contributing to the arrangement of sites in the NMS 

configuration, was not included in the calculation of species attribute values due to its 

overwhelming dominance in the urban sites, which would have masked any associations 
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of urban clusters with species attributes of other species. Had it been included, the urban 

groupings (Cluster-3) would have shown a strong correlation with exotic species as it was 

the sole significant indicator species of those groupings (Table 2-11 & 2-12). 

Since L. maackii was such an important species in urban clusters, I decided to 

compare its relative importance within sites with proportion of impervious surface at the 

subcatchment scale and within 500-m of the sites. L. maackii IVs significantly increased 

with increasing proportions of impervious surface within 500-m of site centers (p = 

0.000057, r2 = 0.34; Fig. 2-17). In addition, tree seedling densities and, to a lesser extent, 

tree sapling densities showed a markedly decreasing trend with increasing L. maackii site 

densities (Fig. 2-18). The highest seedling and sapling densities occur at the lowest 

densities «5000 to 10000 stems/ha) of L. maackii, and the lowest seedling and sapling 

densities at high L. maackii stem densities> 1 0000 stems/ha. These results show L. 

maackii to be an urban species with potentially negative impacts on the regeneration 

layer for other woody plants. 

Discussion 

This research revealed that some components of riparian woody species structure 

and composition, as well as density and diversity, correlated with land-cover metrics 

associated with urban land use. Distinct plant assemblages were found based partially on 

an urbanization gradient. The 3-cluster configuration (Fig. 2-12) highlights the primary 

species differences between the riparian sites (Table 2-11), essentially splitting them into 

"deciduous forest" (cluster-2) and "urban" (cluster-3) with a small "pastoral" cluster 

(cluster-I). All three clusters were distinguished by different indicator shrub species. S. 
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orbiculata, L. benzoin, and L. maackii, which respectively defined clusters -1, -2, and -3 

(Table 2-11) and suggests that those species have differing tolerances for disturbance, 

such as flooding frequency and intensity, or other anthropogenic ally altered landscape 

level factors. The tree, A. triloba, was also an indicator species for cluster-2, and is listed 

together with L. benzoin as a riparian species by Samuelson and Hogan (2006). Cluster 2 

being the least-urban, most-forested cluster (Fig. 2-14) indicates those particular species 

are likely sensitive to factors such as disturbance associated with pastured (free-roaming) 

livestock and those associated with urban development within a 500-m radius. L. benzoin 

was the most prominent facultative wetland species in this study, occurring almost 

exclusively in rural riparian habitats (Fig. 2-16, Table 2-11 & 2-12) at all scales. L. 

maackii has been positively correlated to % IS and urban areas in other studies (Luken 

and Thieret 1996, Hutchinson and Vankat 1997, Borgmann and Rodewald 2005). For 

example, Borgmann (2005) also found a positive relationship between the degree of 

urban land cover within l-km of riparian areas and percent cover of L. maackii. Exotic 

species invasions in urban riparian zones has been correlated with greater natural 

(flooding) and anthropogenic (trampling) disturbances (Moffatt and McLachlan 2004, 

Burton et al. 2005, Burton and Samuelson 2008). These findings indicate that as areas 

become more urbanized, exotic shrubs, such as L. maackii, will assume greater 

occurrences and densities within riparian zones. 

More discrete plant communities were found when the 5-cluster configuration 

(Fig. 2-13) was used for grouping communities than when the 3-cluster grouping was 

used. The "deciduous forest" cluster from the 3-cluster configuration was separated into 

two distinct clusters (Fig. 2-15). Cluster-I, containing both L. benzoin and A. triloba was 
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most similar to the original three-cluster assemblage. Cluster-2 also contained L. benzoin, 

with A. negundo assuming the greatest importance within the assemblage (Table 2-12). 

The relative absence of A. triloba from this cluster could indicate environmental factors 

non-conducive to the retention, establishment and growth of this species over the more 

ubiquitous A. negundo (Samuelson and Hogan 2006), which occurred within all clusters. 

The degree of sensitivity of A. triloba and L. benzoin to % ISC is shown in Figure 2-13. 

Cluster-I, containing both species, ends at 10% ISC when calculated within a 500-m 

radius of a site. Cluster-2 communities are found when ISC increases to 15%, suggesting 

that A. triloba is more tolerant to increasing urban conditions than L. benzoin. 

Some of the urban factors that might affect riparian plant assemblages include 

human manipulation of riparian areas (mowing, selective cutting of brush), human 

choices for plantings and manipulation of land close to naturalized riparian areas (yard 

plantings, pesticide and fertilizer use, pets), urban wildlife effects (deer and small 

mammal herbivory and seed predation and dispersal), habitat fragmentation, edge effects, 

the urban heat island, air pollution and urban hydrological drought. In this study, I 

attempted to explore the possible effect of urban hydrologic drought (Groffman et al. 

2003) on riparian species composition, since it has been implicated as a possible 

determinant of riparian species composition (Tickner et al. 2001, Burton et al. 2005). I 

used bank height as an indicator of this phenomenon, where the highest banks would 

indicate the possibility of urban hydrologic drought. I found no direct relationship 

between species composition or diversity and bank height, despite the fact that sites 

classified as urban at the subcatchment level were found to contain significantly higher 

streambanks than suburban areas. However, depth to groundwater does not necessarily 
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equate to soil dryness in the upper soil horizons where seedlings and shallow rooted 

species would be most affected. Other factors that may contribute to soil dryness include 

soil type and compaction, the urban heat island effect, proportion of impervious surface 

and frequency of storm drains, stream flooding frequency, riparian width and proportion 

covered by vegetation. The rarity of wetland species in urban riparian zones does indicate 

that soil dryness may contribute to their loss of dominance, but the absence of a 

correlation with bank height suggests that other factors may also explain their rarity. With 

respect to determining the potential effects of depth to groundwater as a control on 

riparian plant community composition, additional research should be focused on more 

directly eliciting the effects that soil dryness and interactions with other soil 

characteristics in upper horizons have on species composition via manipulated 

experiments. 

A new conceptual model is presented in Fig. 2-19 to reflect the findings of this 

study and offer a potential area of focus for future studies. In these watersheds, depth to 

groundwater (as measured by bank height) does not appear to provide major selective 

pressures on species establishment and growth compared to some other factors. Degree 

of soil moisture as determined by precipitation patterns, as well as other environmental 

conditions (light penetration, proportion of watershed that is forested) may be stronger 

determinants of the species that successfully establish in urban and suburban 

environments. 

Tree seedling richness was significantly lower in urban areas than in suburban 

areas (Table 2-8, Fig. 2-6), but tree seedling densities did not differ. Equally high 

seedling density indicates that the lower richness in urban areas is not due to fewer 
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individuals surviving current conditions, and instead suggests that a) the supply of 

propagules to urban areas is less diverse than in suburban areas, b) urban conditions only 

allow a very limited number of species to propagate, and/or c) biotic factors like selective 

herbivory, are affecting successful species establishment. 

Both sapling and seedling densities exhibited a decreasing trend with greater L. 

maackii densities (Fig. 2-18a-b). Reductions in seedling and sapling densities under high 

proportions of exotic shrubs have been shown in other studies (Merriam and Feil 2002, 

Loewenstein and Loewenstein 2005, Burton and Samuelson 2008). Exotic invasive 

shrubs pose a growing threat to overstory species regeneration. Rural tree densities were 

also significantly lower than that in the other two land-use types determined at the 

subcatchment scale. Large tree diameters have been shown to contribute to greater 

spacing between trees (Porter et al. 2001), yet I found no significant differences existed in 

mean tree DBH between land-use types at the subcatchment scale. Differences in tree 

densities were attributed to the absence of trees at several rural and suburban sites, since 

elimination of those plots without trees resulted in no significant differences between 

land-use types in tree density. Plot size was not indicated as a major contributing factor to 

these differences in tree densities among land uses either, since a majority of the smaller 

plots for all sites contained trees, and half of the non-treed nearstream plots were full size 

(lOO-m\ 

Woody plant diversity as measured by species richness, Shannon's and Simpson's 

diversity indices, and Shannon's evenness index did not significantly differ among land­

use categories in this study. This trend was in contrast to that found by Burton et al. 

(2005) in the Atlanta, Georgia area, where Shannon diversity for woody species in 
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riparian zones increased with distance from the city center. In my study, woody plant 

community evenness was lower in urban areas than in suburban areas, indicating that, if 

these communities are not directly managed, natural succession in urban sites favors 

success of a few exotic shrubs. Restoration managers attempting to reclaim an urban 

riparian area should be selective when choosing species to include along streams. Also, 

some form of management plan may need to be formed to control for specific exotic 

plants, such as L. maackii, that limit understory growth. 

Exotic, naturalized vegetation was more highly associated with the urban riparian 

communities due to the high prevalence of L. maackii. This shrub occurred in all land-use 

categories, but dominated urban sites, correlating most strongly with proportion of 

impervious surface within a 500 m site radius (Fig. 2-17). Brown and Peet (2003) showed 

higher species richness of both native and exotic species with flooding frequency in 

mountainous riparian areas. This was attributed to immigration-driven selection pressures 

due to propagule deposition and frequent disturbance. Similar findings were reported by 

Burton et al. (2005) and Burton and Samuelson (2008). These same pressures may be at 

work in urban riparian areas, coupled with conditions unique to urban environments (heat 

island, potentially drier soils, more edge habitat) that allow exotic generalist species to 

gain a foothold over native riparian species once they arrive. 

Two of the more ubiquitous tree species across land-use types were A. negundo 

and C. occidentalis. Both species are tolerant of a wide range of soil and moisture 

conditions. A. negundo is the most widely distributed species within its genus in North 

America, extending from coast to coast and from Canada south to Texas and Florida. C. 

occidentalis is widely distributed within the eastern continental U.S., although it does not 
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extend as far north as A. negundo. Both species are equally drought tolerant, and able to 

withstand prolonged periods of inundation exceeding 100 days (Bums and Honkala 

1990). 

The findings regarding riparian widths have implications for restoration efforts. 

Width of the riparian zone has been shown to be important for maintaining amphibian 

and bird species (Rudolph and Dickson 1990, Kinley and Newhouse 1997) and for the 

ability of the riparian area to buffer undesirable nutrient inputs into streams from adjacent 

land. Reestablishing riparian zones with appropriate widths will require reverse 

engineering to counter the efforts that created the narrow riparian widths along high order 

streams in urban and suburban locations. This, along with hydrological characteristics of 

riparian zones as they relate to species composition and ecosystem services, should 

continue to be studied to determine species responses to development and the resulting 

alteration to riparian functionality. 

Conclusions 

Woody plant assemblages are influenced by the proportion of impervious surface 

within a SOO-m to l-km radius. Exotic shrubs, such as L. maackii, showed a high affinity 

for urban sites. Wetland species exhibited a low affinity for these urban sites, and instead 

occurred in those sites with a greater proportion of deciduous forest. 

In addition to influencing species composition, the various growth stages of 

woody species displayed different patems along this urban-to-rural gradient of riparian 

sites. Tree seedling richness declined in urban compared to suburban riparian areas. 

However, tree seedling densities did not differ among sites within these two land-use 
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categories. Tree, sapling, and shrub species richness did not significantly differ among 

sites across the urban-to-ruralland use gradient. However, tree densities were 

significantly lower in rural riparian zones than in suburban or urban sites due to the 

higher number of plots with no trees in rural areas. 

I expected certain environmental conditions, such as bank height, within the 

associated riparian area to influence plant species assemblages and diversity. While mean 

bank height was highest adjacent to urban riparian zones, it did not explain the variation 

in woody species composition across sites. Instead, the high prevalence of L. maackii in 

sites with relatively high proportions of impervious surface surrounding them appeared to 

exhibit the greatest associations with plant abundances. Sapling and tree seedling 

densities both declined with increasing densities of this exotic, invasive shrub. 

Land managers and riparian restoration teams will need to consider these findings 

when considering woody species to plant in riparian areas. For example, woody species 

survivorship in different land-use contexts will vary, making the choice of species for 

introducing or re-introducing into the riparian zone more risky from a resource 

perspective. 
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Table 2-1: Area of research catchments and the number of study sites classified as urban 
(U), suburban (S) and rural (R) at the subcatchment (SC) scale, and within a l-km and 
500-m radius from each study site. Classification as urban (U), suburban (S) and rural (R) 
land cover was based on proportion of impervious surface with 2: 30% being urban, 
::::10% being rural, and between 10 and 30% being suburban. 

1 500 
SC km m 

Area 
Catchment (km2

) U S R U S R U S R 
Beargrass 
Creek 65 11 3 0 8 6 0 6 7 1 
Goose 
Creek 50 1 8 3 0 8 4 0 6 6 
Harrods 
Creek 60 0 3 11 0 1 13 0 2 12 
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Table 2-2: Distribution of riparian width intervals by stream order and land-use category 
at the sub catchment scale. Riparian zone width was measured along areas of level 
ground beginning at the streambank edge and extended until reaching a structural barrier 
(such as a road, parking lot, or building), upland slope, or other obstruction (grazed 
pasture, ephemeral stream channel). Classification as urban, suburban and rural land 
cover was based on proportion of impervious surface with::: 30% being urban, ::::10% 
being rural, and between 10 and 30% being suburban. 

Riparian 
width (m) 

Stream 
Land use Order <12 12-45 46-85 >85 

Urban 1 2 4 0 0 
2 0 0 1 
3 2 1 0 

Total 3 7 1 1 
Suburban 1 3 7 0 0 

2 0 4 0 0 
3 1 0 0 0 

Total 4 11 0 0 
Rural 1 4 2 2 0 

2 2 0 1 0 
3 0 2 0 

Total 6 3 5 0 
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Table 2-3: Relative importance value of dominant (>5%) woody species by strata within 
land-use categories at the subcatchment scale. 

Relative 
Land Use! Strata S~ecies IV 

Fraxinus americana L. 36 

Acer negundo L. 28 
Seedling Acer saccharum Marsh. 25 

Celtis occidentalis L. 23 

Asimina tri/oba (L.2 Dunal 16 

Asimina triloba (L.) Dunal 54 

Robinia pseudoacacia L. 35 

Celtis occidentalis L. 25 
Saplings Acer negundo L. 22 

Aesculus glabra Willd. 20 

Ulmus rubra Muhl. 20 

Rural 
Fraxinus americana L. 16 

Juniperus virginian a L. 46 

Juglans nigra L. 33 
Maclura pomifera (Raj) Schneid. 19 

Trees Acer saccharum Marsh. 16 

Acer negundo L. 15 

Asimina tri/oba (L.) Dunal 14 

Fraxinus americana L. 13 

Symphoricarpos orbiculatus Moench 58 
Lonicera maackii (Rupr.) Herder* 45 

Shrubs Lindera benzoin (L.) Blume 32 
Ligustrum sinense Lour. * 25 

Rubus sEll: 22 
Fraxinus pennsylvanica Marsh. 30 
Celtis occidentalis L. 27 
Acer negundo L. 24 

Seedling Asimina triloba (L.) Dunal 18 

Suburban 
Acer saccharum Marsh. 14 
Prunus seratina Ehrh. 12 
Ulmus rubra Muhl. 12 

Staphylea trifolia L. 49 

Saplings 
Asimina tri/oba (L.) Dunal 26 
Acer negundo L. 14 

Fraxinus pen nsylvan ica Marsh. l3 
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Table 2-3 Fraxinus americana L. 13 
(continued) Celtis occidentalis L. 13 

Cornus spp. 12 
Ulmus rubra Muhl. 11 

Acer negundo L. 46 
Fraxinus americana L. 21 
Acer saccharum Marsh. 20 
Ulmus rubra Muhl. 19 

Trees Staphylea trifolia L. 17 

Suburban Acer saccharinum L. 16 
Cornus alternifolia L. f 14 
Tilia americana L. 13 
Morus alba L. * 11 
Lonicera maackii (Rupr.) Herder* 56 
Ligustrum sinense Lour. * 49 

Shrubs Lindera benzoin (L.) Blume 26 
Euonymus alatus (Thunb.) Sieb. * 23 
Rubus spp. 18 
Acer negundo L. 72 

Celtis occidentalis L. 41 

Seedling 
Fraxinus americana L. 21 
Aesculus glabra Willd. 13 

Gleditsia tricanthos L. 13 

Morus rubra L. 13 
Celtis occidentalis L. 57 
Acer saccharum Marsh. 27 
Acer negundo L. 26 

Urban Saplings Morus rubra L. 15 
Fraxinus quadrangulata Michx. 15 
Fraxinus americana L. 13 
Fraxinus pennsylvanica Marsh. 12 
Platanus occidentalis L. 37 
Morus alba L. * 35 
Acer negundo L. 29 

Trees Celtis occidentalis L. 27 
Fraxinus pennsylvanica Marsh. 12 
Carya cordiformis (Wangenh.) K. 
Koch 11 
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Table 2-3 Lonicera maackii (Rupr.) Herder* 73 
(continued) Cornus spp. 29 

Shrubs 
Hibiscus syriacus L. * 25 

Urban 
Lindera benzoin (L.) Blume 18 

Lagerstroemia indica L. * 17 

Ligustrum sinense Lour. * 16 

1 Land use category based upon % impervious surface at the subcatchment scale. 
Urban::: 30%, Rural:S 10%, Suburban between 10 and 30% IS 

*Non-native species 
Relative IV calculation is the sum of relative density and relative frequency for 
seedlings, saplings, and shrubs. Tree relative IV is the sum of relative density 
and relative basal area. Maximum value is 200. Only species with IV > 10 (5%) 
are shown. 
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Table 2-4: Tree frequency, mean density and basal area (± S.E.) in land use categories at the subcatchment scale. 
Urban Suburban Rural 

Mean Mean Mean Mean Mean Mean Mean Mean Mean 
Density Basal Basal Density Basal Basal Density Basal Basal 
(stems/ Areal Area2 (stems/ Areal Area2 (stems/ Area, Area2 

S~ecies Freg hal (m2/ha) (m2/ha) Freq hal (m2/ha) (m2/ha) Freq hal (m2/ha) (m2/ha) 

Acer negundo 
(FAC) 0.33 192 (97) 5 (3) 16 (8) 0.53 196 (75) 4 (2) 8 (2.6) 0.43 68 (29) 1.5 (0.8) 3.6 (1.6) 

Acer 
saccharum 
(FACU) 0.17 42 (34) 0.72 (0.66) 4.3 (3.6) 0.27 86 (39) 1.4 (0.8) 5 (2) 0.21 42 (26) 1.6 (1.3) 7.3 (5.4) 

Aesculus 
glabra 
(FACU) 0.08 8 (8) 0.55 (0.55) 6.7 0.07 7 (7) 0.01 (0.01) 0.2 0.14 29 (22) 0.1 (0.08) 0.8 (0.2) 

Carya 
cordiform is 
(FACU) 0.08 25 (25) 2 (2) 17.5 0 0 0 0 0 0 0 0 CXl 

U") 

Celtis 
occidentalis 
(FACU) 0.25 108 (58) 6 (3) 22 (6) 0.33 61 (29) 0.09 (0.06) 0.3 (0.1) 0.14 14(10) 0.1 (0.1) 1 (0.7) 

Fraxinus 
americana 
(FACU) 0.17 31 (21) 1 (0.9) 5.8 (4.5) 0.20 47 (27) 1.9 (1.3) 9 (5) 0.14 51 (43) 0.7 (0.7) 4.7 (4.4) 

Fraxinus 
pennsylvanica 
(FACW) 0.08 43 (43) 0.1 (0.1) 1.5 0.07 18 (18) 0.02 (0.02) 0.2 0 0 0 0 

Jug/ans nigra 
(FACU) 0.25 36 (20) 2 (I) 7 (2) 0.07 13 (9) 0.1 (0.1) 2 0.29 25 (15) 4 (2.5) 15 (7) 

Maclura 
pomifera 
(UPL) 0.08 6 (6) 0.04 (0.04) 0.5 0 0 0 0 0.14 43 (31) 1.5 (1.3) 7.9(1.4) 

Morus alba 
(UPL) 0.17 205 (155) 3 (2) 16 (4) 0.07 20 (20) 0.54 (0.54) 8 0 0 0 0 



Table 2-4 (continued) 
Urban Suburban Rural 

Mean Mean Mean Mean Mean Mean Mean 
Density Mean Basal Basal Density Basal Basal Densitv Mean Basal Basal 
(stems/ Areal Area2 (stems/ 

Species Frea. hal (m2/ha) (m2/ha) Frea. ha 

Morus rubra 
(FACU) 0.08 13 (9) 0.3 (0.3) 4 0 0 0 0 0 0 0 0 

Picea 
pungens (NI) 0.08 8 (8) 0.03 (0.03) 0.3 0 0 0 0 0 0 0 0 

Platanus 
occidentalis 
(FACW) 0.25 38 (23) 11 (6) 43 (14) 0.07 7 (7) 0.03 (0.03) 0.4 0.07 7 (7) 1 (1) 13 

Prunus 
cerasifera 
(NI) 0.08 21 (21) 0.3 (0.3) 3 0 0 0 0 0 0 0 0 
Quercus 

O'l 
rubra LJ'l 

(FACU) 0.08 4 (4) 0.007 (0.007) 0.1 0 0 0 0 0 0 0 0 
Thuja 
occidentalis 
(FACW) 0.08 3 (3) 0.002 (0.002) 0.02 0 0 0 0 0 0 0 0 
Ulmus rubra 
(FAC) 0.25 41 (24) 1 (1) 5.4 (5.2) 0.40 118(67) 1.5 (1.3) 3.7(3.1) 0.14 25 (19) 0.07 (0.05) 0.5 (0.2) 
Acer 
saccharinum 
(FACW) 0 0 0 0 0.07 27 (27) 0.8 (0.8) 11 0 0 0 0 
Asimina 
tri/oba 
(FACU) 0 0 0 0 0.13 20 (14) 0.06 (0.05) 0.4 (0.3) 0.21 101 (86) 0.1 (0.1) 0.6 (0.5) 
Corn us 
alternifolia 
(NI) 0 0 0 0 0.07 35 (35) 0.2 (0.2) 2.8 0 0 0 0 



Table 2-4 (continued) 

Species 
Staphylea 
trifolia 
(FAC) 
TWa 
americana 
(FACU) 
Carpinus 
caroliniana 
(FAC) 
Cerds 
canadensis 
(FACU) 
Corn us 
florida 
(FACU) 

Juniperus 
virginiana 
(FACU) 
Prunus 
serotina 
(FACU) 
Quercus 
alba 
(FACU) 

SUM 

Freq. 

0 

0 

0 

0 

0 

0 

0 

0 

Urban 
Mean 

Mean Basal 
Density Area) 

(stems/ha) (m2/ha) 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 
825 (87) 32 (3.4) 

Mean 
Basal 
Area2 

(m2/ha) Freq. 

0 0.07 

0 0.13 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 
153 (3.4) 

Suburban Rural 
Mean Mean Mean Mean 

Mean Basal Basal Mean Basal Basal 
Density Area) Area2 Density Area) Area2 

(stems/ha) (m2/ha) (m2/ha) Freq. (stems/ha) (m2/ha) (m2/ha) 

48 (48) 0.03 (0.03) 0.5 0 0 0 0 

40 (34) 0.7 (0.7) 5 (5) 0 0 0 0 

0 0 0 0.07 12 (12) 0.03 (0.03) 0.4 

0 0 0 0.07 14 (14) 0.1 (0.1) 

0 0 0 0.14 22 (15) 0.02 (0.01) 0.1 (0.003) 

0 0 0 0.07 71 (71) 3 (3) 39 

0 0 0 0.07 4 (4) 0.01 (0.01) 0.2 

0 0 0 0.07 4 (4) 0.2 (0.2) 3 

742 (74) 12(1.2) 56.5 (1.2) 533 (57) 14(1.5) 98 (1.5) 

*Wetland indicator status - Frequency of occurrence in wetlands and non-wetlands: OBL >99% in wetlands, F ACW 67-99% in wetlands, F AC equally likely 
to occur in wetlands and non-wetlands, F ACU 67-99% occurrence in non-wetlands, UPL >99% occurrence in non-wetlands, NI = not indicated. 
Land use categories based upon subcatchment % impervious surface. Urban> 30% (n = 12), Rural < 10% (n = 14), Suburban between 10 and 30% IS (n = 15). 
1&2 Basal area is the average within sites in each land use category including sites that did not contain the species (subscript 1) and including only sites 
containing the species (subscript 2). If the species was located in only one site, no standard error was given. 

0 
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Table 2-5: Sapling frequency and mean density (+ S.E.) in land use categories at the 
subcatchment scale. 

Urban Suburban Rural 

Wetland Mean Mean Mean 
Ind. Density Density Density 

Species Status* Freq (no.!ha) Freq (no./ha) Freq (no./ha) 

Acer negundo FAC 0.25 97 (71) 0.13 167 (155) 0.21 45 (27) 

AceI' saccharum FACU 0.08 83 (83) 0.07 78 (78) 0 0 

Carya cordiformis FACU 0.08 14 (14) 0.13 49 (38) 0 0 

Celtis occidentalis FACU 0.33 519(342) 0.20 45 (26) 0.14 61 (46) 

Cornus sericea FACW 0.08 19 (19) 0 0 0 0 

Fraxinus americana FACU 0.08 28 (28) 0.20 59 (39) 0.14 25 (18) 

Fraxinus 
pennsylvanica FACW 0.08 23 (23) 0.07 139 (139) 0 0 

Fraxinus 
quadrangul ata NI 0.08 35 (35) 0.07 23 (23) 0 0 

Madura pom!fera UPL 0.08 5 (5) 0 0 0 0 

Morus rubra FACU 0.17 28 (19) 0 0 0 0 

Thuja occidentalis FACW 0.08 5 (5) 0 0 0 0 

Aesculus glabra FACU 0 0 0.07 11 (11) 0.14 42 (36) 

Asimina triloba FACU 0 0 0.20 606 (324) 0.43 287 (168) 

Cercis canadensis FACU 0 0 0.07 12 (12) 0 0 

Cornus spp. 0 0 0.07 111 (111) '0 0 
Prunus serotina FACU 0 0 0.07 11 (11) 0 0 
Quercus rubra FACU 0 0 0.07 12 (12) 0 0 
Staphylea trifolia FAC 0 0 0.07 667 (667) 0 0 
Tilia americana FACU 0 0 0.07 12 (12) 0 0 
Ulmus rubra FAC 0 0 0.13 92 (72) 0.21 30 (17) 
Jug/ans nigra FACU 0 0 0 0 0.07 6 (6) 
Robinia 
£seudoacacia FAC 0 0 0 0 0.07 60 (60) 

SUM 854 (174) 2093 (324) 554 (103) 
*Wetland indicator status - Frequency of occurrence in wetlands and non-wetlands: OBL >99% 
in wetlands, FACW 67-99% in wetlands, FAC equally likely to occur in wetlands and non-
wetlands, FACU 67-99% occurrence in non-wetlands, UPL >99% occurrence in non-wetlands, 
NI = not indicated. 

Land use categories based upon % impervious surface at the subcatchment scale. Urban> 30% 
(n = 12), Rural < 10% (n = 14), Suburban between 10 and 30% IS (n = 15). 
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Table 2-6: Tree seedling frequency and mean density (+ S.E.) in land use categories at 
the sub catchment scale. 

Urban Suburban Rural 

Wetland Mean Mean Mean 
Ind. Density Density Density 

Species Status* Freq (stems/ha) Freq (stems/ha) Freq (stems/ha) 

Acer negundo FAC 0.42 3935 (3060) 0.60 1167 (362) 0.43 1210 (573) 

Aesculus glabra FACU 0.08 139 (139) 0.20 222(128) 0.14 60 (40) 

Betula alleghaniensis FACU 0.08 23 (23) 0 0 0 0 

Celtis occidentalis FACU 0.33 1389(651) 0.60 2556 (1520) 0.36 843 (486) 

Fraxinus americana FACU 0.25 255 (151) 0.20 283 (157) 0.21 1647 (1098) 

Fraxinus 5pp. 0.08 69 (69) 0 0 0 0 

Gleditsia tricanthos FAC 0.08 139 (139) 0 0 0 0 

Monls rubra FACU 0.17 93 (71) 0 0 0 0 

Platanus occidentalis FACW 0.08 69 (69) 0.07 III (Ill) 0.07 79 (79) 

Acer saccharum FACU 0 0 0.27 833 (467) 0.21 992 (654) 

Asimina triloba FACU 0 0 0.20 1444 (977) 0.29 327 (152) 

Carya cordi{orlllis FACU 0 0 0.07 222 (222) 0.07 60 (60) 

Cercis canadensis FACU 0 0 0.07 III (III) 0 0 

Comus drumlllondii FAC 0 0 0.07 222 (222) 0 0 
Fraxinus 
pennsylvanica FACW 0 0 0.07 1222 (1222) 0 0 
Fraxinus 
quadrangulata NI 0 0 0.07 242 (242) 0.07 159 (159) 
Liriodendron 
tulipifera FACU 0 0 0.13 167 (121) 0 0 

Prunus serotina FACU 0 0 0.07 424 (424) 0 0 

Quercus shumardii FAC 0 0 0.07 61 (61) 0 0 

Tilia americana FACU 0 0 0.07 56 (56) 0 0 

Ulmus rubra FAC 0 0 0.07 424(424) 0.14 149(120) 

Acer 5pp. 0 0 0 0 0.14 89(64) 

JuglallS cinerea FACU 0 0 0 0 0.07 89 (89) 

Quercus rubra FACU 0 0 0 0 0.07 159 (159) 
Robinia 
pseudoacacia FAC 0 0 0 0 0.07 30 (30) 

SUM 6111(1114) 9768 (880) 5893 (668) 

*Wetland indicator status - Frequency of occurrence in wetlands and non-wetlands: OBL >99% in 
wetlands, FACW 67-99% in wetlands, FAC equally likely to occur in wetlands and non-wetlands, FACU 
67-99'% occurrence in non-wetlands, UPL >99% occurrence in non-wetlands, NI = not indicated. 

Land use categories based upon % impervious surface at the subcatchment scale. Urban> 30% (n = 12), 
Rural < 10% (n = 14), Suburban between 10 and 30% IS (n = 15). 
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Table 2-7: Shrub frequency and mean density (+ S.E.) in land-use categories at the 
subcatchment scale. 

Urban Suburban Rural 

Wetland Mean Mean 
Ind. Density Density Mean Density 

Species Status* Freq (stems/ha) Freq (stems/ha) Freq (stems/ha) 

Cornus spp. 0.08 799 (799) 0 0 0 0 

Euonymus alatus NI 0.17 69 (48) 0.33 389 (226) 0.07 32 (32) 

Hibiscus 5yriacus Nt 0.08 660 (660) 0 0 0 0 
Hypericum 
prolificum FACU 0.08 14 (14) 0 0 0 0 
Lagerstroemia 
indica Nt 0.08 417 (417) 0 0 0 0 

Ligustrum sinense FACU 0.08 389 (389) OAO 2456 (1484) 0.29 1345 (1160) 

Lilldera benzoin FACW 0.25 458 (309) 0.27 728(418) 0.57 1712(665) 

LOllicera maackii NI 1.00 8005 (2023) 0.60 2767 (1401) 0.86 2618 (783) 

Rosa palustris OBL 0.08 97 (97) 0 0 0 0 
Al71elanchier 
arborea FAC 0 0 0.07 56 (56) 0 0 

Cornus racemosa NI 0 0 0.07 89 (89) 0.07 42 (42) 

Hibiscus syriacus NI 0 0 0.07 111 (Ill) 0 0 

Rubus 5pp. 0 0 0.07 222 (222) 0.07 595 (595) 
Hydrangea 
arborescens FACU 0 0 0 0 0.14 179(129) 
Symphoricarpos 
orbiculatus UPL 0 0 0 0 0.21 4536 (4273) 
Viburnum 
acerijjJlium UPL 0 0 0 0 0.07 60 (60} 

SUM 10907 (1643) 6817(1015) 11118(1322) 

*Wetland indicator status - Frequency of occurrence in wetlands and non-wetlands: OBL >99% in 
wetlands. FACW 67-99% in wetlands, FAC equally likely to occur in wetlands and non-wetlands. FACU 
67-99% occurrence in non-wetlands, UPL >99% occurrence in non-wetlands, Nt = not indicated. 

Land use categories based upon % impervious surface at the sub catchment scale. Urban> 30% (n = 12), 
Rural < 10% (n = 14), Suburban between 10 and 30% IS (n = 15). 
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Table 2-8: Tree diameter distribution in riparian zones by land-use category at the 
sub catchment scale. 

Land 
Use! S~ecies Diameter Class (em) 

2.5 - 5 - 10- 25 - 30 - 35 -
5 10 25 30 35 40 >40# 

Acer negundo 12 25 37 6 
Acer saccharum 6 19 12 6 

Aesculus glabra 25 19 6 
Asimina triloba 56 6 
Carpinus carolinian a 6 
Celtis occidentalis 12 6 6 
Cercis canadensis 6 6 

- Corn us florida 12 ~ .. 
:: 

Fraxinus americana 12 19 12 6 ~ 

Juglans nigra 12 19 (53) 
Juniperus virginiana 6 12 6 6 

Maclura pomifera 12 31 6 6 6 (47) 
Platanus occidentalis 6 12 (68) 
Prunus serotina 6 
Quercus alba 6 
Ulmus rubra 12 25 6 

Total 161 155 106 25 37 19 37 
Acer negundo 49 49 81 24 8 
Acer saccharinum 8 16 8 
Acer saccharum 16 16 49 
Aesculus glabra 8 
Asimina triloba 16 8 

=: Celtis occidentalis 33 8 
~ Cornus alternifolia 8 8 .c .. 
:: Fraxinus americana 8 24 8 8 (45.5) .c 
:: 

Fraxinus pennsylvanica 8 iJl 

Juglam' nigra 8 8 
Morus alba* 8 8 8 
Platanus occidentalis 8 
Staphylea trifolia 16 
TWa americana 8 41 
Ulmus rubra 16 49 57 8 

Total 187 154 301 49 16 0 8 
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Table 2-8 (cont.) 
Acer negundo 15 146 66 7 7 (93) 
Acer saccharinum 7 

Acer saccharum 22 7 15 

Aesculus glabra 7 
Betula alleghaniensis 7 

Carya cordiformis 7 7 7 

Celtis occidentalis 7 22 29 7 7 14 (53) 
Fraxinus americana 22 22 

c: Fraxinus pennsylvanica 7 7 
~ 
.c. Juglans nigra 29 15 -~ Maclura pomifera 7 7 

Morus alba * 22 58 

Morus rubra 7 7 

Picea pungens 7 
Platanus occidentalis 7 14 (93) 
Prunus cerasifera * 7 

Quercus rubra 7 

Thuja occidentalis 7 
Ulmus rubra 22 15 7 

Total 95 270 241 51 22 7 36 
I Land use categories based upon % impervious surface at the 
subcatchment scale. Urban> 30% (n = 12), Rural < 10% (n = 
14), Suburban between 10 and 30% IS (n = 15). 

*Non-native species 
# Number in parentheses is the largest diameter tree within the size class. 
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Table 2-9: ANOV A of woody plant richness by plant type among land-use categories at 
the subcatchment scale. The seedling category includes tree seedlings only. 

Scale 
Near-stream 
plots 

Sites 

*p = 0.05 

Plant 
type 

Tree 

Saplings 

Seedlings 

Shrubs 

Trees 

Saplings 

Seedlings 

Shrubs 

p-value 

0.46 

0.32 

0.026* 
0.87 

0.82 

0.8 

0.034* 
0.89 

Richness = # spp./ log(sampled area) 
Site richness determined by treating all plots at multi-plot sites as one sampling unit. 
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Table 2-10: Tukeys HSD pairwise comparisons of tree seedling richness by land-use 
category at the sub catchment scale. 

Scale Pairing 

Near-stream plots Suburban-Rural 

Sites 

Urban-Rural 
Urban-Suburban 

Suburban-Rural 
Urban-Rural 
Urban-Suburban 

67 

Difference 

1.21 

-0.66 
-1.87 

1.05 
-0.80 
-1.85 

Adj. p-value 

0.17 
0.61 

0.024 
0.26 
0.49 

0.028 



Table 2-11: Woody plant species composition for the most common species and 
significant indicator values for a 3-cluster configuration using optimal partitioning. 
Frequency values were calculated based on the proportion of sites within the cluster in 
which the species occurred. Indicator values were calculated using indicator species 
analysis, where a value of 0 means the species is never present in the cluster and a value 
of 1 means the species is always present and exclusive to the cluster. Probabilities for the 
indicator values were determined using a Monte Carlo randomization technique. 
Compare with the 5-cluster configuration in Table 2-12. Celtis occidentalis was included 
despite having no significant indicator value since it occurred most frequently (although 
not exclusively) in that cluster among the three growth stages. 

