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ABSTRACT 

EV ALUA TION OF BONE QUALITY USING NOVEL IMAGE ANALYSES AND 
MECHANICAL TESTING METHODS 

QianXu 

Osteoporosis has become a growing health threat with rising social and economic 

consequences. The understanding of the relationship between bone mechanical strength 

and bone structural quality is important for the diagnosis of osteoporosis and the 

evaluation of osteoporosis treatments. 

A novel cancellous bone segmentation method was developed to separate 

cancellous bone from cortical bone automatically. The segmentation was based on the 

three-dimensional images. The basic idea of the method is that a contiguous three-

dimensional non-bone region that is located inside the whole bone region of interest can 

be defined as the marrow region. Any bone material that is surrounded by the marrow 

region is considered cancellous bone while bone that is outside of the marrow region is 

cortical bone. This method is more objective, more accurate and more precise than a 

manual method and an established computer method (Helterbrand method). 

Twenty-four female Sprague-Dawley rats, 7-8 weeks old, were used in a study of 

various osteoporosis drugs. After 8 weeks drug treatment, alendronate had more positive 

effects on cancellous bone volume fraction than 17 p-EstradioI2, raloxifene and PTH. 
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This striking result may be explained by the age of the rat model because the young 

animals are still growing rapidly and it is possible that the ovariectomy (OVX) operation 

results in higher remodeling rate in young animals. When an anti-resorptive drug is 

given, the individuals with high baseline remodeling rate have more positive response 

than those with low baseline remodeling rate. 

120 female Sprague-Dawley rats, 5.5 months or 6 months old, were used in three 

studies of experimental drugs. In the Pradama studies, sensitivity analyses and linear 

regression analyses were conducted. Drug effect analyses were also conducted, but this 

research did not focus on that. 

A new mechanical indentation test was developed. The three-point breaking test 

and the calculation of volume fraction were also established during the research. By 

focusing on only Sham group and OVX group, the sensitivity analyses showed that these 

three new methods were much more sensitive than more traditional methods 

(Archimedes' density measurements and three-point bending tests). 

The linear regression analyses were conducted to explore if the image processing 

methods can be correlated to the mechanical test methods, such as indentation testing and 

three-point breaking testing. The analyses showed that the volume fraction calculated 

from image processing methods explained most of the bone strength, but not all. The R2 

of the correlation between the indentation force and the cancellous bone volume fraction 

(0.542) was a little lower than that between the indentation force and the whole bone 

volume fraction (0.588). The correlations between the mechanical results from three­

point breaking testing and the volume fractions (cancellous bone and whole bone) were 
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in the range of 0.504 ~ 0.552. So it is better to combine both image analysis and 

mechanical tests to understand osteoporosis in bone properties and structures. 
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CHAPTER 1. INTRODUCTION 

Bones are extremely dense connective tissues that, in various shapes, constitute 

the skeleton. The principal functions of the skeleton are mechanical support and 

protection, maintenance of calcium homeostasis and haematopoiesis in the bone marrow. 

Bone must be stiff, so it can support loads, such as body weight, jumping and running, 

etc, and protect the soft tissues, such as brain, heart and liver, etc. Bone must also 

maintain a degree of elasticity, so it can deform slightly without cracking to absorb 

energy when it is in compression or in tension. 

There are two main forms of bone: one is cortical bone, also known as compact 

bone; the other is cancellous bone, also known as trabecular bone or spongy bone (Figure 

l-la). Cortical bone is dense, solid structure that plays an important role to the supportive 

and protective function of the skeleton. It is found primary in the shaft of long bones and 

forms the outer shell around cancellous bone at the ends of bones near joints and also in 

the vertebrae. Cancellous bone fills the end of long bones and also makes up the majority 

of vertebral bodies. Cancellous bone has honeycomb structure that consists of rods and 

plates. It is believed to distribute and dissipate the energy from articular contact loads. 

About 20% of the total skeletal mass in the adult human skeleton is cancellous bone and 

about 80% of the total skeletal mass is cortical bone. However, cancellous bone has a 

much greater surface area than cortical bone. Within the skeleton, cancellous bone 
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contributes about 67% of the total skeletal surface area in the adult human skeleton while 

cortical bone contributes the remaining 33% (Bronner F et aI., 1999). 

a Thighbone 
(femur) 

b 

(a) Diagram of bone structure 

Figure 1-1 Bone description 

healthy bon€! 

osleO(')OI0UC. bone 

(b) comparison of healthy 
bone and osteoporotic bone 

Bone is living, self-repairing tissue constantly being replaced and renewed. Old 

bone is removed from the skeleton and new bone is added. Early in life, there is a 

positive bone balance, that is, new bone is added faster than old bone is removed. As a 

result, bones become larger, heavier, and denser, and the impact of bone loss related to 

aging is reduced. By about age 30, bone reaches its maximum density and strength, or 

"peak bone mass." After this peak, bone removal begins to outpace formation of new 

bone, which, over time, leads to bone loss (Figure 1-2). In general, the older you are, the 

lower the total bone mass and the greater the risk for osteoporosis. For women, the rate of 

bone loss is greatest in the first few years after menopause. After that, bone loss 

continues but more slowly. Because bone formation and bone loss only happen on the 
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surface of bone, cancellous bone is lost much more rapidly than cortical bone when bone 

turnover gets out of balance. 

"IIf-- MODEllING-+- 4 REMODELLING • 50 

40 

j 30 
Peak bone 

1 
mO$S 

• 20 
~ 

10 
Old oge 

0 
0 10 20 30 40 50 60 70 80 

Age (Yean ) 

Figure 1-2 Phases in the skeletal life cycle 

Estrogen deficiency (e.g. , after menopause) increases the rate of remodeling and 

the volume of bone that is resorbed by prolonging the life span of osteoclasts. It also 

decreases the volume of bone that is formed by reducing the life span of osteoblasts, 

thereby aggravating the negative bone balance in the bone multicellular unit (Manolagas 

SC, 2000). It is why menopausal and post-menopausal women have accelerated bone loss 

and bone structural decay. 

Osteoporosis has been described as "a skeletal disease characterized by low bone 

mass and micro architectural deterioration of bone tissue, with a consequent increase in 

bone fragility and susceptibility to fracture" (Consensus Development Conference, 1991). 

The deterioration of bone tissue is shown in different aspects, such as cortical bone 
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becomes more porous and thinner, trabeculae are lost and penetrated, bone material 

becomes more brittle, etc. The comparison of healthy bone and osteoporotic bone is 

shown in Figure 1-1 b, in which the loss of bone mass in the osteoporotic bone is apparent 

with perceptible changes in trabecular architecture. Osteoporosis is a progressive, chronic 

disease with no symptoms until a bone fracture occurs. Generalized age-related bone loss 

begins in men and women during their fifth decade, continues unabated through the 

remainder of life, and ultimately is responsible for senile osteoporosis (Turner RT et aI., 

2001). With advancing age, any part of the skeleton can lose bone because of 

osteoporosis, but not in equal amounts. When bone is not strong enough to support 

mechanical loading, fractures occur. 

In the United States, more than 1.5 million fractures occur due to osteoporosis 

each year (Orsini LS et aI., 2005). The fractures lead to considerable pain, decreased 

quality of life, loss of independence and mortality. Residual lifetime fracture risk in a 

person aged 60 years with average life expectancy was 29% for males and 56% for 

females (Jones G et aI., 1994). The study by Melton LJ et al (1997) shows that, above age 

45, 70-80% of all distal radius fractures in women, and 40-45% of all radius fractures in 

men are due to osteoporotic bone changes. Osteoporotic vertebral fractures are common 

in the elderly, occurring in about 20% of individuals older than 70 years of age (Turner 

AS, 2001). Women who develop a vertebral fracture are at substantial risk for additional 

fracture in the future (Klotzbuecher eM et aI., 2000; Melton LG et aI., 1999). For 

example, about 20% of postmenopausal women with a vertebral fracture will develop a 

new vertebral fracture of bone in the following year (Lindsay R et aI., 2001). The most 

serious osteoporotic fracture is that of the hip. The risk for fractures of the femoral neck 
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increases 13-fold from ages 60 to 80 (De Laet CE et al., 1997). Long term nursing home 

care is needed for up to 30% of patients (NIH report, 2001). Twenty-five percent of 

patients 50-year-old and older die within 1 year after a hip fracture (US Congress OoTA, 

1994). The National Osteoporosis Foundation (1996) estimates that one in two women 

and one in eight men are at risk of suffering osteoporosis-related fractures during their 

lifetime. Furthermore, osteoporotic bone heals ~30% more slowly than normal bone (Lill 

CA et al., 2002). 

Health care expenditures attributable to osteoporotic fractures in 1995 were 

estimated at $13.8 billion in the United States (Ray NF et al., 1997). Within 50 years the 

cost of hip fracture alone in the United States may exceed $240 billion (Lindsay R, 

1995). Because elderly people are the fastest growing population in the world and, as 

people age, bone mass declines and the risk of fractures increases (Cummings SR et al., 

2002), osteoporosis has become a growing health threat with rising social and economic 

consequences. Because bone strength is the ultimate measure of bone quality and none 

destructive methods (imaging) are indirect measures of the bone quality, the 

understanding of the relationship between bone mechanical strength and bone structural 

quality is important for the diagnosis of osteoporosis and the evaluation of osteoporosis 

treatment. 

The objective of this dissertation project is to develop new methods for the 

controlled evaluation of bone quality during experiments designed to test the efficacy of 

various treatments for osteoporosis using animal models. This dissertation includes both 

mechanical testing and high resolution imaging. Because bone strength is the ultimate 

measure of bone quality and none destructive methods (imaging) are indirect measures of 
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the bone quality, the understanding of the relationship between bone mechanical strength 

and bone structural quality is important for the diagnosis of osteoporosis and the 

evaluation of osteoporosis treatment. 
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CHAPTER 2. BACKGROUND AND SIGNIFICANCE 

2.1 ANIMAL MODEL 

Osteoporosis is a slowly progressive disease, necessitating a study of several 

years' duration to allow for a response to therapy (Turner AS, 2001). The high cost and 

the long time frame of clinical testing makes it reasonable to use animals before initiating 

a clinical trial in a post-menopausal osteoporosis study. Laboratory animals can provide 

useful information for the understanding of the pathogenesis of the osteoporosis, the 

extensive testing of potential therapies and evaluation of prosthetic devices in 

osteoporotic bone. 

An appropriate animal model for any research should meet the following criteria: 

"1) appropriateness as an analog, 2) transferability of information, 3) genetic uniformity 

of organisms where applicable, 4) background knowledge of biological properties, 5) cost 

and availability, 6) generalizability of the results, 7) ease and adaptability to experimental 

manipulation, 8) ecological considerations, and 9) ethical and societal implications" 

(Davidson MK et aI., 1987). Unfortunately, it is hard to meet all criteria for osteoporosis 

studies, in part because fracture risk has not been reproduced in animals, and it has 

proven difficult to ascertain the true degree of correspondence between the mechanisms 

which lead to the bone changes in the animal model and its human counterpart (Turner 

RT et aI., 2001). Although no single animal model can precisely replicate a human 
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condition of osteoporosis, even a model with a small representation of human functions 

may be of use for some aspect of the human condition under examination (Hazzard DG et 

aI., 1992). 

The pathogenesis of osteoporosis has been investigated based on various animal 

models, such as dogs (Kimmel DB, 1991; Harvey EJ et aI., 1999; Monier-Gaugere M-C 

et aI., 1996; Boyce RW et aI., 1990), rats and mice (Li XJ et aI., 1991; Faugere MC et aI, 

1986; Peng Z et aI., 1994; Peng Z-Q et aI., 1997; Baldock PAJ et aI., 1998 ), rabbits 

(Gilsanz Vet aI., 1988; Grarde1 Bet aI., 1994), pigs (Maier GW et aI., 1997; Lafage H-M 

et aI, 1995; Borah Bet aI., 2000), sheep (Lill CA et aI., 2002; ) and primates (Turner CH 

et aI., 1999; Binkley Net aI., 1998; Ba1ena R et aI., 1993). 

The ovariectomized rat is an established model of osteopenia and osteoporosis (Li 

XJ et aI., 1991; Wronski TJ et aI., 1991; Frost HM et aI., 1992), because skeletal loss 

after estrogen deprivation closely parallels the early rapid phase of bone loss 

characteristic of postmenopausal humans (Clifford JR, 2004). These include increased 

bone turnover, unequal bone resorption and formation, a greater loss of trabecular than 

cortical bone, and a rapid initial phase of bone loss followed by a slower phase (Ka1u DN, 

1991). With the fast generation time, rodents are often a starting point for preliminary 

screenings, efficacy and toxicity of new pharmacological agents or therapeutic modality, 

followed by verification in other species, before undertaking clinical trials in human 

patients (Aerssens et aI., 1998). Rodents are also inexpensive and easy to house, which 

makes them the widely used animal model for osteoporosis studies. 

Ovariactomy results in rapid loss of cancellous bone mass in some specific bone 

sites. From previous studies it is well known that the degree of osteoporosis is best 
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detennined at the metaphyseal femur or tibia of the rat (Wronski TJ et aI., 1985). For 

example, the earliest statistically significant time of cancellous bone loss in the proximal 

tibial metaphyisis occurs at 14 days and slowing down at 90 days (Wronski TJ et aI., 

1988; Wronski TJ et aI., 1989). 

2.2 DRUG TREATMENTS TO OSTEOPOROSIS 

There are three kinds of drug therapies to osteoporosis: antiresorptive therapy, 

anabolic therapy and combination therapy. 

2.2.1 Antiresorptive therapy 

Osteoporosis is the consequence of bone loss due to an imbalance in bone 

remodeling such that bone resorption exceeds bone fonnation. Because lost bone 

structure cannot be replaced, osteoporosis is currently managed with a range of 

antiresorptive therapies (Reid, 1999), which prevent further bone loss. Antiresorptive 

agents include bisphosphonates, calcitonin, Selective Estrogen Receptor Modulator 

(SERM), and estrogen. 

Bisphosphonates are synthetic versions of pyrophosphate, a salt that human body 

manufactures to help with energy metabolism. Bisphosphonates are similar enough to 

bind strongly to existing bone and become embedded in the skeleton. They prevent 

further bone loss and create a "protective layer" that slows down osteoclast activity from 

dissolving tissue on the bone's surface. This can prevent the development of osteoporosis. 

If osteoporosis already has developed, slowing the rate of bone loss reduces the risk of 
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broken bones. Alendronate is the nitrogen-containing bisphosphonate. The action of 

alendronate in inhibiting bone resorption has been shown in large clinical trials with 

postmenopausal oseoporotic women with and without prevalent fractures (Black et aI, 

1996; Hosking et aI, 1998; Li et aI, 1997; McClung et aI, 1998; Pols et aI, 1999). 

Alendronate also increases degree and uniformity of mineralization in cancellous bone 

and decreases the porosity in cortical bone of osteoporotic women (Roschger et aI, 2001). 

Calcitonin is another medication used to decrease bone loss. It is a naturally 

occurring hormone, which helps regulate calcium levels in human body and is involved 

in the process of bone building. Calcitonin is used in women with osteoporosis to reduce 

bone loss. In Bruyere's study (2003), it shows that calcitonin reduces spinal bone 

(vertebrae) fractures when taken by postmenopausal women for at least 1 year. But 

calcitonin does not appear to be as effective as other medicines, such as alendronate, at 

building bone mass and reducing the risk of fractures (Abramowicz et aI, 2002). 

Selective Estrogen Receptor Modulators (SERMs) are "designer" drugs that 

activate the estrogen receptors, but have different effects on different tissues. In other 

words, SERMs select specific estrogen receptors in the body and either stimulate or 

depress an estrogen-like response. They increase bone mass, decrease the risk of spine 

fractures and lower the risk of breast cancer. One of SERMs, raloxifene, provides 

promising benefits for women with osteoporosis. Ettinger et al (1999) reported that 

raloxifene increased bone mineral density by 2%-3% and reduced the incidence of new 

vertebral fractures by 30% and 50% (in women with and without prevalent vertebral 

fractures, respectively) compared to placebo. 
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Hormone replacement therapy (HRT) is a means of continuing to provide 

estrogen (the female sex hormone) after its production by the ovaries has started to fail at 

the menopause. When estrogen levels fall therefore, the bones become thin or brittle with 

the result that fractures are more likely to occur. HRT is therefore used to maintain bone 

density and thereby reduce the risk of fractures in post-menopausal women or younger 

women without ovaries. 

Although antiresorptive drugs slow the bone loss and decrease the risk of 

osteoporotic fractures by inhibiting osteoclast-mediated bone resorption, they cannot 

rebuild bone. In fact, because resorption and reformation occur naturally as a continuous 

process, blocking resorption may eventually also reduce bone formation. 

2.2.2 Anabolic therapy 

In anabolic therapy, both bone resorption and bone formation are stimulated. 

Anabolic therapy results in activation of remodeling units that leads to enhancement in 

bone formation over bone resorption. The primary anabolic agent is parathyroid hormone 

(PTH), which is administered as subcutaneous injections. There are various forms of 

PTH. In 2002 the FDA approved recombinant PTH 1-34, with a chemical name of 

teriparatide. A large multinational study of women with osteoporosis showed that 

treatment with teriparatide increased spinal and femoral neck bone mineral density and 

total body bone mineral content, and reduced the risk of vertebral and nonvertebral 

osteoporotic fractures by 65% and 53%, respectively (Neer et aI, 2001). Moreover, what 

is most intriguing is that teriparatide administration leads to improvement in skeletal 

micro architecture in both animals (Turner CH et aI, 1999) and humans (Dempster DW et 
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aI, 2001). Marcus (2003) showed that the skeletal response to teriparatide is largely 

independent of age, initial bone mineral density, and prevalent vertebral fractures in 

postmenopausal women with osteoporosis. 

Fluoride is another bone-building agent. Its side effects were: gastrointestinal 

disturbances (34%), gastric ulcers (4.4%), stress fractures (6.9%), very common 

arthralgies (34%), and sometimes overdo sages (fluorosis) (Franke J, 1988). It has also 

been shown to only improve bone density, but not strength. It is not commonly used 

because of these limitations. 

2.2.3 Combination therapy 

It is tempting to consider the possibility that combination therapy with different 

drugs, either through additive effects on suppression of bone turnover or through other as 

yet unknown mechanisms, might provide benefits over and above what could be achieved 

with either one alone. There have been and will be more clinical trials to test this 

hypothesis. 

Johnell et ai. (2002) reported on their study of combination therapy with 

alendronate and raloxifene in postmenopausal women with osteoporosis. The results of 

this well-designed clinical trial indicated that the combined use of these two drugs was 

associated with increased bone density and lower bone turnover markers than one can 

achieve with either drug alone. Rittmaster RS et al. (2000) have. reported that 

postmenopausal osteoporotic women, who have been treated with alendronate given 

sequentially for 1 year after intact PTH therapy, responded with an overall increase of 

14.6% at the spine together with significant increments in the femoral neck and total 
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body calcium. However, the study of Black et al. (2003) showed that the combination of 

PTH and alendronate blunted the anabolic effect ofPTH on spine BMD. 

Combination therapy is used on most chronic diseases. For osteoporosis, further 

studies are needed to determine the proper drug combination and the optimal therapeutic 

window. 

2.3 EVALUATION OF BONE QUALITY BY IMAGING METHOD 

Dual-energy X-ray Absorptiometry (DXA) is considered the clinical gold 

standard for measuring bone quality, and quantitative measures of bone mass (bone 

mineral content (BMC)) can be derived directly at all sites of interest (Genant HK et aI., 

1996). In World Health Organization (WHO) Technical report series 843 (year 1994), 

bone mineral density was used to define osteoporosis because the reduction of bone mass 

appears in most osteoporotic changes. Approximately 55% of the variability of femoral 

bone strength in side impact and vertical loading are explained by site-specific (femoral) 

DXA, with no other technique being able to reach a similar degree of prediction 

(Lochrnuller EM et aI., 2003). The disadvantage of the DXA is, however, that DXA 

provides 2D projection images, which cannot detect the details of the bone structure 

except projection area and length. 

Although bone mineral density is used conventionally to diagnose osteoporosis, 

the quality of bone, such as bone structure and bone material quality etc, also plays an 

important role in the bone strength. It is easily explained from a mechanical perspective 

that the strength of a structure is determined not only by the amount and the quality of the 

material, but also by the spatial arrangement of the material. Geometrical measures such 
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as bone size, cross-sectional area or area moment of inertia have frequently shown to 

predict up to 70-80% of whole bone strength (Augat P et aI., 2006). This explains why 

older women, with worse bone quality, have a much higher fracture rate than younger 

women with the same bone density (Heaney RP et aI., 1998). Thus, detailed analysis of 

both trabecular and cortical bone is necessary (Peng Z-Q et aI., 1997). 

There are two ways to measure three-dimensional (3D) architecture of bone. One 

IS a destructive way, such as serial milling, which uses PC-based image processing 

system and a digital camera to record digitized image of the cut surface (Odgaard A et aI., 

1989). The other is a nondestructive way, such as X-ray computed tomography (CT) and 

magnetic resonance imaging (MRI), which can generate a three-dimensional image of 

internal anatomy from a large series of two-dimensional images. It is clear that the 

nondestructive method is superior to the destructive one. The nondestructive method 

allows the specimen to be used for other measurements, such as analysis in different 

planes which is very desirable because the anisotropic nature of cancellous bone or the 

further mechanical testing which can reveal the relationship between the structural and 

the mechanical characteristics. When used in vivo, the real 3D images make it possible to 

catch the bone structural changes during the osteoporotic process, and also make it 

possible to study cortical bone and cancellous bone separately. Many structural 

parameters have been proposed in previous papers, such as trabecular thickness, 

trabecular spacing, trabecular number, bone surface, and structure model index (SMI). 

