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ABSTRACT 

INTEGRATION OF Ag2Ga NANONEEDLES ON BATCH 
FABRICATED MICRO-GRIPPERS FOR MATERIAL PROPERTY 

MEASUREMENT 

PengXu 

March 22nd
, 2011 

In this thesis self-assembled growth of Ag2Ga nano-needles on batch fabricated 

micro-grippers are reported. The room temperature growth of Ag2Ga nano-needles have 

been recently developed as stylus for Atomic Force Microscopy (AFM). Integration of 

such nano-needles onto batch fabricated micro-grippers can potentially lead to the 

development of nano-grippers for nano-manipulation of materials, measurement of 

electrical properties of nanostructures and finally measurement of electrochemical 

properties of cells. 

We explored the growth process of nano-needles on batch fabricated micro-

grippers. Micro-grippers were first batch fabricated using carbon nanotube/SU8 process 

at the University of Louisville's clean room facility. Following the gripper fabrication, 20 

nm chromium and 100 nm silver were selectively deposited onto the arms of the grippers 

using shadow masking techniques. Each silver coated arm was selectively dipped onto 

liquid gallium and retracted for the formation of Ag2Ga eutectic nano-needles at room 
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temperature in ambient environment. The length and diameter of nano-needles can be 

controlled by the thickness of silver and volume of gallium liquid. Scanning Electron 

Microscope (SEM) characterization revealed nano-needles of 100 -120 nm in diameter 

and 7-15 Ilm long on each gripper. Following the nano-needle growth on the grippers, the 

grippers were packaged onto a ceramic chip carrier and wire bonded. Following wire 

bonding, 100 nm of parylene was coated everywhere besides the surface of 

gripper/needles to enable electrical insulation in liquid environments, and then the tips of 

nano-needles are exposed. 1-V measurements revealed an open circuit resistance of 120 

Giga-ohms showing the versatility of the grippers integrated with the needles as 

electrodes for measurement of electrical properties of nano-materials and in liquids. 

Preliminary measurements on a small carbon nanotube film when brought into contact 

with the needle revealed six to eight orders of magnitude change in the resistance 

showing that these needles are highly sensitive for electrical property measurement on 

nano-materials. Finally, the needles were tested inside phosphate buffered saline and 

performed linear sweep voltammetry to investigate reduction-oxidation reactions on the 

surface of the nano-needle. 
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CHAPTER 1 - INTRODUCTION 

The ability to manipulate atoms, molecules and supra-molecular structures has 

resulted in an unprecedented understanding of how materials behave at such length scales 

in the physical, chemical and biological sciences area. Scanning Probe Microscopy (SPM) 

invented in the early 1980s by Binnig and Rohrer of the IBM Zurich Laboratory has 

shown the versatility and ease of manipulation and measurement of materials properties 

of wide variety of materials in air, liquid and vacuum environments [1-9]. However, the 

single probe tips used in SPMs limit these tools' ability to manipulate objects and 

measure physical properties; for example, one tip cannot grab an object, and electrical 

measurements cannot be made without a second contact to structures. It was reported that 

two or three probe tips are combined for manipulation [10, 11] and electrical 

measurement [12], however it is difficult to connect multiple electrodes to an individual 

cell for more complex measurements. Two probes in the form of tweezers could 

overcome these limitations of SPMs and thus might enable new types of fabrication and 

easy electrical measurements on nanostructures and inside biological cells. MEMS based 

electrostatic grippers/tweezers, have been fabricated previously on silicon [13-15]. 

Tungsten deposition and subsequent processing were used to produce tungsten arms 200 

!lm in length by 2.5 !lm in width that could be closed by applying a potential of ~ 150 V 
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and then opened again by reducing V to zero [13]. The potential difference between the 

tungsten tweezers arms produces an attractive electrostatic force which can overcome the 

elastic restoring force of the arms in closing the tweezers. Smaller tweezers with single 

crystal silicon arms 30Jlm long by 0.25 Jlm long, which respond at a potential of 45 V, 

have also been proved with conventional lithography and processing steps [14]. Such 

micro-tweezers, if removed from the substrate support, could be useful tools for 

manipulation but are limited by their relatively large size and large actuating voltages for 

nano-scale work. Electro-thermal grippers/tweezers based on silicon and polymer are also 

reported [16-22], however they need a high temperature and high driving voltages and 

these conditions will bring noise for measuring electrical properties of cells. Piezoelectric 

grippers/tweezers have also been used [23-30]; although they supply a precise actuation 

technique, they produce small displacements limiting their applications. Pneumatically 

driven grippers/tweezers, the actuation part is divided from the grippers/tweezers, taking 

additional complexity in the design and fabrication [31]. Shape memory alloys-based 

grippers/tweezers [32, 33] provide large actuation strokes, however their short lifecycle 

are not suitable for repeatable measurement. 

Recently, several types of systems has been developed at the nano-scale: Kim et 

al, reported a gripper by using two multiwall carbon nanotubes to attached a glass pipette 

and showed the measurement of material properties of single nanowires [34]. Similarly, 

Akita et al. reported carbon nano-tweezers similar to that of Kim and Lieber [35]. 

However such grippers had to be hand assembled under an optical microscope and they 

are not compatible with batch fabrication techniques. Cagliani et al. reported a nano­

gripper for manipulating sub-l00nm nanostructures. While impressive, these grippers 

2 



were actuated by electro-thermal actuation, heating the grippers to 300°C at two tips and 

is not suitable for cellular measurements [36]. A nano-gripper employing aligned 

multiwall carbon nanotube was reported by Jang et al. However high voltage 600V for 

electrostatic actuation was used and these grippers cannot be used in liquids due to the 

high voltages associated [37]. A type of micro-machined nano-tweezer was reported by 

Hashiguchi et al., for manipulating small molecules such as DNA [38]. 