Common Indicator 
Cluster Species name Frequency value probability 

Symphoricarpos 
1 orbiculata Coralberry 0.66 0.66 0.001 

2 Lindera benzoin Spicebush 0.8 0.76 0.004 
Asimina triloba Pawpaw 

-Trees 0.41 0.42 0.023 

-SapJings 0.66 0.67 0.01 
-Seedlings 0.5 0.48 0.032 

Amur 
3 Lonicera maackii honeysuckle 0.88 0.84 0.001 

Celtis occidentalis Hackbe_rry 

-Trees 0.26 - -
-Saplings 0.34 - -
-Seedlings 0.57 - -
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Table 2-12: Woody plant species composition and significant indicator values (IV) for 5-
cluster configuration using optimal partitioning. Frequency values were calculated based 
on the proportion of sites within the cluster in which the species occurred. Indicator 
values were calculated using indicator species analysis, where a value of 0 means the 
species is never present in the cluster and a value of 1 means the species is always present 
and exclusive to the cluster. Probabilities for the indicator values were determined using a 
Monte Carlo randomization technique. Compare with the 3-cluster configuration in Table 
2-11. Other species with frequencies ~.4 were included to illustrate species differences 
and similarities among groups. 

Common Other spp. (freq. :::: 
Cluster Species name FreQ. IV Prob. 0.4) 

Lindera Celtis occidentalis, 
1 benzoin Spicebush 1 0.7 0.001 Ulmus rubra 

Aesculus glabra 
Asimina seedlings, 
triloba Pawpaw Li~ustrum sinense 

Trees 0.55 0.56 0.01 

Saplings 1 1 0.001 

Seedlings 0.66 0.59 0.02 
Celtis occidentalis 

Acer seedlings, Lindera 
2 ne~undo Boxelder 1 0.68 0.001 benzoin 

Acer negundo 
seedlings, Celtis 

Lonicera Amur occidentalis 
3 maackii honeysuckle 1 0.57 0.001 saplings/seedlings 

Outlier 
4 cluster 

Symphoricarpos 
orbiculata, 
Ligustrum sinense, 

Acer Boxelder Ulmus rubra 
5 ne~undo (seedlings) 0.8 0.5 0.03 saplings 
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Table 2-13: Environmental and National Land Cover Database (NLCD) metrics used for 
non-metric multidimensional scaling. 

Environmental variables NLCD values (SOO-m) 

-Bank height adjacent to the site -Open-space developed 

-% impervious surface: subcatchment, 
I-km buffer, SOO-m buffer -High-, medium, low-intensity developed 

-Area sampled -Deciduous forest 

-Stream order -Mixed forest 

-Catchment Area -Herbaceous forest 

-Property value -Crops 

-Pasture 

-Wetland 
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Figure 2-1: Schematic map of the three watersheds in Jefferson and Oldham counties in 
Kentucky. Research sites are indicated with markers. 
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Figure 2-2: Plot and site design for sampling adult trees (::::: 2.S4-cm DBH), saplings, tree 
seedlings, and shrubs. (a) Each site consisted of at least one 100-m2 circular plot for 
sampling tree counts and DBH, except in the cases when the riparian width could not 
accommodate a complete circular plot. Nested within the circular plot were three belt 
transects measuring lOx 2 m with midlines spaced four meters apart for counting 
saplings and shrub stems. Quadrats measuring 1 x 1 m were nested within the belt 
transects for determining percent cover and counts of tree seedlings. Adjacent quadrat 
spacing within belt transects was three meters at the midpoint. (b) Where riparian width 
was sufficient, sites consisted of a midline transect stretched the length of the riparian 
zone up to 100 meters with up to 3 plots per transect with midpoints spaced 40-m apart. 
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Figure 2-3: Silhouette plot of a cluster analysis (optimal partitioning using Bray-Curtis 
distance) resulting in three groupings of research sites. Sites within clusters are 
represented by gray bars, the length of each demonstrating the silhouette width (value on 
the x-axis) of that particular site within the cluster. Cluster numbers, number of sites 
within the cluster, and cluster widths are to the right of each cluster. Overall silhouette 
widths are located below the numerical axis. Explanation of values given in Methods. 
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Figure 2-4: Bank height measurements for land-use categories determined at the 
subcatchment scale (R = Rural, n = 22; S = Suburban, n = 23; U = Urban, n = 22). The 
bold line indicates the median, boxes delineate 25th and 75th percentiles, and whiskers 
indicate minimum and maximum values. Mean urban bank height (I 22-cm) was higher 
than suburban bank height (86-cm; p = 0.068) and rural bank height (96-cm). 
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Figure 2-5 : Tree diameter distributions by land-use category in riparian zones. Land-use 
categories were determined at the subcatchment scale. 
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Figure 2-6: Tree seedling richness/log(Area sampled) for (a) near-stream plots only (n = 
41 nearstream plots), and (b) sites (n = 41 sites). In (b), plots at the multi-plot sites were 
combined and treated as one sampling unit. Land use assignment for both plot and multi­
plot sites was determined at the subcatchment scale (R = Rural, S = Suburban, U = 
Urban). The bold line indicates the median value, boxes delineate 25th and 75th 

percentiles, and whiskers indicate minimum and maximum values. Mean suburban tree 
seedling richness (Site and nearstream means = 2.8 species per site and nearstream plot) 
was significantly higher than mean urban tree seedling richness (site mean = 1.5 species; 
nearstream mean = 1.3 species) at p = 0.05 (nearstream plots only p = 0.024; all plots, p = 
0.028). 

76 



-------~~~~~-

0 

..- 0 

~ 
Ii) 

.c 
----"" ... ... - 0 

Q,; """ .... 
"" 

, -- I 
I 

;;... I 

I 
.... 0 

B .- (') 

"" ... -Q,; 

""0 
Q,; 0 

N 
~ I - I .... I 

~ 0 0 
~ 

0" 
ifj 

0 

R S u 

Land cove .. 

Figure 2-7: Square root of the tree density averaged across all nearstream plots in each 
land-use category. Land use categories were determined at the sub catchment scale (R = 
Rural, S = Suburban, U = Urban). The bold line indicates the median, boxes delineate 
25th and 75 th percentiles, and whiskers indicate minimum and maximum values. Circular 
markers represent potential outliers, but were not excluded from analysis. Mean rural tree 
density (477 stems/ha) was nearly half that of urban tree density (954 stems/ha; p = 
0.073). Mean suburban tree density was intermediate (705 stems/ha). 
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Figure 2-8: Shannon's equitability index (Eh) for all woody species using nearstream 
plots only for comparisons. Land-use categories were determined at the subcatchment 
scale (R = Rural, S = Suburban, U = Urban). The bold line indicates the median, boxes 
delineate 25th and 75th percentiles, and whiskers indicate minimum and maximum values. 
Mean urban woody plant evenness (0.54) was significantly lower (p = 0.037) than 
suburban community evenness (0.77), while mean rural woody plant evenness (0.68) was 
similar to that of suburban, but more variable. 
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Figure 2-9a-b: Exotic shrub species richness (a) and density (b) proportions with 
increasing impervious surface (sub catchment scale). 
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Figure 2-10: Partana ratios and overall silhouette widths for 2 to 10 clusters using 
optimal partioning. The 2-cluster configuration, while giving the highest silhouette width 
and partana ratio, results in two clusters, with one cluster containing all but one of the 
sites, and the other containing one site. I chose to group the sites into three and five 
clusters since those two options gave the highest values for overall silhouette width (0.18 
and 0.16, respectively). Explanations of silhouette width given in Methods. 
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Figure 2-11 : Silhouette plot of cluster analysis using optimal partitioning and Bray­
Curtis distance resulting in five groupings of research sites. Sites within clusters are 
represented by gray bars, the length of each demonstrating the silhouette width (x-axis) of 
that particular site within the cluster. Cluster numbers, number of sites within the cluster, 
and mean cluster widths are to the right of each cluster. Average silhouette width, located 
below the numerical axis, is the mean of all silhouette widths for each site. Explanation 
of values given in Methods under the heading' Data Analysis ' . 
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Figure 2-12: 3-dimensional configuration (only 2 dimensions shown) of woody plant 
data using non-metric multidimensional scaling (NMS) with sites (points) assigned to 
their respective groupings from the 3-cluster configuration from cluster analysis. 
Grouped clusters are shown along axes 1 & 3. No site overlap occurred in these three 
groupings in 3-dimensions indicating satisfactory agreement between the cluster analysis 
and the NMS solution. Plots in Cluster-1 (blue) are associated with the native shrub, 
Symphoricarpos orbiculata as its indicator species (Table 2-11), Cluster-2 in green is 
associated with the native shrub, Lindera benzoin, and the largest Cluster-3 (red) is 
associated with the exotic shrub, Lonicera maackii. 
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Figure 2-13: 3-dimensional configuration (only 2 dimensions shown) of woody plant 
data using non-metric multidimensional scaling coupled with cluster assignments from 
the 5-cluster configuration from cluster analysis. Isobar lines representing proportion of 
impervious surface within a 500-m radius of the research sites are presented to show the 
relationship to the clusters. Cluster-1 (green) is associated with the native shrub, Lindera 
benzoin, as a primary indicator species (Table 2-12), Cluster 2 (dark blue) with the native 
tree, Acer negundo, as its primary indicator species, Cluster 3 (red) with the exotic shrub, 
Lonicera maackii, as its primary indicator species, Cluster 4 (light blue) with anomalous 
outlier plots, and Cluster-5 (purple) with Acer negundo seedlings as its primary indicator 
species. 
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Figure 2-14a-b: Non-metric multidimensional scaling of woody plant data coupled with 
cluster assignments from the 3-cluster configuration using cluster analysis, shown as 
colored shapes. Clusters-l and -2 contain native shrubs as indicator species, while 
Cluster-3 contains an exotic shrub as an indicator species. Vectors representing site 
environmental metrics are pointing in the direction of increasing proportions, with the 
length of each vector representing the strength of correlation. Vectors for environmental 
metrics are shown only if they have an? ~ 0.15 along at least one axis. Environmental 
metrics shown along (a) axes 1 & 3 are the proportion of impervious surface (IS) 
surrounding each site at 3 scales: subcatchment (SC), I-Ian and 500-m radius. 
Relationships of clusters with other environmental metrics are shown along the same axes 
in (b) and include low- medium- (med.int), and high-intensity (Hi.int) development, 
open-space developed (open.sp), % IS within a 500-m site radius (%IS-500m), pasture, 
and deciduous forest (Decid). Definitions are included in Appendix 3. Compare with 
Table 2-11 to get dominant and indicator species of the clusters. Explained variance (?) 
along each axis is as follows: Axis 1 - 0.14, Axis 2 (not shown) - 0.20, Axis 3 - 0.34. 
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Figure 2-15a-b: Non-metric multidimensional scaling of woody plant data coupled with 
cluster assignments from the S-cluster configuration using cluster analysis. Vectors 
representing site environmental metrics are pointing in the direction of increasing 
proportions, with the length of each vector representing the strength of correlation. 
Vectors for environmental metrics are shown only if they have an?::: O.IS along at least 
one axis. Environmental metrics shown along (a) axes 1 & 3 are proportion impervious 
surface (IS) surrounding each site at 3 scales: subcatchment (SC), l-km and SOO-m 
radius. Environmental metrics shown along the same axes in (b) include low- (lo.int), 
medium- (med.int), and high-intensity (Hi.int) developed, open-space developed 
(open.sp), % IS within a SOO-m site radius (%IS-SOOm), pasture, and deciduous forest 
(Decid). Definitions are included in Table 13. Compare with Table 2-12 to get dominant 
and indicator species ofthe clusters. Explained variance (r2) along each axis is as follows: 

. Axis 1 - 0.14, Axis 2 (not shown) - 0.20, Axis 3 - 0.34. 
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Figure 2-16a-b: Non-metric multidimensional scaling of research sites arranged 
according to woody species composition. Sites are color coded according to their cluster 
assignments from 3- and 5-cluster configurations using cluster analysis. Vectors 
representing species attributes are pointing in the direction of increasing importance 
values, with the length of each vector representing the strength of correlation. Vectors for 
species attributes are shown only if they have an ~::: 0.15 along at least one axis. The 3-
cluster assignments are pictured in (a) and (b). The 5-cluster assignments are pictured in 
(c) and (d), with identical site configurations shown in (a) and (c), and (b) and (d). The 
species attributes shown are facultative-upland (F ACU), facultative wetland (F ACW), 
and native species (N). Definitions and the full list of attributes included in the analysis 
are located in Table 14. Compare with Tables 8 and 9 to get dominant and indicator 
species ofthe clusters. Explained variance (~) along each axis is as follows: Axis 1 (not 
shown) - 0.14, Axis 2 - 0.20, Axis 3 - 0.34. 
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Figure 2-17: Linear regression of L. maackii relative importance value (IV) against 
proportion of impervious surface within a radius of 500-m of site centers. L. maackii IV 
significantly increased in relation to increasing proportions of impervious surface (p = 
0.000057; adj. r2 = 0.34). Data were square root transformed prior to regression. 
Regression of L. maackii densities against %IS within a 500-m site radius resulted in a 
lower coefficient of determination and p-value (p = 0.0002, adj. r2 = 0.28) so the data are 
not shown. 
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Figure 2-18a-b: Regressions of tree seedling and sapling densities compared to Lonicera 
maackii density at each site. Tree seedling density (a) and, to a lesser extent, tree sapling 
density (b) decreased in relation to increasing densities of L. maackii. The highest 
seedling and sapling densities occur at the lowest densities «5000 to 10000 stems/ha) of 
L. maackii, and the lowest seedling and sapling densites at L. maackii concentrations 
> 1 0000 stems/ha. 
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Figure 2-19: New conceptual model of variables that affect and are affected by 
vegetation within a riparian area modified from Figure 1-1. A direct link between 
groundwater levels and riparian vegetation was not found. However, since wetland 
species were found to a greater extent in rural riparian zones (Table 2-7, Fig. 2-16) soil 
moisture may be influencing plant species composition, although this would need to be 
verified in the field . . 
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CHAPTER 3: VARIATION IN RIPARIAN GROUNDCOVER PLANT 

COMMUNITIES SURROUNDED BY URBAN, SUBURBAN, AND RURAL LAND­

USE IN LOUISVILLE, KENTUCKY 

Introduction 

Urbanization can affect the composition of riparian herbaceous and groundcover 

species at various scales. The existence of a greater number of exotics in the urban 

species pool creates the potential for their dominating riparian areas at landcape and 

regional scales. However, the plant communities realized in any location are highly 

influenced by site-level factors such as micro-scale soil nutrient, light and moisture 

differences (Guillaume 2002). As such, urban influences, such as nutrient deposition, on 

these species are likely to occur within a smaller site radius than for woody vegetation, 

which is more greatly influenced by macro-scale influences, such as forest management 

(Guillaume 2002). Localized urban effects, such as edge creation through reduction in 

size of woody riparian buffers, will likely influence groundcover (herb and vine) species 

composition and vulnerability to exotic species invasion. For example, Canadian riparian 

zones had greater numbers of exotic annuals at the urban end of an urban-to-rural 

gradient, while more perennial natives occurred primarily at the rural end (Moffatt and 

McLachlan 2004). 

The interaction of urbanization and variable physical properties of the riparian 

zone can also result in different attributes of the plant community. Plant diversity has 

been shown to vary with location within riparian zones. Changing conditions of moisture 

90 



and light availability with increasing lateral movement away from and longitudinal 

movement downstream have both been shown to relate to predictable changes in riparian 

plant diversity (Nilsson et al. 1994, Lite et al. 2005). For example, species richness of 

riparian herbaceous communities in arid environments in Arizona was found to decrease 

laterally away from the stream channel during a dry year (Lite et al. 2005). This finding 

was attributed to lower water availability farther from the stream, as the water table was 

found to drop with lateral distance from the channel. Furthermore, the opposite was true 

following monsoon rains and flooding, as herbaceous species richness increased with 

distance from the stream channel following increases in the water table. How plant 

species diversity changes with lateral distance from streams flowing through varying 

land-uses is less well understood. 

In addition, riparian plant diversity has been shown to vary with catchment area 

and stream order. Nilsson et al. (1994) showed that plant species richness along a river in 

Sweden was higher along the main channel than its tributaries. One possible explanation 

offered was variation in mean annual stream discharge and peat and silt cover along 

streambanks. Lite et al. (2005) found a pattern of increasing mean species richness in an 

upstream direction following summer monsoon and flooding events in an arid 

environment, as herbaceous annual species rapidly responded to removal of resource 

limitation upstream. Whether such patterns exist for riparian herbaceous communities in 

response to changing resource availabilities across an urban-to-ruralland-use gradient has 

yet to be determined. 

The overarching goal of this project was to determine how groundcover plant 

communities (herbs and woody vines growing over the soil) along streams vary with 
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degree of urban and suburban development in three watersheds in Jefferson and Oldham 

counties in Kentucky. The first objective was to determine whether potential relationships 

existed between riparian groundcover vegetation assemblages and impervious surface 

cover and NLCD land-cover types at different spatial scales. Specific predictions 

associated with this objective were that distinct groundcover vegetation communities 

exist that can be partially correlated with impervious surface cover, used as an index of 

urbanization. The second prediction was that the sphere of influence of different land 

covers would correlate more strongly with differences in groundcover vegetation with 

decreasing site radius, given the sensitivity of herbaceous vegetation to microscale as 

opposed to macroscale environmental variation (Guillaume 2002). 

The second objective was to determine whether differences in plant species 

diversity existed along this urban-to-ruralland-use gradient as well as with increasing 

catchment area and lateral distance from the streambank. There are three predictions 

associated with this objective, the first being that groundcover plant diversity along this 

gradient would be higher in suburban riparian areas than in either urban or rural riparian 

areas for two reasons: 1) because of the likely greater availability of diverse seed from 

residential areas than in rural locations (McKinney 2008), and 2) because of the 

prevalence in urban riparian areas of Lonicera maackii, an invasive shrub known to 

reduce herb layer diversity (Collier et al. 2002, Loewenstein and Loewenstein 2005) (see 

Chapter 2). The second prediction was that species richness would increase with total 

upstream catchment area, since other studies have shown that plant species richness 

increases with downstream distance (Bendix 1997, Bendix and Hupp 2000, Lite et al. 

2005). The third prediction was that groundcover plant species richness would increase 
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with lateral distance from the stream due to the decreasing influence of floodwaters 

farther from the stream (Lite et al. 2005). To my knowledge, this is the first study to 

have compared herb and woody vine species richness in the ground layer of riparian 

environments across different land-use types and with lateral distance from the stream. 

The third objective was to determine the extent to which native and non-native 

groundcover vegetation was associated with varying land-cover types. Since one 

consequence of urbanization is creation of edges, I predicted that native vegetation would 

be more dominant in riparian assemblages associated with greater proportions of forested 

land-cover types, and exotic vegetation would take on greater importance in riparian 

assemblages associated with urban land-cover types. The fourth objective was to 

determine the extent to which wetland and upland species were associated with various 

land-cover types. Because of impervious runoff, stream incision due to greater 

impervious cover, and the urban heat island effect, I proposed that higher streambanks 

would be found in urban areas and that this trend would be correlated with groundcover 

species composition. I specifically predicted that obligate and facultative wetland species 

would assume greater dominance in riparian assemblages associated with forested rural 

land-cover types and that facultative and upland species would exhibit greater dominance 

in riparian assemblages associated with urban land-cover types. The fifth objective was to 

determine groundcover species associations with and diversity within plots dominated by 

the shrub, Lonicera maackii. Since L. maackii is an exotic species with allelopathic 

properties and strong shading capabilities, I predicted that herb layer species composition 

would differ greatly and that species richness and other measures of diversity would be 

lower under this shrub than where this shrub was less dominant. 
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Methods 

Study Area 

The study area consisted of three individual watersheds located within and 

adjacent to Louisville, Kentucky, USA (Latitude 38°15'N, Longitude 85°46'W), which 

has a population of approximately 700,000 with a mean density of 695 people km-2 (U.S. 

Census Bureau 2008). These watersheds, Beargrass Creek (Middle Fork), Goose Creek, 

and Harrods Creek (South Fork), lie adjacent to each other with all streams flowing in a 

primarily westerly direction and eventually emptying into the Ohio River (Fig. 3-1). 

The three watersheds are of approximately equivalent sizes, containing varying 

proportions of impervious surface cover (ISC; Table 3-1). Beargrass Creek watershed, 

located in the north-northeast portion of Jefferson County, KY, is approximately 65 km2 

(Metropolitan Sewer District 1999b) and contains the greatest proportion of impervious 

surface cover (33% ISC). This Middle Fork of Beargrass Creek joins the South Fork 

before flowing into the Ohio River. Several stretches of this stream are featured on 

Kentucky's Division of Water 303d list, which list streams with impairment issues as 

well as the pollutant(s) causing the impairment (Kentucky Environmental and Public 

Protection Cabinet 2008). Since combined sewer overflows (CSOs) commonly occur in 

this stream, the presence of fecal coliform and sewage are stated as the primary problem 

pollutants within Beargrass Creek. 

Goose Creek is a 50-km2 watershed also in Jefferson County, in-between and 

adjacent to Beargrass and Harrods Creek watersheds (Metropolitan Sewer District 

1999a). Of the three watersheds in this study, impervious surface cover is intermediate 

(20% ISC). The creek is composed of a pair of forks that meet before emptying into the 
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Ohio River. Goose Creek is also listed on the 303d list, with cadmium and fecal coliform 

levels stated as impairment issues. 

South Fork Harrods Creek watershed (60-km\ which has the lowest impervious 

surface cover of the three (10% ISC), is located primarily in neighboring Oldham 

County, but extends into northeast Jefferson County. South Fork Harrods Creek 

eventually joins North Fork Harrods Creek to become Harrods Creek before flowing into 

the Ohio River. Sections of the larger Harrods Creek network made the 303d list in years 

past, specifically the portion passing through Jefferson County which is a more 

developed area. As in the other two watersheds, fecal coliform has traditionally been a 

problem (Metropolitan Sewer District 1999c). The current 303d list contains Harrods 

Creek with fecal coliform as an impairment issue, although this information is for the 

stream section downstream of where the North Fork and the South Fork Harrods Creek 

Jom. 

Watershed classification 

Watersheds were chosen from digitized catchment layers downloaded from the 

Louisville/Jefferson Information Consortium (LOnC) database (LOnC 2010). LOnC is 

a multi-agency consortium that maintains a geographic information systems (GIS) 

database to serve primarily Jefferson County, KY, although limited information is 

available for a portion of Oldham County, KY. After checking for topographical 

accuracy, I divided catchments into sub catchments based on stream order and topography 

from the original LOJIC layers. I further divided subcatchments of higher stream orders 

with longer reaches into two or three subcatchments. Data layers from the LOnC 
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database were clipped to each of these subcatchments. Beargrass Creek watershed 

contained thirteen subcatchments, Goose Creek watershed contained twelve 

subcatchments, and Harrods Creek watershed contained fourteen subcatchments. 

Impervious land-cover classification was determined using three data layers from 

the LOnC database digitized in 2001. These layers included buildings, miscellaneous 

transportation, and roads. The buildings layer included all built structures, whether 

commercial or residential. The roads layer included all paved road surfaces, excluding 

parking lots. The miscellaneous transportation layer included secondary transportation 

features such as driveways, parking lots, and sidewalks. The area of land covered by 

impervious surfaces for each subcatchment was determined using ArcGIS 9 (ESRI 2010) 

and was divided by the total land area for each subcatchment to determine the proportion 

of impervious surfaces covering the landscape. 

Categorization of subcatchments into urban, suburban, and rural land-use 

categories was modified from Schuler (1994). For this study, urban subcatchments were 

defined as containing ~30% impervious surface cover. Rural subcatchments contained 

:::10% impervious surface cover and suburban subcatchments contained between 10% and 

30% impervious surface cover. To explore the degree of association between riparian 

plant communities and proximity of different types of land use and cover, research sites 

were classified by land use based on impervious surface cover at three scales. The first 

and largest areal scale was the subcatchment level, where sites were classified as urban, 

suburban, or rural based on the proportion of impervious cover in the sub catchment in 

which they were located. Impervious surface cover was calculated at two additional and 

smaller scales surrounding the sites. These site buffers at a radius of l-km and 500-m 
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from the site center were created using ArcGIS 9. The proportion of impervious surface 

cover was determined for these buffers in the same way as for the subcatchments. Sites 

were then classified into one of the three land-use categories in the same way as the 

subcatchment. Urban, suburban, rural categorization of sites was changed for each 

relevant analysis depending on the scale at which impervious cover was calculated. 

Site selection and plot establishment 

Forty-one riparian sites were chosen from within the aforementioned 39 

catchments. Riparian zones were defined by topography and structural confinements. 

Areas of level ground between the streambank and either an upland slope, structural 

barrier (roads, parking lots, buildings), or other obstruction (grazed pasture, ephemeral 

stream channel) were considered as being within the riparian zone. Sites were chosen 

randomly using ArcGIS 9 as follows. A vertical measurement line with units in meters 

was drawn the length of the stream section within the subcatchment. A random number 

multiplied by 100 meters was used to find the location of the site along the vertical 

measurement line. Sites were visited and chosen if they were at least partially covered 

with unmanaged vegetation and at least 100 meters from the nearest fork to avoid 

sampling dual riparian zones from separate channels. Riparian zones located completely 

within regularly used pastures and those found to be mown to the edge of the streambank 

were not used for this study. Only one side of the stream was sampled at each site. Ifboth 

sides contained vegetation, the larger side was chosen if it fit the criteria above, if it was 

reachable, and if the proper permissions could be attained. If only one side of the stream 

contained vegetation then that side was chosen. Locations where at least one full plot 
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could not be placed (riparian width < 12-m) were sampled with a partial plot due to the 

time and expense of acquiring permission to access sites, and to avoid potential biases of 

purposefully choosing a site of a particular width. The distribution of riparian widths by 

stream order and land-use category for the sites chosen is presented in Table 3-2. 

After visiting the locations identified by ArcGIS selection, the location of the 

actual study site was chosen by taking a randomly determined number of steps to 

establish the center of a transect. I used a compass to extend a transect tape perpendicular 

to and away from the stream channel up to 91 meters, if possible. Circular plot centers 

(plot radius = 5.64-m) were established beginning at 6, 46, and 86 meters away from and 

perpendicular to the stream channel. Three belt transects measuring lOx 2 meters were 

nested within the circular plots, with the long edge perpendicular to the stream. The 

distance between midlines of adjacent belt transects was four meters. Twelve 1 x 1 meter 

quadrats were nested within the belt transects (four quadrats per belt transect). Quadrats 

were placed every two meters down the midline of each belt transect, so that the centers 

of adjacent quadrats within a belt transect were three meters apart (Fig. 3-2). 

The circular plots were used in a previous study to estimate the abundance and 

species identity of trees. Belt transects were used to measure shrub live stem densities. 

Percent cover and identity of groundcover species (herbaceous and woody vine species), 

as well as number and percent cover of L. maackii seedlings, were determined in each 1 x 

1 meter quadrat. For all vegetation data, only livings plants were considered. L. maackii 

sampling was conducted in 2005 (June to August) and in 2006 (May to October). 

Groundcover plant data were collected from May to October, 2006. 
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Plant identification and classification 

Plant identifications were made in the field whenever possible. The primary 

source used for identification of shrubs and vines was Wharton and Barbour (1973). 

Plants that could not be identified in the field were collected for later keying using Jones 

(2005). Collections included as many parts of the plant as possible, including stem, leaf, 

and flowering parts. However, the authority for all species names used here was the 

USDA PLANTS Database (2010). Species provenance at the continental level was 

determined using Jones (2005) and the USDA PLANTS Database (2010). Two categories 

of species provenance at the continental scale were used: native and exotic. Term usage is 

as defined in the USDA Natural Resources Conservation Service (2009). Native plants 

are those that have developed over hundreds of years in an area (in this instance, the 

continental U.S.) and were present prior to European settlement. Exotic plants are defined 

herein as those introduced with human assistance to a continent on which they were not 

previously found prior to European settlement. 

Importance value and diversity 

F or each site (one to three plots), an importance value (IV) was calculated for 

each groundcover species as the sum of average percent cover and frequency . Average 

importance values were calculated across quadrats at each site based on the arithmetic 

mean of the percent cover of each species. Percent frequency was determined for each 

species based on the number of quadrats in which a particular species was present divided 

by the total number of quadrats at each plot and multiplied by 100. 
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Eq.1 

Groundcover species IV (%) = Average % cover + % Frequency 

Species richness (S), Shannon's diversity (H') and Simpson's reciprocal (liD) 

indices, as well as Shannon's equitability index (Eh) were computed for each site using 

data collected only from the plot nearest the stream (see Chapter 2 Methods for full 

equations and references). Since site and plot sizes varied, richness was calculated as 

S/Log(Area sampled) at the site scale (for up to three plots) and at the nearstream plot 

scale. Log transforms were used on richness data to normalize variance. Two sites with 

the lowest richness were eliminated from site and nearstream analyses to normalize 

residuals and stabilize variance. Data from only nearstream plots were compared using 

Shannon's, Simpson's, and equitability diversity analyses when examining potential 

relationships between plant community diversity and land cover and use. Average % 

cover for each species was computed for each nearstream plot and multiplied by 100 to 

obtain all integer values. Shannon's equitability index (Eh) was computed as a measure of 

species evenness as Eh=H/ln(S), where H' is Shannon's diversity index and S is species 

richness. 

Community diversity was expressed at each site using species richness, 

Shannon's Index and Simpson's Reciprocal Index. In addition to nearstream plot 

richness, site richness was calculated by totaling species across all plots for a site. 

Because of different riparian widths and plot sizes, richness was calculated for all sites as 

well as nearstream plots as the number of species divided by the log of the area sampled 

(Conner and McCoy 1979, Nilsson et al. 1997). Average percent cover of groundcover 

100 



species (herbaceous species and vines) was used to compute Simpson's reciprocal (lID) 

(Simpson 1949, Magurran 2004) and Shannon's (H') (Shannon 1948, Magurran 2004) 

indexes for plots nearest the stream. EstimateS (Colwell 2009)was used for computing 

diversity indices. In EstimateS, diversity index estimators were not used, so indices were 

computed using the observed sample order (no randomization). 

Metrics for wetland indicator status (WIS) and species provenance (NE; 

N=native, E=~xotic) were computed for each site to assess correlations with various land­

cover variables. Species were labeled with their WIS from the USDA PLANTS database 

as well as NE as describe previously. WIS and NE codes and meanings are shown in 

Appendix 2. A numerical value was assigned to each site for each category of WIS and 

NE using the groundcover IV's calculated for each species in each site. Values were 

calculated by averaging the IV's of the species in each WIS and NE category and adding 

a weighting factor to account for the number of species at each site within that particular 

category. The weighting factor was the number of species within a particular category 

divided by the total number of species within the site. Being based upon absolute IV's, 

the maximum value for any species indicator category was 300 (maximum 200 for 

average absolute IV + maximum 100 for the weighting factor). Values were converted to 

percent form by multiplying by 100. 

Eq.2 

Native metric = (Native SPI IV + Native Spz IV + Native SP3 IV + ....... + 

Native SPN IV)/N + Weighting factor [# native spp./Total # spp.*IOO] 
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------ -------------------------------------

Eq.3 

Exotic metric = (Exotic SPl IV + Exotic SP2 IV + Exotic SP3 IV + ....... + 

Exotic SPN IV)/N + Weighting factor [# exotic spp./Total # spp. * 100] 

The same form of equation was used to compute metrics for each category of WIS. These 

values were included in an environmental matrix and used to determine correlations with 

research sites arranged according to similar species composition in ordination space. 

Distance From Stream and Catchment Area Analyses 

Relationships were also explored between groundcover plant diversity and 

perpendicular distance from the stream by land-use type. Only nearstream plots were 

used, since all sites had at least this plot in common. At each nearstream plot, 

groundcover species richness was computed for each row (n = 1 to 4 rows per plot 

depending on plot size) of quadrats (n = 3 per row). Quadrats were arranged as previously 

described, with rows parallel to the stream spaced every two meters beginning one meter 

from the streambank edge. The four rows were positioned from 1 to 2, 4 to 5, 7 to 8, and 

10 to 11 meters from the streambank. Richness values for the two rows nearest the stream 

were log transformed prior to analysis to meet assumptions of normality. Richness for the 

furthest two rows met assumptions of normality without data transformation. In some 

instances, mown lawns became the only vegetative cover beyond a certain lateral 

distance from the stream. In these cases the lawns were treated as mono cultures and 

richness was assigned a value of 1. 
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Linear regression was used to compare groundcover richness for near stream plots 

with cumulative upstream catchment area and bank height adjacent to the plot as a metric 

for depth to groundwater. Lawns were not included in determining richness values in 

these analyses, since lawns can be considered a type of land-use. Richness was then 

normalized to account for varying plot sizes as (richness/Log (area sampled)). Plots were 

also assigned to urban, suburban and rural land uses based on % impervious surface at the 

subcatchment scale. For each land-use category, groundcover richness was regressed as a 

response variable against cumulative catchment area (km-2
) upstream of and including the 

subcatchment in which the plot was located, as well as against bank height (cm) 

measured adjacent to the midline of each plot. Cumulative catchment area and 

groundcover richness were natural log transformed to better meet assumptions of the 

linear regression model. 

Honeysuckle analysis 

The relationship between L. maackii stem density and measures of groundcover 

diversity was assessed using linear regression. Again only nearstream plots were used in 

these analyses. In the case of exploring potential relationships between L. maackii density 

and percent cover of the vine Euonymus Jortunei, two different approaches were used. In 

the first, plots were included in the analysis if they contained E. Jortunei, but not 

necessarily L. maackii to demonstrate the abundance of E. Jortunei in the presence and 

absence of L. maackii. Data were square root transformed prior to analysis, and one site 

was removed to normalize residuals and variance. In the second analysis, sites were 

included only if they contained both species occurring together in the same plot to 
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demonstrate the degree to which the abundances of the species were related to each other. 

Data were log transformed and two sites were removed to normalize residuals and 

vanance. 

To explore relationships between groundcover species diversity and L. maackii 

and E. Jortunei abundances, I chose sites where those two species occurred and regressed 

values for site diversity indices (H', liD, Eh, S) against either L. maackii density or E. 

Jortunei percent cover. In regressions involving L. maackii, stem densities of L. maackii 

and diversity index values (except H') were log transformed, and two sites were excluded 

prior to analysis to normalize residuals and variance. In regressions with E. Jortunei, the 

two sites with the lowest and highest Eh were excluded from analysis to reduce 

heteroscedasticity. In addition, E.Jortunei percent cover was square root transformed 

prior to analysis with liD and H', and one site was removed prior to regressions against 

H' to normalize residuals and variance. 

Environmental parameters 

Several environmental variables within and external to and the plots were used to 

explore their ability to explain the variation in plant species composition. More 

proximate site variables included bank height, canopy openness, and plot size. Factors 

that integrated influences from the greater landscape included % impervious surface 

cover (at three scales: the subcatchment, within O.S-km radius and within al-km radius of 

site center), land-cover categories, stream order, cumulative catchment area, and property 

value. 
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Bank height was measured from the first terrace out of the channel and referenced 

to the depth at middle of the stream bed. Where the center of the channel was not 

reachable from the bank or by wading, bank height was measured at arm's reach. Bank 

height was measured once at the midline of each site (n = 41). These measurements were 

used as a proxy for depth to groundwater in order to determine correlations with species 

composition at the sites. Additional measurements were taken 50 meters to either side at 

thirteen of the sites where future studies of soil respiration were conducted. These 

thirteen additional measurements were averaged with the 41 site measurements to assess 

differences in overall bank height by land-use category. 

Since canopy openness and hence light can also be a determinant of species 

presence and dominance, a spherical densiometer (Lemmon 1956, 1957), held over the 

middle of each of twelve I_m2 quadrats, was used to determine this measure. These 

values were averaged to obtain percent canopy openness for each site, as well as for each 

distance interval from the stream as described previously under the 'Distance Analysis' 

heading. Plot sizes were based on sampling areas of circular plots (Fig. 3-2) and ranged 

from a minimum of 28-m2 to a maximum of 300-m2. Thirteen sites out of 41 had an area 

less than 100-m2, and seven sites had an area greater than 100-m2 (one being 150-m2
, five 

being 200-m2
, and one site being 300-m\ The remaining sites were 100-m2

. 

Impervious surface cover was determined as described previously and the three 

scales were used to explore which scale better predicted plant community composition. 

Finer-grained land-cover categorizations (developed -open space, -low, -medium, and­

high intensity, deciduous forest, mixed forest, herbaceous, pasture, cultivated crops, and 

wetlands) were made using the U.S. Geological Survey's National Land Cover Database 
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from 2001 (NLCD 2001; Appendix 3) acquired through LOne. NLCD 2001 is a 

database developed from a consortium initiated by the U.S. Geological Survey to 

interpret land-cover attribute categories from Landsat 5 and 7 images (Homer et al. 

2004). Pixels from these images were assigned digitized landcover attribute categories 

with a spatial resolution of 30-m. This digitized layer was used to determine the areal 

proportion of land represented by each category at the two buffers surrounding each site 

as mentioned previously (I-km and 500-m buffers). The proportions were entered as 

environmental variables into an ordination analysis for species composition at each site to 

determine which categories correlated best with species composition. 

