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ABSTRACT 

Rapid Electrokinetic Patterning (REP) is a relatively new method for collecting 

and manipulating micrometer-scale particles at an electrode surface.  REP is an AC 

electrokinetic technique that uses induced fluid motion to capture and manipulate 

particles.  A laser (975 nm) is focused on the surface of the parallel-plate electrode, 

generating a thermal gradient in the medium.  This thermal gradient is acted upon by the 

AC electric field in such manner as to produce a vortex.  Particles are trapped on the 

electrode surface at the center of the vortex.  It is hypothesized that AC electroosmotic 

flows act to hold the particles to the electrode surface more strongly than other holding 

forces, such as dielectrophoresis (DEP). 

The accumulation of single-size particles occurs in one layer, and is two-

dimensional in REP, and crystalline in nature under the correct conditions.  Electrostatic 

forces separate the particles while fluid drag forces tend to corral the particles together.  

The particle aggregations tend to exhibit several exclusive, characteristic behaviors: the 

particles will group together very closely and uniformly, the particles will form arbitrary 

aggregations of tightly packed particles, or the particles will exhibit a nearly-random 
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spacing.  Parameters are varied such that the average spacing is changed between the 

particles to transition the particles from nearly-random spacing to a uniform, tightly 

packed crystalline grid. 

The relationship between the drag forces and the electrostatic forces parallel to the 

electrode surface are explored for different AC frequencies, AC voltages, laser powers, 

laser scan rates, and laser scan lengths.  The effect these parameters have on the spacing 

of the particles is characterized, and aggregation crystallinity is discussed.   

A more detailed force analysis is discussed for non-varying parameters with a dot-

shaped aggregation.  The ability to use this force analysis for particle spectroscopy is 

briefly discussed.  Particle motion was analyzed with Particle Tracking Velocimetry 

(PTV) using Matlab scripts. 
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NOMENCLATURE 

a = particle radius 

α = electronic polarizability 

c = concentration 

d = distance between particles 

D = diffusion coefficient 

ε = permittivity 

ε̃ = complex permittivity 

εm = permittivity of the medium 

εo = permittivity of free space 

εr = relative permittivity 

E = electric field 

Eo = applied electric field vector 

h = time step 

i = √   

    = Debye length 

  = inverse Debye length 

k = Boltzmann’s constant 

σ = conductivity 

p = polar moment 

P = particle position 

T = temperature 

u = particle velocity 

µ = dynamic viscosity 

v = particle volume 

v = particle acceleration 

  = angular frequency in radians 
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I. INTRODUCTION 

Trapping and manipulating colloids is the subject of a great amount of modern 

focus.  Colloids are broadly defined as “any substance consisting of particles 

substantially larger than atoms or ordinary molecules but too small to be visible to the 

unaided eye…” (Encyclopædia Britannica, 2012b), and may be dispersed in another 

substance.  The colloid and dispersant could both be the same phase (i.e. liquid dispersed 

in liquid, such as milk), or they could have differing phases (i.e. solids dispersed in 

liquids, such as blood).  There are vast numbers of colloids that exist commercially, and 

colloids play a major role in research (Pieranski, 1983).  Examples of colloids existing in 

the food industry include milk, butter, margarine, cheese, yoghurt, gelatin, and 

mayonnaise (Dickinson & McClements, 1996).  Aerosols are colloids solutions.  In the 

medical field exists one of the most prominent solution containing colloids: blood.  Blood 

cells, antibodies, and virus cells immersed in blood are colloids.  Solids dispersed in 

liquids are sol colloids (Encyclopædia Britannica, 2012c), which is distinct from gels 

where the liquid medium is viscous enough to behave more like a solid.  A sol type 

colloid where the fluid medium is water is a hydrosol, which is examined herein.  Thus 

advances in colloid research affect a vast number of industries and modern health.  

Uniform crystals are desirable in colloidal aggregations (Santana-Solano, Wu, & 

Marr, 2006).  Trapping and organizing particles is of significant interest in constructing 

nanostructure arrays using colloidal crystals, which is known as colloidal lithography 

(Zhang, Li, Zhang, & Yang, 2010).  The hexagonal close-packed nature of a colloidal 

aggregation has generated interest in the field of photonics (Jiang, Bertone, Hwang, & 

Colvin, 1999).  Jiang et al. used a colloidal crystal template to manufacture macroporous 
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polymer membranes, which they then characterized.  This demonstrates the usefulness of 

colloidal lithography using colloidal crystals.  The same group later studied the optical 

properties of spherical shells and multilayer colloidal superlattices (Rengarajan, Jiang, 

Colvin, & Mittleman, 2000; Rengarajan, Jiang, Larrabee, Colvin, & Mittleman, 2001).  

They demonstrated that multi-layer colloidal crystals provide a method for providing an 

optical stop band.  Photonic crystals require a length scale in the sub-micron range, for 

which REP is well suited.   

Various techniques have been developed to trap and manipulate particles.  Rapid 

Electrokinetic Patterning (REP) is a relatively new method of collecting and organizing 

particles on an electrode surface (Williams, Kumar, & Wereley, 2008), and is 

thermoelectrokinetic in nature.  Other techniques include optical trapping (Novotny, 

Bian, & Xie, 1997), electrophoresis (Rodriguez & Armstrong, 2004), dielectrophoresis 

(Kim, Asmatulu, Marcus, & Papadimitrakopoulos, 2011; Zhou, White, & Tilton, 2005), 

thermophoresis (Zheng, 2002), and sedimentation (Colvin, 2001). 

REP exhibits a number of advantages over other techniques.  Unlike traditional 

optical trapping methods, which can only trap a few particles, REP is well suited to 

handle a large number of particles.  Unlike electrophoretic techniques, REP and DEP can 

move neutral particles.  Unlike many electrophoretic and dielectrophoretic (DEP) 

methods, REP does not require complicated electrode geometry; on the contrary, it 

requires simple (parallel plate) geometry.  REP also allows a great degree of freedom in 

controlling the particles.  REP relies on thermal gradients to produce bulk forces and 

induce vortices, which can be dynamically and remotely controlled with a laser 

(removing the need for intrinsic heating elements).  This allows the particles to be moved 
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across the surface of the electrode, and the shape and spacing of the aggregation to be 

changed rapidly.  Most DEP techniques require fixed electrodes with comparatively 

complicated geometry.  They are limited by the fixed nature of their electrodes.  The 

aggregation of particles is also frequency dependent, providing a further degree of 

freedom in tuning an REP system (Williams et al., 2008).  Thus REP is simplistic in its 

implementation and powerful in its application. 

As REP is relatively new, its primary disadvantage lies in its lack of development 

and characterization.  The fundamental nature of its mechanics are known and the 

technique is useful for trapping and moving groups of particles, but there are many 

insufficiently-known mechanics such as the nature of particle-particle spacing, the micro-

vortex corralling the particles, and the holding forces that trap the particles at the 

electrode surface.  This paper explores several of these mechanics by studying the drag 

and electrostatic forces on the particles, as well as the nature of the aggregations.  The 

ability to form, pattern, control, and characterize crystallinity within particle aggregations 

is also discussed.  The spacing of particles is important to characterize the crystallinity of 

the aggregation.  As particle spacing approaches a minimum, the particles will form a 

crystalline grid.    

Crystallinity can be judged by the number of neighboring particles ‘touching’ 

each individual particle (Kim et al., 2011), but more relevant to REP is the spacing 

between each particle and its’ neighbors.  REP can dynamically control the spacing of 

particles within an aggregation, and can spontaneously form a 2D crystal. This work 

investigates particle-particle distances within the whole aggregation to characterize its 

crystallinity for various REP parameters.  
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A. Overview of REP 

REP uses two parallel-plate electrodes.  Herein, one plate is transparent for visual 

observation.  Water with a specified KCl molarity is placed between the plates.  The goal 

of REP is to bring the spherical particles to the surface of an electrode, and organize them 

in a manner useful to their study or application.  This thesis focuses on the dynamics of 

the particle aggregations and on their application.   

REP has two power sources: a laser and an AC electric field.  The laser’s role is 

solely to create thermal gradients in the medium, while the AC field serves a number of 

functions.  The AC field is necessary to both induce fluid motion by acting on the 

medium through thermal gradients, and also to trap the particles at the surface of the 

electrode.  Figure 1 shows the experimental setup used in REP. 

 
 

FIGURE 1 - Setup of REP experiments, from (Kumar et al., 2010). 
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The mechanisms required for REP are as follows.  The laser hits and is absorbed 

by the bottom ITO surface (being focused through the viewing objective).  The induced 

thermal non-uniform field generates a spatial gradient in the electric and dielectric 

properties of the medium.  The AC field acts on this gradient to create a bulk force.  This 

force creates an axisymmetric vortex centering at the laser spot (see Figure 1).  The 

induced vortex carries suspended particles and brings them in near-contact with the 

surface.  Dielectrophoretic forces and other electrokinetic mechanisms such as AC 

electroosmosis (ACEO) hold the particles adjacent to the electrode surface (Fagan, Sides, 

& Prieve, 2002, 2005; Zhou et al., 2005).  Drag forces from the vortex corral the particles 

to the center of the vortex, while additional electrokinetic forces repel the particles away 

from each other.  The shape and location of the vortex can be controlled with the 

scanning laser.  As shown in Figure 1, the laser is focused on the lower ITO surface 

through the optics on the microscope used to observe fluid motion. 

Important to understanding ACEO are electrokinetic particle relaxation 

mechanisms.  The particle-electrode holding forces are not well understood (Fagan et al., 

2005).  Many papers on the subject of colloidal sorting focus on the lateral forces acting 

on particles.  In this case, the dominant particle-electrode holding force is hypothesized to 

be due to ACEO; however, this is not investigated.  These lateral electrokinetic forces 

will be discussed in greater detail in the following sections.  

B. Overview of Relevant AC Electrokinetics 

Fundamental to REP is dielectrophoresis.  Dielectrophoresis is the force on a 

dielectric material due to a gradient in the electric field.  Positive dielectrophoresis occurs 

when the material of interest moves towards the stronger field; negative dielectrophoresis 
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occurs when the material moves away from the stronger field.  The electric field in REP 

is uniform, but both the presence and polarization of the particles disturb the uniform 

nature of the field.  The presence of the particle changes the electric field, so it will either 

tend to pass through or around the particle creating a local non-uniformity.  The 

polarization disturbs the field due to the charges on the particle producing their own field, 

superposed over the uniform field.  It is not known which, if either, of these effects are 

significant. 

Electronic polarizability (α) is the ability of a dielectric material to polarize when 

subjected to an electric field.  A polarized particle is one in which positive and negative 

charges separated to form electric poles, in this case, a dipole.  The polar moment of a 

particle is given by (Lyklema, 1991) 

 p =  d = vα̃E  (1) 

where q is the charge at each end of the dipole, d is the distance between two poles, v is 

the volume of the particle, α̃ is the effective polarizability of the particle, and E is the 

electric field applied to the particle.  

There are several particle polarization mechanisms, including the movement of 

ions (atomic polarization), the shifting of an electron cloud (electronic polarization), or 

the rotation of permanent dipoles (such as the orientation of a water molecule).  

Polarization mechanisms take a finite amount of time to occur and each have a 

characteristic frequency response.  These particular polarization mechanisms occur on a 

very small scale compared to the size of the particles used herein, and relax at AC 

frequencies larger than those used in REP. Orientational polarization typically relaxes 

around 10
9
 Hz, atomic polarization around 10

12
 Hz, and electronic polarization around 
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10
15

 Hz (Agilent, 2006).  Of specific interest are polarization mechanisms on the scale of 

the particle itself, which are useful for particle trapping.   

