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ABSTRACT 

LOW POWER STRAIN SENSOR BASED ON MOS TUNNELING CURRENT 

 

Li Zhu 

April 12, 2014 

Sensors, such as pressure sensors, accelerometers and gyroscopes, 

are very important components in modern portable electronics. A limited 

source of power in portable electronics is motivating research on new low 

power sensors. Piezoresistive and capacitive sensing technologies are the 

most commonly utilized technologies, which typically consume power in the 

μW to mW range. Tunneling current sensing is attractive for low power 

applications because the typical tunneling current is in the nA range. 

This dissertation demonstrates a low power strain sensor based on the 

tunneling current in a metal-oxide-semiconductor (MOS) structure with a 

power consumption of a couple of nano-Watts (nW) with a minimum 

detectable strain of 0.00036%. Both DC and AC measurements were used to 

characterize the MOS tunneling current strain sensor. The noise level is found 

to be smallest in the inversion region, and therefore it is best to bias the 

device in the inversion region. 

To study the sensitivity in the inversion region, a model is developed to 

compute the tunneling current as a function of strain in the semiconductor. 

The model calculates the tunneling current due to electrons tunneling from the 
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conduction band of the semiconductor to the gate (ECB tunneling current) and 

the tunneling current due to electrons tunneling from the valence band of the 

semiconductor to the gate (EVB tunneling current). It is found that the ECB 

tunneling current is sufficient to explain experimental gate leakage current 

results reported in the literature for MOSFETs with low substrate doping 

concentration. However, for the tunneling current strain sensor with a higher 

substrate doping concentration reported here, a model using both ECB and 

EVB tunneling current is required. The model fits our experiments. 

During both DC and AC measurements, the MOS tunneling current is 

found to drift with time. The drift could arise from the trap states within the 

oxide. The current drift makes it difficult to obtain an absolute measurement of 

the strain. Combining the tunneling current strain sensor with a resonant 

sensor may be a good choice because it measures changes in the 

mechanical resonant frequency, independent of a drift of the tunneling current 

amplitude. 
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CHAPTER 1  

INTRODUCTION 

 

 Motivation 1.1

Since the research about the piezoresistance of silicon was published 

by Smith from Bell Telephones Laboratories in 1954, people have been 

studying the possibility of making micro sensors which have a superior 

performance to macro sensors at power consumption, reliability and size [1, 

2]. According to different applications, microelectromechanical systems 

(MEMS) sensors can be cataloged into pressure sensors, accelerometers, 

gyroscopes, flow sensors, etc. Among these MEMS sensors, pressure 

sensors and accelerometers have a leading position in the markets [3]. The 

MEMS sensors can also be grouped to piezoresistive sensors, piezoelectric 

sensors, capacitivive sensors, etc. Piezoresistive sensors are among the 

earliest sensors, which are now being replaced by capacitive sensors.  

Although MEMS pressure sensors and accelerometers have been 

widely researched and commercialized for decades, the recent increased 

demand for low power sensors is motivating research on new techniques. 

Portable electronics and biosensors in vivo usually require low power sensor 

to conserve power. Piezoresistive and capacitive sensing technologies are the 

most common technologies, which have been widely used to measure strain, 

pressure and acceleration [2, 4]. They both typically consume power from μW 
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to mW [5].  

As for the piezoresistive sensors, to achieve low power consumption, 

the doping concentration of the piezoresistor has to be decreased For 

example, to have a minimum detectable strain of 0.001%, the doping 

concentration should be at least 1016 atoms/cm3 [6], and this doping 

concentration gives a resistivity of 1 ohm-cm. Information from [7] indicates 

that the MOS tunneling current through a 3.8 nm thick and 1 mm × 1 mm area 

SiO2 layer is around 1 nA at 1 V, which results in a resistivity of 1013 ohm-cm. 

It is obvious a good alternative for low power sensing compared with 

piezoresistive technology [7]. Besides the power consumption, another 

disadvantage of piezoresistive technology is that it is not easy to control the 

doping profile of the piezoresistive layer especially for a very thin layer [1]. 

The SiO2 layer of the MOS tunneling sensor can be grown to less than 1 nm.  

Capacitive sensors are the most common MEMS sensors now. They 

provide excellent low noise performance, high sensitivity, small temperature 

dependency and low power consumption. However parasitic capacitance of 

bond pads and small signal hinder the miniaturization of the capacitive 

sensors. Interface circuit is usually much more complex than piezoresistive 

sensors. The response is nonlinear, and both electrical and physical shielding 

is necessary [8, 9]. 

Besides adopting tunneling current through a MOS capacitor, tunneling 

sensors also employ tunneling current through an air gap between a tip and a 

plate which also have the merit of low power consumption. Pressure or 

acceleration induces displacement between the tip and the plate, which is 

read by the voltage or current changing [10-12]. The fabrication process of 
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this type of sensors is very complex. Like capacitive sensors, the response is 

also nonlinear. The interface circuit is very complex, which requires closed-

loop control to maintain the gap distance. The reliability is also impacted due 

to deterioration of the tip.  

The MOS tunneling sensors measure the current change induced by 

strain in silicon. The tunneling current is determined by the tunneling barrier 

between the silicon band edges and the gate dielectric band edges, as well as 

the effective mass. When a uniaxial strain is induced, the silicon band edges 

will be shift and split, which will change the tunneling barrier. As a result, the 

tunneling current changes with the strain. Detailed theory about the MOS 

tunneling sensors will be elaborated in the theory chapters. 

