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ABSTRACT

OPTIMAL SCHEDULING FOR CHARGING ELECTRIC VEHICLES WITH

FIXED SETUP COSTS

Guangyang Xu

April 22, 2013

The increasing popularity of electric vehicles (EV) will pose great challenge

to the nation’s existing power grid by adding extra load during evening peak hours.

This thesis develops a centralized optimal charging scheduling (OCS) model with a

mixed integer nonlinear program to mitigate the negative impact of extra load from

EVs on the power grid. The objective of the OCS model is to minimize the energy

cost of the entire system and fixed setup costs for day-time charging, which

essentially levels the load of the entire power grid throughout a day under the

dynamic pricing environment. Furthermore, a rolling horizon heuristic algorithm is

proposed as an alternative solution that addresses large scale OCS instances.

Finally, when centralized scheduling is impractical, this thesis proposes a

decentralized optimal charging heuristic using the concepts of game theory and

coordinate search. Numerical results show that the optimal charging scheduling

model can significantly lower the total energy cost and the peak-to-average ratio

(PAR) for a power system. When compared to uncontrolled charging, the

decentralized charging heuristic yields considerable energy savings as well, although

not as efficient as the centralized optimal charging solutions.
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CHAPTER 1

INTRODUCTION

Since the late 1990s, there have been growing concerns on the consumption of

fossil fuel due to issues such as energy independence and climate change.

Governments around the world are making policy changes to address with these

issues. In the U.S., the fuel economy standards on automobiles have been set higher

numerous times in the past ten years [1]. In 2004, California became the first state

in the U.S. to adopt the Pavley Car Standards [2], followed by 13 other states later.

President Obama adopted the standards at the federal level in 2010. These

regulations forced the auto industry into a new round of innovation with the effort

to make fuel efficient cars. Thus, the market for electric vehicle (EV), which

includes battery electric vehicle (BEV) and plug-in hybrid electric vehicle (PHEV),

is booming. The number of hybrid or electric vehicles on the road increased from

zero in 1991 to two million in 2010 [1]. Consequently, transportation economists

have projected the EV market to be strong, with EVs comprising 64 to 86 percent

of light vehicle sales in the US by 2030 [3]. On the other hand, as suggested by

Rahman and Shrestha [4], large scale deployment of EVs will significantly increase

the total electricity power demand (or load) at peak hours, which poses a great

challenge for the reliability of the current nation’s power grids.

Although some research is done on load leveling and demand side

management (see, e.g., [5], [6] and references therein), literature on load leveling via

effectively managing charging hours for EVs is rather scant. Rahman and Shrestha

[4] study the impact of EV load on the electric utility system. Collins and Mader [7]

examine the best timing of EV recharging through two electric utility rate
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structures: the fixed and time-of-day rates. In addition, Koyanagi and Uriu [8]

develop a model to predict the future demand of electricity by EVs and propose the

regional charging time zone method to balance the demand by EVs in various

regions. While the above mentioned research focuses on the effectiveness of certain

charging/discharging policies under various conditions, it is desirable to have an

integrated EV charging scheduling solution. Such a solution should recommend EV

users on when and how much to charge their EVs during a day, with the objectives

of minimizing the total electricity cost and maximizing the load leveling of the

entire power system. The research in this thesis attempts to address this problem.

Particularly, in order to mitigate the negative impact of EV charging on the

power grid, load leveling is a desired objective of the optimal charging scheduling

solution. Thus this thesis considers the optimal charging scheduling (OCS) problem

under the dynamic rate of electricity, i.e., the unit electricity price at any given time

is a (monotone) increasing function of the total electricity load at the time. Under

the dynamic pricing structure, load leveling can be achieved by minimizing the

electricity cost of the entire system. This is because cost minimization will

incentivize EV users to shift peak-hour charging to off-peak hours. This further

indicates that the OCS model will also reduce the peak-to-average ratio (PAR) for

the power systems. Overall, the OCS problem in this thesis is for a central system

controller to minimize the total electricity cost incurred by all EV users collectively,

while the EV charging demand for each user is satisfied. Such centralized decision

models can be practical in many settings. For example, as EV becomes more

popular, one envisions that institutions (such as universities and hospitals) own

charging stations in their parking facilities, and thus have the authority to arrange

charging activities for greater economic efficiency. As another example, in a power

distribution system, load aggregators can play the role of central controller and may

be interested in coordinating charging activities by (aggregated) users (e.g., all EV

users in a pre-defined residential zone).

In essence, the proposed OCS model is a mixed integer nonlinear program

that optimally schedules/coordinates EV users charging activities throughout a day.
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In addition to minimizing the total electricity costs for all users while meeting their

charging demands, considerations are also given to EV users’ classification, EV

users’ various commute schedule and EVs’ battery capacity. First, EV users are

divided into two groups based on the distance of their daily commute. One group

represents short-distance users who travel less than 100 miles per day (round trip)

and the other represents medium-distance users who travels between 100 and 150

miles per day (round trip). Note that long-distance users, whose daily commute

exceeds 150 miles, are not included in the current study because 90% of U.S.

household vehicle trips is less than 100 miles per day according to U.S. Department

of Energy [9]. Second, because the EVs currently available on the market have the

driving distance of around 100 miles per full charge, the day-time (or at-work)

charging becomes necessary for medium-distance users. Therefore it is assumed that

day-time charging facilities are available to these users. Third, the OCS model

considers EV users’ daily commute and does not allow them to charge their EVs

during commute. For short and medium distance users, their (one way) commutes

per day are one hour and one and half hours, respectively.

One innovative consideration of the OCS model is the fixed setup cost (fc)

that is incurred between two non-consecutive charges during the day-time. In other

words, every time a user starts a new charge during the day-time period, a setup

cost is incurred. Unlike at-home charging during evenings, the day-time ‘at-work’

charging prefers a strong continuity of charging due to limited resources at public

charging stations. The fixed cost in the OCS model can be interpreted as the

penalties of non-consecutive charging (PNCC) during the day-time including labor

cost required for switching on and off the charger, inconvenience to users, harmful

effects on battery’s life and the resulting instability of the power grid due to more

frequent setups. In addition, it is important to note that the fixed cost is not

necessarily the monetary cost to EV users. Instead, it provides a means of

increasing the continuity of day-time charging. When including the fixed setup cost,

the OCS model becomes computational expensive for a power distribution system

with 100 or more EV users. Therefore, the thesis proposes a rolling horizon heuristic

3



algorithm that provides quality solutions quickly.

Finally, in some situations a decentralized charging scheduling may be more

appealing to public, in which EV users (instead of a central controller) determine

their own charging schedules. Thus, a decentralized optimal charging heuristic is

developed by applying the game theoretical approach (see e.g., [10] and [11]). The

goal of the decentralized algorithm is to study interactions among all EV users when

each minimizes his/her own total cost (i.e., electricity cost plus the fixed setup cost)

and the effect of such ‘selfish’ charging behaviors on the system-wide cost and load

profile. Using the same classification of short and medium distance users as in the

centralized models, the decentralized scheduling heuristic allows users to learn and

adapt day after day. Particularly, on each day a Gauss-Seidel type of coordinate

search optimizes each user’s charging schedule given his/her best knowledge on

others (charging) activities so far. This decentralized heuristic, although suboptimal

compared to centralized models, still improve the system performance considerably

with respect to load leveling and cost, when compared to uncoordinated charging.

In summary, the contribution of this thesis is four fold. First, a mathematical

model is developed for the centralized charging scheduling problem that explicitly

incorporates two groups of EV users, their respective commute schedules, and the

“state of charge” dynamics for all EVs. Second, the novel idea of introducing the

fixed setup cost helps to reduce the percentage of non-consecutive charge (PNCC).

Third, a rolling horizon heuristic algorithm is proposed as an alternative for solving

large scale OCS models. Finally, a decentralized/distributed charging heuristic

model is developed when centralized controlled charging is not feasible.

The rest of this thesis is organized as follows. Chapter II reviews the

literature on optimal charging scheduling, demand side management (DSM) and

distributed charging scheduling. Chapter III formulates the centralized model for

optimal charging scheduling and proposes a rolling horizon heuristic algorithm for

its solution. Chapter IV presents the decentralized charging scheduling heuristic.

Chapter V reports the numerical results, and conclusions are presented in Chapter

VI.
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CHAPTER 2

LITERATURE REVIEW

2.1 Demand Side Management (DSM) in EV Charging

Demand Side Management (DSM) was first introduced by Electric Power

Research Institute (EPRI) in the 1980s [12]. It is the modification of consumer

demand for energy through various methods such as financial incentives and

education. DSM aims to improve final electricity-using systems, reduce

consumption, while preserving the same level of service and comfort [13].

In the literature of DSM, many optimization techniques have been used in

the energy consumption scheduling solutions. Zhang et al. [14] use mixed- integer

linear programming to study the optimal scheduling of smart home’s energy

consumption. They schedule operation and electricity consumption tasks based on

different electricity tariffs, electricity task time window and forecasted renewable

energy output in order to minimize a one-day forecasted energy consumption cost.

In addition, Zhang et al. [14] conduct a case study of thirty homes in which twelve

domestic tasks from thirty homes are scheduled. Compared to the case where the

tasks all start at their earliest possible starting time, the electricity consumption

peak is decreased from 290kW to 165kW and the electricity consumption pattern

becomes flatter.

Quadratic programming is a widely used optimization technique in the DSM

literature. Vandael et al. [15] compare several solutions for PHEVs charging

scheduling. They benchmark a multi-agent solution against an optimal quadratic

programming scheduler solution. The results in [15] show that a quadratic
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programming scheduler is able to optimally flatten peak loads while sufficiently

charging the PHEV batteries. However, this solution is infeasible in practice

because it scales poorly and requires complete information on when and how much

PHEVs need to charge beforehand, which is not realistic.

Ramchurn et al. [16] provide a mixed-integer quadratic programming

formulation to solve a model of a decentralized demand side management (DDSM).

The DDSM model allows agents, by adapting the deferment of their loads based on

grid prices, to coordinate in a decentralized manner. They demonstrate that

through an emergent coordination of the agents, the peak demand of domestic

consumers in the grid can be reduced by up to 17% and carbon emissions by up to

6%. Ramchurn et al. [16] also show that the DDSM mechanism is robust to the

increasing electrification of heating in UK homes.

Dynamic programming is another popular technique used in DSM. In order

to minimize both dollar and comfort costs associated with utility use and

conservation, Kowahl and Kuh [17] propose a softmax algorithm with neighborhood

update to implement approximate dynamic programming. The goal is to reduce

dependancies on models and forecast while achieving good performance. The

simulation results for the softmax algorithm show that the approximate dynamic

programming solution approaches the optimal dynamic programming solution.

Clement-Nyns et al. [18] propose a coordinated charging to minimize the

power losses and to maximize the main grid load factor. They use both of quadratic

and dynamic programming techniques in the study. The computational results of

quadratic programming and dynamic programming are shown in the paper, which

indicate that dynamic programming does not improve the computational time nor

the solution accuracy.

Another stream of research in DSM is the study of various mechanisms to

incentivize users to participate and shift their electricity usage to off-peak hours.

For example, Mohsenian-Rad et al. [19] consider deployment of energy consumption

scheduling (ECS) devices in smart meters for autonomous demand side management

within a neighborhood, where several buildings share an energy source. The ECS
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devices interact automatically by running a distributed algorithm to find the

optimal energy consumption schedule for each subscriber. The incentive in [19] is

the dynamic pricing, where the unit electricity price is a linear function of total

load. Simulation results in [19] show that: 1) users are motivated to avoid peak

hours; 2) the proposed distributed algorithm can reduce the peak-to-average ratio

and the total cost in the system.