Stream order was determined using ArcGIS 9.0, with first order streams having 

no permanent tributaries, second order streams occurring at the junction of two first order 

streams, and third order streams at the junction of two second order streams. Cumulative 

catchment area was determined by adding sub catchment areas upstream of the site to the 

area of the subcatchment in which the site was located. This was done because catchment 

size is believed to affect stream conditions; therefore, it could be important for riparian 

plant composition. To explore relationships between species identity, percent exotic 

species, and the measures of community diversity with a measure of socio-economic 

status ofland owners, property values were used, as listed by the Property Valuation 

Adminstrator offices in Jefferson and Oldham counties. The value of the parcel ofland in 

which the site was located was taken as the property value. In instances where the site 

was located on the edge of a park abutting residential housing units or businesses, the 

values of surrounding parcels was used. Where sites were located in the interior of a park 

or natural area, the property was assigned a value of $1. 
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Statistical Analyses 

Potential relationships between plant species composition, degree of impervious 

surface, NLCD land-cover categories, and other environmental parameters listed below 

were explored using non-parametric ordinations, indicator species analysis (Dufrene and 

Legendre 1997), and cluster analyses. Software packages used were PC-Ord v. 4.41 

(McCune and Mefford 1999) and R v.2.l1 (R Development Core Team 2009). Non­

metric multidimensional scaling (NMS) in PC-Ord was executed according to the 

recommended procedure outlined in McCune & Grace (2002). For each analysis, a 

separate starting configuration was supplied based on an initial analysis with the 

following configuration: Sorensen distances, 50 runs with real and random data, a 

random starting configuration, and 200 iterations to evaluate stability of the final solution 

(stability criterion:s 0.0005). Final solutions were completed using one run with real data. 

Ordinations run using R were given an optimal geometric starting configuration based on 

principal coordinates analysis of the same data. The statistical significance of the 

indicator value is assessed using a Monte Carlo test for significance, with a p-value 

indicating the probability of finding the computed stress value for a specific number of 

dimensions by chance (based on 50 permutations). 

Indicator species analysis is a method of determining the value of a species to a 

particular grouping of sites (Dufrene and Legendre 1997). This method utilizes relative 

abundance and relative frequency of occurrence of a species within a particular group of 

sample units to assign a proportional indicator value. The statistical significance of the 

indicator value is assessed using a Monte Carlo test for significance, with a p-value 
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indicating the probability of finding the observed indicator value by chance (based on 

1 000 permutations). 

The goal of cluster analysis was to obtain groupings of research sites based on 

commonalities in species composition. To do this, a site dissimilarity matrix was 

constructed based on groundcover species composition. Several dissimilarity measures 

and clustering techniques were applied to the data in an attempt to achieve the best 

cluster configuration for the sites. I decided upon complete clustering as it produced the 

highest within-to-among cluster similarity (Partana ratio) with the most even distribution 

of sites among clusters. The Bray-Curtis distance measure was used to create a 

dissimilarity matrix of the sites prior to cluster analysis. To decide on the number of 

groupings and assess their overall quality, I used the Partana ratio, as mentioned, as well 

as silhouette plots. Figure 3-3 shows an example of a silhouette plot for three groupings. 

Silhouette plots assign numerical values (between -1 and 1) termed "silhouette widths" 

(Si) to each research site (i) within a cluster. The silhouette width is obtained by 

comparing a research site's mean similarity to other sites within the cluster, followed by 

comparison to its mean similarity to sites within the nearest cluster. A silhouette width of 

+ I means the within- cluster similarity is much higher than the between-cluster 

similarity, indicating a good fit of that site to the cluster. A value of -1 means the 

between-cluster similarity is much higher than within-cluster similarity, indicating a poor 

fit of that site to the cluster. An average silhouette width is computed for each cluster in 

order to compare quality of the groupings. An average silhouette width is determined 

based on site silhouette widths in order to compare different numbers of groupings, where 
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the goal is to obtain a value as high as possible without compromising the quality of the 

individual clusters. 

To determine whether measures of riparian groundcover species abundance and 

diversity (% cover, diversity indices) varied with the proportion of sub catchment 

impervious surface, I used scatterplots and a single factor model (ANOV A, R v.2.11). 

Scatterplots were generated using all sites, and a subset of sites occurring along first 

order streams to control for increasing catchment area. ANOV A was used for partitioning 

variance among land-use categories (urban, suburban, rural), and a post-hoc test (Tukey's 

HSD pairwise comparisons) was used for determining statistical significance of the 

variance between pairs of land-use categories. Data were assessed for homoscedasticity 

prior to analyses and were transformed to better meet those assumptions, if necessary. In 

addition, any potential outliers were identified using quantile by quantile (Q-Q) plots and 

graphs ofleverage vs. standardized residuals plotted with Cook's distance. Points 

appearing to assert a disproportional influence on the data were sequentially eliminated 

from the analysis to assess effects on the statistical assumptions ofhomoscedasticity and 

homogeneity of variance. Data points were permanently removed from the analyses if 

their elimination improved these statistical assumptions. 

Results 

Subcatchment delineation & classification 

Forty sub catchments were delineated based on topography within and near the 

three main catchments. Sites were classified into land use categories based on % 

impervious surface cover (ISC) at three scales: subcatchment, I-km and SOO-m radius site 
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buffers (Table 3-1). There were twelve urban sub catchments, with one in Goose Creek 

watershed and eleven in Beargrass Creek watershed. Rural subcatchments included 

eleven in Harrods and three in Goose Creek. Suburban subcatchments spanned all three 

catchments, with eight in Goose and three each in Beargrass and Harrods Creek 

watersheds (Table 3-1). Impervious surfaces within 500-m and I-km of each site 

generally decreased compared with values at the subcatchment scale. Therefore, as the 

scale of the buffer distance around each site decreased, the number of sites classified as 

urban fell, while sites classified as suburban and rural increased (Table 3-1). One site in 

Beargrass Creek watershed on a privately owned farm was reclassified as rural when 

analyzed using the 500-m radius site buffer. The site was kept primarily in mown grass, 

with a thin strip of woody vegetation allowed to persist adjacent to the creek. All sites 

with 2: 30% ISC within l-km and 500-m radii of a site were located in Beargrass Creek 

watershed. 

Riparian zone widths 

Riparian width varied with catchment scale land-use. Suburban sites exhibited the 

smallest mean width, while rural sites had the highest mean/median width and so had the 

greatest number of multi-plot sites (Table 3-2). Six of fourteen rural sites, four of fifteen 

suburban and three of twelve urban sites were less than twelve meters wide, resulting in 

smaller nearstream plot sizes in these sites. Only two urban sites contained more than one 

plot. One of the sites, located in a city park (Cherokee Park), contained two plots. The 

other site accomodated three plots, since it extended approximately 100-m before 
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intersecting a highway. All suburban sites contained only one plot as all vegetated 

riparian sites were less than 30 meters wide. 

The distribution of riparian widths at urban and rural multi-plot sites was similar 

(Table 3-2). In rural subcatchments, two of the multi-plot sites were along 15t order 

reaches, one occurred along a 2nd order reach, and two lay adjacent to 3rd order streams. 

One of the rural multi-plot sites along a 15t order reach appeared to have an altered stream 

flowpath, as it was located along a residential street and directly abutted an adjacent 

upland slope. The two multi-plot sites in the urban subcatchments occurred along 2nd and 

3 rd order reaches. 

The distribution of narrow riparian zones with regard to stream order exhibited 

greater variation between land-use categories (Table 3-2). Seven of the sites with 

riparian widths less than 12 meters were found along first and second order streams. In 

suburban subcatchments, three of the smaller plots were located along 15t order streams, 

and one was located along a 3rd order stream. Two of the urban riparian sites with 

riparian widths less than 12 meters were located along 15t order streams, and one along a 

3rd order stream. Both of the narrow sites along 3rd order streams (one along urban and 

one along a suburban stream) appeared to have been dramatically altered, possibly to 

contain floodwaters. In the urban area, the first terrace out of the stream channel 

contained a narrow riparian zone « 12-m) which led to a vertical incline and second 

terrace approximately six feet higher (at the urban site) than the riparian zone. The 

opposite bank on the other side of the stream channel was practically identical. Such 

uniformity suggests human intervention. Alterations of this sort, while not surprising, 
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carries implications for some of the ecosystem services provided by riparian zones in 

urban areas. 

Variation in Plant Community Structure by Land Use 

Across all 41 plots in all three watersheds I found there were 96 groundcover 

species, with 88 being herbs and 8 woody vines, and with 78 being native and 18 exotic. 

Across all sites the top four most frequently occurring species were Ageratina altissima, 

Sanicula odorata, Glechoma hederacea (exotic herb) and Euonymus fortunei (exotic 

woody vine). A. altissima was the most frequently occurring species in rural and 

suburban sites, and E. fortunei was the most frequently occurring species in urban sites 

(site land-use categories determined at the subcatchment scale). E. fortunei also had the 

highest mean % cover in urban riparian areas (16.8%), which was approximately five 

times greater than the second most abundant species, A. altissima (3.1 %, Table 3-3). G. 

hederacea had the highest mean % cover of all species in suburban areas (8.1 %), which 

was nearly twice that of the next highest species, E.fortunei (4.3%). A. altissima was the 

most abundant species in rural riparian areas (3.9%), covering approximately the same 

average area in urban and suburban locations. 

In addition to differences in individual species abundances, differences in 

groundcover species diversity were discovered as well. I found that groundcover species 

richness was significantly reduced with increasing % IS at the subcatchment scale (p = 

0.003, adj. r2 = 0.17; Fig. 3-4). Total species richness across all plots increased from 

urban to suburban and rural sites from 38 to 58 to 77 species, respectively, with woody 

vine species remaining fairly constant (7 to 8 species) for all land uses (Table 3-3). Other 
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diversity indices (Shannon's, Simpson's reciprocal, and Shannon's equitability) did not 

exibit a linear pattern of change with % IS, so I explored differences among these 

measures using categorical analyses. Groundcover plant diversity in urban nearstream 

plots was lower than that in rural riparian areas. Both Simpson and Shannon's indices 

showed similar trends at this scale, but only Shannon's index was statistically significant 

(p = 0.023; Fig. 3-5a). Shannon's index for rural plots was higher (mean = 1.61) than for 

urban plots (0.99; p = 0.02). While Simpson's reciprocal index did not differ statistically 

among land-use categories (p = 0.088; Fig. 3-5b), it did show a higher mean value in 

rural plots (mean = 3.88) than in urban plots (mean = 2.35; p=0.077 for this two-way 

comparison). Equitability of the riparian plots did not differ among land-use categories 

(urban mean Eh = 0.53, suburban and rural means Eh = 0.61; Fig. 3-5c). 

Abundance measures of total groundcover and herbs did not show any significant 

linear or uniform non-linear trends with increasing sub catchment %IS (Appendix 6). 

Vine cover increased with increasing impervious surface, but the data were highly 

heteroscedastic. Percent herbaceous cover declined in a portion of the sites located in 

subcatchments with greater than 20% impervious surface cover. Percent vine cover 

attained a maximum of 70% where subcatchment impervious surface cover reached 30%, 

and herb cover steadily declined to below 30% in those sites with 40% or more 

impervious surface cover. Proportions of exotic groundcover (herbs and woody vines) 

revealed no significant patterns regardless of this uneven distribution of vine and herb 

cover (Appendix 6). 

A subset of sites along first order streams were assessed separately to control for 

variation in plant community variables related to differences in cumulative catchment 
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area. A significant reduction in diversity measures (richness, Shannon's and Simpson's 

indices) occurred with increasing %IS cover (determined at 1-km site radius scale; Fig 3-

6). Pearson's r values did not exceed 0.5 for any of the diversity measures. Correlations 

with % IS were as follows: Shannon's diversity, r = 0.48 (p = 0.01); Simpson's diversity, 

r = 0.41 (p = 0.02); and species richness, r = 0.4 (p = 0.03). Evenness (Shannon's 

equitability index) did not vary with % IS, but did show a positive correlation with bank 

height adjacent to plots along first order streams (p = 0.004, Pearsons's r = 0.57; 

Appendix 7). The pattern, however, seemed driven by a small number of plots at the very 

low end of bank height « 50-cm) and at the high end (200-cm). The plot with the highest 

bank height only contained two groundcover species, each having less than 1 % cover, but 

with approximately equivalent cover values, resulting in a relatively high evenness value. 

Abundance measures (% cover) did not show any significant relationships with %IS; 

however, woody vine % cover was greatest within two plots at 25 and 30 %IS cover 

(determined at the subcatchment scale; Appendix 7). The vine that covered most of the 

area within those plots was E. Jortunei. 

While species diversity differed among land-use categories, diversity also varied 

with lateral distance from the stream along the riparian zone. Species richness showed 

differences between urban, suburban, and rural riparian zones with lateral distance from 

the stream, although no differences were evident within those land-use categories. In 

urban subcatchments, species richness was half that of rural subcatchments within 8 

meters of the stream (Fig. 3-7, Table 3-4). Urban richness (mean = 4.9 species) was also 

significantly lower (p = 0.037) than suburban richness (mean = 8.4) between 1 and 2 

meters from their respective streams. Mean species richness in suburban areas decreased 
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by two and three species from the 1-2 meter to 10-11 meter distance from the stream, but 

remained approximately the same with distance from streams in urban and rural riparian 

zones. These differences could not be attributed to changes in canopy openness among 

the intervals, as no significant differences were evident within or among land-use 

categories in canopy openess with increasing distance from the stream. Two urban and 

two suburban nearstream plots were partially covered by lawn. One plot each in both 

urban and suburban categories contained lawn between 4 and 11 meters from the stream. 

A second site in both land-use categories contained lawn between 7 and 11 meters from 

the stream. A third urban plot was reduced to a single species (Eunonymus fortunei) at the 

7 -8 meter interval. Groundcover richness with distance from the stream appears more 

stable in urban and rural riparian zones than in suburban riparian zones, but with a lower 

mean richness in urban and a higher mean richness in rural riparian zones. 

Riparian plant species richness also differed with downstream distance within 

land-use categories. I found a significant positive relationship between species richness in 

nearstream plots and cumulative catchment area within suburban riparian zones (Fig. 3-

8). In contrast, no significant linear relationship was detected between these two variables 

within urban or rural land-use categories. Bank height adjacent to the plot was also used 

as an integrative index of flood disturbance, but no significant linear relationships were 

apparent with either groundcover species richness or other community diversity indices. 

NMS & Cluster analysis - Groundcover species 

I conducted a cluster analysis to obtain groupings of research sites based on 

commonalities in species composition. Cluster analysis of the groundcover layer resulted 
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in three clusters of 39 sites (out of 41) using complete clustering and Bray-Curtis 

distance. Two sites were not used since each one formed a separate cluster, indicating 

they were not a good fit with any of the other sites. The Partana ratio was l.74 with an 

average silhouette width of 0.11. Cluster-I contained the greatest number of sites 

(nineteen) with an average silhouette width of 0.13. Cluster-2 contained the fewest sites 

(eight) with an average width of 0.12. Cluster-3, with twelve sites, was the weakest 

cluster with an average silhouette width of 0.06. 

Clusters were analyzed for differences in species composition using frequency of 

occurrence within sites making up the clusters and indicator species analysis. Those 

species with significant indicator values in each of the clusters (p ~0.05) are shown in 

Table 3-5. Assemblage identity of cluster-l was defined by the indicator species 

Glechoma hederacea (an exotic herb) and non-lawn (unmanaged) grasses. However, the 

grasses, Microstegium vimineum and Elymus riparius, were not included in this category 

as I was able to identify them to species. Other noteworthy species occurring with greater 

frequency though not exclusively in this cluster were the two native species, Verbesina 

altern~rolia and Impatiens capensis, a wetland species. All sites in cluster-2 contained the 

indicator species Euonymus fortunei, an exotic vine that also occurred in cluster-l with 

lesser frequency. The native woody vine, Toxicodendron radicans, was ubiquitous, but 

occurred with the greatest frequency in cluster-2. A mix of species defined cluster-3, as 

all indicator species occurred with a frequency ofless than 0.5. Lysimachia nummularia, 

Symphiotrichum cordifolium, Juncus spp., and Packera obovata were present in at least 

25% of all sites in this cluster. L. nummularia and Juncus spp. are classified as wetland 

(facultative or obligate) species, and all these species are native. 
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Non-metric multidimensional scaling (NMS) was used to determine cluster 

associations with environmental variables and species attributes. NMS was run using the 

39 sites organized into a distance matrix (using Sorensen's index) based on groundcover 

species importance values (IVs). A 3-dimensional configuration was chosen, achieving a 

final stress of 16.6 and instability of 0.00048 for the final configuration. When sites were 

assigned to their respective clusters, no site overlap was visible among the three clusters 

in 3-dimensional space, indicating satisfactory agreement between the cluster analysis 

and the NMS solution (Fig. 3-9). Clusters were analyzed in relation to environmental 

variables that might correlate with and potentially help explain the observed variation in 

species composition among clusters (Table 3-6). Environmental variables calculated for 

each site were entered into a site-by-variable matrix and included as a secondary matrix 

in NMS using PC-Ord. The biplot feature in PC-Ord was used to generate a line for each 

variable with an r2 ~ 0.15 for one or more axes, with the direction of the line 

corresponding to the direction of positive correlation of the variable and the length of the 

line indicating the strength of the correlation along one or more axes. Implied in the 

ordination plot but not visible, a vector of equal length but opposing sign points in the 

opposite direction to indicate a negative correlation. 

NLCD categories and % impervious surface at various scales were included in the 

NMS as environmental variables to evaluate cluster identities with fine and coarse scale 

land-cover variables (Table 3-6; Fig. 3-10). The importance value of L. maackii for each 

site was included as an environmental variable to determine if the species might be a 

possible influence on groundcover species composition. Cluster-2 in the 3-cluster 

configuration was the most "urban" of the clusters, being most strongly and positively 
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correlated with % IS (ranging between 12% and 48%) within a 1-km radius of each site 

center, as indicated by the length of its vector (Fig. 3-1 Oa,b). Since impervious surface 

cover at the 1-km scale showed the strongest correlation with the NMS axes, NLCD 

database land-cover categories at that scale were used for further analyses. Low-intensity 

developed land most strongly correlated with this cluster (Fig. 3-10c,d). This type of 

land-cover is typically composed of single-family residential housing, which was the 

most frequently observed land-cover type found in this study. To a lesser extent, 

medium-intensity and open-space developed land also positively correlated with the 

species composition of cluster-2, followed by high-intensity developed land, which 

occurred around a few of the most urban sites. Lonicera maackii was slightly more 

important in explaining cluster-2 than the other clusters. While all clusters contained sites 

with honeysuckle, most sites within cluster-2 had an L. maackii IV greater than 75. Only 

one site contained no honeysuckle (IV = 0), and two sites had a Lonicera IV of 200 

(maximum IV). Clusters-1 and -3 were most positively correlated with the proportion of 

deciduous forest cover and pasture (Fig. 3-10c-d). Cluster-1 contained between 8% and 

82% deciduous forest cover and cluster-3 between 18% and 68% deciduous forest cover 

within a 1-km radius of the sites. Pasture comprised between 0% and 39% cover in both 

clusters. Wetland cover was located primarily within a radius of cluster-l sites, with eight 

of the sites having between 0.1 and 0.5 % cover for this habitat type. Most sites in 

clusters-l and -3 contained less than 24% IS cover within a 500-m radius, but three sites 

contained up to 45%. Low-intensity developed land cover occurred with a proportion up 

to 27% around the sites in these two clusters. While primarily located within a mixture of 
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deciduous forest and pasture, the influence of urban development was therefore 

detectable. 

Species attributes (Appendix 2) were included in the analyses as environmental 

variables to assess which attributes associated with the same site clusters as the land­

cover variables. In this wayan indirect correlation could be drawn between species 

attributes and land-cover variables. Figure 3-11 shows the direction of correlation of 

these attributes in relation to the various site clusters. Obligate wetland (OBL) and native 

species attributes most strongly correlated with clusters-1 and -3. Facultative species 

(F AC) did not positively associate with any particular grouping of sites. The vector for 

exotic species (E) extended in opposition to the native vector (N), correlating most 

strongly with Clusters-1 and -2. 

L. maackii and E. Jortunei analysis 

Since L. maackii and E. Jortunei were important species associated with urban 

clusters, I decided to determine if their distributions and densities were related. Only 

nearstream plots were used for these analyses. First, all plots containing E. Jortunei were 

included in the analysis, regardless of whether they contained L. maackii (Fig. 3-12a). A 

strong positive correlation was shown between L. maackii stem density and E. Jortunei 

percent cover (Pearson's r= 0.73, p = 0.0001). When only plots containing both species 

were included in the regression (Fig 3-12b), an even stronger positive correlation 

emerged (Pearson's r = 0.81, p = 0.001). 

I then determined whether measures of groundcover species diversity in 

nearstream plots decreased with increasing density and cover of L. maackii and E. 
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Jortunei. Where E. Jortunei was used as a correlate with diversity measures, that species 

was not used in calculations of species diversity. In plots containing L. maackii, a weak 

negative correlation was found between L. maackii density and groundcover species 

richness (adj. r2= 0.19, p = 0.019; Fig. 3-13a) and Shannon diversity (adj. r2= 0.20, p = 

0.012; Fig. 3-13b). No trends were detected betweenL. maackii density and Shannon's 

equitability index. However, % cover of E. Jortunei was negatively, but weakly, 

correlated with Shannon's equitability index (adj. r2 = 0.12, p = 0.06; Fig. 3-14). 

Relationships with Shannon's index, Simpson's reciprocal index, and species richness 

can be seen in Figure 3-15. Values of E.Jortunei % cover above 30% showed 

consistently low levels of diversity. 

Discussion 

Exotic woody and herbaceous vine species were the most abundant groundcover 

occurring in urban and suburban riparian zones. E. Jortunei occurred with an average site 

cover of 17% in urban riparian sites, and G. hederacea covered 8% of suburban riparian 

sites. E. Jortunei was the second most abundant species in suburban riparian zones, with 

an average cover of 4.3%. The dominant cover in rural riparian zones, the native herb A. 

altissima, also occurred in urban and suburban riparian sites with approximately the same 

average cover (rural mean = 3.9%, suburban mean = 3.3%, urban mean = 3.1 %). Urban 

and suburban areas are notorious for their associations with exotic species. These 

findings indicate that while these areas are more susceptible to invasion by exotic species, 

native species that are abundant in rural environments are not necessarily being excluded 

from urban and suburban riparian zones. 
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Species richness of all groundcover species significantly declined with increasing 

subcatchment impervious surface (Fig. 3-4 and 3-6a). This differed from my original 

prediction of greater richness in surburban areas in that richness was just as high or 

higher at the rural end of the gradient. This may indicate more resource heterogeneity or 

less stressful conditions across rural riparian areas enabling support of a greater number 

of species. Reduction in groundcover species richness along the gradient could also be 

partially attributed to the densities of L. maackii, which I (Fig. 3-13a) and others (Luken 

and Thieret 1996, Hutchinson and Vankat 1997, Borgmann and Rodewald 2005, 

Castellano and Boyce 2007) have shown to be associated with reduced richness of 

groundcover plants. I had shown in a study of woody vegetation at these same sites that 

L. maackii importance value was significantly positively correlated with proportion of 

impervious surface within a 500-m site radius (See Fig. 2-17 in Dissertation Chapter 2), 

demonstrating it to be a dominant riparian species in urban Louisville. 

Other measures of species diversity were used as response variables to gauge how 

degree of subcatchment urbanization affects groundcover plant communities. For 

nearstream plots both Shannon's and the Simpson's reciprocal indices of diversity were 

lowest for urban and highest for rural subcatchments (Fig. 3-5). Scatterplots from riparian 

sites along first order streams also supported this pattern (Fig. 3-6b-c). Since Shannon's 

equitability index did not differ between land-use categories, differences in the indices 

were primarily due to differences in species richness. While fewer groundcover species 

exist in urban riparian areas than in suburban or rural riparian areas, the species that did 

exist are distributed in similar proportions, regardless of surrounding land-cover/land use. 

Comparison of the groundcover layer among land-use categories supports the conclusion 
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that vegetation in rural riparian zones is generally more diverse than in urban riparian 

zones. 

As resources and environmental conditions can change within a riparian zone 

laterally as well as longitudinally up and downstream, I predicted that groundcover 

species diversity would vary with distance from the streambank. No significant 

differences were found between distance intervals within land-use categories. However, 

when comparing distance intervals between land-use categories, urban richness was 

shown to be significantly lower than rural richness within eight meters of the stream, but 

not beyond that distance. Urban richness was also lower than in suburban plots within 

two meters of the stream bank edge (Table 3-4, Fig. 3-7). These findings suggest that, in 

addition to the availability of a larger species pool, nearstream conditions within rural 

riparian zones could be a factor favoring higher species diversity than those in urban 

riparian zones. Suburban riparian zones possess a greater species pool only at the distance 

interval nearest the stream. As distance from the streambank increases, suburban riparian 

plant diversity becomes more similar to urban diversity. However, this low suburban 

diversity pattern was in part due to the presence of lawns, which I considered as 

mono cultures within urban and suburban riparian sites. Lite et al. (2005) also found 

decreasing herbaceous species richness with increasing distance from the stream channel 

in an arid environment in Arizona. Following rains and flooding at the same sites, the 

pattern was reversed, with herbaceous richness increasing farther from the stream. These 

patterns were attributed to changes in soil water availability and drainage. Therefore, 

variation in soil water availability is one possible explanation for richness differences 

between urban, suburban, and rural areas in this study. I measured streambank height as a 
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proxy for groundwater levels in all plots, and actually measured depth to groundwater in 

a subset of nearstream plots to examine whether relationships existed between these 

variables and variation in riparian plant communities. The highest measured streambank 

heights occurred adjacent to urban plots (mean = 122-cm, vs. 96- and 86-cm in rural and 

suburban plots, respectively). Streambank height and mean depth to groundwater (see 

Dissertation Chapter 4) could then partially explain the lower richness at urban sites at 

least within the 1-2 meter interval. Mean depth to groundwater was found to be lower 

along urban riparian zones than suburban or rural riparian zones over a period of one year 

(see Dissertation Chapter 4). The contrast was most stark in the spring, when rainfall 

allowed recharge of rural and suburban groundwater tables but not urban water tables 

(see Fig. 4-4 in Dissertation Chapter 4). Further research would need to be conducted in 

these areas to determine whether groundwater decreased or increased with lateral 

distance from the stream to more fully understand how this variable might affect herb and 

woody vine cover in riparian areas along urban-to-rural gradients. 

Upstream-to-downstream (longitudinal) gradients in plant species diversity have 

also been shown to exist in riparian environments. Since flooding intensities and 

frequencies vary with upstream catchment area, it is a likely contributor to the differences 

in richness seen with longitudinal distance downstream. As such, I used cumulative 

upstream catchment area in lieu of longitudinal downstream distance, even though this 

measure has been referenced in previous studies (Bendix 1997, Bendix and Hupp 2000, 

Lite et al. 2005). My prediction of higher species richness with greater upstream 

catchment area was only partially supported. While cumulative upstream catchment area 

was significantly and positively correlated with groundcover species richness within the 
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suburban land-use category (Fig. 3-8), it was not a predictor of species richness for 

riparian areas within either urban or rural land uses. Several streamflow parameters, 

which may have contributed to this pattern, have been shown to increase or decrease with 

increasing catchment impervious surface cover (Paul and Meyer 2001). These parameters 

include increases in bankfull and peak discharge, and decreases in lag time. As catchment 

area increases moving downstream, disturbance to the riparian zone can increase as flood 

velocity and volume increases (Bendix 1997). Although bank height increases with 

increasing upstream catchment area, no trends were detected between bank height and 

groundcover richness. Stream channel structure and width-to-depth ratios are additional 

measures that should be compared and which might explain this species richness 

phenomenon, as both could affect severity of flooding. 

Plant community analysis 

Site groupings via cluster analyses and NMS generally supported my prediction 

of distinct vegetation communities being correlated with impervious surface cover. Three 

communities were defined and analyzed for correlations with environmental factors and 

species attributes. Cluster-l contained the greatest proportion of sites with surrounding 

wetland cover and was defined by unmanaged grasses and the exotic species G. 

hederacea (Table 3-5). The most urban cluster (cluster-2) was defined by the exotic 

species E. fortunei (Fig. 3-10). Although I expected vegetation communities to be most 

strongly correlated with impervious surface at the smallest scale measured (500-m site 

radius), this was not the case. This cluster correlated most strongly with measures of 

impervious surface and urban land cover within a l-km radius of the sites. 
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Environmental correlates with the three clusters suggest they are composed of 

groundcover species with differential affinities for site conditions associated with 

proportions of impervious surface and deciduous forest cover, with wetland species 

possessing low affinities for surrounding impervious surfaces and certain exotic species 

exhibiting higher affinities. These findings provide partial support for my predictions 

regarding exotic vs. native and wetland vs. non wetland species. While some species 

associations correlated to a greater degree with impervious surface and urban land cover, 

no clusters showed complete fidelity to urban vs. suburban vs. rural categories, as each 

cluster contained several sites with at least moderate proportions of impervious surface 

and urban cover within a l-km radius. Furthermore, the absence of strong patterns 

regarding exotic species richness and abundance proportions along an impervious surface 

gradient (Appendix 6) suggests the "urbanness" of an area does not necessarily predict 

the presence or abundance of exotic species. However, cluster correlations with the exotic 

shrub, L. maackii, suggest that this species influences groundcover species at the plot 

scale, no matter what land-cover type the plot was surrounded by within a l-km radius. 

Groundcover plant associations with shrub honeysuckle 

In another study (see Dissertation Chapter 2), I found a strong positive correlation 

between importance value of the exotic shrub, L. maackii, in plots and impervious surface 

cover within a 500-m radius of research sites. In this study I also found that the exotic 

woody groundcover vine, E. fortunei, often co-occured with this shrub. The percent cover 

of E. fortunei dramatically increased in the presence of high densities of L. maackii (Fig. 

3-12), approaching 70% cover at the highest densities of the shrub. Where L. maackii was 
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not present, E. fortunei percent cover did not exceed 5% cover (Fig. 3-12a). Castellano 

and Boyce (2007) discovered a very different pattern regarding L. maackii and Juniperus 

virginiana along a road cut in northern KY, USA. Both species were found to coexist at 

the same site, where L. maackii demonstrated a clumped distribution, and J virginiana 

exhibited a more random distribution. These two species were able to co-exist since they 

were able to partition resources between themselves at the same sites, with J virginiana 

inhabiting areas with higher photosynthetically active radiation, indicating lower shade 

tolerance. In the case of riparian sites in this study, E. fortunei appears to thrive beneath 

dense L. maackii clusters, suggesting either that L. maackii may be facilitating growth of 

this species where they occur together, or conversely E. fortunei may promote successful 

germination and growth of L. maackii. 

I also examined whether measures of groundcover species diversity decreased 

with increasing density and cover of L. maackii and E. fortunei. Both groundcover 

species richness and Shannon's index decreased with increasing densities of L. maackii 

(Fig. 3-13). This decreasing pattern of plant species richness with increasing exotic cover 

was also shown by Loewenstein and Loewenstein (2005), where understory plant species 

richness (saplings, shrubs, herbs, vines) decreased with increasing cover of the exotic 

shrub Ligustrum sinense in riparian forests near Columbus, Georgia, USA. In the 

Louisville sites, Shannon's equitability index was negatively but weakly correlated with 

E. fortunei percent cover (Fig. 3-14), but no correlation was found with species richness. 

However, in sites where this vine exceeded 30% cover groundcover diversity measures 

were all relatively low. While L. maackii and E. fortunei may co-occur, they appeared to 

interact differently with groundcover plants, with elimination of species under L. maackii, 
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and changes in species proportions where E. fortunei occurs. These results help explain 

variation in composition of species assemblages within the clusters. Cluster-2 was 

defined by E. fortunei, and nearstream equitable distributions of species declined as E. 

fortunei cover increased. Since E. fortunei cover increases in relation to L. maackii 

density, the shrub layer also helps to define groundcover communities in the more urban 

riparian sites where L. maackii dominated the shrub community (see Dissertation Chapter 

2), lending support to my predictions that L. maackii is involved in structuring the plant 

community. 

Conclusions 

I found that urbanization in the Louisville Metro area is associated with 

decreasing diversity of riparian groundcover plant communities, reduced importance of 

obligate wetland species, and increased importance of the exotic vine, E. fortunei, a 

species sold by nurseries in the area for residential and commercial plantings. In 

addition, this study demonstrates the negative effects that the exotic shrub, L. maackii, is 

likely having on riparian herb and woody vine diversity. The co-occurrence of both these 

exotic species may be synergistically decreasing native species diversity in urban riparian 

sites. Furthermore, declining forested buffers reduce both riparian and instream diversity. 

I found presence of managed vegetation (lawns) contributed to the declining diversity of 

suburban riparian zones moving laterally from the stream. Moore and Palmer (2005) . 

found declining instream invertebrate diversity with a declining proportion of forested 

riparian areas. These findings carry important implications since they show high amounts 

of impervious surface are not necessarily needed to affect riparian and instream diversity. 
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Simply reducing the complexity of riparian vegetation is sufficient to negatively affect 

this aspect of riparian environments. Also found in suburban riparian sites, increasing 

cumulative catchment area results in increasing species richness in but did not appear to 

explain species richness variation in urban and rural sites. Further research should 

concentrate on assessing the intensity and frequency of floodwaters in suburban 

environments, and assessing how they differ from urban and rural locations as upstream 

catchment area increases. 

These findings suggest a change is needed on the conceptual model in Figure 1-1, 

with addition of an intermediary between the water table and riparian groundcover (Fig. 

3-16). Although I found no direct link between bank height (and thus the water table) and 

species composition or richness, decreasing plant richness has been shown in arid 

environments with increasing depth to water table (Lite et al. 2005). However, I did find 

indirect evidence of a soil moisture difference with changes in proportion of impervious 

surface. Obligate wetland species were rare in most urban communities (Fig. 3-11), 

assuming greater importance in a more forested environment. Facultative and obligate 

wetland species are indicators of wetter soils at critical times of the year needed for 

germination and establishment. Therefore, a soil moisture gradient among sites is implied 

via the presence of these species in less urban environments. Therefore, I propose the 

changes in Figure 3-16 to better reflect potential conditions contributing to species 

composition in this system. Results from the woody species layer also support this model 

since facultative wetland species were more highly associated with more rural site 

clusters (see Fig. 2-14, 2-15, and 2-16 in Dissertation Chapter 2). 
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Table 3-1: Area of research catchments and the number of study sites classified as urban, 
suburban and rural at the subcatchment scale, and within a l-km and 500-m radius from 
each study site. Classification as urban, suburban and rural land cover was based on 
proportion of impervious surface with 2': 30% being urban (U), ::::10% being rural (R), and 
between 10 and 30% being suburban. 

SC 1 km 500m 
Area 

Catchment (km2
) U S R U S R U S R 

Beargrass 
Creek 65 11 3 0 8 6 0 6 7 1 
Goose 
Creek 50 1 8 3 0 8 4 0 6 6 
Harrods 
Creek 60 0 3 11 0 1 13 0 2 12 
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Table 3-2: Distribution of riparian width intervals in this study by stream order and land­
use category at the subcatchment scale. Riparian zone width was measured along areas 
of level ground beginning at the streambank edge and extended until reaching a structural 
barrier (such as a road, parking lot, or building), upland slope, or other obstruction 
(grazed pasture, ephemeral stream channel). Classification as urban, suburban and rural 
land cover was based on proportion of impervious surface with::: 30% being urban, 
::::10% being rural, and between 10 and 30% being suburban. 

Riparian 
width (m) 

Stream 
Land use Order <12 12-45 46-85 >85 

Urban 1 2 4 0 0 
2 0 0 1 
3 1 2 1 0 

Total 3 7 1 1 

Suburban 1 3 7 0 0 
2 0 4 0 0 
3 0 0 0 

Total 4 11 0 0 

Rural 1 4 2 2 0 
2 2 0 1 0 
3 0 1 2 0 

Total 6 3 5 0 
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Table 3-3: Mean % cover (+S.E.) for the top ten most abundant herb and woody vine 
species in urban, suburban and rural land-use categories. 

Urban Suburban Rural 
plots) plots2 plots3 

Mean % Mean % Mean % 
cover cover cover 

S}!ecies (S.E.) (S.E.) (S.E.) 

Ageratina altissima (L.) King & H.E. 
Robins. 3.1 (1.5) 3.3 (1.4) 3.9 (2.4) 

Alliaria petiolata (Bieb.) Cavara & Grande 1.8 (1.2) 0.76 (0.71) 0 

Asarum canadense L. 0.26 (0.18) 0 0 

Carex blanda Dewey 1.0 (1.0) 0 0 

Euonymus Jortunei (Turcz.) Hand. -Maz. * 16.8 (6.9) 4.3 (2.2) 0.94 (0.91) 

Glechoma hederacea L. 1.6 (0.9) 8.1 (3.4) 3.3 (l.7) 

Impatiens capensis Meerb. 0.28 (0.24) 0 0 

Solidago spp. L. 0.92 (0041) l.4 (0.71) 0 

Urtica dioica L. 0.59 (0.32) 0 2.7 (2.7) 

Verbesina alternifolia (L.) Britt. ex Kearney 2.1 (1.4) 1.4 (0.72) 0.71 (0.33) 

Arundinaria gigantea (Walt.) Muhl. 0 1.8 (l.3) 0 
Microstegium vimineum (Trin.) A. Camus 0 3.4 (2.6) 3.2 (1.4) 

Parthenocissus quinqueJolia (L.) Planch. 0 1.1 (0.90) 0 

Viola spp. L. 0 1.2 (0.77) 0.58 (0.21) 

Sanicula odorata (Raf.) K.M. Pryer & L.R. 
Phillippe 0 0 1.3 (0.57) 
Securigera varia (L.) Lassen* 0 0 0.68 (0.46) 

Vinca minor L. * 0 0 0.93 (0.93) 
Mean % cover (herb and woody vine 
species)! 30.1 (6.8) 32.5 (6.1) 24.6 (5.1) 
Mean % cover (herbs only)! 13 (3.7) 25.8 (5.9) 2l.7(5.2) 
Herb species richness 31 50 70 

Wood~ vine sEecies richness 7 8 7 

1 n=12, 2 n=15, 3 n=14 plots 

*Woody vines 

Land-use categories based upon % impervious surface at the subcatchment scale. 
Urban::: 30%, Rural:::: 10%, Suburban between 10 and 30% IS. 
! No significant differences were detected (ANOVA) among land-use categories 
regarding groundcover (p = 0.63) or herb-only (p = 0.24) mean % cover (arcsin 
transformed). 
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Table 3-4: Riparian groundcover mean species richness by distance from the stream bank 
and land-use categories determined at the subcatchment scale. 