Two polarization mechanisms are particularly important: Maxwell-Wagner 

interfacial polarization, and ionic double layer polarization.  These occur on the size scale 

of the particle, and relax lower frequencies than other polarization mechanisms.  This is 

due to the length scale of the polarization being on the order of the particle itself.  

Maxwell-Wagner interfacial polarization is important as it is a significant factor in 

dielectrophoretic forces that are capable of attracting or repelling particles to/from areas 

of high electric field gradients.  Ionic double layer polarization is important because it 

plays a key role in AC electro-osmosis (ACEO), an electro-hydrodynamic mechanism 

capable of trapping particles against the electrode surface in REP.  Both of these topics 

are very involved; a simplified case is presented and used in analysis for REP.  These 

mechanisms are explored herein to the extent necessary to grant a sufficient 

understanding of REP.   For a more detailed presentation, see  (Kirby, 2010; Lyklema, 

1991; Munson, 2009). 

The focus of the following two sections is on the relaxation frequency for each 

respective polarization mechanism.  These relaxation frequencies are important to 

distinguish which mechanism is involved with REP to hold the particles.  Knowing which 

mechanism is holding the particles is important to determine the dipole moment on each 

particle.  It is the hypothesis of the author that the double layer polarization is responsible 

for holding particles to the surface of the electrode, and that interfacial polarization is 

responsible for separating the particles.  This was not further investigated.  The function 
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that each polarization mechanism serves has not been thoroughly explored, and holds 

potential for future work expanding knowledge of REP. 

1. Maxwell-Wagner Interfacial Polarization 

Interfacial polarization involves the inhibited movement of charge carriers 

(Agilent, 2006).  Charge carriers are collected at the interface of two different dielectric 

mediums with different permittivities and/or conductivities (Morgan & Green, 2003).  

This is true regardless of the geometry of the system, though the nature of polarization 

would be different.  The Maxwell-Wagner interfacial polarization is due to this surface 

charge. At low frequencies, charge carriers have plenty of time to accumulate, while at 

higher frequencies the charge carriers do not have enough time to accumulate at the 

surface of the particles, and the polarization relaxes.  The dipole moment of a spherical 

colloidal particle was calculated using (Morgan & Green, 2003)  

 
p =  εm (

ε̃p ε̃m

ε̃p  ε̃m
) vE =  εm cm  

(2) 

where εm is the permittivity of the medium, ε̃p and ε̃m are the complex permittivities of 

the particle and the medium, respectively, and  cm is the Clausius-Mossotti factor.  The 

complex permittivity is defined as 

 
ε̃ = εoεr 

iσ

 
  

(3) 

where εo is the permittivity of free space, εr is the relative permittivity, i is √  , σ is 

conductivity, and   is the frequency of the electric field in radians.  Combining (1) and 

(2), the effective polarizability of a homogeneous colloidal particle is given by 

 α̃ =  εm cm (4) 
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As such, the Clausius-Mossotti factor is directly proportional to the effective 

polarizability. 

This form of polarization is important to REP as dielectric forces act on the 

particle due to the increased electric field (from the charge build up at the interface and 

the presence of the particle), and attract the particles to the electrode surface under 

positive dielectrophoresis.  The particle disturbs the field, creating non-uniformities.  

These fields interact with the field produced by the electrodes, and make them stronger or 

weaker; this causes DEP forces to affect the particle.  The time-averaged DEP force 

acting on the particle are given using (Morgan & Green, 2003) 

 〈  EP〉 =  a
 εmRe  cm  |E|

  (5) 

where a is the particle radius.  The real part of the Clausius-Mossotti factor will 

determine whether the DEP force is positive or negative, which determines if the particle 

will be attracted to or repelled from the electrode surface.   

The induced dipole in each particle will also create a repulsive force between 

neighboring particles.  The force between two neighboring spherical particles with an 

induced dipole is approximated to an order of magnitude using (Nadal, Argoul, Hanusse, 

Pouligny, & Ajdari, 2002)  

 
 e 

  εma
 Eo

 

d
 

 
(6) 

where Eo is the applied electric field, and d is the distance between the neighboring 

particles.  For more information on DEP, see (Kirby, 2010; Morgan & Green, 2003). 
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2. Ionic Double-Layer Polarization 

Ionic double-layer polarization is similar to Maxwell-Wagner Interfacial 

Polarization in that it involves ions being trapped at the surface of the colloidal particle.  

Rather than DEP forces bringing ions to the surface of the colloidal particle, electrostatic 

forces attract ions.  In ionic double-layer polarization, the colloidal particles gain an 

electric charge from the solution in which they are submerged.  The particles may absorb 

molecules from the medium or chemical groups on the particle’s surface may 

disassociate, giving the particle a net charge.  This surface charge attracts ions with an 

opposite charge.  These ions form two layers around the particle: a thin layer strongly 

attracted to the surface (the Stern layer, or the bound layer), and a thicker layer (the 

diffuse layer, or Gouy-Chapman layer) that is less-strongly attracted to the particle.  

These two layers are the ‘double layer’, or electric double layer (EDL), around the 

particle, and will polarize by moving around the perimeter of the particle.  Figure 2 is a 

depiction of ionic double-layer polarization.  
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FIGURE 2 - Ionic double-layer polarization seen in REP. 

As shown in Figure 2, the Stern layer is much closer to the particle than the 

diffuse layer, and, as such, has much lower mobility.  As the diffuse layer has higher 

mobility, it polarizes faster than the Stern layer, and increases the speed at which the 

Stern layer polarizes above that predicted by the Schwarz model (Morgan & Green, 

2003).  The orientation of the dipole may be dependent on the properties of the medium 

and the applied field.  The mobility of the Stern layer and the mobility of the diffuse layer 

are not constant, so the particle may polarize in either direction.  The amount of surface 

charge in each layer is unknown, but combined are equivalent to the total surface charge 

on the particle (effectively reducing the total charge of the particle to zero).  The order of 

the relaxation time of the Stern layer was calculated using Schwarz’s model,  

 
  = 

a 

  
  

(7) 
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where D is the diffusion coefficient.  This model does not include the effects of the 

diffuse layer.  This also does not include ion exchanges between the suspending 

electrolyte and the charged layer (Morgan & Green, 2003).  Ionic double layer 

polarization is important to ACEO as it provides a mechanism for inducing fluid motion 

around a particle, discussed in the next section. 

The Debye length is the characteristic length of the EDL, and describes the 

distance from a charged particle it takes for the potential to fall to a fraction of the surface 

potential equivalent to e
-1

.  For an aqueous potassium chloride (KCl) solution, the Debye 

length is given with respect to molar concentration, c, as (Morgan & Green, 2003)  

 

   = .      
   √

T

c
  

(8) 

where T is temperature.  For the aqueous KCl solution used (0.13 mM),  -  corresponded 

to a length of ~26 nm.  The Debye length is important as simplifications can be made to 

the electrokinetic model for a small Debye length (when compared to the radius of the 

particle).    

The force between two spherical particles due to the EDL is approximated using 

DLVO theory, named for Derjaguin, Landau, Verwey, and Overbeek (Morgan & Green, 

2003),  

 

 

 R 
  aσ d

 

 εm
e  d 

(9) 

where σ d is the diffuse layer charge density, and   is the inverse Debye length.  Since the 

force is proportional to e- d, and the inverse Debye length is a very large number (on the 
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order of 10
9
), this force scales down very rapidly.  DLVO theory includes attractive van 

der Waals interaction, and repulsive double layer interaction. 

3. AC Electroosmosis 

ACEO in REP is the result of ion motion across the surface of particles, 

specifically from the diffuse layer of the EDL.  As the ions move across the surface, 

viscous effects carry with them the surrounding medium.  A non-uniform electric field is 

required for ACEO just as it is required for DEP (Morgan & Green, 2003).  Near the 

surface of an electrode, the particle will create non-uniformities in the electric field.  

When ACEO occurs near the surface of an electrode, ions will move tangentially to the 

surface of the electrode as well as along the edge of the particles.  As a result, a localized 

vortex is created between the particles and the electrode.  This vortex lowers local 

pressure, which tends to pull the particle towards the electrode.  Furthermore, fluid flow 

produced by ACEO is frequency dependent, and has a Gaussian-shaped profile (Morgan 

& Green, 2003). 

The particles in REP are observed to move randomly.  It is the hypothesis of the 

author that this is due to Brownian motion and/or ACEO; however, this is not 

investigated further.  As discussed in section C3, the particles store relatively little kinetic 

energy in their motion.  As a result, fluid drag would quickly dampen movement due to 

electrostatic forces.  ACEO is therefore suspected to cause this ‘random’ movement, 

which provides a challenge for proper analysis (as discussed in Results and Discussion, 

section C3 with respect to spectroscopy). 

ACEO also pulls particles together over short distances.  Under particular 

conditions, particles will form arbitrary aggregations on the surface of an electrode within 
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a single aggregation.  This effect has been demonstrated at low frequencies, and occurred 

because of electrohydrodynamic flow (Ristenpart, Aksay, & Saville, 2004).  This 

attractive force is present at higher frequencies, but repulsive forces begin to dominate as 

the frequency increases.  This effect demonstrates that ACEO can generate force on the 

particles at the frequencies of interest.  The phenomenon of particles grouping into 

arbitrary aggregations at low frequencies is not further discussed, however, and is outside 

the scope of this thesis.  For more information on ACEO see (Kirby, 2010; Morgan & 

Green, 2003). 

4. Thermolelectrokinetic Forces Overview 

The heat from the laser being absorbed by the ITO electrode surface is dissipated 

to the medium.  This creates a thermal gradient in the medium, which, in turn, creates a 

gradient in the permittivity and conductivity of the medium.  This force was 

approximated using (Lyklema, 1991) 

 
〈fe〉   

 

 
Re(

σεm(αe  )

σ i εm
( T  o) o
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In an aqueous KCl solution,  αe is approximately -0.4% K
-1

, and   is approximately 2% 

K
-1

 (Lide, 1993).  The first term in (10) is the Coulomb force, while the second is the 

dielectric force.  Since these two forces have the potential to act in opposite directions, 

and since the dielectric force will dominate as the AC frequency increases, the direction 

of flow could be controlled with the frequency.  It does not reverse in REP, however. 
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C. Overview of Relevant Mechanics 

Also important to REP are the mechanics involved with particles suspended in 

water.  The following sections discuss the fluid dynamics associated with the particles, 

the thermal dissipation in the chip, and additional mechanics such as gravity and 

Brownian motion. 

1. Fluid Dynamics and Drag 

Important to the study of colloids under the influence of a micro-vortex is fluid 

dynamics.  Of particular interest is the behavior of the particles at the surface of the 

electrode.  A particle at the surface of an electrode will experience lift (normal to the 

plane of the electrode), and drag (perpendicular to lift).  The lift force, while relevant to 

REP, is not pertinent to the topic herein.  The drag force is of primary importance.  Fluid 

drag will both corral the particles into a group and inhibit outward movement when the 

laser is deactivated. 

Stokes’ Law was used to determine the drag on particles as they were released 

(laser deactivated).  Stokes’ Law is valid for flows with Reynolds numbers that are much 

less than one.  In REP, the maximum particle velocity is on the order of 100 µm/s.  For 1 

µm particles, this corresponds to a Reynolds number on the order of 10
-4

.  Drag was 

calculated using (Munson, 2009) 

 fd =    ua (11) 

where   is the dynamic viscosity of the medium, and u is the particle velocity.  In order to 

use Stokes’ Law for REP, it must be assumed that the medium’s velocity is static.  The 

particles do not touch the surface of the electrode (Fagan, Sides, & Prieve, 2004), and can 

be treated as being suspended in the medium; however, boundary layer effects from the 
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electrode surface and fluid medium velocity are still of concern.  Effects due to the 

boundary layer are minimized by only using the first images after the particles are 

released, spanning a duration of up to 0.2 seconds.  