In a related work, Vytelingum et al. [20] present an agent-based

micro-storage management technique that allows all individually-owned storage

devices in the system to converge to profitable, efficient behaviour. Specifically, they

provide a general framework to analyze the Nash equilibrium of an electricity grid

and devise new agent-based storage learning strategies that adapt to market

conditions. The results in [20] show that in the UK electricity market, it is possible

to achieve savings of up to 13% on average for a consumer on his electricity bill with

a storage device of 4 kWh. Moreover, they show that there exists an equilibrium

where only 38% of UK households would own storage devices and social welfare

would be maximized.

Finally, Fan [21] studies the application of congestion pricing in Internet

traffic control for demand response in smart grid. In particular, he proposes to

include the ‘willingness to pay’ in the pricing scheme for the DSM for energy

consumption scheduling. In [21], user preference is modeled as a ‘willingness to pay’

parameter which can be seen as an indicator of differential quality of service. Both

analytical and simulation results demonstrate the dynamics and convergence

behavior of the algorithm.

2.2 Centralized Optimal Charging Scheduling

Managing the scheduling of EV charging is a sub-area of DSM, and has been

studied rather extensively in the past ten years. In order to mitigate the adverse

impact of uncontrolled EV charging on the power grid, coordinated or centralized

charging has become more promising with the development of smart grid and its

supporting infrastructure. In particular, Clement et al. [22] describe the
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uncoordinated charging as that the vehicles are charged immediately when they are

plugged in or after a fixed start delay, which can lead to grid problems on a local

scale. Therefore, Clement et al. [22] propose a coordinated charging to minimize the

power losses and to maximize the main grid load factor. The optimal charging

profile of the PHEVs is computed by minimizing the power losses, in which the

forecasting of household loads is handled by stochastic programming.

Similarly, Mets et al. [23] investigate the potential benefits of using control

mechanisms in optimizing energy consumption stemming from PHEV charging in a

residential use case. They present two smart energy control strategies based on

quadratic programming for charging PHEVs to minimize the peak load and flatten

the overall load profile. Both strategies (local and global iterative) control the

duration and rate of charging for each vehicle. Mets et al. [23] show quantitative

simulation results over a set of 150 homes, and discuss the strategies in terms of

complexity and resulting energy consumption, as well as their infrastructure and

communication requirements.

Furthermore, Sundström and Binding [24] study the optimal electric vehicle

battery charging behavior in order to minimize charging costs, achieve satisfactory

state-of-energy levels, and optimal power balancing. Both linear approximation and

quadratic approximation formulations are presented in the research. Sundström and

Binding [24] use a non-linear and state-dependent battery model to evaluate the

solutions of the two methods. Their results indicate that the linear approximation is

sufficient when considering the electric vehicle charging plan optimization.

Another aspect in the optimal charging scheduling for electric vehicles is the

electric vehicle’s charging pattern. The charging pattern of an electric vehicle

depends on the vehicle’s usage pattern such as the distance traveled and when the

recharging is needed. In the literature, Xu and Pan [25] construct a dynamic

stochastic model to study the scheduling problem for battery charging of multiple

PHEVs. Moreover, through a dynamic programming formulation, they show that if

the non-completion penalty (as a function of the additional time needed to fulfill the

unsatisfied charging request) is convex, priority should be given to vehicles that
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have less laxity and longer remaining processing times. According to this principle,

Xu and Pan [25] propose several improved charging scheduling polices suggested by

their heuristic algorithms. These improved polices focus only on improving the

social welfare, when compared to the original heuristics.

On the other hand, Rautiainen et al. [26] study the statistical charging load

modeling of PHEVs in electricity distribution networks. They investigate the

usefulness of the national travel survey data in the modeling. In addition,

Rautiainen et al. [26] propose a novel modeling methodology where detailed car use

habits are used to produce the statistical distributions of energy consumption from

EV charging. The models in [26] can be easily applied to network calculation tools

that are commonly used by distribution network operators.

When sources of electricity consumption, other than EV charging, are

concerned, numerous literature addresses the general energy consumption

scheduling. For example, Mohsenian-Rad and Leon-Garcia [27] propose an optimal

and automatic residential energy consumption scheduling framework. Their model

considers the trade-off between minimizing the electricity cost and minimizing the

waiting time for using each appliance in household under the real-time pricing tariff

combined with inclining block rates. The simulation results in [27] show that the

combination of the proposed energy consumption scheduling design and the price

predictor filter leads to significant reduction not only in users payments but also

peak-to-average ratio in load demand for various load scenarios. Therefore, the

deployment of the optimal energy consumption scheduling schemes in [27] is

beneficial for both end users and utility companies.

Additionally, Samadi et al. [28] model the users’ preferences and their energy

consumption patterns in form of selected utility functions based on concepts from

microeconomics. They also propose a distributed algorithm which finds the optimal

energy consumption levels for each subscriber, so that the aggregate utility of all

subscribers in the system is maximized in a fair and efficient way. Samadi et al. [28]

show that the energy provider can encourage some desirable consumption patterns

among the subscribers by the means of real-time pricing. The simulation results
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confirm that the proposed distributed algorithm can potentially benefit both

subscribers and the energy provider.

2.3 Decentralized Charging Scheduling

Distributed algorithm for coordinated charging, is motivated by individualism

in decision making in energy consumption or particularly, EV charging, and has

attracted many researchers in the past decades. Compared to centralized optimal

charging scheduling, decentralize/distributed scheduling assumes there is no central

controller and all individuals decide or optimize their own charging profiles. As a

result, the agent-based approach (e.g., [29]) seems to be a good fit to model

individuals’ consumption behavior. For example, Vytelingum et al. [20] implement

the agent-based concept in developing a micro-storage management algorithm for

the smart grid. In their model, each agent fixes his or her storage profile based on

forecasted market price. Vytelingum et al. [20] prove that the average storage profile

from their distributed algorithm converges to the Nash Equilibrium. Consequently,

average peak demand induced by the optimal storage profile is reduced, thus

eliminating the requirements for more costly and carbon-intensive generation plant.

In addition, Vandael et al. [15] propose a multi-agent solution and compared

the qualities of this solution with an optimal reference solution obtained by

quadratic programming. They use a decentralized model to level the load at each

transformer through two coordination strategies: the energy limiter and power

limiter. The former only uses predictions about loads, while the latter doesn’t use

any forecast data. In [15], the multi-agent solution proves to be scalable and

adaptable to incomplete and unpredictable information, while still capable of

reducing peak demands with an efficiency up to 95% compared to the quadratic

scheduler.

Similarly, Ma et al. [30] develop a strategy to coordinate the charging of

autonomous PHEVs using concepts from non-cooperative games. The foundation of

their research is a model that assumes PHEVs are cost-minimizing and weakly

coupled via a common electricity price. In [30], it is shown that there exists a
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unique Nash equilibrium, which is close to a solution that minimizes the electricity

generation costs by scheduling PHEV demand to fill the overnight non-PHEV

demand valley. This result is accompanied by a decentralized computational

algorithm and a proof that the algorithm converges to the Nash equilibrium in the

infinite system limit.

Finally, Phan et al. [31] propose a distributed decision-making scheme to

model the charging of a collection of EVs, in which each charger individually

determines its own charging schedule by iteratively transacting signals with a

central authority. The model introduces capacity constraints on the distribution

grid, fair rationing of energy supply available under the capacity constraint, and

discrete choice of EV charger settings. Phan et al. [31] find that the centralized

version of the problem is an mixed integer non-linear programming, which is too

hard for standard solvers even with small size instances. Therefore, they present a

distributed approximation scheme to solve the large-scale optimization model.

2.4 The Choice of Electricity Cost Function

A crucial element in any DSM study is the choice of the electricity cost/price,

which has been studied rather extensively. Most studies on electricity markets

incorporate quadratic functions describing the relationship between cost and electric

usage. In [32], a piecewise linear approximation is often applied to ease

computational burden that would otherwise be experienced by quadratic models.

On the other hand, the residential ‘time-of-use’ (TOU) rate has also been actively

studied at various U.S. cities through projects funded by the U.S. Department of

Energy over the past decades. The first project to implement the residential TOU

rate began in 1975 in Vermont and was documented in [33]. The latter provides a

detailed analysis of the TOU experiments in residential areas. Aigner [33] concludes

that effective pricing mechanism to change consumers’ behavior is among the most

important issues to the success of TOU rates. Other studies focusing on the impacts

of TOU rates include [7], [34] [35], and [36].

Moreover, Fetz and Filippini [37] have studied the economies of vertical

11



integration and economies of scale. Specifically, they use different econometric

specifications for panel data, including a random effects and a random-coefficients

model, to estimate a quadratic multi-stage cost function for a sample of electricity

companies. The empirical results in [37] reflect the presence of considerable

economies of vertical integration and economies of scale for most companies

considered in the analysis. Moreover, the results suggest a variation in economies of

vertical integration across companies due to unobserved heterogeneity.

Finally, concerning the production cost, Mart́ınez-Budŕıa et al. [38] have

adapted productivity analysis to the case of a cost model. A normalized quadratic

cost function is estimated and discrete data has been used in their research. The

main theoretical result in [38] is a productivity index that can be decomposed into

modified versions of the contribution of technical change and the effect of the

variations in the scale of production. The results also show important productivity

gains with both technical change and scale effect playing important roles.

The next chapter presents the mathematical models, program formulations

and algorithms for the centralized and decentralized charging scheduling.
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CHAPTER 3

MODELS AND ALGORITHMS FOR EV CHARGING

3.1 Centralized Optimization Model

The goal of the centralized optimal charging scheduling model is for the

power network controller (e.g., aggregator) to schedule a charging profile for each

user so that the user’s charging demand is fulfilled while the total cost for all users

collectively is minimized. Under the real-time pricing where unit electricity price is

a monotone increasing function of the load, minimizing the total cost automatically

levels the load for the entire grid throughout the day. Because one objective of the

research is to study the adverse effect of EV charging on the power grid, two

demand sources for electricity are considered. One is the regular household usage

such as heating, lighting, washer and dryer, and the other is the EV charging.

Mathematically, let t ∈ {1, 2, · · · , T} denote a time interval in a 24-hour cycle. For

example, when T = 24, each t represents a one-hour interval and when T = 48, each

t represents a half-hour interval. Consider a power distribution network with n EV

users. Let Dt
i be the regular household demand for user i at time interval t, and di

be the daily EV charging demand for user i.

Without loss of generality, the proposed OCS model considers BEV users

only. If PHEV users need to be included, one simply adjusts the charging demand

di. Further, BEV users may charge their vehicles from 8am to 5pm, which is termed

as “day-time” or “at-work” charging; or from 5pm to 8am the following day, which

is termed as “night-time” or “at-home” charging in the thesis. Thus, the OCS

model implicitly assumes that commercial charging infrastructure at workplace is
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available. In addition, as mentioned previously, two types of EV users are

considered based on their travel motion/distance (e.g., [8]). The first type is the

short-distance user who travels less than 100 miles (round trip) daily. The second

type is the medium-distance user who travels between 100 and 150 miles (round

trip) daily. 100 miles distance is chosen as it is a sufficient mileage for more than

90% of all household vehicle trips in the U.S. (see e.g., [7] and [9]). Let M be the

set of medium-distance users. Thus, for any user i ∈M and user j /∈M, di > dj.