While there have been plenty of grippers reported, some of these grippers have 

been commercialized for manipulation of materials, devices and systems at the nano­

scale. This includes the Zyvex [39] and Femto-tool micro-gripper [40] for manipulation 

of materials and devices inside an SEM and they are not compatible with biological 

materials as in measurement of electrical properties in cells since large tips cannot be 

applied to measure electrochemical properties of cells. Batch fabrication of nano-grippers 

could open new areas in live measurement of electrical signals in biological materials 

such as neurons and cells, mechanical and electrical property measurements at the nano­

scale, 3-D manipulation using an X-Y-Z nano-manipulator integrated with the nano-

tweezers. 

In this thesis, we explored the growth of Ag2Ga nano-needles on previously 

developed batch fabricated carbon nanotube based photo-mechanically actuated micro­

grippers. These grippers were ideal platforms for growing nano-needles at the tips of the 

grippers to act as electrodes for electrical property measurement. Photo-mechanically 

actuated micro-grippers were developed recently and its utility has been shown for 

manipulation of small particles such as poly-styrene micro spheres [41]. Integration of 

metallic nano-needles would pave the way for batch fabricated nano-grippers for 
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manipulation of single nanotubes, nanowires, cells and other biological materials. This 

technique also supplies a way to grabbing small nanoparticles while measuring their 

electrical/electro-chemical properties in air/liquid. Further, the metallic nano-needles 

could in principle be used as electrodes for measurement of ion-channel activity in cells. 
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CHAPTER 2 - BACKGROUND AND SIGNIFICANCE 

2.1 Nanotube micro-opto-mechanical gripper 

The first batch fabricated nanotube micro-opto-mechanical gnpper was first 

developed by Lu et al. in 2007 [41]. This type of micro-gripper is based on 

photomechanical actuation of carbon nanotubes (CNTs) discovered by Ijima et at., [42] 

inside a scanning electron microscope (SEM). By combining CNTs with a MEMS­

compatible SU8 polymer, photo-mechanical actuation was enabled in these micro­

systems. SU8 polymer was used due to its high aspect ratio, mechanical strength, and 

compatibility with standard micro-fabrication methods. Integration of SU8 polymer as a 

mechanical and structural element with carbon nanotube has led to development of robust 

photomechanical actuators and its applications in the development of micro-grippers, 

micro-cantilevers and micro-mirrors [41, 43, 44]. The advantages of photo-actuation 

includes the ability to power and control the devices remotely in a non-contact mode, 

improved signal-to-noise ratio, low electromagnetic interference, and massively parallel 

manipulation using one light source. 
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Figure 2.1 SEM images of CNT -MOMS grippers released from the substrate: (a) 

gripper arrays; (b) magnified square B in figure (a) showing the actuating arms and 

the supporting arms; (c) magnified square C in figure (b) showing the cross­

sectional view of the actuating arms; (d) the magnified square A in figure (a) 

showing the structure of the gripper tips. [41] 

An array of micro-grippers was fabricated as shown in the SEM image of Figure 

2.1 (a). Infrared laser is used to operate these grippers simultaneously thereby enabling 

parallel manipulation. Most MEMS and nanotechnology-based tweezers, which operate 

on an electrostatic actuation principle and need high power source, are not possible to 

operate simultaneously. In contrast, optical actuation enables remote powering of devices, 

remote control, and the ability to provide energy in a non-contact mode. SEM 
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micrographs of grippers fabricated using nanotube-film-patterning process is shown in 

Figure 2.1. These grippers have the dimension of 430 pm in length and 20 pm in width. 

Under infrared laser illumination, a leilgth difference between the actuating arm and the 

supporting arm of gripper enables the actuation. A displacement of 24 11m was obtained 

with infrared laser stimulus of 800 m W, the displacement which is very similar to that 

achieved with electrically actuated micro-gripper [20, 22, 34]. Sequence SEM images 

shown in Figure 2.2 involve the micro-manipulation of polystyrene micro spheres (16 11m 

length in diameter) using the nanotube optically actuated micro-gripper. The grippers 

were mounted on top of the probing arm of a probe station and the polystyrene spheres 

were subsequently manipulated from one place to another. Figure 2.3 shows the 

relationship between the displacement of the tip and the laser power. The gripper 

openings and closing can be performed within a couple of milli-seconds as shown in the 

transient responses of the gripper in Figure 2.4. 

(I) 

(d) 

Figure 2.2 Sequence of a CNT -MOMS gripper attached to a mechanical 

manipulator to manipulate a micro-polystyrene sphere of -16 "m in diameter: (a) 
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Closed gripper approaching the microsphere; (b) gripper opened under light 

illumination; (c) gripper closed to grasp the microsphere; (d) the microsphere lifted 

from the substrate and transferred to destination; (e) microsphere being released to 

the destination under light illumination on gripper; (I) gripper removed and closed. 

[41] 
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Figure 2.3 Displacement as a function of laser power for the micro-grippers 

demonstrating 2 ,...m displacement at 100 mW [41] 
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Figure 2.4 The transient response of normalized tip's displacement of the gripper 

during light switching period: (A) during light "on" period; (T) during light "off' 

period. [41] 

2.2 The silver-gallium system 

Recently, metallic nano-needles based on Ag2Ga intermetallic has been developed 

with control over direction, diameter, and length at any selected location [45-51]. These 

needles have been demonstrated to be useful as stylus for atomic force microscopes. The 

ease of fabrication, growth of the needles from variety of substrates and room 

temperature processing are quite useful for device development. The phase diagram of 

the silver-gallium system is presented in Figure 2.5. In the Ag-Ga system phase diagram, 

the low temperature eutectic point for Ag-Ga system is found at the intersection between 

26°C temperature line and the invariant line at about 98 % Ga on this phase diagram. 
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Figure 2.5 shows that near room temperature the invariant line that is formed 

between the intermediate phase and the Ga-rich phase, this horizontal line represents the 

lowest temperature at which a liquid phase for the alloy is found. The Ag2Ga 

intermetallic nano-needle can be formed in~ ' region ofthe figure. From Figure 2.5 phase 

diagram of Ag-Ga system, it is clear that several invariant reactions occur in the Ag-Ga 

system at low temperature that leads to the formation of Ag2Ga intermetallic. 
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2.3 Growth of Ag2Ga metallic nano-needles 

By bringing liquid gallium in contact with sputter deposited silver on a tip and 

enabling slow retraction, one can preferentially enable growth of silver-gallium phases as 

nano-needles in the direction of the retraction of the tip [45,47,48]. These nano-needles 

form easily in liquid gallium at room temperature (melting point of gallium is 29.7646°C). 