Distance interval from the 
stream 

Land 
cover 
cate 0 1-2 meters* 4-5 meters* 

Rural 9.9 (0.009) 9.1 (0.025) 
n= 14 14 

Suburban 8.4 (0.037) 7.2 

n= 15 13 
Urban 4.9 5.0 

7-8 meters 

8.6 (0.029) 

10 

6.9 

10-11 meters 

9.3 

8 
5.9 

12 12 

4.2 4.8 
n = 12 12 9 8 

*Species richness was natural log transformed for 1-2-m and 4-5-m 
intervals for analysis, but values in the table are untransformed 
p-values (in parentheses) represent significant differences (at a= 0.01 or 
0.05) from urban riparian richness 
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Table 3-5: Frequently occurring and significant indicator species (using indicator species 
analysis (Dufrene and Legendre 1997)) for 3-cluster configuration using complete 
clustering. Frequency values were calculated based on the proportion of sites within the 
cluster in which the species occurred. Indicator values (IV) were calculated using 
indicator species analysis, where a value of 0 means the species is never present in the 
cluster and a value of 1 means the species is always present and exclusive to the cluster. 
Probabilities for the indicator values were determined using a Monte Carlo randomization 
technique. 

Cluster Species Common name Freq. IV p-value 

1 Glechoma hederacea Creeping Charlie 1 0.96 0.001 

Unmanaged grass Grass 0.63 0.51 0.01 

Verbesina alternifolia Wing stem 0.73 
Impatiens capensis Jewelweed 0.51 

2 Euonymus fortunei Winter creeper 1 0.73 0.001 
Toxicodendron 
radicans Poison ivy 0.62 
Lysimachia 

3 nummularia Creeping Jenny 0.5 0.42 0.026 
Symphiotrichum Common blue 
cordifolium wood aster 0.33 0.29 0.022 

Juncus spp. Rush 0.25 0.22 0.041 
Roundleaf 

Packera obovata ragwort 0.25 0.22 0.043 
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Table 3-6: Environmental and National Land Cover Database (NLCD) metrics used for 
non-metric multidimensional scaling. 

Environmental variables NLCD values (SOO-m) 

-Bank height adjacent to the site -Open-space developed 

-% impervious surface: subcatchment, 
I-km buffer, SOO-m buffer -High-, medium, low-intensity developed 

-Plot size and distance from channel -Deciduous forest 

-Stream order -Mixed forest 

-Catchment Area -Herbaceous forest 

-Property value -Crops 

-Earthworm species number & weight -Pasture 

-Lonicera maackii IV -Wetland 
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Figure 3-1: Schematic map of the three watersheds in Jefferson and Oldham counties in 
Kentucky. Research sites are indicated with markers. 
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Figure 3-2a-b: Plot and site structure for sampling adult trees (::: 2.54 cm DBH), 
saplings, tree seedlings, and shrubs. (a) Plots consisted of a 100-m2 circular plot for 
sampling tree counts and DBH. Nested within the circular plot were three belt transects 
measuring lOx 2 m with midlines spaced four meters apart for sampling sapling and 
shrub counts. Quadrats measuring 1 x 1 m were nested within the belt transects for 
determining percent cover and counts of tree seedlings. Adjacent quadrat spacing within 
belt transects was three meters at the midpoint. (b) Sites consisted of a midline transect 
stretched the length of the riparian zone up to 100 meters with up to 3 plots per transect 
with midpoints spaced 40-m apart. 

136 



Silhouette plot - 3 clusters 
0 .= 39 sites 

00 0.2 

Overall silhouette width: 0.11 

Cluste.· 
Number 
__ .. ~ 1 · 19 I 013 

# sites 
in ciuste.· 1 

2 · 9 I 0.12 

Silhouette 1 
width 

3 . 11 I 0.07 

0.4 06 0.8 10 

Silhouette width (SI) 

Figure 3-3: Silhouette plot of a cluster analysis (complete clustering using Bray-Curtis 
distance) resulting in three groupings of research sites. Sites within clusters are 
represented by gray bars, the length of each demonstrating the silhouette width (value on 
the x-axis) of that particular site within the cluster. Cluster numbers, number of sites 
within the cluster, and cluster widths are to the right of each cluster. Overall silhouette 
widths are located below the numerical axis. Explanation of values given in the text. 
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Figure 3-4: Groundcover species richness variation in nearstream plots with % 
impervious surface at the subcatchment scale. Species richness (S) was first normalized 
prior to analysis as S/log(area sampled) . The adjusted r2 = 0.17 and the p-value = 0.003. 
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Figure 3-5a-c: Box-and-whisker diagrams of diversity indices computed for groundcover 
species in urban, suburban, and rural riparian zones. The bold line indicates the median, 
boxes delineate 25th and 75th percentiles, and whiskers indicate minimum and maximum 
values. (a) Shannon's, (b) Simpson's reciprocal, and (c) Shannon's equitability indexes 
were determined for all nearstream plots. Land use assignment for plots was determined 
at the sub catchment scale (U=Urban; S=Suburban; R=Rural). ANOYA's revealed a 
significant difference in Shannon's index (a) between land use categories (p = 0.023). 
Follow up analysis using Tukey's HSD pairwise comparisons revealed a higher 
Shannon's index in rural plots (mean = 1.61) than in urban plots (mean = 0.99; p = 
0.020). Simpson's reciprocal index, while not exhibiting any significant differences (p = 
0.088), did show the same trend where rural plots had a higher mean index value (mean = 
3.88) than urban plots (mean = 2.35; P = 0.077). Shannon's equitability index did not 
significantly differ among land use categories. Open circles represent potential outliers. 
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Figure 3-6a-c: Relationship between diversity measures of groundcover species at 
riparian plots along first order streams and % impervious surface cover within 1000-m of 
each plot. Diversity measures shown are species richness (a), Shannons index (b), and 
Simpson's reciprocal index (c). Species richness (S) was normalized based on plot size as 
S/log(area sampled) since nearstream plot sizes varied. 
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Figure 3-7: Mean groundcover riparian species richness at indicated distance intervals 
from the stream bank in urban, suburban, and rural riparian zones. Land use assignment 
for plots was determined at the subcatchment scale. Data were obtained from plots 
nearest the stream. Each distance interval at each plot was composed of three 1 x 1 m2 

quadrats. Species richness was averaged by distance interval for each land use category. 
Differing letters above the standard error bars indicate significant differences at 0' = 0.01 * 
or 0.05. Richness values were natural log transformed for the 1-2 and 4-5-m intervals 
prior to analysis to meet the assumptions of ANOV A, although raw mean species 
richness values were used to create graphics. 
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Figure 3-8: Linear regression model of cumulative catchment area upstream of the 
subcatchment for each suburban nearstream plot against normalized groundcover species 
richness (S/log(area sampled)) . The adjusted r2 = 0.54, and the p-value = 0.0011. 
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Figure 3-9: Non-metric multidimensional scaling (NMS) 3-dimensional configuration of 
research sites arranged by groundcover species composition. Research sites (points) 
assigned to their respective groupings from the 3-cluster configuration from cluster 
analysis. Grouped clusters are shown along axes 1 & 2. 
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Figure 3-10a-d: Non-metric multidimensional scaling (NMS) 3-dimensional 
configuration of research sites arranged by groundcover species composition and color­
coded by cluster assignments from the 3-cluster configuration using cluster analysis. 
Cluster identities are identified in the legend. Vectors representing site environmental 
metrics (created using the biplot feature in PC-Ord (McCune and Mefford 1999)) are 
pointing in the direction of increasing proportions, with the length of each vector 
representing the strength of correlation. Vectors for environmental metrics are shown 
only if they have an r2 :::: 0.15 along at least one axis. Environmental metrics shown along 
(a) axes 1 & 2 and (b) axes 2 & 3 are the proportion of impervious surface (%IS) 
surrounding each site at 3 scales: sub catchment (SC), I-Ian and 500-m radius from the 
site center. Since %IS at the I-Ian scale exhibited the strongest correlation with the site 
arrangement (a & b), I chose to use environmental metrics from the National Land Cover 
Database. Environmental metrics are shown along the same axes in (c) and (d) include 
low- (lo.int) and medium- intensity (med.int) developed, open-space developed (open.sp), 
% IS within a l-km site radius (%IS-l km), pasture, and deciduous forest (Decid). 
Definitions are included in Appendix Table 3. Explained axis variance (r2) is as follows: 
Axis 1 - 0.25, Axis 2 - 0.22, Axis 3 - 0.25. 
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Figure 3-11: Non-metric multidimensional scaling of research sites arranged according 
to groundcover species composition. Sites are color coded according to their cluster 
assignments from the 3-cluster configuration using cluster analysis. Cluster identities are 
identified in the legend. Vectors representing species attributes (created using the biplot 
feature in PC-Ord (McCune and Mefford 1999)) are pointing in the direction of 
increasing importance values, with the length of each vector representing the strength of 
correlation. Vectors for species attributes are shown only if they have an r2 2: 0.15 along 
at least one axis. The species attributes shown are facultative (F AC), obligate wetland 
(OBL), native (N) and exotic (E) species. Definitions and the full list of attributes 
included in the analysis are in Appendix Table 3. As a 3-dimensional view is not an 
option using the biplot feature, separation of sites are shown only along axes 2 and 3 to 
enable better visualization of the relationship between environmental variables and 
cluster categories in two dimensions. Explained axis variance (1) is as follows: Axis 2 -
0.22, Axis 3 - 0.25. 
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Figure 3-12a-b: Scatterplots of Euonymus fortunei percent cover in response to Lonicera 
maackii density. All nearstream plots were included in the regression that contained E. 
fortunei (a), or that contained both E.fortunei and L. maackii (b). Data were square root 
(a) or natural log (b) transformed prior to regression to better meet statistical 
assumptions. One outlier was removed from graph (a), and two were removed from graph 
(b) following outlier analysis to better meet statistical assumptions. Pearson's r and a p­
values were (a) Pearson's r = 0.73 and p = 0.0001, and (b) Pearson's r = 0.81 and p = 
0.001. 
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Figure 3-13a-b: Species richness ( a) and Shannon's diversity (b) of groundcover species 
in nearstream plots in response to Lonicera maackii density. Species richness and L. 
maackii density was natural log transformed prior to regression in (a). Only plots that 
contained L. maackii were included. Two outliers were removed from graphic (a) 
following outlier analysis to better meet statistical assumptions. The adjusted 
coefficient's of determination and p-values were (a) r2 = 0.19 and p = 0.019, and (b) r2= 
0.20 and p = 0.012. 
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Figure 3-14: Shannon's equitability of ground cover species in nearstream plots in 
response to Euonymus Jortunei percent cover. Only plots that contained E. Jortunei were 
included. The adjusted coefficient of determination was r2 = 0.12, and the p-value was p 
= 0.06. 
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Figure 3-1Sa-c: Shannon's Index (a), Simpson's Index (b), and species richness (c) of 
groundcover species in nearstream plots in response to Euonymus Jortunei percent cover. 
Only plots that contained E. Jortunei were included. 
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Figure 3-16: New conceptual model of variables that affect and are affected by 
vegetation within a riparian area modified from Figure 1. Additional arrows in need of 
further study are depicted in red. A direct link between groundwater levels and riparian 
vegetation was not found. Soil moisture was added as an intermediary to refocus attention 
on that link to the vegetation composition within riparian zones. The water table can still 
limit species composition if it is close enough to the soil surface (Arrow 5a). The water 
table along with surrounding land-use can also affect soil moisture (Arrow 9 & 10 
respectively). Where species are not limited by saturated soil, soil moisture may playa 
larger role in species composition by favoring species that are better able to compete 
under existing moisture conditions (Arrow lla). Riparian groundcover can feedback on 
soil moisture depending on proportion of the soil that is shaded by leaf cover and the 
transpiration rates of various plants (Arrow 11 b). Descriptions of other arrows as in 
Figure 1-1. 
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CHAPTER 4: SEASONAL GREENHOUSE GAS FLUX IN RIPARIAN SOILS 

ALONG URBAN, SUBURBAN, AND RURAL RIPARIAN ZONES IN METRO 

LOUISVILLE, KENTUCKY 

Introduction 

Removal of nutrients before they reach the stream is a major function of the 

vegetation, soils and soil microbes in riparian zones (Lowrance et al. 1997, Groffman et 

al. 2003). In riparian zones the pathways and microbial transformations of nutrients are 

significantly controlled by the presence or absence of oxygen. Since the water table is 

closer to the surface in riparian areas than in upland areas, variation in depth to water 

table can affect the balance of aerobic vs. anaerobic microorganisms and gas transport 

from the soil to the atmosphere and vice versa. Under water-saturated soil conditions that 

occur in soils of forested riparian sites, aerobic microorganisms require elemental 02 as 

the final electron acceptor during respiration and, therefore, cannot thrive under high soil 

moisture conditions of long duration. In contrast, anaerobically respiring microorganisms 

can use compounds other than 02 for this process, and therefore flourish under low to no 

oxygen conditions. 

Understanding how landscape level variation controls nutrient transformations 

within riparian zones is important, since they lie adjacent to bodies of water and filter and 

transform nutrients entering these aquatic systems. Riparian zones have been shown to be 

effective in removing sediment (Cooper et al. 1987, Lowrance et al. 1988), ammonium 

(NH/) (Jacobs and Gilliam 1985a, Puckett 2004), nitrogenous compounds (N03-), and P 
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(Cooper et al. 1987). Eutrophication of water bodies in urban and suburban areas is 

common and of concern to state and regulatory agencies that are responsible for water 

quality (Kolenbrander 1972, Gilliam 1994, Groffman et al. 2002). Nitrogen inputs to 

streams have been shown to occur to a greater extent from urban riparian areas than from 

forested reference riparian areas (Groffman et al. 2004). Studying the effects of 

urbanization on the soil processes that remove or supply these nutrients to water bodies is 

a worthwhile endeavor from both economic and water quality standpoints. 

Gas effluxes (C02, CH4, N2, N20) from soils are among the routes by which 

carbon and nitrogen inputs into streams are decreased. As compared to forested rural 

catchments, soil gas fluxes may differ within urban and suburban catchments via several 

mechanisms (Raich and Schlesinger 1992, Groffman et al. 2004, Groffman et al. 2006). 

Riparian soils along urban-to-rural gradients may differ in the quality and quantity of 

organic matter, inorganic nutrients, bulk density, soil moisture and depth to water table, 

all of which affect nutrient cycling rates and directions. In addition to variation in parent 

soil material, such urban-rural differences are dependent on the width of the forested 

buffer. Forests within ten meters of edges were found be efficient traps for nutrients when 

compared to 200-m towards the forest interior (Draaijers et al. 1988). Degree of riparian 

colonization by different species of woody plants would also affect riparian nutrient sink 

functions. Species differences in growth rate, size, phenology, and morphology affects 

net primary productivity, which in turn affects the quantity and quality of carbon inputs 

(Ehrenfeld 2003) and nutrient uptake dynamics in riparian systems. For example, such 

changes in urban and suburban plant communities could be due to exotic plant invasion. 

Urban and suburban riparian areas are highly susceptible to exotic species invasions 
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(Burton et al. 2005, Burton and Samuelson 2008) due to proximity of exotic seed sources, 

management planting and disturbances, as well as altered stream hydrology. Variation in 

atmospheric nutrient deposition could also potentially affect nutrient cycling 

differentially along urban-to-rural gradients via direct inputs to soils and by affecting 

plant productivity and community composition. Bulk density differences can influence 

the anaerobic or aerobic nature of the soil. High bulk density results in more anoxic soils 

(Ball 1999). Stream channelization can cause more rapid losses of ground water and 

decreased soil moisture in urban riparian areas (Groffman et al. 2003). These factors alter 

soil oxygen concentrations, microbiological communities, and atmospheric-soil gaseous 

exchange rates. 

In addition, since urban areas tend to be hotter than their rural counterparts due to 

the urban heat island effect. Given similar canopy coverage, riparian gas flux processes 

could also differ between urban and rural areas due to higher soil temperatures increasing 

the metabolic activity of plant roots and microbes. Higher atmospheric temperatures in 

urban areas can also potentially result in drier soils by accelerating evapotranspiration. 

Also, higher streambanks along piedmont streams coupled with lower water tables in 

urban areas (see Dissertation Chapter 2) (Groffman et al. 2003) exacerbate soil drying, 

because upper soil layers are not inundated as frequently with water. As cities expand and 

become more populous, understanding source-sink dynamics of trace gas fluxes in 

riparian areas and the soil properties that drive them will be crucial to modeling 

greenhouse gas accumulation within the atmosphere. 

This study'S first objective, therefore, was to measure the fluxes of three 

greenhouse gasses (C02, CH4, N20) over three seasons of the year along streams located 
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in urban, suburban and rural catchments in and near the city of Louisville, Kentucky to 

determine if they varied predictably with increasing impervious surface area in these 

catchments. I predicted that CO2 flux, due to aerobic respiration by roots and microbes, 

would be higher in urban riparian areas due to dryer soils and potentially warmer 

temperatures in urban than in suburban or rural riparian habitats. I also predicted that net 

methane uptake into soils via methanotrophy would be greatest within urban riparian sites 

since methanotrophs are obligate aerobes. Conversely, I predicted a net methane efflux 

(methanogenesis) from soils in rural forested sites, because the anoxic environment 

created by shallower water tables should favor methanogenic over methanotrophic 

activity. Predicting land-use relationships with N20 flux is less straightforward, because 

it is the product of two processes, one aerobic (a by-product of nitrification), and the 

other anaerobic (denitrification). 

The second objective was to determine if the urban, suburban and rural variation 

in flux rates could be related to variation in riparian characteristics expected to affect 

these rates. These included streambank height, depth to water table, and degree of plant 

community invasion by an exotic shrub, Lonicera maackii. I predicted that urban riparian 

water tables would be lower when compared to suburban and rural reference riparian 

sites because of higher urban streambanks, which I had demonstrated previously (see 

Dissertation Chapter 2). In addition, I reported in Chapter 2 (this dissertation) that urban 

and suburban riparian areas were densely colonized by the exotic shrub, L. maackii. I 

expected that this shrub could affect N20 gas fluxes at some times of the year due to its 

highly nitrogenous litter, which mineralizes N rapidly (Trammell 20 I 0). Litters with 

rapid mineralization often stimulate soil nitrification, providing substrate to support 
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denitrification under high moisture conditions. In addition, high soil nitrification rates 

would also lead to high rates ofN20 emissions under drier, aerobic conditions, as well. 

The third objective was to evaluate whether greenhouse gas fluxes, particularly 

N20, could be related to the concentrations of dissolved organic carbon (DOC) and 

nitrate in groundwater collected at the same time as flux data. Because denitrification is 

dependent on nitrate (N03-) and DOC levels, I predicted higher concentrations of 

groundwater nitrates and DOC would be related to greater nitrous oxide flux rates from 

the soil under conditions of high soil moisture and depth to water table. 

The fourth objective was to evaluate the influence of soil properties on 

greenhouse gas flux rates. I predicted % clay and soil bulk density would be negatively 

correlated with CH4 uptake by the soil, since CH4 uptake is highly dependent on CH4 

diffusion rates into the soil from the atmosphere. I also predicted fluxes of CO2 and N20 

would follow patterns others have found with regards to bulk density (Xu and Qi 2001), 

with decreasing flux rates at higher bulk densities due to fewer soil pore spaces for 

microbial activity. 

Methods 

Study Area 

The study area consisted of three individual watersheds located within and 

adjacent to Louisville, Kentucky, USA (Latitude 38°15'N, Longitude 85°46'W), which 

has a population of approximately 700,000 with a mean density of 695 people km-2 (U.S. 

Census Bureau 2008). These were the Beargrass Creek (Middle Fork), Goose Creek, and 

Harrods Creek (South Fork) watersheds. The watersheds lie adjacent to each other with 
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all streams flowing in a primarily westerly direction and eventually emptying into the 

Ohio River. The three watersheds are of approximately equivalent sizes, containing 

varying proportions of impervious surface cover. 

Beargrass Creek watershed, located in the north-northeast portion of Jefferson 

County, KY, is approximately 65-km2 (Metropolitan Sewer District 1999b) and contains 

the greatest proportion of impervious surface cover (33% ISC). This Middle Fork of 

Beargrass Creek joins the South Fork before flowing into the Ohio River. Several 

stretches of this stream are featured on Kentucky's Division of Water 303d list, which list 

streams with impairment issues as well as the pollutant(s) causing the impairment 

(Kentucky Environmental and Public Protection Cabinet 2008). Since combined sewer 

overflows (CSOs) commonly occur in this stream, the presence of fecal coliform and 

sewage are stated as the primary problem pollutants within Beargrass Creek. 

Goose Creek is a 50-km2 watershed also in Jefferson County, in-between and 

adjacent to Beargrass and Harrods Creek watersheds (Metropolitan Sewer District 

1999a). Of the three watersheds in this study, impervious surface cover is intermediate 

(20% ISC). The creek is composed of a pair of forks that meet before emptying into the 

Ohio River. Goose Creek is also listed on the 303d list, with cadmium and fecal coliform 

levels stated as impairment issues. 

South Fork Harrods Creek watershed (60 km\ which has the lowest impervious 

surface cover of the three (10% ISC), is located primarily in neighboring Oldham 

County, but extends into northeast Jefferson County. South Fork Harrods Creek 

eventually joins North Fork Harrods Creek to become Harrods Creek before flowing into 

the Ohio River. Sections of the larger Harrods Creek network made the 303d list in years 
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past, specifically the portion passing through Jefferson County which is a more 

developed area. As in the other two watersheds, fecal coliform has traditionally been a 

problem (Metropolitan Sewer District 1999c). The current 303d list contains Harrods 

Creek with fecal coliform as an impairment issue, although this information is for the 

stream section downstream of where the North Fork and the South Fork Harrods Creek 

Jom. 

Watershed classification 

Watersheds were chosen from digitized catchment layers downloaded from the 

Louisville/Jefferson Information Consortium (LOJIC) database (LOJIC 2010). LOJIC is 

a multi-agency effort to maintain a geographic information systems (GIS) database to 

serve primarily Jefferson County, KY, although limited information is available for a 

portion of Oldham County, KY. After checking for topographical accuracy, I divided 

catchments into subcatchments based on stream order and topography from the original 

LOJIC layers. I further divided subcatchments of higher stream orders with longer 

reaches into two or three subcatchments. Data layers from the LOJIC database were 

clipped to each of these subcatchments. Beargrass Creek watershed contained thirteen 

subcatchments, Goose Creek watershed contained twelve subcatchments, and Harrods 

Creek watershed contained fourteen subcatchments. 

Impervious land use classification was determined using three data layers from 

the LOJIC database digitized in 2001: buildings, miscellaneous transportation, and roads. 

The buildings-layer included all built structures, whether commercial or residential. The 

roads-layer included all paved road surfaces, excluding parking lots. The miscellaneous 
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transportation-layer included secondary transportation features such as driveways, 

parking lots, and sidewalks. The area of land covered by impervious surfaces for each 

subcatchment was determined using ArcGIS 9 (ESRI, 2010) and was divided by the total 

land area for each sub catchment to determine the proportion of impervious surfaces 

covering the landscape. 

Categorization of subcatchments into urban, suburban, and rural land use 

categories was modified from Schuler (1994). For this study, urban subcatchments were 

defined as containing ::::30% impervious surface cover. Rural subcatchments contained 

:::10% impervious surface cover and suburban subcatchments contained between ten and 

30% impervious surface cover. Research sites were classified by land use based on 

impervious surface cover at three scales. The first and largest areal scale was the 

sub catchment level, where sites were classified as urban, suburban, or rural based on the 

sub catchment in which they were located. Impervious surface cover was calculated at 

two additional and smaller scales surrounding the sites. Site buffers were created using 

ArcGIS 9 at a radius of l-km and SOO-m from the site center. The proportion of 

impervious surface cover was determined for these buffers in the same way as for the 

subcatchments. 

Site selection and gas chamber installation 

Chosen sites were a subset of those used in previous vegetation studies (see 

Dissertation Chapters 2 and 3). Thirteen out of 41 sites were chosen based on bank 

height, land-use classification (insuring similar numbers of urban, suburban, rural 

catchments), and landowner permission for entry and for groundwater well installation. 
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Contingent upon landowner cooperation, I attempted to install a groundwater well at each 

site. If a well could not be installed due to excessively rocky soils, or if I encountered 

bedrock before groundwater, then the site was not used, with the following exception. I 

used one rural site with no water table above bedrock following multiple attempts at other 

sites and encountering excessively rocky soils before encountering groundwater or 

bedrock. Groundwater levels were measured in urban, suburban, and rural sites every two 

weeks from November 2006 to October 2008. Some of the well locations were changed 

in 2007 due to limited landowner permissions and to capture the variation in bank heights 

observed (see Dissertation Chapter 2) by land-use type, calculated at the subcatchment 

scale. 

All wells and gas chamber bases were installed by October 2007, which was a 

month before any sampling took place. Two circular gas chamber bases (28.5-cm inside 

diameter) (Artmor Plastics, Cumberland, MD, USA) were installed per site parallel to 

the stream one to two meters from the stream bank edge, and three meters apart from each 

other. PVC bases were hammered into the ground as far as possible but no more than six 

em (maximum base height). Periodic measurements of chamber height were taken 

relative to the ground surface to ensure an accurate air volume determination before 

measurements were taken. I began sampling with five urban, four suburban, and four 

rural sites. Four urban and one suburban site were located along Beargrass Creek; one 

urban, three suburban, and two rural sites along Goose Creek; and one suburban and two 

rural sites along Harrods Creek. In February 2008, two gas chambers were taken from a 

suburban site within a state park along Goose Creek; therefore, I abandoned that site. I 

chose an additional urban site along a first order tributary of Beargrass Creek in July 
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2008. The site was located in a remnant woodland area, with the entire riparian zone (s 

12-m wide throughout) upstream of and at the site being forested. 

Groundwater wells 

Nearstream water table depth was determined over a two-year period at these 13 

sites by sampling piezometer wells. One piezometer well was installed within 0.5- to 1-

meter of the streambank edge in each of six urban, three suburban, and four rural riparian 

sites. The shafts of the piezometer wells were constructed of poly-vinyl chloride (PVC) 

pipe with a 1.25-inch inner diameter to allow for insertion of a measuring tape for 

determination of groundwater depth from the ground surface. The base of each 

piezometer was constructed of slotted PVC pipe approximately 300-mm in length. When 

measurements were begun at the end of 2006, piezometer bases used for measurement 

were commercially manufactured using three-quarter inch PVC pipe. Throughout 2007 

some of those were replaced with self-constructed bases measuring 3.2-cm in diameter to 

allow enough water to collect inside the well for sampling. Plastic PVC caps were placed 

at the bottom and top of the well to prevent water and debris from entering the well from 

above and also to allow water to drain from the well had the water table dropped below 

the well, as a hole was drilled into the bottom cap. In both the commercial and self­

constructed bases, a mesh filter covered the slots to limit soil and debris entering the well. 

The piezometer base was attached to the shaft via a PVC collar. PVC cement was used 

sparingly to attach the collar and bottom cap to minimize potential contamination. 

To place the piezometer into the ground I used a 1O.2-cm diameter auger to drill a 

hole large enough in diameter to prevent the well from contacting the sides upon 
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placement. I also allowed the top portion of the piezometer to protrude at least 30-cm 

above-ground to prevent floodwaters from entering the well. Once in place, sand was 

poured to cover the base of the piezometer to allow for drainage and prevent clogging of 

the filter surrounding the base. A layer of bentonite clay pellets approximately IS.2-cm 

deep was poured on top of the sand layer. Water was poured over the pellets to allow for 

expansion, and native soil was used as the remainder of the fill. Depth to groundwater 

measurements in the well were made approximately every two weeks from November 

2006 to November 2007 using a tape measure coated with Keson® ultra-fine marking 

chalk. The remainder of the measurements up to October 2008 followed the frequency of 

soil gas sampling described below. 

Soil and site properties 

Soil properties determined at each site visit included soil temperature and 

gravimetric soil moisture. Soil temperature was determined using a long-stem 

thermometer, and was measured SO-cm from each chamber during each site visit. 

Measurements were taken at S-, 10-, and IS-cm depths to obtain a representative average 

through the soil column. Air temperature was measured between the two chambers. 

Gravimetric soil moisture was determined from a 2-cm diameter soil core taken one to 

1.2 meters from each chamber, so as not to disturb the soil in and closer to the chamber. 

Two soil cores for each chamber were obtained to a depth of IS-cm each site visit. Soils 

were enclosed in plastic bags until later that same day when they were weighed and then 

dried in an oven at 10Soe for up to 48 hours. Gravimetric soil moisture content was 

determined using the following formula: 
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Eq.l 

Gravimetric soil moisture (%) = 100 * (Soil wet wt. (g) - Soil dry wt. (g))/Soil dry wt. (g) 

Additional soil characteristics were determined from a single soil sample taken 

inside the chambers in the first half of October 2009 after the last gas samples for the 

study were collected. Soil cores (lO.2-cm diameter and 13-cm long) were taken from the 

middle of each trace gas chamber using a soil impact corer with polypropylene sleeves. 

Stones and roots were removed and soils dried at 105°C for at least 48 hours. Bulk 

density was determined for each core using the following formula: 

Eq.2 

Bulk density (g/cm3
) = Dry soil weight (g)/Soil core volume (cm3

) 

Soil C:N molar ratios for each chamber were determined via combustion in the EAL at 

the University of Louisville using a Perkin-Elmer Series II 2400 (CRNS/O) analyzer. 

Additional soil properties (nutrients and texture) were determined using soil 

samples pooled from both chambers at each site. Soils were well mixed, and passed 

through a 2-mm sieve prior to analysis. Soils were analyzed at Brookside Laboratories 

(308 S. Main Street, New Knoxville, OR, USA; www.blinc.com) for texture (ASTM 

Standard 0422-632002) and trace minerals(Bray and Kurtz 1945, Linsay and Norvell 

1978, Mehlich 1984), the full list of which can be found in Appendix 13. 

Yegetation surrounding each chamber was quantified to use as correlates that 

could potentially explain some of the variation in gas flux. Percent bare ground and 
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herbaceous cover, and shrub and sapling counts were assessed within a 2-m radius of 

each chamber. Percent cover for herbs and bare ground was assessed using a seven 

category cover class system (Category # = % cover; 1=<1; 2=1-5; 3=6-25; 4=26-50; 

5=51-75; 6=76-95; 7=>95) with the average midpoints reported. Tree counts were 

determined within five meter radius of each chamber. Counts are reported as the total 

within a 12.6-m2 area for shrubs and saplings and within a 78.5-m2 area for trees. Tree 

canopy cover within a 5-m radius of the chambers was assessed using a spherical 

densiometer (Lemmon 1956). 

Sampling Well Water for Dissolved Organic Carbon and Nitrate+Nitrite-N 

DOC samples were collected once per month from November 2007 to October 

2008, except during June 2008 when two collections were made. Samples for 

determining nitrate+nitrite-N concentration (mg/L) were also collected once per month 

from November 2007 to February 2008, and in August and October 2008. However, the 

collection frequency was doubled from March to July and in September 2008 to follow 

the gas sampling frequency described below. Prior to well water collection, wells were 

emptied of water using a peristaltic pump and Nalgene tubing and allowed to fill for at 

least 30 minutes prior to sampling. This was done to obtain a recent water sample and 

also to rinse the inside of the tubing. Water samples were collected from wells into 100-

ml acid-washed Nalgene bottles. Samples were stored on ice until returned to the lab. 

Samples were then vacuum-filtered through 0.45-flm filters (glass fiber, type NE). Forty 

ml aliquots were decanted into sterile glass bottles for determination of dissolved organic 

carbon (DOC) concentrations. Ten drops of 4N HCI were added to the DOC sample to 
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stop microbial activity, and samples were stored at 4°C. The remainder of the sample was 

decanted into a sterile 40-ml Falcon tube and either stored at 4°C or frozen at -20°C for 

nitrate+nitrite-N determination. 

DOC concentrations were determined via combustion by the Environmental 

Analysis Laboratory (EAL) at the University of Louisville using a Shimadzu TOC Model 

SOSOA analyzer. Water samples were assessed for nitrate+nitrite-N within seven to ten 

days following collection. Colorimetric analysis was used following a modified cadmium 

reduction method from Hach, Inc. (2004a, b). Two different methods were used 

depending on sample concentration. The low-range method was used for samples 

containing from 0- to O.S-mg/L nitrate+nitrite-N. The high-range method was used for 

samples containing from O.S- to 30-mg/L nitrate+nitrite-N. These methods involve 

reduction of nitrate to nitrite, followed by conversion to a diazonium salt in the presence 

of sulfanilic acid. The salt couples with either gentisic acid (high-range) or chromotropic 

acid (low-range) for color formation. Samples were divided into S- (for high-range) or 

IS-ml (for low-range) aliquots. All samples were warmed to 2SoC in a water bath prior to 

analysis. First, for the low-range procedure, the contents of a Nitra Ver 6 Reagent Powder 

Pillow were added to the sample, followed by vigorous shaking for 3-min. A 2-min 

reaction period followed. Ten mls of the sample was decanted into a separate container, 

followed by addition of a Nitra Ver 3 Nitrite Reagent Powder Pillow and repeated 

inversion for 30-sec. The sample was allowed to incubate for IS-min. One ml of sample 

was analyzed in a UV/Vis spectrophotometer with a I-cm path length at S07-nm, with the 

resulting reading in mg nitrate+nitrite-N/L. Samples found to contain a greater than O.S­

mg nitrate+nitrite-N IL were subjected to the high-range test. The NitraVer S Reagent 
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was added to the S-ml sample, followed by vigorous agitation for I-min. AS-min. 

reaction period followed. One ml of the sample was read using the same UV/Vis 

spectrophotometer with a I-cm path length at a wavelength of SOO-nm. 

Measuring net CO2 , net CH4 and net N20 fluxes from riparian soils 

Soil respiration and CH4 flux was measured from January to October 2008. 

Measurements were taken once a month in January, February, August and October. 

Sampling occurred at two-week intervals from March to July and in September. These 

trace gas fluxes were measured using closed chambers (purchased from Artmor Plastics 

Corporation, Cumberland, Maryland, USA) each consisting of a cylindrical lid and base 

constructed of polyvinyl chloride (PVC). A rubber gasket on the lid formed a seal with 

the base when in place. The lid had an inner volume of 3.II2S-L and the area of the base 

measured 638-cm2. Bases were permanently installed in the ground in October 2007, and 

volume varied depending on depth of installation, which was measured for each chamber 

to determine the total air volume of each. During sampling, the chamber lids were placed 

on the base and fine-needle SO-ml polypropylene syringes were used to collect 20- to 30-

ml gas samples from sampling ports located in the center of the chamber lids. Collection 

times occurred at 0, 10, 20, and 30 minutes after placement of the chamber lid on the 

base. Syringes were closed via stopcocks and samples were processed the same or next 

day. An SRI 8610 gas chromatograph (SRI, Redondo Beach, CA, USA) equipped with a 

thermal conductivity (C02) and flame ionization (CH4) detector and a porapak Q column 

was used to process the samples. Gasses used for standardization of chromatogram peaks 

were 360 ppm CO2 and 10 ppm CH4. Helium was used as the carrier gas. These trace gas 
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fluxes were calculated from the linear rate of change in gas concentration multiplied by 

the internal volume of the chamber and normalized on a m2 soil surface basis, as follows: 

Eq.3 

Flux rate = «Vlid+Vbase)/(R *T»*(~conc/hour)*(Cam)*(24hours/day»/(Abase-m2) 

where Vlid is the volume of the chamber lid (3.1125 L), Vbase is the volume of the 

installed chamber base (L), R is the ideal gas constant (0.0821 L * atm/(mol*K», T is 

chamber air temperature (K), ~conc is the change in concentration of CO2 or CH4 

(ppm/1000mg/g*hour), Cam is the atomic mass of carbon (12-g/mol), and Abase-m2 is 

the area of the chamber base in square meters (0.0638-m2). The unit for flux rate is mg 

CH4-C or CO2-C/m2*d. 

Samples were assessed for N20 concentrations at a separate facility (University of 

New Hampshire Water Resources Research Center, Dr. William McDowell, Jeffrey 

Merriam), since there was no operational electron capture detector on the SRI 8610 gas 

chromatograph. Samples were collected once in May, June, July, and August 2008. 