Let decision variable xti be the amount of charge for user i during time

interval t, and yti be the associated binary variable indicating if user i is assigned to

charge during interval t. In words, yti = 1 when EV user i charges at time interval t,

and yti = 0 otherwise. Then, the total load vt at each time interval t is calculated as

the sum of regular household load and extra load from EV charging of all users

during that particular time interval, i.e., vt =
∑n

i=1(D
t
i + xti). Let uti be the amount

of remaining electricity in battery, i.e., the “state of charge,” for vehicle (user) i at

time t. Furthermore, let wti and zti be binary variables so that wti − zti equals 1 if

user i starts a new charge at time t, -1 if user i ends a charge at time t and 0 if user

i’s charging status is unchanged between time t and t− 1. Hence, the total setup

cost for user i is calculated as F
∑

tw
t
i , where F is the fixed setup cost. Finally, as

in [19], the unit electricity price pt(vt) = ct0 + ctvt(c
t 6= 0) at time t is a linear

function of the total load vt at time t.

Using the above notation, the OCS model can be formulated as the following
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mixed integer program (1)-(11).

(OCS) min f =
T∑
t=1

pt(vt)vt + F
∑
t,i

wti (1)

s.t. vt =
n∑
i=1

(Dt
i + xti), ∀t ∈ {1, · · · , T} (2)

T∑
t=1

xti = di, ∀i ∈ {1, · · · , n} (3)

∑
t∈Ci

yti = 0, ∀i (4)

xti = αyti , ∀i, t (5)

uti = ut−1i + xti − dti, ∀i, t ≥ 2 (6)

u1i = uTi + x1i − d1i , ∀i (7)

uti ≤ C, ∀i, t (8)

yti − yt−1i = wti − zti , ∀i, Ts ≤ t ≤ Te (9)

yTsi = wTsi , ∀i (10)

yti ∈ {0, 1}, xti ≥ 0, uti ≥ 0, wti ≥ 0, zti ≥ 0, ∀i, t (11)

In particular, the objective in equation (1) minimizes the total cost (i.e., the

sum of energy and setup costs) for all users in the distribution system. Constraints

of the model include equations (2) through (11). Particularly, constraint (2)

calculates the total load in each time interval t as the sum of household load and

charging demand for all users. Constraint (3) ensures that each EV user’s daily

charging requirement is fulfilled in a 24-hour cycle. Further, constraint (4) states

that no user will charge their EVs while driving for t ∈ Ci, where Ci is the set of

time intervals for morning and evening commute hours, whose composition depends

on the length of interval t. For example, if T = 48, then Ci ranges from 14 to 16 for

morning commute hours and from 35 to 37 for evening commute hours.

Additionally, constraint (5) assigns a total charge of α kWh to user i (xti = α) if the

user is determined to charge during time interval t (yti=1). Note that α is the

energy drawn from the charging station during one unit of time, and its value may
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vary among different types of charging stations. Constraints (6) to (8) consider the

“state of charge” of the electric vehicle. Constraint (6) calculates the remaining

electricity in battery for user i at the end of time t (t 6= 1), which equals the

electricity in battery at the end of time t− 1 plus the energy drawn from the

charging station at time t minus the energy consumption (due to driving) dti during

this one unit of time t. Note that xti and dti may not be positive at the same time

because one does not charge and drive the vehicle simultaneously. Similarly,

constraint (7) calculates the remaining electricity in battery for user i at the end of

time t=1 based on the electricity in battery at the end of time T from the previous

day. Constraint (8) states that the remaining electricity in battery for user i at any

time does not exceed its capacity C, ensuring that the battery is not overcharged at

all times. Constraint (9) assigns 1 to wti and 0 to zti whenever a new charge starts at

time t during the day for user i, where Ts and Te represent the start and end of the

day-time charging periods, respectively. For example, if T = 48, then Ts = 17 (8am)

and Te = 35 (5pm). Similarly, constraint (10) ensures that when a new charge starts

at the beginning of the day-time, it will be counted and wTsi is set to 1. Finally,

constraint (11) specifies that variables xti, u
t
i, w

t
i and zti are all non-negative, while yti

is binary indicating if user i will charge or not at time interval t.

Note that in the most general setting when pt(vt) = ct0 + ctvt where ct 6= 0

(i.e., unit price is a linear function of the total load), the OCS model is a quadratic

mixed integer program. However, in a special case where ct = 0 (e.g., ‘time-of-use’

rate), it reduces to a linear mixed integer program.

Finally, one variation of the OCS model is to allow users to charge for only a

portion (e.g., half or quarter) of an assigned interval. This can be realized by

changing (5) from equality constraint to its ‘≤’ inequality counterpart. Obviously,

this relaxation provides smaller optimal cost than does the original OCS model.

However, the relaxation is likely to produce rather scattered charging profile, with

high percentage of non-consecutive charging. Detailed numerical investigation of

this tradeoff can be found in Chapter 4 Section 4.2.
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Variable Description
ytotali the total charging periods needed for user i
mi the charging periods needed during day-time for user i
ni the charging periods needed during night-time for user i
α the energy drawn from the charging station during one unit of time
amcedi the morning commute ending time for user i
pmcedi the evening commute ending time for user i
amcsti the morning commute starting time for user i
ai the end of day-time charging for user i
bi the end of night-time charging for user i
D the last possible time interval for day-time charging, e.g., t = 35

TABLE 1

Description of variables in Algorithm 1

3.2 A Rolling Horizon Heuristic (RHH) Algorithm

The centralized optimization model in Section 3.1 is implemented in

GAMS/CPLEX and tested extensively. The numerical experience is that when the

number of users, n, is large (e.g., 100), it becomes very difficult to solve the mixed

integer model (OCS) to optimality using CPLEX. Thus, the rolling horizon heuristic

is developed as an alternative solution method to provide good solutions quickly.

The principle of the rolling horizon heuristic (RHH) is to allocate the T time

intervals evenly to all EV users. In order to fulfill an EV user’s daily charging

demand, the RHH assigns half of the demand to be met during the day-time

charging and the other half during the night-time charging. More specifically, the

RHH starts from the first EV user, and assigns the first available day-time and

night-time slots to this users’s day-time and night-time charge, respectively. Then

the RHH schedules the second EV user’s charging, and so on. Whenever a user rolls

to the end of day-time (8am-5pm) or night-time (5pm-8am) charging period, the

RHH will search from the beginning of the period for the first available time slot

and assign it to the user to fulfill his/her charging demand. This cycle repeats until

all EV users’ charging is complete. The pseudo-code of the RHH method is given in

Algorithm 1, which uses variables that are defined in Table 1.

Particularly, Algorithm 1 can be explained as follows. In Step 0, all yti are
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Step 0. (Initialization)
for i=1,n do

yti = 0, for t ∈ 1, · · · , T. //T is the last time interval for the day, e.g., T = 48
end
Step 1. (calculate the charging periods needed during day-time (mi) and night-time (ni) for each user)

for i = 1, n do
ytotali = di/α; mi = b0.5ytotali c; ni = ytotali −mi

end
Step 2. (assign charging periods for user 1)

yt1 = 1, for amced1 + 1 ≤ t ≤ amced1 +m1 and pmced1 + 1 ≤ t ≤ pmced1 + n1.
a1 = amced1 +m1, b1 = pmced1 + n1; //a1 and b1 are the ends of the day and night charging

for user 1, respectively
Step 3. (assign day-time charging periods for user i based on that for user i− 1)

for i=2,n do
if ai−1 +mi ≤ D − 1 then

//D is the last possible time interval for day-time charging, e.g., D = 35
if ai−1 + 1 ≥ amcedi then

yti = 1, for ai−1 + 1 ≤ t ≤ ai−1 +mi;
ai = ai−1 +mi;

else
yti = 1, for amcedi + 1 ≤ t ≤ amcedi +mi;
ai = amcedi +mi;

end
//update ai

end
if ai−1 +mi ≥ D then

if ai−1 + 1 ≤ D − 1 then
yti = 1, for ai−1 + 1 ≤ t ≤ D − 1;

end
yti = 1, for amcedi + 1 ≤ t ≤ amcedi + ai−1 +mi −D + 1;
ai = amcedi + ai−1 +mi −D + 1;

end

end
Step 4. (assign night-time charging periods for user i based on that for user i− 1)

for i = 2, n do
if ( bi−1 + 1 ≥ pmcedi + 1 and bi−1 + ni ≤ T ) or (bi−1 + 1 ≤ amcsti − 1 and
bi−1 + ni ≤ amcsti − 1) then

yti = 1, for bi−1 + 1 ≤ t ≤ bi−1 + ni;
bi = bi−1 + ni;
//update bi

end
if bi−1 + 1 ≥ pmcedi + 1 and bi−1 + ni ≥ T then

if bi−1 + 1 ≤ T then
yti = 1, for bi−1 + 1 ≤ t ≤ T ;

end
yti = 1, for 1 ≤ t ≤ bi−1 + ni − T ;
bi = bi−1 + ni − T ;

end
if bi−1 + 1 ≤ amcsti − 1 and bi−1 + ni ≥ amcsti then

yti = 1, for bi−1 +1 ≤ t ≤ amcsti − 1 and pmcedi +1 ≤ t ≤ pmcedi +ni − amcsti + bi−1 +1;
bi = pmcedi + ni − amcsti + bi−1 + 1;

end
if amcsti ≤ bi−1 + 1 ≤ 35 then

yti = 1, for pmcedi + 1 ≤ t ≤ pmcedi + ni;
bi = pmcedi + ni;

end

end

Algorithm 1 A Rolling horizon heuristic
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initialized to be zero. In Step 1, the charging durations needed during day-time and

night-time are calculated for each user. The daily demand for user i is divide

equally into two halves and each half is met either through day-time or night-time

charging. In Step 2, both the day-time and night-time charging periods for user 1

are assigned from the first available time intervals until user 1’s demand is met. In

Step 3, day-time charging periods for user i are assigned based on that for user

i− 1. There are two different situations in this step. First, the assigned charging

time intervals for user i end before the last possible time interval for day-time

charging, D. If the assigned charging starting time intervals for user i begin after

the morning commute ending time, then he/she should charge the vehicle following

the previous user with mi intervals. If the assigned charging starting time for user i

begins before the morning commute ending time, then he/she should wait and start

charging after the morning commute time with mi intervals. Second, the assigned

charging time intervals for user i end at or after D. If the assigned charging starting

time for user i begins before D, then the user should start charging after user i− 1

until D. The rest of day-time charging demand of user i is met from time slots at

the end of morning commute of user i, although this will coincide with other users’

day-time charging. Finally in Step 3, after the assignment of user i’s day-time

charging periods, ai (the end of day-time charging for user i) is updated. In Step 4,

the night-time charging periods for user i are assigned based on that for user i− 1.

The assignment of night-time charging in Step 4 is rather complex with four

different situations. The first scenario is that the assigned night-time charging

intervals for user i begin after the evening commute time and end before the last

time interval for the day, or the assigned charging intervals begin and end before the

morning commute starts. In other words, the whole night-charging period is either

between the evening commute ending time and T or is between midnight and the

morning commute starting time. Under this scenario, the user should charge the

vehicle for ni intervals following the completion of user i− 1. In the second scenario,

the assigned night-time charging intervals for user i begin after the evening

commute time and end after T . In this case, if the assigned charging starting time
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for user i begins before T , then the user should start charging after the completion

of user i− 1 until T . The rest of night-time charging demand will be met from time

slots after midnight. The third scenarios is where the assigned night-time charging

intervals for user i begin before the morning commute time and end after that. The

user should start charging after the completion of user i− 1 until the morning

commuting starting time. The rest of night-time charging demand will be met from

time slots after the evening commute ending time. The last scenario is when the

assigned night-time charging intervals for user i begin after the morning commute

time and end before D. The user should start charging the vehicle after the evening

commute ending time for ni intervals. After user i’s night-time charging is assigned

in Step 4, bi (the end of night-time charging for user i) is updated.

This rolling horizon heuristic is implemented and evaluated in the numerical

experiments, and the results are discussed in Chapter 4 Section 4.2.

3.3 Decentralized Charging Heuristic

By definition, the decentralized charging scheduling means EV users, instead

of a central controller, decide on when and how much to charge their vehicles.

