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ABSTRACT 

 
SLIDING MODE CONTROL OF ROBOTICS SYSTEMS  

ACTUATED BY PNEUMATIC MUSCLES 
 
                                                           Liang Yang 
 

     August 4, 2006 
 
      This dissertation is concerned with investigating robust approaches for the control 

of pneumatic muscle systems.  Pneumatic muscle is a novel type of actuator.  Besides 

having a high ratio of power to weight and flexible control of movement, it also 

exhibits many analogical behaviors to natural skeletal muscle, which makes them the 

ideal candidate for applications of anthropomorphic robotic systems.   

       In this dissertation, a new phenomenological model of pneumatic muscle 

developed in the Human Sensory Feedback Laboratory at Wright Patterson Air Force 

Base is investigated.  The closed loop stability of a one-link planar arm actuated by 

two pneumatic muscles using linear state feedback is proved.  

       Robotic systems actuated by pneumatic muscles are time-varying and nonlinear 

due to load variations and uncertainties of system parameters caused by the effects of 

heat.  Sliding mode control has the advantage that it can provide robust control 

performance in the presence of model uncertainties.  Therefore, it is mainly utilized 

and further complemented with other control methods in this dissertation to design the 

appropriate controller to perform the tasks commanded by system operation.  First, a 

sliding mode controller is successfully proposed to track the elbow angle with 

bounded error in a one-Joint limb system with pneumatic muscles in bicep/tricep 

configuration.  Secondly, fuzzy control, which aims to dynamically adjust the sliding 
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surface, is used along with sliding mode control.  The so-called fuzzy sliding mode 

control method is applied to control the motion of the end-effector in a two-Joint 

planar arm actuated by four groups of pneumatic muscles.  Through computer 

simulation, the fuzzy sliding mode control shows very good tracking accuracy 

superior to nonfuzzy sliding mode control.  

      Finally, a two-joint planar arm actuated by four groups of pneumatic muscles 

operated in an assumed industrial environment is presented.  Based on the model, an 

integral sliding mode control scheme is proposed as an ultimate solution to the control 

of systems actuated by pneumatic muscles.  As the theoretical proof and computer 

simulations show, the integral sliding mode controller, with strong robustness to 

model uncertainties and external perturbations, is superior for performing the 

commanded control assignment.  Based on the investigation in this dissertation, 

integral sliding mode control proposed here is a very promising robust control 

approach to handle systems actuated by pneumatic muscles.      
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CHAPTER I 
 

INTRODUCTION 
 
 
 
 

1.1 BACKGROUND 

 Actuators are indispensable for all robots to provide the forces, torques, and 

mechanical motions to move the joints, limbs, or body.  Actuators are generally 

electric, pneumatic, or hydraulic.  Today’s mechanical systems have such criteria for 

actuators as high power density, high power to weight ratio, rapid response, accurate 

and repeatable control, low cost, cleanliness and high efficiency. 

 An important area of robotics technology is concerned with the development 

of manipulators that can replace human beings in the execution of specific tasks.  

This makes such qualities as light weight, high power, and fast, accurate response 

even more important for actuators.  The pneumatic muscle (PMs) actuator, which 

possesses many of these advantages, is therefore considered an excellent candidate for 

robotic applications.  However, the inherent nonlinearities, time-varying parameters, 

and high sensitivity to payload of PMs make it a challenge for the accurate force and 

position control of manipulators employing these actuators. 

 This dissertation investigates sliding mode, fuzzy, and integral control 

techniques for control of robotic systems actuated by PMs.  Sliding mode control is a 

powerful robust control method widely used in variable structure systems, with the 

feature of strong insensitivities to system uncertainties and nonlinearities.  Fuzzy 

logic is one of the techniques of soft computing.  Since it utilizes vagueness in 

natural language and characterizes system behavior by using human knowledge and 
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experience, suboptimality and impreciseness can be accommodated, even when 

providing adequate control.  Fuzzy logic uses rules and membership functions to 

approximate nonlinear functions to any desired degree of precision, which makes it 

possible to provide quick, simple and sufficiently accurate control for complicated 

real-world systems.  The unique ability of integral control is to bring the controlled 

variable back to the exact set point following a disturbance.  To avoid instability, it is 

usually combined with another control method. This study will use sliding mode.  

 

1.2 OBJECTIVE 

 PMs have many characteristics suitable for the application of robot 

manipulators.  The dynamic behavior of the PM has been modeled as a parallel 

combination of a nonlinear dashpot, a nonlinear spring, and contractile element.  

Based on this outcome, mathematical models are developed for a one-joint and a 

two-joint robot manipulator.  However, the nonlinear and time varying features of 

PMs, including variations in load, cause discrepancies between the actual plant and 

the ideal mathematical model developed for controller design.   

 Sliding mode control (SMC) has the ability to tackle the parametric and 

modeling uncertainties of nonlinear systems.  The robustness to system uncertainties 

makes it an ideal candidate for the control of systems containing PMs.  In this research, 

a sliding mode controller is designed to force the end effector of a two-joint planar 

manipulator to track a spatial reference trajectory.  This proposed sliding mode 

controller makes the planar manipulator relatively insensitive to parameter 

fluctuations.   

 “Chattering” is a natural byproduct of the sliding mode approach.  It is 

caused by the control switches when the system state crosses a sliding surface.  

Chattering is undesirable because it increases control effort and excites 
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high-frequency modes of the system.  To reduce chattering, a boundary layer is 

usually introduced around the sliding surface.  However, the introduction of this 

boundary layer causes increased tracking error.  To decrease tracking error while 

reducing chattering, the control bandwidth in the sliding surface is adjusted according 

to the variance of tracking error.  

 Fuzzy logic, using natural language to describe system behavior, provides a 

simple and effective way to tune control bandwidth.  Accordingly, a so-called fuzzy 

sliding mode controller (FSMC) is designed for the two-joint robot manipulator.  

The performance of the planar manipulator controlled with FSMC is shown to be 

superior to that using standard SMC.   

 Since the robot manipulator is a physical system in real life, external 

perturbations may always be assumed to exist.  This requires an external noise 

component added to the previous model.  Based on this assumption, integral control 

is applied for disturbance rejection.  An integral sliding mode control approach 

(ISMC) is then used to combine the disturbance rejection benefits of integral control 

with the robustness properties of SMC.  Simulations show that ISMC has strong 

robustness to system parameter uncertainties and external disturbance throughout the 

process of control, giving excellent tracking accuracy with no chattering.  The 

conclusion can be drawn that the proposed ISMC is a promising candidate for the 

control of robot manipulators actuated by PMs. 

 

1.3 Dissertation Outline 

 Chapter 2 reviews the literature regarding the development of pneumatic 

actuators and pneumatic muscle, robotic manipulators and sliding mode control and 

its application.  References on control applications to robotics of PMs, fuzzy logic, 
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and integral control are included as well.  Chapter 3 gives the background 

knowledge of pneumatic muscle actuator and robotics technology.   Chapter 4 

overviews the relevant control methods used in this paper, which includes sliding 

mode control, fuzzy control and integral control.  Chapter 5 introduces the PM 

mathematical model used in this research.  The stability of a PM under closed-loop 

state feedback control is analyzed.  In addition, heating effects of the PM is 

addressed.   

 Chapter 6 discusses a two-link, single-joint robot manipulator actuated by 

antagonistic pneumatic muscle actuator groups.  Based on the derived model, a 

sliding mode controller is proposed to produce accurate tracking of the elbow angle.  

Simulations verify good tracking performance of the system under sliding mode 

control.  The chattering phenomenon is almost eliminated by introducing a boundary 

layer around the sliding surface.   

 Chapter 7 presents a three-link, two-joint robot manipulator actuated by four 

PM groups.  To improve tracking accuracy while maintaining robustness, the control 

bandwidth is tuned by using fuzzy logic, which results in two time-varying sliding 

surfaces.  This is the so-called fuzzy sliding mode approach.  Simulation results 

verify that the proposed fuzzy sliding mode controller has better tracking performance 

than nonfuzzy sliding mode controller for PM-actuated systems. 

 Chapter 8 further discusses the improvement of the two-joint robot 

manipulator described in Chapter 7.  The model is now considered to be corrupted 

with an external perturbation.  An integral sliding surface is formulated for 

disturbance rejection.  Simulations verify that the proposed integral sliding mode 

control method not only has strong robustness to system uncertainties and external 

perturbations but also makes tracking more accurate than traditional sliding mode 
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control while chattering is avoided as well.   

  Chapter 9 draws the conclusions based on the findings of previous chapters, 

and the main contributions of this dissertation are addressed. 
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CHAPTER II 
 

LITERATURE REVIEW 
 
 
 
  
 Research in pneumatic muscle actuators and their applications has been 

undertaken in many places.  Comer claimed a pneumatic muscle analog as his patent 

[65].  Being used in opposition, the artificial muscles synergistically assist each other 

and are easily controlled by the associated simple low-cost control systems.  Krauter 

invented a bistep terminator for pneumatic muscle, by which pneumatic muscle can 

withstand high axial tensile forces and high internal fluid pressures [66].  

The Intelligent Robotics Lab at Vanderbilt has developed a mobile robot 

powered by PMs, named ROBIN (for ROBotic INspector), which is used for 

inspection of many types of structures.  ROBIN’s advantages include light weight 

and high mobility, being able to walk on horizontal or vertical surfaces and step over 

obstacles.  Another PM system, the “Intelligent Soft Arm,” was also developed at 

Vanderbilt to provide actuation for an intelligent robotic aid system for the service 

sector such as hospitals and home.  The system is named ISAC, for Intelligent Soft 

Arm Control.  The main application of ISAC is to provide the sick and physically 

challenged person with means to live independently. [2, 3].   

 Work related to the physical properties and applications of PMs was studied at 

the University of Salford, U.K. [4, 5, 6, 7].  They found the bandwidth limit of PMs 

could be improved by reducing the dead volume within the muscle structure and 

ensuring effective air flow rates.  They also have developed new models and 

pneumatic muscle actuators with extremely high power/weight ratio and applied them 
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to bipedal and humanoid robots, quadruped robots etc.   

 The BioRobotics lab at the University of Washington has several research 

projects that utilize PMs [9, 10, 11].  The powered prosthetics project addresses the 

problem of amputee walking via a PM-powered prosthesis.  The lab is also 

concerned with issues such as finite-element modeling and fatigue properties of PMs.   

 In addition to the work mentioned above, there have been many other 

researchers investigating some aspect of PM control.  In [8], a classic nonlinear 

estimator algorithm was applied to nonlinear parametric identification of a McKibben 

artificial pneumatic muscle.  In [12], a pneumatic muscle-driven hand therapy device 

was developed for volitional activation of joint movement while providing related 

information about motion and muscle activity. 

 Much research regarding robot manipulators actuated by PMs has been carried 

out in recent years.  Noritsugu et al. in Okayama University, Japan, investigated PM 

actuation and control of rehabilitation robots [14, 15, 16].  They developed a 

pneumatic therapy robot, which is able to implement various motion modes by an 

impedance control strategy.  A pneumatic haptic interface was designed to realize 

information transfer as well.  In addition, they improve the control performance of a 

PM actuator with a variable damper using electrorheological fluid.   

 Similarly, a Multi-module Deployable Manipulator System (MDMS) was 

developed at the University of British Columbia [17].  In [18], a wheelchair-mounted 

pneumatic robot arm for disabled children was designed, consisting of a four-bar 

transmission mechanism driven by two Flexator actuators, which are similar to PMs.  

In [19], a cable-driven manipulator using pneumatic artificial muscle actuators was 

developed to control the orientation and insertion depth of an endoscope during 

abdominal surgery.  In [20], a retrieval rig was constructed by utilizing a 
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combination of a traditional human-manipulated pole and pneumatic muscle 

actuators.   

 Because the parameters of robot manipulators are dependent on the 

manipulator structure and the payload, it is very difficult to obtain exact values for 

them.  Therefore the investigations upon the effective control of robot manipulators 

have been carried on. In [67], on the basis of information of a third homogeneous 

transformation matrix, a manipulator can be controlled at a desired position and 

attitude in the absolute space irrespective of a condition of traveling on standstill of 

the moving body.  In [69], a calculation corresponding to a special algorithm of 

inverse kinematics is utilized the Jacobi Matrix in the control of a manipulator, which 

can be used in interactive path guidance of a manipulator.  