More studies need to be done to create a full understanding of relationships between these 

parameters and bone competence and fracture resistance. 
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2.4 CT SCANNING 

2.4.1 Illustration of CT scanning 

In 1895, a new radiant energy that was named as X-ray was observed and 

recorded by Wilhelm Conrad Rontgen. X-ray can be used to examine internal organs 

nondestructively and create two-dimensional images. Godfrey Hounsfield and Allan 

Cormack invented computed tomography (CT) in 1972 and made it possible to combine 

x-ray images with a computer to provide information about the tissue density across the 

cross-section of the tissue, which facilitates quantitative 3D architectural analysis. With 

continuing improvements in CT equipment and computer technology, CT became widely 

available by about 1980. There are now about 6,000 CT scanners installed in the U.S. and 

about 30,000 installed worldwide (http://www.imaginis.com/ct-scanihistory.asp) (Figure 

2-1). 

A peripheral quantitative computed tomography (pQCT) scanner has been 

designed to examine peripheral bones such as the radius or the tibia (Kohlbrenner A et 

aI., 1997) (Figure 2-1 b). Because of the relatively lower resolution (~150 II m) the 

individual trabeculae is not easy to be recognized by the system. The pQCT is available 

for research scans only. It is not available yet for clinical purposes as there is no pediatric 

reference database (normal range) available for interpretation. 
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Figure (a) Abdominal and Pelvic CT Figure (b) pQCT 

Figure 2-1 CT equipment examples 

Micro CT was first illustrated by Feldkamp et aI. (Feldkamp LA et aI., 1989; 

Kuhn JL et aI., 1990). The system created a 3D object with image resolution of 50 J.lm by 

using a microfocus X-ray tube as a source, and image intensifier as a 3D detector, and a 

cone-beam reconstruction. Instead of rotating the X-ray source and detectors during data 

collection as in clinical CT, the specimen is rotated at various angles. The spatial 

resolution of ~ 60 J.lm clearly visualized individual trabeculae of human, allowing a 

three-dimensional analysis of trabecular network (Genant HK et aI., 2006). However, the 

resolution that appears suitable to human trabecular network is not good enough to the 

small animal model, such as rat, where the trabecular widths average about 50 J.lm and 

trabecular separations average 150 J.lm or less (Kinney JH et aI., 1995). Another in vitro 

micro-CT scanner has been developed (Rueggsegger Pet aI., 1995; Rueggsegger Pet aI., 

1996). They scanned a volume of interest that was of 4x4x4 mm3 and represented in 

14x 14x 14 J.lm3 voxels. The true resolution was a function of detector size, reconstruction 
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algorithm, number of projection, etc. The true resolution of the CT scanner used in the 

research was not clear. 

Higher resolution is generally achieved with synchrotron I1CT and can assess 

additional features. For example, synchrotron !lCT was used to image trabecular surface 

with the 1.4 11m voxel size. An image of this resolution was able to show a cavity inside a 

large trabecular strut (Peyrin F et aI., 1998). 

Pixel or voxel dimensions may result in a "pseudo" -resolution that typically 

overestimates the physically "correct" resolution by a factor of 2-4 (Jiang Y et aI., 2005). 

Therefore, to image individual trabeculae in the rat model in which the trabecular widths 

average about 50 11m, the "correct" resolution must be at least 50 11m, requiring 

pixel/voxel size of 25 11m or smaller according to Nyquist's theorem (Engelke K et aI., 

1998). Peyrin's work showed that a voxel size of 14 11m is sufficient for most 

morhphmetric parameters (Peyrin F et aI., 1998). 

The micro-CT is customized to scan small animal models with a nominal 

resolution of 14 11m. Similar resolution has been used in other studies, such as 13 11m in 

McNamara's study (McNamara LM et aI., 2006) and 15 11m in Boyd's study (Boyd SK et 

aI., 2006). The CT equipment (ACTIS 150/225 system, BIR Inc., Lincolnshire, IL) that 

was used in this study contains a Fein Focus 225kV microfocus x-ray system (x-ray 

source), a custom part manipulator and 150 mm x-ray image intensifier with DALSA lk 

x lk cooled CDD camera (x-ray detector) (Figure 2-2). The animal is fixed on the part 

manipulator and rotated with the part manipulator when scanning is performed. The X­

ray source-detector system is fixed at all times. 
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Figure 2-2 It is the brief description of how the customized micro-CT system works. The 
animal is fixed on part manipulator and rotated with part manipulator when scanning is 
performed. X-ray source-detector system is fixed all the time. 

2.5 IMAGE SEGMENTATION 

Segmentation methods are important to the image interpretation. There are two 

different segmentations: bone/non-bone segmentation and cancellous bone segmentation. 

Bone/non-bone segmentation is a process to separate bone from soft tissue and the 

background. The CT image is composed of pixels with different gray values. The gray 

values of the pixels that represent bone are greater than that of the pixels that represent 

soft tissues and the background. The bone pixels are brighter than the soft tissue and 

background pixels. The analysis of bone structural parameters, such as bone volume, 

trabecular thickness, and structure model index (SMI), is based on the binary image that 

is converted from the original CT image by bone/non-bone segmentation. 
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The most widely used bone/non-bone segmentation method is based on a global 

threshold. A single threshold is determined according to the histogram of absolute gray 

values of all pixels in a single CT image slice or in the whole image stack. A pixel is set 

as bone (white) if its gray value is greater than global threshold, otherwise it is set as 

nonbone (black). 

In many cases global threshold method does not work well because of the effect 

of beam hardening (since lower energy X-rays are preferentially absorbed as the X-rays 

traverse the specimen, the center of the specimen is exposed to more high energy X-rays, 

which results in darker pixels in the center) and partial volume effects (the gray value of a 

pixel with both bone material and nonbone material is lower than that of a pixel with all 

nonbone material, and greater than that of a pixel with all bone material). Local threshold 

method leads to more precise segmentation result by choosing specific threshold to each 

pixel according to the information provided by its neighborhood of a selectable size. 

Waarsing JH et al. (2004) developed a local threshold algorithm by detecting edges of the 

bone. The gray value of a voxel that is part of the edge sets is used as a local threshold for 

its neighbors. 

Cancellous bone segmentation is used to segment cancellous bone from cortical 

bone, so the cancellous bone and the cortical bone can be analyzed separately. Due to the 

complexity of cancellous bone network and a large number of image slices, it is a time­

consuming and tedious process to do segmentation manually. It is also difficult to tell 

where the exact boundary between cancellous bone and cortical bone is if the cortex is 

very porous because of osteoporosis or other diseases, or if the volume of the interest 

(ROI) is dominated by cancellous bone. Manual segmentation of images often produces 
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subjective results that are highly dependent on the knowledge and experience of the 

operator. Therefore, more efforts have been made recently to do segmentation 

automatically (Dufresne T, 1998; Helterbrand JD et aI., 1997; E1moutaouskkil A et aI., 

2002). Since automatic segmentation by computer is a more objective and reproducible 

process, it allows longitudinal study of the same subject and comparison studies between 

different subjects with reduced human bias and error. He1terbrand et al (Helterbrand JD et 

aI., 1997) has developed an automatic segmentation method based on the knowledge that 

generally cortical bone elements are closer to the outer bone surface and have higher 

intensity than cancellous bone elements. The accuracy of this method decreases when the 

cortical bone thickness varies a lot in a single image slice. Dufresne (Dufresne T, 1998) 

proposed Euclidean Distance Map (EDM) in which each voxel of 3D whole bone data set 

contains its distance information to the nearest surface. The cortical bone is determined 

by finding the center of the cortical bone and dilating out the center based on its EDM 

value. This method requires that the holes in cortex are removed before segmentation is 

carried out, again resulting in a slow manual process and some human errors. Another 

approach involves use of a dual threshold technique (Buie HR et aI, 2007), in which one 

threshold is used to extract the non-bone region and the other threshold is used to define 

the marrow cavities. To apply the algorithm, the user must adjust two threshold values to 

the specific dataset at hand, which impact the final segmentation result. Dilation and 

erosion operations are then used to reconnect marrow cavities, thus eliminating 

trabeculae, allowing extraction of a trabecular region mask via a connectivity filter. The 

extent of the dilation should be as small as possible while satisfying the requirement: the 

cortical porosity is removed and marrow cavities are reconnected for all datasets. 
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Unfortunately, this requirement cannot be satisfied for all cases, which leads to bad 

decision of the pores in the cortex, which further leads to bad cancellous bone 

segmentation. 

In this dissertation, an automatic segmentation method based on the binary image 

information of bone structure only is introduced. Similar with the method of Buie et al 

(2007), marrow space is used in the new method to define the cancellous bone. In order 

to find the marrow space, instead of dilation and erosion operation in Buie's method, the 

new method takes advantage of 3D structure of the non-bone region, which can define 

the pores in the cortex objectively and precisely. Though the experience of two years 

using this method has shown excellent qualitative agreement with manual techniques, the 

new method was also measured quantitatively. The method was validated by comparing 

segmented results with manual work and a published method, the Helterbrand method. 

The principle advantages of the new method are as follows: 1. It is automatic, 

precise and accurate; 2. The cancellous bone segmentation is dependent on the bone 

architecture only, no assumption is needed; 3. The method has the potential to do 

segmentation even when the ROI has a complex structure and irregular shape; 4. Any 

pores in the cortex can be distinguished from the marrow space objectively and 

accurately. The method is validated by comparing segmented data sets with manual 

method and a previous published segmentation method (Helterbrand method). 

2.6 EVALUATION OF BONE COMPETENCE BY MECHANICAL TESTING 

Mechanical tests in the form of three-point bending, four-point bending and 

torsion are the most common methods of measuring bone mechanical properties (Turner 
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RT et aI., 2001). Because these testing are performed at the middle shaft of the diaphysis, 

they measure cortical bone qualities. Since the bone size of the rat is so small, there have 

been no reports to my knowledge of attempts to study rat bones using four-point bending 

testing due to the small size of rat bone sample. Three-point bending is a simple testing 

due to the easy bone sample preparation and test execution. It is suitable for long bones 

because the span of the specimen that is loaded must be sufficiently long to guarantee an 

accurate test. Three-point bending test has been applied to measure the strength of 

cortical bone (Azuma Yet aI., 1998; Yang KH et aI, 2007; Trebacz H et aI, 2006). As an 

alternative to bending tests, torsional testing can be used for the evaluation of bone 

mechanical qualities (Lind PM et aI., 2001; Burstein AH et aI., 1971; Lepola V et aI., 

1993). Torsion testing applies the load at the end of the bone sample, which allows the 

load away from the region of the interest (ROI). Torsional testing requires the mounting 

of the specimen ends into the testing grips, which increases the time, labor and the cost of 

testing. 

Assessment of trabecular structural characteristics and mechanical qualities may 

further improve the ability to understand the pathophysiology and progression of 

osteoporosis and other bone disorders. Compression testing has been performed on 

trabecular samples which have been machined into cubic subvolumes (Ulrich D et aI., 

1997). Unfortunately, the rat model is small and its cancellous bone cores do not meet the 

continuum requirement for compressive tests (Harrigan TP et aI., 1988) that the 

specimens side length span at least five intertrabecular distances. Indentation test is a type 

of compression test where an indentor is driven into a sectional surface of a bone 

specimen (An YH et aI, 1997). Although the failure mechanisms are more complicated 
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and less clear than the conventional compression test, indentation testing has been used to 

measure the biomechanical properties of cancellous bones, such as Young's modulus and 

strength of cancellous bone (Sumner DR et aI., 1994; Aitken GK et aI., 1985; Katoh T et 

aI., 1996; An YH et aI., 1997; Jamsa T et aI., 2002; Khodadadyan-Klostermann C et aI., 

2004; Hvid I et aI., 1985). The indentation testing is very sensitive to the position of the 

exposed cancellous bone surface. Since it is not easy to get the same exposed cancellous 

bone surface of different bone samples, previous studies has focused on mapping 

biomechanical properties of a single bone specimen, instead of comparison between 

different specimens. In Pradama Study, the new indentation testing method has been 

developed to evaluate the strength of cancellous bone resulted from different drug 

treatments of osteoporosis. 

The complete understanding of whole bone performance is very useful for the 

deep understanding of the pathogenesis of the osteoporosis and the evaluation of drug 

treatments. The mechanical properties of entire bone can be measured by compression 

testing of vertebrae (Fox J et aI., 2006) and cantilever testing of the neck of the femur 

(Azuma Y et aI., 1998; Sogaard CH et aI., 1994). These tests more closely approximate 

the type of failures associated with osteoporotic fractures. A standardized bending and 

breaking test at the metaphyseal region of tibias of the rat has been developed recently. 

This three-point breaking test is highly sensitive to evaluate hormones, substances, and 

even medications with regard to their osteoprotective efficiency, because the osteoporotic 

fracture plays the key role in osteoporosis (Sturmer EK et aI., 2005). 

There are other testings to measure bone quality. For example, tensile testing can 

be applied on cortical bone and/or cancellous bone, which requires that the bone 
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specimen must be big enough to meet the continuum limitation; Microtensile testing is 

carried out on individual trabeculae (McNamara LM et aI., 2006) to assess the 

mechanical behavior of trabecular bone tissue. 

Mechanical testing can give direct results of bone strength, but it cannot be used 

clinically because it is destructive. A better understanding between image analysis and 

mechanical testing is very helpful clinically because nondestructive methods are the only 

way to check patients and bone competence is the objective of the clinical examination 

2.7 RESEARCH TASK 

The main purpose of the present study is to evaluate bone quality using image 

analyses and mechanical test methods. The main objective and the general aim of the 

study are to: 1) isolate as much cancellous bone as possible to study the drug effect on the 

rat model, especially for in vivo study, 2) develop a novel, automatic, more precise, and 

more objective cancellous bone image segmentation method, 3) develop a more precise 

mechanical indentation test to evaluate cancellous bone quality, 4) develop more 

sensitive methods (compared to more traditional method, such as Archimedes density 

measurements and three-point bending testing) to show the differences of the bone 

structure caused by OVX or different drug treatments, 5) Develop a method to evaluate 

cortex maximum tensile stress based on the information from CT scanning image, and 6) 

Relate the 3D image analysis to the bone quality from mechanical results and drug 

treatments. 

24 



CHAPTER 3. MATERIAL AND METHODS 

3.1 GENERAL DESCRIPTION 

All of the methods developed and described in this dissertation were applied to 

evaluate the bones of rats used in collaboration with Dr. William Pierce. A total of four 

separate experiences were performed to study various new drugs being developed by his 

group for the treatment of osteoporosis. The new drugs are not the focus of this 

dissertation, so those data are not used. The data from control animals and those treated 

with reference drugs are presented. The first experiment is referred to as the Alendronate 

Study simply because of the large response observed in the alendronate treated rats in that 

experiment. The remaining three experiments are referred to as Pradama Experiment 1, 

Pradama Experiment 2, and Pradama Experiment 3. 

The structural analysis was an image analysis based on the information that was 

provided by CT scanning images. In vivo image analysis was used in the Alendronate 

Study. Ex vivo image analysis was used in the Pradama Studies. Table 3-1 describes the 

structural analysis used in this study. 
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T bl 3 1 S a e - I . d tructura analysIs escnptIon 
Structural analysis In vivo Ex vivo 
Studies Alendronate study Exp 1, Exp 2 and Exp 3 
Scanning procedure One rat per scanning Six bones per scanning 
Study objects Proximal metaphysis of Proximal metaphysis of right 

right tibia tibia 
Bone/non-bone Global threshold Method Global threshold method in 
segmentation method Exp 1; Local global threshold 

method in Exp2, Exp3 
Cancellous bone Helterbrand method that is New method that is described 
segmentation method described in 3.3.4 in 3.4 
Improvement 1. Isolate as much cancellous bone as possible to study the 

drug effect on the rat model 
2. Developed a GUI 2. The new method used for 
program by MatIab to cancellous bone 
separate VOl from other segmentation is totally 
bones that are connected automatic, more precise and 
to VOl more objective 

There were no mechanical tests in the Alendronate Study. Mechanical tests were 

executed in the Pradama Studies. Table 3-2 describes the mechanical tests used in this 

study. 

Table 3-2 Mechanical test description 
Mechanical Torsion Three point Indentation Three point 
tests bending breaking 
Studies Pradama Pradama Exp 1, Pradama Exp 1, PradamaExp 

Expl Exp 2 and Exp 3 Exp 2 and Exp 3 1, Exp 2 and 
Exp 3 

Scanning Six bones per One bone 
procedure scannmg (embedded in 

Bondo) per 
scannmg 

Study objects Left femur Middle shaft of Proximal Proximal 
right femur metaphysis of left metaphysis of 

tibia Right tibia 
Improvement Make it possible Develop a new 

to evaluate cortex method to trim the 
maximum tensile top of the bone 
stress based on sample at a precise 
the information position to expose 
from CT scanning the cancellous bone 
Image surface 
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3.2 STUDY OBJECTS AND DRUG TREATMENTS 

The animal-use protocol in the research was approved by the institutional animal 

care and use committee at the University of Louisville. All rats were overiectomized 

(OVX) at the beginning of the experiment except the rats of the Sham group. Sham 

operations were performed on the Sham group by exposing the ovaries and then closing 

the incision. Sham procedures are typically performed to isolate the actual surgical 

intervention as an independent variable. In the Alendronate Study, the rat group name 

was arranged as TreatmentMethod. For example, SHAM means that all rats of this group 

were sham-operated. In pradama studies, the rat group name was arranged as 

TreatmentMethod_SacrificedTime. For example, SHAM_ W6 means that all rats of this 

group were sham-operated and were sacrificed six weeks after surgery; OVX_ W5 means 

all rats of this group were ovariectomized and sacrificed five weeks after surgery; 

ALEN_ W12 means that all rats of this group were ovariectomized then treated by 

alendronate and were sacrificed twelve weeks after surgery. 

3.2.1 Alendronate study 

Twenty-four female Sprague-Dawley rats weighing 150g, corresponding to about 

7-8 weeks old, were purchased at the beginning of the experiment, in which four rats 

were sham-operated and thirty rats were ovariectomized by the vendor. All rats were 

housed in plastic cages (L 430 mm x W 220 mm x H 200 mm), one rat per cage, and 

subjected to a 12-hour light/dark cycle. All rats were allowed to move freely throughout 

the experiment period. Tap water and the standard rodent diet were available to all rats ad 

libitum. 
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There were 6 groups of rats based on treatment: sham control (SHAM), OVX 

control (OVX), OVX + Alendronate (ALEN), OVX + 17 ~-EstradioI2 (E2), OVX + 

Raloxifene (RALOX), and OVX + Teriparatide (PTH) (Table 3-3). At the beginning of 

the eighth week after surgery, each rat was weighed and injected subcutaneously three 

times per week (on Monday, Wednesday, and Friday). On the sixteenth week after 

surgery, the rats were sacrificed using CO2 • The uteri, blood, femur, tails and tibiae were 

collected and refrigerated. 10% buffered formalin was used to fix the femur, tails and 

tibiae. 

T bl 3 3 T tm t Arr a e - rea en t fi Al dr t St d angemen or en ona e u ly 

r:F.J 
0 :> ~ ::c >-0 

Group name :> -< t""" tTl t""" >-l 
~ N 

~ >< 0 ::c 
>< 

Rat number 4 4 4 4 4 4 

Vehicle: 5%DMSO 0.166 0.01 1.0 mg/kg 0.001 
Drug dosage in com oil; 500/lm per mg/kg mg/kg mg/kg 

100g body weight 

3.2.2 Pradama study 

All rats (totally 120 rats) were housed in plastic cages (L 430 mm x W 220 mm x 

H 200 mm), three or four rats per cage, and subjected to a 12-hour light/dark cycle. All 

rats were allowed to move freely throughout the experiment period. Tap water and the 

standard rodent diet were available to all rats ad libitum. The rats were asphyxiated using 

CO2• The uteri, blood, femur, vertebrae and tibiae were collected. Right femur, left 

femur, right tibia and left tibia were soaked in saline and frozen immediately after the 

collection. Vertebrae were soaked in formalin and refrigerated for further study. 
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3.2.2.1 Pradama study: Experiment 1 (Pradama Exp1) 

Thirty-seven female Sprague-Dawley rats, about six-months old, were purchased 

at the beginning of the experiment, in which eleven rats were sham-operated and twenty 

rats were ovariectomized by the vendor. There were ten groups of rats based on treatment 

and the time point of sacrifice (the week of the surgery was set to week zero): sham 

control (SHAM_ W2), sham control (SHAM_ W4), sham control (SHAM_ W8), OVX 

control (OVX W2), OVX control (OVX W4), OVX control (OVX W8), OVX + 
- - -

Alendronate (ALEN_ W8), OVX + Estradiol (E_ W8), OVX + 17-Ethinyl Estradiol 

(E2_ W8), and OVX + Teriparatide (PTH_ W8) (Table 3-4). All rats were weighed on the 

fifth day after surgery. On the thirty forth day after surgery, drugs were given to rats three 

times per week (on Monday, Wednesday, and Friday). PTH and Estradiol were injected 

subcutaneously. 17-Ethinyl estradiol and alendronate were given orally. 