While the centralized model and algorithm in Section 3.1 can help a network

controller to achieve the maximum load leveling via minimizing the total

system-wide cost, there may be situations in the real world where a decentralized

scheduling is more desirable by individuals. This Section focuses on the

development of a decentralized charging scheduling heuristic.

Consider again the dynamic pricing where unit electricity price

pt(vt) = ct0 + ctvt (ct 6= 0) at time t is a linear function of the total load vt at time t.

Consequently, individuals’ cost would depend on their own as well as others’

charging schedule. Mathematically, recall that xti and yti are charging decision

variables for user i at time t. Let Xt
−i and Yt

−i be the charging scheduling vectors

for all users other than i. Thus, given Xt
−i and Yt

−i, user i fixes his/her charging

schedule by solving the following subproblem:
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(DCS-i) min
xti, y

t
i

fi =
T∑
t=1

p̃t(x
t
i;X

t
−i)x

t
i + F

∑
t

wti (12)

s.t.
T∑
t=1

xti = di, (13)

∑
t∈Ci

yti = 0, (14)

xti = αyti , ∀t (15)

uti = ut−1i + xti − dti, t ≥ 2 (16)

u1i = uTi + x1i − d1i , (17)

uti ≤ C, ∀t (18)

yti − yt−1i = wti − zti , Ts ≤ t ≤ Te (19)

yTsi = wTsi , (20)

yti ∈ {0, 1}, xti ≥ 0, uti ≥ 0, wti ≥ 0, zti ≥ 0, ∀t, (21)

where p̃t(x
t
i;X

t
−i) = ct0 + ct(Dt

i + xti +
∑

j 6=i(D
t
j + xtj)) and Dt

i are as defined

previously.

Note that xti and yti are the only decision variables in (DCS-i). In a sense, the

original centralized model (OCS) decomposes to n subproblems (DCS-i). This

motivates us to develop a distributed heuristic algorithm for solving these n

subproblems simultaneously.

In essence, the method outlined in Algorithm 2 applies a ‘coordinate search’

in solving the OCS model in a distributed manner. Note that the linear cost

function p̃t(x
t
i;X

t
−i) in (DCS-i) is approximated by the average of historical prices

from previous days, where p̂t is the approximate price. In addition, one may

perceive that the iteration index l represents day l, and the algorithm settles on an

‘optimal’ charging schedule among users after a reasonable period (e.g., 30 days).

On any given day l, users solve their own scheduling problem (DCS-i) and

broadcast their ‘optimal’ charging profile in a serial manner. When all users

complete their charging scheduling, the electricity price for the next day will be
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Initialization:
l← 1 and ∆←∞ //set up the initial iteration index and solution gap;
x(l)ti ← 0 and y(l)ti ← 0 for all user i and time t;
p̂(l)t = ct0 + ct(

∑n
i=1D

t
i) for all time t //set up initial price using household load only;

while l < MaxIter and ∆ > MaxGap do
step 1. Calculate an approximate price;

if l > 1 then

p̂t =
∑l−1

k=1 p̂(k)t

l−1 for all t;

else
p̂t = p̂(l)t;

end
step 2. Calculate the charging profile for each user i sequentially ;
i← 1;
while i ≤ n do

step 2.1. Solve (DCS-i) with the approximate p̂t replacing p̃t(x
t
i;X

t
−i) for user

i;
step 2.2. Update x(l)ti and y(l)ti;
step 2.3. Broadcast a control message to announce x(l)i to other users;

step 2.4. Update p̂t = ct0 + ct(
∑n

j=1D
t
j +

∑i
j=1 x(l)tj +

∑n
j=i+1 x

t(l − 1)j);

end
step 3. Update p̂(l)t = p̂t(x(l)1, x(l)2, · · · , x(l)n);
step 4. Update ∆ =‖ x(l)ti − x(l − 1)ti ‖ and l← l + 1;

end

return x∗ti = x(l)ti for all user i and time t;

Algorithm 2 A coordinate search heuristic

adjusted based on today’s final charging profiles among all users. The algorithm

terminates when either the number of days exceeds a pre-specified limit MaxIter or

the gap between successive iterations is within the pre-specified tolerance MaxGap.
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CHAPTER 4

NUMERICAL RESULTS

4.1 Data Generation

Because the current thesis focuses on BEVs only, the Nissan Leaf is chosen as

a prototype 100% battery charged electric vehicle to evaluate the proposed models.

According to Nissan USA [39], the Nissan Leaf is equipped with a 24 kWh

lithium-ion battery and has a Depth of Discharge (DOD) of 80%. In addition, the

Level 2 charger (240 V) is used as a prototype charging station, which is available to

most BEV users and can charge up to 3.3 kWh of energy in one hour (see e.g., [39]

and [40]). By using this charging facility, the Nissan Leaf is estimated to complete

its charging in approximately 5.8 hours and can run roughly 100 miles with a full

charged battery. Furthermore, as mentioned previously, short- and medium-distance

EV users are considered in the thesis. Thus, short-distance users will need a

maximum of approximately 6 hours for a complete charging while the

medium-distance users will need a maximum of approximately 9 hours to fulfill the

charging demand. The latter indicates that one full charge is not enough for the

medium-distance users to complete their daily commute. Therefore, these users

have to charge their EVs twice a day, once during the day time (at work) and once

during the night time (at home). Finally, the total of 3.3 kWh per hour drawn from

a level-2 charger implies a total of 1.65 kWh per half an hour. Hence, when

implementing the centralized and decentralized models, α = 1.65 in (OCS) and

(DCS-i). Finally, our implementation of the linear cost function uses ct0 = 0.071 and

ct = 0.02 [41] in pt(vt) = ct0 + ctvt.
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Figure 1. The household load profiles in summer months

In addition to the EV charging demand, the second source of electricity

demand from the regular household usage is simulated based on studies reported by

the Southern California Edison (SCE) territory [41]. In particular, household load

profiles during the summer months (June, July, August and September) are used in

the numerical experiments. Typically, the load profile of these summer months

contains a single peak due to the increased electricity demand attributed to the hot

weather. In addition, there are three categories of regular household load profiles:

low-usage load profile with 23-28 kWh daily energy consumption, average-usage

load profile with 29-36 kWh daily consumption, and high-usage load profile with

51-62 kWh daily consumption. Using this information and setting T = 48, a

baseline household demand profile is randomly generated for half-hour duration

(because T = 48) throughout a 24-hour cycle for the three types of users. Figure 1

illustrates the three prototypical baseline household demand profiles over 48
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half-hour intervals. These randomly generated profiles exhibit the same peak and

off-peak loads and periods as shown in the empirical data in [42].

Furthermore, in order to study the effectiveness of the proposed centralized

and decentralized models, an uncontrolled charging profile is established as a

benchmark. The uncontrolled charging scheduling assumes that when the system is

left uncontrolled, the EV users will choose the most convenient time during evening

hours between 5pm to 7am the following day to charge their vehicles. Starting times

are randomly generated for the short and medium distance users. Once the charge

starts, the uncontrolled charging solution lets users continue charging until the

demand is fulfilled.

4.2 Results for OCS Models

The OCS model is implemented in GAMS, where the quadratic integer

programs are solved by CPLEX 10.2. All experiments are run on a 16-core, dual

Opteron server with 32 GB of memory and 13 TB of disk space in a RAID 6

configuration. The operating system is openSUSE 11 Linux. For all analysis, the

total number of users, n, is varied with values 10, 50, 100 and 200. For each value of

n, different penetration rates of medium-distance users, denoted as r, are tested

using values of 20%, 35% and 50%. The fixed cost, fc, is also varied with fees $0,

$0.25 and $1. For each scenario with fixed values of n and fc, a total of 15 instances

are run with 5 instances for each value of r. Then the average energy costs and the

average peak-to-average ratios (PAR) are calculated for all 15 instances, where the

PAR is calculated as maximum total load
average total load

for the entire system. These two measures are

chosen because the centralized scheduling model is concerned with the overall

performance of the entire distribution network. Another important measure is the

percentage of non-consecutive charging (PNCC) during the day, calculated by

total number of nonconsecutive charging during day-time
total number of day-time charging intervals

or
∑

t w
t
i∑

t y
t
i

for each user i. To some extent,

PNCC shows how fixed setup cost will affect the continuity of day-time charging.
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Instance
Penetration rate r

20% 35% 50%
f∗
RLX ($) UCI f∗ ($) UCI f∗

RLX ($) UCI f∗ ($) UCI f∗
RLX ($) UCI f∗ ($) UCI

1 145.98 28 146.28 8 144.78 27 145.13 7 159.20 28 159.65 9
2 139.91 28 140.18 7 151.47 28 151.75 8 152.92 28 153.63 8
3 141.42 28 141.74 7 146.24 27 146.42 7 159.72 28 160.45 9
4 141.96 28 142.32 7 153.63 28 154.35 8 165.22 28 165.40 9
5 148.26 28 148.81 7 147.36 28 147.69 8 160.37 28 160.84 9

Average 143.51 28 143.87 7 148.70 28 149.07 8 159.49 28 159.99 9

TABLE 2

Relaxation vs. original OCS model (linear cost, n = 10)

4.2.1 Models Vs. Linear Programming ( LP) Relaxation

First, we investigate the tradeoff of allowing users to charge only for a portion

of each assigned interval. We compute and count the average number of utilized

charging intervals (UCI) for all 15 instances, where the UCI is counted for the entire

system. As discussed previously, such a relaxation model is obtained by changing

(5) from equality constraint to its “≤” inequality counterpart in OCS model.

Tables 2 and 3 compare the relaxation and original models on a set of 5

instances for 10 and 100 users under linear cost, respectively. In both tables, column

“f ∗RLX” gives the optimal cost of the relaxation model and column “f ∗” provides

that of the original model. Overall, in terms of total cost, both tables suggest that

the advantage of the relaxation model over the original model is very marginal (in

the order of 0.1%). Further, when comparing Tables 2 and 3, we observe that the

advantage of the relaxation model diminishes as the number of users increases from

10 to 100. In particular, the average cost reduction due to the relaxation decreases

from 0.27% for n = 10, to 0.01% for n = 100. On the other hand, in terms of UCI,

both tables show significant disadvantage of the relaxation model over the original

model. The average UCI increases from 8 to 28, which is a 250% growth for both

n = 10 and n = 100. Due to the above observations, we drop the relaxation model

from further consideration.