Furthermore, these parameters along with those of pneumatic muscle actuators 

themselves are nonlinear and time-varying.  Uncertainties, hence, always exist.  

Sliding mode control (SMC) has long been used for dealing with nonlinear uncertain 

systems, and many applications of SMC in conjunction with PM actuation can be 

found.  Gamble patents a control method and apparatus for a moveable control 

member [68].  The apparatus incorporates a sliding mode control system operable to 

maintain the state point of the moveable member on a predetermined non-linear 

hyperplane.  Yoneda proposes a way for maintaining a controlled system on a 

switching hyperplane regardless of the magnitude of disturbance [70].  In [22], a 

new position control algorithm based on sliding mode control, has been developed for 

a pneumatic cylinder as an actuator for robot manipulators.  In [23], the advantages 

and disadvantages of sliding mode control have been studied and compared with those 

of two other robust control methods.  In [24], for the trajectory control of robot 

manipulators, a sliding-mode control algorithm is used to estimate the unknown 
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parameter bounds.  In [25], a sliding mode control algorithm is designed for a 

benchmark direct-drive robot.  In [26], a sliding mode controller is developed for a 

two-link rigid robotic manipulator with uncertain modeling.  In [27], a decoupled 

sliding mode control algorithm is constructed for the position control of a PUMA 560 

robot arm.  In [28], for stabilization of robot manipulator systems with parameter 

perturbations, a new continuous sliding mode controller is designed.  In [29], a 

sliding mode controller based on motor angular speed control has been developed for 

a robot manipulator with payload variation. 

 In addition to standard SMC, this research also considers SMC combined with 

fuzzy logic as a possible improvement on the control of robotic systems actuated by 

PMs.  Since fuzzy logic collects human knowledge and expertise, it is an effective 

solution to handle control problems with unknown or poorly known models.  It can 

not only serve as an independent powerful control approach but also be a useful 

complementary tool for sliding mode control of robotics systems.  

 Many robotics control applications that exploit fuzzy logic have been 

investigated.  In [30], a fuzzy logic controller is proposed for a robot manipulator 

with uncertainties.  In [31], a fuzzy control system was show to be effective for 

motion tracking control of robot manipulators.  In [32], in order to guarantee both 

global stability and accurate performance, a fuzzy controller was designed for robust 

control of robot manipulators.  In [33], to compensate for unmodeled dynamics and 

reduce chattering, a sliding mode controller complemented with a fuzzy logic scheme 

is proposed for the trajectory control of a robot manipulator.  In [34], a sliding mode 

controller is introduced to the end effector position control of a manipulator.  A fuzzy 

weighting factor is considered to regulate control input for better position control and 

vibration reduction. 
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 For the elimination of tracking error, integral control is a very useful 

supplement to many other control methods.  Combined with sliding mode control, it 

shows good effectiveness in quite a few robotics applications.  At Universiti 

Tcknologi Malaysia, Ahmed et al. designed a series of sliding mode controllers, 

which take advantage of proportional-integral control to track the motion of robot 

manipulators [35, 36, 37].  In [38], the stability of a closed-loop system controlled 

with an integral sliding mode strategy is analyzed using Lyapunov stability theory.  

In [39], a class of integral sliding mode designs is addressed, having potential to be 

applied in a wide area.  In [40], a tracking motion control of a helicopter is studied to 

show that the proposed controller is able to guarantee system stability with robustness 

to uncertainties.  
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CHAPTER III 
 

INTRODUCTION TO PNEUMATIC MUSCLE ACTUATORS AND 
ROBOTICS 

 
 
 
 
3.1 INTRODUCTION TO PNEUMATIC MUSCLE ACTUATORS  

 

Pneumatic Actuators  

 Actuators are essential components in any control system, converting energy 

into mechanical form.  There are three main classes of actuators depending on the 

source of energy available: electric, pneumatic, and hydraulic.  The advantages and 

disadvantages of these types of actuators are listed in Table 1. 

 
Table 1  Characteristics of Major Actuators 

Actuators Electric Pneumatic Hydraulic 

 

Advantages 

 

1. quiet operation 

2. cheapness 

3. accuracy 

1. high power to weight 

ratio 

2. high bandwidth 

3. cheapness 

4. cleanness, safety of 

operation 

5. compactness 

1. high power 

capability 

2. high accuracy 

3. self-cooling 

 

Disadvantages

1. low power to 

weight ratio 

2. possible sparking 

1. difficult to control 

accurately 

2. compliance  

3. time delay 

1. highly nonlinear

2. less reliable 

3. dangerous if 

fails 

4. expensive  

  

    Typically, electrical actuators are better suited to high speed, low load 
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applications, while hydraulic actuators do better at low speed and high load 

applications.  Pneumatic actuators refer to the devices in which compressed air is 

used to control and operate equipment.  Pneumatic actuators are like hydraulic 

actuators except that they are not generally used for high payload.   

 Presently, more importance is placed on light weight, high power, and fast, 

accurate response in the field of robotics technology.  Traditionally, electrical and 

hydraulic actuators have been selected as the preferred drive mechanism, but these 

have well documented limitations, especially where compactness and high 

power/weight are needed for applications such as dexterous manipulation and multi 

degree of freedom arms.  In addition, both electrical and hydraulic actuator have 

such rigid behavior that they can only be made to act in a compliant (i.e. soft) manner 

at the cost of more complicated physical structures and control strategies. 

 Therefore, pneumatic actuators have become an important source of motive 

power for robot manipulators.  Nevertheless, robotic systems require accurate 

control of velocity or position of joints and links.  However, as mentioned above, the 

uncertain nature of pneumatic actuators render them unable to give satisfactory 

actuation for robotic applications.   

 

Pneumatic Muscle 

 The McKibben Artificial Muscle shown in Figure 1 [9, 10, 11] later built by 

Washington Biorobotics Lab, first appeared in the 1950s as part of an artificial limb 

system.  This actuator was later called the pneumatic muscle (PMs) because of its 

similarity to human muscle.  Some major advantages of PMs are spring-like 

behavior, extremely light weight and physical flexibility.  In addition, PMs exhibit 

many analogical behaviors to natural skeletal muscle, which makes them ideal for 

applications of anthropomorphic robotic systems. 



 13

 

 
  Figure 1 - McKibben Artificial Muscle.  

 

  
 

                       Figure 2 - Construction of PMs 

 

 As Figure 2 shows [48], a PM is composed of a flexible reinforced thin inner 

rubber tube covered by a double helix cordage braid which transforms a radial force 

into an axial contraction force.  The muscle has two ends; one is used for supplying 

air pressure inside the rubber tube while the second end is used for transferring the 

muscle force to an external object.  When pressure increases in the rubber tube, a 

contraction axial force is produced, with the length of rubber decreasing and radius 

increasing.  The force and motion generated thus are linear and unidirectional.  The 
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PM works similarly to human or animal muscle, in that a force or moment is only 

created through the action of a contraction.  When the tube is inflated, it widens and 

due to the braided sheath, the entire assembly shortens.  The force exerted when the 

muscle shortens is quite large in proportion to the muscle weight. 

 PMs have many exciting characteristics suitable for robotic applications.  In 

addition to exceptionally high power to weight and force to volume ratios, the actual 

achievable displacement, or “stroke” is dependent on the construction and loading but 

is typically 30 percent of the dilated length.  The pneumatic muscle is highly flexible, 

soft in contact and has excellent safety potential, which is comparable with the 

contraction achievable in natural muscle.  Energy efficiency in conversion of 

pneumatic to mechanical energy is up to 50 percent and the contractile force for a 

given cross-sectional area of actuator can be over 300N/cm2 compared with 

20-40N/cm2 for natural human muscle.  Finally, the actuators can operate safely in 

liquid, gaseous, or explosive environments. 

 In spite of PMs’ attractive features, the difficulty and accuracy of force and 

position control limits their widespread applications for robotic technology.  In 

addition, nonlinearities and time-varying system parameters caused by compliance 

and weave angle dynamics, which are inherent to PMs in the process of controlling 

force and position, presents a challenging problem for modeling and control.   

 

3.2 BASICS OF ROBOT MANIPULATORS  

 

Introduction to Robotics 

 Robotics has undergone an outstanding development over the past few 

decades due to the increasing demand for not only higher levels of productivity and 

quality regarding industrial activities but also for more advanced automation systems 
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by which tedious and potentially harmful tasks can be performed.  Robotics is an 

attractive interdisciplinary field of study involving materials, manufacturing, physics, 

electronics, statics and dynamics, control theory, etc.  The knowledge of materials 

and manufacturing is helpful for robot construction.  Physics and electronics are 

utilized to design sensors and interfaces.  Statics and dynamics are used to describe 

the behavior and control theory provides methodologies for designing algorithms to 

implement desired motions.   

 
Figure 3 - Simplified structure of robot manipulator 

 

 The Robotic Industries Association defines an industrial robot i.e. robot 

manipulator, as follows: An industrial robot is a reprogrammable, multifunctional 

manipulator designed to move materials, parts, tools, or specialized devices through 

variable programmed motions for the performance of a variety of tasks.  A robot 

manipulator can be modeled as a chain of rigid links, which are interconnected to 

each other by joints as illustrated in Figure 3 [58].  Generally, one end of the chain is 

fixed to a base and the other end, called the end-effector, is free to move.   

 It is crucial to be able to position the end effector in the right place at the right 

instances in the process of performing a task.  In other words, to control a robot 

manipulator is to make its end-effector follow a preplanned desired path to handle 

Joint 

Link 

End-Effector 

Base 
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objects in the workspace.  For such a path-planning problem, many issues need to be 

addressed, such as keeping the planned path within the voltage and torque limitations 

of the actuators and avoiding obstacles.   

 In order to design the motion of the end-effector, the relationship between it 

and the joint angles must be formulated.  Given the joint variables of a robot 

manipulator, to determine the position of the end-effector regarding a coordinate 

frame attached to the robot base is the so-called direct kinematics problem.  The 

solution to the direct kinematics problem is quite useful since it gives an explicit 

relationship that shows the dependence of the end-effector position on the joint 

variables.  A systematic procedure called the Denavit-Hartenberg algorithm is the 

general method to solve the direct kinematics problem.  

 Conversely, to determine the joint variables given a desired position of the 

end-effector is called the inverse kinematics problem.  The latter is important 

because robot manipulation tasks are usually formulated in terms of the desired 

end-effector paths and positions.  The inverse kinematics problem is also more 

difficult due to the fact that a systematic closed-form solution is generally not 

available.  In addition, the closed-form solutions may not be unique; that is, different 

joint variables may yield the same position value for the end-effector, and the 

manipulator controller has to be able to choose one according to some criteria. 

 

Inverse Kinematics of Planar Arm  

 A robot manipulator is considered solvable if the joint variables can be 

determined by an algorithm that is able to determine all the sets of joint variables 

corresponding to a given end-effector position.  
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Figure 4 - Configuration of planar arm 

     The two-link planar arm is one typical kind of robot manipulator, the design 

principle and analysis procedure of which are very helpful for understanding more 

complicated manipulators.  The solution to the planar arm direct and inverse 

kinematics is well known [58].  The configuration of a two-joint planar arm is 

depicted in Figure 4 [58].  In Figure 4, il  denotes the length of link i , cil denotes 

the distance from the previous joint to the center of mass of link i (center of mass is 

denoted by a dot), and iI  denotes the moment of inertia of link i  about an axis 

coming out of the page, passing through the center of mass of link i . 

 The dynamics of this system is described by  

 

              τθθθθθθ =++ )(),()( fCD &&&&                        (3.1) 

 



 18

where T],[ 21 θθθ =  is the vector of joint angles and T
es ],[ τττ =  is the vector of 

input torques.  The nonsingular inertia matrix )(θD  is  
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with .sin 2212 θcllmh −=   The vector )(θf  in (3.1) is given by [ ]Tfff 21  ,)( =θ  

where  

 

 )cos(cos)( 2122112111 θθθ +++= glmglmlmf cc                (3.5a) 

 )cos( 21222 θθ += glmf c                                  (3.5b) 

 

and g is the acceleration of gravity.  