2. Thermal Dissipation and Time Response 

Of primary importance to colloidal patterning is the time constant associated with 

the dissipation of heat produced by the laser.  This was studied by (Velasco, Work, & 

Williams, 2012).  Velasco et al. used Rhodamine B, a temperature-dependent fluorescent 

dye, to measure the temperature of the substrate.  They also demonstrated that the 

temperature increase was a function of both laser power and scanning speed; i.e. if the 

laser were scanned over a specified length, the maximum temperature obtained would be 

less than that if the laser were fixed at a single point. 

Velasco et al. further demonstrated an averaged velocity plot for both a single 

point and a scanned line at the same laser power.  The scanned point, having a larger 

gradient, produced larger fluid velocities.  For scanning lines, as the speed of the scan 

increased, the maximum velocity decreased.  As speed increased, temperature variation 

across the scanned area decreased.  This decreased the maximum thermal gradient, and 

thereby decreased the maximum fluid velocity. 

3. Gravitational/Buoyant Forces and Acceleration 

Buoyancy effects on each particle are neglected in calculations.  They are both 

very small, in proportion to relevant forces, and in the direction normal to the surface of 

the electrode (as is the lift force). The density of polystyrene is close to that of water 

(~1050 kg/m
3
 (Scientific, 2012) compared to ~998 kg/m

3
  (Munson, 2009)).  The 

magnitude of these forces is small due to the size scale of the particle and its density. The 
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drag force parallel to the surface of the electrode is on the order of 10
-7

 N, whereas the 

difference in the gravitational and buoyant forces is approximately  . 5   
-15

 N.  Due to 

the small magnitude of the gravitational force, changes in the orientation of the chip do 

not cause the aggregation of the particles to appreciably change.  Since the mass of each 

particle is small (~ .    
-15

 kg), the particles accelerate very rapidly.  Image capture was 

limited to a maximum of 30 Hz; before one frame is recorded, the particle has essentially 

reached its terminal velocity. The magnitude of the observable acceleration was on the 

order of 10
-3

 ms
-2

, meaning the net force on the particles is on the order of 10
-17

 N.  As 

the drag is on the order of 10
-7

 N, the net force can be treated as zero. 

4. Brownian Motion 

Brownian motion is the random movement of molecules in a fluid (Encyclopædia 

Britannica, 2012a).  The movement of the particles is apparently random, preferring no 

one direction over the other.  The rms displacement of a suspended particle due to 

Brownian motion can be determined using the diffusion coefficient, given from the 

Stokes-Einstein equation as (Dunstan & Stokes, 2000) 

 
  = 

kT

   a
 

(12) 

where k is Boltzmann’s constant.  This is related to the rms displacement using 

 xrms = √  t (13) 

The rms displacement corresponding to a micron-size sphere in water at 293K over 1/30
th

 

of a second is 120 nm.  This may be directly responsible for the random movement 

demonstrated by the colloidal particles in REP. 
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5. Vortex Shedding 

Vortex shedding doesn’t affect the colloidal particles used in REP due to the low 

Reynolds numbers involved.  Vortex shedding occurs at Reynolds numbers above 300 

(Williamson, 1988).  The order of magnitude of the Reynolds number in REP is 10
-4

, 

indicated vortex shedding does not affect the particles. 

D. Synopsis 

Colloid science affects a great number of fields, including biology and life 

sciences, environmental sciences, petroleum sciences, imaging technology, commercial 

applications, and more (Hiemenz, 1997).  The ability to study colloids therefore garners a 

significant amount of attention from a number of disciplines and industries.  There are 

many techniques to capture colloids for observation, out of which REP stands out for its 

simplistic implementation and high order of controllability.  REP, however, uses many 

different mechanics and is difficult to understand.  Furthermore, many fundamental 

concepts to REP are not well understood, such as the nature of the polarization 

mechanisms and the effect ACEO has on the particles.  The relationships between 

different areas of REP are depicted in Figure 3. 

 

FIGURE 3 - The Relationship of the Mechanics of REP. 
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The mechanisms involved in REP are interrelated.  The AC field affects all of the 

different areas of REP, whereas the laser only affects the induced vortex.  DEP and 

ACEO govern the particle-electrode holding force.  Both polarization techniques are 

important to forces parallel and perpendicular to the field.  Isolating the effects of one 

polarization mechanism is difficult as ACEO is thought to affect the spacing of the 

particles separately from the electrostatic forces and to induce seemingly random motion. 

In spite of the intertwined relationship between the various mechanisms involved 

in REP, control over the particles by changing the laser power, the AC field, and the 

conductivity of the medium via KCl concentration is straightforward.  Varying any given 

individual parameter has a predictable and simple effect, as shown in Results and 

Discussion.   

This thesis intends to characterize the crystalline nature of the aggregations of 

particles with the understanding of the underlying mechanics.  The ability to identify the 

direct effects of a specific polarization mechanism was discussed, but is not 

demonstrated.  Polarization identification was considered outside of the scope of the 

thesis, and is recommended for future work pertaining to electrokinetic spectroscopy. 
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II. MATERIALS AND METHODS 

A. Devices 

The REP devices used were constructed using a glass slide and a cover slip both 

coated with indium tin oxide (ITO).  A channel was manually cut into 50 µm double-

sided tape, which was used to connect the two glass slides with the ITO-surfaces facing 

each other.  Holes were drilled in the glass slide to allow fluidic access to the channel, 

with adhesive rubber ports covering the holes.  Lead wires were attached to the ITO 

surfaces using conductive epoxy, conductive copper tape, and solder.  Figure 4 is an 

image of the device used for testing taped to a petri dish (with a hole cut for the 

objective). 

 

FIGURE 4 - REP device used for testing. 

The device shown is taped to a petri dish with a hole in the center for access.  The 

ports are drilled into the glass as it is more rigid than the cover slip.  Adhesive rubber 
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ports are used to reduce the effect of external air movement and evaporation, and to 

reduce the size of the opening to prevent the collection of unwanted material. 

B. Consumables 

Inserted into the device was an aqueous KCl solution containing 1 µm 

polystyrene particles.  The conductivity of the solution was 2.5 mS/m.  Thermo Scientific 

Fluoro-Max aqueous polystyrene particles were used, having a density of 1050 kg/m
3
 

(Scientific, 2012).  The particles were red fluorescent; as green light hit the particles, they 

omitted red light.   

C. Laboratory Equipment 

A Nikon Eclipse Ti inverted microscope was used with a 60x water-immersion 

objective.  To capture images, a ThorLabs DCU223C camera was utilized, imaging 4.65 

µm per pixel (square) at 30 Hz with a resolution of 1024 x 768 pixels.  An X-Cite 120Q 

mercury lamp was used to provide green light to illuminate the particles.  Two dichroic 

mirrors were used to allow infrared and green light to the sample, and only red light back 

into the camera.  Figure 5 shows the experimental set up, and Figure 6 shows the Nikon 

Eclipse Ti used. 
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FIGURE 5 – Experimental REP set up, modified from (Velasco et al., 2012). 

 

FIGURE 6 - Nikon Eclipse Ti microscope and other equipment. 
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A ThorLabs PL980P330J butterfly infrared laser diode (975 nm) was used in 

conjunction with a ThorLabs TED200 temperature controller and a ThorLabs LDC220C 

current controller for heat generation.  A ThorLabs NENIR05 absorptive filter was used 

to lower the laser power in some experiments order to raise the power to the diode.  The 

diode had minimal output until the power input reached ~70 mW.  Using a filter allowed 

experiments to be conducted at a higher input power where the characteristics of the 

diode were better defined. 

A ThorLabs scanning galvo mirror system was used to control the location of the 

laser on the surface of the electrode.  The laser was focused using the 60x microscope 

objective (1.2 NA), which was also used for viewing.  The collimated laser was widened 

using two convex lenses with focal lengths of 40 mm and 150 mm.  A ThorLabs 

Scanning Galvo System PSU was used in conjunction with a custom LabVIEW program 

to control the position of the laser (see appendix).  The LabVIEW program made the laser 

move through 1000 discrete points along a scanned line in one direction.  The scan 

occurred in either continuous mode or unidirectional mode.  In continuous mode, the 

laser would travel one direction down the scanned line, and at the end, change directions 

and return at the same speed.  In unidirectional mode, the laser would travel one direction 

down the scanned line, then very quickly travel to the other end and start over.  The scan 

frequency was varied by increasing the rate each data point was processed.  As an 

example, a unidirectional scan at 10 Hz would scan the laser through 10000 points per 

second, while a continuous scan at 10 Hz would scan the laser through 20000 points per 

second. 
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Images captured were then processed with several Matlab scripts (see appendix).  

The red image was converted to grayscale, and particle locations were identified 

assuming a Gaussian distribution of fluorescence by each particle.  Figure 7a shows a 

cropped image before processing, Figure 7b shows a grayscale image with the peaks 

identified overlaid by bright red circles. 

 
(a) 

 
(b) 

FIGURE 7 - (a) Unprocessed image of dot aggregation. (b) Thresholded, grayscale image 

with identified peaks circled. 35 kHz AC, 6.42  V, 24.3 mW laser power. 

As shown in Figure 7b, several particles were not identified just left of the 

aggregation center.  The same group of particles shown in Figure 7a appears brighter; this 

is due to a second layer of particles.  This represents a problem in analyzing REP images: 

incorrect particle identification may result from images with a double layer of particles.  

This is made evident by some particles being identified too close to each other, below the 

minimum 1 µm limit for 1 µm particles.  Also noticeable in Figure 7a is that some of the 

particles appear dim; care must be taken to insure they are not below the specified 

detection threshold. 
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D. Algorithms 

1. Particle Count Reduction 

Once particles have been identified, it is determined whether or not each given 

particle was a captured particle.  The distance of the particle from the center of the largest 

aggregation was utilized to remove certain particles from consideration, as well as 

particles with anomalously high spacing between their neighbors.  Figure 8 shows located 

peaks (circles) and peaks retained for analysis (filled in circles). 

 

FIGURE 8 - Sample particle selection. 

From Figure 8, the two particles far removed from the aggregation were excluded 

from the data set.  These two particles were excluded due to having anomalously-high 

Omitted Points 

Retained Points 
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spacing, and also for being far outside of the radius of the aggregation.  The center of all 

of the imaged particles is calculated, and the radial distance for each particle from that 

center is calculated.  Each particle must then be under double the threshold of the average 

radial distance.  The average spacing with the six nearest neighboring particles is 

calculated for each particle, and any particle with spacing above the average of all of the 

particles in the image multiplied by 1.25-2.0 was removed.  The multiplier used for each 

threshold was adjusted for each set of images to minimize the number of lost particles 

(particles captured but ignored), while ignoring all non-captured particles.  No one value 

worked for all image sets, and a range had to be used for analysis. 

The aggregations forming due to a linear laser scanning pattern are treated 

differently.  The using the average radius is not effective for thresholding points as it 

would tend to clip the ends of the line of aggregate particles, or not exclude particles a 

sufficient distance from the aggregation.  As a result of this, each point was thresholded 

based only on its spacing.   

2. Crystallinity 

The crystallinity of an aggregation was determined using the average spacing of 

the particles between their neighbors.  The average spacing used for determining 

crystallinity was calculated using the nearest three particles to each particle in the 

aggregation.  This value was then averaged over the total particle population.   