Figure 2.6 illustrates how Ag2Ga nano-needles are induced to grow on AFM 

probes. First, the probe is sputter-coated with chromium and silver to a typical thickness 

of 20 nm and 100 nm respectively. Then, the probe is dipped into molten gallium at 

room temperature (Figure 2.6 (a-Left)). The silver layer dissolves and at the same time 

the silver and gallium crystallize within the meniscus (Figure 2.6 (a-Middle)), forming a 

freestanding nano-needle when the cantilever is pulled away from the droplet (Figure 2.6 

(a-Right)). This process is generally described as a type of directed self-assembly. The 

time sequential SEM images of growing a needle (100 nm in diameter and 60 /lm in 

length) inside the chamber of SEM is shown in Figure 2.6 (b). By using a nano­

manipulator, an operator can manually control the position of the AFM probe. The nano­

needle growth process also has been performed repeatedly in ambient air under high 

magnification optical microscope. The time required for nano-needles to form ranges 

from a few seconds to a few minutes. 
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(a) 

(b) 

Figure 2.6 The method for selectively growing individual metallic Ag2Ga nano­

needles: (a) schematic images; (b) time sequential SEM images. After dipping the 

silver coated probe into the gallium (i) the silver dissolves and supersaturates the Ga. 

After retracting the probe (ii) alloy nano-needles nucleate and grow from the probe 

tip, with one needle growing past all the others. (iii) The probe is retracted further 

as the needle grows and finally is removed completely from the gallium when the 

desired length is achieved [48,49]. 

The nano-needles have been fabricated onto substrates of various compositions 

and geometries, including quartz resonator tuning forks as shown in (Figure 2.7 (a», 

tipped and tipless cantilevers (Figure 2.7 (b» , and tungsten probes (Figure 2.7 (c», using 

the same method demonstrate in Figure 2.6. It should be noted that sharp point is not 
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necessary for growing nano-needles and freestanding nano-needles can be grown on any 

silver coated substrate. 

(e) mg 

Figure 2.7 Selective growth of nano-needles on various substrates and various 

configurations including: (a) quartz tuning fork; (b) isolated array of three needles 

grown on a single AFM probe; (c) tungsten tip; (d) array of silicon lO,...m diameter 

micro-pillars; (e) Close up view of a nano-needle grown on one the pillars on (d). 

[53,54] 
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CHAPTER 3 - BATCH FABRICATION PROCESS FOR MICRO­
GRIPPERS AND CHARACTERIZATION 

The first step to make nano-needle electrodes is to batch fabricate the nanotube 

micro-grippers by using the previously developed process consisting of carbon nanotube 

film formation/film transfer/film patterning/structure release steps [43]. 

(a) (b) (c) (d) 

Figure 3.1 Images of (a) CNTs soot; (b) 0.1mg/ml CNT solution before ultra-

sonication; (c) 0.1mg/ml CNT solution after 1 hour ultra-sonication; (d) 0.1g/ml 

CNT solution after 20 hours ultra-sonication. 
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A one-side polished 4" silicon wafer was used as the substrates for the fabrication 

of the grippers. 10mg commercial 95% super purity single wall carbon nanotubes from 

NanoIntegris was dispersed uniformly into 100 mL isopropyl alcohol by ultra-sonication 

20 hrs to make a concentration of O.1mg/mL solution (Figure 3.1). Then isopropyl 

alcohol was added to dilute the concentration of solution to 0.004mg/mL and placed in an 

ultra-sonication bath again for 20 hrs to make more uniform solution. Highly entangled 

SWCNTs are separated into individual or small bundle SWCNTs. Then the single wall 

carbon nanotube solution was filtered using a vacuum filtration technique to produce 

films of carbon nanotubes on top of a MCE filter as shown in Figure 3.2 (a). The carbon 

nanotube film on MCE filter is then transferred on to a silicon substrate by compressive 

loading as shown in Figure 3.2 (b, c). After compressive loading, the nanotube films 

adhered to the silicon substrate with enough adhesion strength for further processing. The 

MCE filter is then removed by multi vapor baths of acetone, and then it is rinsed in DI 

water to leave carbon nanotube film on top of the Si substrate (Figure 3.2 (d)). The 

thickness of CNT films can be changed by controlling the concentration and the volume 

of the carbon nanotube solution during vacuum filtration steps. Moderate temperate 

(75°C) annealing was performed for 20 minutes to form intimate contact between carbon 

nanotubes and substrate. Through these processes, uniform carbon nanotube films of 

desired thickness were readily produced on silicon wafer. Carbon nanotube films that 

were less than 300 nm started showing a high degree of transparency. By varying the film 

thickness and the transparency one can tune the photo-mechanical actuation properties in 

carbon nanotubes. 
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Figure 3.2 Fabrication process of new type CNT -MOMS grippers. (a) CNTs film is 

formed on top of MCE filter by vacuum filtration; (b) MCE filter and CNTs film 

are stick to the silicon wafer; (c) Compressive loading is applied on the top of MCE 

filter; (d) MCE filter is dissolved, leaving pure CNTs film on the silicon substrate; (e) 