 If desired end-effector spatial trajectories )( ),( tytx dd are given, then from the 

inverse kinematics of the planar arm, it is well known [13] that these spatial path 

requirements are equivalent to required joint trajectories of  
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 In a robot system, there are many uncertainties such as changing parameters 

i.e. inertia and payload variations.  Traditional linear controllers have many 

difficulties in dealing with these uncertainties.  It is even more challenging to control 

robot manipulators if they are actuated by PMs because the actuators themselves have 

nonlinear and time-varying characteristics.  Therefore, two control approaches 

known to be robust to model uncertainties, sliding mode control and fuzzy control, are 

applied for control of robotic manipulators actuated by PMs.  
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CHAPTER 4  
 

 OVERVIEW OF CONTROL METHODS USED IN THIS RESEARCH 
 
 
 
 

4.1 SLIDING MODE CONTROL 

 

Introduction 

 Systems with structural uncertainties or very complicated structures are 

difficult to control.  Modeling of the uncertainties or handling the deterministic 

complexity are typical problems encountered frequently in the field of systems and 

control engineering.  It is well known that the most precise detailed model leads to 

more complicated structure hence the cost increases dramatically.  On the other hand, 

since stability and robustness are of crucial importance in control engineering practice, 

implementation oriented control engineers endeavor to make a control design 

insensitive to environmental disturbances and structural uncertainties.  

 One way of dealing with uncertainties without the use of complicated models 

is to introduce robust control theory into the system control design.  The typical 

structure of a robust controller is composed of both a nominal part, similar to a 

feedback control law, and additional terms for dealing with model uncertainty.  

Sliding mode control is one important type of robust control.  Model imprecision 

may come from actual uncertainty about the plant or from a purposeful simplification 

of the system’s dynamics.  Modeling inaccuracies can cause strong adverse effects on 

the control design of nonlinear systems.  For the class of systems to which it applies, 

sliding mode controller design provides a systematic approach to the problem of 
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maintaining stability and consistent performance in the face of modeling imprecision.   

 The idea of sliding mode control is to achieve some desired control 

performance described by a predefined surface called the sliding surface.  The 

sliding surface is a surface in the state space containing the desired operating point.  

In general, two phases are involved during the operation of sliding mode control.  In 

the first phase, or reaching phase, the system states are brought from their initial 

conditions to the sliding surface.  In the second phase, or sliding phase, the states 

move along the sliding surface to the desired operating point, thus making the system 

obtain the desired performance. 

 Sliding mode control is essentially a high-speed switched feedback control.  

The switching control law drives the state trajectory of the nonlinear system onto the 

sliding surface in the state space and maintains the state trajectory on this surface for 

all subsequent time.  The feedback switches based on a rule determined by the state 

variables at each instant.  Specifically, when the state trajectory is on one side of the 

surface, feedback path has one gain and a different gain if the trajectory crosses the 

surface.  Obviously, the sliding surface defines the rule for proper switching.   

 

Sliding Mode Control Design 

 For stability purposes, the most important task is to design a sliding mode 

control law that will drive the system state to the sliding surface and maintain it on the 

surface once it has been reached.  A Lyapunov approach is generally used to regulate 

the motion of the system trajectory to the sliding surface.  The sliding mode control 

law chooses the gain for each switching so that the derivative of a Lyapunov function 

is negative definite, which guarantees motion of the system trajectory to the surface.  

Once the sliding surface is properly designed, the resulting controller forces the 

system trajectory to approach the sliding surface such that the system state variable is 
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driven to and maintained on the sliding surface.  

 Consider the following second order single-input nonlinear dynamical system 

[21]: 

 

 ( ) buxxfx += &&& ,                               (4.1) 

 

where x  is the scalar system state and u  is the scalar control input.  Suppose the 

dynamics f  is not exactly known but is estimated as f̂ .  Let ( )xxF &,  be a 

positive function such that  

 

 Fff ≤−ˆ                                 (4.2) 

 

 The nonunity control gain b  is unknown but of known bounds 

maxmin0 bbb ≤≤< .  Choose the estimation b̂  of gain as the geometric mean of the 

above bounds: 

 maxmin
ˆ bbb =                                 (4.3a) 

                 )/( minmax bb=β                             (4.3b) 

                 ββ ≤≤ −− 11 b̂b                               (4.3c) 

 

 Let ( )txd  be the desired state trajectory, and define tracking error dxxx −=~ .  

Define the sliding surface ( )ts  as   

                      xxs ~~ λ+= &                                   (4.4) 

 To eliminate chattering, consider a boundary layer enclosing the switching surface 

0},);(,{)( >ΦΦ≤= txsxtB  and define a function  

 

                uFk ˆ)1()( −++= βηβ                          (4.5) 
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where )~ˆ(ˆ xxfu d
&&& λ−+−=  and η  is a positive constant.  The sliding mode control 

law is then proposed [21]:  

 

                1ˆ))/(satˆ( −Φ−= bskuu                           (4.6) 

 

where Φ  is the boundary layer thickness and sat is the saturation function, defined 

as: 
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 Then the following basic result is acquired concerning the tracking 

performance of the sliding mode controller outlined above. 

 

 Theorem 1:  The sliding mode control law (4.6) applied to the uncertain 

nonlinear system (4.1) results in  

 

 ( ) ( )
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 Proof:  Differentiating (4.4), we obtain 

 

 xxfbus d
&&&& ~λ+−+=                               (4.9) 

 

Substituting (4.6) into (4.9) gives 

  

 )/(ˆ)~)(ˆ1(ˆˆ 111 Φ−+−−+−= −−− sksatbbxxbbfbbfs d
&&&& λ               (4.10) 
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Noticing that ββ ≤≤ −− 11 b̂b and β≤1 , we have 

 

 xxfbbbbFbbk d
&&& ~ˆ)1ˆ(ˆˆ 111 λη +−−++≥ −−−                       (4.11) 

 

Since )ˆ(ˆ ffff −+=  where Fff ≤− ˆ , this gives 

 

 111 ˆ)~)(1ˆ(ˆˆ −−− ++−−+−≥ bbxxbbffbbk d ηλ &&&                   (4.12) 

 

In particular,  

 

   111 ˆ)~)(1ˆ(ˆˆ −−− ++−−+−= bbxxbbffbbk d ηλ &&&                   (4.13) 

 

Substituting (4.13) into (4.10), we have 

 

)/(sat))~)(ˆ1(ˆˆ()~)(ˆ1(ˆˆ 1111 Φ++−−+−−+−−+−= −−−− sxxbbfbbfxxbbfbbfs dd ηλλ &&&&&&&

  

(4.14) 

 

  First, consider the case that the trajectory )(tx  is outside ( )tB , then (4.14) 

becomes 

 

)sgn())~)(ˆ1(ˆˆ()~)(ˆ1(ˆˆ 1111 sxxbbfbbfxxbbfbbfs dd ηλλ ++−−+−−+−−+−= −−−− &&&&&&&  

(4.15) 

 

which is then rewritten as: 

 

               )sgn()( swws η+−=&                           (4.16) 
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where )~)(ˆ1(ˆˆ 11 xxbbfbbfw d
&&& λ+−−+−= −− .  In this case  
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i.e. the trajectory approaches the boundary layer. 

 Secondly, consider the case that s  is inside ( )tB .  In this case (4.14) 

becomes: 

 

)/)()~)(ˆ1(ˆˆ()~)(ˆ1(ˆˆ 1111 Φ++−−+−−+−−+−= −−−− sxxbbfbbfxxbbfbbfs dd ηλλ &&&&&&&  

(4.18)  

which can be rewritten as: 

 

                )/)(( Φ+−= swws η&                           (4.19) 

 

Then  
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Therefore, (4.17) and (4.20) imply that no matter what initial condition is, we always 

have  
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 0
2

1 2 <−≤= ssss
dt

d
η&                             (4.21) 

 

 Consider an arbitrary point ( )xx &,  and let reacht  be the time taken for the 

system trajectory to reach the surface from this point.  Integrating (4.21) from 0=t  

to reacht  and considering initial points ( )xx &,  outside ( )tB  results in 

 

                ( )0
1

st
reach η

≤                                 (4.22) 

 

It can be conclude from (4.22) that from any initial state ( )xx &, , the control law forces 

the state trajectory to reach the surface in a finite time. 

 Furthermore, from (4.4), it leads   
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Letting 
dt
d

p = , then 
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Therefore   
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Since ,)( Φ≤ts  this implies 
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      ∫ Φ≤−Φ=Φ≤≥∀ −−−t tTt edTetxt 0
)( /)1)(/()(~    ,0 λλ λλ       (4.26) 

  

It can be concluded from (4.26), that the state trajectory, once reaching the sliding 

surface, remains inside a neighborhood of the desired trajectory.   

 Therefore, the state trajectory reaches the boundary layer in a finite time no 

matter what initial state is and stays inside it for all later time.  Hence, asymptotic 

tracking within a guaranteed accuracy is obtained in spite of modeling errors.  

  

Chattering Phenomenon 

 Since it is undesirable for the control action to be switched at high frequencies, 

the ideal sliding mode control law is impractical in practice.  Due to switching 

imperfections such as the bandwidth limit of switching, switching time delays and 

small time constants in the actuators, the discontinuity in the feedback control causes 

high frequency oscillation in the vicinity of the surface.  This is the phenomenon of 

chattering.  

 Since chattering involves high control activity and may excite unmodeled high 

frequency dynamics, chattering degrades the system performance and may even lead 

to instability.  In addition, chattering could cause high wear of moving mechanical 

components and bring high heat losses in electrical power circuits.  Chattering is 

obviously undesirable in practice.  Therefore, the solution of the chattering problem 

is very important when implementing a sliding mode controller in a real life system.   

 To mitigate chattering, the ideal sliding control law is modified to include a 

“boundary layer” about the sliding surface.  Instead of switching discontinuously 

across the sliding surface, the control is linear inside the boundary layer.  The 
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boundary layer eliminates chattering at the expense of greater tracking error.   

 

4.2 FUZZY CONTROL 

 Fuzzy logic is a method of machine reasoning that recognizes degrees of truth 

rather than simple true and false values.  Since fuzzy logic incorporates human 

knowledge and intelligence, it has strong learning and cognitive ability and good 

tolerance to uncertainty and imprecision.  Conventional model-based control 

involves precise mathematical modeling of a system’s dynamics.  That is, a 

model-based control law can only work well by the prerequisite that the model does 

meet the requirements of accuracy.  However, for systems like robotics applications 

that are very complicated, highly nonlinear, and with parameter uncertainty, 

conventional control methods are frequently inadequate.  The fuzzy logic-based 

approach to solving such control problems has been found to be superior to 

conventional control methods in such cases.   

 A fuzzy logic controller is generally considered as an expert system that 

exploits fuzzy logic to analyze input to output performance.  Essentially, it specifies 

a linguistic control strategy from expert knowledge.  In fuzzy control, nonlinearity is 

handled by rules, membership functions, and the inference process.  As a result, by 

using fuzzy logic, designers can realize lower costs and better system performance.  

 A fuzzy logic controller normally consists of three stages: an input stage, a 

processing stage, and an output stage.  The input stage maps inputs into fuzzy sets.  

The processing stage maps input fuzzy sets into output fuzzy sets using a rule base, 

which is a set of linguistic rules describing the controller’s operation.  Finally, the 

output stage converts the output fuzzy sets acquired in the processing stage back into 

a crisp output value using defuzzification.   

 Among these three stages, the processing stage is the most important.  
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Depending on the practical situation, it contains logical rules in the form of IF-THEN 

statements, where the IF part is called the "premise" and the THEN part is called the 

"consequent."  In practice, the fuzzy rules usually have several parts to the premise 

that are combined using fuzzy operators, such as AND, OR, and NOT.  The total 

number of fuzzy sets depends on how to appropriately cover the universe of discourse 

of an input value while the shapes of the membership functions depend on the nature 

of the variables they specify.  Typical shapes commonly used as membership 

functions are triangular, trapezoidal, and Gaussian.  