Table 1 summarizes the advantages and the disadvantages of different 

MEMS sensors. The advantages are that the MOS tunneling current strain 

sensors are easy to fabricate and they are Complementary metal–oxide–

semiconductor (CMOS) process compatible. However, the MOS tunneling 

current strain sensors are very sensitive to temperature like the piezoresistive 

sensors. Another disadvantage is that electrostatic discharge (ESD) 

protection is necessary, since the MOS tunneling current strain sensor is 

mainly a MOS capacitor. 

Table 2 compares the gauge factor, the response linearity and the 

power consumption of different MEMS sensors. We can see that the gauge 

factor of MOS tunneling current strain sensor is in the same range of 

piezoresistive sensors, while its power consumption is much smaller. Here 

gauge factor is defined as    
    

 
 

    

 
 

    

 
.  
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Table 1  

Summaries of advantages and disadvantages for different sensing methods 

 Advantages Disadvantages 
Piezoresistive  Simple interface 

circuit 
 

 Large temperature 
dependency 

 Difficult to control 
Doping profile in the 
nm range 

 High power 
consumption 

Capacitive  Excellent noise 
performance 

 High sensitivity 
 Small temperature 

dependency 
 Low power 

consumption 

 Large area 
 Complex circuit 
 Need electrical and 

physical shield 
 Non-linear 

Air gap 
Tunneling 

 High sensitivity 
 Small temperature 

dependency 

 Complex interface 
circuit 

 Tip deterioration 
 Non-linear 

MOS tunneling  Low power 
consumption 

 Easy to 
miniaturize 

 Temperature 
dependent 

 Need ESD 
protection 

 

 

Table 2  

Summaries of gauge factor, linearity and power consumption for different 

sensing methods 

Principle Gauge 
Factor 

Linearity Power 
consumption 

Piezoresistive 100 [9] Linear 10 ~ 1000 
uW [13, 14] 

Capacitive 249 [15] Nonlinear ~100 uW 
[16] 

MOS Tunneling current 35 [7, 17] Linear 1~100 nW 
[7] 
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 Relevance of the research 1.2

This dissertation demonstrates the first use of tunneling current 

sensing for a sensor that is based on the effects of strain in the semiconductor 

substrate. Prior efforts to create tunneling current sensors all utilize the 

tunneling current through a gap between two materials, and thus inherently 

measure the gap between the electrodes. In this dissertation, it is 

fundamentally the strain in the semiconductor, and not the gap, that is 

measured. 

Along with metal–oxide–semiconductor field-effect transistor 

(MOSFET) scaling, gate oxide is scaled down and MOS tunneling current or 

gate leakage current arises [18-20]. Since then, a lot of research on this MOS 

tunneling current has been done in both experimental and theoretical way [21-

26]. Most of this research is focused on the performance of new high-k 

dielectric materials by studying their MOS tunneling current. Strained 

MOSFET can improve carries’ mobility, which has been studied extensively. 

In the same time, MOS tunneling current in strained MOSFET is also studied 

by several groups [27-30]. However in this research, MOS tunneling current is 

treated as an unpleasant phenomenon, and very few study are done to use 

this MOS tunneling current. For example, MOS tunneling current can be a 

very competitive alternative for low power strain sensors because of its high 

resistivity.  

In the dissertation, it is the first time that a strain sensor based on MOS 

tunneling current is made and characterized. Parameters like noise, drift and 

sensitivity of MOS tunneling current strain sensor are characterized. It is 

found that noise is very small when MOS devices are in the inversion region. 
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We perform both DC measurement and AC measurement for the 

characterization. We find that an AC method using lock-in amplifier is more 

efficient to reduce noise than normal DC method.  

To study sensitivity, a computationally efficient model for MOS 

tunneling current is built. Other groups only study ECB tunneling current for 

MOS in inversion region, which is enough for current density study. It is found 

that both the ECB and the EVB tunneling current must be considered when 

calculating the sensitivity for high doping concentrations and high voltages. 

The model fits our experiment very well. 

A RF resonator based on MOS tunneling current strain sensor is also 

made. The first try was not successful. However, some tips to improve the 

design for future research are learned from this first try. 

 Outline of Dissertation 1.3

The research goals of this project are to characterize the properties of 

MOS tunneling sensors, solve problems hindering the performance of the 

MOS tunneling sensors and make a resonator based on the MOS tunneling 

current strain sensor as an application.  

Chapter 2 introduces research history of tunneling current as well as 

theories of MOS tunneling current. Different types of MOS tunneling current 

are discussed, like Fowler-Nordheim tunneling, direct tunneling and trap-

assist-tunneling. In this chapter, an approximation method to calculate 

tunneling probability, the WKB method, is elaborated, as well as other basic 

formulas for MOS tunneling current. This WKB method will be used in the 

modeling for direct tunneling in Chapter 5. 

Chapter 3 discusses strain effect on Silicon and MOS tunneling 
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current. First, the silicon band structure is briefly introduced. Then, the basic 

theory of strain tensor and stress tensor are introduced. In the end, strain 

effect on silicon band structure is discussed.  

Chapter 4 characterizes the MOS tunneling current strain sensors 

experimentally using DC and AC method. The demonstration device is a 

cantilever beam. The MOS tunneling current strain sensor is fabricated near 

the fix end of the cantilever beam. Strain is induced by bending the free end. 

In the DC experiment, a semiconductor parameter analyzer is used to apply 

DC voltage and measure the DC current. During the AC experiment, a lock-in 

amplifier is used to isolate the MOS tunneling current. The reason of using AC 

method is to reduce noise in a faster way, which is very important especially 

when band width is considered for a sensor. From the experiments, it is found 

that the noise of NMOS tunneling current strain sensor in inversion region is 

much less than others. 

Chapter 5 discusses modeling for NMOS tunneling current strain 

sensor in inversion region, which MOS tunneling current comprises two parts. 