Deposition a layer of photoresist S1827; (t) S1827 is patterned; (g) CNTs film is 

etched by oxygen plasma; (h) Deposit a layer of S1827 on the backside; (i) Backside 

alignment to pattern S1827 on the backside; (j) Crystal bonding with a holding 

wafer; (k) Etching the silicon substrate from backside and separating from the 

holding wafer; (I) Dicing tape is stick to the backside and deposition a layer of SU8; 

(m) SU8 is patterned; (n) Grippers are released by XeF2 dry etching. 
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Following nanotube film formation, Deep Reactive Ion Etching (DRIE) was used 

to pattern the carbon nanotube film by oxygen plasma (Figure 3.2 (g)). Since oxygen 

plasma also attacks photoresist, the photoresist etch mask needs to be thick enough to 

sustain continuous oxygen plasma etching. Initial characterization of the etching speed 

of CNTs and Shipley S1827 (2.7 /Jm thickness) under different conditions showed that 

S1827 can be used as CNTs' etch mask only when CNTs film's thickness is smaller than 

3.6 /Jm (Table 3.1), also etching ratio 1 :0.75 can be reached when the wafer is left for two 

days after hard bake. 

Table 3.1 Etching speed of CNTs and S1827 in different conditions 

Non-hard bake Hard bake of Leave two days 

ofS1827 S1827 after hard bake 

Etching speed of CNT 8 nmls 8 nmls 8nm1s 

Etching speed of S 1827 40nmls 20nmls 6nm1s 

Selectivity ratio 1 :5 1:2.5 1:0.75 

Oxygen plasma has been widely used to remove carbon-based organic materials. 

It forms volatile CO, CO2, and H20 which can be pumped out from the system during 

plasma etching process [55]. At ICP power~200 W, bias~100W, 0.1 mtorr pressure and 

02 flow rate~50 sccm, an etch rate of CNT film at ~6 mnls was achieved, showing the 

fast etching of carbon nanotubes in strong 02 plasma and low pressure. Sharp edges of 

17 



CNT can be seen after etching (Figure 3.3 (a)) and CNT film is characterized by SEM 

(Figure 3.3 (b)). 

Figure 3.3 Images of: (a) CNTs strips appear after oxygen plasma etching; (b) SEM 

image of these CNTs strips 

Following oxygen plasma etching, a layer of S1827 is deposited at the backside 

surface (Figure 3.2 (h)) and patterned by backside alignment photolithography (Figure 

3.2 (i)). Then deep reactive ion etching was used to etch almost through the silicon 

substrate from backside. Another silicon wafer is bonded using a wax as shown in Figure 

3.2 G) before back side etching in an rcp top provide mechanical rigidity to the silicon 

substrate and to avoid cracking. Back side bulk etching of silicon is achieved by 

monitoring the time of etching. After three and half hours, one can achieve an etching of 

- 450 /lm deep to leave behind 50/lm silicon layer for later surface fabrication process. 

The thickness of the remaining silicon wafer was measured using a profilometer 01 eeco 

Dektak). 
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Following the silicon backside etching, the bonded wafers are immersed into 

acetone overnight to dissolve wax to enable the release of the wafers. Further, this 

immersion in acetone overnight helps in stripping the etching mask S 1827 completely to 

leave a clean surface (Figure 3.2 (k)). Then the wafer is gently washed with acetone, 

methanol, and isopropyl alcohol to remove any residue of photoresists and remove any 

other impurities from photolithography and etching steps. Finally, an annealing step is 

performed at 75 degree C for 20 minutes. The next step is to make sure the thin wafers 

have enough rigidity and to avoid cracking blue dicing tape is pasted to the bottom of the 

wafer and SU8 is spun to protect the wafer in case of crack (Figure 3.2 (1)). 

Finally, third photolithography is performed to pattern SU-8 layer on top of the 

carbon nanotube gripper (Figure 3.2 (m)). Then the gripper structures are released from 

the silicon substrate by xenon difluoride (XeF2) isotropic silicon etching (Figure 3.2 (n)). 

High XeF2 pressure and longer circle time can increase the etching speed [56]. The 

average etch rate 2.1 f..unlmin can be achieved using cycle time of 120 s and XeF2 

pressure 5.5 torr. Etching process will stop when the wafer is etched through. 

We investigated two designs of grippers for growth of the nano-needle. Since 

Ag2Ga nano-needles are formed on the tips of the gripper, their growth direction is 

determined by the pulling direction and the tip structure. The grippers that were originally 

conceived had thick and flat tips for holding micro-meter scale objects and it was difficult 

to grow needles on such surfaces. 
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Figure 3.4 SEM pictures of released first design's grippers: (a) grippers with 60 

degree angle tip; (b) close-view of 60 degree tip; (c) grippers with 30 degree angle tip; 

(b) close-view of 30 degree tip. 

The first design we investigated was from carbon nanotube micro-opto­

mechanical grippers by Lu et al. [41]. We modified this design by making the end of the 

tips sharp with different angles (30°, 45° and 60°) (Figure 3.4). After initial nano-needle 

growth evaluation, we found that this type of grippers had drawbacks in the integration 

process with nano-needle. Firstly, the distance between two tips was 4 !lm, which limits 

the working space making the arms of the grippers too close to each other and made it 
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difficult to grow the second needle. Secondly, two arms of the gripper are also too close 

(4 11m), which causes some problem to selectively sputter silver to make two mutually 

electric-insulated arms. Although the first design has problems with integration, we were 

able to demonstrate that Ag2Ga nano-needle can be integrated with theses SU8 grippers. 

Our experience with the first design in the nano-needle fabrication led us to make 

changes in the second design (Figure 3.5): 1) The distance between two tips of the 

grippers were increased to lOllm; 2) increased the distance between the ends of arms to 

150llm, so shadow masking could be used easily for sputtering silver onto the arms and 

also achieve two mutually electric-insulated arms; 3) The area of the gripper base is 

increased to 3 mm x 4 mm, to enable enough space for wire bonding and integration with 

the chip. 