 For the defuzzification, several different methods are available to obtain a 

crisp value from the output fuzzy sets.  One of the most common and simplest is the 

center-average inference method, in which the output membership function is 

tempered by the truth value of the premise.  Another commonly used method is the 

center of gravity method, in which the center of gravity of all output fuzzy sets is 

calculated to obtain the crisp output.   

 Since fuzzy control exploits natural language to mimic human logic, it has 

proved to be better for sorting and handling data than traditional nonfuzzy methods 

and has been proven an excellent choice for many control system applications  

 

4.3 INTEGRAL CONTROL  

 Integral control computes the error between actual and desired output and 

integrates this error.  With integral action, the controller output is proportional to the 

amount of time the error is present as well as its magnitude, hence ideally the steady 

state error for a closed-loop integral control system is zero.  However, integral 

control responds relatively slowly to an error signal and can initially allow a large 

tracking errors.  This could lead to system instability and cyclic operation.  

Therefore, integral control is normally implemented in combination with other control 
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methods instead of being used alone.   
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                              CHAPTER V 

 
       BASIC STATE FEEDBACK CONTROL OF PNEUMATIC MUSCLE 

 
 
 

 

5.1. DYNAMICAL BEHAVIOR OF PNEUMATIC MUSCLE 

 Most biological materials display gradual deformation and recovery, i.e. 

viscoelastic behavior, when loaded and unloaded respectively.  Therefore, 

viscoelastic models are often exploited to describe dynamics of muscle.  In the 

model, a spring and dashpot are usually used to simulate the properties of elasticity 

and viscosity, respectively.  More in detail, the spring causes deformation 

proportional to the payload at any instance while the dashpot deforms proportional to 

the velocity of the load.   

 The properties of a pneumatic muscle system were studied in the Human 

Sensory Feedback Laboratory at Wright Patterson Air Force Base, Dayton, Ohio [41].  

This particular PM has an inner bladder made from a section of 22.2 mm diameter 

bicycle tubing enclosed in a helically-wound nylon sheath used for supporting 

electrical cables.  The unstretched, uncompressed diameter of the sheath is 31.75 

mm.  The PM is inflated by supplying voltage to a solenoid that controls the flow of 

pressurized gas into the rubber bladder.  It is deflated by exciting another solenoid 

venting the contents of the bladder to the atmosphere.  When inflated, the PM 

shortens due to the braided plastic sheath.  Figures 5 and 6 show a PM hanging 

vertically actuating a mass [41, 48]. 

 This PM system was investigated using an apparatus that allows precise 

actuation pressure control by a linear servo-valve.  The length of the PM was 
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measured by a linear potentiometer. 

 
 

 

  Figure 5 - Experimental apparatus for a PM actuating a mass. 

                                         

 

             
              Figure 6 - Equivalent diagram for a PM actuating a mass. 

 

       The dynamic behavior of this PM system is modeled as a parallel 

arrangement of a contractile element )(PF , spring element )(PK , and damping 

element )(PB  (see Figure 7).  All three elements have pressure-dependent 
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coefficients.  This pressure can be commanded externally by varying the voltage 

supplied to the inlet valve. 

 

 

 

 

 

 

 

 

 

 

 

  Figure 7 - Three-element model of the PM actuating a mass 

 

 Let x be the amount of PM contraction, with 0=x corresponding to the PM 

being fully deflated and extended and x increasing as the PM contracts.  Let )(tP  

indicate the pressure in the supply line of PM.  Then the dynamical equation for the 

system of Figure 7 is 

 

          MgtPFxtPKxtPBxM −=++ ))(())(())(( &&&                 (5.1) 

 

where M  is the load mass, g is the acceleration of gravity, and )(PF , )(PK , )(PB  

are the contractile coefficient, spring coefficient, damping coefficient respectively, 

which are given in [41] as: 
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The actuation pressure )(tP  applied to the model must remain within the range 

206.8 – 620.5 kPa (30 -90 psi) for the coefficients in (5.2) to be valid. 

 From (5.1), the total force exerted by the PM on the mass is 

xtPKxtPBtPF ))(())(())(( −− & .  If several PMs are present, each one generally has 

its own actuation pressure )(tP  hence its own ))(( tPF , ))(( tPK , ))(( tPB coefficients, 

and its own inflation or deflation status.  Note that for the PM model (5.1), the input 

is actuation pressure )(tP , which enters into the model through the PM coefficients.   

 First, investigate the stability of the system of Figure 6 under simple linear 

state feedback.   

 

 Theorem 2:  There is a linear state feedback control law which locally 

stabilizes the PM lifting a mass described by (5.1). 

 

 Proof:  Substituting (5.2) into (5.1) yields: 

 

   gMPFFMxPKKxPBBx −+++++−= /)(/))()(( 101010 &&&           (5.3) 

 

Defining states xxxx &== 21   , , (5.3) can be rewritten as: 

 

            ),,( 21 PxxfX =&                                    (5.4) 

 

where 

 

 TxxX ] [ 21=                                       (5.5a) 

 TgMPFFMxPKKxPBBxf ]/)(/))()((    [ 101102102 −+++++−=      (5.5b)

  

 In order to transform the equilibrium point to the origin of the state space, let 
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0

0

K
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−=  and define yyyy &== 21   , .  Then defining TyyY ]    [ 21= , (5.4) 

becomes: 
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Linearizing (5.6) at the equilibrium point TTyy ]0  ,0[]  [ 21 =  and 0=P , we obtain:  
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 Now consider the linear state feedback control law: 

   

 21 cyyGYP +==                                (5.9) 

 

where 

 

                        [ ]1   cG =                             (5.10) 

 

and c  is a real constant. 

 Now, the closed-loop dynamics can be linearly approximated as: 

 



 36

 YBGADYY )( +==&                            (5.11)
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It is straightforward to show that the eigenvalues of D  are 
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Substituting (5.2) into (5.13), we have  
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It can be verified that 2,1λ  are strictly in the left-half complex plane provided: 
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Choosing the worst case for 0B , i.e. 6.00 =B , and 1.0=c , (5.15) leads to: 

 

                     kg2.100<M                             (5.16) 

 

 Referring to [41], the maximum load applied to the system is 898/9.8= 91.6Kg, 
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which satisfies (5.16).  Thus, as long as (5.16) is satisfied, the linearized system 

(5.11) is stabilized with the linear state feedback law (5.9).  

 Therefore, by Lyapunov’s indirect (linearization) method, we also have that 

the equilibrium point TTyy ]0  ,0[]  [ 21 =  is (locally) asymptotically stable for the 

actual nonlinear system (5.6), i.e., TT

K
MgFxx ]0  ,[] [
0

0
21

−
=  is asymptotically stable 

for the original nonlinear system (5.4).   

    

5.2. EFFECT OF HEAT ON PNEUMATIC MUSCLE 

 Heating is an important factor which could affect the dynamical behavior 

(model parameters) of PM systems.  PM is prone to suffer the effect of heating 

because the key component inside pneumatic muscle is a rubber bladder, which is also 

well known to be insulated and poor at heat transfer.  During the repetitive operation 

of inflation and deflation, the inner rubber bladder generates elastic deformation 

frequently.  A loss of energy occurs along with this process, which results in heating 

of the rubber.  The generated heat energy is difficult to emit out from the rubber 

hence it accumulates, which makes the temperature of the rubber bladder rise 

throughout the process of operation.  As a result, the mechanical capability of the 

pneumatic muscle degrades, i.e., the friction between the outer sheath and the rubber 

bladder is lessened as well as thickness of the rubber ladder.  As a consequence, the 

spring capability is reduced.  In addition, both contractile force and damping ratio 

are lessened.  Hence, the characteristics of PMs change if the PMs are operated for 

an extended period of time.  In other words, all related coefficients of the PM i.e. 

10 , FF  etc. in (5.2) are assumed to decrease slowly when the PM is operated for an 

extended time.  
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CHAPTER VI  
 

SLIDING MODE TRACKING CONTROL OF A ONE-JOINTMANIPULATOR 
WITH PMS IN BICEP/TRICEP CONFIGURATION 

 
 
 
 
6.1  MODELING OF A ONE-JOINT LIMB WITH PM IN BICEP/TRICEP CONFIGURATION  

 As stated in [41], the physical and modeling properties of a certain kind of 

pneumatic muscle (PM) have been studied at the Human Sensory Feedback 

Laboratory in Wright Patterson Air Force Base, Dayton, Ohio.  Research indicates 

that a three-element model can describe the dynamics of PM.  The PM system was 

investigated using an apparatus that allowed precise actuation pressure control by a 

linear servo-valve, meanwhile, length change of the PM was measured by a linear 

potentiometer.  The results showed that the PM could be represented as a model with 

contractile element, spring element, and damping element in parallel.  All three 

elements have pressure-dependent coefficients for actuation pressure in the range 

206.8 – 620.5 kPa (30 - 90 psi).  

 Figure 8 shows an anthropomorphic arm actuating a mass, with PMs in the 

position of a bicep/tricep pair [46].  The upper arm remains stationary as the PMs 

expand and contract, moving the forearm.  The upper ends of the bicep and tricep are 

attached to a motionless reference point.  The mass is held at the end of the forearm 

(i.e. hand).  The forearm, which is considered massless, is attached to the upper arm 

by a frictionless planar revolution joint.  The PMs are attached to the forearm at 

point A, which is a distance a from the joint.  The distance from the center of mass 

of the load to the joint is L.   
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Figure 8 - Single-joint planar manipulator with PMs in bicep/tricep configuration 

 

 The forearm is free to rotate through an angleθ , where o0=θ corresponds to 

the tricep being fully shortened while bicep is fully lengthened, and 

o180=θ corresponds to the tricep being fully lengthened while the bicep is fully 

shortened.  For simplicity, the PM force is assumed to always act parallel to the 

forearm.  This is valid as long as θ  is not close to either of its extremes.  

 Let subscripts b denote bicep PM coefficients and subscripts t denote tricep 

PM coefficients.  Also, let bx  denote bicep PM length and tx  denote tricep PM 

length.  Since the total clockwise torque exerted by the bicep on the elbow is 

θsin)( axKxBF bbbbb −− & , the total counterclockwise torque exerted by the tricep on 

the elbow is rxKxBF ttttt )( −− &  and the counterclockwise torque imparted to the 

elbow by gravity is θsinMgL , the dynamics of the system of Figure 8 are described 

by:  

     

 θθθ sin)(sin)( MgLrxKxBFaxKxBFI tttttbbbbb −−−−−−= &&&&            (6.1) 

 

Bicep PM 

M 
L

a
A

θ
Fb

Ft

Tricep PM
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where 2MLI =  is the moment of inertia of the mass about the elbow and g is the 

acceleration of gravity.  Note that, since the bicep force is multiplied by θsina  the 

bicep loses controllability at o0=θ  and o180=θ .  Thus, the arm should be kept 

away from these extremes.  The tricep does not have this limitation because its cable 

always makes an angle of ( )a
r1sin −=α  with the arm regardless of θ . 

 As shown in (5.2), we use PFFF 10 += , PKKK 10 += , and PBBB 10 +=  

where 39.11 =F , 71.50 =K , 0307.01 =K , and 10 , BB  depend on whether the PM 

in question is being inflated or deflated [41], as follows:  

 

 
⎩
⎨
⎧

=
deflation  , 0.6  
inflation 1.01,

0B ,    
⎩
⎨
⎧

=
deflation  , 0.000803- 

inflation  , .006910
1B                 (6.2) 

                                                                 

The internal bicep and tricep pressures bP  and tP  are the control variables that can 

be independently commanded by the controller as inputs to the system.  Thus this is 

a 2-input system.  Note that the PM dynamics depend on whether the PM is being 

inflated or deflated.  Obviously, (6.1) is in an unusual form for control since the 

control inputs enter into the system through the coefficients F , B , and K  and not 

as a separate term. 