T bl 3 4 T a e - reatment Arr angement £ P d or ra ama E 1 xp 
rn rn rn 

0 0 0 ~ ::c: ::c: ::c: '"d 
~ ~ ~ <: -<: -<: l' tn tn ....., 

I~ 
N 

Group name ~ I~ I~ 1>< 1>< I~ 
1 

I~ I:I: ~ 1 ~ ~ ~ 
~ ~ ~ ~ 

co co 
N ~ co co 

~ co co 

RatNum 3 3 5 3 4 3 4 4 4 4 

Vehicle: 5%DMSO 
1.6 0.5 0.5 0.08 

Drug dosage None in com oil; 500llm per 
mg/kg mg/kg mg/kg mg/kg 

100g body weight 

3.2.2.2 Pradama study: Experiment 2 (Pradama Exp2) 

Forty-one female Sprague-Dawley rats, 5.5 month old, were purchased at the 

beginning of the experiment, in which ten rats were sham-operated and thirty-one rats 
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were ovariectomized by the vendor. There were seven groups of rats based on treatment 

and the time point of sacrifice: sham control (SHAM _ W5), sham control (SHAM _ WI I ), 

OVX control (OVX _ W5), OVX control (OVX _ WI 1 ), OVX + Alendronate 

(ALEN_ Wll), OVX + 17-Ethinyl Estradiol (E2_ Wll), and OVX + Teriparatide 

(PTH_ Wll) (Table 3-5). All rats were weighed on the sixth date after surgery. On the 

forty second day after surgery, drugs were given to rats three times per week (on 

Monday, Wednesday, and Friday). PTH was injected subcutaneously. I7-Ethinyl 

estradiol and alendronate were given orally. 

T bl 3 5 T t tArr a e - rea men t£ P d angemen or ra ama E 2 xp 

C/). C/). 
0 > ::c: 0 >-0 ::c: -< l" tTl ...., 

> > -< ~ tv 

I~ I~ 1:X I~ 
::c: 

Group name IS:: I I~ 
~ ~ ...... 

~ ...... ...... ...... ...... Vl ...... ...... ...... 
Vl ...... ...... 

RatNum 4 6 6 6 6 7 6 

Vehicle: 5% DMSO in 
1.6 0.45 0.08 

Drug dosage None com oil; 500)lm per 100g 
mg/kg mg/kg mg/kg 

body weight 

3.2.2.3 Pradama study: Experiment 3 (Prodama Exp 3) 

Forty-two female Sprague-Dawley rats, 6 month old, were purchased at the 

beginning of the experiment, in which eleven rats were sham-operated and thirty-one rats 

were ovariectomized by the vendor. There were six groups of rats based on treatment and 

the time point of sacrifice: sham control (SHAM_ W6), sham control (SHAM_ WI2), 

OVX control (OVX_ W6), OVX control (OVX_ WI2), OVX + Alendronate 

(ALEN_ W12), OVX + 17-Ethinyl Estradiol (E2_ W12), and OVX + Teriparatide 
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(PTH_ W12) (Table 3-6). All rats were weighed on the fourth date after surgery. On the 

forty-fifth day after surgery, drugs were given to rats three times per week (on Monday, 

Wednesday, and Friday). PTH was injected subcutaneously. 17-Ethinyl estradiol and 

alendronate were given orally. 

T bl 3 6 T t a e - rea men tArr angemen t fi P d or ra ama E 3 xp. 

C/J. C/J. 
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::r: ::r: 0 r tTl 
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Group name ~ I~ I~ I~ I I::r: 
~ 

I~ ~ ~ ....... ~ 
....... tv ...... 

....... 0\ tv ...... tv 0\ tv tv 

RatNum 5 6 6 7 6 6 6 

Vehicle: 5% DMSO in 
1.6 0.43 0.08 

Drug dosage None com oil; 500llm per 
mglkg mg/kg mglkg 

100g body weight 

3.3 IN VIVO STRUCTURAL ANALYSIS 

3.3.1 Scanning design 

Sixteen-bit CT image data were collected using a customized micro-CT system 

(ACT IS 150/225 system, BIR Inc., Lincolnshire, IL). The study object was the proximal 

metaphysis of the right tibia. All the rats were scheduled to be scanned at week 0, week 8, 

week 12 and week 16 after sham or ovariectomy surgery. Before the scanning, the rat 

was placed in a plastic chamber. The chamber consisted of two acrylic cylinders and a 

flange (Figure 3-1). The flange was located on the lower cylinder. The chamber was fixed 

on the part manipulator by tightening screwing bolts through the holes in the flange and 

the holes in the part manipulator, which made sure that there was no relative movement 

between the chamber and the part manipulator. The upper cylinder had 2.75 inch inner 

31 



diameter which should provide enough space for a rat and 3 inch outer diameter. The top 

cover had 3 inch inner diameter and there was a swivel fitting on its top side. The swivel 

was connected with a tube, through which the gas, lLimin O2 with 2-2.5% isoflurane by 

volume, could enter into the chamber for the purpose ofrat's anaesthesia. The lower side 

of the upper cylinder was connected with the lower cylinder that had 1.25 inch inside 

diameter. A rough hook of VELCRO was fixed on the lower side of the lower cylinder. 

The scanning equipment is shown in Figure 3- I. 

Figure 3-1 It is the description of the CT scanning used in the Orthopaedic 
Bioengineering Lab. X-ray source is on the left, part manipulator is in the middle and x­
ray detector is on the right. X-ray source-detector system is fixed all the time. Before the 
scanning, a rat is sedated and fixed on the part manipulator. During the scanning the rat is 
rotates with part manipulator. 

Generally, the rat was sedated within 5-10 minutes. Because the rat does not blink 

when it is under unconscious conditions, ophthalmic ointment (NEO-POL Y -BAC, 

Bausch & Lomb Incorporated, Tampa, FL) was used to maintain proper moisture of the 

eyes. The tail, the right hint leg of the rat and a soft loop of VELCRO were tied together 

by tape. The rat was placed in the upper cylinder while the tail and the right hint leg were 

extended into the lower cylinder. The tail and the right hint leg were fixed by pressing the 
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soft loop surface to the rough hook surface of Velcro, which made sure that there were no 

relative movement between the study object (tail and right leg) and the chamber during 

CT scanning. By pulling down VELCRO soft loop and pressing soft loop surface to 

VELCRO rough hook surface, the right hint leg remained straight and erect during the 

scanning. Since the rat cannot support its body in erect position because of its relaxed 

muscle when it is sedated, the rat was stretched up in a vertical position by hanging its 

teeth on a loop of string. 

3.3.2 Image registration 

The aim of the registration: after registration, the image stacks of the VOl (the 

proximal metaphysis of tibia) of the same rat scanned at four different time points (week 

0, week 8, week 12 and week 16) should be in the same orientation and the same 

position. An exact biological match of two scans made at different time points would be a 

match in which a bone structure present in one scan falls on top of the same bone 

structure in the second scan. Because bone grows during the experiment period, the 

longer the time period between the two scans, the greater the morphological changes in 

the bone. To make the change between the biological matches at two time points as small 

as possible, the image stack that was scanned at the middle time point (week 8) of the 

whole study was chosen as the reference image stack of registration, and the image stacks 

at week 0, week 12 and week 16 (floating image stacks) were oriented to match it, which 

resulted in the longest time period between the two time points of a registration to be 8 

weeks. 

There were four steps to do registration. 
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Step 1: Display the four image stacks of the same rat scanned at 4 different time 

points. 

An original CT image data set that was obtained directly after CT reconstruction 

included 749 ~ 1284 image slices and the size of each image slice was 8196 KB. The 

image shown in Figure 3.3-2 (a) was an example of an original CT image. Since the size 

of the image stack was very big (6.1 ~ 10.5 GB), it was hard to display even only one 

image stack on the computer screen because of the computer memory limitation. ImageJ 

was used to open the image data sets. The following measures were taken to make the 

displaying fast and successful: 1) the scale of the image was set to 25%, 2) one image 

every four images was read in one image stack, and 3) the original image was converted 

to 8-bit grayscale. The required computer memory was decreased dramatically by taking 

these measures. For example, the size of an image stack of which the original size was 

6.1 GB was reduced to 47 MB (6100 MB / 4 (read one slice every 4 slices) / (4 * 4) (25% 

image scale) / 2 (converted to 8-bit) = 47 MB), which was only 0.78% of the original 

size. Although some details of the image data sets were lost by taking these 

measurements, the reduced images were still good enough because only rough 

registration was performed in this step. 

Step 2: Rotated the floating image stacks manually to such position that the VOl 

of the floating image stacks had the similar orientation to that of the reference image 

stack. 

To compare the relative orientations, it was also necessary to display the same 

positions of the four image stacks. Because bone is growing, the structure of the bone is 

changing. In the analysis, it was assumed that arterial openings in the cortex do not 
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change, or at least to a much lesser extent than the general shape of the bone. Figure 3-2 

(a) and (b) show the images of a floating image stack before orienting and after orienting, 

respectively. 

Figure (a) Figure (b) Figure (c) 

Figure 3-2 It is the orientation process of a floating image stack. Figure (a) shows the 
image with cortex opening before orientation. Figure (b) shows the orientation result. The 
VOl was cut from original CT image stack by a rectangular (figure (c)). 

Figure 3-3 shows the orientation results, in which Cross-section A-A, B-B, C-C 

and D-D were the same positions at week 0, week 8, wee 12 and week 16, respectively. 

The opening in these cross-sections should be the same artery opening in cortex at 

different time points. 

Step 3: Choose the volume for registration purpose (VReg) and the volume for 

reslicing purpose (VRes). 

TO, T8, T12 and T16 in Figure 3-3 were distances between the slices with the 

arterial opening in the cortex and the slices that were just below the growth plate at week 

0, week8, week 12 and week 16, respectively. Since bone is growing, TO should be the 

minimum value of TO, T8, T12 and T16. The top slice of each image stack for VReg was 

at the distance of TO proximally from the slice with the arterial opening in the cortex. 

35 



BO, B8, B12 and B16 in Figure 3-3 were distances between the slices with the 

arterial opening in the cortex and the slices that were located at the most bottom of the 

image stack at week 0, week8, week 12 and week 16, respectively. The bottom slice of 

each image stack for VReg was at the distance of the minimum value ofBO, B8, B12 and 

B 16 distally from the slice with the arterial opening in the cortex. 

CroS$-s~on AA Cross-se.n 8-8 Cross-section c·e Cross-s~ion 0·0 

~ ~ ~ 
.. ............ ." 

!\. .. " ... , ~ 

"~; . 

W •• kO WeekS Week 12 Wnk16 

Figure 3-3 Description of the registration parts and the reslice parts 

The top slice of VRes part was chosen to make sure that the whole metaphysis at 

the proximal end of the tibia was included. The bottom slice of VRes was the same as 

that of VReg. 

The VOIRR (Volume of Interest, including both Reslice part (VRes) and 

Registration part (VReg)) was cut from the original reconstructed image in rectangular 

shape (Figure 3-4). The rectangle should be big enough that the whole VOIRR was 

included and also small enough to save computer memory and computing time. 
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f t 
Slice for baseline f t --------------

f t -------------- Bottom 

Figure (a) 

Cross-section A - A Cross-section B - B Cross-section C - C 

Figure (b) Figure ( c) Figure (d) 

Figure 3-4 The position of the image of the tibia was moved from one side of the 
rectangle to another side of the rectangle when the image slices were checked from top of 
the tibia to the bottom of the tibia because the tibia was not in the vertical position when 
it was scanned. 

The following information that was got from observing original image stacks was 

used as the input for a in-house Matlab (Mathworks, MA) program to do the rough 

registration: the rotation angle that was used to rotate the original reconstructed data sets 

to expected orientation, the top and bottom slice number for registration, the top and 

bottom slice number for reslice, x and y position of the right upper corner and the left 

lower corner of the rectangle that was used to cut the tibia stack from the original 

reconstruction image set. 

Step 4: Register and reslice image stacks. 

After the rough registration, each VReg of the floating image stacks (week 0, 

week 12 and week 16) should move a little bit in x, y and z directions, and rotate a little 
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bit around x, y and z directions to match the VReg of the reference image stack (week 8) 

as well as possible. The information of translation in x, y, and z directions and rotation 

around x, y, and z directions for each floating image stack was calculated by an in-house 

Matlab program and used as the input for the res1icing process. An in-house res1icing 

program created by Matlab was used to reslice the VRes of each floating image. Step 4 

was accomplished by the program of Shuo Yang (Yang S, 2006). It took one day to 

complete registration and reslice process for one rat. Totally 45 days were needed to 

finish registration and reslice process for 45 rats. The image stacks that were created by 

registration and reslicing process were used for the image segmentation. 

3.3.3 Segmentation of metaphysis from other bones 

The study object in the research was the metaphysis of the proximal tibia. The 

objective of this step was to remove the epiphysis and/or patella from the image stack, so 

there was only metaphysis left for later analysis. 

The volume of interest (VOl) for image segmentation was taken from the image 

slice that was just below the growth plate of the proximal tibia and progressed distally 

approximately 3.75 mm (269 slices x 14 microns/slice). This image stack included the 

VOl (metaphysis) and other bones (such as epiphysis and patella) (Figure 3-4 (b), (c) and 

(d)). The VOl that was surrounded by the rectangle in Figure 3-4 (b), (c) and (d) might 

change a little bit after registration and reslice process, but it gave a good picture about 

what kind of trouble will be in the further segmentation process. If the VOl was 

connected with other bones, it was difficult to figure which was the VOl automatically by 
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computer. It resulted in further troubles when the cancellous bone of the VOl was 

separated from the cortical bone of the VOL 

Figure 3-5 is a description of how whole bone segmentation worked. An in-house 

GUI program created by Matlab is illustrated in Figure 3-5a. Before whole bone 

segmentation, two types of the image stack were created: one stack was black-white 

image style (Figure 3-5a) in which pixels with black color are non-bone elements and 

pixels with white color are bone elements, and the other stack keeps the information of 

pixel gray intensity (Figure 3-5b). To create black-white image stack, the global threshold 

for non-bone and bone tissue (bone/non-bone threshold) was determined slice by slice 

using the method ofOtsu, N. (Otsu, N., 1979), which computed the threshold to minimize 

the intraclass variance of the black and white pixels. The pixel represented bone element 

if its gray intensity was greater than bone/non-bone threshold, otherwise, it represented 

non-bone element. 

By selecting 'OpenStackl' button (the left upper button in Figure 3-5a), the image 

stack with black-white style was opened and displayed on GUL A polygon mask can be 

plotted after selecting 'PlotMetMaskLine' button (the left upper button in Figure 3-5a). 

All metaphysis (VOl) should be inside the mask, and other bones should be outside of the 

mask. The bone elements that were inside the area of the mask were kept and the bone 

elements that were outside of the mask were deleted after the whole bone segmentation 

was carried out by selecting 'Segmentation (from bottom to top)' button (the left lowest 

button in Figure 3-5a). 'ConfirmMask' button (the left middle button in Figure 3-5a) was 

used to record the mask shape, the mask position and the number of the slice on which 

the mask was plotted. For example, the number of the current slice is 239 in Figure 3-5. If 
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'ConfirmMask' button was clicked, the mask position was recorded and all bone pixels 

on the slice 239 that were inside the mask were kept and all bone pixels on slice 239 that 

were outside of the mask were deleted after segmentation. It was not necessary to plot 

mask for every slice of an image stack because one mask can be valid for several 

continuous slices. If no mask information of a slice was recorded by selecting 

'ConfirmMask' button, the mask of the nearest slice with the lower slice number relative 

to the current slice was used as the mask for the current slice . 

.... _:~_J. •. .;:_ .... :::-_I- ". ." -
Figure ( a ) A mask is created. 

The bone that is inside the mask is metaphysis (VOl) 

D 

Fibure (b) An image slice created after 
registration and reslicing process 

Running a program created by Matlab 

Figure ( c ) Final result of whole bone segmentation 

Figure 3-5 Whole bone segmentation 
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Because the black-white image stack illustrated clearly which parts were bone and 

which parts were non-bone, which made the boundary clearer between the VOl and other 

bones, it was used to create whole bone mask. Then the mask was applied on the image 

stack with the information of pixel gray intensity to create the stack which contained the 

VOl only (Figure 3-5c). 

The same method can be used to separate cancellous bone from cortical bone. It 

works if appropriate mask for cancellous bone was plotted and only cancellous bone was 

maintained after selecting 'Segmentation' button. But this method is time and labor 

consuming. Much more slices need their unique masks because the boundary between 

cancellous bone and cortical bone changes a lot when image slices change. The mask for 

a certain slice is such more delicate because more details need to be taken care, which 

means that much more clicks are needed to create one mask. 

An automatic method to segment cancellous bone from cortical bone was 

acquired to save time and labor. 

3.3.4 Segmentation of cancellous and cortical compartments (Helterbrand method) 

The cancellous bone segmentation was carried out by a previously described 

method (Helterbrand et aI., 1997) (Figure 3-6). 
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An image slice 
Figure (a) 

Mask outline 
Figure (e) 

Image dilation 
Figure (b) 

RingDist 
Figure (f) 

Image erosion 
Figure (c) 

Bonelndex 
Figure (g) 

WholeBoneMask 
Figure (d) 

Result of segmentation 
Figure (h) 

Figure 3-6 Helterbrand method was used to segment cancellous bone from cortical bone 

There were two reasons that the refining procedure was needed after applying 

Helterbrand method: 1) different image slices might have much different shapes of 

BoneIndex histogram cloud, especially there were inflexions on the histogram curve, 

and/or there were more than one peak between the first peak and the second peak, which 

led to bad decision about the value of CortexThresh, and 2) Helterbrand method was 

based on the knowledge, even though the intensity information was also included, that 

pixels that represented cortical bone were nearer to mask outline and pixels that 

represented cancellous bone were located further to mask line. If the thickness of cortex 

varied greatly in a single image slice, it was unlikely to find a good value of 

CortexThresh for this slice to segment cancellous bone from cortical bone perfectly. 
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The Helterbrand method was semi-automatic, requiring several trials to get a 

better threshold. Most of time, the manual refining procedure was needed to get good 

cancellous bone segmentation results. 

3.4 A NOVEL AUTOMATIC METHOD TO SEGMENT CANCELLOUS BONE 
FROM CORTICAL BONE 

The basic idea of the new method is that a contiguous three-dimensional (3D) 

non-bone region that is located inside the ROI can be defined as the marrow region. Any 

bone material that is surrounded by the marrow region is considered cancellous bone 

while bone that is outside of the marrow region is cortical bone. 

The marrow region is defined based on the following criteria: For a 3D ROI, i) 

Marrow elements are connected to each other and form one and only one continuous 

marrow cavity; ii) All cavities in the cortex are separated from the marrow cavity; iii) 

The marrow cavity is the largest cavity among all cavities in ROI. 

After 3D marrow region was defined, its 2D image structure was used to create 

CancellousMask slice by slice. This 2D marrow region was used to create 

CancellousMask by dilating-filling-eroding process. The perfect CancellousMask should 

cover and only cover the pixels that represent marrow elements and cancellous bone 

elements. 

Segmentation algorithm 

The following sections describe the algorithm steps in detail: 

Step 1: Create 3D cavity model ofROI (Figure 3-7). 
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Figure (c) WholeBoneMask (Fill and then 
erode figure (b) to original size and shrink 

the image slice to original size) 
(WholeBoneErodeDilateDiff=O) 

Figure (d) Cavities used to create 
3D cavity model of WBROI 

Figure 3-7 The dilating-filling-eroding process was used to find WholeBoneMask. The 
non-bone elements that were covered by WholeBoneMask were treated as cavity 
elements and were used to create 3D cavity model. 

The cavity elements in ROI were marrow elements and other soft tissue elements 

that were enclosed by cortex. The global threshold for bone and non-bone tissue 
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(bone/non-bone threshold) was detennined slice by slice using the method of Otsu, N 

(Otsu, N, 1979). The pixel was set as bone (white) if its gray value was greater than the 

threshold, otherwise it was set as nonbone (black) (Figure 3-7a). WholeBoneMask for a 

single image slice was found by dilating-filling-eroding process, which was used to fuse 

the cortex openings (Figure 3-7). When the image was dilated, the image slice was 

enlarged at the same extent in case that the dilated image flew out of the image slice. 

The non-bone elements that were covered by WholeBoneMask were treated as 

cavity elements. The gray intensity of non-bone pixels that were covered by 

WholeBoneMask was set to 1 and the gray intensity of all other pixels was set to 0 

(Figure 3-7d). 3D cavity model of whole bone was a three dimensional numeric array by 

overlaying the cavity elements slice by slice. 

Step 2: Create 3D marrow model ofROl. 

The connected cavity elements re labeled in 3D cavity model of ROI, in which the 

value of non-cavity pixels was kept at zero. The connected cavity elements were assigned 

as a single cavity. The pixels labeled 1 made up one cavity object, the pixels labeled 2 

made up a second cavity object, and so on. The largest cavity object was defined as the 

marrow cavity. This method was called as whole matrix method because the largest 

object was defined in a whole 3D matrix (Figure 3-9). The intensity of marrow elements 

was set to 1 (white) and the intensity of non-marrow elements was set to zero (black) in 

3D marrow model. 