Figure 3.5 Optical micrographs of 2nd generation grippers after isotropic silicon dry 

etching. 

21 



CHAPTER 4 - INTEGRATION OF Ag2Ga NANO-NEEDLES ON 

MICRO-GRIPPERS AND PACKAGING 

4.1 Nano-needle integration: silicon shadow mask preparation and silver 

sputtering 

In order to probe materials using nano-needles, two electrically conductive 

needles are required that are completely electrically isolated from one another. The 

growth process of nano-needles makes this difficult as a thick layer of silver is required 

before the growth process in liquid gallium. This results in shorting of the grippers and 

therefore is of no subsequent utility for electrical measurements. In order to overcome 

this limitation, we have developed shadow masking technique in which an entire shadow 

mask is prepared on a silicon wafer and subsequently aligned with the wafer containing 

the devices before chromium and silver deposition in sputtering chamber. Figure 4.1 

presents the optical micro-graph of a silicon shadow mask that is aligned on top of the 

device wafers. 
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Silicon shadow mask (top) 

SUS layer (bottom) 

Figure 4.1 Silicon shadow mask on top of devices. The shadow mask was used to 

keep the electrodes from being short during the silver coating. 

The preparation of the shadow mask starts with a lithography process where SPR 

220-7 photoresist (7 ~m thickness) is applied to the surface of the wafer followed by 

lithography to pattern the silicon before etching. The photoresists serves as etch resistive 

mask, on the 4" silicon wafer. The wafers are then etched using DRIE to through the 

silicon in pre-patterned layers and define the shadow mask. The silicon shadow mask is 

then placed on top of the wafer containing the devices and aligned using optical 

microscope. Pre-designed alignment marks both on the mask and on the wafer enables 

precise alignment of the wafer as shown in (Figure 4.1). Following alignment, the wafers 

are anchored together by vacuum tape. After these steps, 20 nm chromium and 100 nm 

silver films are sputter-formed to cover the grippers' wafer through the shadow mask in 

sputtering machine. 
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Then the shadow mask is removed from the grippers' wafer, and bases with 

grippers are picked one by one to the collection box (Figure 4.2), these devices will be 

stored in vacuum environment, to eliminate oxidation before nano-needle growth. 

Figure 4.2 Devices are stored in the collection box 

By using this shadow masking technique, one can successfully deposit silver on 

the gripper arms without electrically shorting the devices (Figure 4.3). 

We also developed a second process to make grippers with two mutually electric­

insulated arms, which is faster to align the wafers than the first shadow mask method. 

Since in the first shadow mask method, we need to align a 100 Ilm wide barrier to a 150 

Ilm wide center space, it led to considerable time and difficulty of alignment under an 

optical microscope. Compared with the first shadow mask method, the second method, 

which is called trench - shadow mask, is much easier to align the wafers without the use 

of an optical microscope. 
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In the trench - shadow mask method, we follow the same fabrication procedure in 

Figure 3.2 except for changing the mask design for backside silicon etching (Figure 3.2 

(i)) and SU8 layer pattern (Figure 3.2 (k)) to make a 100 11m wide and 2 mm long trench 

in the base between two arms of gripper shown in Figure 4.4. After XeF2 etching process, 

whole wafer with devices is coated with 300 nm Parylene which is as an insulator layer 

inside ofParylene Deposition System (PDS 2010 Labcoter 2). 

WO = 4.9mm 
Signal A = InLens 

Photo No. = 5698 

Date :11 Mar 2011 

Time :18 :57:15 

Figure 4.3 SEM pictures of the second design of gripper with sputter-coated silver: 

(a) top view; (b) isometric view 
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Following parylene coating, the silicon shadow mask is aligned on top of the 

device wafers by eye shown in Figure 4.4 and then bonded together to sputter 20 nm 

chromium and 100 nm silver before needle growth. This alignment step does not require 

an optical microscope. 

Figure 4.4 Trench - Shadow Mask Method 

SU8 layer uncovered with shadow mask and the side wall of front part of trenches 

will be coated with chromium and silver. Since the ends of trenches are covered by 

shadow mask and side wall is protected with parylene, chromium and silver cannot 

electrically short the two arms. After sputter-coating, shadow mask is separated from the 

device wafer and bases with grippers are picked one by one to the collection box and 

stored in vacuum environment to avoid oxidation (Figure 4.5). 
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Figure 4.5 Array of micro-gripper with selective sputter-formed silver by using 

trench - shadow mask method 

4.2 Nano-needle growth: gallium droplet preparation 

Figure 4.6 Images of: (a) Gallium droplet on top of silicon micro-pillars; (b) Close 

up view of suitable and unsuitable size gallium droplet. 
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Prior to growing the needles, the liquid gallium is prepared into droplets to enable 

higher surface area to aid the needle growth. After trying several different structure 

substrates to hold the gallium droplet, we found that the silicon micro-pillars were quite 

satisfactory for holding the gallium droplets without running on the surface during needle 

fabrication. The spaces between micro-pillars are good place for resting an arm when 

growth process was carried out on the other arm. Small gallium spherical droplets are 

made on micro-pillars which stand on a silicon square piece. At first, a small amount of 

gallium is dropped on the silicon piece's surface by using a soft brush and the brush 

scratches on the substrate to make sure gallium is covered most area of micro-pillars' 

surface. Then, the substrate with gallium is dipped in 5% HCI solution at 60 DC for 15 -

30 seconds. The sample is then rinsed with deionized water and blown dry with nitrogen, 

also heated for 1 min at 60 DC hotplate. Then by using microscope, gallium droplets are 

investigated to ensure good droplet generation as shown in Figure 4.6. From the 

microscope one can see plenty of small droplets as shown in Figure 4.6 (b), for the 

growth of nano-needles and these gallium droplets are usually smaller than 20 !lm in 

diameter. 