 To convert this 2-input system to a single-input system, it is assumed that the 

bicep and tricep internal pressures are given by 

 

 pPPb ∆+= 0                              (6.3a) 

 pPPt ∆−= 0                              (6.3b) 

where 0P  is a nominal constant pressure and p∆  is the change in pressure which is 

now the independent control input.  Note that, with PM pressure defined as in (6.3), 

one PM inflating always corresponds to the other deflating.  Therefore, one set of B 
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parameters (say inflation) will apply to one of the PMs while the other set (deflation) 

applies to the other PM at a given time.  When the inflation status of the PMs 

changes, they trade B parameters.  We denote the bicep B coefficients as bB0  and 

bB1 , and the tricep B coefficients as tB0  and tB1 . 

 When either PM is fully lengthened, its length is defined as zero, and when it 

is fully shortened, its length is defined as a2−  (i.e. x is the amount of PM 

shortening).  Therefore, from Figure 8, the bicep length is  ( )1cos −= θaxb  and 

the tricep length is ( )θcos1 +−= atx .  Combining (6.1) with the above relationships 

for F, B, and K, the following 2nd order equation is obtained to describe the system of 

Figure 8: 

 

 ( ) ( ) p,b,f ∆+= θθθθθ &&&&                           (6.4) 

 

where 

 

 ∑=
=

6

1
),(),(

i
ii fcf θθθθ &&                              (6.5a)

 ),(),(
6

1
θθθθ &&

i
i

i fdb ∑=
=

                               (6.5b) 

In (6.5), θsin1 =f , )1(cossin2 −= θθf , θθ 2
3 sin&=f , 14 =f , θcos15 +=f , 

θθ sin6
&=f , IMgLPaFaFc /)( 0101 −+= , IaPKKc /)( 2

0102 += , 

IaPBBc bb /)( 2
0103 −−= , IrFPFc /)( 0014 +−= , IarPKKc /)( 0105 += , 

IarPBBc tt /)( 0106 −−= , IaFd /11 = , IaKd /2
12 = , IaBd b /2

13 −= , 

IrFd /14 = , IarKd /15 −= , and IarBd t /16 = .  

 The model (6.1) is now in a form suitable for sliding mode control (4.1). 

 

6.2 SLIDING MODE CONTROL FOR PLANAR LIMB MODEL  
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 Due to the imperfect knowledge of coefficients ,0F ,1F ,0K ,1K ,0B  and ,1B  

),( θθ &f  and ),( θθ &b  in (6.4) must be assumed to be imprecise.  Assume the extent of 

the imprecision on ),( θθ &f  can be bounded by a known continuous function of 

θθ & and  and that the extent of the imprecision on ),( θθ &b  can be bounded by a known, 

continuous function of θθ & and  as described in Chapter 4.  The control problem is to 

get the joint angle ( )tθ  to track a desired trajectory ( )tdθ  in the presence of model 

imprecision on ),( θθ &f  and ),( θθ &b .  Then the following result is acquired 

concerning sliding mode control of the single joint planar arm system [64].          

 

 Theorem 3:  Consider the single-joint planar arm system of Figure 8, 

modeled by (6.4).  Let ),(ˆ θθ &f  and ),(ˆ θθ &b  be approximations of f  and b  as 

described in Chapter 4.  Then, the sliding mode control  

 

 1ˆ))/(sat~ˆ()( −Φ−−+−=∆ bskftp d θλθ &                          (6.6)  

 

results in tracking error which is bounded by 

 

          ( ) ( )
λ

θθ
Φ

≤−
≥∞→

tt d
ttt
00

suplim                               (6.7) 

where Φ  and λ  are arbitrary positive constants.  Furthermore, the control effort is 

bounded by 

 

          
)ˆinf(

2)sup()ˆinf()(suplim
00 b

ftp d

ttt

Φ++−
≤∆

≥∞→

λθ                  (6.8) 

 

 Proof:  The bound on tracking error (6.7) is direct from Theorem 1 in 

Chapter 4.  The bound on control effort is a straightforward consequence of (6.8), 

(4.5), and (4.6). 
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6.3 SIMULATION RESULTS 

 The system of Figure 8 with PMs in bicep/tricep pair configuration is 

simulated using a 4th-order Runge-Kutta algorithm with a step size of 0.01seconds.  

Let L =0.46 m , a = 7.62 cm, M = 14.6 kg, and r = 5.08 cm.  Since a =7.62 cm, the 

full travel of the forearm from 0=θ (arm fully straightened) to πθ =  (arm fully 

bent) corresponds to a maximum change in length of the PM of 15.24 cm. 

 First, consider the desired trajectory for the joint:  

 

 ))2sin()2sin()2(sin(5.0
2

)( 321 tftftftd ππππθ +++=                      (6.9) 

 

with Hz,02.01 =f ,Hz05.02 =f and Hz.09.03 =f  This trajectory spans joint angles 

from approximately o30  to o150  during the time period t = 0 – 60 sec. 

 Let λ  = 10 and η = 10 (chosen by trial and error to yield good performance).  

The chosen boundary layer thickness is 1=Φ .  From Theorem 3, 
λ

ε Φ=  is the 

guaranteed tracking precision.  Therefore, for this simulation we have 1.0=ε .   

 Assume that the true values of ),( θθ &f  and ),( θθ &b  in (6.4) are known to 

fall within ± 30% of the best estimates we have of them, i.e. ),(ˆ θθ &f  and ),(ˆ θθ &b .  

Then we have fF ˆ3.0= , bb ˆ3.1max = , bb ˆ7.0min = , and the gain margin β  is 

determined as 1.86 from (4.3b). 

 The sliding control input to the PM is given in (6.6) with parameters defined 

as above.  For the simulation, the actual ),( θθ &f  and ),( θθ &b  terms were randomly 

chosen to lie within %30±  of their modeled values.  Figure 9 shows the tracking 

errors for three different sets of f and b within this range.  It is seen that for all 

systems the tracking error is within predicted bounds, with areas of maximum error 
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corresponding to θ&  changing signs, i.e. places where the arm motion has to change 

direction.  This is especially noticeable when the arm must change from a downward 

motion to an upward motion.   

 Figure 10 shows a typical control effort p∆  with kpa 344.70 =P .  It is 

evident that input pressure varies smoothly without any obvious chattering.  

Therefore, by using the sliding mode controller, the PM system achieves desired 

performance with good tracking precision and no obvious chattering for all three 

systems which may represent the true arm with PMs in bicep/tricep pair 

configuration. 

 

 

 

  

 

 

 

 

 

 

 

   

 

  

Figure 9 - Tracking errors for three possible actual arms, kg6.14=M  
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Figure 10 - Typical control effort p∆ , kg6.14=M  

 

 To investigate the robustness of the sliding controller to changing masses, we 

increased the mass M to 29.2 kg, i.e. an increase of 100%.  Figure 11 shows tracking 

errors for three different actual arms randomly chosen within the %30±  range.  

Tracking is again within predicted bounds.  Figure 12 shows a typical control effort 

when kg 2.29=M .  Note that the control effort is larger than the 6.14=M  kg 

case, which is to be expected since a heavier mass is being moved.  The mass M 

could be increased more, but very heavy masses require the input pressure to be 

outside the allowed range of PM internal pressure 206.8 – 620.5 kPa.  This limitation 

is not the sliding controller’s shortcoming however; it is merely an acknowledgement 

that the PM internal pressure must be kept within reasonable bounds to protect against 

actuator failure (bursting).  If more force is desired, several PMs can always be 

placed in parallel. 
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Figure 11 - Tracking errors for three possible actual arms, kg2.29=M  

 

 

 

 

 

 

 

 

   

   

 

 

 

 

Figure 12 - Typical control effort p∆ , 2.29=M kg 

 

 

 

 It is noted from Figure 12 that since kpa 344.70 =P , the values of p∆  would 

0 10 20 30 40 50 600

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Time (seconds)

Tr
ac

ki
ng

 e
rr

or
s 

| θ-
θ d|

0 10 20 30 40 50 600

20

40

60

80

100

120

Time (seconds)

C
on

tro
l e

ffo
rt 
∆

p 
(lb

/in
2 )



 47

require tricep pressure tP  to be negative (6.5b).  This is impossible, and in such a 

case,  0=tP  is simply set.  The simulation reflects this.  The fact that tricep 

pressure is mostly zero when kg 2.29=M  results from the heavier mass exerting 

enough downward force to track the downward parts of the reference trajectory 

without needing the tricep to help pull the arm down. 

 To further verify the sliding mode controller, another simulation is performed 

to track a pseudo-square wave signal with a typical system within the %30± range.  

Here, the desired trajectory is 

  ( )( )

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−≤−

≤−−+

≥−

=

4
1))3(2sin(,

4
1

4
1))3(2sin(,32sin

2

4
1))3(2sin(,

4
3

)(

tf

tftf

tf

td

ππ

ππππ
ππ

θ                  (6.10) 

with f = 0.1Hz.  This function transitions between constant values of 4
π  and 4

3π  

smoothly rather than with discontinuous jumps.  For the design parameters, we used 

10=λ , 10=η , and 3.0=Φ .  Therefore, the tracking accuracy is 03.0=
Φ

=
λ

ε . 

From Figure 13, the joint angle trajectory is seen to follow the desired one with 

acceptable error except at the times of rapid transition between the two constant values.  

This is attributed to the fact that in the simulation the PM pressures are constrained to 

lie within the range 206.8 – 620.5 kPa to better conform to actual PM operation.  

Therefore, the needed input pressure dictated by the sliding mode controller is not 

applied and tracking accuracy is lost. 
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Figure 13 - Tracking error (pseudo-square wave) 

 

6.4 DISCUSSION 

 The one-joint limb system actuated by PM in bicep/tricep pair is essentially 

with nonlinear and time-varying parameters.  Sliding mode control methods have been 

applied to this problem since fixed structure controllers are less robust to parameter 

changes than sliding mode ones.  In the case of time-invariant and well-known 

coefficients, traditional methods, i.e. PID may give good results.  However, if 

coefficients or physical quantities change significantly, the fixed PID cannot stabilize 

the system.  Assuming certain degrees of inaccuracy in the knowledge of the PM 

coefficients, a sliding mode controller was designed.  In order to eliminate chattering, 

the control action was also designed to be smoothed to achieve a trade-off between 

control bandwidth and tracking precision.  With the sliding mode controller given, 

good tracking performance is obtained even in the presence of modeling uncertainties.  

The two trajectories considered are used because they mimic two common working 

situations of the PMs.  Trajectory (6.9) represents a movement of the mass in a smooth 

trajectory.  Trajectory (6.10) represents the task of holding the mass in a stationary 
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position and then lifting it up or dropping it down suddenly.  Simulation results 

demonstrate the effectiveness of sliding mode control for PM applications. 

 In both cases, the sliding mode controller can work with desirable performance 

of good tracking precision and little chattering. 
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                                CHAPTER VII 
 
               FUZZY SLIDING MODE TRACKING CONTROL  
  OF A TWO-JOINT MANIPULATOR ACTUATED BY FOUR PM GROUPS 
                           
 
 
 
7.1 MODELING OF A TWO-JOINT MANIPULATOR ACTUATED BY FOUR PM 

GROUPS   

 To further investigate the effectiveness of sliding mode control approach, 

consider the planar arm manipulator [57] shown in Figure 14.   

 
 

  Figure 14 - Planar arm actuated by four PM group  
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tied together around the shoulder pulley with all tricep PMs receiving the same input 

pressure tsP  and all bicep PMs receiving the same input pressure bsP .  Similarly, 

assume there are en  pairs of matched PMs tied together around the elbow pulley 

with all tricep PMs receiving the same input pressure teP  and all bicep PMs 

receiving the same input pressure beP .  The elbow PMs are not assumed to be 

matched with the shoulder PMs.  