One is the ECB tunneling current, in which electrons tunnel from conduction 

band. Another one is the EVB tunneling current, in which electrons tunnels 

from valence band. Sensitivity is extensively studied by modeling. In this 

chapter, it also shows that substrate doping concentration has a very large 

influence on MOS tunneling current. 

Chapter 6 explores one application of MOS tunneling current strain 

sensor, which is a longitudinal bulk acoustic RF resonator. In this chapter, we 

design, simulate, fabricate and test a 13 MHz longitudinal bulk acoustic RF 

resonator. The difficulties of the fabrication are discussed in this chapter. The 
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resonator does not work. The reasons that may lead the resonator to fail are 

analyzed, and some modifications for future design are proposed. 

In the end, Chapter 7 does a summary of this dissertation as well as a 

proposal of future research. 
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CHAPTER 2  

INTRODUCTION TO MOS TUNNELING CURRENT 

 

 History of quantum tunneling studying 2.1

This chapter gives a brief introduction of the history of quantum 

tunneling studying. Quantum tunneling is a phenomenon that a particle can 

penetrate a barrier which potential is higher than the particle’s kinetic energy. 

Taking tunneling current as an example, the carrier (hole or electron) can 

surmount a potential barrier which is larger than its kinetic energy. This 

phenomenon is impossible in classic physics [18, 31].  

After the discovery of natural alpha radioactivity in 1896, the law of 

exponential decay was established through the efforts of Elster, Rutherford, 

etc. [31, 32]. The theory of α-radioactivity on the basis of quantum tunneling 

was proposed by Gamow in 1928. Classically, the particle confined to the 

nucleus lacks the energy to surmount the nucleus potential wall, but in 

quantum mechanics there is a probability at which a particle can tunnel out of 

the nucleus. Gamow solved a model potential for the nucleus by combining 

the attractive nuclear forces with the Coulomb repulsion and derived from a 

relationship between the half-life of the alpha-decay event process and the 

energy of the emission, the Geiger-Nuttall formula, which had been previously 

discovered empirically [32, 33]. At nearly the same time, the problem was also 

solved by Gurney and Condon qualitatively [32].  

http://en.wikipedia.org/wiki/Half-life
http://en.wikipedia.org/wiki/Ronald_Wilfried_Gurney
http://en.wikipedia.org/wiki/Edward_Condon
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During the same period, tunneling was used to explain electron 

emission from cold metal by Fowler and Nordheim [34]. They proposed a one-

dimensional model. Metal electrons are confined by a potential wall whose 

height is determined by the work function plus the Fermi energy, and the wall 

becomes triangle like and thinned with an applied high electric field. The 

electrons tunneling through the potential wall change with applied electric 

field. Along with this model, they came up with the famous Fowler-Nordheim 

equation [31], 

        ( 
√     

 

 

 

(  )
 
 

  
) (2.1) 

where   is Planck's constant,   is electronic charge,   is electric field in the 

oxide,    is barrier height, and      is electron effective mass of the insulator. 

 

Figure 2.1 FN tunneling (Figure is from [31]). 

 

During the 1930s and 1940s, tunneling was proposed to explain the 

transportation of electrical contacts between two solids. In 1930, Frenkel [35] 
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proposed that the anomalous temperature independence of contact 

resistance between metals could be explained in terms of tunneling across a 

narrow vacuum separation. Holm and Meissner verified that by experiment. In 

1932, Wilson [36], Frenkel and Joffe [37] and Nordheim [38] applied quantum 

mechanical tunneling to the interpretation of metal-semiconductor contacts 

(rectifiers), but it was late proved to be wrong about the direction of rectifying 

in reality.   

In 1950, with the development of diodes and transistors, the tunneling 

of electrons received new attention. In 1957 Esaki discovered the tunneling 

diode and this discovery proved the electron tunneling in solids conclusively 

[31]. The tunneling diode shows a negative resistive region as shown in 

Figure 2.2. This negative resistance can be interpreted by Figure 2.3. Both p 

and n type semiconductor are heavily doped to degeneration. When V1 is 

applied, electrons tunnel from n type conduction band to the p type valence 

band. When the voltage is increased to V2, there is no energy level for 

electrons to tunnel, so the current decreases. As the voltage continuously 

increases, the tunnel diode works like a normal p-n diode.  

 

Figure 2.2 Current-Voltage relation of a tunneling diode [31]. 
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Figure 2.3 Band diagram of a tunneling diode at varies biases [31]. 

 

Tunneling was also researched in superconducting. In 1960, Giaever 

observed tunneling current between two conductors. At least one of the 

metals is a superconductor. This experiment enabled measurement of the 

energy gap in superconductors. This gap appears with Cooper pairs, and the 

gap plays an essential role in the BCS theory [39]. 

 Different Types of Tunneling current in MOS capacitor 2.2

In the previous section, the history of research on quantum tunneling 

was reviewed briefly. This section will focus on MOS tunneling current. There 

are mainly three types of tunneling current in MOS capacitor, Fowler-

Nordheim tunneling current, direct tunneling current and trap-assist-tunneling 

current.  
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As mentioned in the previous section, Fowler and Nordheim give a 

complete theory of Fowler-Norheim tunneling. However it is complicated. 

Lenzlinger and Snow simplify the equation by ignoring the effects of finite 

temperature and image-force barrier lowering [40]. The simplified equation is, 

  
    

       
   ( 

√     

 

 

 

(  )
 
 

  
) (2.2) 

where   is Planck's constant,   is electronic charge,   is electric field in the 

oxide,    is barrier height, and      is electron effective mass of the insulator. 