Step 3: Find CancellousMask. 

CancellousMask should cover all pixels (but only cover the pixels) that 

represented the marrow elements and the cancellous bone elements. When a single image 
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slice of marrow region was concerned, it was noticed that cancellous bone was inside or 

between the marrow region and cortical bone was outside of the marrow region (Figure 

3-8b). So CancellousMask could be defined by dilating (Figure 3-8c) and filling this 

marrow region, then eroding it to its original size (Figure 3-8d) by eroding the dilated 

image the same extent as that of dilating. The CancellousMask is shown in green and 

blue color in Figure 3-8e. The green region was the overlapping region of the 

CancellousMask and the marrow, the blue region was the overlapping region of the 

CancellousMask and the bone. 

Figure (d) Fill and erode figure (c) to Figure (e) Cancellous Mask in green and 
its original size, and shrink the image blue color 

Figure (f) Cancellous bone 

slice to its size 

Figure 3-8 CancellousMask was created by eroding the dilated marrow region to its 
original size. 
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Step 4: Segment cancellous bone from cortical bone. 

The bone pixels that were covered under CancellousMask were treated as 

cancellous bone (Figure 3-8f). The bone pixels that were not covered by CancellousMask 

were referred as cortical bone. The cavities that were touching cortical bone region and 

were not connected to marrow region were referred as cavities in cortex. 

Algorithm improvement 

1) Efficiency improvement 

It worked theoretically to find the largest object by whole matrix method. 

However, it was difficult to handle a large 3D matrix (determined by the size of the 

image stack). For example, there was an image stack (H * W * SliceN = 505 * 509 * 

171). Considering the resolution of the image (for example 0.014mm), 171 slices 

represented a ROI with 2.4 mm in axial direction, which was not a big sample. The input 

matrix was 44 MB (505*509*171 *1) because it was binary version and the class of the 

binary version was 8-bit integer (1 byte per element). Since the total number of separated 

objects in the 3D matrix was unknown before calculation, the output matrix with labeled 

objects should be of class double, which means 8 bytes per element. The size of the 

output matrix was 352 MB (505*509*171 *8). To find the largest object, more than 396 

MB (44 MB + 352 MB) memory was needed since the calculation needed other variables 

and matrixes. Because of the limitation of the computer memory, the size of the image 

stack was limited, that is, the size of the bone sample was limited. 

In order to save memory, a method called the overlapping method was developed 

to find the largest object for a 3D model. To illustrate it clearly, a 2D matrix was used 
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here as an example (Figure 3-9). One row in the 2D matrix represented a single slice in a 

3D matrix. 

Input matrix A Whole matrix method 
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 

1 1 1 0 0 1 0 0 0 1 1 1 1 0 0 3 0 0 0 6 1 0 0 0 0 1 0 0 0 0 
2 1 0 1 1 1 0 1 0 0 2 1 0 3 3 3 0 3 0 0 2 0 0 1 1 1 0 1 0 0 
3 1 0 1 0 0 0 1 1 1 3 1 0 3 0 0 0 3 3 3 3 0 0 1 0 0 0 1 1 1 
4 0 0 1 0 1 1 1 0 1 4 0 0 3 0 3 3 3 0 3 4 0 0 1 0 1 1 1 0 1 
5 0 1 1 1 1 0 0 0 1 5 0 3 3 3 3 0 0 0 3 5 0 1 1 1 1 0 0 0 1 
6 1 0 0 0 1 0 1 0 1 6 2 0 0 0 3 0 4 0 3 6 0 0 0 0 1 0 0 0 1 
7 0 1 0 1 1 1 0 0 1 7 0 3 0 3 3 3 0 0 3 7 0 1 0 1 1 1 0 0 1 
8 0 1 1 1 1 0 0 0 0 8 0 3 3 3 3 0 0 0 0 8 0 1 1 1 1 0 0 0 0 
9 0 1 0 1 0 1 0 1 1 9 0 3 0 3 0 3 0 5 5 9 0 1 0 1 0 1 0 0 0 
10 0 0 0 1 1 1 0 0 1 10 0 0 0 3 3 3 0 0 5 10 0 0 0 1 1 1 0 0 0 

Figure (a) Input matrix A. The Figure (b) The connected Figure (c) Output matrix Aout . The 
largest co n nected object was elements were labeled . elements of the largest object were set 

colored with yellow color. to 1 and all other elements were set to o. 

Overlapping method 
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 o 0 0 0 1 0 0 0 0 1 0 0 0 0 

2 0 0 1 1 1 0 1 0 0 

1 
2 0 0 1 1 1 0 1 0 0 2 0 0 1 1 1 0 1 0 0 

3 0 0 1 0 0 0 1 1 1 3 0 0 1 0 0 0 1 1 1 3 0 0 1 0 0 0 1 1 1 
4 0 0 1 0 1 1 1 0 0 4 0 0 1 0 1 1 1 0 0 4 0 0 1 0 1 1 1 0 1 
5 0 1 1 1 1 0 0 0 0 - 5 0 1 1 1 1 o 0 0 0 5 0 1 1 1 1 0 0 0 1 

6 0 0 0 0 1 0 0 0 0 I 6 0 0 0 0 1 0 1 0 0 6 0 0 0 0 1 0 1 0 1 
7 0 0 0 1 1 1 0 0 0 7 0 1 0 1 1 1 0 0 0 7 0 1 0 1 1 1 0 0 1 
8 0 1 1 1 1 0 0 0 0 8 0 1 1 1 1 0 0 0 0 8 0 1 1 1 1 0 0 0 0 

9 0 1 0 1 0 0 0 0 0 9 0 1 0 1 0 1 0 0 0 9 0 1 0 1 0 1 0 0 0 

10 0 0 0 1 1 1 0 0 0 10 0 0 0 1 1 1 0 0 0 - 10 0 0 0 1 1 1 0 0 0 

Figure (d) Matrix Aout1 . Row 5 Figure (e) Matrix Aout2 . Fi gure (f) 0 utp ut matrix Aout. 
was chosen to be refere nce row 

Figure 3-9 Illustration of whole matrix method and overlapping method 

To find the largest object, a row was chosen as a start point (reference row). The 

largest part (LP) in reference row must be part of the largest object of the whole matrix. 

For example, for a matrix shown in Figure 3-9, row 2,3,4, 5, 7, 8 or 10 could be used as 

the reference row. The elements with value of 1 that were connected to LP were 

considered as the elements of the largest object of the whole matrix while considering 

only two rows at a time and moving in two directions through the matrix (Figure 3-9d). 

One cycle was completed by carrying out the same process from the last row to the first 
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row (Figure 3-ge), and then from the first slice to the last slice (Figure 3-9f). The whole 

largest object was identified by continuing the cycling till the result were the same as that 

from the previous cycle. 

2) Accuracy improvement: False marrow 

The contour of WholeBoneMask was not the same as that of the original image 

because the region growing process smoothed the image edges. Some background pixels 

that were located along the outer surface of the cortex were treated as cavities (Figure 

3-7f). These elements were called as false cavity elements. False cavity elements that 

were not connected to marrow cavity form false cavities, which had no effect on 

segmentation result. False cavity elements that were connected to the marrow cavity form 

false marrow, which resulted in errors in segmentation result (some cortex elements were 

treated as cancellous bone elements). 

The region growing process was used to erase the cortex openings. If there were 

no openings on the cortex, the WholeBoneMask could be created by filling process only, 

which resulted in the exactly same contour as that of ROI and causeed no false cavity 

elements. 

• Check if there are openings on the cortex 

The checking of cortex opening was based on the observation that the outer cortex 

contours of two adjacent image slices should be very similar. The openings of the cortex 

of one image slice can be detected based on the WholeBoneMask of its adjacent image 

slice. It was better to start the checking from the end of an image stack with smaller 

cortex diameter (the first image slice) to the end with larger cortex diameter (the last 

image slice). The cortex openings of the image slice with the slice number of N (current 
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image slice) were checked based on the WholeBoneMask of the image slice with the slice 

number of N-l (reference image slice). 

ElemDiff consisted of the elements that covered by the WholeBoneMask of the 

reference image slice but not covered by the filled current image (in green color in Figure 

(f) in Figure 3-10 and Figure 3-11). The Euclidean distance map (EDM) (Figure (g) in 

Figure 3-10 and Figure 3-11) was a distance transform, in which each element of 

ElemDiff contained its distance to the nearest outline of WholeBoneMask of the 

reference image slice. 

(a) Reference slice (b) RefWBM: 
(slice WholeBoneMask of figure (a) 

(e) Mask outline of figure (b) (f) ElemDiff: Difference between 
(b) and (d). The pixel (I, j) is in 
green color, which is covered by 
(b) but not covered by (d) 

I 

(g) shortest distance between the pixel 
(i, j) and the mask outline. The Max 
value of the distance map is 118.2074 

t 
o 

Figure 3-10 An example to check openings on the cortex (There is an opening in the 
current image slice) 
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If the maximum value of The Euclidean distance map was greater than a pre-

selected value, DistMax, there was at least one opening on the cortex of the current image 

slice. If the maximum value of EDM was not greater than DistMax, there was no 

opening. The value of DistMax was decided by the operator according to his experience. 

DistMax was determined by experience and was set as 20 in the rat tibia model. 

The special case was at the very beginning when the openings in the first image 

slice needed to be checked. In such case, the second slice was used as reference slice. 

(a) Reference slice (b) RefWBM: WholeBoneMask 
(slice number: N-1) of figure (a) 

Ie) Mask outline of fiaure Ib) (f) Difference between (b) and (d). 
The pixel (I . j) is in green color. 
which is covered by (b) but not 
covered by (d) 

(g) shortest distance between the 
pixel (i . j) and the mask outline. The 
max value of the distance map is 1 

t 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

o 

Figure 3-11 An example to check openings on the cortex (There is no opening in the 
current image slice) 

• Dlustration of how to decrease false marrow if there are openings on the 

cortex. 

51 



To describe this clearly, a tenn, WholeBoneErodeDilateDiff, was introduced. If 

WholeBoneErodeDilateDiff was equal to a number N, it meant that the dilated image of 

ROI was eroded by N more pixels than the extent of dilating. For example, if the image 

was dilated by the extent of20 pixels and WholeBoneErodeDilateDiffwas equal to 5, the 

dilated image was eroded by the extent of 25 pixels. If the image was dilated by the 

extent of 20 pixels and WholeBoneErodeDilateDiffwas equal to 0, the dilated image was 

eroded by the extent of 20 pixels too, that is, erode the image to its original size (Figure 

3-7c). 

The setting of WholeBoneErodeDilateDiff that was greater than zero resulted in 

smaller WholeBoneMask than the WholeBoneMask that was detennined by setting 

WholeBoneErodeDilateDiff to zero. This smaller WholeBoneMask, called as 

WholeBoneMaskSmaller, resulted in a problem because it did not cover all elements of 

ROI. To restore the uncovered ROI elements, WholeBoneMaskSmaller (Figure 3-12c) 

was combined with the filled binary image ofROI (Figure 3-12b). The combined image 

is shown in Figure 3-12d, in which the elements that are covered by both filled binary 

image and WholeBoneMaskSmaller are in blue color, the elements that are covered by 

filled binary image but not covered by WholeBoneMaskSmaller are in white color, the 

elements that are covered by WholeBoneMaskSmaller but not covered by filled binary 

image are in green color. The binary image (Figure 3-12e) that was converted from this 

combined image was the desired WholeBoneMask. 

By setting WholeBoneErodeDilateDiff greater than zero, the number of false 

elements were decreased which resulted in the decreasing of false marrow. Figure 3-7c 
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and Figure 3-12f showed the different results of WholeBoneMask with different setting 

of WholeBoneErodeDilateDiff based on same 2DLBO. 

Figure (d) Overlapping of 
figure (b) and (c) 

Figure (e) Whole Bone Mask Figure (f) Cavities used to create 
3D cavity model of WBROI 

(WholeBoneErodeDilateDiff=5) 

Figure 3-12 Better WholeBoneMask was created. No false elements existed in cavity 
image (Figure f). 

With the increasing value of WholeBoneErodeDilateDiff, the number of false 

cavities decreased. How about the value of WholeBoneErodeDilateDiff was set too big? 

There was an example that WholeBoneErodeDilateDiff was set to 40 (Figure 3-13). In 

this case the WholeBoneMask was not good because some of marrow elements were not 

covered by WholeBoneMask. 
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Figure (d) Combination of 
figure (b) and (c) 

Figure (e) Binary image of 
figure (d) 

Figure (f) WholeBoneMask 
by filling figure (e) 

Figure 3-13 WholeBoneMask was not good if the value of WholeBoneErodeDilateDiff 
was set too large. 

A perfect WholeBoneMask should cover all elements of ROI (bone, marrow 

cavity and cavities in cortex), and not cover any background elements. The optimal value 

of WholeBoneErodeDilateDiff was such that it rarely resulted in false elements and that 

it still resulted in a good WholeBoneMask. WholeBoneErodeDilateDiff was set to 5 in 

this paper. 

3) Accuracy improvement: cancellous bone segmentation 

A few cortical bone elements that were located near boundary of the inner surface 

of cortex and marrow region were treated as cancellous bone elements (Figure 3-8e and 

Figure 3-8f) because of the effect of dilating and eroding process when CancellousMask 
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was created. The dilated marrow region could be eroded a little more than the extent of 

dilating to get better segmentation result. 

To describe this clearly, a term, MarrowDiff, was introduced. If MarrowDiff was 

equal to a number N, it meant that the dilated image of 2D marrow region was eroded by 

N more pixels than the extent of dilating. For example, if the marrow region was dilated 

by the extent of 20 pixels and MarrowDiff was equal to 2, the dilated image was eroded 

by the extent of 22 pixels. If the image was dilated by the extent of 20 pixels and 

MarrowDiff was equal to 0, the dilated image was eroded by the extent of 20 pixels too, 

that was, erode the image to its original size (Figure 3-8d). MarrowDiff was set to a value 

N that was greater than zero. Two values were assigned to MarrowDiff. One was 

MarrowDiffS, which was a smaller value, and the other was MarrowDiffL, which was a 

larger value. MarrowDiffS was set to 2 in this paper. The 2D marrow region (in red color 

in Figure 3-14a) was dilated and then eroded by the extent that was 2 more pixels than 

the extent of dilation. This step resulted in a cancellous mask, CancellousMaskS (in green 

and blue color in Figure 3-14b). TrabS was the cancellous bone that was covered by 

CancellousMaskS. MarrowDiffL was set to 6 in this paper. The separated 2D marrow 

region (in red color in Figure 3-14a) was dilated and then eroded by the extent that was 6 

more pixels than the extent of dilating. This step resulted in another cancellous mask, 

CancellousMaskL (in green and blue color in Figure 3-14c). CancellousMaskl (in green 

and blue color in Figure 3-14d) was formed by the elements that were covered by 

CancellousMaskL and/or TrabS. CancellousMask (in green and blue color in Figure 

3-14e) was the biggest part of CancellousMaskl. This step avoided the resulted in that 
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some cortical bone elements that were located near the boundary of inner surface of 

cortex and marrow region were treated as cancellous bone. 

Figure (a) Bone tissue image with marrow in red 
color and bone in white color 

Figure blue color 

Figure (e) CanceliousMask (in red, green and blue color) 
was got by filling the biggest part of CanceliousMask1. 

CortexTemp (in white color) was the bone elements that 
were not covered by CanceliousMask2. 

Figure (g) Cancellous bone was formed by 
the bone elements that were not cortical 
bone and were located inside Cortex3 

Figure (b) green blue color 
and marrow in red color. TrabS (in blue color) was the 
bone elements that were covered Cancellous MaskS 

Figure (d) CanceliousMask1 (in red, green and blue color) 
was the combination of TrabS and CanceliousMaskL 

Figure (f) Cortical bone was I the 
biggest part of a 3D model that was created by 
stacking a series of contiguous 20 CortexTemp 

Figure (h) Final segmentation result. Cortical bone was 
shown in white color; Cancellous bone was shown in light 

gray color; Marrow was shown in darker gray color; 
Cavities in cortex was shown in darkest gray color 

Figure 3-14 CancellousMask and cancellous bone were determined with MarrowDiffS = 
2 and MarrowDiffL=6 
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CortexTemp (in white color in Figure 3-14e) was formed by the bone elements 

that were not covered by CancellousMask. Every image slice of the image stack had its 

unique CortexTemp. The series of contiguous two-dimensional images of CortexTemp 

were stacked to form a three-dimensional cortex model, CortexTemp3D. Cortical bone 

was found by finding the largest object of CortexTemp3D. In CortexTemp3D it was 

possible that there were some small bone objects that were not connected to main 

structure because it was possible that some small cancellous bone objects were not 

covered by CancellousMask. The biggest object of CortexTemp3D was cortical bone. 

Cancellous bone was formed by the bone elements that were not cortical bone and were 

located inside cortex. 

The 3D version of the final segmentation result is shown in Figure 3-15. The 2D 

version of the final segmentation result is shown in Figure 3-14h. Cancellous bone was in 

light gray color. Cortical bone was in white color. The pixels with darker gray color were 

marrow, and the pixels with darkest gray color were cavities in cortex. The pixels with 

black color were background. 

Figure (a) ROI Figure (b) Cancellous bone Figure (b) cortical bone 

Figure 3-15 3D segmentation result 
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3.5 AN IMPROVED METHOD OF BONEINON-BONE SEGMENTATION 
(LOCAL GLOBAL THRESHOLD) 

Generally, cortical bone has higher gray value than cancellous bone because of 

beam hardening and partial volume effects in the thinner cancellous bone structures. A 

single global threshold results in the loss of some cancellous bone. Two global thresholds 

were used in the research. One was cortical bone threshold, which was used for cortical 

bone identification. It was a single threshold that was detennined according to the 

histogram of absolute gray values of all pixels that were covered by WholeBoneMask. 

The other was cancellous bone threshold, which was used for cancellous bone 

identification. It was a single threshold that was detennined according to the histogram of 

absolute gray values of all pixels that were covered by CancellousMask. 

The following sections described the algorithm steps in detail: 

Step 1: Create a WholeBoneMask that was used to detennine cortical bone 

threshold. 

A global threshold for bone and non-bone tissue (bone/non-bone threshold) was 

detennined slice by slice using the method ofOtsu (Otsu N, 1979). Instead ofconceming 

all pixels of a single slice, only the pixels with non-zero gray values were used in the 

decision of bone/non-bone threshold, which eliminated the influence of the black pixels. 

A pixel was set as bone (white) if its gray value was greater than the threshold, otherwise 

it was set as nonbone (black). 

The largest bone object was found in the whole binary image stack by the 

overlapping method that was described in Chapter 3.4. This largest bone object should be 

part of the ROI. Since the global threshold method did not work well, some trabeculae 

were not connected to the largest bone object. The loss of some trabeculae did not effect 
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the creation of WholeBoneMask. The WholeBoneMask was created slice by slice using 

dilating-filling-eroding method. 

Step 2: Determine cortical bone threshold. 

The cortical bone threshold was determined slice by slice using the method of 

Otsu according to the histogram of absolute gray values of the pixels that were covered 

by the WholeBoneMask. Every image slice had its own cortical bone threshold. The 

cortical bone threshold was applied on its corresponding image slice. All pixels of the 

whole image slice were set as bone or nonbone based on cortical bone threshold. A pixel 

was set as bone if its gray value was greater than the threshold, otherwise it was set as 

nonbone. The binary image created in step 2 had good cortical bone identification. 

Because the relatively higher value of cortical bone threshold, some cancellous bone 

pixels were set as nonbone. 

Step 3: Determine cancellous bone threshold. 

The CancellousMask was created by dilating-filling-eroding the marrow region 

identified according to the binary image created in step 2. The Ccancellous bone 

threshold was determined slice by slice using the method of Otsu according to the 

histogram of absolute gray values of the pixels that were covered by the CancellousMask. 

The cancellous bone threshold was applied on its corresponding image slice. All pixels 

that were covered by CancellousMask were set as bone or nonbone based on cancellous 

bone threshold. 

Step 4: Create binary image. 

The final binary image was created by the combination of the Figure 3-16e and 

the Figure 3-16i. Figure 3-17 shows the bone/non-bone segmentation results from the 
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local global threshold method and from the single global threshold method. Better 

segmentation result was created by the local global threshold method. 

Input 

(a) CT imaQe (b) Binary 
image based 
on a single 

global 
threshold 

(f) Marrow 
region 

(c)WBM 

(g) 
CanceliousMask 

(d) Cortical bone 
threshold based on 

the histogram of 
original gray values 
of the pixels that are 

covered by WBM 

(h) Cancellous bone 
threshold based on 

the histogram of 
original gray values 
of the pixels that are 

covered by 
CanceliousMask 

(il Binary 
image of fig 
(h) based on 
cancellous 

bone threshold 

Output 

tIJ 
0) Final binary 
image is the 

combination of 
fig (e) and fig (i) 

Figure 3-16 The illustration of the local global threshold method 

Fig (a) CT image Fig (b) Binary image created by 
local global threshold 

Fig (c) Binary image created by a 
single global threshold 

Figure 3-17 The comparison of the bone/non-bone segmentation results from the local 
global threshold method and from the single global threshold method 
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3.6 MECHANICAL PROPERTY ANALYSIS 

The description of study objects that were used for mechanical property analysis 

is illustrated in Table 3-1. Bone samples were fresh frozen in saline, thawed at room 

temperature and carefully cleaned (muscles and tendons are removed) before preparation 

and testing. All mechanical tests were performed on a servohydraulic load frame (MTS, 

Bionix 858 test system). 