Samples were collected in the same way as CO2 and CH4, and immediately transferred to 

10-ml evacuated glass vials and sealed with rubber septa for storage. Silicon grease was 

used to reduce leakage from the vials during storage and shipment. Samples were shipped 

approximately seven to nine days following collection. Five to ten ml of the air sample 

was injected into a Hewlett-Packard 5890 Series II (I-ml sample loop) equipped with an 

electron capture detector. Vials with N20 gas controls (500 ppm) were shipped along 

with the samples to assess the probability of leakage from vials during shipment. The 
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decision was made not to include data from the May and June sampling dates since it was 

determined that leakage occurred in many samples. 

Data Analysis 

Principal components analysis (PC-Ord v. 4.41) (McCune and Mefford 1999)and 

multiple regression analysis (R v. 2.11) (R Development Core Team 2009) were used to 

assess whether monthly and seasonal differences in CH4 and CO2 fluxes were related to 

land use and site variables. Principal components analysis was used to assess whether 

there were patterns in CH4 and CO2 fluxes that could be related to site variables (%IS, 

woody species stem counts, % canopy cover, catchment area, bank height) and soil 

variables (% carbon and nitrogen, molar C:N ratios, texture, bulk density, % organic 

matter). Two sites were removed from these analyses, because one site was determined to 

be an outlier, as it occurred by itself and caused the other sites to cluster together in a 

separate comer of the PCA output. The other site was removed because flux data were 

only collected from July through October for that site. However, these sites were used in 

subsequent analyses if they did not contribute to heteroscedasticity. 

Multiple regression was used to identify distinct soil properties that might affect 

seasonal differences in site fluxes. Seasons used were winter (January, February, and 

March), spring (April & May), summer (June-August), and fall (September & October). 

Monthly fluxes were averaged for each site by season and simple regressions were used 

to choose the strongest two or three main effects to use in each multiple regression 

model. Land-use differences in depth to groundwater were assessed using repeated­

measures ANOY A. 
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Results 

Site and soil properties 

Soil temperature followed air temperature, steadily increasing from freezing and 

single digit temperatures in January and February and peaking in late August and early 

September 2008. Increases in soil temperature lagged behind air temperature during the 

year, with soil temperature rising to between 22 and 23°e, and air temperature rising to 

26 to 28°e (Fig. 4-1). No differences in air or soil temperature among land-use categories 

(urban, suburban, rural- subcatchment scale) were observed. Mean monthly soil moisture 

was highest in spring and summer and declined from February to October in sites across 

all land-uses (Table 4-1, Fig. 4-2). Soil moisture was consistently lower throughout the 

year in urban soils than in either suburban or rural soils (Table 4-1, Fig. 4-2). However, 

small incremental increases in soil moisture generally followed rain events among all 

land-use categories. Vegetation coverage and density near the chambers varied between 

sites and land-use categories (Table 4-2). Urban sites had the highest mean proportion of 

bare ground within two meters of each chamber. Two suburban sites contained the 

highest number of trees. 

Groundwater 

Both data sets (2006 to 2007, and 2007 to 2008) showed similar patterns 

regarding bank height and depth to groundwater, with the mean water table depth 

becoming lower as bank height increased (Fig. 4-3). The slopes of the regression lines for 

mean water table depth were also similar between years, indicating chronically lower 

water tables with higher banks. Sites were chosen in part to represent the range of bank 
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heights found. As such, only the highest urban bank did not have a similarly paired rural 

reference (Fig. 4-3b), since none of the rural streambanks I measured in a previous study 

(see Dissertation Chapter 2) were as high as urban banks. Urban groundwater was also 

deeper than in either suburban or rural riparian zones due to the higher banks in urban 

areas (Fig. 4-4). However, no significant differences were detected between urban, 

suburban, and rural depths to groundwater (p = 0.44). Depths did, however, significantly 

change over time (p = <0.0001), increasing from winter to spring, and decreasing 

continuously into fall. Groundwater at all sites peaked in March 2008 with a heavy 

monthly rainfall approaching 46-cm. Depth to groundwater levels decreased gradually 

from the March peak until October. A small rain pulse in May helped maintain 

groundwater levels during that month. The scant rainfall that occurred in subsequent 

months in 2008 was not sufficient to prevent groundwater levels from dropping. Greater 

recharge of rural groundwater levels occurred during spring rains with average 

groundwater levels rising 60-cm from November 2007 levels. In contrast, urban 

groundwater levels rose by 20-cm during the same time period, while suburban 

groundwater levels were intermediate, rising by approximately 40-cm. 

Groundwater nitrate+nitrite-N and DOC 

Over the II month sampling period (Table 4-3), nitrate+nitrite-N concentrations 

in groundwater were higher in urban (Mean = 2.8-mg/L; SE = 0.8) and rural (Mean = 

2.6-mg/L; SE = 0.9) plots than in suburban plots (Mean = 0.09-mg/L; SE = 0.02). The 

highest nitrate+nitrite-N values in urban areas occurred from January through June 2008, 

often being at least two orders of magnitude above suburban and rural values during this 
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period. In contrast, the highest values in rural areas occurred from May through October, 

with values equal to those in urban areas from May to July, and exceeding urban values 

in August through October. Suburban nitrate+nitrite-N values remained relatively low 

and stable over the year-long period, rarely exceeding O.l-mg/L. As far as could be 

determined, rainfall did not vary appreciably within the area by land-use type (Table 4-3), 

and therefore could not explain the order of magnitude differences in nitrate+nitrite-N 

concentration among land uses. 

Within a land-use type, however, nitrate+nitrite concentrations followed average 

rainfall and groundwater levels. Urban mean nitrate+nitrite-N concentrations and 

variation were highest during periods of the greatest rainfall and highest groundwater 

levels in March (Fig. 4-5). Concentrations gradually diminished, falling below l-mg/L in 

July. Rural groundwater levels did not start to increase until the relatively wet month of 

May, and levels peaked following a September pulse of rain. Suburban nitrate+nitrite-N 

concentrations in groundwater consistently remained below I-mg/L for the entire 

sampling period despite variable precipitation inputs. 

Dissolved organic carbon (DOC) showed a more stable trend across land cover 

categories (Table 4-4), usually ranging between 4- and 7-mg/L. The highest values across 

land-use categories occurred during winter and summer months. DOC concentrations in 

urban areas peaked in January and June 2008, with values between 8- and 9-mg/L. Mean 

suburban values were highest in November 2007 and June 2008, while mean rural values 

were highest in November 2007 and July 2008. 
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Carbon dioxide flux 

Carbon dioxide flux varied about S-fold from January through October 2008 (Fig. 

4-6), generally following changes in soil temperature (Fig. 4-1 b). PCA indicated that 

annual mean C02 flux was related positively with increasing % impervious surface 

around the sites from the O.S km to the subcatchment scales (Fig. 4-7). Differences 

among sites grouped by land use were first distinguishable in June, with mean annual 

fluxes being consistently highest in urban sites from June through October (Appendix 

14). A multiple regression model was used to determine the extent to which impervious 

surface, calculated at three scales around each site (O.S- and 1-km radii and at the 

subcatchment scale), and upstream cumulative catchment area could explain the variation 

in CO2 fluxes among sites. I grouped the data by season due to the effects of seasonal 

temperatures on gas fluxes. Cumulative catchment area (ha) upstream of the sites (p = 

0.002) and % impervious surface within 1-km of the sites (as opposed to the 

subcatchment scale; p = 0.002) explained most of the variation in CO2 flux during 

summer, with higher %IS resulting in greater flux rates and increasing catchment area 

resulting in lower flux rates (two-factor model adjusted r2 = 0.72, p = 0.001; Table 4-S). 

One outlier with the highest IS within a l-km radius (47%) and mid-range CO2 flux rate 

was left out of the analysis to better meet assumptions ofhomoscedasticity. This site was 

located in a small city park (Browns Park) along Middle Fork Beargrass Creek, which 

may have served to reduce the otherwise positive relationships associated with 

impervious surface on CO2 flux. Fall CO2 flux rates (Table 4-S) were related to %IS and 

catchment area in the same way as during summer months, increasing with %IS (p = 

0.003) and decreasing with increasing cumulative catchment area (p = 0.01). 

175 



Multiple regressions revealed relationships between CO2 flux and plot-level 

environmental variables that varied by season. Winter fluxes (mean flux rates for 

January, February, and March) positively correlated with % soil organic matter (%SOM; 

p = 0.004, adj. r2 = 0.58; Fig. 4-8, Table 4-6). One rural site was not used in this analysis 

due to its negative CO2 flux value, making it an outlier among the sites. It was the only 

site with no groundwater above bedrock. Spring (April and May mean flux rates) flux 

differences (natural log transformed) among sites were found to increase with increasing 

soil bulk density (Fig. 4-9, Table 4-6), indicating a weak trend among spring C02 fluxes 

and within the range of bulk density, which was relatively low. More proximate variables 

related to C02 flux in the summer were soil temperature (p = 0.01) and soil % organic 

matter (OM) (p=0.0496). Together they explained 43% of the variation in CO2 flux rates 

among sites (Table 4-6). Fall C02 flux rates also increased with soil temperature (p = 

0.004, adj. r2 = 0.55; Table 4-6, Fig. 4-10). The same outlier was removed from the 

regression model for the fall season as for the summer season. No correlations were 

found between seasonal C02 flux and either CH4 or N20 flux. 

Methane flux 

Methane uptake into the soil (methanotrophy) occurred in suburban and urban 

riparian zones from January to October 2008. Net CH4 emissions from the soil 

(methanogenesis) primarily occurred in rural riparian zones from January to July 2008. 

Net methanotrophy occurred in all riparian zones regardless of surrounding land use from 

July to October 2008 (Fig. 4-11). The range of flux values varied widely among rural 

sites. Net efflux usually occurred at a single rural site (RG7), with a second rural site 
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(RHI3) exhibiting net efflux on four of six sampling dates from April through June. 

These sites were responsible for the large rural peak in March and April. RG7 was 

typically an outlier because of frequent and sometimes substantial methane release from 

the soil. Net methane uptake occurred at the other two rural sites on all dates sampled. 

Net efflux also occurred within some suburban and urban sites, but most sites exhibited 

net methane uptake on most sampling dates (Appendix 15). 

A multiple regression model was used to determine the extent to which 

impervious surface, calculated at three scales around each site (0.5- and l-km radii and at 

the subcatchment scale), and upstream cumulative catchment area could explain the 

variation in CH4 fluxes among sites. I grouped the data by season due to the effect of 

temperature on microbial activity and because PCA revealed a methane flux gradient 

among sites that appeared strongest during fall months (Fig. 4-12 & 4-13). At the 

landscape scale, soil uptake of methane increased with increasing subcatchment %IS (as 

opposed to within a l-km radius) during summer months (Table 4-5, Fig. 4-14). Methane 

uptake rates at sites with less than 15% IS were between zero and 0.5-mg CH4-C/m2*d. 

Both sites that exhibited net methanogensis contained less than 15% IS in the 

surrounding subcatchment. Conversely, six of eight sites with greater than 15% IS had 

net methane uptake rates greater than 0.5-mg CH4-C/m2*d. No significant correlations 

were found between spring and fall methane flux and landscape-scale variables (Table 4-

5). 

Multiple regression analysis revealed relationships between CH4 flux and plot­

level environmental variables. Differences in spring methane fluxes were most strongly 

correlated with soil temperature, as cooler temperatures resulted in greater methane 
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uptake from the atmosphere (Fig. 4-15). Summer flux differences across sites were most 

strongly correlated with soil % carbon (Fig. 4-16). Methane uptake decreased linearly as 

soil % carbon increased from 2 to 7%. Methane efflux (methanogenesis) became the 

dominant CH4-related process at the highest soil moisture values (> O.4-g water/g dry 

mass soil) during the summer months (Fig. 4-17). Fall fluxes were found to significantly 

correlate with soil C:N ratios and soil moisture (Table 4-6, Fig. 4-18). For the overall 

multiple regression model, the adjusted coefficient of determination was 0.75 and the p­

value was 0.0004. 

N2 0 flux 

Nitrous oxide (N20) fluxes showed a high degree of variability both among and 

within sites from August to October 2008, so no land-use level trends could be discerned. 

August and October mean flux rates (mg N20-N/m2*d) were 0.17 and 0.10 in rural, 0.17 

and 0.12 in suburban, and 0.16 and 0.14 in urban riparian zones. Site fluxes decreased 

dramatically at some sites (RHI3, SGI3, and UB3) from August/September to October, 

while fluxes at other sites decreased slightly, remained stable or increased over that 

interval (Fig. 4-19). Flux rates decreased by at least one-half at four sites and by one­

quarter to one-third at three other sites from August to October 2008. Rates increased by 

one-quarter to one-half at four other sites. No significant correlations were detected 

between N20 flux and site variables. 

Discussion 

Overall, this project adds to the growing body of literature focused on riparian 

ecosystem functioning in urban areas. Urban riparian functioning has thus far been 
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concentrated on nutrient and pollutant removal (Stander and Ehrenfeld 2010). My study 

contributes not only to this area, but also to understanding the dynamics of groundwater 

levels, groundwater DOC and nitrate+nitrite-N, and greenhouse gas in riparian zones in 

urban and urbanizing catchments. 

Groundwater levels 

As expected annual changes in depth to groundwater in these riparian sites 

reflected rainfall inputs, with rain pulses resulting in higher water tables. Water table 

levels were highest in rural sites during periods of high rainfall. Urban riparian water 

levels also rose after rainfall, but not to the same levels as rural water tables. These 

differences in groundwater recharge between urban, suburban and rural riparian zones are 

likely a direct consequence of urban features, such as impervious surfaces and drainage 

structures. These features create a barrier to groundwater flow after precipitation events 

and allow water to bypass exposed soil by funneling it into drainage features that empty 

into streams. They also indirectly affect depth to groundwater by causing stream 

channelization and elevated stream banks, which is part of the urban stream syndrome 

(Walsh et al. 2005). 

Lower water tables were observed among sites with higher streambanks, 

regardless ofland-use in the catchment. However, the highest streambanks and the lowest 

average water tables occurred in urban areas, which was consistent with my prediction. 

High banks and lower groundwater recharge rates can create what Groffman et al. (2003) 

termed "urban hydrological drought," whereby the upper soil layers become dryer, 

changing soil microbiological processes, including those involved in greenhouse gas flux. 
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Water table data coupled with soil moisture data (Table 4-1, Fig. 4-2) indicated that urban 

hydrological drought does exist in riparian zones within the Louisville Metro area, since 

urban riparian soils were generally dryer than those in suburban and rural riparian soils. 

Groundwater nitrate+nitrite-N and DOC 

Nitrate+nitrite-N occurred in greater concentrations in urban and rural plots, 

peaking at different times of the year. The highest nitrate+nitrite-N concentrations (>O.S­

mg/L) generally occurred at a single urban site (UB3) and a single rural site (RG7). Both 

sites were located adjacent to housing developments with a house within SO m of the 

sites, and both were at the end of a cul-de-sac. Since nitrate levels peaked coinciding with 

rainfall events, runoff from fertilized lawns could have contributed to the high levels of 

nitrate+nitrite-N within the groundwater at these two sites. 

Other studies have found that riparian vegetation dynamics influence soil nitrogen 

dynamics and groundwater concentrations of nitrate. Nearstream groundwater N03-

concentrations were found to increase four-fold with uprooted canopy tree disturbance in 

a mountainous region of North Carolina, although elimination of shrubs at other sites had 

no significant effect (Yeakley et al. 2003). This suggested that canopy trees, especially at 

the root-soil interface, were primarily responsible for control of nitrates in groundwater. 

Exotic species invasions have variable effects on soil nitrate concentrations, with effects 

primarily expressed on N mineralization and nitrification rates, both increasing with plant 

species invasions (Ehrenfeld 2003). My suburban sites had the greatest number of trees 

(> I-m high,::: 2.S4-cm diameter at breast height) within a 78.S-rn2 area surrounding the 

groundwater wells and the lowest groundwater nitrate concentrations. The absence of 
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trees at urban and rural sites could have contributed to the relatively higher 

nitrate+nitrite-N concentrations. In addition, the two urban sites with the highest 

groundwater nitrate+nitrite-N concentrations (> I-mg/L) from January to June 2008 

(UB3 and UB5) also had the greatest densities of the exotic shrub L. maackii (see 

Appendix 9 and Dissertation Chapter 2 for sampling methods). However, the rural site 

(RG7) with the highest groundwater nitrate+nitrite-N concentrations (> I-mg/L) from 

May to October 2008 did not contain any exotic shrubs (see Appendix 9 and Dissertation 

Chapter 2 for sampling methods). These conflicting findings make drawing inferences 

regarding increased groundwater nitrate+nitrite-N concentrations and exotic shrubs 

invasions more complicated. 

The only discernable pattern regarding nearstream groundwater DOC 

concentrations were related to seasonal peaks. Table 4-4 shows winter and summer peaks 

among all land-use types in 2008. Average rural DOC seasonal peaks were the highest 

overall, reaching 9.89-mg/L in November and 10.51-mg/L in July. Suburban areas had 

the lowest average seasonal peaks, with concentrations between 7- and 7.5-mg/L. Urban 

areas had seasonal peaks between 8- and 9-mg/L. Summer DOC peaks were observed in 

a coastal ecosystem in Sweden, with the increases attributed to low phosphate 

concentrations inhibiting breakdown of DOC by limiting microbial activity (Zweifel et al. 

1995). Other possible explanations for the summer and winter peaks include root 

exudates and leachable organic matter from the litter layer (Wright and Coleman 2002, 

Yeakley et al. 2003), which have both been found to increase soil carbon concentrations. 
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C02/lux 

At the landscape scale, % impervious surface within a l-km site radius was 

positively correlated with C02 flux rates during both summer and fall (Table 4-5), 

supporting my prediction. Cumulative catchment area, another landscape scale variable, 

was negatively correlated with C02 flux rates (Table 4-5), with decreasing flux rates 

occurring with increasing catchment area (ha). Explanations for this trend are less easily 

made. However, Jones and Mulholland (1998) found lower in-stream partial pressures of 

CO2 with downstream distance in a stream system in the Great Smoky Mountains 

National Park, which they attributed to the declining influence of groundwater on stream 

chemistry from upstream to downstream. Similar mechanisms may be responsible for this 

decline in C02 in both situations, and further study may be warranted if similar findings 

can be replicated in other systems. 

Carbon dioxide flux demonstrated seasonal variations related to plot-level 

environmental variation as well. As expected, winter CO2 flux was the lowest because of 

cold temperatures, while CO2 flux and soil temps peaked in mid-summer (Fig. 4-1 b & 4-

6). Many of the soils were frozen early in the season (January), and began to thaw later in 

the season (March). Summer and fall CO2 flux rate differences among sites were 

positively correlated with variation among sites in soil temperature (Table 4-6, Fig. 4-10). 

This correlation between soil CO2 fluxes with temperature is expected and consistent 

with many other findings (Edwards 1975, Crill 1991, Davidson et al. 1998, Rustad et al. 

2000, Xu and Qi 200 I). Percent soil organic matter (SOM) was positively correlated with 

winter and summer C02 flux rates (Table 4-6, Fig. 4-8), which was also found by Xu and 

Qi (2001) during summer months under a ponderosa pine forest. Spring CO2 flux rates 
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were positively, though not significantly, correlated with increasing soil bulk density 

(Fig. 4-9). This was surprising, and opposite of my prediction, as a higher soil density 

would indicate a more compact soil with smaller pore spaces for gaseous diffusion. 

However, these soils were not highly compacted, relatively speaking, with the highest 

bulk density being 0.73-g soil/cm3
. In the same study referenced above, Xu and Qi (2001) 

found a negative correlation between CO2 efflux and bulk density, attributing the finding 

to limited pore space for microbial activity. Therefore, the range of bulk densities at my 

research sites may be too low to detect a similar pattern. 

CH4 jlux 

Only one of my predictions regarding CH4 was supported by the data within this 

study. I found a weak relationship between CH4 flux and land-use context (Table 4-5, 

Fig. 4-14), where the greatest methane uptake rates occurred in more urban sites 

(determined at the subcatchment scale), whose soils were typically driest in the summer 

and fall. Groffman et al. (2006) found CH4 uptake rates correlated with land-use context 

in Baltimore forests. Land-use context was related to high-fertility and low-fertility sites, 

with high fertility sites occurring primarily in urban environments and low-fertility sites 

in rural environments. Rates of methane uptake were lower in high fertility forested urban 

sites than in low fertility rural sites. I found the opposite trend at my sites, with increasing 

rates of CH4 uptake with increasing %IS, which may have been due to more proximal 

scale environmental variation. 

Higher spring temperatures resulted in lower rates of CH4 uptake within these 

riparian sites. Castro (1995) revealed methane uptake rates are dependent on temperature 
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within the range of 0 and 10°C, increasing as temperature increases. Above 10°C 

methane uptake becomes independent of temperature in temperate forest soils. Incubation 

of forest soil cores has also revealed no relationship between soil temperature above 10°C 

and methane efflux (Crill 1991). This was attributed to a shift from biological to 

diffusional controls over methane uptake. During spring thaw, uptake rates responded to 

temperature since substrate (CH4 for methanotrophs) was plentiful and microbes 

increased their activity in response to the temperature increase. Into summer, substrate 

became limiting as microbial activity increased in response to the soil temperature, and 

diffusion of CH4 into the soil became the limiting factor controlling rates of CH4 uptake. 

The sites with higher spring temperatures and lower net CH4 uptake rates suggest 

substrate-limitation ofmethanotrophy. Average spring temperatures were above lOoC at 

my sites, which potentially explains the weak trend between temperature and CH4 uptake 

rates. 

Patterns in CH4 flux rates during summer and fall were related to soil moisture 

and soil carbon and nitrogen concentrations. Soil moisture acted as a switch by 

determining whether the soil was a net consumer or emitter of CH4 (Fig. 4-17 & 4-18b, 

Table 4-6), as methanogenesis is an anaerobic process and soil methane uptake is an 

aerobic process. Ambus and Christensen (1995) found similar results regarding CH4 flux 

and soil moisture in a riparian site where static chambers, arranged along a topogradient 

from upslope to downslope, were used to record methane efflux in the flood plain. They 

found a significant increase in methane efflux from soils with higher % water-filled pore 

space (WFPS) and higher % soil organic matter (SOM). Castro et al. (1995) found 

experimental evidence for negative control of methane consumption by soils at levels of 
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soil moisture (measured as % WFPS) between 60 and 100% in Harvard Forest in 

Massachusetts. Whalen et al. (1990) found the lowest methane consumption rates 

occurred above 40% and below 5% soil moisture by weight. Reported optimum values 

for gravimetric soil moisture (g soil water/g dry soil) in relation to methane uptake occur 

between the ranges of 10-30% (Whalen et al. 1990, Tom and Harte 1996). In my riparian 

systems soil moisture values above ~0.35-g water/g dry soil, slightly higher moisture 

values than these other studies, promoted net methane efflux from the soil (Fig. 4-17). 

One site in particular (RG7) exhibited CH4 efflux at nearly every date measured. This site 

also had some of the highest monthly soil moisture values (Table 4-1) and an average 

depth to groundwater of91-cm, and the highest groundwater nitrate concentrations from 

May to October 2008. Net methane uptake occurred at lower soil moisture levels; 

however, these soil moisture values did not explain variation in my data set. 

In summer, net CH4 uptake increased with decreasing soil % carbon (Fig. 4-16, 

Table 4-6). This could partially explain increasing methane uptake rates with increasing 

subcatchment %IS mentioned previously, since soil % carbon was negatively correlated 

with %IS (Pearson's r = -0.69). However, soil % carbon was determined from fall soil 

collects and they may have been slightly different had they been taken during summer 

months. In fall, net CH4 uptake increased with decreasing soil C:N ratios (Fig. 4-18a, 

Table 4-6). The relationship with C:N ratios was consistent with responses others have 

found regarding flux rates and soil nitrogen concentrations. Steudler et al. (1989) found 

CH4 uptake increased with concentrations of soil nitrogen, particularly ammonium, via 

fertilization in southeastern temperate forests. This was believed to occur due to 

increased nitrifier activity, particularly Nitrosomonas europaea, which also possess the 
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ability to oxidize CH4 (Jones and Morita 1983). Since higher soil nitrogen concentrations 

would lead to lower C:N ratios (high fertility), and greater methane uptake, nitrifier 

activity may have been responsible for this pattern within these sites. From a soil fertility 

perspective, my results are opposite those found by Groffman et al. (2006), who found 

lower rates of CH4 uptake at high fertility (low C:N) urban sites. However, in my study, 

no link between land-use and fall CH4 flux rates was found (Table 4-5). 

No patterns were found regarding winter CH4 flux between sites or with site or 

soil variables, which may have been due to the frozen soils. Gulledge and Schimel (2000) 

found no relationship between climatic factors and methane consumption within taiga 

forests in Alaska, likely due to the semi-arid nature of the area's climate. In conclusion, 

net methane flux rates within my riparian sites appear to be controlled by seasonal and 

local site variables rather than factors operating at the land-use scale. 

N20jlux 

Nitrous oxide flux rate differences, while not correlating with any environmental 

variables, did show a dramatic seasonal decrease at many sites from August to October. 

Average soil temperature during this period decreased from 23°C to approximately 16°C. 

This likely contributed to the decrease in N20 flux at some of the sites, although it does 

not explain steady or increased flux at other sites. As for CH4 flux, interpreting the 

dynamics of nitrous oxide fluxes is complicated by the fact that it is formed by both 

aerobic (nitrification) and anaerobic (denitrification) microbial processes. Davidson et al. 

(1993) found nitrification to be the dominant source ofN20 production in a tropical 

forest soil following soil wetting after the dry season. This could not explain variation in 
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my data however, as no large rain pulses occurred prior to my sampling dates, and no 

consistent responses were observed among my sites either by land use or proximity to 

one another. Others have found N20 emissions varied with soil N03- concentrations, soil 

organic matter (SOM), and pH among a range of habitat types (Ambus and Christensen 

1995). Arable and coastal grasslands exhibited the highest annual mean N20 emissions 

from among seven different habitat types, including forested and riparian sites. While 

none of my predictions were supported, further research should also include measures of 

in situ nitrification rates and soil moisture monitoring to determine potential associations 

with N20 flux in riparian sites, and modeling a mechanistic partitioning between 

denitrification and nitrification as explanations for seasonal and land-use scale variation 

in emissions of this important greenhouse gas. 

Conclusions 

Depth to water table was lower in urban areas, as expected, since urban areas had 

the highest stream banks (Fig. 4-3 & 4-4). In addition, the degree of groundwater 

recharge in urban areas during spring rains was much less than in rural areas, 

demonstrating the effect of impervious surface runoff and structural bypasses on riparian 

groundwater levels. The absence of recharge means the upper soil layers are never as 

saturated as in rural areas and soil moisture remained lower in the urban riparian areas as 

well. Therefore I found evidence to support the notion that urban hydrological drought 

exists in riparian areas in urban and urbanizing catchments in Louisville. 

Carbon dioxide flux rates increased with increasing soil temperatures among all 

sites (Fig. 4-1 & 4-6). Site flux difference and potential explanatory variables, however, 
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changed in response to season, with winter fluxes influenced by % SOM (Fig. 4-8). As 

temperatures increased in the spring, the degree of CO2 release was better explained by 

soil bulk density (Fig. 4-9). However, the trend was opposite of what I expected, with 

greater flux rates occurring in the denser soils. However, soil bulk density in these 

systems ranged only from 0.49- to 0.73-glcm3
, and were not considered to be compacted. 

Soil temperatures played the greatest role in explaining land-use patterns of CO2 release 

during the hottest months and into fall, with urban riparian sites releasing more CO2 than 

suburban and rural sites. 

Explaining patterns of net soil CH4 flux rates is more complex since net flux is 

controlled by both anaerobic and aerobic processes. Soil temperature weakly correlated 

with site flux rates during the spring thaw, with lower net CH4 uptake rates at higher 

spring temperatures attributed to substrate limitation (atmospheric CH4 diffusion into the 

soil) of microbial activity (Fig. 4-14). As soil temperatures and soil microbial activity 

increased, other site differences began to affect patterns of CH4 uptake and efflux. 

Summer net CH4 uptake rates were negatively correlated with soil % carbon (Fig. 4-16). 

Differences in fall CH4 uptake rates were negatively correlated with soil C:N ratios (Fig. 

4-18a). Soils with C:N values below 23 are associated with higher net annual nitrification 

potential. The latter half of the summer of 2008 was one of prolonged drought. 

Precipitation events in the fall could have stimulated the activity of nitrifying bacteria, 

which are also known to take up CH4 (Jones and Morita 1983, Bedard and Knowles 

1989). This offers one potential explanation for the negative correlation with soils C:N 

ratios. Potential effects of high soil moisture on the net balance between methanogenic 

and methanotrophic activity were evidenced during summer and fall seasons. Higher soil 
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moisture values (greater than ~0.35-g soil water/g dry soil) resulted in a shift from net 

methanotrophy to net methanogenesis. Patterns of net methane uptake, however, were 

not explained by variation in soil moisture below ~0.35-g soil water/g dry soil. 

N 20 efflux rates showed a strong seasonal response between August and October, 

decreasing from hot and dry August to cooler October. No measured environmental site 

differences could explain the flux differences across sites. Groffman et al. (2006) found 

natural soil factors had greater control over soil nitrogen cycling dynamics, with higher 

N20 flux rates attributed to finer textured soils. The differences could also be a function 

of the dual processes in which N20 is released from the soil, one process being aerobic 

(nitrification) and one being anaerobic (denitrification). 
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Table 4-1: Gravimetric soil water content (g water/g oven dry soil) in the upper 15-cm 
horizons within two meters of streambanks in urban, suburban, and rural riparian sites. 
Urban subcatchments contain:::: 30% impervious surface cover, rural subcatchments 
contain ::::10% impervious surface cover, and suburban subcatchments contain values in 
between 10 and 30% impervious surface cover. Site names beginning with R, S, and U 
are located in rural, suburban, and urban subcatchments, respectively. The second letter 
in the site name indicates whether the site is located in Harrods (H), Goose (G), or 
Beargrass (B) creek watershed. N/A indicates the soils were frozen. 

Site Jan. Feb. March A ril Ma June Jul Au . Oct. 

RG4 N/A 0.44 0.36 0.34 0.32 0.32 0.31 0.22 0.21 0.21 
RG7 N/A 0.41 0.56 0.53 0.52 0.56 0.54 0.47 0.48 0.45 
RH13 0.04 0.39 0.38 0.38 0.34 0.33 0.23 0.12 0.12 0.l2 
RH5 0.05 N/A 0.37 0.37 0.35 0.38 0.32 0.17 0.21 0.l8 
Mean: 0.02 0.31 0.42 0.40 0.38 0.40 0.35 0.25 0.26 0.24 

SB12 N/A 0.37 0.42 0.36 0.35 0.33 0.25 0.15 0.l7 0.18 
SG13 N/A 0.61 0.46 0.45 0.42 0.42 0.42 0.36 0.37 0.30 
SG9 N/A 0.42 0.41 0.38 0.35 0.33 0.28 0.20 0.21 0.21 
Mean: N/A 0.47 0.43 0.40 0.38 0.36 0.32 0.24 0.25 0.23 

UBI N/A N/A 0.33 0.30 0.29 0.27 0.25 0.l6 0.17 0.l7 
UB14 N/A N/A NA NA NA NA 0.40 0.26 0.23 0.26 
UB2 0.36 0.38 0.33 0.32 0.31 0.27 0.22 0.16 0.l7 0.15 
UB3 0.36 0.39 0.37 0.36 0.35 0.33 0.30 0.20 0.l8 0.15 
UB5 0.31 N/A 0.36 0.31 0.30 0.21 0.23 0.l4 0.13 0.l1 
UG8 0.00 0.33 0.35 0.30 0.33 0.29 0.26 0.18 0.15 0.17 
Mean: 0.21 0.22 0.35 0.32 0.32 0.28 0.28 0.18 0.17 0.17 
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Table 4-2: Site mean vegetation data surrounding the static chambers at riparian sites. 
Percent bare ground and herbaceous cover, as well as shrub and sapling counts were 
assessed within a 12.6 m2 area (2-m radius) surrounding each chamber. Tree counts were 
assessed within a 78.5 m2 area (5-m radius) surrounding each chamber. Canopy cover 
was determined directly over each chamber. Urban subcatchments contain 2: 30% 
impervious surface cover, rural sub catchments contain :::,10% impervious surface cover, 
and suburban subcatchments contain values in between 10 and 30% impervious surface 
cover. Site names beginning with R, S, and U are located in rural, suburban, and urban 
subcatchments, respectively. The second letter in the site name indicates whether the site 
is located in Harrods (H), Goose (G), or Beargrass (B) creek watershed. 

0/0 cover Counts 
Bare 

Site Cano round Herbaceous Shrubs Sa Trees 

RG4 48 37.5 62.5 0.5 0 
RG7 61.5 37.5 37.5 2.5 6 
RH13 38 37.5 37.5 23 0.5 1.5 
RH5 12.5 85 15 0 2 
Mean: 40 49 38 7 2 1 

SB12 53 62.5 37.5 58.5 0 4.5 
SG13 39.5 62.5 37.5 0 0 1 
SG9 48 15 73.75 2 0 5 
Mean: 47 47 50 20 0 4 

UBI 37 85 15 0 0 2 
UB14 39.5 37.5 62.5 1.5 2.5 1.5 
UB2 19 62.5 37.5 27.5 0.5 3 
UB3 45.5 62.5 37.5 3 6.5 1.5 
UB5 44 62.5 37.5 30.5 0 1.5 
UG8 17.5 85 15 8.5 0 2.5 
Mean: 34 66 34 12 2 2 
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Table 4-3: Riparian groundwater nitrate+nitrite-N monthly means (± S.E.) for 
subcatchment land-use categories and total monthly rainfall from November 2007 to 
October 2008. Nitrate+nitrite-N values are means from five or six urban, 3 suburban, and 
3 rural sites. Rainfall was determined from a single location monitored by the Louisville 
Metropolitan Sewer District within Goose (suburban/rural) and Beargrass Creek (Urban) 
watersheds. Average rainfall is the mean of both stations. Urban subcatchments contain:::: 
30% impervious surface cover, rural sub catchments contain ::;10% impervious surface 
cover, and suburban subcatchments contain values in between 10 and 30% impervious 
surface cover. 

Nitrate+nitrite-N - mgIL Rainfall 
(SE) (em) 

Suburban/ Avg. 
Month Urban Suburban Rural Urban Rural Rain 

Nov. 0.80 (.29) 0.33 (0.16) 0.35 (0.07) 7.1 8.3 7.7 
Jan. 13.17 (8.51) 0.082 (0.01) 0.23 (0.09) 8.3 8.2 8.25 
March 13.84 (8.34) 0.12 (0.01) 0.14 (0.06) 26.7 27.1 26.9 
April 6.60 (6.53) 0.10 (0.02) 0.087 (0.02) 15.7 13 14.4 
May 6.66 (4.83) 0.049 (0.01) 7.29 (4.71) 15.2 15.6 15.4 
June 14.50 (8.09) 0.068 (0.02) 12.76 (9.35) 7.6 10.3 8.9 
July 0.10 (0.01) 0.068 (0.01) 0.16 (0.07) 14.6 9.3 12 
August 0.10 (0.02) 0.12 (0.05) 4.42 (N/A) 1.4 1.2 1.3 
Sept. 0.13 (0.04) 0.057 (0.01) 13.57 (4.10) 3.4 5.2 4.3 
Oct. 0.15 (0.06) 0.046 (0.003) 8.20 (8.09) 2.1 2.2 2.1 
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Table 4-4: Riparian groundwater dissolved organic carbon (DOC) monthly means (± 
S.E.) for sub catchment land-use categories and total monthly rainfall. DOC values are 
means from five or six urban, three suburban, and three rural sites. Rainfall was 
determined from a single location monitored by the Louisville Metropolitan Sewer 
District within Goose (suburban/rural) and Beargrass Creek (Urban) watersheds. Average 
rainfall is the mean of both stations. Urban subcatchments contain::: 30% impervious 
surface cover, rural subcatchments contain ::::10% impervious surface cover, and suburban 

b h . l·b 10 d30o/t· . f: su catc ments contam va ues m etween an o 1m pervIOus sur ace cover. 
Rainfall 

DOC - rn~/L (SE) {ernl 

Sub/ Avg. 
Month Urban Suburban Rural Urban Rural Rain 

November 6.23 (1.07) 7.31 (1.53) 9.89 (1.39) 7.1 8.3 7.7 
January 8.06 (1.94) 5.48 (0.48) 4.58 (0.21) 8.3 8.2 8.25 
March 4.17 (0.60) 4.58 (1.18) 4.69 (0.85) 26.7 27.1 26.9 
April 5.75 (0.44) 6.74 (0.53) 6.08(1.40) 15.7 13 14.4 
May 4.28 (1.10) 5.27 (0.81) 6.29 (1.38) 15.2 15.6 15.4 
June 8.76 (0.88) 7.43 (0.27) 6.59 (0.83) 7.6 10.3 8.9 
July 6.60(1.12) 5.47 (0.66) 10.51 (6.33) 14.6 9.3 12 
August 5.81 (0.57) 5.54 (0.30) 5.62 (NA) 1.4 1.2 1.3 
September N/A N/A N/A 3.4 5.2 4.3 
October 5.85 (0.66) 5.85 (0.12) 6.92 (0.87) 2.1 2.2 2.1 
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Table 4-5: Relationships between landscape-level soil factors and CO2 and CH4 fluxes in 
riparian areas across an urban-to-ruralland-use gradient. 