Section 2.3 will derive this equation for Fowler-Norheim tunneling current. The 

reason that Equation 2.2 is derived is to get deep understanding of MOS 

tunneling current. In the same time, some concepts from Fowler-Norheim 

tunneling current are used to derive models for direct tunneling current, like 

WKB method. 

If the gate oxide is less than 4 nm, direct tunneling current will arise 

and become much larger than Fowler-Norheim tunneling current. As shown in 

the Figure 2.4 (a), when the gate voltage applied to the metal gate MOS 

devices is positive, there are two types of MOS tunneling current. One is ECB, 

where the electrons tunnel from the conduction band of silicon to aluminum; 

another one is EVB, where the electrons tunnel from the valence band of 

silicon to aluminum. When a negative gate voltage is applied to the gate as 

shown in Figure 2.4 (b), there are also two components of tunneling current. 

One is tunneling current from aluminum; another one is HVB, where the holes 

tunnel from the valence band of silicon to aluminum. The following chapters 

will focus on direct tunneling current, since the gate oxide of our MOS 

tunneling current strain sensor is less than 4 nm. Modeling of direct tunneling 
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current will be fully discussed in Chapter 5. 
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(b) 

Figure 2.4 Illustration of direct tunneling in MOS structure. (a) positive bias; 

(b) negative bias. 

 

The last type of MOS tunneling current is the trap-assist-tunneling 

current, which is shown in Figure 2.5. Electrons from the cathode first tunnel 

into the traps in the insulator layer, and then tunnel into the anode from the 

traps in the insulator layer. Traps are usually defects in the insulator layer. 
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During the trapping procedure, electrons usually exchange energy with 

insulator lattice through phonons. Large tunneling current at large gate 

voltage usually will introduce defects in the insulator layer, which will 

eventually break the insulator layer. Trap-assist-tunneling current is commonly 

recognized as one of the sources of noise in MOS tunneling current. 

 

 

Figure 2.5 Schematic illustrating the Trap-assist-Tunneling current. The 

figure is from [41]. 

 

 Derivation of Fowler-Nordheim tunneling current equation in MOS 2.3

structure 

This section will derive Fowler-Nordheim tunneling Equation 2.2. The 

purpose of this derivation is to understand MOS tunneling current deeper. The 

derivation for Equation 2.2 will also be partly adopted in the derivation of 
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formula for direct tunneling current. The Tsu and Esaki model and the WKB 

method will be used to formulate a general equation for Fowler-Nordheim 

tunneling current. After the general equation is derived, by setting temperature 

to 0 K to remove temperature influence, Equation 2.2 can be derived.  

 Tsu and Esaki model for Fowler-Nordheim tunneling current 2.3.1

equation 

The formula for Fowler-Nordheim tunneling can be derived by the Tsu 

and Esaki model [42]. In the Tsu and Esaki model, as shown in Figure 2.6, it 

is assumed that the net tunneling current is determined by difference between 

the current flow from side 1 to side 2 (J1


2) and the current flow from side 2 to 

side 1 (J2


1). 

 

1 2

 

Figure 2.6 Schematic illustrating Fowler-Nordheim Tunneling current. The 

figure is from [41]. 
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          (  )    (  )  ( )(    ( ))    

          (  )    (  )  ( )(    ( ))    
(2.3) 

The current density through the two interfaces depends on the 

perpendicular component of the wave vector   , the transmission 

coefficient   , the perpendicular velocity   , the density of states  (  ), and 

the Fermi-Dirac distribution function  ( ) at both sides of the barrier. For the 

Fowler-Nordheim tunneling, side 2 is the conduction band edge of SiO2. Since 

SiO2 is an insulator,   ( ) is almost 0 for energies above the conduction band 

edge of SiO2. As a result, J2


1 is ignored and only J1


2 exists, which can be 

written as, 

      (  )   (  ) ( )    (2.4) 

Here the density of states  (  ) is 

 (  )  ∫ ∫  (        )       

 

 

 

 

 (2.5) 

where  (        )  denotes the three-dimensional density of states in the 

momentum space. Considering the quantized wave vector components within 

a cube of side length  , 

    
  

 
,     

  

 
,     

  

 
 (2.6) 

The density of states within the cube can be written as 

 (        )   
 

         

 

  
 

 

   
 (2.7) 

where the factor 2 comes from spin degeneracy. For the parabolic dispersion 

relation, the velocity and energy components in tunneling direction obey  
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Then Equation 2.4 can be rewritten as 
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 (2.9) 

Next, let’s transfer Equation 2.6 from Cartesian coordinate to Polar 

coordinate, which is 

    √   
     

 ,          (
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           ( ),            ( ) 

(2.10) 

So the 3D dispersion equations can be rewritten as, 
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(2.11) 

As ∫     
 

 
∫     
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∫        

 

 
, current density can be rewritten 

as 
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(2.12) 

Here        , so       . The lower limitation 0 of 

∫  ( )    
 

 
becomes    for ∫  ( )  

 

  
. Putting the equation of Fermi-Dirac 

distribution  ( )  
 

 
(
    

  
)
  

 into Equation 2.12 results in 
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(2.13) 

Now the general equation for Fowler-Nordheim tunneling current has 

been derived. In the next section, the formula for the tunneling probability 

  (  ) will be solved based on the WKB method.  

 The WKB method 2.3.2

The WKB method is an approach to get an approximate solution for a 

linear partial differential equation with spatially varying coefficient. It is also 

known as the LG or Liouville–Green method [43]. In the tunneling cases, this 

spatially varying coefficient is the slowly varying potential in the gate oxide. In 

this section, general formula for the tunneling probability   (  )  will be 

deduced, which is then put into Equation 2.13 to get the final general Fowler-

Nordheim tunneling current formula. The derivation can be found in any 

quantum mechanics book. It should be pointed out that WKB method is not 

only used for Fowler-Nordheim tunneling current equation, it is also used for 

direct tunneling current equation. This will be elaborated in the following 

sections. 