3.6.1 Indentation test 

Left tibiae were used for indentation tests. The cancellous bone surface that was 

just below the growth plate was exposed for indentation test by trimming the top of the 

proximal metaphysis off the bone sample. The trimming procedure allowed the 

indentation force to be applied to each specimen at the same position. 

The following sections described the indentation test in detail: 

Step 1: Embed left tibia. 

A container for epoxy resin (Bondo, Dynatron Corp, Atlanta) was combined by a 

PVC Y2 inch cap (iIlller diameter was 22.3mm) and a plastic tube (outer diameter was 

22.3mm, iIlller diameter was 17.7mm, length was 30mm). Before inserting the tube into 

the cap, a small amount of WD-40 was placed on the iIlller bottom surface of the cap, 

which made it easier to pull the tube off from the cap after Bondo hardened. The Bondo 

was mixed with the hardener cream and stirred until well mixed. The Bondo was then 

poured into the tube, stirred the Bondo again to make sure that the tube was filled by 

Bondo and there were no air bubbles in the tube. The distal end of the tibia was placed 

into the Bondo. The bone position was adjusted until it was perpendicular to the bottom 
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surface of the cap. It was better to embed every bone in Bondo compound with the same 

posture, so after trimming, the bone had similar exposed bone surface. After the Bondo 

set, the tube was removed from the cap. The exposed portion of the tibia was kept moist 

in saline soaked gauze until the bone was scanned. 

Step 2: Scan the proximal metaphysis (Figure 3-18). 

After embedding, the bone sample was scanned. The first CT slice was at the 

position of the top point of the proximal tibia. Above and below growth plate, images 

were made every 0.002 inch (0.0508mm). After scanning, the CT images were checked 

and the image that represented the plane just below the growth plate was identified as the 

trimming surface. The distance from the top of the proximal tibia to the trimming surface 

was recorded. 

Figure 3-18 The bone sample was embedded in Bondo and was CT scanned 

Step 3: Trim the top part of the proximal metaphysic (Figure 3-19). 

A low speed diamond saw (lsomet, Buehler, Lake Bluff, Illinois) was used to cut 

the bone. First, the tube containing the bone was fixed into the pivoting mounting arm of 
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the saw. With the blade turning, the top end of the bone was advanced toward the blade 

until a noise was heard, indicating first contact with the blade. A cut was then made after 

adjustment to set the position to the distance determined in step 2. 

Figure 3-19 The top part of the proximal metaphysis was trimmed by the diamond saw 

Step 4: Perform indentation test (Figure 3-20). 

A cylindrical stainless steel indentor which was 1.5mm in diameter with a flat 

bone-contacting tip was used. The platform holding the specimen was leveled to ensure 

that the loading was perpendicular to the specimen surface to be tested. The sample was 

positioned on the platform in such position that the indentor was driven into the middle of 

the exposed cancellous bone surface. The indentor position was also carefully adjusted so 

the indentor surface was very close to the bone surface but not touching the bone surface. 

Then the indentor, descending at a rate of 2mm1min, compressed the exposed cancellous 

bone surface until the cancellous bone failed. The actual compression force was recorded 

every 0.001 second during the lowering of the top part of the fixture . 
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Figure (a) indentation test Figure (b) Failure of indentation test 

Figure 3-20 Description of indentation test 

The typical curve of compression load is shown in Figure 3-21. The indentation 

force was the maximum compressive force that was recorded from the lowest point of the 

force-displacement curve. 
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Figure 3-21 Typical curve ofthe indentation result (Exp2, CRed) 

3.6.2 Three-point bending test 

The right femur was used for three-point bending test. 

The following sections described the three point bending test in detail: 
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Step 1: Scan right femur. 

The right femur was used for three point bending test. Before the bone was 

scanned, it was thawed at room temperature. The bones in Figure 3-22a were numbered 

as bone 1, bone 2, ... , bone 6 from left to right. . The fixture (Figure 3-22a) had 6 slots. 

There was 1 small plastic tube attached in slot 1 of the fixture, 3 small plastic tubes 

attached in slot 3 of the fixture, and 5 small plastic tubes attached in slot 5 of the fixture. 

Bone 1 was put in slot 1, bone 2 was put in slot 2, ... , bone 6 was put in slot 6. All these 6 

bones were held on the fixture by rubber band and scanned together. It made scanning 

more efficient to scan 6 bones at one time than scanning bones separately. 

Figure (a) Figure (b) 

Figure 3-22 Description of ex vivo CT scanning 

Because the grey scale of the rubber band was similar with that of the bone 

material, the rubber band should be placed away from the middle part of the bone. The 

middle of the right femur shaft was CT scanned by one rotation encompassing 107 slices 

using a cone-bean scanning mode. The CT image of the middle of the shaft (image with 
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number 54) was used to calculate the bone area, moment of inertia and maximum tensile 

stress. 

Step 2: Calculate cross-sectional area and area moment of inertia of the bone 

sample. 

Bone area was calculated by counting bone pixels. The line 00' shown in Figure 

3-23c was the axis for calculation of the moment of inertia Ix, which was also the axis of 

the bending. This was assumed to be the axis for the bending based on the geometry of 

the test and the orientation of the femur. The point 0 was the centroid of the bone area. 

The point 0' was picked up by observing the image that was opened by ImageJ. Ix was 

calculated according to the formula: I x = f y 2 dA , where dA is an elemental area, y is the 

perpendicular distance from the axis x to the element dA. 

Figure (a) Figure (b) Figure (c) 

Figure 3-23 Illustration of Bone area and moment inertia calculation 

Step 3: Perform three-point bending test (Figure 3-24). 

The right femur was positioned on a fixture with the anterior side toward the 

loader. Load was applied on the midpoint between two supports that were 12 mm apart. 

The top part of the fixture was also carefully adjusted so the surface of the top part of the 
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fixture was very close to the bone surface but not touching the bone surface. Then the top 

part of the fixture, descending at a rate of 1mm/min, compressed the mid-shaft of the 

bone until the bone failed. The actual compression force was recorded every 0.01 second 

during the lowering of the top part of the fixture. The force applied on the bone was 

continually recorded until complete fracture occurred. 

Figure (a) Figure (b) 

Figure 3-24 Three point bending test and the typical curve ofthe test result 

The bending force was recorded from the lowest point of the force-displacement 

curve (Figure 3-25). Maximum tensile stress is equal to (F * L * c) / (4 * Ix), where F is 

the bending force, L is the distance between the two lower supports, c is the maximum 

distance between the lower part of the bone and the bending axis, Ix is the moment of 

inertia calculated in step 2. 
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Three-point bending test 
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Figure 3-25 Force-displacement Curve (Exp2, C_Green2) 

3.6.3 Torsion test 

Left femur was used for torsion test. The middle of the femur shaft was CT 

scanned before the test. Torsion test is described in Figure 3-26. 
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Figure 3-26 Torsion test 

The distal and proximal marks were made on the femur, which decided how deep 

to embed the distal and proximal ends of the femur into Bondo. Two PVC liz inch caps 

were needed for each bone sample. One was the bottom cap which was used to hold the 

distal end of the femur. The other was the top cap which was used to hold the proximal 

end of the femur. The distal end of the femur was embedded in Bondo first. To make sure 

that the bone sample remained aligned while the Bondo was hardened, the bottom cap 

with Bondo was fixed on the bottom of MTS machine, and the middle shaft of the sample 

was held by a plastic holder which was fixed to the top of the MTS machine. The plastic 

holder was made in to keep the sample aligned during embedding. The actuator of the 
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MTS machine was moved down until the distal end of the sample was embedded in 

Bondo and the distal mark on the sample was reached. After the Bondo set, the sample 

was removed from the MTS machine. Next the bottom cap was moved to the top side of 

the MTS machine. The other cap was placed on the bottom side of the MTS machine and 

filled with Bondo. The actuator was then lowered until the proximal end of the sample 

was embedded in Bondo and the proximal mark on the sample was reached. After the 

Bondo set, torque was applied on the sample at a displacement rate of 0.25 deg/sec till the 

failure happened. The actual torque was recorded every 0.001 second. The typical curve 

of torque is shown in Figure 3-27. The maximum torque was recorded from the highest 

point of the torque-angle curve. 
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Figure 3-27 The typical curve of the test result (Exp1, A_Blk) 

3.6.4 Three-point breaking test 

The right tibia was used for three-point breaking test. The testing was done 

blinded with regard to the test groups. In Prodama Study, some details were different 

from the test procedure that was described in Sturmer's paper (Sturmer EK et aI., 2005). 
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A few hours before the testing, the right tibiae were completely thawed at room 

temperature. The soft tissues were carefully removed prior to the testing. The fibula was 

separated from tibia at the synostosis. The proximal tibia epiphysis was removed to avoid 

the movement of the proximal growth plate during the test. The tibia was placed on the 

base stamp (Figure 3-28). There were three rounded edge-free notches (Imm deep; 2, 3, 

or 4 mm in diameter) on the top of the base stamp. The proximal end of the tibia was put 

in one of the notches. The roller stamp consisted of an aluminum roller and a V-shaped 

support. The roller axle was fixed in the support and the support was connected to the 

MTS machine. The roller was adjusted until it was close to the bone surface but not 

touching the bone surface. The distance between the front surface of the support and the 

center of the roller was 3 mm. A plate with flat plane was placed on the front surface so 

the front surface of the support and the flat plane of the plate attached to each other 

tightly. The position of the base stamp was adjusted till the end of the proximal tibia 

touched the flat plane of the plate, which guaranteed that the distance between the end of 

the proximal tibia and the center of the roller stamp was exactly 3 mm. 

After a final visual check of the correct tibia position, the roller was lowered 

slowly and carefully until an initial force of IN was reached. When the testing was 

started, the roller moved down at the speed of 5mmls (In Sturmer's paper, the speed of 

the feed motion was 50mmls). The trial was automatically ended by a displacement 

change of I mm (In Sturmer's paper, the trial was automatically ended by a drop in 

strength of>20N or a linear displacement of>2 mm). 

A typical force-displacement curve for the tibia breaking test is shown in Figure 

3-28e. Three parameters were analyzed: breaking force, breaking yield force, and 
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breaking energy. The breaking force was determined from the top of the curve. The 

compression force corresponding to 50% of maximum slope was determined as the 

breaking yield force. The breaking energy was equal to the area under the force curve up 

to the failure load. The failure load was found at the point where the curve started to drop 

abruptly (almost vertical), which corresponded to the complete failure of the bone 

sample. 
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Figure 3-28 Three-point breaking test and the typical curve of the test result (Exp2, 
G_Green) 

3.6.5 Femoral density via Archimedes' principle 

Right femurs were submerged in distilled water and fully hydrated under a 

vacuum for 1 hr. Subsequently, the mass of each hydrated femur was obtained in air and 
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when submerged in water. Densities were determined usmg Archimedes' Principle 

according to the following formula: density = [mass of hydrated femur / (mass of 

hydrated femur - mass of hydrated femur submerged in water)] x density of distilled 

water at a given temperature (Keenan MJ, et aI., 1997). 

The proximal and distal ends of the femur were comprised primarily of cancellous 

bone, whereas the femoral diaphysis contained primarily cortical bone. Evaluation of the 

density of each of these femoral regions may thereby increase the understanding of the 

effect of a drug on each of these types of bone. The left femurs were separated into three 

regions (proximal left femur, distal left femur, and left femoral diaphysis) using an 

Isomet Low Speed Precision Sectioning Saw from Buehler Limited (Lake Bluff, IL) with 

a diamond blade. Briefly, each femur was measured with a Cen-Tech Digital Caliper and 

a cut was made from each end at 20% of the length of the femur plus half the width of the 

blade. Subsequently, the bone marrow was washed out of the femoral diaphysis and the 

Archimedes density for each of the three femoral regions was determined as described 

above. 

3.7 EX VIVO STRUCTURAL ANALYSIS 

Ex vivo mocro-CT based structural analysis was used for Pradama Expl, Pradama 

Exp2 and Pradama Exp 3. 

3.7.1 Scanning design 

The right tibia was used for ex vivo structural analysis in this study. Before the 

bone was scanned, it was thawed at room temperature. For all bone samples of Ex pI, Exp 
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2 and some bone samples of Exp 3, the fibula, epiphysis and patella were removed 

manually from the metaphysis, so the CT image contained metaphysis only. The other 

bone samples of Exp 3 had intact epiphyses. They were just cleaned. The reason for the 

difference in Exp3 was that it was found there was more damage to the metaphysis top 

surface during the process of removing the epiphysis. 

Six right tibiae were fixed to the fixture and scanned together, which was same to 

what is shown in Figure 3-22. The proximal end of the tibiae should position at the 

bottom of the fixture, which insured that VOls of all six bone samples were scanned in 

fewer rotations. Five rotations, 107 slices per rotation, were taken from the top of the 

proximal metaphysis into the tibial shaft. 

3.7.2 Image segmentation process 

The new segmentation method that was described in chapter 3.4 was applied here. 

The VOl was chosen from the position that was 0.98mm (70 slices x 0.014mm) below 

the lower end of the growth plate and extending 4.2 mm (300 slices x 0.014mm) distally 

for Pradama Expl and Exp2. When the images were checked down into the distal part of 

the right tibia from the proximal top of metaphysis, the lateral part of the cortex was 

becoming separated from the main part. For Pradama Exp 3, the VOl was chosen from 

the position where the lateral part was just separated from the main part and extending 

200 slices distally. 

The method was totally automatic if one criterion was met: there were no other 

bones connected to the VOL For the bone samples of which the epiphysis and patella 

were removed from metaphysis before they were scanned, there were no other bones in 
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the CT original scannmg Images. For the bone samples that did not go through the 

epiphyseal removal procedure, such as in Exp3, the VOl was chosen distally enough to 

make sure that there were no other bones connected to the VOl in the CT original 

scanning images. No pre-step was needed to separate metaphysis from other bones before 

Cancellous and cortical bone segmentation. The whole image segmentation process was 

totally automatic. 

3.8 RESULTS ANALYSIS METHODS 

3.8.1 Validation of cancellous bone segmentation method 

1) The new method is objective 

For a given image stack, the segmentation results will be same no matter how 

many times the program is run. It is obvious that the new method is objective because the 

segmentation is performed automatically by computer. By contrast, a manual method can 

differ between trials and between different operators. 

2) The new method is more accurate, precise and repeatable 

Two right tibiae (one sham, one OVX) were collected from 37-week-old Sprague 

Dawley female rats. The epiphyses were removed before scanning (Micro CT, ACTIS 

150/225 system, BIR Inc., Lincolnshire, IL). Six image stacks were obtained by loading 

and scanning the proximal metaphyses of each bone sample three times. Nominal 

isotropic resolution was 14Jlm. Three operators segmented cancellous bone from cortical 

bone manually. Each operator segmented one sham image stack and one OVX image 

stack. The segmentation results from manual work were used as a "gold standard". The 
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new method was used to segment the six image stacks. The Helterbrand method was used 

to segment the six image stacks. 

1) Accuracy validation: The mean values of the cancellous bone volume 

measured by three different methods were compared by Tukey multiple comparison, 2) 

Precision validation: The coefficient of variation (CV) of each method was calculated as 

CV= 1 OO*(Standard deviation)/(mean value of set) . The smaller the value of the CV, the 

more precise the method is, and 3) Repeatability validation: The variances of each 

method were compared by F-test to determine whether the repeatability of the new 

method was better than the manual method. 

3.8.2 Data analysis of Alendronate study 

Alendronate study was analyzed by P-value of statistical analysis that was 

ANOVA followed by Post-hoc t-test (Tukey mUltiple comparisons). The drug effect was 

evaluated by comparing the results at week 12 and week 16 with it own baseline at week 

8. The drug effects were also compared with OVX group at the same time point (at week 

12 and week 16). 

3.8.3 Data analysis of the Pradama Study in engineering perspective 

Two groups were analyzed: Sham group and OVX group. 

1) Sensitivity analyses 

The new methods (volume fraction, indentation testing, three-pt breaking testing) 

were compared to the old methods (Archimedes and 3-pt bending testing). The new 

methods were expected to be more sensitive to detect the differences between OVX and 
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Sham. By focusing on only two groups at the same time points (11 weeks or 12 weeks), 

simple t-tests (two-sample assuming unequal variances) was used to compare the mean 

values for the various measurements and calculate p-values for each. Statistical power 

and % difference were calculated if there is significant difference between sham and 

OVx. % difference = «Sham - OVX) I Sham) * 100. 

The p-values of the followings parameters were picked up by one tail t-test: 

BV lTV from 3D image analysis, density from Archimedes method, Indentation force, 

breaking force, and breaking yield force. The p-values of the followings parameters were 

picked up by two tail t-test: Breaking energy, bending force, moment of inertia, area, and 

maximum tensile stress. 

The comparisons of new methods versus old methods were: 1) Volume fraction 

vs. Archimedes, 2) Indentation testing vs. Archimedes, 3) Three-pt breaking testing vs. 

Archimedes, 4) Volume fraction vs. three-pt bending testing, 5)Indentation testing vs. 

three-pt bending testing, and 6) Three-pt breaking testing vs. three-pt bending testing. 

2) Linear regression analyses 

Finally, as another evaluation of the newly described bone quality measurements 

developed in this dissertation work, the image processing method was correlated to the 

mechanical test methods. In this way, the most significant linear correlations, if good 

enough, could allow the transition from mechanical testing as the gold standard of bone 

quality measurement to image analysis as a standard method. This would permit the use 

of in vivo analysis and more powerful longitudinal studies. 

It was expected that there were better relationship between indentation results and 

cancellous bone volume fraction instead of whole bone volume fraction and cortical bone 
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volume fraction, because indentation testing evaluated the mechanical competence of 

cancellous bone directly. 

It was expected that there was a better relationship between 3-pt breaking results 

and whole bone volume fraction instead of cancellous bone volume fraction and cortical 

bone volume fraction, because 3-pt breaking testing evaluated the mechanical 

competence of whole bone as a composite of cancellous and cortical bone at the 

metaphysis. 

3.8.4 Data analysis ofPradama Study (drug effect) 

Drug effects on osteoporosis were shown by P-value of statistical analysis as 

ANOVA followed by post-hoc t-test (Tukey multiple comparisons) for individual image 

analysis and mechanical testing. It was not the focus of this dissertation 

3.8.5 Description ofP-value of statistical analysis 

ANOVA, Post-hoc t-test (Tukey multiple comparisons), F-test, and regression 

analysis were used in the research. A P value < 0.05 was considered to be statistically 

significant. The P value less than 0.05 were in bold. A P value greater than 0.05 and less 

than 0.1 was followed by *. 
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CHAPTER 4. RESULT 

4.1 CANCELLOUS BONE SEGMENTATION 

Table 4-1 and Figure 4-1 are the cancellous bone volumes (mm3
) of the sham 

sample and the OVX sample. 

Table 4-1 Cancellous bone volume (mm3
) calculated from different segmentation 

methods 
Sham (n=3) 

Manual New Helterbrand 
2.08 2.07 2.47 
2.37 2.12 2.51 
2.15 2.10 2.57 

Cancellous bone volume (sham) 

3-r------------
2.5 +--------

2 

1.5 

0.5 

o 
Mamal New Helterbrand 

OVX (n=3) 
Manual New Helterbrand 

1.14 1.15 1.47 
1.27 1.17 1.80 
1.20 1.18 1.65 

Cancellous bone volume (OVX) 
2 .,------------

1.5 +--------

1 

0.5 

o 
Manual New Hel terbrand 

Figure 4-1 The results of cancellous bone volume (mm3
) from different segmentation 

methods 

The P-values in Table 4-2 were calculated based on the results of the sham 

sample. The cancellous bone volume calculated from Helterbrand method was 

significantly different from the cancellous bone volume calculated from manual method 
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and also significantly different from the cancellous bone volume calculated from the new 

method. There was no significant difference between the cancellous bone volume 

calculated from manual method and that from the new method. 

Table 4-2 the comparison of the means (cancellous bone volume of the sham sample) 
between different segmentation methods 

New Helterbrand 
Manual 0.3901 0.0125 
Helterbrand 0.0031 

The new method resulted in the smallest coefficient of variation (CV). The CVs 

were around 1 % for the new method, pointing to a good precision of the method (Table 

4-3). 

Table 4-3 The coefficient of variation (CV) of each method (%) 
sham OVX 

Manual I New I Helterbrand Manual I New I Helterbrand 
6.7 I 1.1 I 1.9 5.6 I 0.9 I 10.1 

The P-values in Table 4-4 were calculated based on the results of the OVX 

sample. The cancellous bone volume calculated from Helterbrand method was 

significantly different from the cancellous bone volume calculated from manual method 

and also significantly different from the cancellous bone volume calculated from the new 

method. There was no significant difference between the cancellous bone volume 

calculated from manual method and that from the new method. 

Table 4-4 the comparison of the means (cancellous bone volume of the OVX sample) 
between different segmentation methods 

New Helterbrand 
I Manual 0.9016 0.0050 
I Helterbrand 0.0033 
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Both the sham sample and the OVX sample showed that the new method resulted 

in statistically smaller variance than the manual method (Table 4-5). 