Model 

Greenhouse Ind p- p- Adj. 

Gas Season Variables value value r2 Model Equation 

%15 -1 

Spring 
km 0.39 

0.46 -0.03 
Catch. 

area 0.33 

Carbon %15 -1 

dioxide (mg 
Summer 

km 0.002 
0.001 0.72 

Y = 43(%15) - 32(Catch. 

COr Catch. area) + 2449 

C/m2/day) area 0.002 

%15 -1 

Fall 
km 0.003 

0.002 0.65 
Y = 43(%15) - 26(Catch. 

Catch. area) + 1618 

area 0.01 

%15 - SC 0.31 
Spring Catch. 0.37 0.02 

Methane (mg area 0.24 

CH4- Summer %15 - SC - 0.06 0.21 Y = -0.02(% 15) - 0.03 

C/m2/day) %15 - 5C 0.26 
Fall Catch. 0.3 0.06 

area 0.34 

%15 - 1 km = % impervious surface within 1 km of the research sites 
%15 - SC = % impervious surface within the subcatchment in which the site is located. 

Catch. area = cumulative catchment area (ha) within and upstream of the subcatchment in 
which the site is located. 

Ind. p-value = p-values for individual explanatory variables in a mUltiple regression model. 
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Table 4-6: Relationships between plot-level soil factors and C02 and CH4 fluxes in 
riparian areas across an urban-to-ruralland-use gradient. 

Model 
Greenhouse Proximal Ind. p- p- Adj. 

Gas Season variables value value r2 Model Equation 

Winter Soil %OM 0.004 0.58 y = 187(OM) - 438 
Carbon Spring Soil BO 0.08 0.2 Ln(y) = 2(BO) + 6.3 

dioxide (mg 
Soil temp. 0.011 y = 715(temp.) + 

COr Summer 0.024 0.43 
C/m2/day) Soil%OM 0.0496 262(OM) - 13746 

Fall Soil temp. 0.004 0.55 y = 748 (temp.) - 11888 

Spring Soil temp. 0.067 0.28 y = 0.15(temp.) - 2.45 
Methane 
(mg CH4-

Summer Soil % Carbon 0.003 0.54 y = 0.19 (%carbon) - 1.2 

C/m2/day) Fall 
Soil molar C:N 0.001 

0.004 0.75 
y = 0.03(C:N) + 

Soil moisture 0.005 1.9(moisture) - 1.8 

BO = bulk density (g/m3); Soil moisture = g water/g dry soil; Soil temperature = °C 
Ind. P-value = p-values for individual explanatory variables in a multiple regression model. 
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Figure 4-1a-b: Air temperature and soil temperature taken during twice-monthly gas 
sampling visits in urban, suburban, and rural riparian sites in 2008. Soil temperature was 
taken in two locations within each site to five, ten, and fifteen cm depths and averaged to 
obtain a representative soil temperature through the soil column. Air temperature was 
taken between the two soil temperature locations. Points are means of five urban, three 
suburban, and four rural sites with standard error bars. Urban subcatchments contain 2: 
30% impervious surface cover, rural subcatchments contain S 10% impervious surface 
cover, and suburban subcatchments contain values in between 10 and 30% impervious 
surface cover. 

196 



0.600 

... R-lJr:al- ~ 
20 

c i ... x 1 

18 
0 0.500 CI'l 

16 C • Suburban 
"0 
cD -- ~~ - --1-1."'-.1 I ~-I 

... Urban 14 --l.. 0.400 
~ x Rainfall ..... 
~ 

.. " 4 1 I' 12 
~ ~ cD ~ .. , ~ -- 0.300 10 

_. 
~ = l.. :: = ..... -CI'l 8 --0 ~ 

E 0.200 3 
x x 6 --x 

0 
CI'l X 
(,) I- 4 'r: 0.100 Xf ..... x x 
~ .- x 2 -... 
;.. x x 
~ x x x 

0 !.. 0.000 
Q 

3-Jan 22-Feb 12-Apr 1-Jun 21-Jul 9-Sep 29-0ct 

Date 

Figure 4-2 : Gravimetric soil moisture in the upper I5-cm soil horizon in urban, 
suburban, and rural riparian sites in 2008. Points are means of five urban, three suburban, 
and four rural sites with standard error bars. Rainfall was determined from a single 
location monitored by the Louisville Metropolitan Sewer District within Goose and 
Beargrass creek watersheds and represents total ppt. monthly in January and February 
and every two weeks from March to October. Urban subcatchments contain:::: 30% 
impervious surface cover, rural subcatchments contain ~I 0% impervious surface cover, 
and suburban sub catchments contain values in between IO and 30% impervious surface 
cover. 
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Figure 4-3a-b: Nearstream depth to groundwater (water table) in relation to bank height 
in years 2007 (a) and 2008 (b). Depth to groundwater was measured twice a month in 
riparian groundwater wells in urban, suburban, and rural sites from November 2006 to 
October 2007 (a) and from November 2007 to October 2008 (b). Urban sub catchments 
contain ~ 30% impervious surface cover, rural subcatchments contain :::10% impervious 
surface cover, and suburban subcatchments contain values in between 10 and 30% 
impervious surface cover. 
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Figure 4-4: Nearstream depth to groundwater (water table) from November 2007 to 
October 2008. Depth to groundwater was measured once or twice a month in riparian 
groundwater wells in urban, suburban, and rural sites based on sub catchment % 
impervious surface. Points are means of five urban, three suburban, and three rural sites 
with standard error bars. Rainfall was determined from a single location monitored by the 
Louisville Metropolitan Sewer District within Goose and Beargrass creek watersheds and 
represents total ppt. monthly in January and February and every two weeks from March 
to October. Urban subcatchments contain ~ 30% impervious surface cover, rural 
sub catchments contain :::10% impervious surface cover, and suburban subcatchments 
contain values in between 10 and 30% impervious surface cover. Repeated-measures 
ANOV A revealed a significant time effect within groups (p = <0.0001), but no 
significant between-group effects were observed (p = 0.44). 
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Figure 4-5: Mean nitrate+nitrite-N nearstream riparian groundwater concentrations in 
urban, suburban, and rural subcatchments. Nitrate+nitrite-N values are means from five 
or six urban, 3 suburban, and 3 rural sites. Rainfall was determined from a single location 
monitored by the Louisville Metropolitan Sewer District within Goose and Beargrass 
creek watersheds and represents total ppt. monthly in January and February and every 
two weeks from March to October. Urban sub catchments contain ~ 30% impervious 
surface cover, rural subcatchments contain :::10% impervious surface cover, and suburban 
subcatchments contain values in between 10 and 30% impervious surface cover. 
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Figure 4-6: Mean C±SE) riparian CO2 flux between January and October 2008 averaged 
for sites in rural, suburban, and urban subcatchments. Points are means of five or six 
urban, three suburban, and four rural values. Urban subcatchments contain::: 30% 
impervious surface cover, rural subcatchments contain ~10% impervious surface cover, 
and suburban subcatchments contain values in between 10 and 30% impervious surface 
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Figure 4-7: Principal components ailalysis (PCA) of sites and monthly CO2 fluxes. Sites 
are arranged according to mean annual C02 flux along axis I, with increasing CO2 
emissions from right to left. Axis 2 separation among sites was primarily explained by 
soil bulk density, which increases from bottom to top of the graph. Vectors represent site 
and soil properties that have a coefficient of determination ;::0.3 with at least one axis. 
Visible site and soil variables are BD = bulk density, %IS = percent impervious surface at 
two site radius buffers - 500-meters (500m) and I-kilometer (Han) - and within the 
subcatchment (SC) in which the site is located. 
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Figure 4-8: Relationship between riparian winter C02 flux and % soil organic matter 
(OM). Carbon dioxide fluxes and % soil OM were averaged for each site for cold weather 
months (January, February, and March) and entered into a linear regression model (p = 
0.004, adj. r2 = 0.58). The site marked with an 'T' was determined to be an outlier as 
described in Methods (this chapter). 
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Figure 4-9: Relationship between riparian spring CO2 flux and soil bulk density (BD). 
Carbon dioxide flux was averaged for each site for spring months (April and May). BD 
was determined from October 2008 soil samples. BD in this range exhibited a positive 
relationship with C02 flux (p=0.081; r2 = 0.20). 
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Figure 4-10: Increasing mean fall C02 flux rates with increasing mean soil temperature 
among riparian sites. Each point is the average of three site measurements for each 
variable taken during September and October 2008. The adjusted r2 was 0.56 and the p­
value was 0.004. 
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Figure 4-11: Mean (± SE) riparian CH4 fluxes from January to October 2008 averaged 
for sites in rural, suburban, and urban subcatchments. Points are means of five or six 
urban, three suburban, and four rural values. Values above zero indicate net CH4 efflux 
from the soil. Values below zero indicate net CH4 uptake. Urban subcatchments contain 2: 
30% impervious surface cover, rural subcatchments contain ::::10% impervious surface 
cover, and suburban subcatchments contain values in between 10 and 30% impervious 
surface cover. 
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from January to October 2008. Sites are arranged according to monthly average Cf4 flux 
along axis 1, with increasing CH4 uptake from left to right. Vectors represent site and soil 
properties that have a coefficient of determination ~0.3 with at least one axis. Soil 
variables are TEC = total exchange capacity, BD = bulk density, catbon = % carbon, C:N 
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determination. 
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Figure 4-13a-b: Mean monthly methane flux rates at each site from 2008 in relation to 
PCA row 1 scores from Fig. 4-12 for the months October (a) and September (b). Site CH4 

fluxes occur along a linear gradient from left to right on x-axis from low methane uptake 
to high methane uptake in September and October. The linear pattern began to dissipate 
in August (r2 = 0.55) and the gradient becomes non-linear in July as well as in months 
prior through January (not shown). 
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Figure 4-14: Changes in mean summer CH4 flux in relation to sub catchment %IS. Site 
methane fluxes and soil moisture values were averaged over June, July, and August 2008. 
Soil uptake of CH4 increased with increasing %IS (p = 0.06, adj. r2 = 0.21, y = 0.02x -
0.03). Values below zero indicate mean CH4 uptake of by soils. 
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Figure 4-15: Changes in mean spring CH4 flux with increasing mean soil temperature 
among sites averaged over April and May 2008 (p = 0.067; adj. r2 = 0.28; y = 0.15x-
2.45). Methane fluxes and soil temperature were taken on two separate dates each month. 
Negative fluxes indicate soil uptake from the atmosphere. Two sites (UB 1 & RG7) were 
removed from this analysis because they exhibited high levels of net CH4 efflux. 
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Figure 4-16: Summer mean net CH4 uptake (values less than zero) increases (values 
from left to right) with decreasing soil % carbon. Five flux measurements, taken in June, 
July, and August, 2008, were averaged to obtain mean flux. Soil % carbon was 
determined for each site from a single sample taken in October 2008. The p-value was 
0.003 and the adjusted r2 was 0.5 (y = 0.19x - 1.2). 
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Figure 4-17: Variation in site CH4 flux with soil moisture. Site methane fluxes and soil 
moisture values were averaged over June, July, and August 2008. Methane fluxes and 
soil moisture were measured twice monthly except August, when one sample was 
collected. 
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Figure 4-18a-b: Relationships between mean fall 2008 CH4 flux and soil molar C:N 
ratios (a) and gravimetric soil moisture (b). Methane fluxes from September and October 
were averaged for each site. Soil C:N ratios were determined from soil samples collected 
in October. Gravimetric soil moisture was determined to a depth of I5-cm adjacent to 
each gas sampling chamber and averaged for the site each time samples were collected. A 
multiple regression was used to assess relationships of these two variables with CH4 flux. 
The overall adjusted coefficient of determination for the model was 0.75, with a p-value 
= 0.0004. Individual p-values for each variable and the equation can be found in Table 4-
6. 
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Figure 4-19: Nitrous oxide flux from static chambers along riparian sites in three 
watersheds spanning an urban-to-rural gradient. Sites were ordered from low to high N20 
flux from left to right. Site names reflect the urban-to-rural gradient and the watershed in 
which they are located. The first letter in the site name reflects the urban-to-rural 
gradient, where R=rural, S=suburban, and U=urban based on impervious surface at the 
subcatchment scale.The second letter reflects the watershed in which the site is located, 
where B=Beargrass, G=Goose, and H=South Fork Harrods creek watershed. Urban 
subcatchments contain:::: 30% impervious surface cover, rural subcatchments contain 
:::10% impervious surface cover, and suburban subcatchments contain values in between 
10 and 30% impervious surface cover. 
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CHAPTER 5: CONCLUSIONS 

Woody plant and groundcover (herbs and woody vines) assemblages in riparian 

areas in Metro Louisville were both affected by land use (urban, suburban, rural) 

measured using degree of impervious surface cover at catchment and smaller scales. 

Urban riparian plant assemblages were dominated by exotic species more so than those 

alongside rural streams where forests were a more dominant land-cover type. The exotic, 

invasive shrub L. maackii was the most prevalent woody species, and the most abundant 

species in urban woody plant communities. E. fortunei, an exotic woody vine, dominated 

the herb and woody vine plant communities in urban riparian areas. Not surprisingly, 

species densities of L. maackii and % cover of E.fortunei were highly correlated (r2 = 

0.66). Conversely, native species were more likely found in riparian assemblages 

surrounded by forest cover at the catchment scale. The most common native woody 

species in forested riparian areas were A. triloba (understory tree) and L. benzoin (shrub). 

Wetland species (woody and herbaceous groundcover species) also demonstrated a 

greater affinity for forested riparian sites than for urban ones. As these species are more 

commonly associated with wetter environmental conditions, a sustained moisture 

gradient is implied along this urban-to-rural gradient of riparian sites, with urban being 

drier and rural sites being lower. This pattern of drier soils is expected and was found in 

2008 when soils in urban sites were found to be drier in summer and fall than in suburban 

and rural sites. 

However, surprisingly, given these wetland species associations with rural site 
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groupings, streambank height adjacent to the sites displayed no obvious associations with 

site assemblage composition even though the highest streambanks (and presumably less 

flooded and drier soils) were found in urban areas. This demonstrates that other factors, 

including composition of the regional species pool and arrival at sites, and human 

riparian management and other anthropogenic factors also affect riparian plant 

composition. Variation in species diversity indices with land use was greater for 

groundcover herbs and woody vines as opposed to woody tree and shrub species. I found 

that riparian groundcover species diversity decreased with increasing percent impervious 

surface coverage within a I-km site radius. Groundcover species diversity also decreased 

with increasing lateral distance from the stream, and increased with increasing upstream 

catchment area in suburban riparian zones. The presence of exotic invasive species was 

also found to contributesto the reduction in plant species diversity for the groundcover 

community in more urban sites. 

Since soil water levels differed among urban, suburban, and rural riparian zones, I 

expected soil gas fluxes of three important greenhouse gases (C02, CH4 and N20) to 

differ with land use as well. Carbon dioxide (C02) flux rates were related to proportion of 

impervious surface within a I-km proximity, but the strength of this relationship varied 

by season. Carbon dioxide flux rates increased with increasing soil temperatures across 

all sites (Fig. 4-1 b & 4-6), but site differences in soil temperatures played the greatest 

role in explaining differences in CO2 release during the hottest months and into fall, 

which is also when the effects of land-use manifested itself more clearly. Greater 

proportions of impervious surface within a l-km radius and higher soil temperatures 

resulted in greater C02 release from the soil (Tables 4-5 & 4-6). 
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Methane and nitrous oxide flux patterns were more complex to explain, since net 

flux of each is determined by both aerobic and anaerobic processes. Differences in 

methane flux among sites in relation to their soil and site differences were more obvious 

in summer and fall. Fall net methane uptake rates were negatively correlated with C:N 

ratios (Fig. 4-18), which may be attributable to greater methane-oxidizing nitrifier 

activity (Jones and Morita 1983, Bedard and Knowles 1989). Soil moisture levels also 

affect microbial activity by affecting the oxygenation levels of soil pores. Across these 

riparian sites, higher soil moisture values (> ~O.35-g soil water/g dry soil) were correlated 

with a shift from net methanotrophy (net methane uptake by soils) to net methanogenesis 

(net methane release from soil), because anaerobic, wet soils likely increased methanogen 

activity. Methane uptake, however, did not seem to be affected in a linear fashion by the 

range of soil moisture levels below ~O.35-g soil water/g dry soil (Fig. 4-17 & 4-18b). 

Nitrous oxide efflux rates showed a strong seasonal, and variable, response between hot, 

dry August and cooler October (Fig. 4-19). No measured environmental site differences 

could explain the N20 flux variation observed among sites. However, release ofN20 is 

the product or by-product of two different soil processes: anaerobic denitrification and 

aerobic nitrification. The variable response ofN20 release from the soil is likely due to 

the synergism between these two processes. 

The greenhouse gas response in urban, suburban, and rural riparian zones is 

varable (Fig. 4-6, 4-11, & 4-19). While urban riparian soils exhibited some of the highest 

CO2 fluxes from the soil during summer, some of that debt was paid back by way of net 

CH4 uptake. Conversely, rural riparian soils exhibited lower C02 flux rates; however, net 

methane emissions into the atmosphere occurred throughout spring and early summer. 
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Carbon dioxide flux from suburban riparian soils was also relatively lower during 

summer, but forested suburban riparian zones were the least wide among the three land­

use types, effectively reducing the carbon-savings. These findings complicate the 

determination of greenhouse gas budgets; however, considerations based on land-use are 

essential for accurate determination of climate alterations and formulating the appropriate 

response. 
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Appendix Table 1: Tree species within 41 riparian sites in Jefferson and Oldham 

counties in Kentucky. Site names refer to the watershed in which the site was located, 

where B = Middle Fork Beargrass, G = Goose, and H = South Fork Harrods Creek 

watersheds. Relative importance values (IV) were calculated from relative density and 

basal area by land cover category. Land use categories for each site were determined by 

the proportion of impervious surface (IS) within the subcatchment in which the site was 

located. Urban ::::30% IS, Rural :s 10% IS, and Suburban is between 10 and 30% IS. 

Density Basal 
Land use (stems/ area 

Site category Tree Species Names ha) (m2/ha) IV 
G2 Rural Acer saccharum Marsh. 267 18.1 86 
G2 Rural Fraxinus americana L. 67 0.0 9 
G2 Rural Maclura pomifera (Raf.) Schneid. 400 18.4 105 
G7 Rural Acer negundo L. 200 1.1 200 
HI Rural Acer negundo L. 200 10.7 48 
HI Rural Asimina triloba (L.) Dunal 100 0.2 13 
HI Rural Cercis canadensis L. 200 1.5 28 
HI Rural Juglans nigra L. 200 34.6 98 
HI Rural Ulmus rubra Muhl. 100 0.3 13 
HII Rural Acer negundo L. 100 4.9 30 
HII Rural Fraxinus americana L. 600 9.1 108 
HII Rural Platanus occidentalis L. 100 13.5 62 
H12 Rural Acer negundo L. 50 0.1 26 
HI2 Rural Fraxinus americana L. 50 0.4 31 
H12 Rural Juglans nigra L. 50 5.4 115 
H12 Rural Prunus serotina Ehrh. 50 0.2 28 
H14 Rural Acer negundo L. 350 3.4 111 
HI4 Rural Juglans nigra L. 50 10.9 89 
H5 Rural Aesculus glabra Willd. 100 1.0 44 
H5 Rural Asimina triloba (L.) Dunal 100 0.1 23 
H5 Rural Celtis occidentalis L. 100 0.3 27 
H5 Rural Maclura pomifera (Raf.) Schneid. 200 2.7 106 
H6 Rural Acer saccharum Marsh. 277 2.2 161 
H6 Rural Corn us florida L. 139 0.1 39 
H7 Rural Asimina triloba (L.) Dunal 1211 1.6 153 
H7 Rural Carpinus caroliniana Walter 173 0.4 29 
H7 Rural Cornus florida L. 173 0.1 18 
H8 Rural Acer negundo L. 50 1.3 13 
H8 Rural Acer saccharum Marsh. 50 1.5 14 

229 



Appendix Table 1 (cont.) 
H8 Rural Aesculus glabra Willd. 300 0.6 39 
H8 Rural Celtis occidentalis L. 100 1.8 22 
H8 Rural Juglans nigra L. 50 8.9 57 
H8 Rural Quercus alba L. 50 2.8 22 
H8 Rural Ulmus rubra Muhl. 250 0.7 33 
H9 Rural Juniperus virginiana L. 1000 38.6 200 
Bll Suburban Celtis occidentalis L. 358 0.2 63 
Bl1 Suburban Staphylea trifolia L. 717 0.5 137 
B12 Suburban Acer negundo L. 400 8.4 88 
B12 Suburban TWa americana L. 500 10.7 112 
GI Suburban Celtis occidentalis L. 100 0.1 22 
Gl Suburban Juglans nigra L. 100 1.7 89 
Gl Suburban Platanus occidentalis L. 100 0.4 36 
G1 Suburban Ulmus rubra Muhl. 200 0.3 52 
GlO Suburban Acer negundo L. 400 23.2 200 
GIl Suburban Acer negundo L. 600 2.9 105 
GIl Suburban Celtis occidentalis L. 100 0.9 24 
GIl Suburban Fraxinus americana L. 300 1.9 60 
GIl Suburban Juglans nigra L. 100 0.1 10 
G12 Suburban Acer saccharum Marsh. 300 0.6 53 
G12 Suburban Fraxinus americana L. 300 19.3 147 
G13 Suburban Acer negundo L. 100 5.6 130 
GI3 Suburban Ulmus rubra Muhl. 100 1.4 70 
G3 Suburban Acer saccharinum L. 400 12.0 54 
G3 Suburban Morus alba L. 300 8.0 38 
G3 Suburban Ulmus rubra Muhl. 1000 19.0 108 
G6 Suburban Acer negundo L. 100 2.8 81 
G6 Suburban Aesculus glabra Willd. 100 0.2 25 
G6 Suburban Asimina triloba (L.) Dunal 200 0.7 56 
G6 Suburban Ulmus rubra Muhl. 100 0.8 38 
G8 Suburban Acer negundo L. 145 0.8 23 
G8 Suburban Acer saccharum Marsh. 291 5.0 57 
G9 Suburban Acer negundo L. 1000 9.1 200 
HIO Suburban Acer saccharum Marsh. 300 6.9 111 
H10 Suburban Fraxinus americana L. 100 6.6 69 
HI0 Suburban Ulmus rubra Muhl. 100 0.1 21 
H2 Suburban Acer negundo L. 200 13.0 81 
H2 Suburban Acer saccharum Marsh. 400 8.8 84 
H2 Suburban Asimina triloba (L.) Dunal 100 0.2 12 
H2 Suburban Celtis occidentalis L. 100 0.1 12 
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Appendix Table 1 (cont.) 
H2 Suburban TWa americana L. 100 0.1 11 
H4 Suburban Celtis occidentalis L. 263 0.2 24 
H4 Suburban Cornus alternifolia L. f. 526 2.8 114 
H4 Suburban Fraxinus pennsylvanica Marsh. 263 0.2 26 
H4 Suburban Ulmus rubra Muhl. 263 0.6 35 
B1 Urban Acer negundo L. 1000 40.6 190 
B1 Urban Morus rubra L. 50 0.1 5 
B1 Urban Quercus rubra L. 50 0.1 5 
B13 Urban Morus alba L. 654 11.8 200 
B14 Urban Acer negundo L. 400 8.7 58 
B14 Urban Aesculus glabra Willd. 100 6.7 21 
B14 Urban Fraxinus americana L. 200 10.2 38 
B14 Urban Platanus occidentalis L. 100 40.7 72 
B14 Urban Ulmus rubra Muhl. 100 0.2 11 
B2 Urban Celtis occidentalis L. 500 32.6 116 
B2 Urban Platanus occidentalis L. 100 67.9 84 
B3 Urban Acer saccharum Marsh. 400 0.7 33 

B3 Urban 
Carya cordiformis (Wangenh.) K. 

300 17.5 72 Koch 
B3 Urban Celtis occidentalis L. 500 10.8 68 
B3 Urban Juglans nigra L. 100 7.1 27 
B4 Urban Acer negundo L. 700 5.0 107 
B4 Urban Acer saccharum Marsh. 100 8.0 58 
B4 Urban Morus rubra L. 100 4.0 34 
B5 Urban Acer negundo L. 200 9.0 200 
B6 Urban Fraxinus pennsylvanica Marsh. 515 1.5 19 
B6 Urban Morus alba L. 1804 20.3 92 
B6 Urban Platanus occidentalis L. 258 19.6 41 
B6 Urban Prunus cerasifera Ehrh. 258 3.1 13 
B6 Urban Ulmus rubra Muhl. 258 15.9 35 
B7 Urban Betula populifolia Marsh. 33 0.0 6 
B7 Urban Fraxinus americana L. 167 1.3 55 
B7 Urban Juglans nigra L. 133 3.0 83 
B7 Urban Maclura pomifera (Raf.) Schneid. 67 0.5 22 
B7 Urban Thuja occidentalis L. 33 0.0 6 
B7 Urban Ulmus rubra Muhl. 133 0.2 27 
B8 Urban Juglans nigra L. 200 11.5 200 
B9 Urban Picea pungens Engelm. 100 0.3 200 
G8 Urban Celtis occidentalis L. 291 24.0 120 
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Appendix Table 2: Wetland indicator status and species provenance codes used in this 
study and definitions (u. S. Department of Agriculture and Natural Resources 
Conservation Service 2009, 2010). 
*Est. prob. - estimated probability. 

Code Term Meaning 

Occurs almost always (est. prob*. 99%) 
OBL Obligate under natural conditions in wetlands 

Facultative Usually occurs in wetlands (est. prob. 
FACW wetland 67%-99%) 

Equally likely to occur in wetlands or 
FAC Facultative non-wetlands (est. prob. 34%-66%) 

Facultative Usually occurs in non-wetlands (est. 
FACU upland prob.67%-99%) 

Occurs in wetlands in another region, 
but occurs almost always (est. prob. 
99%) in non-wetlands under natural 

UPL Upland conditions 

Insufficient information available to 
NI No indicator determine an indicator status 

Plants that have developed over 
hundreds of years in an area - pre-

N Native European settlement 
Plants that have been introduced with 
human assistance into an area in which 
it was not found pre-European-

E Exotic settlement 

Exotic species that do not need human 
assistance to reproduce, thereby 
maintaining themselves over an 

Z Naturalized unspecified period of time 

232 



Appendix Table 3: National Land Cover Database (U. S. Department of the Interior and 
U. S. Geological Survey 2008) land-cover classification categories, definitions, and 
examples. Table reproduced from U. S. Dept. ofInterior and U.S. Geological Survey 
(2008) 

Classification Definition 
Includes areas with a mixture of some constructed 

Developed, Open Space 
structures, but mostly vegetation in the form of lawn 
grasses. Impervious surfaces account for less than 20% 
of total cover (e. g. park, golf course). 

Includes areas with a mixture of constructed structures 
Developed, Low Intensity and vegetation. Impervious surfaces account for 20-

49% of total cover (e. g. single family housing). 

Developed, Medium Includes areas with a mixture of constructed structures 

Intensity and vegetation. Impervious surfaces account for 50-
79% of the total cover (e.g. single family housing) 
Includes highly developed areas where people reside or 

Developed, High Intensity 
work in high numbers. Impervious surfaces account for 
80-100 percent of the total cover (Apartments, 
Commercial/Industrial). 

Areas dominated by trees generally greater than 5 

Deciduous Forest meters tall, and greater than 20% of total vegetation 
cover. More than 75% of the tree species shed foliage 
simultaneously in response to seasonal change. 

Areas dominated by trees generally greater than 5 

Mixed Forest meters tall, and greater than 20% of total vegetation 
cover. Neither deciduous nor evergreen species are 
greater than 75% of total tree cover. 

Areas dominated by graminoid or herbaceous 
vegetation, generally greater than 80% of total 

Herbaceous vegetation. These areas are not subject to intensive 
management such as tilling, but can be utilized for 
grazing. 

Areas of grasses, legumes, or grass-legume mixtures 

Pasture 
planted for livestock grazing or the production of seed 
or hay crops, typically on a perennial cycle. Pasture/hay 
vegetation accounts for greater than 20% of total 
vegetation. 
Areas used for the production of annual and perennial 

Cultivated Crops woody crops. Crop vegetation accounts for greater than 
20% of total vegetation (e. g. com, orchard) 

Wetlands Areas where soil or substrate is periodically saturated 
with or covered with water. 
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Appendix Table 4: Tree, sapling, tree seedling, and shrub species within 41 riparian sites 
in Jefferson and Oldham counties in Kentucky. Sites were located in Middle Fork 

Beargrass, Goose, and South Fork Harrods Creek watersheds. Species codes and wetland 
indicator status were obtained from USDA PLANTS Database (2010). 

Species sampled across all sites (n=41) 
Wetland 
Indicator 

Trees Code Status 

Acer negundo L. ACNE2 FAC 
Acer saccharinum L. ACSA2 FACW 
Acer saccharum Marsh. ACSA3 FACU 
Aesculus glabra Willd. AEGL FACU 
Asimina tri/oba (L.) Dunal ASTR FACU 

Betula populifolia Marsh. BEPO FAC 

Carpinus caroliniana Walter CACA18 FAC 
Carya cordiformis (Wangenh.) K. Koch CAC015 FACU 
Celtis occidentalis L. CEOC FACU 
Cercis canadensis L. CECA4 FACU 
Cornus alternifolia L. f. COAL2 NI 
Corn us florida L. COFL2 FACU 
Fraxinus americana L. FRAM2 FACU 

Fraxinus pennsylvanica Marsh. FRPE FACW 
Juglans nigra L. JUNI FACU 
Juniperus virginiana L. JUVI FACU 
Maclura pomifera (Raf.) Schneid. MAPO UPL 

Morus alba L. * MOAL UPL 
Morus rubra L. MORU2 FACU 

Picea pungens Engelm. PIPU NI 

Platanus occidentalis L. PLOC FACW 

Prunus cerasifera Ehrh. ** PRCE2 NI 

Prunus serotina Ehrh. PRSE2 FACU 
Quercus alba L. QUAL FACU 

Quercus rubra L. QURU FACU 
Staphylea trifolia L. STTR FAC 
Thuja occidentalis L. THOC2 FACW 
TWa americana L. TIAM FACU 

Ulmus rubra Muhl. ULRU FAC 
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Appendix Table 
4 (cont.) 

Wetland 
Indicator 

Saplings Code Status 

Acer negundo L. ACNE2 FAC 

Acer saccharum Marsh. ACSA3 FACU 

Aesculus glabra Willd. AEGL FACU 

Asimina triloba (L.) Dunal ASTR FACU 

Carya cordiformis (Wangenh.) K. Koch CAC015 FACU 

Celtis occidentalis L. CEOC FACU 
Cercis canadensis L. CECA4 FACU 
Cornus sericea L. ssp. sericea COSES FACW 
Cornus sp. CORNU 
Fraxinus americana L. FRAM2 FACU 
Fraxinus pennsylvanica Marsh. FRPE FACW 
Fraxinus quadrangulata Michx. FRQU NI 
Juglans nigra L. JUNI FACU 
Madura pomifera (Raf.) Schneid. MAPO UPL 
Morus rubra L. MORU2 FACU 
Prunus sera tina Ehrh. PRSE2 FACU 
Quercus rubra L. QURU FACU 
Robinia pseudo acacia L. ROPS FAC 
Staphylea trifolia L. STTR FAC 
Thuja occidentalis THOC2 FACW 
TWa americana L. TIAM FACU 
Ulmus rubra Muhl. ULRU FAC 

Wetland 
Indicator 

Tree seedlings Code Status 

Acer negundo L. ACNE2 FAC 
Acer saccharum Marsh. ACSA3 FACU 
Acer sp. ACER 
Aesculus glabra Willd. AEGL FACU 
Asimina triloba (L.) Dunal ASTR FACU 
Betula alleghaniensis Britt. BEAL2 FAC 
Carya cordiformis (Wangenh.) K. Koch CAC015 FACU 
Cerds canadensis L. CECA4 FACU 
Celtis occidentalis L. CEOC FACU 
Cornus drummondii c.A. Mey. CODR FAC 
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Appendix Table 
4 (cont.) 

Fraxinus americana L. FRAM FACU 

Fraxinus pennsylvanica Marsh. FRPE FACW 

Fraxinus quadrangulata Michx. FRQU NI 

Fraxinus sp. FRAXI 

Gleditsia tricanthos L. GLTR FAC 

Juglans cinerea L. JUCI FACU 

Liriodendron tulipifera L. LITU FACU 

Morus rubra L. MORU2 FACU 

Platanus occidentalis L. PLOC FACW 

Prunus sera tina Ehrh. PRSE2 FACU 

Quercus rubra L. QURU FACU 

Quercus shumardii Buckl. QUSH FAC 

Robinia pseudo acacia L. ROPS FAC 

Tilia americana L. TIAM FACU 

Ulmus rubra Muhl. ULRU FAC 

Wetland 
Indicator 

Shrubs Code Status 

Amelanchier arborea (Michx. f.) Fern. AMAR3 FAC 

Cornus racemosa Lam. CORA6 NI 

Cornus sp. CORNU 

Euonymus alatus (Thunb.) Sieb. * EUAL13 NI 

Hibiscus syriacus L. ** HISY NI 

Hydrangea arborescens L. HYAR FACU 

Hypericum prolificum L. HYPR FACU 

Lagerstroemia indica L. ** LAIN NI 

Ligustrum sinense Lour. * LISI FACU 

Lindera benzoin (L.) Blume LIBE3 FACW 

Lonicera maackii (Rupr.) Herder * LOMA6 NI 

Rosa multiflora Thunb. ex MUff. * ROMU FACU 
Rosa palustris Marsh. ROPA OBL 

Rubus spp. RUBUS 

Symphoricarpos orbiculatus Moench SYOR UPL 

Viburnum acerifolium L. VIAC UPL 
Non-native species indicated with a (*) if naturalized, and a (**) if non-
naturalized. Naturalized, exotic species successfully reproduce and maintain 
viable populations without human intervention. 

Plants were identified to genus group if species could not be determined. 
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Appendix Figure 5: Woody species abundance and diversity plotted against % 

impervious surface at the subcatchment (SC) scale and within I-km of the site as well as 

streambank height for all sites along first order streams. 

a 
S • 

• 

• •• • 
0 
co • 

~ • • 
'" • c • • c 
<l) • • > 
'" 0 • 
'" • '" 

<D 
;:; • 
'" • 0-
w 
>- • u p= 0.9 0 
0 a 
~ ". • r= 0.03 

0 
N 

• • 

SO 100 150 200 

Bank height (em) 

0 

S • 
• 

• • • • • 
0 
00 • 

~ • • 
<lJ • C •• C • 
<lJ • • > 
<lJ 

0 • 
'" • 
'" 

<D 

'-' • Q) • Q. 

'" >- • "0 
0 
0 0 
~ "" • 

p= 0.9 
0 r = 0.03 N • • 

0 10 20 30 40 50 

% ImpervlOUS surface· 1 km 

237 



Appendix Figure 5 (continued) 
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Appendix Figure 5 (continued) 
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Appendix Figure 5 (continued) 
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Appendix Figure 5 (continued) 
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Appendix Figure 5 (continued) 
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Appendix Figure 6: Total groundcover, herb, and woody vine abundance (% cover), as 
well as proportion exotic herb and woody vine species richness and abundance, vs. % 
impervious surface at the sub catchment scale . 
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Appendix Figure 6 (continued) 
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Appendix Figure 6 (continued) 
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Appendix Figure 6 (continued) 
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Appendix Figure 6 (continued) 
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Appendix Figure 7: Groundcover (herb and woody vine) species evenness vs. bank 
height and groundcover abundances (% cover) vs. % impervious surface at the 
subcatchment scale within riparian zones along first order streams . 
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Appendix Figure 7 (cont.) 
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Appendix Table 8: Sapling species within 41 riparian sites in Jefferson and Oldham 
counties in Kentucky. Site names refer to the watershed in which the site was located, 
where B = Middle Fork Beargrass, G = Goose, and H = South Fork Harrods Creek 

watersheds. Relative importance values (IV) were calculated from relative density and 

basal area by land cover category. Land use categories for each site were determined by 

the proportion of impervious surface (IS) within the subcatchment in which the site was 

located. Urban ::::30% IS, Rural :s 10% IS, and Suburban is between 10 and 30% IS. 