4.3 Grow Ag2Ga nano-needle on gripper arms 

Experimental set up is shown in Figure 4.7. First, micro-gripper's base is stuck to 

the end of the micro-manipulator arm (PPM 5000 from WPI) by using two-side tape and 

make sure the gripper's tips face downwards. The grippers are then aligned in horizontal 

plane to the location over the gallium droplets roughly using an optical microscope. 
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Second, by using the horizontal digital camera (VH-Z450 from Keyence), a suitable 

target gallium droplet was chosen and then the tips of the grippers and that of the droplet 

are aligned to be along the same vertical axis to ensure contact of the gripper tips with 

gallium. Then the silver coated tip is inserted gently into the gallium droplet and partially 

retracted from the droplet forming a meniscus between the gripper and the droplet. 

Gallium reacts with silver film and dissolves it, and nano-needles are formed during the 

retraction process. 

Digital Camera 

~1aoipulator Arm 

Work Stage 

Figure 4.7 Schematic of the experimental Set-up for growth of nano-needle on the 

arms of the micro-grippers, inset shows a photograph of the equipment 
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Figure 4.8 Sequential optical micrographs to grow nano-needles on gripper tips: (a) 

the tip of right arm is inserted into the gallium droplet, Ag dissolves and 

supersaturates the gallium; (b) retract the right tip and Ag2Ga nano-needle nucleate 

and grow; (c) choose another suitable gallium droplet for the left tip; (d) the tip of 

right arm is inserted into the gallium droplet, Ag dissolves and supersaturates the 

gallium; (e) retract the left tip and Ag2Ga nano-needle nucleate and grow; (t) close-

up view of the nano-needles on the front of nano-gripper. 
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Figure 4.8 presents the optical micrographs of the sequence of the needle 

formation process on the arms of the grippers. As one can see, the tip is pulled away a 

little bit from the gallium droplet to narrow the meniscus. The nano-needles continue to 

grow inside the meniscus and towards the center of the gallium droplet to form a single 

needle eventually. Finally, the tip is completely retracted and separated from the droplet 

and a freshly grown needle is formed attached to the tip along the pulling direction 

(Figure 4.8 (a, b)). After growth of the nano-needle on one arm, a second fresh gallium 

droplet is chosen to grow nano-needle on the other arm (Figure 4.8 (c, d and e)). The total 

time of needle formation on the gripper's tip ranges from 2 minutes to 4 minutes. 

4.4 Wire-bonding 

Following successful growth of nano-needles, we used a piece of side-brazed dual 

in-line ceramic package (SPECTRUM Semiconductor Materials, INC.), with an open 

side and 3 pins for packaging and wire bonding the nano-needles. Again wire bonding 

here presents challenges as the traditional techniques such as ball bonding cannot be 

applied here due to the high temperatures involved. Sameoto et aI., present a method to 

bond 100 Ilm SU8 film MEMS structure by using ball bonding [57]. For our case, since 

the gripper material is a thin layer of SU8, 8 Ilm, which cannot stand longer in high 

temperature around 110°C like IOOllm thick SU8 film, avoiding plastic deformation, 

traditional ball bonding [58] cannot be applied here. Flip Chip bonding was applied to 

SU8 chip bonding by A Johansson et aI., however it is lack of manual installation, needs 
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flat surfaces to mount and the short connections are quire rigid for gripper applications 

[59]. Finally, silver as a layer is not compatible with wedge bonding techniques. 

The silicon chip coated with paralyene is bonded to the package by using non­

conductive cyanoacrylate. Three 0.5 cm long and 25 !lm diameter straight gold wires are 

cut out from pre-fabricated wire rolls. The wires were then bonded to the silver layer 

using silver epoxy (#H20E, Epoxy Technology Inc.), a kind of conductive glue, is 

transferred to junction area for bonding under optical microscope. After bonding, the 

device is cured inside oven at 60°C for 1 hour, and then is left in ambient temperature for 

12 hrs. The optical micrograph of the entire packaged device is presented in Figure 4.9. 

Figure 4.9 Image of the package after wire-bonding 
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CHAPTER 5 - CHARACTERIZATION OF NANO-NEEDLES AND 
MEASUREMENT OF MATERIAL PROPERTIES 

5.1 Characterization of devices 

Figure 5.1 SEM images of the first design of nano-grippers: (a) full view; (b) close 

up view. 
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Figure 5.2 SEM images of nano-needles grown on tips of micro-gripper 

Nano-needles grown on the gnppers are first characterized usmg a scannmg 

electron microscope for measurement of length and diameter of the needles. Figure 5.1 

presents the pair of nano-needle electrodes from the fust design. The inset in the Figure 

5.1 presents the actual needles coming out of the arms of the gripper. SEM 

characterization of these needles is shown in Figure 5.2 measured 12-151lm long and 120 

nm in diameter is integrated with micro-gripper. The distance between the needles 

between adjacent arms was measured to be - 3.3 /lm. 
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Figure 5.3 presents the nano-needles coming out of the arms of second gripper 

design. Figure 5.4 presents the SEM image of a nano-needle shown in Figure 5.3. The 

inset is the micrograph presents the needle diameter of ~ 190 nm. 

These SEM image shows that the nano-needles can be grown approximately to 

the similar length and diameters in different gripper designs. 