Table 4-5 The comparison of the variances between manual segmentation method and 
the new method 

4.2 ALENDRONATE STUDY 

All images and data were referenced to week 8. Alendronate Study was designed 

for the drug recovery experiment, that is, the bone needed to be lost first, then the drugs 

were given to see if the bone mass was increased. Week 8 was the time point on which 

the large bone loss was observed. The bone volume fractions of the different group are 

shown in Figure 4-2. 
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Figure 4-2 Bone volume fraction results of Alendronate study 

All OVX rats, including the four treatment groups, were significantly different 

from Sham at all time points (P<0.05), with the exception of Alen _ W16 (0.31 ± 0.027) (P 

value is 0.9914) (Table 4-6). 
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Table 4-6 P-value of statistical analysis of cancellous bone volume fraction (with sham 
data) 

Alen Alen E2 E2 PTH PTH Ralox Ralox - - - - - -

W12 W16 W12 W16 W12 W16 W12 W16 
Alen W8 1.0000 0.9108 
E2 W8 0.0798 0.0200 

PTH W8 0.9111 0.5685 
Ralox W8 0.2128 0.0381 
OVX W12 0.0910* 1.0000 1.0000 1.0000 
OVX W16 0.0001 1.0000 0.9738 1.0000 
Sham W12 0.0017 0.0001 0.0001 0.0001 
Sham W16 0.9914 0.0001 0.0001 0.0001 

Comparing the cancellous bone volume fractions without considering the Sham 

group, the E2 group and the Ralox group showed the significant decrease of the 

cancellous bone volume fraction at week 12 and week 16 when they compared with their 

own references at week 8 (E2_ W8 and Ralox_ W8, respectively), with the exception of 

Relox_ W12 (P value was 0.0706) (Table 4-7). The cancellous bone volume fraction of 

Alen_ W12, Alen_ W16, PTH_ W12 and PTH_ W16 were not significantly different from 

their baselines (Alen _ W8 and PTH _ W8, respectively). Of all groups, Alen group was the 

only group that showed increased cancellous bone volume fraction in the region of 

interest. 

Table 4-7 P-value of statistical analysis of cancellous bone volume fraction (without 
sham data) 

Alen Alen E2 E2 PTH PTH Ralox Ralox - - - -
W12 W16 W12 W16 W12 W16 W12 W16 

Alen W8 1.0000 0.7179 
E2 W8 0.0200 0.0038 

PTH W8 0.7185 0.2926 
Ralox W8 0.0706* 0.0082 
OVX W12 0.0236 0.9996 0.9999 0.9999 
OVX W16 0.0000 1.0000 0.8741 1.0000 
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All OVX rats, including the four treatment groups, were significantly different 

from Sham at all time points (P<0.05), with the exception of Alen_ W12 (0.53 ± 0.010) (P 

value was 0.9790), Alen_ W16 (0.58 ± 0.029) (P value was 0.9978) and PTH_ W16 (0.46 

± 0.049) (P value was 0.0666) (Table 4-8). 

Table 4-8 P-value of statistical analysis of whole bone volume fraction (with sham data) 
Alen Alen E2 E2 PTH PTH Ralox Ralox - - - - - -
W12 W16 W12 W16 W12 W16 W12 W16 

Alen W8 0.9482 0.0357 
E2 W8 1.0000 1.0000 

PTH W8 1.0000 1.0000 
Ralox W8 0.9998 0.9844 
OVX W12 0.1053 1.0000 1.0000 1.0000 
OVX W16 0.0001 1.0000 0.9687 1.0000 
Sham W12 0.9790 0.0034 0.0136 0.0016 
Sham W16 0.9978 0.0086 0.0666* 0.0021 

Comparing the whole bone volume fraction without considering the Sham group, 

the Alen group, E2 group, PTH group and Ralox group at week 12 and week 16 were not 

significantly different from their own references (Alen_ W8, E2_ W8, PTH_ W8 and 

Ralox_ W8, respectively), with the exception of Alen group at 16 weeks (P=0.0133) 

(Table 4-9). 

Table 4-9 P-value of statistical analysis of whole bone volume fraction (without sham 
data) 

Alen Alen E2 E2 PTH PTH Ralox Ralox - - -
W12 W16 W12 W16 W12 W16 W12 W16 

Alen W8 0.8486 0.0133 
E2 W8 1.0000 1.0000 
PTH W8 1.0000 1.0000 
Ralox W8 0.9981 0.9368 
OVX W12 0.0449 1.0000 0.9999 1.0000 
OVX W16 0.0000 0.9995 0.8949 1.0000 
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4.3 SENSITIVITY ANALYSES 

4.3.1 Pradama Exp1 (Week 11) 

Table 4-10 is the summery of the sensitivity study results ofPradama Exp1. There 

were not significant differences detected in cancellous bone volume fraction, cortical 

bone volume fraction, whole bone volume fraction, breaking energy, bending force, 

moment of inertia, maximum tensile stress, torsional force, and whole bone density by 

Archimedes's method (Keenan MJ et aI, 1997). There were statistically significant 

differences between OVX and sham in indentation force, breaking force, breaking yield 

force, and cross-sectional area. Comparing the OVX group with the Sham group, the 

difference of cross-sectional area was 5.2%, while the differences were 73.2% in 

indentation force, 41.6% in breaking force and 52.3% in breaking yield force. 

a e - ra ama T bl 4 10 P d xp ou comes E 1 t 

Sham (n=5) OVX (n=3) P value Power 
% 

difference 
Cc BV/TV (%) 8.80 ± 3.62 4.88 ± 0.50 0.0761 * 
CtBV/TV (%) 46.76 ± 2.15 46.41 ± 4.42 0.9050 
WBV/TV (%) 51.45 ± 2.50 49.02 ± 4.39 0.4434 
In F (N) 39.98 ± 11.32 10.71 ± 1.77 0.0048 0.8179 73.2 
BkF (N) 116.98 ± 10.89 68.29 ± 7.80 0.0003 0.9907 41.6 
Bk YF (N) 112.34 ± 11.48 53.54 ± 3.31 0.0001 0.9996 52.3 
BkE (N*mm) 28.49 ± 5.54 23.28 ± 2.07 0.1166 
Bd F (N) 148.29 ± 11.60 160.15 ± 6.61 0.1149 
Mal (mm4) 5.38 ± 0.20 5.78 ± 0.48 0.7279 
Area (mm:!) 5.61 ± 0.11 5.91 ± 0.02 0.0041 0.8473 -5.2 
MTS (MPa) 138.55 ± 6.49 137.50 ± 3.82 0.7819 
Ts F (N) 0.32 ± 0.13 0.25±0.16 0.5783 
W D (g/cmJ) 1.43 ± 0.02 1.41 ± 0.01 0.3214 
Note: All values are expressed as mean ± SD. Cc: cancellous bone; Ct: cortIcal bone; W: 
whole bone sample; In: indentation testing; F: Force; Bk: 3-pt breaking testing; YF: yield 
force; E: energy; Bd: 3-pt bending testing; Mal: Moment of Inertia; MTS: Maximum 
tensile stress; Ts: torsion testing; D: Density. 
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Estrogen deficiency did not result in significant changes in the bone volume 

fractions (Figure 4-3). 
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Figure 4-3 Bone fraction results ofExp 1 from 3D image analysis. 

Figure 4-4 shows the mechanical bone strength of the cancellous bone of the left 

tibia. The indentation force for the OVX group (10.71 ± 1.77) was significantly lower 

than that of the Sham group (39.98 ± 11.32) (P<O.Ol) . There was a substantial decrease in 

the indentation force by 73.2% in the OVX animals. 
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Figure 4-4 Indentation testing results of Exp 1. 
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OVX operation significantly decreased the breaking force (116.983 ± 10.889 for 

sham and 68.29 ± 7.80 for OVX) (P<O.OOl) and breaking yield force (112.34 ± 11.48 for 

sham and 53.54 ± 3.31 for OVX) (p=0.001) (Figure 4-5). The breaking force of OVX 

group decreased 41.6% and the breaking yield force of OVX group decreased 52.3%. 

There was a mild, but insignificant effect of OVX on breaking energy (Sham: 28.49 ± 

5.54; OVX: 23.28 ± 2.07). 
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Figure 4-5 Three-point breaking testing results ofExp 1. 

The bending force, moment of inertia and maximum tensile stress of the cortical 

bone in the femoral mid-diaphysis showed very little changes because of estrogen 

deficiency (Figure 4-6). Only the cross-sectional area of femoral mid-diaphysis was 

significantly different and it was higher in the OVX group versus the Sham group by 

5.2%. 
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Figure 4-6 Three-point bending testing results of Exp 1 

The torsion force was 21.5% lower in OVX group (0.25 ± 0.16) versus Sham 

group (0.32 ± 0.13) but not significant due to the large standard deviation of each group 

(Figure 4-7). 
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Figure 4-7 Torsion testing results ofExp 1 
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Figure 4-8 shows the results of the whole bone density (right femur) that was 

measured by the Archimedes method. There was no significant difference in the whole 

bone density between the OVX group (1.41 ± 0.01) and the Sham group (1.43 ± 0.02). 

Density (Whole bone) (gfcm3) 
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Figure 4-8 Density results of Exp 1 by Archimedes method 

4.3.2 Pradama Exp2 (Week 11) 

Table 4-11 is the summery of the sensitivity study results of Pradama Exp2. There 

were not significant differences detected in cortical bone volume fraction, breaking 

energy, bending force, moment of inertia, cross-sectional area, maximum tensile stress 

and middle bone density. There were statistically significant differences between OVX 

and sham in cancellous bone volume fraction, whole bone volume fraction, indentation 

force, breaking force, breaking yield force, proximal bone density, distal bone density, 

and whole bone density. Comparing the OVX group and the Sham group, the differences 

of densities detected by Archimedes's method were 4.2% - 4.9%, while the differences 

were 72.5% in cancellous bone volume fraction, 73 .0% in indentation force, 31.4% in 

breaking force and 42.3% in breaking yield force. 
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a e - ra ama T bl 4 11 P d xp. ou comes E 2 t 

Sham (n=6) OVX(n=6) P value Power 
% 

difference 
Cc BV/TV (%) 26.34 ± 5.98 7.24 ± 2.85 0.0002 0.99999 72.5 
CtBV/TV (%) 46.64 ± 3.18 45.99 ± 3.31 0.7359 
WBV/TV(%) 62.24 ± 6.46 49.88 ± 3.80 0.0037 0.9527 19.9 
In F (N) 40.32 ± 6.35 10.90 ± 3.68 0.00001 1.0000 73.0 
BkF (N) 102.64 ± 15.33 70.45 ± 17.85 0.0073 0.8548 31.4 
BkYF (N) 88.64 ± 17.68 51.10± 10.16 0.0020 0.9815 42.3 
BkE(N*mm) 29.10 ± 10.02 24.19 ± 5.47 0.3206 
Bd F (N) 180.90 ± 16.38 194.52 ±19.67 0.2218 
MOl (mm'l) 6.09 ± 0.80 6.05 ± 0.83 0.9301 
Area (mmL) 6.49 ± 0.35 6.40 ± 0.26 0.6234 
MTS (MPa) 145.92 ± 13.37 159.78 ± 7.54 0.058 
Pro D (glcm.:l) 1.61 ±0.02 1.54 ± 0.02 0.0001 0.999969 4.5 
Mid D (glcmJ) 1.81±1.13 1.75 ± 0.12 0.4278 
Dis D (glcmJ) 1.47 ± 0.02 1.40 ± 0.03 0.0004 0.9970 4.9 
WD (glcmJ) 1.59 ± 0.04 1.53 ± 0.02 0.0037 0.9367 4.2 
Note: All values are expressed as mean ± SD. Cc: cancellous bone; Ct: cortical bone; W: 
whole bone sample; In: indentation testing; F: Force; Bk: 3-pt breaking testing; YF: yield 
force; E: energy; Bd: 3-pt bending testing; MOl: Moment of Inertia; MTS: Maximum 
tensile stress; Pro: Proximal bone part; D: Density; Dis: Distal part. 

The bone volume fractions are shown in Figure 4-9. There was a dramatic 

reduction of the cancellous bone volume fraction for the OVX group (7.24 ± 2.85) 

compared with the Sham group (26.34 ± 5.98) (P=O.OOOl), which is also shown clearly in 

Figure 4-10. The cancellous bone volume fraction was diminished by 72.5% as a result of 

the estrogen deficiency. The volume fraction of whole bone ofOVX group (49.88 ± 3.80) 

was significantly lower than that of Sham group (62.24 ± 6.46) by 19.9%. There was not 

significant difference in the volume fraction of cortical bone between the two groups 

(46.64 ± 3.18 for sham and 45.99 ± 3.31 for OVX). 
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Figure 4-9 Bone fraction of Exp 2 from 3D image analysis 

Pretreatment Sham Pretreatment OVX Sham OVX 

Figure 4-10 Three-dimensional images (Exp2) of the tibial metaphysis of an OVX and 
sham-operated animal (mean from each group) at the time of week 0 and week 11 after 
operation: all images are aligned manually using VGStudio MAX to illustrate the internal 
cancellous bone structure. 

The indentation force by testing cancellous bone revealed a dramatic reduction for 

the OVX group (10.90 ± 3.68) compared with the Sham group (40.32 ± 6.35) 

(P=O.OOOOI) (Figure 4-11). The cancellous bone strength was diminished by 73.0% as a 

result of the estrogen deficiency. 
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Figure 4-11 Indentation testing results of Exp 2 

The breaking force of the OVX group (70.45 ± 17.85) was significantly lower 

than that of the Sham group (102.64 ± 15.33) by 31.4% (P<O.OOl) (Figure 4-12). 

Moreover, the breaking yield force for the OVX group (51.10 ± 10.16) was significantly 

lower than that of the Sham group (88.64 ± 17.68) by 42.3% (P=0.001). The breaking 

energy of OVX was slightly lower than that of Sham group but not significant different. 
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Figure 4-12 Three-point breaking testing results ofExp 2 
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All measured parameters (bending force, moment of inertia, area, and maximum 

tensile stress) of the cortical bone in the femoral mid-diaphysis were not significantly 

different between the OVX group and Sham group (Figure 4-13). 
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Figure 4-13 Three-point bending testing results of Exp 2 

Figure 4-14 reveals the reduction for the OVX group compared with the Sham 

group. The densities were all significantly lower in OVX group versus Sham group 

except the density of middle bone part. Due to the estrogen deficiency, the density of 

whole bone decreased by 4.2%, the density of proximal bone part decreased by 4.5% and 

the density of distal bone part decreased by 4.9%. 
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Figure 4-14 Density results ofExp 2 by Archimedes method 

4.3.3 Pradama Exp3 (Week 12) 

Table 4-12 is the summery of the sensitivity study results ofPradama Exp3. There 

were statistically significant differences between OVX and sham in cancellous bone 

volume fraction, whole bone volume fraction, indentation force, breaking force, breaking 

yield force, breaking energy, and whole bone density. There were not significant 

differences in cortical bone volume fraction, bending force, moment of inertia, cross-

sectional area, maximum tensile stress, proximal bone density, middle bone density and 

distal bone density. Comparing the OVX group and the Sham group, the greatest 

difference of the densities detected by Archimedes's method was 3.1 %, while the 

differences were 55.8% in cancellous bone volume fraction, 86.4% in indentation force, 

36.3% in breaking force and 47.5% in breaking yield force. 
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T bl 4 12 P d E 3 t a e - ra ama xp. ou comes 

Sham (n=6) OVX(n=7) P value Power 
% 

difference 
Cc BV/TV(%) 26.84 ± 3.05 11.86 ± 3.29 0.000004 1.0000 55.8 
CtBV/TV(%) 42.23 ± 3.29 43.31 ± 2.39 0.5230 
WBV/TV(%) 57.79 ± 1.93 50.08 ± 1.34 0.00002 1.0000 13.3 

In F (N) 37.94 ± 13.30 5.16 ± 1.59 0.0018 0.999865 86.4 
BkF (N) 101.38 ±16.86 64.59 ± 5.38 0.0022 0.997262 36.3 

Bk YF (N) 89.60 ± 18.14 47.08 ± 6.81 0.0016 0.99874 47.5 
BkE (N*mm) 25 .29 ± 4.08 19.63 ± 5.06 0.047 0.4797 22.4 

Bd F (N) 189.32 ±16.31 200.31 ± 17.95 0.2721 
MOl (mm4) 5.34 ± 0.41 5.72 ± 0.79 0.2886 
Area (mmL

) 6.18 ± 0.23 6.34 ± 0.30 0.3108 
MTS (MPa) 169.30 ± 8.04 173 .51 ± 11.98 0.4690 

Pro D (glcmJ) 1.55 ± 0.04 1.53 ± 0.02 0.3272 
Mid D (g/cmJ) 1.66 ± 0.05 1.63 ± 0.02 0.22.7 
Dis D (gI_cmJ) 1.42 ± 0.03 1.39 ± 0.04 0.2270 
W D (glcmJ) 1.60 ± 0.02 1.55 ± 0.01 0.0026 0.9863 3.1 

Note: All values are expressed as mean ± SD. Cc: cancellous bone; Ct: cortical bone; W: 
whole bone sample; In: indentation testing; F: Force; Bk: 3-pt breaking testing; YF: yield 
force; E: energy; Bd: 3-pt bending testing; MOl: Moment of Inertia; MTS: Maximum 
tensile stress; Pro: Proximal bone part; D: Density; Mid: Middle bone part; Dis: Distal 
bone part. 

The 3D structures of the cancellous bone are shown in Figure 4-15. 

Pretreatment sham Pretreatment OVX Sham OVX 

Figure 4-15 Three-dimensional images (Exp3) of the tibial metaphysis of an OVX and 
sham-operated animal (mean from each group) at the time of week 12 after operation: all 
images were aligned manually using VGStudio MAX to illustrate the internal cancellous 
bone structure. 

The differences of the volume fractions between the OVX group and the Sham 

group in Exp3 were similar to those in Exp2, but the magnitudes of the differences in Exp 
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3 were less than those in Exp 2. The cancellous bone volume fraction of the OVX group 

was significantly lower than that of the Sham group by 55.8% in Exp 3 instead of by 

72.5% in Exp2. In both Exp 2 and Exp 3, the cortical bone volume fraction showed no 

significant difference between the OVX group and the Sham group. 
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Figure 4-16 Bone fraction ofExp 3 from 3D image analysis 

ovx 

All mechanical properties (breaking force, breaking yield force, breaking energy) 

evaluated by breaking testing revealed a significant reduction in the OVX group 

compared with the Sham group. The decreases of breaking force, breaking yield force 

and breaking energy were 36.3%, 47.5% and 22.4%, respectively, as the result of 

estrogen deficiency. 
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Figure 4-18 shows the mechanical strength of cancellous bone assessed by 

indentation testing. The bone strength for the OVX group (5.16 ± 1.59) was significantly 

lower than that of the Sham group (37.94 ± 13.30) by 86.4% (P<O.OOl). 
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Figure 4-18 Indentation testing results of Exp 3 
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The measured properties of cortical bone showed no significant changes because 

of estrogen deficiency (Figure 4-19). The cross-section area showed a mild increase in 

the OVX group versus that in Sham group by 2.6%, but not significant. 
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Figure 4-19 Three-point bending testing results of Exp 3 

Although all densities of different bone parts showed the decrease due to the 

estrogen deficiency, there were not significant differences in densities of regional bone 

parts (Proximal, middle and distal) (Figure 4-20). Only the density of whole bone 

revealed the significant decrease in the OVX group versus Sham group by 3.1 %. 
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Figure 4-20 Density results of Exp 3 by Archimedes method 

4.4 LINEAR REGRESSION ANALYSES 

For Exp2, there were 6 data points for BV/TV parameters in group E2_ Wll 

instead of 7 data points because one right tibia in group E2_ Wll was destroyed before 

CT imaging. 

4.4.1 Indentation testing vs. volume fraction 

In Exp 2, indentation force was highly correlated with cancellous bone volume 

fraction (R2 = 0.569, P = 0.000) and whole bone volume fraction (R2 = 0.503, P = 0.000) 

(Figure 4-21). The R2 of the correlation between indentation force and cortical bone 

volume fraction was only 0.245. There was a little fewer statistically significant 
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correlation between indentation force and whole bone volume fraction than was found 

between indentation force and cancellous volume fraction. 
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Figure 4-21 Regression analysis ofExp2: Indentation force vs. BV/TV 

In Exp 3, indentation force was highly correlated with cancellous bone volume 

fraction (R2 = 0.542, P = 0.000) and whole bone volume fraction (R2 
= 0.588, P = 0.000) 

(Figure 4-22). There was not significant correlation between indentation force and 

cortical bone volume fraction. There was a little fewer statistically significant correlation 

between indentation force and cancellous bone volume fraction than was found between 

indentation force and whole bone volume fraction. 
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Figure 4-22 Regression analysis ofExp3: Indentation force vs. BV/TV 

The R2 of the correlation between cancellous bone volume fraction and cortical 

bone volume fraction was only 0.245 in Exp2 (Figure 4-23). Cancellous bone volume 

fraction was highly correlated with whole bone volume fraction (R2 = 0.852, P = 0.000). 
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Figure 4-23 Regression analysis of volume fractions (Exp2) 

The R2 of the correlation between cancellous bone volume fraction and cortical 

bone volume fraction was only 0.218 in Exp3 (Figure 4-24). Cancellous bone volume 

fraction was highly correlated with whole bone volume fraction (R2 = 0.503, P = 0.000) 
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Figure 4-24 Regression analysis of volume fractions (Exp3) 

4.4.2 Three-pt breaking testing vs. volume fraction 

In Exp2, The R2 of the correlation between the breaking force and cancellous 

bone volume fraction was only 0.293 (Figure 4-25). The R2 of the correlation between the 

breaking force and whole bone volume fraction was 0.377. The R2 of the correlation 

between the breaking force and whole bone volume fraction was 0.424. 
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Figure 4-25 Regression analysis ofExp2: Breaking force vs. BV/TV 
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Figure 4-26 demonstrates a significantly positive correlation between the breaking 

force and cancellous bone volume fraction (R2 
= 0.504, P = 0.000) in Exp3. A 

significantly positive correlation was also demonstrated between the breaking force and 

whole bone volume fraction (R2 
= 0.552, P = 0.000). No significant correlation between 

the breaking force and cortical bone volume fraction was found (R2 = 0.001, P = 0.877). 
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Figure 4-26 Regression analysis ofExp3: Breaking force vs. BV/TV 

In Exp2, the R2 of the correlation between the breaking yield force and cancellous 

bone volume fraction was 0.306 (Figure 4-27). The R2 of the correlation between the 

breaking yield force and whole bone volume fraction was 0.356. The R2 of the correlation 

between the breaking yield force and cortical bone volume fraction was 0.347. 