Only the three nearest particles were used for each particle to reduce the effect of 

particles near the aggregation edge.  In a perfect crystalline grid, the edge particles will 

not have six neighbors, while an interior particle would.  Using the nearest six particles 
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for an edge particle would result in a higher spacing for that particle.  An attempt at 

removing edge particles was used to little effect, and is discussed in Appendix II. 

3. Velocity and Acceleration Calculation 

Velocity was calculated using a fourth-order central differencing scheme given as 

(Bhat, 2004) 

 
ui=

 Pi    Pi    Pi   Pi   

  h
 

(14) 

where Pi is the particle location at time-step i, and h is the length of the time-step.  

Acceleration was calculated using (Bhat, 2004) 

 
 i=

 Pi     Pi     Pi   Pi   Pi   

  h
 

 
(15) 

Correspondingly, five images were used to calculate both velocity and acceleration to 

provide reasonable estimates.  Providing an estimate of the acceleration was used to 

demonstrate that the particles reach terminal velocity, as discussed in section I, 

subsection C3. 

E. Parameters 

Several important parameters were selected for characterization: the length of the 

laser scan, the power of the laser, the frequency of the applied AC field, the voltage of the 

applied AC field, and the scanning frequency of the laser.  Outside of the scope of this 

work were other parameters, including the size of the particles used, the number of 

particles in each aggregation, and the conductivity of the medium.  The size of the 

particles and the conductivity were held constant.  The number of particles in an 

aggregation is a function of the tested parameters, and the concentration of suspended 

particles.  
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III. Results and Discussion 

A. Particle Spacing by Radius 

The particle spacing in aggregations showed interesting characteristics.  The 

spacing towards the edges tended to be higher than the spacing in the center of 

aggregations, as expected.  Spacing also seemed to be affected by some unknown factors, 

perhaps scratches on the electrode surface.  The particle-particle spacing for an 

aggregation, produced by a static laser, is shown in Figure 9. 

 

 

 

 
(a) (b) 

FIGURE 9 - Particle spacing versus radial position in a dot aggregation.  (a & b) 30 kHz 

AC, 6.533 V, 11.85 mW laser power. 

The spacing forms a characteristic shape such that the particle-particle spacing 

slowly increases until it reaches a certain point at which the spacing increases more 

rapidly.  This characteristic was present in all tests; the particle spacing would 

dramatically increase towards the edges of the aggregation.  This is demonstrated more 

easily with dot aggregations (such as in Figure 7a) as line-scanned aggregations are not 

axisymmetric.  Additional results are shown in Appendix III.   
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The cause for this characteristic shape may be fluid drag.  The outer particles 

experience the most drag, but share that drag force with the particles on the inside of the 

aggregation.  A particle close to the edge, but not on the outside, will experience drag 

pushing it towards the center of the aggregation, in addition to forces from the outside 

particles pushing it towards the center.  Particles close to the center of the aggregation 

will experience little, if any, direct hydrodynamic drag.  As the spacing in the aggregation 

minimizes, the ability of fluid drag to affect the interior particles diminishes.  

B. Patterning 

Of primary interest is the ability to pattern crystalline structures.  Examined 

herein are dot- and line-shaped aggregations. These structures are important as they are 

the two must fundamental shapes that can be formed, and if thoroughly understood, could 

be used to construct more complex shapes.  Two sample line aggregations are shown in 

Figure 10. 

 
(a)                                                           (b) 

FIGURE 10 – Comparison of scanned line aggregations. (a) 25 kHz AC, (b) 70kHz AC, 

(a & b) 6.291 V, 24.3 mW laser power, 16 Hz continuous scan, 53.4 µm scan length. 

The 70 kHz sample is more crystalline, even towards the edges.  The 25 kHz 

sample, however, has a much higher spacing, and is not crystalline in form.  The average 
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spacing in the 70 kHz sample is 1.12 µm, whereas the average spacing in a 25 kHz 

sample is 1.75 µm.  Both samples were generated by scanning the laser continuously 

back and forth at 16 Hz.  The change in particle spacing from the edge to the center of the 

aggregation is very apparent in Figure 11 (a), but much less obvious in Figure 11 (b).  As 

the frequency is increased, the electric force between the particles decreases.   

In order to characterize the ability to pattern a line-aggregation, five fundamental 

control parameters are individually characterized: AC frequency, laser scan frequency, 

laser power, laser scan length, and AC voltage.  Each characterization figure displayed 

shows the average particle-particle (center to center) spacing with an ‘X’, the 

corresponding number of particles with an ‘O’, and two sets of standard deviations shown 

with error bars.  Each data point was imaged 31 to 64 times at a frame rate of 30 Hz.  The 

number of particles is the average number of particles identified within each image set.   

The larger set of error bars corresponds to the standard deviation of the particle-

particle spacing per image, averaged over the image set.  The smaller set of error bars 

corresponds to the standard deviation of the average particle-particle spacing per image 

(or the standard deviation of the image set’s average spacing).  The larger set of error 

bars is larger due to the large range of spacing in each image of the image set. The 

smaller set of error bars is centered around the average spacing data point, and is ±1 

standard deviation from the data point (making it two standard deviations in length).  The 

larger set of error bars is also two standard deviations in length, but is not centered about 

the data point.  The center of the larger set of error bars was shifted such that the upper 

portion of the error bars was proportional to the difference between the average 

maximum spacing in the image set and the average spacing, while the lower portion was 
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proportioned to the difference between the average minimum spacing in the image set 

and the average spacing.  This demonstrates that the particles deviate less below the 

average spacing than they do above the average spacing. 

The larger set of error bars was higher than measured values.  The Matlab script 

used to locate the particles had a degree of randomness in identifying the particle’s 

location.  The Matlab script assumed a Gaussian distribution of light from each individual 

particle; however, images of the particles demonstrated that the peak brightness wasn’t 

necessarily at the center of a particle.  This degree of randomness contributed to the 

standard deviation of each aggregation, particularly more compact aggregations. 

1. AC Frequency Characterization 

The polarization of the particles was frequency dependent, and since polarization 

mechanisms will relax at higher frequencies, adjusting the frequency provided a large 

range in particle-particle spacing.  Figure 11 shows the average particle spacing as a 

function of the AC Frequency. 
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FIGURE 11 - Average spacing versus AC frequency.  6.535-6.563 V, 11.85 mW laser 

power, 16 Hz continuous scan, 59.3 µm scan length. 

As expected from Figure 10, the spacing decreased with increasing frequency.  

This is due to the relaxation of one of the particle polarization mechanisms.  There is a 

very slight transition in the slope of the data points near 25 kHz, and it is possible that 

this is where one polarization mechanism relaxes and the other mechanism continues, but 

that is merely speculation without additional data at lower frequencies.  Regardless of 

which mechanism is dominant, the polar moment decreases and the electrostatic forces 

between the particles decrease.  This phenomenon is reflected in the change in Figure 10 

from (a) to (b).  The characteristic transition in particle spacing with respect to radial 
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position is more obvious in Figure 10a, but is still present in (b); it has just moved nearly 

to the edge (notice the outermost ring of particles has varied spacing).   

Another interesting characteristic of Figure 11 is the data between 66 and 72 kHz 

where the average spacing is more constant.  Whether or not the particles reached a true 

minimum is difficult to tell; data could not be acquired at higher frequencies without the 

particles being released from the electrode surface.  Also, the number of particles trapped 

in the aggregation drop sharply at 54 kHz.  At 74 kHz, particles would no longer remain 

on the surface.  AC Frequency tests were run in consecutive order, from 20 kHz to 72 

kHz, with the same aggregation of particles.  This was important to insure the solution 

changed as little as possible for this group of tests, and because higher frequencies tend to 

remove particles from the surface (note the diminishing particle count).  To insure data 

was calculated properly, the spacing results were spot checked at higher frequencies.  A 

sample spot check is presented in Figure 12.   

 

FIGURE 12 - Alternate spacing calculation spot check sample. 72 kHz AC, 6.563 V, 

11.85 mW laser power, 16 Hz continuous scan, 59.3 µm scan length. 

A sample image was taken from the 72 kHz data, and rotated such that the 

particles would align with the x-axis.  The number of pixels was counted and converted 
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into microns.  As shown in Figure 12, particle spacing was above the 1.12 µm/particle 

shown in Figure 11.  This was repeated for three rows in different directions with similar 

results. This may indicate that the Matlab script use was yielding slightly lower-than-real 

spacing, but the difference was within 3%.  Such analysis was only possible when the 

particles formed a nearly uniform crystal (high frequencies), and neglects the gaps in the 

aggregation and increased spacing from edge particles.   

The spot check presented in Figure 12 and the data presented in Figure 11 indicate 

that the particles, when tightly packed, do not touch (on average).  In order to maintain a 

non-zero space between particles, strong electric repulsive forces must exist between the 

particles.  It is evident that the rate of change of particle spacing by frequency abruptly 

changed when the particles became close, and is therefore hypothesized that a 

polarization mechanism relaxed.  If this is the case, it is most likely that the Maxwell-

Wagner interfacial polarization relaxed.  DLVO theory for the force between two 

particles with ionic double layer polarization models the force as a function of e- d, 

which, due to the inverse Debye length being very large (10
9
 m

-1
), decays much faster 

than the published model for interfacial polarization.  A force so highly dependent on 

spacing would explain an abrupt stop in the contraction of the aggregation while 

maintaining highly uniform spacing from center to edge.   

The average standard deviation of particle spacing (black bars) shows that the 

spread of the particles significantly decreases with increasing frequency.  This shows that 

as an aggregation of particles contracts, the spacing becomes more uniform throughout 

the aggregation.  This is reflected in Figure 12.  In a compact aggregation, a small 

standard deviation indicates that it is more uniformly crystal, such as in Figure 10b.  A 
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higher standard deviation indicates that the spacing varies much more significantly from 

the center of an aggregation to the edge, such as in Figure 10a. 

2. Laser Scanning Frequency Characterization 

The next parameter characterized was the scanning frequency of the laser.  The 

scanning frequency of the laser controls the uniform nature of the vortex created, and the 

transition from dragging an aggregation to spreading the aggregation into a line.  Figure 

13 shows the average spacing for an aggregation versus the laser scanning frequency. 

  

FIGURE 13 - Average spacing versus laser scanning frequency.  (6.34-6.36 V, 30 kHz 

AC, continuous scan, 24.3 mW laser power, 53.4 µm scan length) 
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As Figure 13 shows, larger scanning speeds decrease the aggregation spacing, to a 

point.  This may be explained, in part, by the increase in the number of particles in the 

aggregation.  More important is the tendency for the average aggregation spacing to 

converge.  As time elapses and frequency increases, more particles enter the aggregation.  

The convergence of spacing is less affected by the number of the particles than the 

frequency.  A large number of particles provided a range in spacing from the center of the 

aggregation to the edge, similar to Figure 9.  A higher scanning frequency makes the 

thermal gradient converge to a mean value across the scan length, which means that the 

particles will not be dragged in one direction or the other.  At low frequencies, particles 

will move with the laser.  Figure 14 shows an aggregation scanned at 0.375 Hz. 

 
(a)                                                           (b) 

FIGURE 14 - Slow scanning speed time step, arrow indicating path of laser.  30 kHz AC, 

6.358 V, 24.3 mW laser power, 0.375 Hz continuous scan, 53.4 µm scan length, 0.33 s 

lapse. 

As shown in Figure 14, at a low scanning speed, the aggregation is partially 

dragged along with the laser.  This scan rate represents a transition in moving a dot and 

scanning a line.  If the laser scanning speed is increased, the particles will tend to stop 

following the laser and form a static aggregation, such as in Figure 10.  This transition is 
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marked in Figure 13 by the high standard deviation of average particle spacing (smaller 

error bar set) at lower frequencies.   