 Under these conditions, the shoulder and elbow torques e and ττ s can be 

expressed as: 

 

 sbsbsbssstststsssss rxBxKFxBxKFn )( && ++−−−=τ              (7.1a) 

 eteteteeebebebeeeee rxBxKFxBxKFn )( && ++−−−=τ              (7.1b) 

 

where , , , tsss BKF  and bsB are the coefficients for the shoulder PMs, 

teee BKF ,, and beB  are the coefficients for the elbow PMs, t  subscripts denote 

tricep PM quantities, b subscripts denote bicep PM quantities, s  subscripts denote 

shoulder PM quantities, e  subscripts denote elbow PM quantities and r denotes 

pulley radius. 

 Let the shoulder PM input pressures be given by 

 

 sbsbs PPP ∆+= 0                          (7.2a) 

                      ststs PPP ∆−= 0                           (7.2b) 

    

where bsP0  and tsP0  are arbitrary positive nominal constant pressures and sP∆  is 

an arbitrary function of time that is commanded by the controller.  With these 

definitions, the set of sn  shoulder antagonist pairs becomes a single-input system 

with input sP∆ .  When the bicep pressure increases, the tricep pressure decreases and 
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vice versa.  

 Similarly, let the inlet pressures of the elbow PMs be defined as: 

 

                  ebebe PPP ∆+= 0                              (7.3a) 

                  etete PPP ∆−= 0                               (7.3b) 

 

where beP0  and teP0  are arbitrary positive nominal constant pressures and eP∆  is 

an arbitrary function of time that is commanded by the controller.  With these 

definitions, the set of en  elbow antagonist pairs becomes a single-input system with 

input eP∆ .  Therefore, the 2-DOF two-joint planar manipulator becomes a 2-input 

system.  

 As addressed in [57], then the dynamical model for the planar arm actuated by 

four groups of PMs can be expressed as:  

 

 ⎥
⎦

⎤
⎢
⎣

⎡
∆
∆

⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
−=⎥

⎦

⎤
⎢
⎣

⎡ −−

e

s

e

s

e

s

P
P

D
f
f

CD
1

11

0

0

2

1

2

11

2

1

0
0
τ

τ
τ
τ

θ
θ

θ
θ

&

&

&&

&&
              (7.4) 

 

where D  is a 22×  symmetric positive definite matrix:  
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and 
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and 
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                                                          (7.10b) 

 

 sbsbsbssstststsssss rxBxKFxBxKFn ][ 1111111 && ++−−+−=τ      (7.10c) 

 

      eteteteeebebebeeeee rxBxKFxBxKFn ][ 1111111 && +−+−+=τ           (7.10d) 

 

 In the above, ciii llm  and , ,  are the mass, length, and location of center of 

mass of link i respectively ( 1=i  for upper arm and 2=i  for forearm), 
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, , , , , ,  , 0101010 tebebebsbststs BBBBBBB  and teB1  are the appropriate coefficients from 

(5.2), depending on whether the PMs are being inflated or deflated. 

 Defining 
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(7.4) can be written as: 
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The system (7.12) is a pair of second-order nonlinear equations with input vector 

[ ]Tes PP ∆∆   and is addressable via MIMO sliding-mode techniques.  The 

differential pressures es PP ∆∆  and  can be commanded by the SMC outputs. 

 

7.2 FUZZY SLIDING MODE TRACKING CONTROL OF A TWO-JOINT MANIPULATOR  

 It is very difficult to have perfect knowledge of coefficients BKF  and ,,  for 

all PMs.  In addition, these coefficients change over time due to heating and cooling 

of the PM.  Hence, Gaa  and,, 21  in (7.12) must be assumed imprecise.  Let the 

extent of the imprecision on Gaa  and,, 21  be bounded by known continuous 

function of 2211 ,,, θθθθ && .  The control problem is to determine the input functions 

( ) ( )tPP es ∆∆ and t  to force the end effector E to follow a desired path in the spatial 

variables x and y in the presence of model imprecision on Gaa  and,, 21 .  By using 
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inverse kinematics method, the control problem to track desired end-effectors spatial 

trajectories )(txd , )(tyd  of planar arm are equivalent to track the following joint 

trajectories given by  
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 Therefore, the spatial tracking problem can be transformed into a tracking 

problem for the shoulder and elbow joint angles 21  and θθ .  Let )( and )( *
2

*
1 tt θθ be 

smooth functions of time that represent the desired trajectories for the shoulder and 

elbow joint angles.   

 Define two sliding surfaces 2 ,1 , =isi  as: 

 

                      iiii ees λ+= &                           (7.14) 

 

where *
iiie θθ −=  are tracking errors and iλ  are positive scalar design parameters 

which control the bandwidth of the closed-loop system.  Then the tracking problem 

can be translated into finding inputs [ ]Tes pp ∆∆ , that verify the individual sliding 

conditions 

 

 iii ss
dt
d η−≤2

2
1                              (7.15) 

 

with 0>iη in the presence of parametric uncertainty. 

 Assume the estimations of 21, aa  and G are Gaa ˆ and ˆ,ˆ 21  respectively, 
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which meet the following conditions: 

 

                  iii Aaa ≤−ˆ                               (7.16a) 

 GIG ˆ)( ∆+=                               (7.16b) 

 

where 2 ,1 , =iAi  are some known positive functions and ∆  is a 22×  matrix 

with elements ij∆  satisfying ijij δ≤∆  for 2 ,1 , =ji , where ijδ  are known positive 

functions such that ∆+I  is nonsingular.  To not lose controllability, s1τ  and e1τ  

must be assumed such that G  is nonsingular over the entire state space and that Ĝ  

is invertible, continuously dependent on the parametric uncertainties and such that 

GG =ˆ  in the absence of parametric uncertainty. 

 Let the sliding mode control law ( )tU  be given by: 

 

SWEQ UUU +=                         (7.17) 

 

where [ ]T
es PPU ∆∆=  , , EQU  is the equivalent control part, and SWU  is the 

switching control part, specified as: 
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where    
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In addition,   2 ,1 , =Φ ii are the boundary layer thicknesses,  21  and kk  are positive 



 57

constants. 

 Since  
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the sliding conditions (7.15) are verified if  
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 121222
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222122
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2212122 ˆˆ)1( kaeaeAk δλθδλθδδ −−−+−−+≥− &&            (7.21b) 

 

and, particularly, 21  and kk  are chosen such that 

 

 1211
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1111212111 ˆˆ)1( ηλθδλθδδδ +−−+−−+=+− aeaeAkk &&      (7.22a) 

 2222
*
222122

*
2212121122 ˆˆ)1( ηλθδλθδδδ +−−+−−+=+− aeaeAkk &&   (7.22b) 

 It is well-known that the Frobenius-Perron theorem guarantees that (7.22a) 

and (7.22b) have a unique nonnegative solution [ ]21, kk .  Therefore, the control law 

(7.17) with 1k , 2k  defined by (7.22) meets the sliding conditions (7.15) in the 

presence of parametric uncertainties bounded as in (7.16).  

 Therefore, when the state trajectories are outside their respective boundary 

layers, since the control law guarantees that the boundary layers are attractive; the 

trajectories approach the boundary layers and reach them in finite times.  Once 

inside the boundary layers, the state trajectories remain inside them for all later time 

and approach neighborhoods of 0=ie  asymptotically.   
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  Taking the Laplace transform of ie  gives  
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Then, since 1, tts ii ≥∀Φ≤  with 1t  finite, it is easy to show 
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Thus, the tracking error eventually enters neighborhoods of 0=ie , the sizes of 

which are inversely proportional to iλ .  Therefore, if iλ  is larger, tracking errors are 

smaller. 

 In practical systems, however, the constraint of the actuators, typically as 

structural resonant modes, neglected time delays, and sampling rates tend to limit the 

control bandwidths iλ .  The desired control bandwidth is the minimum of those three 

bounds [21].  In addition, if the control bandwidth is chosen to be very large, it will 

excite the high-frequency unmodeled dynamics; hence the likelihood of chattering 

increases.  For these reasons, the control bandwidth cannot be increased arbitrarily 

and should be kept within some reasonable range.  

 In order to improve tracking performance while avoiding chattering under 

physical limitations, effort is made to improve the sliding mode controller via fuzzy 

logic.  In this work, individual Mamdani fuzzy systems are used to adjust control 

bandwidths iλ  based on the corresponding tracking errors. 

 The basic design philosophy of the controller is that when tracking errors are 

far from the origin, the control bandwidths iλ  are designed to be large so that the 
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error trajectories eventually enter small neighborhoods of zero (7.24).  As this small 

neighborhood is approached (i.e. tracking errors are small), the control bandwidths 

iλ  are reduced to avoid chattering.  The time-varying control bandwidths iλ  are 

determined by using the fuzzy systems based on tracking errors, which makes the 

sliding surfaces time varying.   

 The fuzzy system rule base for control bandwidths iλ  is defined as follows: 
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where ie  is the tracking error for the ith system variable, and ir  is the total number 

of rules for the ith system variable.  In (7.25), j
iR  is the j th fuzzy set on the ith 

universe of discourse, characterized by membership function )( i
j

i eµ . 

 Therefore, for each tracking error ie , a fuzzy system is built such that each 

rule j has a specific control bandwidth in the consequent part.  The aggregate control 

bandwidth fi _λ  is obtained by center average defuzzification and can be viewed as a 

nonlinear interpolation between linear mappings: 
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Based on the result from (7.26), the resulting sliding surface is represented as: 

             ifiifi ees __ λ+= &                                 (7.27) 

 Finally, the proposed fuzzy sliding mode control law is: 

 fSWEQ UUU _+=                                (7.28) 
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where [ ]T
es PPU    , ∆∆= and 
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7.3 SIMULATION RESULTS   

 The planar arm actuated by four groups of PMs given by (7.12) is simulated 

using a 4th-order Runge-Kutta algorithm with step size of 0.01 second.  For the 

simulations, all the physical quantities of the manipulator (i.e. lengths, masses, etc.) 

are assumed to be exactly known and listed in Table 2.  

  Table 2  Physical Parameters for Planar Arm. 

 
PM Units Length of 

Links 

Mass of 

Links 

Radius of 

Pulleys 

Number of 

muscle pairs 

Shoulder 0.46 m 10 kg 7.62 cm 6 

Elbow 0.46 m 10 kg 5.08 cm 3 

 

 The PM coefficients i.e. BKF  and ,,  are assumed to be not known with 

precision.  Assume all shoulder PMs are matched to each other, but not to the elbow 

PMs.  Similarly, all elbow PMs are assumed to be matched to each other, but not to 

the shoulder PMs.  

The fuzzy sliding mode control is designed based on (7.26)-(7.29).  In the 

simulation, two identical three-rule fuzzy systems are used to adjust each control 

bandwidth, although each fuzzy system can be different generally. 

 The fuzzy system is given by  
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 Rule 1:  IF 1Rei ∈  THEN 1
ii λλ =  

 Rule 2:  IF 2Rei ∈  THEN 2
ii λλ =   2 ,1=i                     (7.30)            

 Rule 3:  IF 3Rei ∈  THEN 3
ii λλ =  

 

The fuzzy sets 321  and,, RRR are characterized by the membership functions shown 

in Figure 15 where  

 

 01.0    ,005.0    ,005.0    ,01.0 4321 ==−=−= dddd                   (7.31) 

 

 
        Figure 15 - Input membership functions of the fuzzy system 

 

 The consequent parts of both systems are characterized as  
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Accordingly, the individual control bandwidths are given by: 
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where 2 ,1 , =ij
iµ are shown in Figure 15.    

 The resulting time-varying sliding surfaces are obtained by: 

 

ifiifi ees __ λ+= &                               (7.34) 

 

The idea of this controller is for the sliding surface to have a larger slope λ  when 

the tracking error is larger, and to decrease the slope as the error decreases.  The 

larger slope results in smaller steady-state tracking error being achieved initially, and 

the reduced slope results in less chattering once tracking has been achieved, hence 

more accurate steady-state tracking. 