Land- Density 
cover (stems/ 

Site category Sapling Species Names Freq. ha) IV 
G2 Rural Celtis occidentalis L. 0.33 222 133 
G2 Rural Fraxinus americana L. 0.17 111 67 
G4 Rural Acer negundo L. 0.33 208 38 
G4 Rural Celtis occidentalis L. 0.67 625 88 
G4 Rural Robinia pseudoacacia L. 0.33 833 75 
HI Rural Asimina triloba (L.) Dunal 0.33 333 117 
HI Rural Ulmus rubra Muhl. 0.33 167 83 
Hll Rural Acer negundo L. 0.33 333 117 
Hll Rural Ulmus rubra Muhl. 0.33 167 83 
H12 Rural Acer negundo L. 0.17 83 100 
H12 Rural Juglans nigra L. 0.17 83 100 
H14 Rural Asimina triloba (L.) Dunal 0.33 500 200 
H5 Rural Aesculus glabra Willd. 0.17 83 50 
H5 Rural Asimina triloba (L.) Dunal 0.50 250 150 
H6 Rural Asimina triloba (L.) Dunal 0.33 476 117 
H6 Rural Fraxinus americana L. 0.33 238 83 
H7 Rural Asimina triloba (L.) Dunal l.00 2368 200 
H8 Rural Aesculus glabra Willd. 0.33 500 125 
H8 Rural Asimina triloba (L.) Dunal 0.17 83 38 
H8 Rural Ulmus rubra Muhl. 0.17 83 38 
Bll Suburban Carya cordiformis (Wangenh.) K. Koch 0.33 556 29 
Bll Suburban Cornus sp. 0.33 1667 38 
Bll Suburban Fraxinus americana L. 0.33 556 29 
BII Suburban Staphylea trifolia L. 0.33 10000 103 
GlO Suburban Celtis occidentalis L. 0.33 167 200 
GIl Suburban Acer negundo L. l.00 2333 148 
GIl Suburban Prunus serotina Ehrh. 0.33 167 26 
G12 Suburban Acer saccharum Marsh. l.00 1167 130 
G12 Suburban Celtis occidentalis L. 0.33 333 40 
G12 Suburban Fraxinus americana L. 0.33 167 30 
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Appendix Table 8 (cont.) 
G3 Suburban Fraxinus americana L. 0.33 167 83 
G3 Suburban Ulmus rubra Muhl. 0.33 333 117 
G6 Suburban Aesculus glabra Willd. 0.33 167 30 
G6 Suburban Asimina triloba (L.) Dunal 1.00 3167 170 
HI0 Suburban Carya cordiformis (Wangenh.) K. Koch 0.33 175 18 
HI0 Suburban Celtis occidentalis L. 0.33 175 18 
HlO Suburban Cercis canadensis L. 0.33 175 18 
HI0 Suburban Fraxinus quadrangulata Michx. 0.67 351 35 
HlO Suburban Quercus rubra L. 0.33 175 18 
HI0 Suburban Tilia americana L. 0.33 175 18 
HI0 Suburban Ulmus rubra Muhl. 1.00 1053 76 
H2 Suburban Acer negundo L. 0.33 167 55 
H2 Suburban Asimina triloba (L.) Dunal 1.00 3000 145 
H4 Suburban Asimina triloba (L.) Dunal 0.67 2917 108 
H4 Suburban Fraxinus pennsylvanica Marsh. 0.67 2083 92 
Bl Urban Acer negundo L. 0.50 833 143 
Bl Urban Morus rubra L. 0.33 167 57 
B13 Urban Acer negundo L. 0.33 278 200 
B14 Urban Celtis occidentalis L. 0.33 667 117 
B14 Urban Fraxinus americana L. 0.33 333 83 
B2 Urban Celtis occidentalis L. 1.00 1500 200 
B3 Urban Acer saccharum Marsh. 0.67 1000 53 
B3 Urban Carya cordiformis (Wangenh.) K. Koch 0.33 167 20 
B3 Urban Celtis occidentalis L. 1.00 4000 127 
B6 Urban Fraxinus quadrangulata Michx. 0.33 417 200 
B7 Urban Acer negundo L. 0.11 56 22 
B7 Urban Celtis occidentalis L. 0.11 56 22 
B7 Urban Cornus sericea L. ssp. sericea 0.11 222 45 
B7 Urban Fraxinus pennsylvanica Marsh. 0.22 278 67 
B7 Urban Madura pomifera (Raf.) Schneid. 0.11 56 22 
B7 Urban Thuja occidentalis 0.11 56 22 
B8 Urban Morus rubra L. 0.33 167 200 
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Appendix Table 9: Shrub species within 41 riparian sites in Jefferson and Oldham 

counties in Kentucky. Site names refer to the watershed in which the site was located, 

where B = Middle Fork Beargrass, G = Goose, and H = South Fork Harrods Creek 

watersheds. Relative importance values (IV) were calculated from relative density and 

basal area by land cover category. Land use categories for each site were determined by 

the proportion of impervious surface (IS) within the sub catchment in which the site was 

located. Urban :::::30% IS, Rural :s 10% IS, and Suburban is between 10 and 30% IS. 

Land Density 
use (stems/ 

Site category Shrub Species Names Freq. ha) IV 

G2 Rural Euonymus alatus (Thunb.) Sieb. 0.67 444 36 
G2 Rural Ligustrum sinense Lour. 0.67 2667 53 
G2 Rural Lonicera maackii (Rupr.) Herder 0.67 7778 94 
G4 Rural Lonicera maackii (Rupr.) Herder 1.00 6875 200 
G7 Rural Hydrangea arborescens L. 0.17 1667 45 
G7 Rural Lindera benzoin (L.) Blume 0.67 5000 155 
HI Rural Lindera benzoin (L.) Blume 1.00 7667 129 
HI Rural Lonicera maackii (Rupr.) Herder 0.33 1167 29 
Hll Rural Ligustrum sinense Lour. 1.00 16333 174 
Hll Rural Lindera benzoin (L.) Blume 0.33 167 26 
H12 Rural Cornus racemosa Lam. 0.33 583 17 
H12 Rural Lonicera maackii (Rupr.) Herder 0.67 1167 34 
H12 Rural Rubus spp. 0.42 8333 72 
H12 Rural Symphoricarpos orbiculatus Moench 0.33 3333 35 
Hl2 Rural Viburnum acerifolium L. 0.08 833 9 
H13 Rural Symphoricarpos orbiculatus Moench 1.00 60000 200 
H14 Rural Lindera benzoin (L.) Blume 0.33 667 200 
H3 Rural Symphoricarpos orbiculatus Moench 0.33 167 200 
H5 Rural Hydrangea arborescens L. 0.08 833 13 
H5 Rural Ligustrum sinense Lour. 0.08 1667 22 
H5 Rural Lindera benzoin (L.) Blume 1.00 2167 81 
H5 Rural Lonicera maackii (Rupr.) Herder 0.25 1667 32 
H6 Rural Lindera benzoin (L.) Blume 1.00 4286 200 
H7 Rural Lindera benzoin (L.) Blume 0.33 263 200 
H8 Rural Ligustrum sinense Lour. 0.67 833 33 
H8 Rural Lindera benzoin (L.) Blume 0.83 3750 69 
H8 Rural Lonicera maackii (Rupr.) Herder 0.83 5000 82 
H9 Rural Lonicera maackii (Rupr.) Herder 1.00 7333 200 
B11 Suburban Euonymus alatus (Thunb.) Sieb. 0.33 3333 110 
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Appendix Table 9 (cont.) 
Bll Suburban Lonicera maackii (Rupr.) Herder 0.33 2222 90 

B12 Suburban 
Amelanchier arborea (Michx. f.) 

0.33 833 18 Fern. 

B12 Suburban Ligustrum sinense Lour. 1.00 10167 107 
B12 Suburban Lindera benzoin (L.) Blume 1.00 3167 59 
B12 Suburban Lonicera maackii (Rupr.) Herder 0.33 500 16 
01 Suburban Euonymus alatus (Thunb.) Sieb. 0.67 833 44 
01 Suburban Lonicera maackii (Rupr.) Herder 1.00 20167 156 
010 Suburban Euonymus alatus (Thunb.) Sieb. 0.33 167 200 
011 Suburban Euonymus alatus (Thunb.) Sieb. 0.67 667 41 
011 Suburban Hibiscus syriacus L. 0.08 1667 26 
011 Suburban Lonicera maackii (Rupr.) Herder 1.00 3833 98 
012 Suburban Ligustrum sinense Lour. 1.00 3167 72 
012 Suburban Lonicera maackii (Rupr.) Herder 0.67 9167 87 
014 Suburban Lonicera maackii (Rupr.) Herder 0.33 3333 100 
014 Suburban Rubus spp. 0.33 3333 100 
03 Suburban Cornus racemosa Lam. 0.33 1333 86 
03 Suburban Ligustrum sinense Lour. 0.33 2333 114 
06 Suburban Ligustrum sinense Lour. 1.00 20833 174 
06 Suburban Lindera benzoin (L.) Blume 0.33 167 26 
HI0 Suburban Ligustrum sinense Lour. 0.33 175 40 
HI0 Suburban Lonicera maackii (Rupr.) Herder 0.67 2281 160 
H2 Suburban Euonymus alatus (Thunb.) Sieb. 0.08 833 19 
H2 Suburban Ligustrum sinense Lour. 0.33 167 26 
H2 Suburban Lindera benzoin (L.) Blume 1.00 5500 155 
H4 Suburban Lindera benzoin (L.) Blume 0.67 2083 200 
B1 Urban Lonicera maackii (Rupr.) Herder 0.33 333 200 
B13 Urban Lonicera maackii (Rupr.) Herder 0.67 6111 200 
B14 Urban Lindera benzoin (L.) Blume 1.00 3667 121 
B14 Urban Lonicera maackii (Rupr.) Herder 0.67 2333 79 
B2 Urban Euonymus alatus (Thunb.) Sieb. 0.33 333 14 
B2 Urban Hypericum prolificum L. 0.33 167 13 
B2 Urban Ligustrum sinense Lour. 0.67 4667 65 
B2 Urban Lindera benzoin (L.) Blume 0.67 833 30 
B2 Urban Lonicera maackii (Rupr.) Herder 1.00 4833 78 
B3 Urban Lonicera maackii (Rupr.) Herder 1.00 12333 200 
B4 Urban Lonicera maackii (Rupr.) Herder 1.00 13000 200 
B5 Urban Lonicera maackii (Rupr.) Herder 0.67 6833 200 
B6 Urban Cornus sp. 0.33 9583 34 
B6 Urban Hibiscus syriacus L. 0.67 7917 45 
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Appendix Table 9 (cont.) 
B6 Urban Lagerstroemia indica L. 0.33 5000 25 
B6 Urban Lonicera maackii (Rupr.) Herder 1.00 25417 96 
B7 Urban Lonicera maackii (Rupr.) Herder 1.00 12778 156 
B7 Urban Rosa palustris Marsh. 0.56 1167 44 
B8 Urban Euonymus alatus (Thunb.) Sieb. 0.33 500 118 
B8 Urban Lonicera maackii (Rupr.) Herder 0.08 833 83 
B9 Urban Lonicera maackii (Rupr.) Herder 1.00 6500 200 

G8 Urban Lindera benzoin (L.) Blume 0.67 1000 67 
G8 Urban Lonicera maackii (Rupr.) Herder 0.67 4750 133 

254 



Appendix Table 10: Tree seedling species within 41 riparian sites in Jefferson and 

Oldham counties in Kentucky. Site names refer to the watershed in which the site was 
located, where B = Middle Fork Beargrass, G = Goose, and H = South Fork Harrods 

Creek watersheds. Relative importance values (IV) were calculated from relative density 

and basal area by land cover category. Land use categories for each site were determined 

by the proportion of impervious surface (IS) within the sub catchment in which the site 

was located. Urban ::::30% IS, Rural S 10% IS, and Suburban is between 10 and 30% IS. 

Land Density 
use (stems/ 

Site cate20ry Tree seedling species names Freq. hal IV 

G2 Rural Acer negundo L. 0.0011 2778 89 
G2 Rural Acer saccharum Marsh. 0.0006 556 28 
G2 Rural Celtis occidentalis L. 0.0017 1667 83 
G4 Rural Acer negundo L. 0.4444 6667 67 
G4 Rural Acer saccharum Marsh. 0.4444 5556 61 
G4 Rural Celtis occidentalis L. 0.3333 6667 58 
G4 Rural Platanus occidentalis L. 0.1111 1111 14 
HI Rural Asimina triloba (L.) Dunal 0.0833 833 45 
HI Rural Carya cordiformis (Wangenh.) K. Koch 0.0833 833 45 
HI Rural Fraxinus americana L. 0.0833 833 45 
HI Rural Ulmus rubra Muhl. 0.0833 1667 65 
Hll Rural Acer negundo L. 0.2500 5000 161 
Hl1 Rural Asimina triloba (L.) Dunal 0.0833 833 39 
H12 Rural Celtis occidentalis L. 0.1667 833 200 
H13 Rural Acer negundo L. 0.1667 1667 200 
H14 Rural Acer negundo L. 0.0833 417 100 
H14 Rural Aesculus glabra Willd. 0.0833 417 100 
H5 Rural Acer sp. 0.0004 417 25 
H5 Rural Acer negundo L. 0.0004 417 25 
H5 Rural Asimina triloba (L.) Dunal 0.0017 1667 100 
H5 Rural Robinia pseudoacacia L. 0.0004 417 25 
H5 Rural Ulmus rubra Muhl. 0.0004 417 25 
H6 Rural Acer saccharum Marsh. 0.4444 7778 57 
H6 Rural Celtis occidentalis L. 0.2222 2222 22 
H6 Rural Fraxinus americana L. 0.7778 13333 99 
H6 Rural Fraxinus quadrangulata Michx. 0.2222 2222 22 
H7 Rural Asimina triloba (L.) Dunal 0.1250 1250 100 
H7 Rural Juglans cinerea L. 0.1250 1250 100 
H8 Rural Acer sp. 0.1667 833 100 
H8 Rural Aesculus glabra Willd. 0.0833 417 50 
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Appendix Table 10 (cont.) 
H8 Rural Celtis occidentalis L. 0.0833 417 50 
H9 Rural Fraxinus americana L. 0.5000 8889 140 
H9 Rural Quercus rubra L. 0.3333 2222 60 
BI0 Suburban Acer negundo L. 0.0833 833 200 
Bll Suburban Acer negundo L. 0.3333 3333 67 
Bll Suburban Celtis occidentalis L. 0.3333 3333 67 
B 11 Suburban Cornus drummondii C.A. Mey. 0.3333 3333 67 
B12 Suburban Acer negundo L. 0.0833 1667 20 
B12 Suburban Acer saccharum Marsh. 0.1667 1667 28 
B12 Suburban Cercis canadensis L. 0.1667 1667 28 
B12 Suburban Celtis occidentalis L. 0.1667 1667 28 
B12 Suburban Fraxinus americana L. 0.1667 1667 28 
B12 Suburban Liriodendron tulipifera L. 0.1667 1667 28 
B12 Suburban Platanus occidentalis L. 0.1667 1667 28 
B12 Suburban TWa americana L. 0.0833 833 14 
Gl Suburban Acer negundo L. 0.0833 833 67 
Gl Suburban Aesculus glabra Willd. 0.0833 833 67 
Gl Suburban Celtis occidentalis L. 0.0833 833 67 
GI0 Suburban Celtis occidentalis L. 0.1667 1667 200 
GIl Suburban Acer negundo L. 0.3333 4167 138 
GIl Suburban Celtis occidentalis L. 0.1667 1667 62 
G12 Suburban Acer negundo L. 0.0833 833 19 
G12 Suburban Acer saccharum Marsh. 0.1667 1667 38 
G12 Suburban Celtis occidentalis L. 0.3333 4167 85 
G12 Suburban Fraxinus americana L. 0.1667 1667 38 
G12 Suburban Liriodendron tulipifera L. 0.0833 833 19 
G14 Suburban Acer negundo L. 0.3333 3333 31 
G14 Suburban Carya cordiformis (Wangenh.) K. Koch 0.3333 3333 31 
G14 Suburban Celtis occidentalis L. 1.0000 23333 138 
G3 Suburban Acer negundo L. 0.0833 833 100 
G3 Suburban Celtis occidentalis L. 0.0833 833 100 
G6 Suburban Acer negundo L. 0.0833 1667 16 
G6 Suburban Acer saccharum Marsh. 0.2500 2500 36 
G6 Suburban Aesculus glabra Willd. 0.0833 833 12 
G6 Suburban Asimina triloba (L.) Dunal 0.6667 14167 135 
HIO Suburban Fraxinus americana L. 0.0909 909 13 
HIO Suburban Fraxinus quadrangulata Michx. 0.2727 3636 43 
HI0 Suburban Prunus serotina Ehrh. 0.4545 6364 73 
HI0 Suburban Quercus shumardii Buckl. 0.0909 909 13 
HI0 Suburban Ulmus rubra Muhl. 0.2727 6364 58 
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Appendix Table 10 (cont.) 
H2 Suburban Asimina triloba (L.) Dunal 0.1667 2500 142 
H2 Suburban Celtis occidentalis L. 0.0833 833 58 
H4 Suburban Acer saccharum Marsh. 0.1667 6667 35 
H4 Suburban Aesculus glabra Willd. 0.1667 1667 20 
H4 Suburban Asimina triloba (L.) Dunal 0.1667 5000 30 
H4 Suburban Fraxinus pennsylvanica Marsh. 0.6667 18333 115 
B1 Urban Acer negundo L. 0.5833 37083 200 
B13 Urban Fraxinus americana L. 0.1667 1667 200 
B14 Urban Acer negundo L. 0.2500 2500 100 
B14 Urban Aesculus glabra Willd. 0.1667 1667 67 
B14 Urban Platanus occidentalis L. 0.0833 833 33 
B2 Urban Celtis occidentalis L. 0.4167 6667 200 
B3 Urban Celtis occidentalis L. 0.2500 4167 158 
B3 Urban Fraxinus sp. 0.0833 833 42 
B5 Urban Acer negundo L. 0.0833 833 200 
B6 Urban Gleditsia tricanthos L. 0.1667 1667 200 
B7 Urban Acer negundo L. 0.0006 556 25 
B7 Urban Betula alleghaniensis Britt. 0.0003 278 13 
B7 Urban Celtis occidentalis L. 0.0022 3333 124 
B7 Urban Fraxinus americana L. 0.0006 556 25 
B7 Urban Morus rubra L. 0.0003 278 13 
B8 Urban Fraxinus americana L. 0.0833 833 100 
B8 Urban Morus rubra L. 0.0833 833 100 
G8 Urban Acer negundo L. 0.3750 6250 146 
G8 Urban Celtis occidentalis L. 0.1250 2500 54 
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Appendix Table 11: Herbaceous and vine species within 41 riparian sites in Jefferson 
and Oldham counties in Kentucky. Sites were located in Middle Fork Beargrass, Goose, 
and South Fork Harrods Creek watersheds. Species codes and wetland indicator status 
(WIS) were obtained from USDA PLANTS Database (2010). 

Species name Code WIS 

Ageratina altissima (L.) King & H.E. Robins. AGAL5 FACU 
Ageratina spp. L. AGERA2 
Alliaria petiolata (Bieb.) Cavara & Grande * ALPE4 FACU 
Allium vineale L. * ALVI FACU 
Ampelamus albidus (Nutt.) Britt. AMAL3 FAC 
Ambrosia artemisiifolia L. AMAR2 FACU 
Ambrosia trifida L. AMTR FAC 
Arundinaria gigantea (Walt.) Muhl. ARGI FACW 
Aristolochia tomentosa Sims ART03 FAC 
Arisaema triphyllum L. ARTR FACW 
Asarum canadense L. ASCA NI 
Aureolaria spp. L. AUREO 
Bidens spp. L. BIDEN FACW 
Boehmeria cylindrica (L.) Sw. BOCY FACW 
Carex blanda Dewey CABL FAC 
Cardamine pensylvanica Muhl. ex Willd. CAPE3 OBL 
Campsis radicans (L.) Seem. ex Bureau CARA2 FAC 
Cirsium arvense (L.) Scop. * CIAR4 FACU 
Commelina communis L. * COC03 FAC 
Cystopteris tenuis (Michx.) Desv. CYTE7 NI 
Desmodium canescens (L.) DC DECA8 NI 
Desmodium spp. L. DESMO 
Dichanthelium clandestinum (L.) Gould DICL FAC 
Duchesnea indica (Andr.) Focke* DUIN FACU 
Elephantopus carolinianus Raeusch. ELCA3 FACU 
Elymus riparius Wieg. ELRI FACW 
Elymus spp. L. ELYMU 
Erigeron spp. L. ERIGE2 FACU 
Erigeron philadelphicus L. ERPH FACU 
Euonymusfortunei (Turcz.) Hand.-Maz. * EUF05 NI 
Galium aparine L. GAAP2 FACU 
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Appendix 
Table 11 
(cont.) Geum vernum (Raf.) Torr. & Gray GEVE FACU 

Glechoma hederacea L. * GLHE2 FACU 
Hedera helix L. * HEHE NI 
Helianthus spp. L. HELlA3 
Hydrophyllum canadense L. HYCA3 FACU 
Impatiens capensis Meerb. IMCA FACW 
Iodanthus pinnatifidus (Michx.) Steud. IOPI FACW 
Juncus spp. L. JUNCU FACW 
Lamium amplexicaule L. LAAM NI 
Lactuca biennis (Moench) Fern. LABI FACU 
Lactuca canadensis L. LACA FACU 
Lonicera japonica Thunb. * LOJA FAC 
Lysimachia nummularia L. * LYNU OBL 
Maianthemum racemosum (L.) Link MARA7 FACU 
Microstegium vimineum (Trin.) A. Camus * MIVI FAC 
Ornithogalum umbellatum L. * ORUM FACU 
Osmorhiza claytonii (Michx.) c.B. Clarke OSCL FACU 
Oxalis stricta L. OXST UPL 
Packera spp. L. PACKE 
Packera obovata (Muhl. ex Willd.) W.A. Weber 

PAOB6 FACU & A. Love 

Parthenocissus quinque/olia (L.) Planch. PAQU2 FACU 
Phytolacca americana L. PHAM4 FACU 
Pilea pumila (L.) Gray PIPU2 FACW 
Plantago rugelii Dcne. PLRU FACU 
Polygonatum biflorum (Walt.) Ell. POBI2 FACU 
Polygonum spp. L. POLYG4 
Podophyllum peltatum L. POPE FACU 
Polygonum virginianum L. POVI2 FAC 
Ranunculus hispidus Michx. RAHI FAC 
Ruellia caroliniensis (J.F. Gmel.) Steud. RUCA4 NI 
Rudbeckia laciniata L. RULA3 FACW 
Rumex verticillatus L. RUVE3 OBL 
Sanicula canadensis L. SACAl5 UPL 
Sanicula spp. L. SANIC 
Sanicula odorata (Raf.) K.M. Pryer & L.R. 
Phillippe SAOD FACU 
Sedum ternatum Michx. SETE3 NI 
Securigera varia (L.) Lassen * SEVA4 NI 
Sicyos angulatus L. SIAN FACU 
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Appendix 
Table 11 
(cont.) Smilax rotundifolia L. SMRO FAC 

Solidago canadensis L. SOCA6 FACU 

Sorghum halepense (L.) Pers.* SOHA FACU 

Solidago spp. L. SOLID 

Spiraea spp. L. SPIRA 

Stachys spp. L. STACH 

Stellaria media (L.) ViII. * STME2 UPL 

Symphyotrichum cordifolium (L.) Nesom SYC04 NI 

Symphyotrichum lowrieanum (Porter) Nesom SYL02 NI 

Symphyotrichum spp. L. SYMPH4 

Symphyotrichum pilosum (Willd.) Nesom SYPI2 UPL 
Symphyotrichum racemosum (Ell.) Nesom SYRA5 FACW 

Taraxacum officinale G.H. Weber ex Wiggers* TAOF FACU 
Thalictrum thalictroides (L.) Eames & Boivin THTH2 NI 

Toxicodendron radicans (L.) Kuntze TORA2 FAC 

Trifolium spp. L. TRIFO 
Trillium spp. L. TRILL 
Urtica dioica L. URDI FACU 

Valerianella umbilicata (Sullivant) Wood VAUM FAC 
Verbesina alternifolia (L.) Britt. ex Kearney VEAL FAC 
Veronica arvensis L. * VEAR NI 
Vernonia spp. L. VERNO 
Vinca minor L. * VIMI2 NI 
Viola spp. L. VIOLA 
Viola striata Ait. VIST3 FACW 
Vilis vulpina L. VIVU FAC 

Woodsia obtusa S ren .) Torr. WOOB2 NI 

Non-native species indicated with an (*) 
Note: Plants were identified only to genus group if species could not 
be determined 
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Appendix Table 12: Herbaceous and vine species within 41 riparian sites in Jefferson 

and Oldham counties in Kentucky. Site names refer to the watershed in which the site 

was located, where B = Middle Fork Beargrass, G = Goose, and H = South Fork Harrods 

Creek watersheds. Importance values (IV) for each species were calculated by adding 

average absolute % cover and frequency for each site. Data within mult-plot sites were 

combined. Land use categories for each site were determined by the proportion of 
impervious surface (IS) within the subcatchment in which the site was located. Urban 

::::30% IS, Rural:::: 10% IS, and Suburban is between 10 and 30% IS. 

Avg. 
Land use % 

Site categ. Species name cover Freq IV 

G2 Rural 
Ageratina altissima (L.) King & H.E. 

0.96 17 18 Robins. 
G2 Rural Duchesnea indica (Andr.) Focke* 0.58 6 6 
G2 Rural Euonymus fortunei (Turcz.) Hand.-Maz. * 12.83 61 73 
G2 Rural Galium aparine L. 0.42 11 11 
G2 Rural Glechoma hederacea L. * 0.67 44 45 
G2 Rural Impatiens capensis Meerb. 0.04 6 6 
G2 Rural Oxalis stricta L. 0.50 6 6 
G2 Rural Plantago rugelii Dcne. 0.83 17 18 

G2 Rural Sanicula odorata (Raf.) K.M. Pryer & L.R. 
0.58 17 18 Phillippe 

G2 Rural Taraxacum officinale G.H. Weber ex 
0.17 6 6 Wiggers* 

G2 Rural Toxicodendron radicans (L.) Kuntze 0.67 17 18 
G2 Rural Veronica arvensis L. * 1.50 22 23 
G2 Rural Vinca minor L. * 12.96 44 56 
G2 Rural Viola spp. L. 0.25 28 28 

G4 Rural Ageratina altissima (L.) King & H.E. 
32.89 100 133 Robins. 

G4 Rural Duchesnea indica (Andr.) Focke* 0.78 22 23 
G4 Rural Juncus spp. L. 2.78 56 58 
G4 Rural Lonicera japonica Thunb. * 1.33 22 24 
G4 Rural Microstegium vimineum (Trin.) A. Camus * 0.11 11 11 
G4 Rural Parthenocissus quinquefolia (L.) Planch. 3.94 78 82 

G4 Rural 
Sanicula odorata (Raf.) K.M. Pryer & L.R. 

1.61 56 57 Phillippe 
G4 Rural Solidago spp. L. 1.28 44 46 
G4 Rural Symphyotrichum cordifolium (L.) Nesom 0.22 11 11 

G4 Rural Toxicodendron radicans (L.) Kuntze 0.06 11 11 
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Appendix Table 12 (cont.) 
G4 Rural Verbesina alternifolia (L.) Britt. ex Kearney 4.44 11 16 

G7 Rural 
Ageratina altissima (L.) King & H.E. 

12.75 100 113 Robins. 
G7 Rural Asarum canadense L. 0.08 17 17 
G7 Rural Glechoma hederacea L. * 2.75 100 103 
G7 Rural Grass 0.83 17 18 
G7 Rural Microstegium vimineum (Trin.) A. Camus * 1.83 33 35 

G7 Rural 
Sanicula odorata (Raf.) K.M. Pryer & L.R. 

0.33 17 17 Phillippe 
G7 Rural Symphyotrichum spp. L. 3.33 67 70 
G7 Rural Verbesina alternifolia (L.) Britt. ex Kearney 0.50 17 17 

HI Rural 
Ageratina altissima (L.) King & H.E. 

0.83 25 26 Robins. 
HI Rural Alliaria petiolata (Bieb.) Cavara & Grande * 4.33 33 38 
HI Rural Allium vineale L. * 0.17 33 34 
HI Rural Ambrosia artemisiifolia L. 0.04 8 8 
HI Rural Arisaema triphyllum L. 0.04 8 8 
HI Rural Apiaceae 0.04 8 8 
HI Rural Desmodium spp. L. 0.13 17 17 
HI Rural Duchesnea indica (Andr.) Focke* 1.29 67 68 
HI Rural Elymus riparius Wieg. 0.46 33 34 
HI Rural Erigeron philadelphicus L. 0.04 8 8 
HI Rural Galium aparine L. 1.71 50 52 
HI Rural Glechoma hederacea L. * 8.42 100 108 
HI Rural Impatiens capensis Meerb. 0.17 17 17 
HI Rural Lonicera japonica Thunb. * 0.58 67 67 
HI Rural Lamiaceae 0.04 8 8 
HI Rural Ornithogalum umbellatum L. * 0.04 8 8 
HI Rural Osmorhiza claytonii (Michx.) c.B. Clarke 1.38 50 51 
HI Rural Packera spp. L. 0.04 8 8 
HI Rural Parthenocissus quinque/olia (L.) Planch. 0.42 25 25 
HI Rural Pilea pumila (L.) Gray 0.33 42 42 
HI Rural Podophyllum peltatum L. 1.08 8 9 
HI Rural Sanicula spp. L. 1.50 58 60 

HI Rural Sanicula odorata (Raf.) K.M. Pryer & L.R. 
7.00 100 107 Phillippe 

HI Rural Smilax rotundifolia L. 0.42 25 25 
HI Rural Solidago spp. L. 0.58 25 26 
HI Rural Stachys spp. L. 0.08 8 8 

HI Rural 
Thalictrum thalictroides (L.) Eames & 

0.l3 17 17 Boivin 
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Appendix Table 12 (cont.) 
HI Rural Toxicodendron radicans (L.) Kuntze 0.33 17 17 
HI Rural Trillium spp. L. 0.l3 17 17 
HI Rural Urtica dioica L. 0.17 8 9 
HI Rural Verbesina alternifolia (L.) Britt. ex Kearney 0.17 8 9 
HI Rural Viola spp. L. 0.38 42 42 
HI Rural Viola striata Ait. 0.75 42 42 
HI Rural Vilis vulpina L. 0.08 8 8 

Hll Rural 
Ageratina altissima (L.) King & H.E. 

0.21 8 9 Robins. 
Hll Rural Glechoma hederacea L. * 8.00 67 75 
Hil Rural Lonicera japonica Thunb. * 0.67 42 42 
HII Rural Lamiaceae 0.29 17 17 
Hil Rural Microstegium vimineum (Trin.) A. Camus * 10.00 33 43 

HII Rural 
Sanicula odorata (Raf.) K.M. Pryer & L.R. 

0.75 17 17 Phillippe 
Hll Rural Solidago spp. L. 0.50 25 26 
Hll Rural Symphyotrichum lowrieanum (Porter) Nesom 0.25 8 9 
Hil Rural Toxicodendron radicans (L.) Kuntze 0.58 17 17 
HII Rural Viola striata Ait. 0.04 8 8 

H12 Rural 
Ageratina altissima (L.) King & H.E. 

4.43 63 67 Robins. 
H12 Rural Ambrosia trifida L. 0.19 8 9 
H12 Rural Cirsium arvense (L.) Scop. * 0.04 4 4 
H12 Rural Desmodium spp. L. 0.06 4 4 
H12 Rural Elephantopus carolinianus Raeusch. 0.13 13 l3 
H12 Rural Glechoma hederacea L. * 0.13 4 4 
HI2 Rural Lactuca biennis (Moench) Fern. 0.42 21 21 
HI2 Rural Lonicera japonica Thunb. * 2.32 42 44 
HI2 Rural Lysimachia nummularia L. * l.69 33 35 
HI2 Rural Microstegium vimineum (Trin.) A. Camus * 8.63 29 38 
H12 Rural Packera spp. L. 0.08 8 8 

HI2 Rural 
Sanicula odorata (Raf.) K.M. Pryer & L.R. 

2.69 42 44 Phillippe 
HI2 Rural Securigera varia (L.) Lassen* 2.42 21 23 
HI2 Rural Solidago canadensis L. 0.92 17 17 
Hl2 Rural Solidago spp. L. 0.31 12 l3 
H12 Rural Symphyotrichum pilosum (Willd.) Nesom 0.83 8 9 
HI2 Rural Toxicodendron radicans (L.) Kuntze 0.29 12 l3 
H12 Rural Trifolium spp. L. 0.21 4 4 
H12 Rural Verbesina alternifolia (L.) Britt. ex Kearney l.56 42 43 
HI2 Rural Viola spp. L. 0.13 8 8 
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Appendix Table 12 (cont.) 
H13 Rural Securigera varia (L.) Lassen * 4.75 67 71 
H13 Rural Vernonia spp. L. 0.08 17 17 

H14 Rural 
Ageratina altissima (L.) King & H.E. 

0.21 8 9 Robins. 
H14 Rural Alliaria petiolata (Bieb.) Cavara & Grande * 0.33 21 21 
H14 Rural Asarum canadense L. 0.15 13 13 
H14 Rural Desmodium canescens (L.) DC 9.50 54 64 
Hl4 Rural Elymus spp. L. 0.08 4 4 

Hl4 Rural Euonymus fortunei (Turcz.) Hand.-Maz. * 0.08 8 8 

H14 Rural Glechoma hederacea L. * 20.94 87 108 
H14 Rural Grass 2.46 17 19 
H14 Rural Hydrophyllum canadense L. 5.20 88 93 
H14 Rural Microstegium vimineum (Trin.) A. Camus * 0.04 4 4 
H14 Rural Phytolacca americana L. 0.29 4 4 
H14 Rural Polygonum spp. L. 1.54 l3 14 
H14 Rural Polygonum virginianum L. 0.46 4 5 
H14 Rural Rudbeckia laciniata L. 0.54 8 9 

H14 Rural 
Sanicula odorata (Raf.) K.M. Pryer & L.R. 

0.23 21 21 Phillippe 
H14 Rural Symphyotrichum spp. L. 0.92 29 30 
H14 Rural Urtica dioica L. 20.28 58 78 
H14 Rural Verbesina alternifolia (L.) Britt. ex Kearney 1.44 21 22 
H14 Rural Viola striata Ait. 0.46 21 21 
H14 Rural Woodsia obtusa (Spreng.) Torr. 0.02 4 4 

H3 Rural 
Ageratina altissima (L.) King & H.E. 

0.83 17 18 Robins. 
H3 Rural Boehmeria cylindrica (L.) Sw. 0.92 8 9 
H3 Rural Apiaceae 0.17 25 25 
H3 Rural Duchesnea indica (Andr.) Focke* 0.96 25 26 
H3 Rural Euonymus fortunei (Turcz.) Hand.-Maz. * 0.17 25 25 
H3 Rural Glechoma hederacea L. * 1.00 33 34 
H3 Rural Grass 13.75 33 47 
H3 Rural Lysimachia nummularia L.* 0.04 8 8 
H3 Rural Microstegium vimineum (Trin.) A. Camus * 7.50 42 49 

H3 Rural 
Sanicula odorata (Raf.) K.M. Pryer & L.R. 

0.25 17 17 Phillippe 
H3 Rural Spiraea spp. L. 0.33 8 9 
H3 Rural Symphyotrichum spp. L. 0.96 33 34 
H3 Rural Symphyotrichum racemosum (Ell.) Nesom 0.17 8 9 
H3 Rural Viola spp. L. 1.21 42 43 
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Appendix Table 12 (cont.) 

H5 Rural 
Ageratina altissima (L.) King & H.E. 

2.10 71 73 Robins. 
H5 Rural Alliaria petiolata (Bieb.) Cavara & Grande * 0.06 13 13 
H5 Rural Allium vineale L. * 0.27 54 55 
H5 Rural Arisaema triphyllum L. 0.08 4 4 
H5 Rural Asarum canadense L. 0.10 13 13 
H5 Rural Carex blanda Dewey 0.27 25 25 
H5 Rural Cystopteris tenuis (Michx.) Desv. 0.02 4 4 
H5 Rural Desmodium spp. L. 0.38 33 34 
H5 Rural Dichanthelium clandestinum (L.) Gould 0.17 8 8 
H5 Rural Elephantopus carolinian us Raeusch. 0.29 25 25 
H5 Rural Erigeron philadelphicus L. 0.08 13 13 
H5 Rural Galium aparine L. 0.15 17 17 
H5 Rural Glechoma hederacea L. * 5.71 79 85 
H5 Rural Grass 1.77 54 56 
H5 Rural Impatiens capensis Meerb. 0.04 8 8 
H5 Rural Iodanthus pinnatifidus (Michx.) Steud. 0.06 8 8 
H5 Rural Lonicera japonica Thunb. * 1.10 29 30 
H5 Rural Lysimachia nummularia L. * 0.06 8 8 
H5 Rural Lamiaceae 0.08 4 4 
H5 Rural Microstegium vimineum (Trin.) A. Camus * 5.52 50 56 
H5 Rural Packera spp. L. 0.02 4 4 
H5 Rural Pilea pumila (L.) Gray 0.23 37 37 
H5 Rural Plantago rugelii Dcne. 0.02 4 4 
H5 Rural Polygonum spp. L. 0.42 4 5 
H5 Rural Sanicula canadensis L. 2.38 71 73 

H5 Rural Sanicula odorata (Raf.) K.M. Pryer & L.R. 
0.56 50 51 Phillippe 

H5 Rural Solidago spp. L. 0.31 29 29 
H5 Rural Symphyotrichum cordifolium (L.) Nesom 0.06 13 13 

H5 Rural Thalictrum thalictroides (L.) Eames & 
0.04 8 8 Boivin 

H5 Rural Toxicodendron radicans (L.) Kuntze 0.02 4 4 
H5 Rural Verbesina alternifolia (L.) Britt. ex Kearney 1.00 37 38 
H5 Rural Viola spp. L. 0.79 59 59 
H5 Rural Viola striata Ait. 0.33 38 38 

H6 Rural 
Ageratina altissima (L.) King & H.E. 