For simplicity, as shown in Figure 2.7, only formula in one dimension is 

considered, though the WKB method can be applied to 3D. Electrons move 

along x direction. Here electrons tunnel from left to right. There are three 

regions in this schematic. Region 1 is the incident region, region 2 is the 
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forbidden region and region 3 is the transmitted region. Here Ef is the Fermi 

level, EB is the work function, W is the thickness of the gate oxide, Vx is the 

linear varying potential in the gate oxide. Ez is forbidden energy at the position 

of Z along x direction.  

Ef

EB

EZ

W

Vx

X0

1

2 3

 

Figure 2.7 Schematic Illustrating for the WKB method.  

 

Schrodinger equation can be solved under these boundary conditions.  

The Schrodinger equation for an electron moving along x direction is 

 
  

  

   

   
  ( ) ( )    ( ) (2.14) 

Or 

   

   
 

 

  
  ( ) ( )    (2.15) 

where  ( )  is the classical momentum along x direction, 

 ( )  √  (   ( )).   is the effective mass along the tunneling direction, 

which is x direction here. For the forbidden region which is the gate oxide, 

 ( ) varies linearly. It is easy to obtain the wave functions for the incident 

region and transmitted region respectively,  
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  ( )           ( )            ( )                     (2.16) 

  ( )              ( )           (2.17) 

where   ( ) is the wave function in the incident region and   ( ) is the wave 

function in the transmitted region.  ,   and   are the amplitudes of the 

incident, reflected and transmitted waves respectively.    √    is the 

momentum. The solution of the WKB method for the forbidden region 

assumes a form like, 

 ( )   ( )   ( )   (2.18) 

where  ( ) is the amplitude and  ( ) is the phase, and they both are real 

functions. Substituting (2.18) into (2.15), we get 
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)    ( )      

  

  

  

  
  

   

   
    (2.19) 

Only when both the real part and the imaginary part equal to 0, 

Equation 2.19 makes sense. Besides, since   is a small number,   
 

 

   

   
 can 

be neglected. Thus, 

  

  
   ( )   √  (   ) (2.20) 

 
  

  

  

  
  

   

   
   (2.21) 

Integrating Equation 2.20 gives 

 ( )   ∫√  (   )   (2.22) 

Rewriting Equation 2.21 yields 
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where   is a constant. Inserting Equation 2.22 and 2.23 into 2.18 indicates 
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Consider that E<V, which is known as the classically forbidden region, 

then (2.24) becomes, 
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Since    (
 

 
∫ | (  )|    

  
)  increase exponentially with x, which is 

impossible in Physics, it is neglected for   ( )  Then, 
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   ) (2.26) 

Now the wave functions for three regions (incident region, forbidden 

region and transmitted region) are derived. The probability of tunneling (TC) 

can be expressed as 

   
      

    

|      ( )| 

|    ( )| 
 

| | 

| | 
 (2.27) 

where the speed of incident (    ) and the speed of transmitted (      ) 

particles are equal. To get   ,     ( ) and       ( ) must be solved. By using 

the continuity relations between incident region and forbidden region   (  )  
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  (  ) and   
 (  )    

 (  ) indicates 
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 (2.28) 
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 (2.29) 

Adding Equation 2.28 and 2.29, it yields 

    √| (  )| (  √| (  )|    ) (2.30) 

Using the continuity relations between forbidden region and transmitted 

region   (  )    (  ) and   
 (  )    

 (  ) can obtain, 
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Inserting Equation 2.31 into 2.30 results in 
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So the tunneling probability is 
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(2.34) 

Now the general tunneling probability from WKB method is obtained, 
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which is Equation 2.34. Next    for Fowler-Nordheim tunneling current will be 

derived. For Fowler-Nordheim tunneling current, the potential barrier is like a 

triangle, so the tunneling probability for the Fowler-Nordheim tunneling current 

can be calculated. As shown in Fig. 2.7, it is assumed that the thickness of the 

barrier is W, the barrier height is   , the tunneling length of an energy of    

(which is relative to   ) is Z. Thus, 

 ( )  (  
 

 
)      (2.35) 

So TC can be derived as 
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(2.36) 
where  

       ( 
 √     

  
) (2.37) 
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Inserting Equation 2.36 into 2.13 gives 
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Here         . We assume         and        . We can obtain 
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Using the variable change    
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     gives the current 

density, 
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Since  
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and  
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       (2.42) 

where   is the electrical field in the insulator, Equation 2.40 can be written as 
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(2.43) 
For the special case of   =0 K, the classic Fowler-Nordheim tunneling 

current formula without temperature influence can be obtained  
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) (2.44) 

Now the derivation for the Fowler-Nordheim tunneling current is 

completed, but several things should be paid attention to, 

1) The electrons in the emitted electrode are assumed to be free 

Fermi gas. 

2) The barrier lowering due to the image force is neglected. 

3) The effective mass in the formula is the effective mass in the 

forbidden region. Since the effective mass is related to energy 

which varies in the forbidden region slowly, it is usually averaged 

through the whole region. 

 Direct tunneling in MOS structure 2.4

Direct tunneling is a mechanism that the electrons tunnel directly into 

the other electrode instead of the conduction band of the insulator. Taking 
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MOS structure as an example, when the thickness of insulator (SiO2) is less 

than 4 nm, direct tunneling dominates. However when the thickness of 

insulator is more than 4 nm, Fowler-Nordheim tunneling current dominates. 