 

 
(a)                                                           (b) 

FIGURE 15 - Two different, low scanning speeds.  30 kHz AC, 6.358 V, 24.3 mW laser 

power, 53.4 µm scan length; a: 0.75 Hz cont. scan; b: 2 Hz cont. scan. 

Figure 15 shows two more steps in the transition from a dot to a continuous line 

aggregation.  As shown in Figure 13, the standard deviation for higher scan frequencies 

(including those shown in Figure 15) decreases; Figure 15shows that the 2 Hz scan has a 

larger compact group of particles than the 0.75 Hz scan.   

Also shown in Figure 15a are multiple four-particle tetrahedron clusters.  The 

worst case scenario for this having affected data is shown in Figure 15, and has 

statistically insignificant effects on processing.  These particles could be joined together 

by ACEO or dipole-dipole attractive forces, but remains unexplored.  Tests were run 

concurrently for the scanning frequency, meaning the 2 Hz scan was conducted after the 

0.75 Hz scan, etc., on the same group of particles.   
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3. Laser Power Characterization 

The next parameter varied was the laser power.  Tests on the laser power were run 

in consecutive order, similar to the AC frequency and scanning frequency tests.  Figure 

16 shows the spacing of an aggregation as a function of laser power. 

   

FIGURE 16 - Average spacing versus laser power with exponential fit.  6.55-6.57 V, 30 

kHz AC, 16 Hz continuous, 59.3 µm scan length. 

As shown in Figure 16, as the laser power increases, particle spacing decreases.  

The spacing should decay exponentially with increasing electrical forces, as the electrical 

forces should increase with decreasing distance proportionally to d
-4

 or e
-d

.  As shown in 

the figure, the data does fit an exponential pattern.  The force exerted on the fluid (see 
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eqn. 10) is linearly proportional to the thermal gradient, but the thermal gradient follows 

a Gaussian distribution (Velasco et al., 2012) and the change in fluid velocity was not 

necessarily linearly proportional to laser power. As such, the relationship between laser 

power and average spacing in an aggregation is not obvious.   

The laser power affords an extra degree of control over an aggregation, but it was 

also more difficult to control.  As the laser power increases, drag increases, but lift on the 

particles also increases.  This effect tends to remove particles from the surface of the 

electrode, shrinking the aggregation size at higher laser powers.  At lower laser powers, 

this mechanism is useful as an easy method to control the aggregation spacing 

dynamically, as can the AC frequency of the applied field. 

Another explanation as to why the aggregation exhibits exponential decay is that 

the size of the aggregation consistently increased until the last several data points.  On the 

last point, the particle count experienced a steep drop due to the vortex lift forces ripping 

particles away from the surface.  The average spacing actually increased, showing that 

the spacing did affect the data.  This by no means accounts for the total decrease in 

particle spacing over the range of laser powers, but may be responsible for its shape. 

4. Laser Scanning Length Characterization 

Scanning length is primarily of interest when trying to define the geometry of an 

aggregation.  However, the length of scanning does have an effect on the average spacing 

of the aggregation.  Larger spacing reduces the amount of time the laser spends at a given 

location, lowering localized temperature gradients, and increasing the effect of scanning 

speed on the difference between the local and mean thermal gradient as a function of time 

(the frequency became irrelevant as the scan length approached zero).  This periodic 
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effect on the local temperature was not desired; therefore a high scanning speed was used 

for these tests (16 Hz).  Figure 17 shows the average spacing of an aggregation as a 

function of the laser scanning length. 

 

FIGURE 17 - Average spacing versus laser scanning length with linear fit.  6.35 V, 30 

kHz AC, 11.85 mW laser power, 16 Hz continuous scan. 

The scanning rate was set at 16 Hz to reduce periodic effects, as shown by the low 

standard deviation of the 16 Hz point in Figure 15.  As expected, the spacing increases 

with increasing scan length.  As the scan length is lengthened, heat is dissipated over a 

larger area.  This effect seemed to be fairly linear, as demonstrated by the fit in Figure 17.  

The heat absorbed at any given point on the electrode surface is proportional to the cyclic 
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area of illumination, and should be proportional to the scanning length when the scanning 

length is relatively large compared to the area of illumination when the laser is static.  If 

not due to the small size of the range covered, the near linear nature of the data collected 

suggests that the exponential decrease in electrical forces as the spacing increased was 

counteracted.  This effect could possibly be the shape of the aggregation, or perhaps the 

size of the aggregation.  It may also have been that the drag force on the particles was 

related to the effective area of the vortex, and not the area hit by the laser; however, more 

information regarding the scanning laser electrothermal vortex is needed.  Alternatively, 

larger scan lengths may be required to exhibit noticeable exponential behavior.  The 

length of the scan was limited by the viewing area of the camera used, and a longer line 

could have yielded results more similar to those exhibited in Figure 16.  The data 

obtained for average spacing versus laser scanning length was also acquired in sequential 

order.   

5. AC Voltage Characterization 

The final parameter investigated was the AC voltage.  The voltage affects both the 

force creating the vortex and the dipole moment induced on the particles.  Figure 18 

shows the average spacing as a function of rms AC voltage. 
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FIGURE 18 - Average spacing versus RMS AC voltage.  60 kHz AC, 26.6 mW laser 

power, 30 Hz unidirectional, 77.1 µm scan length. 

AC voltage data was not acquired sequentially.  The data points corresponding to 

a higher particle count were collected first, going from high voltages to low voltages.  

The lowest voltage point (3.89 V) was captured, and then the remaining low particle 

count points were captured from highest voltage to lowest (two high-to-low scans were 

run consecutively).  AC voltage appears to not affect the average spacing strongly.  This 

is because both the force creating the vortex (see eqn. 10) and the electrostatic force 

between the particles (see eqn. 6) are proportional to the square of the AC voltage.  The 
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seeming lack of effect on spacing due to voltage may indicate that the drag exerted on the 

particles is directly proportional to the force creating the vortex. 

Also interesting was that the smaller aggregations tended to have a higher 

spacing.  This suggests that the outermost particles in a larger aggregation experience 

more drag, and a higher fluid velocity.  An important facet of future testing will be to 

characterize the crystallinity of an aggregation with respect to the size of the aggregation.  

Effects between aggregation sizes of 100 and 300 are noticeable, but the effect on data 

presented is assumed to be minimal.  The sharp loss in the number of particles in the 

aggregation was due to the low frequency.  A sequential test would have maintained a 

consistent particle count, as (mostly) demonstrated in Figures 12-18. 

C. Force Analysis 

1. Velocity Analysis 

Force analysis was only performed on static laser aggregations due to their 

simplicity.  Complete REP spectroscopy was not completed, but this section lays 

foundation for future work in this area, utilizing both dot and line shaped aggregations.  

Being able to determine the electric forces inside an aggregated particle population would 

allow the dipole moment of each particle to be measured.  A detailed and thorough 

analysis would characterize and identify particle polarization mechanisms. 

The velocity of each particle was determined using the first five images in a 

recorded sequence of an aggregation when the laser was shut off.  Eleven recordings 

were taken at varying AC frequencies.  Figure 19 shows a set of images used for analysis, 

and Figure 20 shows a sample velocity map of a released aggregation spreading. 



44 

 

 
(a) (b) (c) 

 
 (d) (e)  

FIGURE 19 – Five images of a released aggregation at 0.033 s intervals.  45 kHz AC, 

8.811 V, 24.0 mW laser power. 

 
 

(a) (b) 

FIGURE 20 - Position and velocity of a released aggregation.  25 kHz AC, 8.822 V, 24.0 

mW laser power. 
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Each line in Figure 20a represents the pathline of a particle.  Many of the lines are 

not straight.  As seen in Figure 20b, the velocity plot is fairly uniform, as was expected.  

There is more variance in particle direction for those close to the edges.  The relatively 

low frequency used to record (30 Hz) was useful to average velocity to reduce random 

effects from ACEO and Brownian motion, but prevented capturing the acceleration of the 

particles.  The acceleration of the particles is much faster than the frame rate used due to 

the very low mass of each individual particles.  Figure 21 shows an acceleration plot for 

the same data displayed in Figure 20. 

 
         (a)                                                                  (b) 

FIGURE 21 - Velocity and acceleration of a released aggregation.  25 kHz AC, 8.822 V, 

24.0 mW laser power. 

As shown in Figure 21b, the acceleration of the particles appears random.  The 

particles accelerate very quickly until the drag effect nearly-completely counteracts the 

electrostatic forces.  This should lead to acceleration in the opposite direction as velocity; 

however, random acceleration due to ACEO and Brownian motion seems to be 

predominant.  The maximum acceleration measured was on the order of 10
-3

 ms
-2

, 

demonstrating that particles are essentially at terminal velocity.   
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Figure 21a shows the velocity again, this time including all of the identified data 

points in the third image of the five images used.  This is important as it highlights the 

number of particles that analysis couldn’t be performed on.  This was due to the inability 

of the tracking script to follow the particles that have no velocity vectors assigned to 

them.  For the force analysis, however, these particles were still used as they were still 

present in the aggregation.  Figure 22 shows a plot of the speed of each particle by its 

radial position from the aggregation center. 

 

FIGURE 22 - Speed of a released aggregation by radial position.  25 kHz AC, 8.822 V, 

24.0 mW laser power. 

 The speed of the particles tended to increase with radial position from the 

aggregation center, but there was a large degree of variation.  Additional data 

demonstrated similar trends.  Aggregations have lower speed in the middle of the 

aggregation and higher speed at the edges where particles may freely disperse.  Figure 23 
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shows the average velocity by frequency, where the error bars are two standard 

deviations in length. 

 

FIGURE 23 - Speed of a released aggregation by radial position.  8.758-8.822 V, 24.0 

mW laser power. 

The particle count wasn’t consistent at each data point, which most likely affected 

measurements.  Aside from the anomalous 20 kHz data point, the average velocity tends 

to decrease with increasing frequency.  This is due to lower polarization at higher 

frequencies, as shown in Figure 11.  The data isn’t very consistent, making a detailed and 

accurate characterization of mean particle speed impractical. 
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2. Electric and Drag Force Analysis 

Force analysis on particle aggregations is of particular interest in order to develop 

spectroscopy, which may be achievable through observing anomalous forces in an 

aggregation.  The force was calculated on each aggregation in the third of five frames 

analyzed, to correspond with the velocity calculations.  A force vector map was generated 

for both dipole-dipole force models, shown in Figure 24. 

 
    (a)                                                            (b) 

FIGURE 24 – Double-layer and Maxwell-Wagner force models.  25 kHz AC, 8.822 V, 

24.0 mW laser power. 

The DLVO model for the double-layer force presented an obvious problem – the 

variance in the magnitude of the forces from particle to particle is too high, indicating 

that it couldn’t be responsible for the much more uniform spacing presented above.  The 

DLVO force must act over a relatively short range, only affecting particles that are very 

close to each other.  The model for the Maxwell-Wagner dipole-dipole repulsive force 

was much more evenly proportioned, but there was still a large degree of random to the 

force’s direction.  A number of methods were used to attempt to combine these forces to 

sum to the drag force. An attempt was made to scale and combine each individual vector 
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to match the corresponding drag vector and then average the scale factors, but this 

yielded erroneous results.  An attempt to scale each force vector by magnitude 

independently of its counterpart also yielded better results.  Figure 25 shows the 

Maxwell-Wagner force scaled to match drag force, and the drag force. 