4.2.2 Results for MIP Models vs. Uncontrolled EV Charging

Table 4 displays the performance measures for uncontrolled charging for

n = 10 users. From Table 4, we observe that the average energy cost is $175.81 at
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Instance
Penetration rate r

20% 35% 50%
f∗
RLX ($) UCI f∗ ($) UCI f∗

RLX ($) UCI f∗ ($) UCI f∗
RLX ($) UCI f∗ ($) UCI

1 10,586.03 28 10,586.70 7 11,846.03 28 11,846.35 8 12,755.13 28 12,755.69 9
2 10,577.28 28 10,577.90 7 11,659.38 28 11,659.72 8 12,485.68 28 12,485.88 9
3 11,151.60 28 11,152.42 7 11,680.18 28 11,681.47 8 12,553.74 28 12,554.35 9
4 10,631.54 28 10,631.94 7 11,405.56 28 11,406.74 8 12,274.99 28 12,275.34 9
5 11,164.42 28 11,165.20 7 11,521.74 28 11,522.69 8 12,566.92 28 12,567.55 9

Average 10,822.18 28 10,822.83 7 11,622.58 28 11,623.39 8 12,527.29 28 12,527.76 9

TABLE 3

Relaxation vs. original OCS model (linear cost, n = 100)

Penetration rate r
Instance 20% 35% 50%

Energy cost ($) PAR Energy cost ($) PAR Energy cost ($) PAR
1 180.38 2.29 175.96 2.31 194.14 2.32
2 169.66 2.51 183.16 2.39 181.40 2.27
3 174.93 2.51 179.56 2.50 197.35 2.34
4 168.81 2.09 187.96 2.31 201.32 2.30
5 185.29 2.33 178.92 2.47 194.36 2.35

Average 175.81 2.35 181.11 2.39 193.71 2.32

TABLE 4

Results for uncontrolled charging with the linear cost (n = 10)

20% penetration rate of medium-distance users. The average PAR, on the other

hand, is calculated to be 2.35. As we increase the medium-distance penetration rate

to 35%, the average energy cost increases slightly to $181.11 while the average PAR

increases to 2.39. Finally, at 50% penetration rate, the average energy cost is

$193.71 for 10 users with a PAR of 2.32. Overall, as the penetration rate of

medium-distance users increases, the total electricity cost increases. However, the

PAR shows no correlation with the penetration rate. Similar observations on the

same five instances can be made from the results of the optimal charging with $0,

$0.25 and $1 fixed cost scenarios in Tables 5 to 7, respectively. Most importantly,

when comparing the four tables, one observes that the average energy cost and PAR

have been reduced considerably by all fixed cost scenarios in Tables 5 to 7. For

example, at 20% penetration rate, the average energy cost reduces to $143.50,

$143.69 and $144.51 for $0, $0.25 and $1 fixed cost scenarios, respectively. Similar

observations can be made for n=50, 100 and 200 as shown in Tables 8 to 19.
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Penetration rate r
Instance 20% 35% 50%

Energy cost ($) PNCC PAR Energy cost ($) PNCC PAR Energy cost ($) PNCC PAR
1 145.91 0.91 1.10 144.78 0.82 1.10 159.09 0.87 1.20
2 139.95 0.93 1.14 151.22 0.84 1.14 152.99 0.90 1.12
3 141.32 0.94 1.13 146.02 0.83 1.11 159.84 0.76 1.12
4 141.96 0.91 1.11 153.81 0.82 1.21 165.21 0.86 1.10
5 148.39 0.85 1.25 147.54 0.76 1.24 160.49 0.83 1.11

Average 143.50 0.91 1.15 148.67 0.81 1.16 159.52 0.84 1.13

TABLE 5

Results for optimal charging with $0 fixed cost (n = 10)

Penetration rate r
Instance 20% 35% 50%

Energy cost ($) PNCC PAR Energy cost ($) PNCC PAR Energy cost ($) PNCC PAR
1 146.28 0.17 1.14 145.17 0.17 1.19 159.26 0.21 1.16
2 140.35 0.17 1.14 151.49 0.18 1.15 153.33 0.17 1.16
3 141.45 0.18 1.13 146.18 0.18 1.17 159.87 0.22 1.12
4 142.11 0.18 1.11 153.95 0.17 1.12 165.28 0.19 1.16
5 148.28 0.19 1.12 147.65 0.18 1.20 160.62 0.14 1.15

Average 143.69 0.18 1.13 148.89 0.18 1.17 159.67 0.19 1.15

TABLE 6

Results for optimal charging with $0.25 fixed cost (n = 10)

Penetration rate r
Instance 20% 35% 50%

Energy cost ($) PNCC PAR Energy cost ($) PNCC PAR Energy cost ($) PNCC PAR
1 146.60 0.11 1.20 144.89 0.10 1.16 159.23 0.14 1.11
2 141.23 0.09 1.17 152.33 0.09 1.19 153.21 0.14 1.11
3 142.30 0.10 1.18 146.70 0.10 1.17 159.94 0.14 1.14
4 142.45 0.14 1.16 155.02 0.12 1.16 165.40 0.12 1.13
5 149.95 0.10 1.17 148.04 0.10 1.16 160.78 0.13 1.15

Average 144.51 0.11 1.18 149.40 0.10 1.17 159.71 0.13 1.13

TABLE 7

Results for optimal charging with $1 fixed cost (n = 10)
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In order to evaluate OCS solutions, Table 20 compares the performance

measures for uncontrolled charging and the OCS solution with fc = $0, and Table

21 compares OCS solutions with fc = $0.25 and those with fc = $1. For each

combination of (n, r), i.e., the number of EV users and the penetration rate of

medium-distance users, the energy cost and PAR reported in both tables are the

averages over 5 instances. Overall, these results indicate that the proposed OCS

model yields significant reduction in the energy cost as well as the PAR, when

compared to uncontrolled charging scenario. For example, when n=10 and r=20%,

the OCS model with fc = $0 reduces the energy cost and PAR from $175.81 to

$143.50 (i.e., 18.38% improvement), and from 2.35 to 1.15 (i.e., 51.06%

improvement), respectively. Furthermore, even with the highest fixed cost of $1, the

OCS model provides significant improvement over the uncontrolled scenario. In the

previous example where n=10 and r=20%, the OCS optimal charging model with

$1 fixed cost provides an improvement of 17.80% in the energy cost and 49.79% in

the PAR.

4.2.3 Results for MIP Solutions for Various Fixed Setup Costs

When comparing OCS solutions with different setup costs, it can be observed

from Table 5 to Table 7 that the PNCC decreases dramatically with the increase of

the fixed cost. For example, when n=10, the PNCC is 0.91 for optimal charging

with $0 fixed cost at 20% penetration rate, and it significantly decreases to 0.18 for

optimal charging with $0.25 fixed cost at the same penetration rate, and 0.11 for

optimal charging with $1 fixed cost. This indicates that the application of the fixed

cost can significantly reduce the non-consecutive charging during the day-time.

Similar observations can be made for n=50, 100 and 200 as shown in Tables 8 to 19.

In addition, we observe the following from Tables 20 and 21. First,

collectively the two tables show that the energy cost increases when fc increases

from zero to a non-zero value. This is because the OCS model with fc = $0

minimizes the energy cost, while the OCS model with fc 6= 0 minimizes the sum of

the energy and setup costs. Second, from Table 21, when fc increases from $0.25 to
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Penetration rate r
Instance 20% 35% 50%

Energy cost ($) PAR Energy cost ($) PAR Energy cost ($) PAR
1 3,645.87 2.42 3,949.04 2.38 3,976.36 2.30
2 3,440.53 2.48 3,820.17 2.40 4,094.93 2.27
3 3,382.58 2.32 3,665.51 2.43 3,989.71 2.29
4 3,560.23 2.47 3,709.04 2.24 3,981.33 2.35
5 3,599.80 2.40 3,936.65 2.30 4,101.53 2.28

Average 3,525.80 2.42 3,816.08 2.35 4,028.77 2.30

TABLE 8

Results for uncontrolled charging with the linear cost (n = 50)

Penetration rate r
Instance 20% 35% 50%

Energy cost ($) PNCC PAR Energy cost ($) PNCC PAR Energy cost ($) PNCC PAR
1 2,831.53 0.82 1.07 3,084.23 0.88 1.04 3,186.24 0.83 1.05
2 2,726.42 0.88 1.10 3,001.10 0.83 1.05 3,218.14 0.81 1.05
3 2,714.36 0.87 1.14 2,910.42 0.87 1.06 3,204.34 0.81 1.08
4 2,777.86 0.90 1.09 2,978.52 0.82 1.06 3,193.71 0.83 1.04
5 2,809.55 0.84 1.07 3,082.67 0.80 1.07 3,270.10 0.82 1.03

Average 2,771.95 0.86 1.09 3,011.39 0.84 1.06 3,214.50 0.82 1.05

TABLE 9

Results for optimal charging with $0 fixed cost (n = 50)

Penetration rate r
Instance 20% 35% 50%

Energy cost ($) PNCC PAR Energy cost ($) PNCC PAR Energy cost ($) PNCC PAR
1 2,832.46 0.33 1.08 3,085.29 0.22 1.06 3,187.07 0.26 1.07
2 2,778.01 0.32 1.09 3,001.61 0.30 1.06 3,218.96 0.27 1.06
3 2,715.75 0.32 1.14 2,911.79 0.18 1.08 3,205.38 0.28 1.07
4 2,778.01 0.19 1.09 2,995.92 0.25 1.27 3,194.49 0.27 1.11
5 2,810.17 0.23 1.07 3,083.17 0.22 1.05 3,270.81 0.23 1.06

Average 2,782.88 0.28 1.09 3,015.56 0.23 1.10 3,215.34 0.26 1.07

TABLE 10

Results for optimal charging with $0.25 fixed cost (n = 50)
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Penetration rate r
Instance 20% 35% 50%

Energy cost ($) PNCC PAR Energy cost ($) PNCC PAR Energy cost ($) PNCC PAR
1 2,834.88 0.19 1.07 3,086.94 0.17 1.06 3,188.80 0.19 1.07
2 2,727.48 0.20 1.10 3,004.39 0.14 1.06 3,220.08 0.18 1.10
3 2,717.18 0.22 1.14 2,912.47 0.18 1.06 3,207.00 0.20 1.07
4 2,779.85 0.17 1.09 2,983.49 0.22 1.12 3,197.48 0.22 1.08
5 2,814.16 0.25 1.09 3,086.05 0.14 1.07 3,273.35 0.20 1.06

Average 2,774.71 0.21 1.10 3,014.67 0.17 1.07 3,217.34 0.20 1.08

TABLE 11

Results for optimal charging with $1 fixed cost (n = 50)

Penetration rate r
Instance 20% 35% 50%

Energy cost ($) PAR Energy cost ($) PAR Energy cost ($) PAR
1 13,375.02 2.43 15,108.24 2.31 16,225.92 2.28
2 13,504.93 2.50 14,821.39 2.36 15,931.61 2.24
3 14,556.88 2.44 14,894.92 2.36 15,817.94 2.26
4 13,512.11 2.39 14,372.83 2.38 15,253.63 2.26
5 14,554.22 2.42 14,532.80 2.34 15,745.56 2.30

Average 13,900.63 2.44 14,746.04 2.35 15,794.93 2.27

TABLE 12

Results for uncontrolled charging with the linear cost (n = 100)

Penetration rate r
Instance 20% 35% 50%

Energy cost ($) PNCC PAR Energy cost ($) PNCC PAR Energy cost ($) PNCC PAR
1 10,586.35 0.86 1.09 11,846.43 0.82 1.04 12,755.42 0.84 1.03
2 10,578.11 0.89 1.09 11,660.08 0.83 1.05 12,485.64 0.83 1.03
3 11,152.05 0.88 1.06 11,680.56 0.84 1.03 12,554.38 0.83 1.04
4 10,632.04 0.85 1.08 11,405.98 0.87 1.05 12,275.54 0.82 1.04
5 11,164.86 0.84 1.06 11,522.35 0.84 1.04 12,567.72 0.84 1.03

Average 10,822.68 0.86 1.07 11,623.08 0.84 1.04 12,527.74 0.83 1.04

TABLE 13

Results for optimal charging with $0 fixed cost (n = 100)
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Penetration rate r
Instance 20% 35% 50%

Energy cost ($) PNCC PAR Energy cost ($) PNCC PAR Energy cost ($) PNCC PAR
1 10,586.94 0.20 1.09 11,846.61 0.23 1.03 12,756.05 0.23 1.04
2 10,581.25 0.19 1.09 11,660.55 0.20 1.05 12,486.65 0.22 1.03
3 11,152.37 0.20 1.06 11,681.05 0.18 1.03 12,555.04 0.23 1.04
4 10,632.62 0.26 1.08 11,406.48 0.26 1.05 12,275.30 0.24 1.03
5 11,166.18 0.19 1.06 11,522.54 0.21 1.04 12,568.78 0.19 1.05

Average 10,823.87 0.21 1.07 11,623.45 0.22 1.04 12,528.37 0.22 1.04

TABLE 14

Results for optimal charging with $0.25 fixed cost (n = 100)