There are several different components of a direct tunneling current, 

depending on the gate voltage polarization and amplitude of voltages and the 

material of the conductors.  

 Derivation of the direct tunneling formula 2.4.1

During the derivation of Fowler-Nordheim tunneling current formula, we 

use WKB method to calculate the tunneling probability which is only valid 

when the oxide layer is thicker than 4 nm. When the thickness of the oxide 

layer is less than 1 nm, the assumption that the barrier changes slowly, which 

is the fundamental assumption of the WKB method, may not be very accurate. 

For gate oxide thickness larger than 1 nm, we still can use WKB method for 

  . There are also several alternative methods to derive the direct tunneling 

formula. The results from these methods are close and fit to the measurement 

well [44]. Here we only briefly introduce the transfer matrix method to 

calculate the tunneling probability. 

The general direct tunneling current formula can also be derived by the 

Tsu and Esaki model. When deriving the FN tunneling formula, it is assumed 

that J2


1 (the current from the conduction band of SiO2) can be ignored and 

obtain Equation 2.13. However for the direct tunneling, J2


1 (the current from 

the conduction band of substrate) is kept, so the total net tunneling current is, 
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where            is the Fermi level in the side 1 or 2. The next step is to find 

  (  ) using transfer matrix method. To apply transfer matrix method, the 

whole scattering barrier is partitioned in to many small slab regions, and in 

every slab region the barrier is assumed constant so that the Schrodinger 

equation can be solved analytically. The transfer matrix between two 

neighboring slabs is obtained by applying the continuity of the wave functions 

and their derivatives at the boundaries, and the overall transfer matrix is 

obtained by multiplying all these transfer matrices. For example, a barrier 

shown in Figure 2.8 can be divided into small slabs. The wave functions of 

slab j and slab j+1 are, 

 

Figure 2.8 Transfer matrix method [45]. 
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Using the continuity conditions,  

  (  )      (  ) 

   (  )

  
 

     (  )

  
 

(2.48) 
The transfer matrix    is 

[
    

    
]    [

  

  
] (2.49) 

Therefore, the overall transfer matrix    is 

                  (2.50) 

It is obvious that we cannot get an analytic solution from transfer matrix 

method.  

 Summary 2.5

This chapter reviews the history of tunneling from the early 20 

centuries’ research on alpha radioactivity to recently extensive research on 

superconducting. Then MOS tunneling current is elaborated. First, three types 

of MOS tunneling current, Fowler-Nordheim tunneling current, direct tunneling 

current and trap-assist-tunneling current are introduced. Since the Fowler-

Nordheim tunneling current and direct tunneling current are the main 

tunneling current in MOS capacitor, to deep understand these two types of 

tunneling current, the general tunneling current formula for these two types of 

tunneling current are derived. Two approaches to solve tunneling probability 

are discussed, which are WKB method and transfer matrix method. WKB 

method can be used in both Fowler-Nordheim tunneling current and direct 

tunneling current (which gate oxide thickness is larger than 1 nm and less 

than 4 nm), while transfer matrix method is mainly used in direct tunneling 



30 
 

current. The advantage of the WKB method is its simplicity and it is 

analytically expressed.  

As shown in Chapter 4, the proposed experimental device’s gate oxide 

is less than 4 nm, so direct tunneling current dominates. Therefore in Chapter 

5, how to solve direct tunneling current based on this chapter as well as other 

factors like inversion layer energy quantization will be elaborated in detail.   
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CHAPTER 3  

STRAIN EFFECTS IN SILICON 

 

Chapter 2 discusses MOS tunneling current, especially the Fowler-

Nordheim tunneling current and direct tunneling current. In this chapter, strain 

effects in silicon will be introduced. First, silicon band structure will be 

discussed, and then some concepts about stress and strain will be 

investigated. In the end, how strain affects band structure and eventually 

MOS tunneling current will be explored. 

 Silicon band structure  3.1

To calculate the band structure of a crystal like Silicon, the single 

electron Schrodinger equation must be solved [46], 

  ( )  (
  

  
  ( )) ( )    ( ) (3.1) 

where  ( ) is the effective crystal potential, m is the effective mass.   is the 

movement direction of electrons. The difference among different materials is 

 ( ) and m. It is the single crystal silicon that is studied here. A crystal is 

constructed of replicas of lattice, which is an array of atoms or molecules 

repeating periodically in three dimensions. The lattice of silicon is face 

centered cubic (FCC) as shown in Figure 3.1. The FCC lattice is point 

symmetry, and there are a total of 48 symmetry operations. Since the 

arrangement of atoms influence effective crystal potential, the effective crystal 
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potential is also periodic and symmetric. Here we define lattice constant is a. 

 

Figure 3.1 FCC lattice [47]. 

 

The band structure of Silicon solved by the Schrodinger equation is 

shown in Figure 3.2, which is constructed in the reciprocal space (k space) of 

the real lattice space. The reciprocal lattice for an FCC lattice is a body 

centered cubic (BCC) lattice. Due to the translation of the reciprocal lattice, it 

is conventionally only plotting the energy levels in the first Brillouin zone, 

which is defined as the space enclosed by the planes perpendicular to and 

bisecting the lines connecting a reciprocal lattice point and its neighbors. The 

first Brillouin zone of Silicon is shown in Figure 3.3. In the figure, Γ point is the 

center point of the first Brillouin zone. Χ point is located at 2π/a(0, 1, 0) 

http://upload.wikimedia.org/wikipedia/commons/f/f1/Silicon-unit-cell-3D-balls.png
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labeling the center of the square surfaces, and the direction from Γ to X is 

named as Δ. L point is located at 2π/a(0.5, 0.5, 0.5) labeling the center of the 

hexagonal surfaces, and the direction from Γ to L is labeled as Λ. Thus, the 

valley of valence band of Silicon is at the point of Γ, and its valley of 

conduction band is located between Γ and X along the direction of Δ. Since 

there are six equivalent directions of Δ, the valley of conduction band is six 

folded degenerated. The band gap is 1.12 ev for silicon [46, 48].  