 

FIGURE 25 - Scaled Maxwell-Wagner forces and drag forces.  25 kHz AC, 8.822 V, 

24.0 mW laser power. 

If the Maxwell-Wagner repulsive forces and the drag forces matched well, they 

would be equal in length and opposite in direction.  In some instances, this was nearly the 

case.  In other areas (specifically near the center of the aggregation), there are relatively 

large forces that do not match up with the drag force.  These large forces may be 

explained by the random motion of the particles due to ACEO and Brownian motion.  

These mechanisms could move particles randomly, and could have pulled the innermost 

particles towards each other to produce high dipole-dipole repulsive forces, while 

experiencing low velocity.  Both the drag forces and the scaled Maxwell-Wagner 
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repulsive forces indicate that the aggregation should expand under the conditions 

presented.  While this agreement is promising, the data found indicates that both force 

models present a poor fit for the aggregation sampled, making force spectroscopy non-

viable with current equipment.  The random effects of ACEO and Brownian motion are 

too significant, and anomalously high or low forces could just as easily be attributed to 

them as opposed to a particle with an anomalously high dipole moment, rendering 

spectroscopy inconclusive. 
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IV. CONCLUSIONS 

Of the parameters tested, the AC frequency was most effective for controlling the 

spacing of the aggregation.  It provided the broadest range of particle-particle spacing, 

though the other tested parameters were still effective.  Increasing the AC frequency, the 

laser power, and scanning speed were effective to reduce the size of the aggregation, 

while raising the scanning length had an adverse effect.  The scanning length and speed 

aren’t useful methods for spacing control, however, in that they are primarily useful for 

controlling other aspects of the aggregation’s behavior.  The scanning length is useful to 

define the geometry of the aggregation, and the scanning speed controls the behavior of 

the aggregation (moving dot, continuous line, or transitional state).  The voltage was 

particularly ineffective for controlling the spacing of the aggregation.  A sufficiently high 

voltage is required to trap the particles.   

Particle spacing was also identified to be a function of the number of particles in 

an aggregation.  Several parameters were untested in this thesis, but all remained constant 

except for the particle count.  A more thorough characterization would include 

investigating the effects of aqueous salt concentrations, salt types, particle surface 

chemistry, and varying aggregation size. 

The particles also exhibited a minimum spacing just above what an ideal crystal 

would exhibit.  It is hypothesized that this is due to the induced dipole in the particles, 

and is inevitable in REP.  It is hypothesized that the Maxwell-Wagner interfacial 

polarization mechanism relaxed at the highest frequencies tested, but there was 

insufficient data to demonstrate the relaxation of a specific polarization mechanism.   
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The force analysis performed was insufficient due to random acceleration of the 

particles.  It is hypothesized that ACEO, which occurs around the base of the particles, 

and Brownian motion pulled the particles in random directions, which made accurate 

velocity and acceleration measurements difficult.  Furthermore, the implementation of the 

electric forces presented herein proved to be insufficient for any useful analysis (such as 

spectroscopy), though it may be possible with different equipment.   
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V. RECOMMENDATIONS 

The effects of Brownian motion should be measured, and if random particle 

motion changes with voltage and frequency.  The lateral motion of the particles due to 

ACEO should also be investigated to allow a more detailed force analysis. A higher 

frame rate should also allow the time scale to shrink such that change in the acceleration 

(or jerk) due to ACEO should be relatively small compared to the frame rate.  The 

acceleration on the particles before and after the laser is deactivated could then be 

measured, and the former could be subtracted from the latter to remove the effect from 

consideration.  However, if the acceleration of the particles due to the electric forces can 

be captured, it may be large enough that this is unnecessary.  

A characterization of the particle count in an aggregation on the average spacing 

should also be conducted.  Frequency characterization should also be conducted for 

various salts.  Such characterization could also allow the measure of the salt content of an 

unknown medium for particles of known properties.  

Spectroscopy should be possible by detecting anomalously large spacing in 

stagnant aggregations.  This would require characterization of aggregations containing 

multiple particle sizes and properties.  Larger particles should polarize more strongly, and 

should therefore force their neighboring particles further away, creating a detectible 

spacing that is anomalously high for the aggregation.  

Frequency characterization should be repeated at higher frequencies using a lower 

laser power.  This would determine if a polarization mechanism did actually relax at the 

higher frequencies tested.  If one polarization mechanism can be exhibited to relax, the 
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aggregation could be studied in a much simplified case as all electrostatic forces should 

be due to the remaining polarization mechanism.  

Spectroscopy may also be possible through dynamic force analysis; where 

spacing may be a poor indicator, particles with differing properties may separate 

differently.  A much more detailed force analysis and characterization would be required, 

however.  More accurate force measurements should be acquired with a high speed 

camera, which may allow the acceleration of the particles to be captured.  A higher frame 

rate of capture would also allow particle tracking to more easily follow the particles, 

resulting in more accurate data with less loss.   

If spectroscopy is realized for dot aggregations, the next step in development 

should be to expand it to line aggregations in flow.  It should be possible to analyze the 

electrical forces on particles as they flow through the vortices created in REP with bulk 

medium flow.  This would allow rapid and inexpensive characterization of unknown 

colloids in a dynamic manner. 
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APPENDIX I 

This section contains Matlab scripts used and a block diagram of the LabVIEW 

VI used to control the position of the laser.  The three Matlab scripts included are 

MasterFile.m, pcount.m, and Averager.m.  The LabVIEW VI is shown in a two part 

image, only showing the condition for a continuously scanning line. 
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%------------------------------MasterFile.m---------------------------% 

%Sets appropriate variables and calls other scripts (pcount.m and 
%Averager.m) 
clearvars 

  
conv = 4.65/60/1.0;     % Converts pixels to microns 
Resolution = '-r600';   % Resolution of saved graphs 
Resizer = 0.5; 
np = 6;                 % Number of neighbors to find 

  

  
avradthresh = 4.0;      % number of average distances to threshold 

  
%Array of non-default spacing threshold factors 
thresern = [2.25 2.25 2.25 2.5 2.25 2.5 2.5 2.25 2 2 2.25 2.25 2 2.5 

2.25 2.25 2.25 2.5 2 2 2 2.25 1.75 1.5 1.5 1.25 1];  

  

  
modnum = 3;             % Every modnum-th figure will be written 
modshift = 1;           % Option to shift the images output 

     
strcat('00 ',datestr(now,13)) 
idx = 0; 
%Loop by folder 
for nn = 1:73 
    if nn > 8 && nn < 36    % Images to use specific spacing threshold 

factor 
        avthresh = thresern(nn - 8); 
    else 
        avthresh = 2.5;     % Default spacing threshold factor 
    end 

     
    % Convert folder number to 2 digit string 
    if nn < 10 
        numb = strcat('0',num2str(nn)); 
    else 
        numb = num2str(nn); 
    end 

     
    sfile = strcat('Pics/',numb,'/');   % sfile is the folder pcountAHW 

looks for 
    path = strcat(sfile,'Output/');     % path is the output for graphs 
    if exist(path,'dir') == 0 
        mkdir(path) 
    end 

     
    A = dir(strcat(sfile,'*.bmp'));     % List of .bmp files in the 

current folder 

  
    if isempty(A) == 0                  
        idx = idx + 1; 
        clear pkkn 
        pcount                          % Call main program to process 

current folder 
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        save(strcat('Matrices/pkknsav',numb,'.mat'),'pkkn')     % Save 

output matrix for folder 

         
        % Build output matrix for all folders 
        

mpkkn(1:length(pkkn(:,1,1)),1:length(pkkn(1,:,1)),1:length(pkkn(1,1,:))

,idx) = pkkn;     
    end 
    strcat(numb,' ',datestr(now,13)) 
end 
save(strcat('Matrices/mpkknsav.mat'),'mpkkn')   % Save output matrix 

  
Averager                % Calls averageing script 
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%------------------------------pcount.m-----------------------------% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% PARTICLE COUNTING PROGRAM 
%% for REP experiments  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Some of the Matlab programs used within 
% come from code borrowed from the following: 
%% http://physics.georgetown.edu/matlab/tutorial.html 
% notes from this webpage is included herein as well 

  
%% Additional programs used: 
%  bpass(a,1,10) 
%     bpass is a spatial bandpass filter which smooths  
%     the image and subtracts the background off. The  
%     two numbers are the spatial wavelength cutoffs  
%     in pixels. The first one is almost always '1'.  
%     The second number should be something like the  
%     diameter of the 'blob's you want to find in  
%     pixels. Try a few values and use the one that  
%     gives you nice, sharply peaked circular blobs  
%     where your particles were; remember the numbers  
%     you used for bpass. 
%  pkfnd(b,60,11)  
%     This should give you the location of all of the  
%     peaks that are above the given threshold value  
%     here given by 60. This number will depend on how  
%     your final band-passed image looks.  
%     The second parameter (set to 11) is roughly the  
%     diameter of the average feature to look for in  
%     pixels. This parameter is helpful for noisy data. 

  
%% Start the Loop 
for n = 1:length(A) 
    clearvars -except nn conv Resolution Resizer np avthresh thresern 

modnum modshift numb sfile path idx A mpkkn pkkn n avradthresh 

        
    file = A(n).name;               % Grabs current picture 
    k = strfind(file,'.');          % Gets the location of the 

extension 
    faz = file(1:k-1);              % Returns the title of the image 

  
    %% 3. Initial reading and processing 
    a=imread(strcat(sfile,file));   % Opens the file 
    if ndims(a) == 3 
        a=rgb2gray(a);              % If color, converts  to grayscale 
    end 
    a=double(a); 
    b=bpass(a,1,round(1/conv));     % Calls bpass program to filter 

image 

  
    %% 4. Peak finding - whole pixels 
    fpk=max(max(b))-0.95*max(max(b));   % fpk is value used in pkfnd 

program, change and inspect 
    pk = pkfnd(b,fpk,round(1/conv));    % Array of particle locations 
    count=max(size(pk));                % Number of located particles 
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    %% 5. Determine sub-pixel particle location 
    % For Reference to find sub pixel 
    %   [ 0 y2  0] 
    %   [x1 x0 x2] 
    %   [ 0 y1  0] 
    for i = 1:1:count 
       xx = pk(i,1); 
       yy = pk(i,2); 
       x1 = xx - 1; 
       x2 = xx + 1; 
       y1 = yy - 1; 
       y2 = yy + 1; 
       a0 = b(yy,xx); 
       ax1 = b(yy,x1); 
       ax2 = b(yy,x2); 
       ay1 = b(y1,xx); 
       ay2 = b(y2,xx); 
       xsub = (log(ax2)-log(ax1))/(4*log(a0)-2*log(ax1)-2*log(ax2)); 
       ysub = (log(ay2)-log(ay1))/(4*log(a0)-2*log(ay1)-2*log(ay2)); 
       pk(i,1) = xx+xsub; 
       pk(i,2) = yy+ysub; 
    end  

  
    %% 6. Determine center of particle group 
    % Use center of mass approach 
    xcent = sum(pk(:,1))/count; 
    ycent = sum(pk(:,2))/count; 

  
    %% 8. Display/Process data 
    % Plots grascaled image and peaks identified 
    if mod(n,modnum)-modshift == 0 
        f = figure(1);          % Figure used for all output 
        

set(f,'FileName','1x','visible','off','units','pixels','OuterPosition',

[100 100 1524 1*984]) 

  
        h1 = subplot(3,3,1); 
        colormap('gray'), imagesc(a); 
        title('Grayscaled Image') 
        xlabel('X Position (pixels)') 
        ylabel('Y Position (pixels)') 