Penetration rate r
Instance 20% 35% 50%

Energy cost ($) PNCC PAR Energy cost ($) PNCC PAR Energy cost ($) PNCC PAR
1 10,589.74 0.17 1.09 11,852.83 0.19 1.08 12,762.60 0.22 1.12
2 10,580.56 0.17 1.09 11,665.14 0.25 1.07 12,504.59 0.21 1.15
3 11,155.82 0.18 1.06 11,685.51 0.22 1.06 12,561.77 0.22 1.08
4 10,634.95 0.21 1.08 11,412.36 0.21 1.05 12,281.25 0.20 1.05
5 11,168.47 0.18 1.06 11,526.26 0.21 1.04 12,575.01 0.21 1.05

Average 10,825.91 0.18 1.07 11,628.42 0.22 1.06 12,537.04 0.21 1.09

TABLE 15

Results for optimal charging with $1 fixed cost (n = 100)

Penetration rate r
Instance 20% 35% 50%

Energy cost ($) PAR Energy cost ($) PAR Energy cost ($) PAR
1 54,542.03 2.39 57,442.56 2.33 61,565.03 2.28
2 54,124.27 2.43 59,333.19 2.34 61,084.34 2.31
3 55,081.06 2.43 58,963.92 2.34 61,383.03 2.29
4 53,797.21 2.43 58,271.08 2.33 61,369.27 2.27
5 54,941.72 2.42 57,502.56 2.34 63,218.80 2.30

Average 54,497.26 2.42 58,302.66 2.34 61,724.10 2.29

TABLE 16

Results for uncontrolled charging with the linear cost (n = 200)
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Penetration rate r
Instance 20% 35% 50%

Energy cost ($) PNCC PAR Energy cost ($) PNCC PAR Energy cost ($) PNCC PAR
1 42,647.78 0.88 1.08 45,261.59 0.80 1.05 48,914.17 0.78 1.03
2 42,342.72 0.87 1.09 46,392.72 0.84 1.03 48,486.52 0.76 1.03
3 42,609.14 0.87 1.09 46,157.85 0.78 1.04 48,955.19 0.79 1.03
4 42,042.00 0.82 1.08 45,999.05 0.79 1.03 48,396.31 0.81 1.02
5 42,740.20 0.87 1.08 45,344.85 0.85 1.05 49,680.87 0.79 1.02

Average 42,476.37 0.86 1.08 45,831.21 0.81 1.04 48,886.61 0.79 1.03

TABLE 17

Results for optimal charging with $0 fixed cost (n = 200)

Penetration rate r
Instance 20% 35% 50%

Energy cost ($) PNCC PAR Energy cost ($) PNCC PAR Energy cost ($) PNCC PAR
1 42,648.96 0.24 1.08 45,260.97 0.21 1.05 48,915.48 0.23 1.03
2 42,343.26 0.21 1.09 46,398.85 0.23 1.05 48,488.27 0.23 1.03
3 42,612.30 0.22 1.09 46,158.73 0.21 1.04 48,957.86 0.20 1.03
4 42,042.53 0.21 1.08 45,999.77 0.24 1.03 48,397.91 0.22 1.03
5 42,742.26 0.21 1.08 45,346.36 0.23 1.05 49,681.95 0.20 1.02

Average 42,477.86 0.22 1.08 45,832.94 0.22 1.04 48,888.29 0.22 1.03

TABLE 18

Results for optimal charging with $0.25 fixed cost (n = 200)

Penetration rate r
Instance 20% 35% 50%

Energy cost ($) PNCC PAR Energy cost ($) PNCC PAR Energy cost ($) PNCC PAR
1 42,651.82 0.19 1.08 45,265.59 0.26 1.05 48,921.21 0.20 1.04
2 42,352.32 0.22 1.09 46,397.30 0.23 1.03 48,509.84 0.24 1.10
3 42,615.06 0.20 1.09 46,167.27 0.20 1.04 48,961.79 0.28 1.04
4 42,046.51 0.20 1.08 46,011.35 0.22 1.05 48,406.09 0.21 1.05
5 42,744.86 0.21 1.08 45,350.54 0.20 1.05 49,692.41 0.19 1.03

Average 42,482.11 0.20 1.08 45,838.41 0.22 1.04 48,898.27 0.22 1.05

TABLE 19

Results for optimal charging with $1 fixed cost (n = 200)
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n r
Uncontrolled fc=$0

Energy cost ($) PAR Energy cost ($) PNCC PAR
20% 175.81 2.35 143.50 0.91 1.15

10 35% 181.11 2.39 148.67 0.81 1.16
50% 193.71 2.32 159.52 0.84 1.13
20% 3,525.80 2.42 2,771.95 0.86 1.09

50 35% 3,816.08 2.35 3,011.39 0.84 1.06
50% 4,028.77 2.30 3,214.50 0.82 1.05
20% 13,900.63 2.44 10,822.68 0.86 1.07

100 35% 14,746.04 2.35 11,623.08 0.84 1.04
50% 15,794.93 2.27 12,527.74 0.83 1.04
20% 54,497.26 2.42 42,476.37 0.86 1.08

200 35% 58,302.66 2.34 45,831.21 0.81 1.04
50% 61,724.10 2.29 48,886.61 0.79 1.03

TABLE 20

Results of the (OCS) using the linear cost function (Uncontrolled and fc = $0)

n r
fc=$0.25 fc=$1

Energy cost ($) PNCC PAR Energy cost ($) PNCC PAR
20% 143.69 0.18 1.13 144.51 0.11 1.18

10 35% 148.89 0.18 1.17 149.40 0.10 1.17
50% 159.67 0.19 1.15 159.71 0.13 1.13
20% 2,782.88 0.28 1.09 2,774.71 0.21 1.10

50 35% 3,015.56 0.23 1.10 3,014.67 0.17 1.07
50% 3,215.34 0.26 1.07 3,217.34 0.20 1.08
20% 10,823.87 0.21 1.07 10,825.91 0.18 1.07

100 35% 11,623.45 0.22 1.04 11,628.42 0.22 1.06
50% 12,528.37 0.22 1.04 12,537.04 0.21 1.09
20% 42,477.86 0.22 1.08 42,482.11 0.20 1.08

200 35% 45,832.94 0.22 1.04 45,838.41 0.22 1.04
50% 48,888.29 0.22 1.03 48,898.27 0.22 1.05

TABLE 21

Results of the (OCS) using the linear cost function (fc = $0.25 and fc = $1)
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$1, the energy cost for fc=$1 is not necessarily larger than that for fc=$0.25. For

example, the energy cost for n = 50, r = 20% and fc = 1 is $2,774.71, lower than

that for n = 50, r = 20% and fc = $0.25. This is again because in both scenarios

(fc = $0.25 and fc = $1), OCS minimizes the total energy and setup costs and the

energy cost may not exhibit any patterns between the two settings. Third, Tables

20 and 21 indicate that an OCS model with a non-zero fc can significantly reduce

the percentage of non-consecutive charge (PNCC) without notable increase in the

energy cost and PAR. For example, when n=10 and r=20%, the scenario of

fc=$0.25 provides an approximate 80% improvement in the PNCC, when compared

to the scenario of fc = $0. For the case of fc=$1, the improvement on PNCC is

roughly 88% improvement. This shows that including the setup cost in the OCS

model is extremely valuable in reducing PNCC without much sacrifice on PAR and

the energy cost.

Overall, the OCS model offers greater flexibility in the day-time charging

(between 8am to 5pm) when the baseline household demand is low. Thus, the user

would shift the load for EV charging to the periods of low energy consumption.

Consequently, the energy cost is reduced and the total energy demand is distributed

more evenly with a reduced PAR.

Figure 2 displays the charging profile for a medium-distance EV user (user 1,

whose EV demand is 26.4 kWh) in four charging scenarios. Figure 2(a) shows the

charging profile when the user is left uncontrolled. In this case, user 1 starts

charging at 7pm (t = 39) and completes his/her charging by 3am (t = 7) the

following day, using a total of 16 half-hour intervals. Figure 2(b) depicts user 1’s

optimal charging profile from the OCS with fc = 0, which has several separate and

disjoint charging periods during the day. The allocation of these charging periods

given by the central controller is based on the price at the specific time such that all

users’ total cost is minimized. Figure 2(c) shows the optimal charging profile for

user 1 from the OCS with fc = 0.25. It can be observed that user 1 is assigned to

charge the vehicle from 8am (t = 17) to 11am (t = 23) and from 12:30pm (t = 26)

to 1pm (t = 27). The whole day-time charging of 7 half-hour intervals is divided
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Figure 2. Four scenarios of charging profile for user 1 under uncontrolled and OCS
model

into two sections. Finally, Figure 2(d) illustrates the optimal charging profile for

user 1 from the OCS with fc = 1. Compared to uncontrolled (in Figure 2(a)), zero

fixed cost optimal charging (in Figure 2(b)) and $0.25 fixed cost optimal charging

(in Figure 2(c)), this charging profile has a total of 5.5 consecutive charging hours

(or 11 consecutive half hour intervals) during the day between 8am (t = 17) to

1:30pm (t = 28), thus drawing a total of 18.15 kWh of energy. Nonetheless, the

charging schedule during the evening hours is not subject to the fixed setup cost.

Therefore, in Figure 2(d), user 1 is scheduled to charge for only one interval at

12am, and to charge for four consecutive intervals from 3:30am to 5:30am.

Figure 3 illustrates a comparison of load leveling achieved through four

charging scenarios, uncontrolled charging scenario (the ‘◦’ series), the OCS model

with zero fixed cost (the ‘4’ series), the OCS model with $0.25 fixed cost (the ‘�’
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Figure 3. Overall load leveling under uncontrolled charging and (OCS) model with
different fixed cost (n=10)
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series) and the OCS model with $1 fixed cost (the ‘∗’ series) for the case of n = 10

users. The vertical axis is the total load of regular household usage and EV charging

from all 10 users. Several observations are made from this figure. First, the load

profile for the uncontrolled charging scenario demonstrates a significant demand

peak between t = 37 (6pm) and t = 3 (1am the following day), and a demand valley

between t = 8 (3:30am) and t = 36 (5:30pm). Second, all three optimal charging

scenarios help flatten the load curve by reducing the evening peak by more than

50%, but with demand valleys at t = 16 (7:30 am) due to the morning commute and

at t= 35 to 36 due to the evening commute. Finally, the OCS models with

fc = $0.25 and fc = $1 provide almost the same load leveling effect as the OCS

model with fc = $0. Thus, it is concluded that the OCS model with high fixed costs

significantly reduces the PNCC without notable losses on energy cost, PAR and

load leveling.

4.3 Results for Rolling Horizon Heuristic (RHH)

Table 22 displays the total CPU time used by CPLEX 10.2 to solve the OCS

models. First, for a fixed value of n, when the setup cost increases from zero to

non-zero, the CPU time required for solving the OCS model increases significantly.

For example, when n = 50, the average CPU time for fc = $0 is 1.13 seconds, for

fc = $0.25 is 345.26 seconds (a 300 folds increase) and for fc = $1 is 634.16 seconds

(a 600 folds increase). Second, as the number of EV users increases, the average

CPU time increases and reaches to an average of approximately 30 minutes when

n = 200. This motivates the development of the proposed rolling horizon heuristic

(RHH) method, which uses negligible CPU time in solving the charging scheduling

problem. The RHH is also implemented in GAMS and the following table compares

the solution quality of the RHH method with that of the OCS model by CPLEX

10.2.