EHT " 10.00 kV 

wo - 20mm 

Figure 5.3 SEM image of the second design of nano-grippers: (a) full view; (b) close 

up view. 
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wo= 2.0mm Photo No. = 5764 Time :12:33:53 

Figure 5.4 SEM image of a nano-needle integrated with a micro-gripper tip 

5.2 Measuring electrical property of carbon nanotube film 

In order to demonstrate the capability of the nano-needle, we first tried to measure 

the electrical property of a small carbon nanotube film that was prepared by vacuum 

filtration process. The packaged nano-needles were connected to precision semiconductor 

parameter analyzer (F4156C, Agilent Technologies) to see the efficacy of measurement 

of electrical properties of nano-materials. As a demonstration, the surface electrical 

properties of a small carbon nanotube film were investigated. 
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Digital Camera 

l\'lanipulator Arm 

Figure 5.5 Schematic of the experimental set-up for measuring the CNTs fIlm's 

surface 

Figure 5.5 presents the experimental set-up for demonstration of the electrical 

property measurement on carbon nanotube film. First, the chip that the nano-needle 

electrodes on the grippers were packaged on is connected to the semiconductor parameter 

analyzer and anchored to the work stage. Second, a 10 /lm thick free standing single wall 

CNTs film made by vacuum filtration (HiPCO, NanoIntegris Inc.) is bonded to the probe 

tip that is connected to micro-manipulator. The probe tip is then slowly brought close to 

the needles using the X-Y-Z micro-manipulator using an optical microscope. Current 

versus time was measured continuously at constant voltage of 0.2 V during the start of 

the experiment. Time steps and total period are set 0.2 s and 120 s respectively. During 

the entire experiment, the probe tips with the carbon nanotubes were brought in contact 
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for 10-20 s and followed by retraction. The entire experimental data was recorded using 

Lab View software. We did this several times to measure that the current versus time 

from the nanotube film and to see the jumps in current during contact. Our assumption 

was that an intimate contact between a sharp metallurgical junction such as the nano-

needle and the nanotube film would result in sudden jump in the current measured as a 

function of time. During the first sweep period, the pair of nano-needle electrodes does 

not touch the CNT film. Figure 5.6 presents the current versus time for the nano-needle. 

The value of current recorded was ~1O-1 2 amps showing no contact. Some spikes are seen 

in the graph that could be coming from local surface disturbance or vibration of the 

needle. However, the overall pattern is that when the needles do not touch each other the 

current values are similar to open circuit. 
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Figure 5.6 Current - Time curve for non-contact mode between nano-needle 

electrode and CNT film 
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Figure 5.7 presents the current versus time for three consecutive contact and non-

contact mode of operation. As per our assumption, one can see large jumps in the current 

when brought into contact. These currents are also repeatable over three cycles. The solid 

line represents the curve fitting of the actual data. The data markers present the actual 

data. One can see that in contact mode, the current stabilizes for 10-20 seconds which 

was approximately the time of contact. 
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Figure 5.7 Current - Time curve show the huge change between contact mode and 

non-contact mode of the pair of nano-needle electrodes and the surface of CNTs film. 

When the tip was retracted, the current jumped down very rapidly showing that 

the nano-needles were not touching each other as in Figure 5.7. The current in figure 5.8 

during contact mode jumped from 10.11 amps to 10-5 amps demonstrating 6 orders of 

magnitude jump in current. For a constant voltage of 0.2 V, Ran = 20 Kilo-ohms to Raft' = 
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2 Tera-ohms. They demonstrate the huge on/off ratio of the nano-needle electrodes for 

material property measurement. The Ron measurement of 20 Kilo-ohms also gives us 

great confidence in our measurements as carbon nanotube films of couple of micron 

thickness has resistances in the area of 1-100 kilo-ohms depending on their thickness [60-

63]. The average ratio between non-contact resistance and contact resistance reaches 

5.7x107 (Table 5.1). Such extraordinary change in resistance shows the high sensitivity of 

the nano-needles that is suitable for monitoring small molecules. 

Table 5.1 Average resistance ratio between non-contact mode and contact mode of 

the pair of nano-needle electrodes and CNTs film's surface 

No. Ratio Ratio AVERAGE 
(RNON-CONT ACTI RcONT ACT) 

I 5x1O' 

2 2xlO' 5.7x107 

3 I xl01l 

One cycle of current change between non-contact mode and contact mode is show 

in Figure 5.8. It should be noted that these measurements were made using a manual 

manipulator. Automatic manipulators where the probe tip with the nanotube film driven 

by motorized stages can result in precise change in current at the pre-determined time. 

Nevertheless, our measurements show the versatility of using the nano-needles for 

material property measurement. Not only the experiment shows high sensitivity of the 

device, but also shows the device's repeatable ability. Since the pair of nano-needle 
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electrodes is integrated with optically actuated micro-gripper, in the future the electrical 

property measurement of single wall carbon nanotube and nano-wires becomes a 

possibility. 
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Figure 5.8 One cycle of current change between non-contact mode and contact mode 

between the pair of nano-needle electrodes and CNT film surface. There is five 

orders of jump in the current (10-13 to 10-8 A) 

5.3 Electrical property measurements in liquids 

In order to estimate the electrical property measurements of the device in wide 

variety of environments, we measured the I-V characteristics of phosphate buffered saline 

(lOX, PH7.4, Mediatech Inc.). The experimental set-up was the same as measuring the 

electrical properties of CNTs films. The pipette was tipped on the probe tips with a drop 
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of PBS at the tip of the micro-pipette supplying about 0.04ml phosphate-buffered saline 

at the end of manipulator (Figure 5.9). 