  
        % Modified image with particle locations 
        h2 = subplot(3,3,2); 
        colormap('gray'), imagesc(b); 
        hold on; 
        plot(pk(:,1),pk(:,2),'ro',xcent,ycent,'b+','MarkerSize',2)   % 

marks all located particles+center 
        hold off; 
        title('Identified Peaks Over Thresholded Image') 
        xlabel('X Position (pixels)') 
        ylabel('Y Position (pixels)') 
    end 

     
    pk = conv.*pk;              % Converts to microns from pixels 
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    pk(:,3:(np+4)) = zeros(length(pk),np+2); 

     
    %removes any rows with a value of NaN 
    while max(isnan(pk(:,1))) == 1 
        [D,i] = max(isnan(pk(:,1))); 
        pk(i,:) = []; 
    end 
    while max(isnan(pk(:,2))) == 1 
        [D,i] = max(isnan(pk(:,2))); 
        pk(i,:) = []; 
    end 

     
    %Calculates np closest matches (col. 5->np+4) and average (col. 3) 
    for i = 1:length(pk) 
        for ii = 1:length(pk) 
            if i ~= ii 
                %Finds currently listed max and min for row of interest 

(i) 
                [B,II] = max(pk(i,5:(np+4))); 
                [C,I] = min(pk(i,5:(np+4))); 

                 
                %adds 4 to index to correct, so I/II can't be less than 

5 
                II = II + 4; 
                I = I + 4; 

                 
                %Calculates dist. between row of int. and current row 

(ii) 
                D = sqrt((pk(i,1)-pk(ii,1))^2 + (pk(i,2)-pk(ii,2))^2); 

  
                %Adds based on the criteria that it is less than the 
                %highest value, or if it would replace a zero 
                if D < B 
                    pk(i,II) = D; 
                elseif C == 0 
                    pk(i,I) = D; 
                end 
            end 
        end 
        pk(i,3) = mean(pk(i,5:(np+4))); 
    end 

     
    % Average to find center 
    avdist = mean(pk(:,3)); 
    pkpk = pk; 

  
    % Removes everything w/ spacing above threshold 
    while max(pkpk(:,3)) > avthresh*avdist 
        [D, i] = max(pkpk(:,3)); 
        pkpk(i,:) = []; 
    end 

     
    % Calculates thresholded center, and original center 
    xcent = mean(pkpk(:,1)); 
    ycent = mean(pkpk(:,2)); 
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    pk(:,1) = pk(:,1) - xcent; 
    pk(:,2) = pk(:,2) - ycent; 

     
    xxcent = mean(pk(:,1)); 
    yycent = mean(pk(:,2)); 

  
    % No excluded values, calculates radius 
    for i = 1:length(pk) 
        pk(i,4) = sqrt((pk(i,1)-xxcent)^2+(pk(i,2)-yycent)^2); 
    end 

     
    pkpk(:,1) = pkpk(:,1) - mean(pkpk(:,1)); 
    pkpk(:,2) = pkpk(:,2) - mean(pkpk(:,2)); 

     
    % Excluded values from threshold, calc radius 
    for i = 1:length(pkpk) 
        pkpk(i,4) = sqrt((pkpk(i,1))^2+(pkpk(i,2))^2); 
    end 

     
    % Removes everything w/ radius above threshold 
    while max(pkpk(:,4)) > mean(pkpk(:,4))*avradthresh 
        [D,i] = max(pkpk(:,4)); 
        pkpk(i,:) = []; 
    end 

     
    % Calculates final thresholded center 
    pkpk(:,1) = pkpk(:,1) - mean(pkpk(:,1)); 
    pkpk(:,2) = pkpk(:,2) - mean(pkpk(:,2));     

     
    % Creates fit line 
    slope = pkpk(:,1)\pkpk(:,2); 
    slopx = max(abs(pkpk(:,1))); 
    slopex = [-slopx 0 slopx]; 
    slopey = [-slopx*slope 0 slopx*slope]; 

     
    pkpk(:,5:(np+4+np)) = zeros(length(pkpk(:,1)),2*np); 
    OuterXY = zeros(1,(2)); 

     
    % Loop by particle number in image 
    for i = 1:length(pkpk(:,1)) 
        % Loop by particle number in image 
        for ii = 1:length(pkpk(:,1)) 
            if i ~= ii 
                %Finds currently listed max and min for row of interest 

(i) 
                [B,II] = max(pkpk(i,5:(np+4))); 
                [C,I] = min(pkpk(i,5:(np+4))); 

                 
                %adds 4 to index to correct, so I/II can't be less than 

5 
                II = II + 4; 
                I = I + 4; 

                 
                %Calculates dist. between row of int. and current row 

(ii) 
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                D = sqrt((pkpk(i,1)-pkpk(ii,1))^2 + (pkpk(i,2)-

pkpk(ii,2))^2); 

  
                %Adds based on the criteria that it is less than the 
                %highest value, or if it would replace a zero 
                if D < B 
                    pkpk(i,II) = D; 
                    pkpk(i,II+np) = pkpk(ii,4); 
                elseif C == 0 
                    pkpk(i,I) = D; 
                    pkpk(i,I+np) = pkpk(ii,4); 
                end 
            end 
        end 
        pk(i,3) = mean(pk(i,5:(np+4))); 
    end 

     
    % Tries to identify perimeter particles 
    for i = 1:length(pkpk(:,1)) 
        if sum(pkpk(i,11:16) > (pkpk(i,4)-0.4)) < 2 
            OuterXY(length(OuterXY(:,1))+1,(1:2)) = pkpk(i,(1:2)); 
        end 
    end 
    OuterXY(1,:) = []; 

     
    %Store thresholded arrays, and lengths 
    pkkn(1:length(pkpk(:,1)),:,n) = pkpk; 

    
    % Make remaining plots 
    if mod(n,modnum)-modshift == 0 
        %Plot of average spacing, and cutoff line, by row number 
        h3 = subplot(3,3,3); 
        plot((1:length(pk)),pk(:,3),'xb',([1 

length(pk)]),[avthresh*avdist avthresh*avdist],'-r',([1 length(pk)]),[1 

1],'-k','MarkerSize',4) 
        title('Thresholding') 
        xlabel('Row #') 
        ylabel('Average Spacing (\mum)') 
        %print(f, Resolution, '-dtiff', strcat(path,'BA',faz)); 

  
        %plot of original points, thresholded points, and centers 
        %f = figure('visible','off'); 
        h4 = subplot(3,3,[7 8]); 
        

plot(pk(:,1),pk(:,2),'o',pkpk(:,1),pkpk(:,2),'x',0,0,'dr',xxcent,yycent

,'dm','MarkerSize',4) 
        title('Data Set, Original vs. Thresholded') 
        xlabel('X Position (\mum)') 
        ylabel('Y Position (\mum)') 
        z4 = legend('Orig. Set','Thresh. Set','Thresh. Center','Orig. 

Center','Location','EastOutside','Orientation','vertical'); 
        %print(f, Resolution, '-dtiff', strcat(path,'BB',faz)); 

  
        %Plots average spacing (col 3) vs Radius (col 4), thresholded 
        %f = figure('visible','off'); 
        h5 = subplot(3,3,4); 
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        plot(pkpk(:,4),pkpk(:,3),'xb','MarkerSize',4) 
        title('Average Spacing vs Radial Position, Thresholded') 
        xlabel('Radial Distance From Center (\mum)') 
        ylabel('Average Spacing (\mum)') 
        %print(f, Resolution, '-dtiff', strcat(path,'BC',faz)); 

  
        %Plots average spacing (col 3) vs Radius (col 4), not 

thresholded 
        %f = figure('visible','off'); 
        h6 = subplot(3,3,5); 
        plot(pk(:,4),pk(:,3),'xb','MarkerSize',4) 
        title('Average Spacing vs Radial Position, Original') 
        xlabel('Radial Distance From Center (\mum)') 
        ylabel('Average Spacing (\mum)') 
        %print(f, Resolution, '-dtiff', strcat(path,'BD',faz)); 

  
        %Plots outer particles 
        %f = figure('visible','off'); 
        h7 = subplot(3,3,6); 
        plot(pkpk(:,1),pkpk(:,2),'xb',0,0,'dk',slopex,slopey,'-

k',OuterXY(:,1),OuterXY(:,2),'or','MarkerSize',4) 
        title('Outer Particles') 
        xlabel('X Position (\mum)') 
        ylabel('Y Position (\mum)') 

  
        %set([h1 h2 h3 h4 h5 h6 h7],'FontUnits','points','FontSize',10) 
        set([h1 h2 h4 h7],'DataAspectRatio',[1 1 

1],'PlotBoxAspectRatio',[1 1 1]) 
        set(findall(f,'-property','FontSize'),'FontSize',5) 
        print(f, Resolution, '-dtiff', strcat(path,'A',faz)); 
        set(findall(f,'-property','FontSize'),'FontSize',10) 
        saveas(f,strcat(path,'A',faz,'.fig')) 
        close(f) 
    end 
end 

 

%This program provides an average, two different standard deviations, 

an 
%average minimum, and an average maximum value for each folder of 

images. 
datestr(now,13) 

  
%meanie11 is an array of the average spacing by folder, alpha11 is the 
%averaged (by folder) minimum, omega11 is the averaged maximum, stdev12 

is 
%the average of the standard deviation of each image, stdev11 is the 
%standard deviation of the average spacing of the folder 
meanie11 = zeros(length(mpkkn(1,1,1,:)),1); 
alpha11 = meanie11; 
omega11 = meanie11; 
stdev11 = meanie11; 
stdev12 = meanie11; 
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%------------------------------Averager.m-----------------------------% 

%Loop by folder 
for n1 = 1:length(mpkkn(1,1,1,:)) 

     
    meanie2 = zeros(length(mpkkn(1,1,mpkkn(1,1,:,n1) ~= 0,n1)),1); 
    omega2 = meanie2; 
    alpha2 = meanie2; 
    stdev2 = meanie2; 

     
    %:oop by image in folder 
    for n2 = 1:length(mpkkn(1,1,mpkkn(1,1,:,n1) ~= 0,n1)) 

         
        meanie3 = zeros(length(mpkkn(mpkkn(:,1,n2,n1) ~= 

0,1,n2,n1)),1); 
        omega3 = meanie3; 
        alpha3 = meanie3; 
        %remove particles located at (0,0) 
        mpkkns = mpkkn(mpkkn(:,1,n2,n1) ~= 0,5:10,n2,n1); 

         
        %Loop by particle in image 
        for n3 = 1:length(mpkkns(:,1,1,1)) 

             
            greek = mpkkns(n3,1:6); 
            %Lowest of 6 nearest particles 
            alpha = min(greek); 
            if alpha > 0 
                %Second lowest of 6 nearest particles 
                beta = min(greek(greek > alpha)); 
                %Third lowest of 6 nearest particles 
                gamma = min(greek(greek > beta)); 
                %Average of three nearest particles 
                meanie3(n3) = mean([alpha beta gamma]); 
                omega3(n3) = gamma; 
                alpha3(n3) = alpha; 
            end 

                 
        end 
        %Takes the mean, standard dev, max, or min of the average 

spacing 
        %by picture 
        meanie2(n2) = mean(meanie3(meanie3 ~=0)); 
        stdev2(n2) = std(meanie3(meanie3 ~= 0)); 
        omega2(n2) = max(meanie3(meanie3 ~=0)); 
        alpha2(n2) = min(meanie3(meanie3 ~=0)); 

         
    end 
    %Takes the mean, standard dev, max, or min of the average spacing 
    %by folder 
    meanie11(n1) = mean(meanie2(meanie2 ~= 0)); 
    stdev11(n1) = std(meanie2(meanie2 ~= 0)); 
    stdev12(n1) = mean(stdev2(stdev2 ~= 0)); 
    alpha11(n1) = mean(alpha2(alpha2 ~= 0)); 
    omega11(n1) = mean(omega2(omega2 ~= 0)); 
end 
datestr(now,13) 
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%Calculates the average number of particles captured per folder 
pcount = zeros(length(mpkkn(1,1,1,:)),1); 
for n = 1:length(mpkkn(1,1,1,:)) 
    ppcount = zeros(length(mpkkn(1,1,mpkkn(1,1,:,n) ~= 0,n)),1); 
    for nn = 1:length(mpkkn(1,1,mpkkn(1,1,:,n) ~= 0,n)) 
        ppcount(nn) = length(mpkkn(mpkkn(:,1,nn,n) ~= 0,1,nn,n)); 
    end 
    pcount(n) = mean(ppcount); 
end 
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APPENDIX II 

An improved method could be implemented that would identify edge particles 

and interior particles, and calculate the spacing accordingly.  A simple algorithm 

determining if a particle has any neighbors that are further from the center of the 

aggregation was used to little effect (see Figure A14).  The algorithm used checkes to see 

if the particle in question is an edge particle by determining if any of the six closest 

neighbors have a larger radial distance to the center of the aggregation.  If the particle 

does not have two neighbors with larger radial distances from the center, it was 

considered an edge particle.  Adjustments were made varying the required number of 

particles with a greater distance, and how much greater that distance  needed to be. 
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FIGURE A1 - Identified outer particles (circles) versus all particles (‘x’s). 