 To investigate the robustness of the sliding mode controller, 

BKF   and ,, coefficients (i.e. 0K , etc. ,1K ) are randomly chosen from a uniform 

distribution within %50± of their nominal values.  Hence, 0.15 and  25 21 == AA  

are chosen to satisfy (7.16).  We also have [ ]ij∆=∆  where  
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 The control gains are chosen as 2 1  ,50 ,iki ==  to meet (7.22).  In the 

simulation, initial conditions are
4

)0(1
πθ −= ,

2
)0(2

πθ = , ,kPa 3.31000 == tebs PP  

kPa 6.4490 =tsP  and kPa 5.3100 =beP .  These nominal pressures are chosen so that 

(a) the PM pressures remain within the permissible range of 206.8 – 620.5 kPa (30 - 

90 psi) for this type of PM throughout the control mission, and (b) in the absence of 

control, the shoulder and elbow angles revert to 
41
πθ −= , 

22
πθ = .    

 Three kinds of basic tracking tasks for the end effector are investigated: a 
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vertical line, a sinusoidal spline and a circle.  These spatial paths can be converted to 

equivalent joint angle trajectories via inverse kinematics of the two-joint planar arm.  

The performance of the FSMC controller is compared with that of a traditional SMC 

applied to the same plant.  For a meaningful comparison between the proposed 

FSMC and the traditional SMC, both control methods are applied to identical physical 

systems, i.e. all the physical quantities of the manipulator are those in Table 2 and the 

PM coefficients are the same.  Incidentally, the PM coefficient sets used were chosen 

from many sets randomly generated from a uniform distribution within %50± of 

their assumed values.  Only those sets producing the largest errors were used in the 

simulations, so that the robustness of the method could be investigated via simulation.   

 

Vertical line: 

     The x and y components of the desired spatial path for the end effector to follow 

are given by: 

 
( )

( ) )
2
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tty
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d

d

                   (7.36) 

 

The joint angle tracking results using traditional sliding mode control are shown in 

Figure 16, and joint angle tracking errors with the proposed fuzzy sliding mode 

control are shown in Figure 17.  

    Comparing these two figures, the better tracking performance is achieved in 

Figure 17, i.e. the proposed FSMC, without obvious chattering.  Both joint angle 

tracking errors with FSMC are kept within 0.01 rad., which is better than 0.035 rad. 

for the elbow joint and 0.06 rad. for the shoulder joint in SMC.  
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Figure 16 - Joint angle tracking errors (vertical line, SMC).  

 Inset – spatial performance.  

 
Figure 17 - Joint angle tracking errors (vertical line, FSMC).  
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Sinusoidal spline: 

 The desired spatial path for the sinusoidal spline is given by: 
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Figure 18 - Joint angle tracking errors (spline, SMC). 

                         Inset – spatial performance  
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Figure 19 - Joint angle tracking errors (spline, FSMC).  

Inset – spatial performance. 

 

The joint angle tracking errors with traditional SMC are shown in Figure 18, and the 

results from fuzzy sliding mode control are shown in Figure 19.  Obviously, the 

better tracking performance is obtained by the proposed FSMC. 

 

Circle: 

 The desired spatial path for the circle is given by: 
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The joint angle tracking error with the traditional SMC is shown in Figure 20, and the 

results from fuzzy sliding mode control are shown in Figure 21.  Compared with 

SMC, FMSC provides much better tracking performance with no obvious chattering. 
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 Figure 20 - Joint angle tracking errors (circle, SMC).  

       Inset – spatial performance  

 
 Figure 21 - Joint angle tracking errors (circle, FSMC).   
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   Figure 22 - Comparison of ii aa −ˆ with their nominal range(circle, FSMC) 

 

 
 Figure 23 - Individual elements ofG with their nominal ranges (Circle, FSMC) 

 

 In addition to the above, the parameter errors for the controller are plotted.  

Figure 22 shows the relationship between system parameters 2 ,1 , =iai and their 
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estimated values iâ .  From Figure 21, it is seen that 11ˆ aa − is always less 

than 251 =A , and 22ˆ aa −  is always less than 151 =A , as dictated by (7.16a).  

Figure 23 shows the relationship between the elements of G  and their theoretical 

ranges.  Close inspection of the bounds of Figure 22 (especially 2112  and gg ) reveals 

that the actual values of each element do remain within their estimated upper and 

lower bounds, satisfying (7.16b). 

 

7.4 DISCUSSION  

 The tracking performance acquired by the control of fuzzy sliding mode is 

seen to be superior to those with traditional sliding mode control.  This is because 

the control bandwidth of fuzzy sliding mode is designed to be relatively larger when 

the tracking trajectory is far from the desired, and designed to be relative smaller 

when the tracking error comes within a neighborhood of zero.  The smooth transition 

in control bandwidth is realized via the fuzzy system.  The adjustable control 

bandwidth leads to smaller tracking error in the vicinity of the desired trajectory.  

Since the analysis made here is on the basis of assumption that only one type of PM 

exists in the system, it may not accurately describe the behavior of systems using 

other types of PMs.  Various constructions of PMs may include different types of 

rubber or plastic, different sheathing, different sizes of PM, and different pressure 

valves, among other things.  All these factors affect the PM coefficients F, K, and B.  

In addition, some PM constructions may not admit a spring/damper/contractile 

element model at all.  In such cases, the PM may have to be modeled from scratch. 

 Nevertheless, there are always inaccuracies associated with any simulation.  

One source of error in the case of PMs stems from the fact that PMs are quite heat 

sensitive.  PM coefficients are known to vary significantly with temperature, and PM 
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temperature varies with use, due to friction.  Therefore, these results cannot be taken 

as accurate with extended PM use.  Change of PM characteristics was not taken into 

account in these simulations.   

 There is no general agreement among researchers as to the effects of heating 

on PMs.  Another source of inaccuracy is the fact that the PMs will not be perfectly 

matched, as assumed in the paper.  This would imply they are all constructed 

identically to each other, with identical dimensions, materials, etc.  Consideration of 

unmatched PMs is beyond the scope of this research. 
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CHAPTER VIII   
 

INTEGRAL SLIDING MODE TRACKING CONTROL  
OF A TWO-JOINT MANIPULATOR ACTUATED BY FOUR PM GROUPS 

 
 
 
 

8.1  INTEGRAL SLIDING MODE CONTROL OF A TWO-JOINT MANIPULATOR MODEL 

 Regarding the two-joint planar arm model mentioned in the previous chapter, 

we know it is difficult to have perfect knowledge of coefficients BKF  and,,  for all 

PMs due to the nonlinear, time-varying characteristics of PMs.  In practice, the PM 

may also suffer some external disturbance such as static and Coulomb friction.  An 

additional term describing the effect of noise hence needs to be introduced into the 

system model. 

 Therefore, the system model of two-joint planar arm should be presented as:  

 

 NGUA ++=θ&&                               (8.1) 
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and N  is a 12× matrix, which represents external perturbations. 

 Again, the estimations of Gaa  ,,  21  are assumed, which are Gaa ˆ ,ˆ,ˆ  21 , 

respectively, meeting the conditions: 

 

 iii Aaa ≤−ˆ                                (8.3a)  
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GIG ˆ)( ∆+=                               (8.3b) 

 

where 2 ,1 , =iAi  are some known positive functions of ),, ,( 2211 θθθθ &&  and 

 22 a is ×∆  matrix with elements ij∆  satisfying ijij δ≤∆  2 ,1, =ji .  

 Assume the thi element of N is bounded by a known upper bound iB :  

 

. 2 ,1, =≤ iBn ii                                (8.4) 

 

In (8.1), both the parametric uncertainties i.e. imprecision on Gaa  ,,  21  and the 

external disturbance result in inaccuracies of the model parameters.  The control 

problem is to determine the input functions )(tPs∆  and )(tPe∆  to force the end 

effector E  to follow a desired path in the spatial variables x  and y  in the 

presence of both model imprecision on Gaa  ,,  21  and external disturbances. 

 By using the inverse kinematics of the planar arm, the spatial tracking problem 

can be transformed into a tracking problem for the shoulder and elbow joint angles 

1θ  and 2θ .  Let )(*
1 tθ  and )(*

2 tθ  be smooth functions of time that represent the 

desired trajectories for the shoulder and elbow joint angles.  Define two integral 

sliding surfaces 2 ,1, =isi  as: 

 

 IiTii sss +=                                 (8.5) 

 

where Tis  are traditional sliding surface parts and Iis  are integral parts.   

Define 

 

 iiiTi ees 1λ+= &                                   (8.6) 
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where *
iiie θθ −=  are tracking errors and i1λ  are positive scalar design parameters. 

Define 

 

 )0()0()(
0 12 ii

t

iiiIi eedes &−−= ∫ λττλ                          (8.7) 

 

where i2λ are positive scalar design parameters. 

 If the individual sliding modes could be enforced by a properly designed input, 

then 0=is&  as well [39, 42].  From (8.7), this leads to  

 

 021 =++ iiiii eee λλ &&&                                     (8.8) 

 

This represents the ideal error dynamics, independently of system uncertainties and 

external perturbations.  Hence, the integral sliding surface determines the desired 

error dynamics to have an ideal second order dynamics in each link.  

 The control law )(tU  is given by: 

 

 SWEQ UUU +=                                       (8.9) 

 

where T
es PPU ] , [ ∆∆= , EQU  is the equivalent control, and SWU  is the switching 

control.  The function of EQU  is to maintain the trajectory on the sliding surface, 

and the function of SWU  is to guide the trajectory to this surface. 

 Let the sliding surface vector be given by: 

 

 [ ]TssS 21=                               (8.10) 

 

Differentiating (8.10) gives: 
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First, consider the model (8.1) without external perturbation, i.e. (7.12).  Substituting 

(7.12) into (8.11) gives:  
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The equivalent control EQU  is obtained by equating (8.12) to zero: 
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The switching control SWU  is given by: 
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where K  is a 22×  positive definite diagonal matrix with its i th diagonal element 

satisfying 2 ,1 , => iBk ii .  

 Since SWU  is essentially a high frequency discontinuous sign function, to 

alleviate chattering in practical implementations, a continuous approximation of SWU  

is used.  From [39, 42], the continuous approximation value '
SWU  is equal to the 

average value measured by a first order linear filter with SWU  as its input.  The 

following equation is hence obtained: 
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 SWSWSW UUU =+Γ ''&                                 (8.15) 

 

where  
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and iτ , 2 ,1=i  are the time constants.  

 Transforming (8.15) into the time domain, we can easily reach that: 
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Finally, the proposed integral sliding mode control law is presented as: 

                             

  '
SWEQ UUU +=                                     (8.18) 
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the individual sliding conditions  

 

 ii ss
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2
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are satisfied if there exist constants such that  and 21 kk  
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In particular, let 21  and kk  be chosen such that   
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The Frobenius–Perron theorem guarantees that (8.22a) and (8.22b) have a unique 

nonnegative solution ],[ 21 kk .  Therefore, the control law (8.18) with such ],[ 21 kk  

verifies the sliding conditions in the presence of both parametric uncertainties 

bounded as in (8.3a) and external perturbation bounded as in (8.3b). 

 Therefore, the control law (8.18) drives the state trajectory of the PM model 

onto the sliding surface in the presence of model uncertainties and external 

perturbations.  Once on the surface, the system trajectory remains a neighborhood of 

the desired trajectory for all subsequent time.  Thus, satisfying the sliding condition 

makes the surface an invariant set, i.e. a set for which any trajectory starting from an 

initial condition within the set remains in the set for all future time.  

 

8.2  SIMULATION RESULTS 
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 The planar robot arm actuated by PMs given by (8.1) and (8.18) is simulated 

using a 4th-order Runge-Kutta algorithm with step size of 0.01 second.  All the 

physical quantities (length, mass, etc) of shoulder and elbow links are assumed to be 

exactly known as stated before, which are listed in Table 2.  Again, without losing 

generality, all shoulder PMs are assumed to be identical to each other (i.e. all physical 

quantities for each shoulder PM are the same), but not to the elbow PMs.  Similarly, 

all elbow PMs are assumed to be matched to each other, but not to the shoulder PMs.  

The coefficients BKF  and ,,  are assumed to be not known precisely, hence the 

nominal values vary to some extent.  In this case, the actual values are assumed to be 

within 50 percent of their nominal values.  