Specifically, Table 23 compares the energy cost of the RHH solution with that

of various OCS solutions. For each combination of (n, r), the energy cost of the RHH

solution is reported in the third column; and the fourth column displays the energy
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n r
CPU time (sec)

fc = $0 fc = $0.25 fc = $1

20% 0.09 7.42 28.24
10 35% 0.09 8.81 12.21

50% 0.09 8.36 85.31
Average 0.09 8.19 41.92

20% 1.05 104.61 454.67
50 35% 1.10 576.33 515.49

50% 1.24 354.84 932.31
Average 1.13 345.26 634.16

20% 4.19 1,041.73 1,262.15
100 35% 4.18 311.51 190.05

50% 4.71 299.55 224.63
Average 4.36 550.93 558.94

20% 15.89 1,881.92 1,399.87
200 35% 218.12 1,760.14 1,298.26

50% 504.43 1,956.88 1,721.54
Average 246.15 1,866.31 1,473.22

TABLE 22

CPU times for (OCS) charging scenarios

n r
Energy cost of fc = $0 fc = $0.25 fc = $1

rolling heuristic ($) Energy cost ($) Gap % Energy cost ($) Gap % Energy cost ($) Gap %
20% 149.84 143.50 4.41 143.69 4.28 144.51 3.69

10 35% 154.94 148.67 4.21 148.89 4.06 149.40 3.71
50% 167.04 159.52 4.71 159.67 4.61 159.71 4.59
20% 2,922.13 2,771.95 5.42 2,782.88 5.00 2,774.71 5.31

50 35% 3,168.29 3,011.39 5.21 3,015.56 5.06 3,014.67 5.10
50% 3,383.20 3,214.50 5.25 3,215.34 5.22 3,217.34 5.15
20% 11,406.26 10,822.68 5.39 10,823.87 5.38 10,825.91 5.36

100 35% 12,235.44 11,623.08 5.27 11,623.45 5.27 11,628.42 5.22
50% 13,176.32 12,527.74 5.18 12,528.37 5.17 12,537.04 5.10
20% 44,796.44 42,476.37 5.46 42,477.86 5.46 42,482.11 5.45

200 35% 48,255.00 45,831.21 5.29 45,832.94 5.28 45,838.41 5.27
50% 51,425.44 48,886.61 5.19 48,888.29 5.19 48,898.27 5.17

Average − 5.08 − 5.00 − 4.93

TABLE 23

Results of rolling heuristic and comparison with (OCS) charging scenarios
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cost of the OCS solution with fc = $0 and the gap between these two energy costs.

The gap is calculated as energy cost of rolling heuristic - energy cost of (OCS) scenario
energy cost of (OCS) scenario

× 100%.

Similar information is provided for the OCS solutions with fc = $0.25 and fc = $1

in columns five and six, respectively. Note that all quantities reported in the table

are the averages over 5 instances. It can be observed that the smallest gap is 3.69%,

achieved at n=10, r=20% and fc = $1. The highest gap is 5.46%, achieved at

n=200, r=20% and fc=$0 or $0.25. Overall, across three values for fc and four

values for n, the average optimality gap for the RHH is 5%. This shows that the

RHH method is a good alternative to produce quality solutions in much less (indeed

negligible) CPU time, when compared to the OCS model solved by general purpose

solvers such as CPLEX.

4.4 Results for Decentralized Models

The decentralized coordinate search heuristic (Algorithm 2 of Section 3.3) is

also implemented in GAMS/CPLEX, using the same random instances and linear

cost function p̃t(x
t
i;X

t
−i) = ct0 + ct(Dt

i + xti +
∑

j 6=i(D
t
j + xtj)) (ct0 = 0.071 and ct =

0.02) as in Section 4.2. Maxiter and MaxGap are set to be 100 and 0.01,

respectively. In other words, users are allowed to learn the price dynamics over 100

days before the ‘optimal’ charging schedule is settled among all users.

Table 24 displays the performance measures for DCS model with $0 fixed

cost for n = 10 users. From Table 24, we observe that the average energy cost is

$158.21 at 20% penetration rate of medium-distance users. The average PAR, on

the other hand, is calculated to be 1.97. As the medium-distance penetration rate

increases to 35%, the average energy cost increases slightly to $159.63 while the

average PAR decreases to 1.91. Finally, at the 50% penetration rate, the average

energy cost is $172.76 for 10 users with a PAR of 1.88. Overall, as the penetration

rate of medium-distance users increases, the total electricity cost increases. Similar

observations of the energy cost on the same five instances can be made from the

results of the DCS charging with $0.25 and $1 fixed cost scenarios in Tables 25 to

26, respectively. However, the PAR shows no correlation with the penetration rate.
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Penetration rate r
Instance 20% 35% 50%

Energy cost ($) PAR Energy cost ($) PAR Energy cost ($) PAR
1 160.72 1.97 157.24 2.09 169.81 1.93
2 154.69 1.97 161.14 1.91 165.48 1.87
3 157.66 1.97 155.43 1.77 173.57 1.85
4 154.43 1.95 168.71 1.88 178.77 1.91
5 163.55 2.02 155.64 1.92 176.16 1.86

Average 158.21 1.97 159.63 1.91 172.76 1.88

TABLE 24

Results for decentralized charging with $0 fixed cost (n = 10)

For Table 25, when the penetration rate of the medium-distance users increases

from 20% to 35% to 50%, the average PAR increase from 1.30 to 1.37 to 1.55.

However, in Table 26, when the penetration rate of the medium-distance users

increases from 20% to 35% to 50%, the average PAR first increases from 1.31 to

1.95 then decrease to 1.85.

Most importantly, when comparing these three tables with the uncontrolled

charging scenario in Table 4, one observes that the average energy cost and PAR

have been reduced considerably in scenarios of various fixed costs in Tables 24 to 26.

For example, at 20% penetration rate, the average energy cost reduces from $175.81

(uncontrolled) to $158.21 (fc=$0), $144.73 (fc=$0.25) and $146.95 (fc=$1).

Similar observations can be made for n=50, 100 and 200 as shown in Tables 27 to

35.

Another observation is that although for n=10, the lowest average energy

cost is achieved at the scenario with $0.25 fixed cost, it cannot be concluded that

the DCS charging with $0.25 provides the best solution for decentralized charging.

For example, for n=50 and r=20%, the lowest average energy cost is achieved at

fc=$1 with $2,813.92. We speculate that this is because the DCS algorithm is only

a heuristic model, which can provide a good feasible solution but not the optimal

solution.

Figure 4 displays the detailed charging profile for a medium-distance EV user

(user 1, whose EV demand is 26.4 kWh) in uncontrolled and three decentralized
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Penetration rate r
Instance 20% 35% 50%

Energy cost ($) PAR Energy cost ($) PAR Energy cost ($) PAR
1 146.68 1.30 146.37 1.47 168.87 1.87
2 140.78 1.33 152.78 1.29 159.45 1.47
3 142.07 1.18 147.32 1.36 162.77 1.53
4 145.07 1.42 154.95 1.31 168.58 1.51
5 149.04 1.25 150.89 1.42 161.23 1.38

Average 144.73 1.30 150.46 1.37 164.18 1.55

TABLE 25

Results for decentralized charging with $0.25 fixed cost (n = 10)

Penetration rate r
Instance 20% 35% 50%

Energy cost ($) PAR Energy cost ($) PAR Energy cost ($) PAR
1 148.21 1.31 155.32 1.94 169.32 1.87
2 144.55 1.50 160.79 1.98 162.10 1.90
3 142.87 1.48 156.60 1.96 169.83 1.84
4 147.77 1.82 164.59 1.96 173.88 1.83
5 151.37 1.61 160.22 1.92 167.86 1.82

Average 146.95 1.31 159.50 1.95 168.60 1.85

TABLE 26

Results for decentralized charging with $1 fixed cost (n = 10)

Penetration rate r
Instance 20% 35% 50%

Energy cost ($) PAR Energy cost ($) PAR Energy cost ($) PAR
1 3184.83 1.96 3439.54 1.94 3510.22 1.94
2 3057.31 2.00 3296.58 1.91 3514.40 1.84
3 3049.86 2.00 3276.80 1.93 3442.66 1.86
4 3147.41 1.98 3221.63 1.94 3490.20 1.85
5 3176.42 1.97 3410.03 1.87 3568.86 1.84

Average 3123.17 1.96 3328.92 1.92 3505.27 1.87

TABLE 27

Results for decentralized charging with $0 fixed cost (n = 50)
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Penetration rate r
Instance 20% 35% 50%

Energy cost ($) PAR Energy cost ($) PAR Energy cost ($) PAR
1 2891.36 1.41 3158.66 1.31 3257.11 1.36
2 2784.57 1.47 3053.99 1.44 3284.69 1.33
3 2770.61 1.52 2974.71 1.46 3278.40 1.22
4 2842.05 1.37 3014.09 1.35 3269.10 1.50
5 2856.54 1.36 3134.17 1.29 3340.02 1.31

Average 2829.03 1.41 3067.12 1.37 3285.86 1.34

TABLE 28

Results for decentralized charging with $0.25 fixed cost (n = 50)

Penetration rate r
Instance 20% 35% 50%

Energy cost ($) PAR Energy cost ($) PAR Energy cost ($) PAR
1 2875.16 1.26 3119.37 1.29 3255.28 1.42
2 2765.81 1.52 3035.92 1.29 3278.44 1.52
3 2760.45 1.33 2948.42 1.43 3286.30 1.55
4 2828.65 1.42 3007.94 1.27 3247.64 1.37
5 2839.54 1.42 3115.10 1.34 3302.50 1.29

Average 2813.92 1.26 3045.35 1.32 3274.03 1.43

TABLE 29

Results for decentralized charging with $1 fixed cost (n = 50)

Penetration rate r
Instance 20% 35% 50%

Energy cost ($) PAR Energy cost ($) PAR Energy cost ($) PAR
1 11,918.93 2.00 13,057.98 1.89 14,104.78 1.81
2 11,998.30 1.99 12,774.25 1.90 14,069.75 1.84
3 12,541.14 1.95 13,143.43 2.07 13,706.91 1.86
4 11,887.55 2.02 12,606.24 2.02 13,401.89 1.88
5 12,733.12 1.94 12,802.88 2.01 13,282.17 1.83

Average 12,215.81 2.00 12,876.96 1.98 13,713.10 1.84

TABLE 30

Results for decentralized charging with $0 fixed cost (n = 100)
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Penetration rate r
Instance 20% 35% 50%

Energy cost ($) PAR Energy cost ($) PAR Energy cost ($) PAR
1 10,919.04 1.47 11,987.93 1.35 13,052.86 1.46
2 10,754.47 1.34 11,871.61 1.29 12,701.78 1.28
3 11,309.79 1.29 11,925.21 1.32 12,764.56 1.37
4 10,923.23 1.60 11,666.61 1.40 12,532.01 1.35
5 11,423.87 1.35 11,788.70 1.50 12,763.42 1.28

Average 11,066.08 1.47 11,848.01 1.37 12,762.93 1.35

TABLE 31

Results for decentralized charging with $0.25 fixed cost (n = 100)

Penetration rate r
Instance 20% 35% 50%

Energy cost ($) PAR Energy cost ($) PAR Energy cost ($) PAR
1 10,719.67 1.31 11,997.42 1.35 12,884.50 1.33
2 10,729.78 1.42 11,860.50 1.43 12,641.90 1.45
3 11,351.14 1.46 11,864.40 1.38 12,728.60 1.28
4 10,936.08 1.48 11,582.04 1.50 12,515.64 1.49
5 11,354.52 1.32 11,724.01 1.42 12,774.66 1.31

Average 11,018.24 1.31 11,805.68 1.42 12,709.06 1.37

TABLE 32

Results for decentralized charging with $1 fixed cost (n = 100)