Digital Camera 

faDipulator Arm 

Figure 5.9 Schematic of the experimental set-up for measuring the electrical 

properties of PBS 

First, I-V curve of non-contact mode measured by preClSlon semiconductor 

parameter analyzer shows open circuit resistance is around 120 Gig-Ohms from Figure 

5.10 which shows that the gripper tips are insulated for electrical properties' 

measurement in ionic liquids. Following the electrical measurement in open circuit 

condition, the manipulator arm was tuned in manually to make the PBS droplet touch the 

pair of nano-needle electrodes. Again there was 5-6 orders of magnitude jump in current 

from non-contact mode to when the liquid contact occurs as shown in Figure 5.10. 
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Electro-chemical reactions between PBS droplet and nano-needle could potentially result 

in unique changes in current. In order to investigate surface reactions at the electrodes, 

we conducted linear sweep voltammetry and monitored current-voltage for oxidation and 

reduction of the electrode surface. 
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Figure 5.10 I-V curves when two electrodes in non-contact mode and inside of PBS 

In order to clear this problem, we performed a forward and backward Linear 

Sweep Voltammetry (LSV) measuring the current-voltage between the nano-needles 
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similar to cyclic voltammetry. Ten sweeps use ten different scanrung rates between 

(40mV/s - 12mV/s, Figure 5.11) from - O.2V to 0.2V. 
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Figure 5.11 Voltage linear change vs. time for ten sweeps' measurement 

Forward and backward LSV curves with different voltage scanning rate are 

shown in Figure 5.12. From the curve, we can see a sharp peak at E = 0.11 V, when 

voltage linearly change from - 0.2V to O.2V, which is the reductive peak. When voltage 

linearly change from 0.2V to - 0.2V, we see a peak at E= - 0.11 V, which is the oxidation 

peak. Every sweep with certain voltage scanning rate, the ratio between reductive peak 

current ipc and oxidation peak current ipa has a certain value ~ 1. This illustrates that the 

electrochemical reaction between electrode and PBS is reversible or quasi-reversible [64]. 

We also can fmd, with different voltage scanning ratio, the peak currents occur at the 
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same voltage, which means the reactions of pair nano-needle electrodes have rapid 

electron transfer kinetics. 
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Figure 5.12 Linear Sweep Voltammetry of PBS with different voltage scanning rates 

(Scan rates of sweep curves (1-10) correspond to 40 - 12m Vis) 

The scan process begins from the left hand side of the current/voltage plot where 

no current flows . As the voltage is swept further to the right (to more reductive values) a 

current begins to flow and eventually reaches a peak before dropping. To rationalize this 

behavior we need to consider the influence of voltage on the equilibrium established at 

the electrode surface. Here the rate of electron transfer is fast in comparison to the 
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voltage sweep rate. Therefore at the electrode surface equilibrium is established identical 

to that predicted by thermodynamics. The exact form of the curve can be rationalized by 

considering the voltage and mass transport effects. As the voltage is initially swept from 

the initial value the equilibrium at the surface begins to alter and the current begins to 

flow. The current rises as the voltage is swept further from its initial value as the 

equilibrium position is shifted further to the right hand side, thus converting more 

reactant and enabling rapid mass transport. The peak occurs, since at some point the 

diffusion layer has grown sufficiently above the electrode so that the flux of reactant to 

the electrode is not fast enough to satisfy that required by the Nemst equation [65]. In this 

situation the current begins to drop just as it did in the potential step measurements. In 

fact the drop in current follows the same behavior as that predicted by the Cottrell 

equation [66]. 

Since ~E between reductive voltage and oxidation voltage from figure 5.12 is 

~0.22V. 

AgCl (s) + e - +--+ Ag (s) + cr (sat' d), with a value for E of +0.22V 

We suppose the Ag inside of Ag2Ga intermetallic has a reaction with chloride 

ions in PBS as the reaction function above. In order to prove our assumption, we 

characterize the needles by SEM shown in Figure 5.13. It seems that some other materials 

are deposited on the surface of Ag2Ga nano-needle. Energy Dispersive Spectroscopy 

(EDS) will be used later to determine the exact element of these deposit materials. 

Since the Ag2Ga nano-needle will react with some ions in liquid, this type nano­

needle cannot contact with liquid directly. A solution is indicated here. First, a 100nm 

layer paralyene (an insulator layer) is coated on the whole surface of package besides 
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gripper and nano-needles. Secondly, dip the tips of nano-needles into K2PtCl4 solution to 

exposure the end part. It seems that the K2PtCl4 solution diffuses through the parylene 

film and interacts with the Ag2Ga nano-needle. Platinum atoms exchanged with Silver 

and Gallium atoms and make a coating at the tip of the needle and expose the tip. 

200nm 

f------1 
EHT = 10.00 kV 

WD= 2.9mm 
Signal A = SE2 
Photo No. = 5947 

Date :5 Apr 201 1 
Time :10:41:14 

Figure 5.13 A SEM picture of nanoneedle after measurement in PBS 
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CHAPTER 6 - CONCLUSION AND FUTURE WORK 

In conclusion, in this thesis we explored the integration of Ag2Ga nano-needles on 

batch fabricated micro-grippers. The micro-grippers serve as excellent platforms for the 

growth of the nano-needles. Nano-needles about 12-15 microns in length and 120-190 

nm in diameter were grown on the grippers. Wire-bonding with chip package free the 

device in order to move the device into X -Y -Z dimensions with real time electrical 

measurement of materials in air and liquids. As an initial demonstration we measured the 

current versus time of a small piece of carbon nanotube film and liquid PBS. I-V curve 

demonstrated that the device had a high resistance in non-contact mode and large 

resistance change when the nano-needle electrodes touch the target materials (the surface 

of simple CNT film and PBS). LSV curves show some electrochemical reaction is 

happened inside the PBS, possible between the nano-needle and Chloride ions, a solution 

is indicated here to solve this problem. All these demonstrations show that nano-needles 

are ideal platforms for measurement inside cells. 

In the future, this type nano-gripper will be used to grab nano structure and 

particle. Different cell electrochemical measurements not only in air but also in liquid 

will be applied by the device. This device can be used to measure electrical properties of 
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nanowire and single carbon nanotube. Since this device is based on optically actuated 

micro-gripper, we also can investigate cell's properties while grabbing. Also these 

devices will be used to measure electrical properties of live cell. Further, optically 

actuated silicon based nano-electrode and nano-gripper will be tried to fabricate by using 

MEMS technology. 
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