In Exp3, the correlation between the breaking yield force and cancellous bone 

volume fraction was significant (R2 = 0.542, P = 0.000) (Figure 4-28). The correlation 

between the breaking yield force and whole bone volume fraction was also significant 
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(R2 = 0.552, P = 0.000). No significant difference was found for the correlation among 

breaking yield force and cortical bone volume fraction. 
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Figure 4-27 Regression analysis of Exp2: Breaking yield force vs. BV lTV 
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Figure 4-28 Regression analysis ofExp3: Breaking yield force vs. BVITV 
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In Exp2, the R2 of the correlation between the breaking energy and cancellous 

bone volume fraction was only 0.142 (Figure 4-29). The R2 of the correlation between the 

breaking energy and whole bone volume fraction was 0.286. The R2 of the correlation 

between the breaking energy and cortical bone volume fraction was 0.206. 
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Figure 4-29 Regression analysis ofExp2: Breaking Energy vs. BV/TV 

In Exp3, the R2 of the correlation between the breaking energy and cancellous 

bone volume fraction was only 0.179 (Figure 4-30). The R2 of the correlation between the 

breaking energy and whole bone volume fraction was 0.286. There was no significant 

correlation between breaking energy and cortical bone volume fraction. 
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Figure 4-30 Regression analysis ofExp3: Breaking Energy vs. BV/TV 

4.5 PRADAMA DATA ANALYSIS (DRUG EFFECT) 

The results from Exp3 were used here to illustrate the drug effects on OVX rat 

models. One right femur from OVX_ W6 was destroyed before three-point bending 

testing, so there were 5 bending force data and 5 maximum tensile stress data instead of 6 

data. Table 4-13 is the P-value of statistical analysis results of the drug effect by 

ANONA. 
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T bi 4 13 D a e - fIi t P rug e ec f t f f 1 1 . It b ANOVA (E 3) -va ue 0 s a IS lca ana YSlS resu s Y xp 
P value (with sham data) P value (Without sham data) 

BV/TV (Cancellous) (%) 0.000 0.035 
BV/TV (Cortical) (%) 0.068* 0.063* 
BV/TV (Whole) (%) 0.000 0.000 
Indentation Force (N) 0.000 0.010 
Breaking Force (N) 0.000 0.000 
Breaking Yield Force (N) 0.000 0.000 
Breaking Energy (N*mm) 0.000 0.000 
Bending Force (N) 0.010 0.009 
Moment of Inertia (mm4) 0.039 0.036 
Area (mm2

) 0.019 0.020 
Max Tensile Stress (MPa) 0.003 0.001 

Figure 4-31 shows the charts of the bone volume fractions calculated by image 

analysis method. The 3D structure of cancellous bone is shown in Figure 4-32. 
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Figure 4-31 Bone fraction ofExp 3 from 3D image analysis 
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Pretreatment sham Pretreatment OVX 17 -Ethinyl Estradiol (E2) 

Sham OVX Alendronate PTH 

Figure 4-32 Three-dimensional images (Exp3) of the tibial metaphysis of an OVX and 
sham-operated animal (mean from each group) at the time of week 12 after operation: all 
images were aligned manually using VGStudio MAX to illustrate the internal cancellous 
bone structure. 

The cancellous bone volume fraction of all OVX rats, regardless of treatment, 

were significantly different form those of sham at week 12. Estrogen deficiency caused 

significantly decrease in cancellous bone volume fraction at week 6 and week 12 (Table 

4-14). 

Table 4-14 P-value of statistical analysis (Exp3) of drug effect on cancellous bone 
volume fraction (with sham data) 

OVX W6 OVX W12 E2 W12 Alen W12 PTH W12 
Sham W6 0.0026 
Sham W12 0.0000 0.0007 0.0137 0.0010 
OVX W6 0.0327 0.6949 0.9985 0.7657 
OVX W12 0.6445 0.1112 0.5647 
E2 W12 0.9337 1.0000 
Alen W12 0.9621 
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Cancellous bone volume fractions with drugs (E2, Alen, PTH) were not 

statistically different from OVX at week 12 (Table 4-15). There were no statistical 

differences between drug effects. 

Table 4-15 P-value of statistical analysis (Exp3) of drug effect on cancellous bone 
volume frac tion (without sham data) 

OVX W12 E2 W12 Alen W12 PTH W12 
OVX W6 0.0271 0.5519 0.9868 0.6239 
OVX W12 0.5039 0.0841* 0.4325 
E2 W12 0.8375 1.0000 
Alen W12 0.8880 

Table 4-16 does not show any significant effect of the estrogen deficiency on 

cortical bone volume fraction. 

Table 4-16 P-value of statistical analysis (Exp3) of drug effect on cortical bone volume 
fraction (with sham data) 

OVX W6 OVX W12 E2 W12 Alen W12 PTH W12 
Sham W6 0.9494 
Sham W12 0.9965 0.8012 0.4465 0.2191 
OVX W6 0.9336 0.527 0.2168 0.0881* 
OVX W12 0.9775 0.7686 0.482 
E2 W12 0.9969 0.9433 
Alen W12 0.9993 

Cortical bone volume fractions with drugs (E2, Alen, PTH) were not statistically 

different from OVX at week 12 (Table 4-17). There was no statistically different between 

drug effects. 

Table 4-17 P-value of statistical analysis (Exp3) of drug effect on cortical bone volume 
fraction (without sham data) 

OVX W12 E2 W12 Alen W12 PTH W12 
OVX W6 0.8316 0.3891 0.1522 0.0631 * 
OVX W12 0.9179 0.6171 0.352 
E2 W12 0.9781 0.8485 
Alen W12 0.9919 
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Estrogen deficiency caused significant decrease in whole bone volume fraction at 

week 6 and week 12 (Table 4-18). 

Table 4-18 P-value of statistical analysis (Exp3) of drug effect on whole bone volume 
fraction (with sham data) 

OVX W6 OVX W12 E2 W12 Alen W12 PTH W12 
Sham W6 0.0000 
Sham W12 0.0000 0.0175 0.7391 0.4007 
OVX W6 0.9953 0.1352 0.3601 
OVX W12 0.0677* 0.0002 0.0011 
E2 W12 0.4072 0.7455 
Alen W12 0.9978 

Whole bone volume fractions with drugs (E2, Alen, PTH) were statistically 

different from OVX at week 12 (Table 4-19). There were not statistical differences 

between drug effects. 

Table 4-19 P-value of statistical analysis (Exp3) of drug effect on whole bone volume 
fraction (without sham data) 

OVX W12 E2 W12 Alen W12 PTH W12 
OVX W6 0.1470 0.9656 0.0742* 0.2180 
OVX W12 0.0363 0.0002 0.0007 
E2 W12 0.2518 0.5506 
Alen W12 0.9794 

Figure 4-33 shows the mechanical strength of cancellous bone assessed by 

indentation testing. Estrogen deficiency caused significant decrease in indentation force 

at week 6 and week 12 (Table 4-20). At week 12, the bone strength for the OVX group 

(5.159 ± 1.594) was significantly lower than that of the Sham group (37.936 ± 13.303) by 

86.4% (P<0.05). 
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Figure 4-33 Indentation testing results ofExp 3 

Table 4-20 P-value of statistical analysis (Exp3) of drug effect on indentation force (with 
sham data) 

OVX W6 OVX W12 E2 W12 Alen W12 PTH W12 
Sham W6 0.0030 
Sham W12 0.0002 0.0022 0.0274 0.1015 
OVX W6 0.9252 1.0000 0.9996 
OVX W12 0.9953 0.6801 0.3269 
E2 W12 0.9631 0.7412 
Alen W12 0.9975 

The indentation forces with drugs (E2, Alen, PTH) were not statistically different 

from OVX_ W12, with the exception ofPTH_ W12 (Table 4-21). There were no statistical 

differences between drug effects. 

Table 4-21 P-value of statistical analysis (Exp3) of drug effect on indentation force 
(without sham data) 

OVX W12 E2 W12 Alen W12 PTH W12 
OVX W6 0.0622* 0.4207 0.9991 0.9647 
OVX W12 0.8497 0.1061 0.0133 
E2 W12 0.5686 0.1456 
Alen W12 0.8939 

Figure 4-34 shows the mechanical strength of whole bone assessed by three-point 

breaking testing. 
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Figure 4-34 Three-point breaking testing results ofExp 3 

'1M2 

PTH 

Estrogen deficiency caused significant decreases in the breaking force at week 6 

and week 12 (Table 4-22). 

Table 4-22 P-value of statistical analysis (Exp3) of drug effect on breaking force (with 
sham data) 

OVX W6 OVX W12 E2 W12 Alen W12 PTH W12 
Sham W6 0.0005 
Sham W12 0.0010 0.0029 0.3763 0.9974 
OVX W6 0.9931 0.7727 0.0705* 
OVX W12 1.0000 0.2228 0.0052 
E2 W12 0.3619 0.0134 
Alen W12 0.7253 

PTH treatment resulted in a significant increase of the breaking force reaching 

values above the OVX_ W12, and E2_ W12 groups (Table 4-23). E2 and Alendronate 

treatments did not show significant effect on breaking force. 
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Table 4-23 P-value of statistical analysis (Exp3) of drug effect on breaking force 
(without sham data) 

OVX W12 E2 W12 Alen W12 PTH W12 
OVX W6 0.8201 0.9305 0.4537 0.0138 

OVX W12 0.9991 0.0619* 0.0007 
E2 W12 0.1244 0.0019 

Alen W12 0.3988 

Estrogen deficiency caused significant decreases in the breaking yield force at 

week 6 and week 12 (Table 4-24). 

Table 4-24 P-value of statistical analysis (Exp3) of drug effect on breaking yield force 
(with sham data) 

OVX W6 OVX W12 E2 W12 Alen W12 PTH W12 
Sham W6 0.0000 
Sham W12 0.0000 0.0006 0.0510* 0.9399 
OVX W6 0.9928 0.2672 0.0018 
OVX W12 0.9518 0.1320 0.0005 
E2 W12 0.6648 0.0118 
Alen W12 0.3896 

PTH treatment resulted in a significant increase of the breaking yield force 

reaching values above the OVX _ W12, and E2 _ W12 group (Table 4-25). Alendronate 

also significantly increased the breaking yield force. In contrast, E2 treatment did not 

show significant effect on breaking yield force. 

Table 4-25 P-value of statistical analysis (Exp3) of drug effect on breaking yield force 
(without sham data) 

OVX W12 E2 W12 Alen W12 PTH W12 
OVX W6 0.9960 0.9079 0.0506* 0.0001 
OVX W12 0.7180 0.0172 0.0000 
E2 W12 0.2668 0.0007 
Alen W12 0.0952* 
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Estrogen deficiency caused insignificant decreases in whole bone volume fraction 

at week 6 and week 12 (Table 4-26). 

Table 4-26 P-value of statistical analysis (Exp3) of drug effect on breaking Eng (with 
sham data) 

OVX W6 OVX W12 E2 W12 Alen W12 PTH W12 
Sham W6 0.1062 
Sham W12 0.8255 0.6290 1.0000 0.1328 
OVX W6 0.9011 0.9998 0.0418 

OVX W12 0.9996 0.8955 0.0037 
E2 W12 0.7251 0.0019 

Alen W12 0.0956* 

At week 12, PTH was the only treatment that resulted in a significant increase of 

the breaking energy compared to the OVX (Table 4-27). 

Table 4-27 P-value of statistical analysis (Exp3) of drug effect on breaking Eng (without 
sham data) 

OVX W12 E2 W12 Alen W12 PTH W12 
OVX W6 0.8909 0.6852 0.9939 0.0105 

OVX W12 0.9907 0.6747 0.0008 
E2 W12 0.4391 0.0004 

Alen W12 0.0276 

Figure 4-35 shows the mechanical strength of cortical bone assessed by three-

point bending testing. 
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Figure 4-35 Three-point bending testing results ofExp 3 

Estrogen deficiency caused insignificant decreases in the bending force at week 6 

and week 12 (Table 4-28). 

Table 4-28 P-value of statistical analysis (Exp3) of drug effect on bending force (with 
sham data) 

OVX W6 OVX W12 E2 W12 Alen W12 PTH W12 
Sham W6 0.9527 
Sham W12 0.9762 0.9072 0.8099 1.0000 
OVX W6 0.8800 0.0144 0.1741 

OVX W12 0.4019 0.9973 0.9960 
E2 W12 0.1815 0.8031 

Alen W12 0_9118 

At the same time point, no drug increased the bending force compared with OVX 

group (Table 4-29). 
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Table 4-29 P-value of statistical analysis (Exp3) of drug effect on bending force (without 
sham data) 

OVX W12 E2 W12 Alen W12 PTH W12 
OVX W6 0.0315 0.7532 0.0122 0.1244 

OVX W12 0.2914 0.9800 0.9742 
E2 W12 0.1296 0.6580 

Alen W12 0.7986 

Estrogen deficiency caused insignificant decreases in the moment of inertia at 

week 6 and week 12 (Table 4-30). 

Table 4-30 P-value of statistical analysis (Exp3) of drug effect on moment of inertia 
(with sham data) 

OVX W6 OVX W12 E2 W12 Alen W12 PTH W12 
Sham W6 1.0000 

Sham W12 0.9424 0.2798 0.9681 0.9932 
OVX W6 0.5482 0.8070 1.0000 

OVX W12 0.0254 1.0000 0.5986 
E2 W12 0.0423 0.6774 

Alen W12 0.6910 

E2 results in significant decrease in moment of inertia compared with OVX at 

week 12 (Table 4-31). 

Table 4-31 P-value of statistical analysis (Exp3) of drug effect on moment of 
inertia (without sham data) 

OVX W12 E2 W12 Alen W12 PTH W12 
OVX W6 0.6558 0.4966 0.7300 0.9997 
OVX W12 0.0384 1.0000 0.5394 
E2 W12 0.0579* 0.6083 
Alen W12 0.6205 

Estrogen deficiency caused insignificant decreases in the cross-sectional area at 

week 6 and week 12 (Table 4-32). 
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Table 4-32 P-value of statistical analysis (Exp3) of drug effect on cross-sectional area 
(with sham data) 

OVX W6 OVX W12 E2 W12 Alen W12 PTH W12 
Sham W6 0.9995 
Sham W12 0.9809 0.2700 0.7025 1.0000 
OVX W6 0.4166 0.5273 1.0000 

OVX W12 0.0404 0.9830 0.9423 
E2 W12 0.0075 0.3738 

Alen W12 0.5749 

All treatment groups did not show any significant change in cross-sectional area 

compared with OVX at week 12 (Table 4-33). 

Table 4-33 P-value of statistical analysis (Exp3) of drug effect on cross-sectional area 
(without sham data) 

OVX W12 E2 Wl2 Alen W12 PTH W12 
OVX W6 0.8504 0.3769 0.4688 1.0000 
OVX W12 0.0523* 0.9481 0.8804 
E2 W12 0.0133 0.3418 
Alen W12 0.5091 

Estrogen deficiency caused insignificant decreases in the maximum tensile stress 

at week 6 and week 12 (Table 4-34). 

Table 4-34 P-value of statistical analysis (Exp3) of drug effect on maximum tensile 
stress (with sham data) 

OVX W6 OVX W12 E2 W12 Alen W12 PTH W12 
Sham W6 0.8521 
Sham W12 0.9990 0.76l3 0.9934 0.9195 
OVX W6 0.0042 0.0306 0.0104 
OVX W12 0.9390 1.0000 0.9929 
E2 W12 0.9838 0.9998 
Alen W12 0.9993 

No statistically significant changes of treatments in maximum tensile stress were 

observed compared with OVX at week 12 (Table 4-35). 
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Table 4-35 P-value of statistical analysis (Exp3) of drug effect on maximum tensile 
stress (without sham data) 

OVX W12 E2 W12 Alen W12 PTH W12 
OVX W6 0.0085 0.0007 0.0065 0.0020 
OVX W12 0.7530 0.9990 0.9349 
E2 W12 0.8901 0.9940 
Alen W12 0.9860 
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CHAPTER 5. DISCUSSION 

5.1 CANCELLOUS BONE SEGMENTATION METHOD 

The new segmentation method offers a fast, automatic means to segment 

cancellous bone from cortical bone, and has the ability to determine the cavities in cortex 

automatically and objectively. Although the original image stacks (from computed 

tomography or MRI) provide 3D information, previous segmentation approaches are 

based on the 2D information of each single image slice and perform segmentation slice 

by slice according to this 2D information, which ignores the relationships between 

different slices. The difficulty of segmentation also comes from the complex structure of 

bone and the existence of the holes in the cortex. In some cases, it is difficult to know 

whether a cavity in a single image slice is a cavity in the cortex or a part of the marrow 

cavity. The insufficient information provided by the original image stack results in 

segmentation errors and limits the previous segmentation methods to be valid only in 

specific conditions. Unlike previous techniques, the method illustrated in this dissertation 

takes advantage of the 3D nature of the information, which is shown to have the 

advantage of giving more precise and accurate segmentation results. 

If the ROI is connected to other bones in a single image stack, manual 

preprocessing is needed to delete the other bones from the ROI. An in-house program 

was created by Matlab for this purpose. The method is based on the observation that 
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cancellous bone is surrounded by a continuous marrow regIOn and cortical bone is 

outside of this marrow region. The accurate designation of the marrow region is critical 

to the success of the method. There are three factors that affect the designation of marrow 

region: image quality, bone/non-bone segmentation and the definition of the 

WholeBoneMask. 

Because trabeculae are very small, the present method requires high resolution of 

the original image stack so trabeculae can be separated from marrow. Higher image 

resolution leads to higher radiation dose and/or longer scanning times, which should be 

considered in in vivo study. 

The segmentation of bone and non-bone is also critical. It is possible that cavities 

in the cortex are defined as marrow if the bone elements that are located between the 

cavities and the marrow are treated as non-bone elements, which leads to overestimation 

of the marrow region. Conversely, some marrow regions may be excluded from the 

definition of the main marrow region if a nonbone region appears to be disconnected 

from the main structure of marrow because of overestimation of the bone compartment. 

The marrow region is the largest 3D cavity among the cavities found in the ROI. 

The cavities are defined by finding non-bone elements that are covered by the 

WholeBoneMask. In this dissertation, a dilating-filling-eroding method is used to create 

the WholeBoneMask if there are one or more cortex openings in a single image slice. 

Since the dilation smoothes the edges of the image, the outer contour of the 

WholeBoneMask is not exactly the same as that of the bone image, which causes false 

cavities along the outer surface of the bone compartment. If the false cavities are 

connected to the marrow region, they are false marrow and result in the inaccurate 
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definition of the marrow region. False marrow is on the image slices adjacent to or near 

the image slices with openings in the cortex. Since the segmentation is carried out based 

on the information of the marrow region, inaccurate definition of the marrow region 

causes errors in segmentation. Perfect WholeBoneMask is such that its contour is the 

same as that of the outer surface of cortex, so no false marrow exists. Different methods 

may be needed to find perfect WholeBoneMask for specific bone sample. 

It works theoretically to find the largest object by the whole matrix method. 

However, the size of the 3D matrix, that is, the size of the bone sample, is limited to 

computer memory. To avoid this problem, the overlapping method was developed. 

Instead of handling the whole 3D matrix, overlapping method handles two image slices at 

one time, which results in more memory efficiency than the whole matrix method. 

MarrowDiffL determines which bumps on the inner surface of cortex will be 

treated as trabeculae. MarrowDiffS delimits where to cut the trabeculae off. The value of 

MarrowDiffL and MarrowDiffS are determined by the bone structure in the study and are 

suggested to keep unchanged in a single longitudinal study, so no longitudinal error 

caused by these two parameters is involved. 

There is no statistically significant difference between the segmentation results 

from the new method and those from a manual method, which demonstrates the accuracy 

of the new automatic segmentation method. However, the results calculated by the 

He1terbrand method are significantly different from those calculated by the manual 

method and by the new method. Using the manual work as gold standard, the new 

method is more accurate than the He1terbrand method. 