As shown in Figure A14, not all edge particles were identified.  Choosing to 

require a fixed number of particles with a larger radial distance from the center of the 

aggregation yielded inconsistent results, and could not be relied upon.  Quality of the 

edge detection varied significantly; sometimes interior points were selected, sometimes 

most of the exterior points were selected.  Never were all of the exterior points selected.  

Edge particles could be determined for a small number of images manually; for the 

number of images processed for this thesis, this was not feasible.  Improved results could 

be obtained by developing a suitable algorithm to determine outer particles in order to 

calculate their spacing separately from interior particles.  More results are shown in 

Appendix III.  
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APPENDIX III 

This section presents additional results not shown in the main text.  The first 

section consists of tables of all data used in the thesis.  The first figure contains spacing 

by radius for dot-shaped aggregations, listing property values by experiment number.  

The remaining figures show selected experimental data analysis from the data collected.  
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TABLE AI  

USED DATA COLLECTED ON 6/15/12, 1-52 

# 
Voltage 

(V) 

AC 

Freq. 

(kHz) 

Laser 

Current 

(mA) 

Laser 

Power 

(mW) 

Light 

Filter 

Length 

(µm) 

Scan 

Freq. 

(Hz) 

Type 

1 6.533 30 94.1 11.8468 0.35 0 0 N/A. 

2 6.533 30 94.1 11.8468 0.35 11.8576 16 Cont. 

3 6.533 30 94.1 11.8468 0.35 23.7152 16 Cont. 

4 6.533 30 94.1 11.8468 0.35 35.5728 16 Cont. 

5 6.533 30 94.1 11.8468 0.35 47.4304 16 Cont. 

6 6.533 30 94.1 11.8468 0.35 59.288 16 Cont. 

7 6.533 30 94.1 11.8468 0.35 71.1456 16 Cont. 

8 6.533 30 94.1 11.8468 0.35 83.0032 16 Cont. 

9 6.555 20 94.1 11.8468 0.35 59.288 16 Cont. 

10 6.551 22 94.1 11.8468 0.35 59.288 16 Cont. 

11 6.547 24 94.1 11.8468 0.35 59.288 16 Cont. 

12 6.547 26 94.1 11.8468 0.35 59.288 16 Cont. 

13 6.544 28 94.1 11.8468 0.35 59.288 16 Cont. 

14 6.54 30 94.1 11.8468 0.35 59.288 16 Cont. 

15 6.538 32 94.1 11.8468 0.35 59.288 16 Cont. 

16 6.539 34 94.1 11.8468 0.35 59.288 16 Cont. 

17 6.537 36 94.1 11.8468 0.35 59.288 16 Cont. 

18 6.54 38 94.1 11.8468 0.35 59.288 16 Cont. 

19 6.539 40 94.1 11.8468 0.35 59.288 16 Cont. 

20 6.537 42 94.1 11.8468 0.35 59.288 16 Cont. 

21 6.537 44 94.1 11.8468 0.35 59.288 16 Cont. 

22 6.536 46 94.1 11.8468 0.35 59.288 16 Cont. 

23 6.535 48 94.1 11.8468 0.35 59.288 16 Cont. 

24 6.538 50 94.1 11.8468 0.35 59.288 16 Cont. 

25 6.544 52 94.1 11.8468 0.35 59.288 16 Cont. 

26 6.548 54 94.1 11.8468 0.35 59.288 16 Cont. 

27 6.551 56 94.1 11.8468 0.35 59.288 16 Cont. 

28 6.552 58 94.1 11.8468 0.35 59.288 16 Cont. 

29 6.552 60 94.1 11.8468 0.35 59.288 16 Cont. 

30 6.555 62 94.1 11.8468 0.35 59.288 16 Cont. 

31 6.555 64 94.1 11.8468 0.35 59.288 16 Cont. 

32 6.557 66 94.1 11.8468 0.35 59.288 16 Cont. 

33 6.563 68 94.1 11.8468 0.35 59.288 16 Cont. 

34 6.562 70 94.1 11.8468 0.35 59.288 16 Cont. 

35 6.563 72 94.1 11.8468 0.35 59.288 16 Cont. 

36 6.573 30 94.1 11.8468 0.35 59.288 16 Cont. 

37 6.566 30 96.8 12.3949 0.35 59.288 16 Cont. 

38 6.561 30 99.2 12.8821 0.35 59.288 16 Cont. 

39 6.559 30 101.4 13.3287 0.35 59.288 16 Cont. 

40 6.558 30 102.9 13.6332 0.35 59.288 16 Cont. 

41 6.556 30 104 13.8565 0.35 59.288 16 Cont. 

42 6.554 30 105.3 14.1204 0.35 59.288 16 Cont. 

43 6.553 30 107 14.4655 0.35 59.288 16 Cont. 

44 6.553 30 109 14.8715 0.35 59.288 16 Cont. 

45 6.551 30 110.6 15.1963 0.35 59.288 16 Cont. 

46 6.55 30 112.5 15.582 0.35 59.288 16 Cont. 

47 6.551 30 115.7 16.2316 0.35 59.288 16 Cont. 

48 6.551 30 118.2 16.7391 0.35 59.288 16 Cont. 

49 6.551 30 121 17.3075 0.35 59.288 16 Cont. 

50 6.55 30 124.1 17.9368 0.35 59.288 16 Cont. 

51 6.551 30 124.1 17.9368 0.35 59.288 16 Cont. 

52 6.551 30 128.1 18.7488 0.35 59.288 16 Cont. 
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TABLE AII 

USED DATA COLLECTED ON 6/13/12, 53-64 

# 
Voltage 

(V) 

AC 

Freq. 

(kHz) 

Laser 

Current 

(mA) 

Laser 

Power 

(mW) 

Light 

Filter 

Length 

(µm) 

Scan 

Freq. 

(Hz) 

Type 

53 6.3577 30 77.7 24.336 N/A 53.3592 0.375 Cont. 

54 6.3577 30 77.7 24.336 N/A 53.3592 0.5 Cont. 

55 6.354 30 77.7 24.336 N/A 53.3592 0.75 Cont. 

56 6.352 30 77.7 24.336 N/A 53.3592 1 Cont. 

57 6.351 30 77.7 24.336 N/A 53.3592 1.25 Cont. 

58 6.35 30 77.7 24.336 N/A 53.3592 1.5 Cont. 

59 6.348 30 77.7 24.336 N/A 53.3592 2 Cont. 

60 6.3467 30 77.7 24.336 N/A 53.3592 3 Cont. 

61 6.345 30 77.7 24.336 N/A 53.3592 4 Cont. 

62 6.343 30 77.7 24.336 N/A 53.3592 6 Cont. 

63 6.342 30 77.7 24.336 N/A 53.3592 8 Cont. 

64 6.341 30 77.7 24.336 N/A 53.3592 16 Cont. 

 

TABLE AIII 

USED DATA COLLECTED ON 6/04/12, 65-73 

# 
Voltage 

(V) 

AC 

Freq. 

(kHz) 

Laser 

Current 

(mA) 

Laser 

Power 

(mW) 

Light 

Filter 

Length 

(µm) 

Scan 

Freq. 

(Hz) 

Type 

65 6.4624 60 81.6 26.598 N/A 77.0744 30 Type. 

66 5.8249 60 81.6 26.598 N/A 77.0744 30 Type. 

67 5.1806 60 81.6 26.598 N/A 77.0744 30 Type. 

68 4.5352 60 81.6 26.598 N/A 77.0744 30 Type. 

69 3.8887 60 81.6 26.598 N/A 77.0744 30 Type. 

70 6.1438 60 81.6 26.598 N/A 77.0744 30 Type. 

71 5.4996 60 81.6 26.598 N/A 77.0744 30 Type. 

72 4.8551 60 81.6 26.598 N/A 77.0744 30 Type. 

73 4.2103 60 81.6 26.598 N/A 77.0744 30 Type. 
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TABLE AIV 

USED DATA COLLECTED ON 5/30/12, 74-84 

# 
Voltage 

(V) 

AC 

Freq. 

(kHz) 

Laser 

Current 

(mA) 

Laser 

Power 

(mW) 

Light 

Filter 

Length 

(µm) 

Scan 

Freq. 

(Hz) 

Type 

74 8.7956 50 77.1 23.988 N/A 0 0 N/A 

75 8.811 45 77.1 23.988 N/A 0 0 N/A 

76 8.817 40 77.1 23.988 N/A 0 0 N/A 

77 8.82 35 77.1 23.988 N/A 0 0 N/A 

78 8.821 30 77.1 23.988 N/A 0 0 N/A 

79 8.822 25 77.1 23.988 N/A 0 0 N/A 

80 8.819 20 77.1 23.988 N/A 0 0 N/A 

81 8.795 55 77.1 23.988 N/A 0 0 N/A 

82 8.7835 60 77.1 23.988 N/A 0 0 N/A 

83 8.771 65 77.1 23.988 N/A 0 0 N/A 

84 8.758 70 77.1 23.988 N/A 0 0 N/A 
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(a – exp. 80) (b – exp. 79) 

  
(c – exp. 78) (d – exp. 77) 

  
(e – exp. 76) (f – exp. 75) 

  
(g – exp. 74) (h – exp. 81) 
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(i – exp. 82) (j – exp. 83) 

 

 

(k – exp. 84)  

FIGURE A2 - Average spacing by radius in force experiments.  One image used per 

figure. See Table AIV for parametric data. 
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FIGURE A3 - Analysis data for experiment 1. 
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FIGURE A4 - Analysis data for experiment 8. 
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FIGURE A5 - Analysis data for experiment 9. 
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FIGURE A6 - Analysis data for experiment 19.  
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FIGURE A7 - Analysis data for experiment 29.  
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FIGURE A8 - Analysis data for experiment 35.  
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FIGURE A9 - Analysis data for experiment 36.  
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FIGURE A10 - Analysis data for experiment 52.  
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FIGURE A11 - Analysis data for experiment 53.  
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FIGURE A12 - Analysis data for experiment 64.  
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FIGURE A13 - Analysis data for experiment 65.  
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FIGURE A14 - Analysis data for experiment 69.  
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