 
Figure 3.2 Band structure of Silicon [49]. 

 

Figure 3.3 The first Brillouin zone of Silicon [50]. 
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The band structure and the first Brillouin zone are based on the crystal 

lattice free of stress. The following sections will show how the stresses 

change the band structure of silicon.  

 Stress tensor 3.2

Tensors describe linear relations between two physical quantities. It 

can be a scalar, a vector or a matrix, depending on the order (rank) of the 

tensor. Stress is a force upon a unit area. The stress on an infinitesimal 

volume cube is shown in Figure 3.4. σxx, σyy and σzz are normal stresses, 

which are along the direction of surface. σxy is defined as the shear stress 

along x direction at the surface which out-of-plane direction is along y 

direction. According to the force equilibrium principal, σxy=σyx and σzy=σyz.  

 

Figure 3.4 Stress components on the surfaces of an infinitesimal cube [51].  
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The Stress tensor is a second rank tensor of nine elements, including 

all of the normal stress and shear stress, which equals to, 

  [

         

         

         

] (3.2) 

 Strain tensor 3.3

Strain is caused by deformation and representing the relative 

displacement between lattice point. The strain tensor is defined as following,  

  [

         

         

         

] (3.3) 

where    ,     and     represent the distortion of along the length, the other 

parts represent the distortion created by rotation. Like stress tensor, according 

to equilibrium principal,        ,         and        . Therefore, six 

elements should be enough to express stress tensor and strain tensor. We 

can rewrite the stress and strain tensors to, 

  [                  ] (3.4) 

 

  [                  ] (3.5) 

In the linear elastic body, Hooke’s law introduces a linear relation 

between stress and strain, so we can get a matrix expression for the relation 

between stress and strain, which is shown below, 
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 (3.6) 

where the coefficients     are called elastic stiffness constants. The elastic 

stiffness constants are determined by materials. It has to be pointed out that 

there are only three independent components for the cubic crystal for its high 

symmetry. In most cases, it is more common to use the inverse of the elastic 

stiff tensor, the compliance tensor which is defined as, 
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 (3.7) 

where     is called the compliance. Therefore, the new relation between strain 

and stress is 

     (3.8) 

From this relation listed above, strain (or stress) can be caculated, if 

the stress (or strain) of a material is known.  

A strain tensor can be decomposed into three separate tensors, 
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(3.9) 
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where the first one describes the effect of a hydrostatic strain, and the last two 

tensors represent the shear strain. For a cubic crystal, when a uniaxial stress 

is applied along <100> axes, only the first type of shear strain is introduced. 

When there are stresses along <110> or <111>, the second type of shear 

strain exists plus first type of shear strain.  

The hydrostatic strain only changes the volume of the cubic, the first 

shear strain changes the length of cubic along x, y and z, and the second 

shear strain rotates the axes. When only the first type shear strain is non-zero 

and            , the cubic deforms to an orthorhombic. If two of them 

equal, the orthorhombic degenerates to a tetragonal. When the second type 

shear strain exists and             the cubic becomes triclinic. However, if 

two of the shear strain are zero, the triclinic degenerates to an orthorhombic. 

For example, when a biaxial stress is applied, after decomposing the strain 

tensor, only the hydrostatic and the first type shear strain is not zero, plus 

       , so the cubic changes to an tetragonal. When a stress along <110> 

is applied, all of the three strain tensors exist and        , so the cubic 

becomes the orthorhombic.  

 Strain effects on silicon band structure  3.4

If we know what kind of strain in silicon, how the band structure 

changes qualitatively can be predicted. It is possible to get a quantitive result 

for the band structure, but the solution requires group theory which is very 

complex [52], and therefore the quantitive solution will not be elaborated here. 

The following sections discuss two most common stresses, the biaxial stress 

and the <110> uniaxial stress.  

Assuming the biaxial stress is in the XY plane shown in Figure 3.5. 
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          and the rest components equal to zero. According to the 

relation between strain and stress get, 

        (       )  (3.10) 

          (3.11) 

Thus the strain tensor becomes, 

  [

     
     
     

] (3.12) 

X-Axis

Y-
A

xi
s

 

Figure 3.5 Biaxial stress . 

 

It is obvious that only hydrostatic strain and the first shear strain exist, 

and the cubic lattice becomes tetragonal. For the hydrostatic strain, the shape 

doesn’t change, but the distance between lattice points changes. As a result, 

the symmetry of the lattice does not change, as well as the symmetry of the 
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band structure, but the band gap changes. The shear strain degenerate the 

symmetry. The lattice constant along X and Y still equals, but the lattice 

constant along Z direction doesn’t equal to lattice constant along X or Y, so 

the six degenerated Δ valleys in the conduction band split into two groups, Δ2 

(longitudinal effective mass along <001>) and Δ4 (longitudinal effective mass 

along <100> and <010>). Besides the splitting of the conduction band, the 

degenerate heavy hole (HH) and light hole (LH) valence bands of Si also split 

into separate HH and LH bands. The band structure changing under a biaxial 

tensile stress in the shown in Figure 3.6. For the conduction band, Δ2 is 

lowered and Δ4 is lifted. For the valence band, LH is lifted and HH is lowered. 