1.11 89 90 Robins. 
H6 Rural Asarum canadense L. 0.72 67 67 
H6 Rural Grass 0.28 44 45 
H6 Rural Lonicera japonica Thunb. * 0.39 67 67 
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Appendix Table 12 (cont.) 
H6 Rural Lysimachia nummularia L. * 0.28 44 45 

H6 Rural Packera obovata (Muhl. ex Willd.) W.A. 
0.11 22 22 Weber & A. Love 

H6 Rural Ruellia caroliniensis (IF. Gmel.) Steud. 0.11 11 11 

H6 Rural Sanicula odorata (Raf.) K.M. Pryer & L.R. 
0.17 33 34 Phillippe 

H6 Rural Symphyotrichum cordifolium (L.) Nesom 0.22 11 11 
H6 Rural Viola spp. L. 0.61 67 67 
H6 Rural Viola striata Ait. 0.11 17 17 

H7 Rural 
Ageratina altissima (L.) King & H.E. 

0.94 50 51 Robins. 
H7 Rural Asarum canadense L. 4.63 100 105 
H7 Rural Asteraceae 0.69 75 76 
H7 Rural Aureolaria spp. L. 0.25 38 38 
H7 Rural L ysimachia nummularia L. * 0.31 50 50 
H7 Rural Ranunculus hispidus Michx. 0.19 13 13 

H7 Rural Sanicula odorata (Raf.) K.M. Pryer & L.R. 
0.19 38 38 Phillippe 

H7 Rural Symphyotrichum lowrieanum (Porter) Nesom 0.13 13 13 
H7 Rural Viola spp. L. 2.81 100 103 

H8 Rural Ageratina altissima (L.) King & H.E. 
0.25 25 25 Robins. 

H8 Rural Allium vineale L. * 0.31 63 63 
H8 Rural Arisaema triphyllum L. 0.63 4 5 
H8 Rural Asarum canadense L. 0.21 17 17 
H8 Rural Aureolaria spp. L. 0.06 8 8 
H8 Rural Carex blanda Dewey 0.02 4 4 
H8 Rural Cystopteris tenuis (Michx.) Desv. 0.06 17 17 
H8 Rural Desmodium spp. L. 0.21 29 29 
H8 Rural Duchesnea indica (Andr.) Focke* 0.02 4 4 
H8 Rural Elymus riparius Wieg. 0.04 4 4 
H8 Rural Erigeron philadelphicus L. 0.02 4 4 
H8 Rural Galium aparine L. 0.13 25 25 
H8 Rural Geum vernum (Raf.) Torr. & Gray 0.08 13 13 
H8 Rural Grass 0.81 29 30 
H8 Rural Impatiens capensis Meerb. 0.04 8 8 
H8 Rural Iodanthus pinnatifidus (Michx.) Steud. 0.02 4 4 
H8 Rural Juncus spp. L. 0.21 21 21 
H8 Rural Lonicera japonica Thunb. * 0.02 4 4 
H8 Rural Lysimachia nummularia L. * 2.60 59 61 
H8 Rural Microstegium vimineum (Trin.) A. Camus * 1.50 13 14 
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Appendix Table 12 (cont.) 
H8 Rural Packera spp. L. 0.21 29 30 

H8 Rural 
Packera obovata (Muhl. ex Willd.) W.A. 

0.02 4 4 Weber & A. Love 
H8 Rural Pilea pumila (L.) Gray 0.70 62 63 
H8 Rural Plantago rugelii Dene. 0.04 8 8 
H8 Rural Ranunculus hispidus Miehx. 0.04 8 8 
H8 Rural Sanicula canadensis L. 2.83 58 61 
H8 Rural Sanicula spp. L. 0.17 25 25 

H8 Rural Sanicula odorata (Raf.) K.M. Pryer & L.R. 
2.42 71 73 Phillippe 

H8 Rural Sedum ternatum Miehx. 0.15 8 8 
H8 Rural Smilax rotundifolia L. 0.02 4 4 
H8 Rural Solidago spp. L. 0.50 38 38 
H8 Rural Symphyotrichum cordifolium (L.) Nesom 0.10 17 17 

H8 Rural 
Thalictrum thalictroides (L.) Eames & 

0.06 8 8 Boivin 
H8 Rural Valerianella umbilicata (Sullivant) Wood 0.06 8 8 
H8 Rural Verbesina alternifolia (L.) Britt. ex Kearney 1.08 42 43 
H8 Rural Viola spp. L. 1.48 83 85 
H8 Rural Viola striata Ait. 0.48 54 55 
H9 Rural Campsis radicans (L.) Seem. ex Bureau 0.83 17 18 
H9 Rural Lonicera japonica Thunb. * 0.67 33 34 
H9 Rural Lysimachia nummularia L. * 0.33 17 17 
H9 Rural Microstegium vimineum (Trin.) A. Camus * 0.08 17 17 
H9 Rural Packera spp. L. 0.25 33 34 
H9 Rural Plantago rugelii Dene. 0.17 17 17 

H9 Rural Sanicula odorata (Raf.) K.M. Pryer & L.R. 
5.33 83 89 Phillippe 

H9 Rural Solidago spp. L. 0.42 33 34 
H9 Rural Toxicodendron radicans (L.) Kuntze 0.33 33 34 
H9 Rural Viola spp. L. 0.50 17 17 
H9 Rural Vilis vulpina L. 0.33 33 34 

BlO Suburban Ageratina altissima (L.) King & H.E. 
0.08 8 8 Robins. 

B10 Suburban Ambrosia trifida L. 6.92 17 24 
BI0 Suburban Bidens spp. L. 0.58 8 9 
B10 Suburban Commelina communis L. * 0.17 8 9 
BlO Suburban Duchesnea indica (Andr.) Foeke* 0.08 8 8 
B10 Suburban Elephantopus carolinianus Raeuseh. 0.67 17 17 
B10 Suburban Euonymusfortunei (Turez.) Hand.-Maz. * 4.17 8 13 
B10 Suburban Glechoma hederacea L. * 0.42 8 9 
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Appendix Table 12 (cont.) 
BI0 Suburban Helianthus spp. L. 2.50 8 11 
BlO Suburban Lonicera japonica Thunb. * 0.08 8 8 
BlO Suburban Lysimachia nummularia L. * 0.04 8 8 
BI0 Suburban Oxalis stricta L. 0.17 8 9 
BlO Suburban Plantago rugelii Dene. 0.17 8 9 
BlO Suburban Solidago spp. L. 1.33 17 18 

BlO Suburban 
Taraxacum oJJicinale G.H. Weber ex 

0.29 17 17 Wiggers * 
BlO Suburban Toxicodendron radicans (L.) Kuntze 1.92 17 19 
BlO Suburban Viola spp. L. 2.33 17 19 

B 11 Suburban 
Ageratina altissima (L.) King & H.E. 

4.00 67 71 Robins. 
Bll Suburban EuonymusJortunei (Turez.) Hand.-Maz. * 6.67 33 40 
B11 Suburban Parthenocissus quinqueJolia (L.) Planeh. 2.83 67 70 
Bll Suburban Phytolacca americana L. 3.00 33 36 
Bl1 Suburban Rosaceae 1.67 33 35 
B 11 Suburban Toxicodendron radicans (L.) Kuntze 1.67 33 35 
Bl1 Suburban Viola spp. L. 0.17 8 9 

B12 Suburban 
Ageratina altissima (L.) King & H.E. 

22.25 100 122 Robins. 
B12 Suburban Asarum canadense L. 1.50 17 18 
B12 Suburban Cystopteris tenuis (Miehx.) Desv. 0.08 8 8 
B12 Suburban Euonymus Jortunei (Turez.) Hand. -Maz. * 1.63 58 60 
B12 Suburban Glechoma hederacea L. * 11.08 92 103 
B12 Suburban Hedera helix L. * 0.17 8 9 
B12 Suburban Impatiens capensis Meerb. 1.21 33 35 
B12 Suburban Lonicera japonica Thunb. * 1.17 50 51 
B12 Suburban Microstegium vimineum (Trin.) A. Camus * 38.42 75 113 
B12 Suburban Parthenocissus quinqueJolia (L.) Planeh. 0.25 8 9 
B12 Suburban Phytolacca americana L. 0.13 8 8 

B12 Suburban 
Sanicula odorata (Raf.) K.M. Pryer & L.R. 

0.46 25 25 Phillippe 
B12 Suburban Toxicodendron radicans (L.) Kuntze 0.17 8 9 
B12 Suburban Verbesina alternifolia (L.) Britt. ex Kearney 1.17 17 18 
B12 Suburban Viola spp. L. 0.08 8 8 
B12 Suburban Vitis vulpina L. l.54 67 68 

Gl Suburban 
Ageratina altissima (L.) King & H.E. 

3.13 42 45 Robins. 
Gl Suburban A Ilia ria petiolata (Bieb.) Cavara & Grande * 10.75 33 44 
Gl Suburban Glechoma hederacea L. * 2.75 17 19 
Gl Suburban Microstegium vimineum (Trin.) A. Camus * 2.92 17 20 
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Appendix Table 12 (cont.) 
G1 Suburban Stella ria media (L.) ViII. * 0.08 8 8 

G10 Suburban 
Ageratina altissima (L.) King & H.E. 

2.42 42 44 Robins. 
G10 Suburban Alliaria petiolata (Bieb.) Cavara & Grande * 0.67 8 9 
G10 Suburban Desmodium spp. L. 1.00 50 51 
G10 Suburban Elymus riparius Wieg. 3.83 83 87 
G10 Suburban Euonymus Jortunei (Turez.) Hand.-Maz. * 0.92 8 9 
G10 Suburban Galium aparine L. 0.04 8 8 
G10 Suburban Glechoma hederacea L. * 18.25 100 118 
G10 Suburban Impatiens capensis Meerb. 0.17 25 25 
G10 Suburban Iodanthus pinnatifidus (Miehx.) Steud. 0.17 8 9 
G10 Suburban Parthenocissus quinqueJolia (L.) Planeh. 0.25 17 17 
G10 Suburban Rudbeckia laciniata L. 2.58 33 36 

G10 Suburban 
Sanicula odorata (Raf.) K.M. Pryer & L.R. 

0.83 25 26 Phillippe 
G10 Suburban Smilax rotundifolia L. 1.25 8 10 
G10 Suburban Solidago spp. L. 8.75 92 100 
G10 Suburban Verbesina alternifolia (L.) Britt. ex Kearney 10.08 67 77 
G10 Suburban Viola spp. L. 0.08 8 8 

GIl Suburban 
Ageratina altissima (L.) King & H.E. 

2.33 42 44 Robins. 
GIl Suburban Allium vineale L. * 0.04 8 8 
GIl Suburban Desmodium spp. L. 0.58 67 67 
GIl Suburban Duchesnea indica (Andr.) Foeke* 0.71 33 34 
GIl Suburban Euonymus Jortunei (Turez.) Hand. -Maz. * 28.42 67 95 
GIl Suburban Glechoma hederacea L. * 9.42 50 59 
GIl Suburban Grass 10.83 25 36 
GIl Suburban Impatiens capensis Meerb. 1.00 8 9 
Gil Suburban Lonicera japonica Thunb. * 1.83 50 52 
GIl Suburban Lysimachia nummularia L. * 0.42 25 25 
GIl Suburban Microstegium vimineum (Trin.) A. Camus * 7.83 17 25 
GIl Suburban Plantago rugelii Dene. 0.08 8 8 

GIl Suburban 
Sanicula odorata (Raf.) K.M. Pryer & L.R. 

0.54 25 26 Phillippe 
GIl Suburban Smilax rotundifolia L. 0.04 8 8 
GIl Suburban Sorghum halepense (L.) Pers. * 0.50 8 9 
GIl Suburban Solidago spp. L. 0.67 42 42 
GIl Suburban Toxicodendron radicans (L.) Kuntze 1.96 25 27 
GIl Suburban Verbesina alternifolia (L.) Britt. ex Kearney 2.50 58 61 
G12 Suburban Boehmeria cylindrica (L.) Sw. 0.92 25 26 
G12 Suburban EuonymusJortunei (Turez.) Hand.-Maz. * 19.17 50 69 
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Appendix Table 12 (cont.) 
G12 Suburban Grass 0.17 8 9 
G12 Suburban Impatiens capensis Meerb. 0.21 17 17 
G12 Suburban Lonicera japonica Thunb. * 0.96 58 59 
G12 Suburban Maianthemum racemosum (L.) Link 0.58 17 17 
G12 Suburban Parthenocissus quinqueJolia (L.) P1aneh. 13.38 92 105 

G12 Suburban 
Sanicula odorata (Raf.) K.M. Pryer & L.R. 

0.33 25 25 Phillippe 
G12 Suburban Toxicodendron radicans (L.) Kuntze 0.63 17 17 
G12 Suburban Verbesina alternifolia (L.) Britt. ex Kearney 5.33 75 80 
G12 Suburban Viola spp. L. 0.08 8 8 
G12 Suburban Woodsia obtusa (Spreng.) Torr. 0.08 8 8 

G13 Suburban 
Ageratina altissima (L.) King & H.E. 

3.63 83 87 Robins. 
G13 Suburban Arundinaria gigantea (Walt.) Muhl. 17.67 92 109 
G13 Suburban Desmodium spp. L. 0.29 25 25 
G13 Suburban Duchesnea indica (Andr.) Foeke* l.17 42 43 
G13 Suburban EuonymusJortunei (Turez.) Hand.-Maz. * 0.13 17 17 
G13 Suburban Glechoma hederacea L. * l.13 100 101 
G13 Suburban Grass 0.33 17 17 
G13 Suburban Impatiens capensis Meerb. 0.04 8 8 
G13 Suburban Microstegium vimineum (Trin.) A. Camus * l.67 33 35 
G13 Suburban Pilea pumila (L.) Gray 0.63 42 42 
G13 Suburban Symphyotrichum spp. L. 0.13 17 17 
G13 Suburban Verbesina alternifolia (L.) Britt. ex Kearney 0.42 17 17 
G13 Suburban Viola spp. L. 0.21 42 42 
G13 Suburban Viola striata Ait. 0.21 17 17 
G14 Suburban Erigeron philadelphicus L. 3.67 67 70 
G14 Suburban Glechoma hederacea L. * 0.67 33 34 
G14 Suburban Grass 95.00 100 195 
G14 Suburban Pilea pumila (L.) Gray 2.33 33 36 
G14 Suburban Plantago rugelii Dene. 0.50 33 34 
G14 Suburban Ruellia caroliniensis (IF. Gmel.) Steud. 2.00 67 69 
G14 Suburban Rumex verticillatus L. 0.33 33 34 
G14 Suburban Symphyotrichum lowrieanum (Porter) Nesom 0.67 33 34 
G14 Suburban Viola spp. L. 0.33 33 34 

G3 Suburban 
Ageratina altissima (L.) King & H.E. 

0.54 42 42 Robins. 
G3 Suburban Aristolochia tomentosa Sims 0.17 8 9 
G3 Suburban Euonymus Jortunei (Turez.) Hand.-Maz. * 2.50 42 44 
G3 Suburban Impatiens capensis Meerb. 0.04 8 8 

270 



Appendix Table 12 (cont.) 
G3 Suburban Juncus spp. L. 0.21 25 25 
G3 Suburban Lysimachia nummularia L. * 1.75 25 27 

G3 Suburban 
Sanicula odorata (Raf.) K.M. Pryer & L.R. 

0.17 17 17 Phillippe 
G3 Suburban Solidago spp. L. 2.46 67 69 
G3 Suburban Toxicodendron radicans (L.) Kuntze 0.67 25 26 
G3 Suburban Viola spp. L. 11.54 67 78 

G6 Suburban 
Ageratina altissima (L.) King & H.E. 

2.38 42 44 Robins. 
G6 Suburban Alliaria petiolata (Bieb.) Cavara & Grande * 0.04 8 8 
G6 Suburban Arundinaria gigantea (Walt.) Muhl. 8.75 100 109 
G6 Suburban Asarum canadense L. 0.04 8 8 
G6 Suburban Cystopteris tenuis (Michx.) Desv. 0.13 17 17 
G6 Suburban Duchesnea indica (Andr.) Focke* 0.50 17 17 
G6 Suburban Glechoma hederacea L. * 34.92 83 118 
G6 Suburban Grass 0.08 8 8 
G6 Suburban Impatiens capensis Meerb. 0.21 25 25 
G6 Suburban Lamiaceae 0.33 42 42 

G6 Suburban Sanicula odorata (Raf.) K.M. Pryer & L.R. 
0.21 25 25 Phillippe 

G6 Suburban Solidago spp. L. 0.13 8 8 
G6 Suburban Verbesina alternifolia (L.) Britt. ex Kearney 0.58 17 17 
G6 Suburban Viola spp. L. 0.04 8 8 

G9 Suburban Ageratina altissima (L.) King & H.E. 
4.58 75 80 Robins. 

G9 Suburban Duchesnea indica (Andr.) Focke* 0.38 25 25 
G9 Suburban Euonymus fortunei (Turcz.) Hand.-Maz. * 0.08 8 8 
G9 Suburban Galium aparine L. 0.04 8 8 
G9 Suburban Glechoma hederacea L. * 41.38 42 83 
G9 Suburban Grass 0.83 25 26 
G9 Suburban Impatiens capensis Meerb. 2.21 42 44 
G9 Suburban Lysimachia nummularia L. * 0.25 8 9 

G9 Suburban Sanicula odorata (Raf.) K.M. Pryer & L.R. 
0.83 75 76 Phillippe 

G9 Suburban Smilax rotundifolia L. 0.08 8 8 
G9 Suburban Solidago spp. L. 7.17 75 82 
G9 Suburban Toxicodendron radicans (L.) Kuntze 0.04 8 8 
G9 Suburban Verbesina alternifolia (L.) Britt. ex Kearney 1.08 25 26 
G9 Suburban Viola spp. L. 2.54 75 78 
G9 Suburban Viola striata Ait. 2.38 58 61 
HlO Suburban Ageratina altissima (L.) King & H.E. Robins. 1.50 73 74 
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Appendix Table 12 (cont.) 
H10 Suburban Lonicera japonica Thunb. * 2.91 45 48 

HlO Suburban 
Packera obovata (Muhl. ex Willd.) W.A. 

0.05 9 9 Weber & A. Love 

H10 Suburban 
Sanicula odorata (Raf.) K.M. Pryer & L.R. 

5.41 91 96 Phillippe 
HI0 Suburban Symphyotrichum cordifolium (L.) Nesom 0.14 18 18 

H2 Suburban 
Ageratina altissima (L.) King & H.E. 

2.00 67 69 Robins. 
H2 Suburban Asarum canadense L. 1.42 67 68 
H2 Suburban Apiaceae 0.04 8 8 
H2 Suburban Euonymus fortunei (Turcz.) Hand.-Maz. * 0.58 58 59 
H2 Suburban Glechoma hederacea L. * 1.63 83 85 
H2 Suburban Grass 0.92 58 59 

H2 Suburban 
Sanicula odorata (Raf.) K.M. Pryer & L.R. 

0.58 67 67 Phillippe 
H2 Suburban Smilax rotundifolia L. 0.17 8 9 
H2 Suburban Symphyotrichum spp. L. 0.42 25 25 

H2 Suburban 
Thalictrum thalictroides (L.) Eames & 

0.04 8 8 Boivin 
H2 Suburban Viola spp. L. 0.92 58 59 

H4 Suburban 
Ageratina altissima (L.) King & H.E. 

0.25 33 34 Robins. 
H4 Suburban Ampelamus albidus (Nutt.) Britt. 0.08 17 17 
H4 Suburban Asarum canadense L. 1.75 100 102 
H4 Suburban Lactuca canadensis L. 0.08 17 17 
H4 Suburban Microstegium vimineum (Trin.) A. Camus * 0.67 17 17 
H4 Suburban Viola spp. L. 0.08 17 17 
H4 Suburban Viola striata Ait. 0.08 17 17 
Bl Urban Ageratina spp. L. 0.13 2 2 
Bl Urban Alliaria petiolata (Bieb.) Cavara & Grande * 7.13 75 82 
Bl Urban Asarum canadense L. 0.02 4 4 
Bl Urban Duchesnea indica (Andr.) Focke* 0.83 25 26 
Bl Urban Erigeron spp. L. 0.04 4 4 
B1 Urban Euonymusfortunei (Turcz.) Hand.-Maz. * 0.17 8 9 
Bl Urban Glechoma hederacea L. * 18.10 79 97 
Bl Urban Impatiens capensis Meerb. 3.00 63 66 
Bl Urban Lamium amplexicaule L. 0.21 4 4 
Bl Urban Lonicera japonica Thunb. * 0.04 4 4 
B1 Urban Sanicula spp. L. 0.31 8 9 
B1 Urban Sicyos angulatus L. 0.42 25 25 
B1 Urban Solidago spp. L. 1.37 42 43 
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Appendix Table 12 (cont.) 
Bl Urban Urtica dioica L. 1.88 29 31 
Bl Urban Verbesina alternifolia (L.) Britt. ex Kearney 1.81 21 23 
Bl Urban Viola spp. L. 0.06 8 8 

B13 Urban 
Ageratina altissima (L.) King & H.E. 

1.83 33 35 Robins. 
B13 Urban Helianthus spp. L. 1.17 33 35 
B13 Urban Verbesina alternifolia (L.) Britt. ex Kearney 0.25 17 17 
B13 Urban Vilis vulpina L. 0.08 17 17 
B14 Urban Alliaria petiolata (Bieb.) Cavara & Grande * 0.17 17 17 
B14 Urban Asarum canadense L. 1.25 17 18 
B14 Urban Cystopteris tenuis (Michx.) Desv. 0.08 8 8 
B14 Urban Duchesnea indica (Andr.) Focke* 0.08 8 8 
B14 Urban EuonymusJortunei (Turcz.) Hand.-Maz. * 53.08 100 153 
B14 Urban Smilax rotundifolia L. 0.04 8 8 
B14 Urban Urtica dioica L. 1.92 42 44 
B2 Urban Ageratina spp. L. 1.46 50 51 
B2 Urban Asarum canadense L. 1.83 25 27 
B2 Urban Apiaceae 0.17 8 9 
B2 Urban Duchesnea indica (Andr.) Focke* 0.04 8 8 
B2 Urban Euonymus Jortunei (Turcz.) Hand.-Maz. * 27.00 83 110 
B2 Urban Glechoma hederacea L. * 2.29 50 52 
B2 Urban Grass 11.50 67 78 
B2 Urban Microstegium vimineum (Trin.) A. Camus * 0.17 8 9 

B2 Urban Packera obovata (Muhl. ex Willd.) W.A. 
0.04 8 8 Weber & A. Love 

B2 Urban Sanicula odorata (Raf.) K.M. Pryer & L.R. 
0.92 42 43 Phillippe 

B2 Urban Smilax rotundifolia L. 1.08 8 9 
B2 Urban Toxicodendron radicans (L.) Kuntze 2.21 50 52 
B2 Urban Urtica dioica L. 1.92 8 10 
B2 Urban Verbesina alternifolia (L.) Britt. ex Kearney 0.54 25 26 
B2 Urban Viola spp. L. 0.63 33 34 
B2 Urban Vitis vulpina L. 0.17 17 17 
B3 Urban EuonymusJortunei (Turcz.) Hand.-Maz. * 14.67 50 65 
B3 Urban Parthenocissus quinqueJolia (L.) Planch. 0.04 8 8 
B3 Urban Polygonatum biflorum (Walt.) Ell. 0.75 17 17 
B3 Urban Smilax rotundifolia L. 0.04 8 8 
B3 Urban Toxicodendron radicans (L.) Kuntze 0.04 8 8 
B4 Urban Ageratina spp. L. 0.13 8 8 
B4 Urban Alliaria petiolata (Bieb.) Cavara & Grande * 9.67 50 60 
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Appendix Table 12 (cont.) 
B4 Urban Cardamine pensylvanica Muhl. ex Willd. 0.04 8 8 
B4 Urban EuonymusJortunei (Turez.) Hand.-Maz. * 68.08 100 168 
B4 Urban Impatiens capensis Meerb. 0.42 25 25 

B5 Urban 
Ageratina altissima (L.) King & H.E. 

7.00 42 49 Robins. 
B5 Urban Euonymus Jortunei (Turez.) Hand. -Maz. * 36.33 67 103 
B5 Urban Toxicodendron radicans (L.) Kuntze 0.08 8 8 
B5 Urban Verbesina alternifolia (L.) Britt. ex Kearney 2.21 25 27 

B6 Urban 
Ageratina altissima (L.) King & H.E. 

17.25 83 101 Robins. 
B6 Urban Ampelamus albidus (Nutt.) Britt. 0.58 33 34 
B6 Urban Duchesnea indica (Andr.) Foeke* 0.42 33 34 
B6 Urban Solidago spp. L. 3.92 83 87 
B6 Urban Verbesina alternifolia (L.) Britt. ex Kearney 0.50 17 17 
B6 Urban Viola spp. L. 1.00 33 34 

B7 Urban Ageratina altissima (L.) King & H.E. 
10.57 63 73 Robins. 

B7 Urban Alharia petiolata (Bieb.) Cavara & Grande * 0.27 8 9 
B7 Urban Aureolaria spp. L. 0.02 4 4 
B7 Urban Cystopteris tenuis (Miehx.) Desv. 0.04 8 8 
B7 Urban Duchesnea indica (Andr.) Foeke* 0.33 17 17 
B7 Urban Elymus riparius Wieg. 0.17 4 4 
B7 Urban EuonymusJortunei (Turez.) Hand.-Maz. * 0.71 13 13 
B7 Urban Glechoma hederacea L. * 1.90 25 27 
B7 Urban Grass 6.92 54 61 
B7 Urban Lonicera japonica Thunb. * 0.29 13 13 
B7 Urban Lysimachia nummularia L. * 0.13 4 4 
B7 Urban Oxalis stricta L. 0.02 4 4 
B7 Urban Plantago rugelii Dene. 0.11 13 13 
B7 Urban Ranunculus hispidus Miehx. 0.02 4 4 
B7 Urban Sanicula spp. L. 0.25 4 4 

B7 Urban 
Sanicula odorata (Raf.) K.M. Pryer & L.R. 

1.24 38 39 Phillippe 
B7 Urban Smilax rotundifolia L. 0.15 8 8 
B7 Urban Solidago spp. L. 1.31 25 26 
B7 Urban Toxicodendron radicans (L.) Kuntze 0.12 8 8 
B7 Urban Verbesina altern{folia (L.) Britt. ex Kearney 13.32 84 97 
B7 Urban Viola spp. L. 0.32 17 17 
B8 Urban Aristolochia tomentosa Sims 0.13 8 8 
B8 Urban EuonymusJortunei (Turez.) Hand.-Maz. * 0.42 25 25 
B8 Urban Juncus spp. L. 0.21 8 9 
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Appendix Table 12 (cont.) 
B8 Urban Oxalis stricta L. 0.17 17 17 
B8 Urban Phytolacca americana L. 0.17 8 9 
B8 Urban Solidago spp. L. 2.21 17 19 
B8 Urban Viola spp. L. 0.08 8 8 
B9 Urban Sorghum halepense (L.) Pers. * 0.08 8 8 
B9 Urban Toxicodendron radicans (L.) Kuntze 0.13 8 8 

G8 Urban 
Ageratina altissima (L.) King & H.E. 

3.13 50 53 Robins. 
G8 Urban Carex blanda Dewey 12.56 25 38 
G8 Urban Euonymus fortunei (Turcz.) Hand.-Maz. * 0.06 13 13 
G8 Urban Glechoma hederacea L. * 3.19 63 66 

G8 Urban 
Sanicula odorata (Raf.) K.M. Pryer & L.R. 

0.13 25 25 Phillippe 
G8 Urban Verbesina alternifolia (L.) Britt. ex Kearney 3.00 25 28 
G8 Urban Viola spp. L. 0.06 13 13 
Non-native species indicated with an (*). 
Note: Plants were identified to the most distinct taxonomic 
group possible. 
Land use categories based upon % impervious surface at the 
subcatchment scale. 
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Appendix Table 13: Soil properties and trace nutrients from soil samples removed from 

static chamber centers located in riparian sites in urban, suburban, and rural 
subcatchments in October 2008. Urban subcatchments contain:::: 30% impervious surface 

cover, rural subcatchments contain ,:::10% impervious surface cover, and suburban 

subcatchments contain values in between 10 and 30% impervious surface cover. Site 
names beginning with R, S, and U are located in rural, suburban, and urban 

subcatchments, respectively. The second letter in the site name indicates whether the site 

is located in Harrods (H), Goose (G), or Beargrass (B) creek watershed. 

lte 0 0 0 

RG4 19.9 65.1 15.0 

RG7 17.7 67.2 15.1 

RH13 27.3 54.8 18.0 

RH5 43.2 43.2 13.6 

SB12 7.8 80.8 11.5 

SG13 21.1 64.1 14.9 

SG9 10.9 72.5 16.6 
UBI 11.3 67.9 20.8 
UB14 22.6 67.5 10.0 

UB2 28.9 54.9 16.2 
UB3 15.8 66.3 17.9 
UB5 8.3 70.6 21.1 

UG8 28.3 59.1 12.6 

TEe 
(meq/ 
100 ) g; 
12.9 

13.8 
21.8 
21.1 
22.3 
14.4 

13.3 
17.1 
28.4 
20.0 
15.5 
13.1 

11.6 

pH (1:1 
soil to 
water ) 

7.1 
7.1 
6.6 
7.2 
7.6 
7.3 
7.5 
7.2 
6.9 
7.7 
7.0 
7.4 

6.1 

Organic 
Matter 

(0/. ) 0 

4.48 
4.06 
9.98 

3.4 
5.06 
4.95 
3.5 

4.74 
6.49 
3.98 
4.78 
6.36 

4.15 

S 
(mg/ 

) kg 

21 

36 
44 
29 
38 
36 

23 
36 
81 
26 
37 
30 

31 

Bulk 
dens. 

0.59 
0.53 
0.73 
0.52 
0.56 
0.58 

0.56 
0.63 
0.49 
0.66 
0.5 
0.55 

0.58 
Brookslde Laboratones, 308 S. Mam Street, New Knoxville, OH, 45871, 419-753-
2448, www.blinc.com 
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Appendix Table 13 (cont.) 

Bray II Ca Mg K Na 
p (mg/ (mg/ (mg/ (mg/ Ca Mg K Na H 

Site (mg/kg) kg) kg) kg) kg) (%) (%) (%) (%) (%) 
RG4 113 1992 251 81 22 77.2 16.2 1.61 0.74 0 
RG7 75 2143 269 51 26 77.7 16.3 0.95 0.82 0 
RH13 158 3410 232 128 22 78.4 8.9 1.51 0.44 6 
RHS 114 3694 168 54 40 87.7 6.6 0.66 0.83 0 
SB12 55 3843 238 66 23 86.1 8.9 0.76 0.45 0 
SG13 63 2002 411 94 22 69.7 23.9 1.68 0.67 0 
SG9 121 2033 271 75 32 76.6 17.0 1.45 1.05 0 
UBI 151 2559 404 58 26 74.7 19.6 0.87 0.66 0 
UBI4 122 4787 283 102 27 84.4 8.3 0.92 0.41 1.5 
UB2 11 3395 237 69 22 85.1 9.9 0.89 0.48 0 
UB3 86 2568 208 61 22 82.8 11.2 1.01 0.62 0 
UBS 53 1901 340 79 18 72.3 21.6 1.54 0.60 0 
UG8 122 1428 213 157 22 61.7 15.3 3.48 0.83 14 
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Appendix Table 13 (cont.) 

B Fe Mn Cll Zn Al P 
Site (m~kg) (m~kg) ~mg/kg) (mg/kg) ~mg/kg) (mg/kg) (mg/kg) 

RG4 0.97 186 317 5.16 8.74 461 26 

RG7 0.85 226 472 4.45 11.42 403 45 
RH13 1.09 324 284 4.78 11.47 404 97 
RH5 0.60 208 334 6.83 15.22 371 61 
SBl2 0.98 218 411 3.59 5.99 290 41 

SG13 0.93 152 409 3.97 11.26 439 24 

SG9 0.77 187 419 6.01 12.87 478 41 
UBI 0.86 289 464 7.67 16.59 467 92 

UBl4 0.99 398 476 5.15 9.69 339 97 
UB2 0.70 173 356 2.04 3.27 254 13 
UB3 0.64 195 361 4.89 12.98 363 34 

UB5 0.96 153 525 2.02 4.57 359 22 

UG8 0.64 262 311 5.52 19.55 608 102 

Methods for the data collected are referenced as follows: Total exchange capacity (Ross 

1995); pH (McLean 1982); organic matter (Schulte and Hopkins 1996); s, Ca, Mg, K, 

Na, B, Fe, Mn, Cu, Zn, AI, and P (Mehlich 1984); soil texture (ASTM Standard D422-63 

2002); Bray-II Phosphorus (Bray and Kurtz 1945); Zn, Mn, Fe, and Cu (Linsay and 
Norvell 1978). 
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Appendix Table 14: Monthly mean carbon dioxide flux rates (mg CO2-Clm2*d) from 
riparian soils within urban, suburban, and rural sub catchments from January to October 
2008. 

Site Jan Feb March April May June July Aug Sept Oct 
RG4 0 454 422 1817 2377 3666 3056 2555 1927 1103 
RG7 994 276 1233 2940 1460 1512 1544 1950 1146 773 
RH13 174 -47 245 2581 2377 2084 4816 1711 1699 1559 
RH5 -255 -359 225 1485 1127 1029 1836 1056 1174 735 
SB12 - 741 190 1794 2262 3087 2838 1260 2493 1260 
SG13 511 715 104 1536 1007 1387 1953 2140 2388 1366 
SG9 513 488 793 2189 1895 1666 3250 1593 1782 1160 
UBI 181 -78 241 2171 1253 1642 2806 687 988 874 
UB14 - - - - - - 5166 3527 4336 2840 
UB2 73 301 690 2800 3376 3970 3761 2591 2959 2775 
UB3 254 180 586 1750 1635 2524 2596 2920 2355 3532 
UB5 257 466 616 2116 1997 3778 3148 2612 3025 1561 
UG8 488 323 446 2567 2015 2665 4743 2605 2326 1523 
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Appendix Table 15: Monthly mean methane flux rates (mg CH4-C/m2*d) from riparian 
soils within urban, suburban, and rural subcatchments from January to October 2008. 

Site Jan Feb March April May June July Aug Sept Oct 
RG4 -0.10 -0.26 -0.15 -0.41 -0.26 -0.24 -0.29 -0.47 -0.55 -0.59 
RG7 0.25 1.16 1.92 6.61 0.72 0.64 1.11 0.06 0.13 -0.29 
RH13 -0.13 - -0.11 0.01 0.09 0.39 -0.09 -0.31 -0.19 -0.16 
RH5 -0.48 -0.28 -0.30 -0.62 -0.48 0.04 -0.33 -0.98 -1.24 -0.94 
SB12 0.03 -0.19 0.08 -0.33 -0.44 -0.30 -0.82 -1.37 -1.30 -1.02 
SG13 -0.15 -0.01 -0.04 -0.10 -0.29 -0.12 0.13 0.05 -0.25 -0.29 
SG9 -0.03 -0.22 0.30 -0.25 -0.50 -0.43 -1.69 -0.79 -1.03 -1.14 
UBI -0.11 0.12 -0.16 1.91 -0.17 -0.24 -0.46 -1.06 -0.70 -1.00 
UB14 - - - - - - -0.49 -0.69 -0.62 -0.66 
VB2 0.64 -0.18 -0.24 -0.35 -0.51 -0.54 -0.66 -0.65 -0.91 -0.73 
VB3 -0.35 -0.21 -0.23 -0.51 0.01 -0.11 -0.32 -0.88 -0.82 -0.79 
UB5 -0.72 -0.34 -0.23 -0.51 -0.46 -0.75 -0.62 -1.06 -0.88 -0.88 
UG8 -0.41 0.04 0.01 -0.28 -0.65 -0.16 0.07 -0.54 -0.97 -0.62 
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Appendix Table 16: Monthly mean nitrous oxide flux rates (mg N20-N/m2*d) from 
riparian soils within urban, suburban, and rural sub catchments in August and October 
2008. 

Site Au Oct 

RG4 0.15 0.20 
RG7 0.08 0.04 
RH13 0.34 0.05 
RH5 0.09 0.09 
SB12 0.05 0.13 
SG13 0.30 0.13 
SG9 0.17 0.10 
UBI 0.11 0.14 
UB14 0.23 0.23 
UB2 0.16 0.22 
UB3 0.14 -0.02 
UB5 0.17 0.14 
UG8 0.17 0.13 
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