 The nominal PMs coefficients for planar arm and their actual values used for 

the simulation [57] are listed in Table 3: 

 

 Table 3  Coefficients for PMs  

 

Actual values 
Coefficients Nominal values

Elbow Shoulder 

0F  1.79e+2 2.58e+2 1.53e+2 

1F  1.39 1.67 0.763 

0K  5.71 7.70 7.17 

1K  3.07e-2 2.18e-2 4.28e-2 

iB0  1.01 0.965 0.794 

iB1  6.91e-3 4.02e-3 5.19e-3 

dB0  6e-1 8.11e-1 8.60e-1 

dB1  -8.03e-4 -8.53e-4 -5.07 

    

 

To investigate robustness, only those coefficient sets producing the largest errors were 
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chosen from a uniform distribution within 50 percent of their assumed values.  

 Based on the quantities above, the quantities 0.15 and  5.12 21 == AA  are 

chosen to satisfy (8.3).  [ ]ij∆=∆  is defined as 
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 The control gains are calculated as 2 1  ,50 ,iki ==  to meet (8.22).  Initial 

conditions:
4

)0(1
πθ −= ,

2
)0( 2

πθ = , kpa 3.3100 =bsP , kpa 3.3100 =teP ,

  kpa 6.449 0 =tsP , kpa 5.310 0 =beP  are used in the simulation.   

 These default parameters are designed to guarantee that the PM pressures 

remain within the permissible range 206.8-620.5 kpa throughout the control mission 

and revert the shoulder and elbow angles to
41
πθ −= , 

22
πθ =  in case of absence of 

control.  In addition, the scalar design parameters in (8.5) are preset 

to 21 ,400 ,40 2i1 , ii === λλ  and the time constants in (8.17) are 21 ,01.0 , ii ==τ  

(these values for shoulder and elbow could be different though).  

 Three basic trajectories for the end effector are investigated in the simulation: 

a sinusoidal spline a sloping line, and a circle.  These spatial paths can be combined 

together to mimic more complicated human movements.  The spatial trajectories of 

the end effector can be converted to equivalent joint angle trajectories by the inverse 

kinematics of the planar robot arm.   

 The performance of the proposed ISMC controller is compared to that of a 

traditional sliding mode controller.  The identical planar arm model is being 

investigated by both methods in order to make a meaningful comparison, i.e. both 
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controllers choose the same physical quantities of the model and the same coefficients 

of BKF  and ,, .  In addition, the PM model is designed to be interfered with external 

perturbation.  Since Gaussian white noise is a good approximation of many external 

perturbations from real world, different intensities of Gaussian white noise are applied 

in the simulation to investigate the robustness of control performance.  

 

Sinusoidal spline  

 First, a sinusoidal spline as desired for the end effector desired path is 

considered, with x  and y  coordinates given by: 
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                      (8.24) 

 

As mentioned above, the PM model uses the parameters listed in Tables 2 and 3.  In 

this case, Gaussian white noise is specified with the intensity of 10 dbw.  

 The equivalent joint angle tracking error (absolute value) using SMC is shown 

in Figure 24, and corresponding joint angle tracking results with ISMC are shown in 

Figures 25 and 26.  By comparison, the tracking performance in Figures 25 and 26, 

i.e. the proposed ISMC is seen to be superior to basic SMC.  
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  Figure 24 - Tracking errors (Spline, SMC, 10 dbw noises). 

 

 After initial transients, the tracking error of shoulder joint angle in ISMC 

remains within 0.01 radian and tracking error of elbow joint angle remains within 

0.03 radian, while SMC errors are as large as 0.06 radian for the elbow joint and 0.07 

radian for the shoulder joint.   
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  Figure 25 - Tracking errors (Spline, ISMC, 10dbw noise). 
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  Figure 26 - Tracking performance (Spline, ISMC, 10dbw noise). 
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  Figure 27 - Tracking path with arm (Spline, ISMC, 10dbw noise). 

 

 Figure 27 shows the end effector spatial tracking path with ISMC.  From the 

initial point, the end effector makes some adjustments to approach the desired 

trajectory and tracks it very accurately afterwards.  In addition, there is no obvious 



 82

chattering found from tracking trajectory generated by ISMC. 

 

Sloping straight line: 

 Next, a sloping line as desired spatial path for the end effector is considered.  

The x  and y  trajectories are given by: 
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Most parameters are kept the same except that the initial conditions are set as 

°= 25)0(1θ , °=100)0( 2θ .  
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  Figure 28 - Tracking errors (sloping line, SMC, 10dbw noise)     
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  Figure 29 - Tracking errors (sloping line, ISMC, 10dbw noise). 
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     Figure 30 - Tracking performance (sloping line, ISMC, 10dbw noise). 
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     Figure 31 - Tracking path with arm (sloping line, ISMC, 10dbw noise). 

 Again, Gaussian white noise of 10 dbw intensity is specified.  The equivalent 

joint angle tracking errors with SMC are shown in Figure 28 and the results from 

integral sliding mode control are shown in Figures 29, 30, and 31.  Obviously, the 

better tracking performance is achieved by the proposed ISMC.   

 

Circle: 

 Finally, a circle is considered as the desired spatial path for the end effector.  

The x  and y  trajectories are given by: 
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The simulation parameters remain the same as the first two cases.  The joint angle 

tracking errors with SMC are shown in Figure 32 and the results from integral sliding 

mode control are shown in Figures 33, 34, and 35.  The proposed ISMC again shows 
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better tracking performance than SMC with no chattering.   
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  Figure 32 - Tracking errors (Circle, SMC, 10dbw noise). 
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  Figure 33 - Tracking errors (Circle, ISMC, 10dbw noise). 
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  Figure 34 - Tracking performance (Circle, ISMC, 10dbw noise) 
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  Figure 35 - Tracking path with arm (Circle, ISMC, 10dbw noise) 

 

 To study further, the intensity level of Gaussian white noise is increased to 30 

dbw.  The simulation results are given in Figures 36 and 37.  From these figures it 

is seen that the tracking error of shoulder joint angle in ISMC is kept within 0.03 
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radians, while that in SMC is between 0 and 0.08 radians.  Moreover, the tracking 

error of elbow joint angle in ISMC is kept within 0.04 radians while that in SMC are 

between zero and 0.06 radians.  The tracking results of ISMC are obviously more 

accurate than SMC.   
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  Figure 36 - Tracking error (Circle, SMC, 30dbw noise) 
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  Figure 37 - Tracking error (Circle, ISMC, 30dbw noise) 

 

 To investigate the robustness of the ISMC, the intensity level of Gaussian 

white noise is raised to 50 dbw once again.  The tracking errors for shoulder and 

elbow joint angle using SMC are shown in Figure 38, and those with ISMC are shown 

in Figure 39.  The proposed ISMC retains its insensitivity without obvious change of 

the tracking error; however, the tracking errors from SMC are too large, hence it fails 

to track.  

 From these figures, in the presence of both modeling uncertainties and 

external perturbations, the control performance of the proposed ISMC is verified to be 

superior to SMC without obvious chattering occurring.   
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  Figure 38 - Tracking error (Circle, SMC, 50 dbw noise) 
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  Figure 39 - Tracking error (Circle, ISMC, 50 dbw noise) 

 

8.3  DISCUSSION  

 Sliding mode control (SMC) is a powerful robust control method and has been 
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shown as an approach with great potential to the control of PMs and robot 

manipulators.  The “chattering” phenomenon, which is a drawback for applications 

of SMC, is usually reduced by introducing a boundary layer around the sliding 

surface.   

 ISMC is shown to be capable of accomplishing all the tracking tasks very well, 

presenting excellent tracking performance even in noisy environments.  Not only in 

those cases does ISMC do well while traditional SMC fails, but in all circumstances, 

the proposed ISMC shows more precise control accuracy superior to traditional SMC.  

In summary, ISMC has been seen to overwhelmingly excel traditional SMC on the 

basis of computer simulations.  Therefore it is recommended as a very promising 

robust control approach for tracking control of robot manipulators actuated by PMs.  
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CHAPTER IX 

   CONCLUSIONS AND CONTRIBUTIONS  

                        

 

9.1  CONCLUSIONS  

 This dissertation is concerned with development of mathematical models and 

control methods investigation about a certain type of planar manipulator actuated by 

pneumatic muscles (PMs).  PMs is a novel type of actuator that closely mimics 

human skeletal muscles in size and power capabilities, which is considered for use in 

exoskeletons to be worn by humans for strength augmentation and for use as actuators 

in robotic systems.  Since PMs are nonlinear and time-varying, perfect knowledge of 

PM characteristics is impossible.  Moreover, the inertial parameters of robot 

manipulators, which depend on the payload, are often unknown and changing.  

Therefore, precise dynamical models of robot manipulators actuated by PMs are 

usually unavailable. 

 Sliding mode is a well-known robust control approach due to its strong 

insensitivity to system parameters variation.  The discontinuous switching control 

strategy of sliding mode is designed such that a constringency property dominates the 

closed-loop dynamics of the nonlinear system.  In this way, it induces a stabilization 

on the sliding surface hence the desired tracking trajectories are obtained.    

 In this dissertation, a one-joint and two-joint planar robot manipulators 

actuated by PMs are mathematically modeled.  The dynamic models of the 

assemblies with PMs are highly nonlinear, with the control input entering the process 

through the nonlinear spring and friction coefficients, as well as through a nonlinear 
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contractile force term.  To achieve good control performance in presence of system 

uncertainties and external perturbation, several sliding mode control approaches have 

been investigated.   

 The design of standard sliding mode control including its stability analysis and 

simulations has been carried out for the one-joint planar robot manipulator model.  

To avoid chattering, a boundary layer is introduced around the sliding surface.  

Closed-loop stability is proven for the one-joint manipulator model with uncertainties, 

as well as a bound on the steady-state tracking error and a bound on the control effort 

when inside the boundary layer.   

 In order to reduce the steady state error while maintaining the advantageous 

features of traditional sliding mode controller, a two-input fuzzy sliding-mode 

controller has been designed for the two-joint planar arm model.  The control 

bandwidth is adjusted via fuzzy logic based on system tracking error.  The resulting 

varying sliding surface makes the tracking accuracy of fuzzy sliding mode controller 

better than traditional sliding mode control.  The traditional sliding mode controller 

and fuzzy sliding mode controller proposed show good performance on the control of 

the model for a robot manipulator actuated by PMs.  It needs to be pointed out that 

varying parameters and load variation are considered as major uncertainties in these 

two models.   

 In practice, since working environments without any noise are unavailable, 

some external perturbation could exist in control systems.  Therefore, a term 

describing the behavior of external perturbation is included in the model.  Based on 

the improved two-joint planar arm model, in which both system uncertainties and 

external disturbances are being considered now, an integral sliding mode control 

method is proposed.  The controller is designed with an integral sliding surface, 
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which plays an important role in the robust control of PM-actuated robot manipulators 

in face of both inner and outer uncertainties.  System analysis and computer 

simulations are both investigated to verify that the proposed integral sliding mode 

control is a very promising robust control approach to handle robot manipulators 

actuated by PMs with parameter uncertainties and external perturbation.      

9.2   CONTRIBUTIONS  

 The PM under investigation in this paper is one specific type, which has been 

developed in the Human Sensory Feedback Laboratory, Wright-Patterson Air Force 

Base, Dayton, Ohio.  Around this PM, research relevant to system modeling and 

control design has been carried out.  The main contribution of this dissertation is, by 

taking advantage of the feature of sliding mode control, along with other control 

methods, two effective nonlinear robust control approaches, i.e. fuzzy sliding mode 

control and integral sliding mode control are proposed to deal with the control of 

nonlinear systems containing PMs.  These control approaches are validated via 

simulation and, where possible, theoretically.  Successful applications are 

implemented in the tracking and motion control of PM systems through computer 

simulations.  The principles of the analysis and control design illustrated in this 

paper are applicable for those systems in which other types of PMs exist, even though 

other PMs may result in a different model than the one used here.  Another 

contribution is a theoretical investigation of the stability of a PM system using 

closed-loop state feedback control.  Last but not least, the effect of heat on PM 

systems is addressed, and the impact on system parameters brought by the heat 

generated is analyzed via computer simulation.  
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