Penetration rate r
Instance 20% 35% 50%

Energy cost ($) PAR Energy cost ($) PAR Energy cost ($) PAR
1 48,104.46 1.97 50,669.98 1.91 53,642.30 1.87
2 48,119.74 1.98 51,630.14 1.89 53,114.09 1.94
3 48,180.33 1.97 51,508.40 1.90 53,218.79 1.82
4 47,332.32 1.99 51,260.11 1.90 53,801.14 1.88
5 48,503.38 1.97 50,818.31 1.91 54,086.15 1.76

Average 48,048.05 1.97 51,177.39 1.90 53,572.49 1.85

TABLE 33

Results for decentralized charging with $0 fixed cost (n = 200)
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Penetration rate r
Instance 20% 35% 50%

Energy cost ($) PAR Energy cost ($) PAR Energy cost ($) PAR
1 43,415.46 1.48 46,524.04 1.40 49,693.17 1.23
2 43,615.71 1.61 46,890.81 1.20 49,426.61 1.30
3 43,482.45 1.40 46,817.15 1.36 49,640.93 1.34
4 43,025.98 1.57 47,158.20 1.42 49,170.51 1.28
5 43,488.48 1.37 46,027.26 1.54 50,344.17 1.28

Average 43,405.62 1.48 46,683.49 1.38 49,655.08 1.29

TABLE 34

Results for decentralized charging with $0.25 fixed cost (n = 200)

Penetration rate r
Instance 20% 35% 50%

Energy cost ($) PAR Energy cost ($) PAR Energy cost ($) PAR
1 43,605.04 1.46 46,153.00 1.55 49,739.43 1.33
2 43,189.48 1.51 47,011.33 1.33 49,834.68 1.31
3 43,637.85 1.48 47,757.72 1.47 49,759.09 1.42
4 42,939.61 1.65 46,924.28 1.40 49,354.90 1.32
5 43,276.01 1.42 45,956.66 1.34 50,484.72 1.30

Average 43,329.60 1.46 46,760.60 1.42 49,834.56 1.34

TABLE 35

Results for decentralized charging with $1 fixed cost (n = 200)
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charging scenarios. Figure 4 (a) shows the charging profile when the user is left

uncontrolled, which is the same as shown in Figure 2(a). Figure 4(b) depicts user

1’s decentralized charging profile from the DCS with fc = $0. It can be observed

that user 1 charges the vehicle from 8am (t = 17) to 9am (t = 19), from 10am

(t = 21) to 11am (t = 23) and from 1pm (t = 27) to 1:30pm (t = 28). The day-time

charging of 5 half-hour intervals is divided into three sections. The allocation of

these charging periods is given by the heuristic algorithm in minimizing user1’s

energy cost based on the price at the specific time. Figures 4(c) and 4(d) show the

decentralized charging profile for user 1 from the DCS with fc = $0.25 and fc = $1,

respectively. When fc=$0.25, user 1 charges the vehicle from 1:30pm (t = 28) to

4pm (t = 33), and his/her entire day-time charging of 5 half-hour intervals is

assigned in to the only one section. The latter is a direct result of the fixed cost of

$0.25. Similarly, when fc = $1, this charging profile has a total of 2.5 consecutive

charging hours (or 5 consecutive half hour intervals) during the day between 8am

(t = 17) to 10:30am (t = 22), thus drawing a total of 8.25 kWh of energy.

Nonetheless, the charging schedule during the evening hours is not subject to the

fixed setup cost. Therefore, for example in Figure 4(d), user 1 is scheduled to charge

for only one interval at 1:30am (t = 4), and to charge for five consecutive intervals

from 3:30am (t = 8) to 6am (t = 13).

Tables 36 and 37 compare the energy cost and PAR for decentralized and

centralized charging solutions under different fc. Again, for each combination of

(n, r), the energy cost and the gap reported in the table are the averages over 5

instances. The gap in these two tables measures the effectiveness of the

decentralized charging scheduling, referred to as “DCS”, when compared to the

OCS solution. The lower the gap is, the closer the DCS solution is to the OCS

solution, and the more effective the DCS solution is. The gap on energy cost is

calculated as energy cost of (DCS) - energy cost of (OCS)
energy cost of (OCS)

and the gap on PAR is calculated as

PAR of (DCS) - PAR of (OCS)
PAR of (OCS)

. From Tables 36 and 37, the average gaps on energy cost for

fc = $0.25 and fc = 1 are approximately 1.8% and 2.4%, respectively. However, for

fc=0, the average gap is about 10%, which might still be acceptable given the
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Figure 4. Four scenarios of charging profile for user 1 under uncontrolled and DCS
model

fc n 10 50
($) r 20% 35% 50% 20% 35% 50%

0

Energy OCS 143.50 148.67 159.52 2,771.95 3,011.39 3,214.50
cost DCS 158.21 159.63 172.76 3,123.17 3,328.92 3,050.27
($) Gap 10.25% 7.37% 8.30% 12.67% 10.54% 9.05%

PAR
OCS 1.15 1.16 1.13 1.09 1.06 1.05
DCS 1.98 1.91 1.88 1.98 1.92 1.87
Gap 72.17% 64.66% 66.37% 81.65% 81.13% 78.10%

0.25

Energy OCS 143.69 148.89 159.67 2,782.88 3,015.56 3,215.34
cost DCS 144.73 150.46 164.18 2,829.03 3,067.12 3,285.86
($) Gap 0.72% 1.06% 2.82% 1.66% 1.71% 2.19%

PAR
OCS 1.13 1.17 1.15 1.09 1.10 1.07
DCS 1.30 1.37 1.55 1.43 1.37 1.34
Gap 15.04% 17.09% 34.78% 31.19% 24.55% 25.23%

1

Energy OCS 144.51 149.40 159.71 2,774.71 3,014.67 3,217.34
cost DCS 146.95 159.50 168.60 2,813.92 3,045.35 3,274.03
($) Gap 1.69% 6.77% 5.57% 1.41% 1.02% 1.76%

PAR
OCS 1.18 1.17 1.13 1.10 1.07 1.08
DCS 1.54 1.95 1.85 1.39 1.32 1.43
Gap 30.51% 66.67% 63.72% 26.36% 23.36% 32.41%

TABLE 36

Comparisons between the (OCS) and (DCS) models under three fixed cost (n=10
and n=50) scenarios
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fc n 100 200
($) r 20% 35% 50% 20% 35% 50%

0

Energy OCS 10,822.68 11,623.08 12,527.74 42,476.37 45,831.21 48,886.61
cost DCS 12,215.81 12,876.96 13,713.10 48,048.05 51,177.39 53,572.49
($) Gap 12.87% 10.79% 9.46% 13.12% 11.66% 9.59%

PAR
OCS 1.07 1.04 1.04 1.08 1.04 1.03
DCS 1.98 1.98 1.84 1.98 1.90 1.85
Gap 85.05% 90.38% 76.92% 83.33% 82.69% 79.61%

0.25

Energy OCS 10,823.87 11,623.45 12,528.37 42,477.86 45,832.94 48,888.29
cost DCS 11,066.08 11,848.01 12,762.93 43,405.62 46,683.49 49,655.08
($) Gap 2.24% 1.93% 1.87% 2.18% 1.86% 1.57%

PAR
OCS 1.07 1.04 1.04 1.08 1.04 1.03
DCS 1.41 1.37 1.35 1.48 1.38 1.29
Gap 31.78% 31.73% 29.81% 37.04% 32.69% 25.24%

1

Energy OCS 10,825.91 11,628.42 12,537.04 42,482.11 45,838.41 48,898.27
cost DCS 11,018.24 11,805.68 12,709.06 43,329.60 46,760.60 49,834.56
($) Gap 1.78% 1.52% 1.37% 1.99% 2.01% 1.91%

PAR
OCS 1.07 1.06 1.09 1.08 1.04 1.05
DCS 1.40 1.42 1.37 1.50 1.42 1.34
Gap 30.84% 33.96% 25.69% 38.89% 36.54% 27.62%

TABLE 37

Comparisons between the (OCS) and (DCS) models under three fixed cost (n=100
and n=200) scenarios

benefit of not having a central controller. For the peak-to-average ratio, there is a

much larger gap between the DCS and OCS solutions for all combinations of n, r

and fc. In particular, for fc = $0, $0.25 and $1, the average gaps on PAR are

approximately 78.5%, 28% and 36%, respectively.

Finally, Figure 5 illustrates a comparison of load leveling achieved through

three charging scenarios, i.e. uncontrolled charging scenario (the ‘◦’ series), the OCS

solution with $0.25 fixed cost (the ‘4’ series), and the DCS solution with $0.25

fixed cost (the ‘�’ series) in a case of n = 10 users. It can be observed that the OCS

solution presents the best load leveling, and the DCS solution has a few modest

peaks and valleys. This is consistent with the observation that the gap on PAR is

relatively high as illustrated in Tables 36 and 37. However, the DCS solution still

provides significantly better scheduling compared to the uncontrolled solution which

has large peaks and valleys. While it may not be as effective as the centralized

solution in minimizing the energy cost and leveling the load, the decentralized

solution can be appealing because users decide their own charging scheduling.
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Figure 5. Comparison of load leveling under different models (n=10)
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusions

In order to mitigate the adverse effect of extra loads due to EV charging on

the existing power grid, this thesis studies the optimal charging scheduling problem

that coordinates the charging of all EV users in a power distribution network. The

contribution of the thesis is three-fold. First, setup cost at commercial charging

stations during day-time is explicitly modeled in order to reduce the frequency of

switch on/off a charger. Second, users’ daily commute schedule is considered in the

model to determine the subsequent charging pattern. Third, battery capacity is

considered in the proposed charging scheduling.

Particularly, we employ the mixed integer program model to optimize the EV

charging schedule. The objective is to minimize the sum of: 1) for all users while

meeting each user’s household and EV charging demands, energy cost and 2) the

total setup costs. Considerations are given to the “state of charge” for EVs, fixed

setup cost, charging patterns and battery capacity.

Numerical results show that the OCS model significantly reduces the energy

cost and the PAR, when compared to uncontrolled charging scheduling. In most

cases, the energy cost for the OCS solution is 18% lower than that of the

uncontrolled charging solution, and the PAR value is at least 50% lower. In

addition, including fixed setup costs in the OCS model drastically reduces the

percentage of non-consecutive charging (by approximately 80% for fc = $0.25 or

fc = $1, when compared to fc = $0) without notable losses in total energy cost, the
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PAR and load leveling. This is very encouraging from the perspective of grid

stability. Furthermore, a rolling horizon heuristic algorithm is proposed for solving

large-scale OCS problems efficiently. Numerical results reveal an average gap of

approximate 5% between the energy costs of the heuristic and OCS solutions.

In addition, a decentralized coordinate search heuristic is developed for EV

users to determine their own charging schedules in a distributed manner. Numerical

results show that while the centralized solution is most effective in reducing both

energy cost and peak-to-average ratio, and the proposed decentralized solution is

competitive in reducing energy cost, with less than 2% optimality gap in most cases.

Although on average 30% less effective than the OCS solution, the DCS solution

still achieves far better load leveling when compared to the uncontrolled charging.

The improvement over the uncontrolled charging is approximately 15% on total

energy cost and 30% on PAR. Nonetheless, DCS is still considered highly appealing

to utility companies because its distributed nature.

5.2 Future Work

There are several future research directions. First, several meta-heuristics will

be studied to improve the solutions by the rolling horizon heuristic for the

centralized charging scheduling problem. Second, the centralized optimization

model in this thesis is essentially mixed integer programs, which cannot be solved

efficiently by general purpose solvers for large-scale instances. Thus, developing

customised solution methods such as Lagrangian relaxation is another interesting

problem. Third, we would like to develop a decentralized solution that accounts for

demand stochasticity using agent-based simulation. Finally, we would like to

integrate control-based constraints in the charging scheduling models so that the

grid stability is guaranteed.
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