120 



The precision and repeatability of the new method are excellent. The precision of 

the new method is very high, ranging around 1 %. The variance of the new method is 

statistically significantly smaller than that of the manual method, which means that the 

repeatability of the new method is better than the manual work. Theoretically, for a given 

image stack, the segmentation results will be the same no matter how many times the 

program is run if the program is totally automatic. The variance of the new method comes 

only from the scanning procedure: a single bone sample was loaded and scanned three 

times. The three data sets are not identical even though they come from the same bone 

sample because a bone sample cannot be fixed in the holder in exactly the same position 

twice. 

In conclusion, the new method is more accurate than a previously published 

method (Helterbrand's method), and more precise and more repeatable than the manual 

method. The advantages of the method are: 1. It is automatic, accurate, precise and 

repeatable; 2. The segmentation is dependent on the bone architecture only, no 

assumption is needed; 3. The method has the potential to do segmentation even when the 

whole bone sample has complex structure and irregular shape; 4. The cavities in the 

cortex can be detennined automatically and accurately. The prerequisite of the method is 

the high resolution of the image so that marrow region and cancellous compartment can 

be separated from each other. 
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5.2 ALENDRONATE STUDY 

The volume fraction of the region of interest at week 0 approached 0.5 due to the 

young age of the rats and the ongoing growth and modeling of immature bone near the 

metaphysis. This also did not allow adequate registration of the serial images to include 

week O. 

OVX results in the negative basic multicelluar units (BMUs) balance. It produces 

a net loss of bone from the skeleton with each remodeling event, which leads to the 

decrease of bone volume fraction. However, greater rates of bone loss and structural 

decay are more likely to be due to differences in remodeling rate than due to differences 

in remodeling imbalance (Seeman E, 2007). The situation may be explained by the 

regional difference of response to estrogen deficiency. It is well known that estrogen 

deficiency results in much greater bone loss in cancellous bone than in cortical bone. For 

the same bone volume, cancellous bone has much more bone surface than cortical bone, 

which indicates much greater remodeling rate in cancellous bone. Greater bone loss in 

cancellous bone reflects, at least partially, the greater influence of remodeling rate than 

the negative BMU balance. 

This may explain the striking outcome of this study: alendronate causes such a 

large positive response in cancellous bone. The rats used in this study are 7-8 weeks old. 

The young animals are still growing rapidly and it is possible that the OVX operation 

results in higher remodeling rate in young animals. When anti-resorptive drug is given, 

the individuals with high baseline remodeling rate have more positive response than those 

with low baseline remodeling rate. The study of Greenspan et ai. (Greenspan S et aI., 
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2006) showed that increases in BMD in those with a higher remodeling rate exceeded 

increases in BMD in those with low remodeling. 

The dependence of the remodeling rate before treatment explains the effect of the 

young animals on the experimental results. The magnitude of increase of the bone 

volume fraction is also likely dependent on the inhibitory effect of the drug on resorption. 

Alendronate suppresses remodeling more than raloxifene (Allen Met aI., 2006; Johnell 0 

et aI., 2002). The stronger the inhibitory effect of the drug on resorption, the greater the 

positive outcomes resulted by the drug. This is also supported by the experimental results 

of Alendronate Study. Based on the dose and schedule used in this study, it is clearly 

shown that alendronate resulted in significant higher cancellous bone volume fraction 

than E2. It may be temping to conclude that alendronate has stronger inhibitory effect 

than E2 based on the experimental results of this Alendronate Study, but it needs be 

explored in future studies. 

In Alendronate Study, alendronate has more positive effects on cancellous bone 

volume fraction than PTH as used in the young rat model. Because limiting the dose and 

frequency of PTH has some theoretical advantages, particularly with regard to cost (i.e. 

approximately US$7200 per year for daily injections of PTH (Rosen CJ, 2004) and 

US$635 drug cost per year of alendronate (Mobley LR et aI, 2006)), combination therapy 

provides more economic choices. Rittmaster RS et ai. (2000) have reported that 

postmenopausal osteoporotic women, who have been treated with alendronate given 

sequentially for 1 year after recombinant human PTH-(1-84) therapy, responded with an 

overall increase of 14.6% at the spine together with significant improvement in the 

femoral neck and total body calcium. Another possibility is that PTH was not given often 
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enough in Alendronate Study. PTH was administered only three times per week whereas 

other studies administered PTH more frequently (Baumann BD et aI, 1995; Mosekilde L 

et aI., 1995). 

In summary, alendronate results in a greater increase of cancellous bone volume 

fraction than PTH in the model with high remodeling rate. Because the therapy of PTH is 

much more expensive, combination therapy of PTH followed by alendronate maybe a 

more economic choice as well as a more effective approach. 

5.3 SENSITIVITY ANALYSIS 

A novel indentation test method was developed during the Pradama Exp 1. The 

animal samples of Pradama Exp 1 were used to improve testing methods for the 

indentation testing and three-point breaking testing. Although exciting results in the Exp 1 

were obtained, the results of Exp 1 were not very reliable because the Exp 1 was more like 

a practicing. The sensitivity analysis was therefore based on Exp2 and Exp3. 

A major drawback of the rat model is that rats continue to grow and do not ever 

completely fuse the epiphyses. This problem can be overcome by selecting cancellous 

bone sampling sites that are remodeling. For female Fischer rat model, the longitudinal 

bone growth in the proximal tibiae is 9.98J.!m1day at 6 months old and 3.3J.!m1day at 9 

months old (Erben RG et aI., 1996). In a 12-week (84 days) study, the proximal tibial 

growth will add less than 0.84 mm of new bone. Although the skeleton of Fischer rats 

may be more mature than skeleton in rat strains with a higher growth capacity, e.g., 

Sprague-Dawley or Wistar rats at a given age (Erben RG et aI., 1996), the analysis with 
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ROI that begins at one mm distal to the growth plate of proximal tibia should be safe to 

avoid any new bone growth. 

In both Exp2 and Exp3, there were no statistically significant differences between 

OVX and sham in the measurements of mid shaft of femur (bending force, moment of 

inertia, cross-sectional area and maximum tensile stress). The differences of some density 

measurements are detected and some not. For those densities with statistically significant 

differences, the differences between OVX and sham are in the range of 3.1 % ~ 4.9%. 

Such small differences may be obscured because of issues of measurement precision, 

which challenges the three-point bending testing and Archimedes's method to be valid 

methods to evaluate OVX and treatment effects. 

In Exp2, the difference in cancellous bone volume fraction between OVX and 

sham was 72.5% while the difference in whole bone volume fraction between OVX and 

sham was 19.9%. In Exp 3, the difference in cancellous bone volume fraction between 

OVX and sham was 55.8% while the difference in whole bone volume fraction between 

OVX and sham was 13.3%. No statistical significant difference in cortical bone between 

OVX and sham was detected. Estrogen deficiency increases the rate of bone remodelling 

and the negative bone balance in the BMUs. Remodeling occurs on bone surfaces. A 

volume of bone constructed with cancellous bone has more surface upon which 

remodeling can occur than the same volume of bone made up of cortical bone. Therefore, 

more cancellous bone is lost after OVX than cortical bone, which explains the better 

sensitivity of cancellous bone volume fraction to the differences between sham and OVX. 

The indentation testing confirmed the dramatic effect of estrogen deficiency on 

cancellous bone in terms of corresponding changes in mechanical properties. OVX 
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resulted in 73.0% decrease in indentation force in Exp2 and 86.4% decrease in Exp3. 

Since there was little or no effect of estrogen deficiency on the cortical bone properties, 

which has been shown in the three-point bending testing, the excluding of cortical bone 

in the measurement increased the sensitivity in detecting changes of mechanical 

properties due to OVX or treatments. 

The breaking testing measured mechanical properties of the whole bone of the 

proximal tibia metaphsis. The percent differences between sham and OVX obtained from 

the three-point breaking tests were about half of those from the indentation testing. The 

presence of cortical bone greatly reduced the sensitivity to detect changes in bone quality. 

The difference in cancellous bone volume fraction between OVX and sham in 

Exp2 was greater than that in Exp3. Considering the fact that the distal part of the 

proximal metaphysis of tibia lost more cancellous bone after OVX operation, the result 

was not surprising because more distal part was included in the VOl of Exp2 than Exp3 

(the VOl of Exp2 consisted of three hundred slices while the VOl of Exp3 consisted of 

two hundred slices). 

Longer period of estrogen deficiency results in a greater bone loss. Because the 

indentation testing was performed at week 11 after OVX in Exp2 and week 12 after OVX 

in Exp3, it was not surprising that more difference was detected in indentation force in 

Exp 3 than in Exp2. 

There have been many studies to explore the mechanical properties of cancellous 

bone by indentation testing. Some of these studies have identified regional variations of 

mechanical properties (Katoh T, et aI., 1996; Aitken GK, et aI., 1985; Sumner DR, et aI., 

1994; Dunham CE et aI., 2005). The bone samples for the studies, such as human patella, 
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distal human tibia, human humerus and adult male mongrel dog tibia, need to be big 

enough for the regional information. Indentation testing has also been used on small bone 

samples, like the rat model. An YH et al. (1997) reported the mechanical properties of rat 

epiphyseal cancellous bone. The indentation testing has also been used to evaluate 

mechanical properties of cancellous bone in the distal femoral metaphysis of rats (Shen V 

et aI., 1995; Meng XW et aI., 1996; Ke HZ et aI., 1998). In Ke's study, OVX for 30 and 

60 days induced significant decreases in the indentation force (-75%, and -82%, 

respectively) of cancellous bone as compared with sham controL Meng also reported the 

significantly lower load in OVX rats than in the sham animals. In all these previous 

studies, the exposed cancellous bone surface was completed by cutting the bone from the 

upper surface to a certain depth or by cutting directly proximal to the femoral condyle. 

Because the indentation testing results are very sensitive to the position of the exposed 

cancellous bone surface, the testing protocol is superior than other studies by providing 

consistent cuts with the help of CT scanning. 

One other test method introduced in a previous study that indeed loaded only 

cancellous bone was the "reduced-platen" compression, which used platen sized and 

aligned to load only cancellous bone in the center of the sample (Hogan HA, et aI., 2000). 

The maximum force, stiffness and energy absorbed were all diminished by roughly 60% 

as a result of the effect of35 days ofOVX on 14-week-old female Sprague-Dawley rats. 

This approach requires the cancellous bone surface on both top and bottom sides of the 

test specimens. In some cases when cancellous bone loss is severe, it is possible that there 

are just a few trabeculae or no cancelllous bone on the bottom surface, which causes 
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trouble in the testing. In addition, the cutting position of exposed cancellous bone in 

Hogan's method was not sufficient. 

Despite the promising results, the indentation testing protocol has its limitations. 

Specimen preparation is labor-consuming because of the bone embedding, CT scanning, 

saw-cut positioning and finally, cutting. Since the same indentor was used during the 

tests for all bone samples, the potential artifact introduced by the presence of the cortical 

bone that remains attached to the specimen during testing is different for different bone 

samples: the smaller the cross-area of the exposed cancellous surface, the greater the 

potential artifact. Unfortunately, the extent of this effect is unknown. This potential 

artifact was minimized by using a 1.5mm indentor, several times smaller than the 

metaphysis. 

In summary, the changes of the mechanical properties of cancellous bone in the 

proximal tibia of the rat in different groups can be detected by the indentation testing; the 

evaluation of the whole bone properties at the proximal metaphysis can help people 

understand more about osteoporosis fracture. Based on the results and comparison with 

conventional methods (three-point bending testing, densities by Archimedes's method), 

the new methods (Cancellous bone volume fraction, indentation testing, three-point 

breaking testing) introduced here are more sensitive and useful to capture the changes in 

small bones of rat model. 
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5.4 LINEAR REGRESSION ANALYSIS 

The selection of the ROI was better in Exp2 than in Exp3 because the start point 

of the ROI was more consistent in Exp2. In Exp2, A region located 0.98 mm (70 slices * 

0.014 mm/slice) from the lower end ofthe growth plate and extending 4.2 mm (300 slices 

* 0.014 mm/slice) distally was chosen for evaluation. In Exp3, the ROI was chosen from 

the position where the lateral part of the cortex was just separated from the main part and 

extending 2.8 mm (200 slices * 0.014 mmlslice) distally. 

The bone/non-bone segmentation was better in Exp3 than in Exp2. The global 

threshold method was used slice by slice to segment bone from nonbone in Exp2. The 

regional global threshold method was used slice by slice to segment bone from nonbone 

in Exp3. The better bone/non-bone segmentation resulted in better cortical and cancellous 

bone segmentation and finally better calculation of bone volume fraction. Due to some 

unknown reasons of scanning procedure, the lightness of the image slices changed a lot in 

a single image stack, which resulted in a wrong decision during bone/non-bone 

segmentation if the global threshold method was used. Moreover, since the cortical bone 

had higher gray values than cancellous bone, the global threshold method tended to lead 

to a bone/non-bone segmentation with thicker cortex and lost cancellous bone. These 

problems produced some poor results of cancellous and cortical bone segmentation, and 

finally some poor results of bone volume fraction. The regional global threshold method 

overcomes the problem of the lightness changing within a single image stack. In addition, 

regional global threshold method gave better decisions of cortical bone and cancellous 

bone definition than the global threshold method. 
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Because the bone/non-bone segmentation method had more effect on bone 

volume calculation than ROI selection, the results of Exp3 were considered closer to the 

real case and were used to explore the relationships between mechanical properties and 

bone volume fractions. 

The indentation force was positively correlated with cancellous bone volume 

fraction and whole bone volume fraction. The R2 (0.542) of the correlation between the 

indentation force and the cancellous bone volume fraction was a little lower than that 

(0.588) between the indentation force and the whole bone volume fraction. Because the 

indentation force was applied on the cancellous bone, it was expected that there would be 

better relationship between indentation results and cancellous bone volume fraction 

instead of whole bone volume fraction. One explanation to this phenomenon was that the 

whole bone volume fraction was also correlated with cancellous bone volume fraction 

(R2=0.503). The bone loss or bone growth will happen on all parts of bone instead of 

some specific parts of bone. The second explanation to this phenomenon was the 

selection of the cancellous bone volume. The indentation force was applied on the 

cancellous bone surface that was just below the growth plate. The cancellous bone 

volume used in Exp3 was chosen lower than the growth plate. It is reasonable to predict 

the better correlation between the indentation force and the cancellous bone volume 

fraction if the cancellous bone volume was just below the growth plate, which needed to 

be confirmed in the future study. In addition, although the indentation force was applied 

on cancellous bone surface, the cancellous bone was attached to the cortical bone during 

the testing, which constrained lateral expansion of the loaded cancellous bone to some 

extent. This stiffer response led to the potential artifact, so the indentation force was not 
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only a response to the mechanical properties of the cancellous bone, but also to the 

cortical shell. 

There was no correlation between the breaking results and cortical bone volume 

fraction. The breaking force was positively correlated with cancellous bone volume 

fraction and whole bone volume fraction. The R2 (0.504) of the correlation between the 

breaking force and the cancellous bone volume fraction was a little lower than that 

(0.552) between the breaking force and the whole bone volume fraction. The yield 

breaking force was also positively correlated with cancellous bone volume fraction and 

whole bone volume fraction. The R2 (0.542) of the correlation between the breaking yield 

force and the cancellous bone volume fraction was a little lower than that (0.552) 

between the breaking yield force and the whole bone volume fraction. Since three-point 

breaking testing evaluates the mechanical competence of whole bone, it was expected 

that there were better relationship between three-point breaking results and whole bone 

volume fraction instead of cancellous bone volume fraction and cortical bone volume 

fraction, which was shown in this experiment. 

Although there was correlation between the bone mechanical strength and bone 

volume fraction, the R2 value of around 0.55 was not strong enough to support the 

application of bone volume fraction alone to predict bone mechanical strength accurately. 

It may be explained by engineering perspective that mechanical competence is not only 

determined by the mass of the material but also determined by the spatial arrangement of 

the material, and the quality of the material, neither of which were considered. 

Pothuaud's study (Pothuaud L, et aI., 2002) showed that in combining both 

morphological and topological explanatory powers, the normalized parameters were able 
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to increase the prediction of the elastic moduli compared to the prediction of BV lTV 

along. Shen (1995) also reported the mechanical strength was related to cancellous bone 

volume and connectivity parameters. So it is reasonable to expect that adding other 

structural parameters, such as trabecular thickness, trabecular number and trabecular 

separation etc, may result in better prediction, which needs to be shown in future studies. 

5.5 PRADAMA DATA ANALYSIS (DRUG EFFECT) 

The treatment effects of Estrogen, alendronate and PTH have also been evaluated 

here. 

No drug significantly increased the cancellous bone volume fraction when 

compared with OVX control (Table 4-15). But the indentation testing showed that PTH 

resulted in the significant increase of mechanical strength of cancellous bone (Table 

4-21). The discrepancy between the cancellous bone volume fraction and its mechanical 

strength caused by PTH therapy could be explained by the improvement of the bone 

structure or material. Previous studies (Sato M et aI., 1997; Shen V et aI, 1993) showed 

that PTH improved connectivity in the proximal tibias and vertebrae. From a mechanical 

perspective, this is easy to understand because the strength of a structure is not only 

dependent on how much material is used to build the walls, but also dependent on the 

spatial arrangement of the materials. 

PTH has been shown by others to significantly increase the cross-sectional area of 

cortical bone (Baumann BD et aI, 1995; Mosekilde L et aI., 1995). By contrast, Pradama 

Study did not show any significant differences in cross-sectional area and moment of 
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inertia. The different conclusions may be caused by the different treatment regimens. 

PTH was injected 5 days per week at a dose of 0.08 mglkg BW in Baumann's study, 6 

days per week at a dose of 0.08 mglkg BW in Mosekilde's study, but only 3 days per 

week at a dose of 0.08 mglkg BW in Pradama Study. In addition, the tibia diaphysis was 

evaluated in Baumann's study instead of the femur diaphysis, as in Pradama Study. The 

different site-specific responses to PTH have also been reported in other studies (Neer 

RM et aI, 2001). Neer reported that the daily subcutaneous injections of PTH (1-34) 

increased bone mineral density by 9 and 13 more percentage points in the lumbar spine 

and by 3 and 6 more percentage points in the femoral, while decreased bone mineral 

density at the shaft of the radius by 2 more percentage points. Although the femur 

diaphysis was also evaluated in Moselilde's study, the treatment was initiated at 17 weeks 

of age in Moselilde's study and at 32 weeks of age in Pradama StUdy. The younger rat 

model may have more anabolic response to PTH treatment. 

Although Roschger (Roschger P et aI., 2001) reported that alendronate increased 

the degree and uniformity of mineralization in cancellous bone of osteoporotic women, 

there was no sign in Pradma Study that the intrinsic mechanical property (maximum 

tensile stress) was affected by the changes of material properties (if there was any change 

of material properties). 

In the breaking tests, PTH significantly increased all measured parameters 

(breaking force, breaking yield force, breaking energy) compared with the OVX control 

group. Only breaking yield force was significantly increased by alendronate and no 

measured parameters were significantly increased by estrogen when compared with OVX 

control group. For the limited dosing that we investigated, the results of Pradama Study 

133 

• 



suggest that PTH is superior to alendronate and estrogen in the restoring the mechanical 

strength in the proximal metaphysis of the rat tibia. However, it would be necessary to 

study each drug over a wide range of doses to find the optimum dose for each drug 

treatment. Then, when compared, the superiority of one drug over another may be 

determined. Considering the facts that there were not significant differences in the whole 

bone volume fraction between these three drug groups and the fact that PTH improved 

the bone structure, Pradama Study confirms the commonly accepted opinions that the 

bone volume fraction cannot predict the bone mechanical competence precisely. It is 

better to evaluate the bone structure together with the bone volume fraction to help 

people to understand the effect of osteoporosis and the treatments. 
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CHAPTER 6. CONCLUSION 

The new cancellous and cortical bone segmentation method can segment 

cancellous bone from cortical bone automatically, accurately and precisely. There is no 

statistically significantly different between the result from the new method and that from 

the manual method. The variance of the results from the new method is significantly 

lower than that from manual method; 

Alendronate was the only treatment that resulted in increased cancellous bone 

volume fraction and whole bone volume fracion in Alendronate Study, in which the 

young animals were used. This result has interesting implications for the possibility of 

early intervention to prevent osteoporosis while there is still enough remaining scaffold 

of cancellous bone for significant recovery to be possible; 

The more traditional methods (Archimedes density measurements and three-point 

bending testing) show 5% or less differences between Sham group and OVX group. But 

for the same animals, the new methods (volume fraction, indentation testing, three-point 

breaking testing) can show up to 86% differences, indicating that the new methods are 

much more sensitive to distinguish the differences between sham, OVX and different 

drug treatments; 

The correlations between indentation test and cancellous bone volume fracion, 

and between breaking force and whole bone volume fraction, and between breaking yield 

force and whole bone volume fraction are good. However, the correlation with R2 around 
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0.55 is not strong enough to allow the sole application of bone volume fraction to predict 

mechanical properties accurately. For this reason, other image parameters are needed for 

the better correlation of destructive method using nondestructive method; 

Bone volume fraction explains most of the differences in cancellous bone 

strength. But the spatial arrangement of bone material and the tissue quality also play 

important roles in bone quality. It is better to combine both image analysis and 

mechanical tests to understand osteoporosis in cancellous bone. 
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