LH

HH

Δ4

Δ2

 

Figure 3.6 Band splitting of Si under biaxial tensile stress [52] . 

 

For a uniaxial stress along <110> shown in Figure 3.7,         

        and the rest are zero. Thus 
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        (       )    

           

         

(3.13) 

Thus the strain tensor is, 

  [

       

       

     

] (3.14) 

 

 

Figure 3.7 Uniaxial <110> stress [52]. 

 

The uniaxial stress introduces all of the three strains. Due to lattice 

constant along X and Y still are the same, and the lattice constant along Z is 

different, it is not difficult to get a similar conclusion that the six degenerate 

conduction band valleys split into Δ2 and Δ4, as well as the band gap changes 

and a splitting between the HH bands and LH bands. The band structure 
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under <110> uniaxial compressive stress is shown in Figure 3.8. 

LH

HH

Δ4

Δ2

 
Figure 3.8 Band splitting of Si under uniaxial <110> compressive stress 

[52]. 

 

 Band warping is another phenomenon due to the strain. Taking the 

conduction band valleys of silicon for example, the Δ6 valleys are at the axes 

from Γ to Χ. Since X is at the center of the square surface, the constant 

energy surface at the valleys should be symmetrical around the axes, which 

makes the constant energy surface an ellipsoid. When a <110> uniaxial stress 

is applied to Si, the XY plane of the FCC lattice shifts from square to 

prismatic. The constant energy surface is no longer symmetrical around 

<001>, so the constant energy surface becomes an ellipse with major and 

minor axes along <110>. Figure 3.9 shows band warping under <110> 

uniaxial stress. 
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Figure 3.9 Uniaxial stress on constant energy surface. (a) Deformation 

under uniaxial <110> stress. (b) Constant energy contour in (001) plane [52]. 

 

 Summary 3.5

Chapter 3 discusses silicon lattice and band structure, stress tensor 

and strain tensor, and how stress changes silicon lattice and band structure. 

Because silicon has an FCC cubic crystal, silicon lattice poses high symmetry. 

The conduction band valleys are six folded degenerated. Strain in silicon 

diminishes this high symmetry. Every strain tensor has three different 

components. They are hydrostatic strain and two types of shear strain. 

Hydrostatic strain does not change symmetry, only changes band gap. Shear 

strain destroys symmetry, which then splits degenerated bands valleys and 

warp bands. 
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CHAPTER 4  

EXPERIMENTS ON MOS TUNNELING CURRENT 

 

 Introduction 4.1

This chapter will experimentally investigate MOS tunneling current 

strain sensor. Two approaches are employed. One is DC method. Another 

one is AC method. For the DC method, a semiconductor parameter analyzer 

Hp4156c is used, which applies DC voltage and measures DC current. For 

the AC method, a function generator is used to generate an AC voltage which 

is applied to MOS tunneling strain sensor and a TTL reference signal to the 

lock in amplifier. The tunneling current of MOS tunneling strain sensor is then 

fed into a pre-amplifier and then a lock-in amplifier. The MOS tunneling 

current strain sensor is made on a cantilever, which is deformed by a 

micrometer at the free end, and the MOS capacitor is near the fixed end.  The 

readout of the micrometer can be converted to strain. 

As discussed in Chapter 3, uniaxial <110> stress in silicon splits both 

conduction band valleys and valence band valleys, changing band gaps and 

warping band structure. Among these three effects, the first two influence 

tunneling current more than the band structure warping. The following 

sections will focus on uniaxial <110> stress influence on tunneling current.  

When the gate oxide is less than 4 nm and the gate voltage is lower 

than 2.5V, direct tunneling current dominates. When a positive gate voltage is 



44 
 

applied, the gate current comes from the electrons tunneling from Si to Al. 

There are two different kinds of tunneling current in gate current. One is 

electrons tunneling from conduction band, named as ECB tunneling current. 

Another one is electrons tunneling from valence band, named as EVB 

tunneling current. 

As shown in Figure 2.4, ECB tunneling current is comprised of two 

parts, the two-fold degenerate Δ2 group which longitudinal effective mass is 

along the <001> direction and the four-fold degenerate Δ4 group which 

transverse effective mass is along the <001> direction. When NMOS is in 

inversion region, electrons limited in the 2D surface become quantized. Since 

the longitudinal effective mass is larger than the transverse effective mass, Δ2 

group has lower energy levels than that of Δ4 group. Therefore, electrons are 

mainly located in the ground state of Δ2, which dominates ECB tunneling 

current. The MOS capacitor’s tunneling current through the Silicon dioxide is 

mainly determined by the energy barrier height between the Silicon 

conduction band edge and the SiO2 conduction band edge [28, 53, 54].  

For EVB tunneling current, electrons in valence band are not confined 

in a 2D layer at the surface, so there is no quantization. Since valence band is 

full of electrons, especially when positively biased, there is no repopulation 

when uniaxial stress is applied. EVB tunneling current is also comprised of 

two components, Jhh and Jlh. Jhh has a heavy hole effective mass. Jlh has a 

light hole effective mass. Like ECB tunneling current, EVB tunneling current is 

also determined by barrier height which is the difference between SiO2 

conduction band and Si valence band, and out-of-plane effective mass.  

When a negative voltage is applied on Al, the tunneling current is 
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composed by electrons tunneling from Al to Si and holes tunneling from Si to 

Al as shown in Fig. 2.4 (b). Because the barrier height of holes in Si is higher 

than that of electrons in Al, the tunneling current mainly depends on the 

electrons from Al. The tunneling current is then only determined by Al’s work 

function. Uniaxial tensile strain causes Al’s work function to decrease, so the 

tunneling current increases. Uniaxial compressive strain causes Al’s work 

function to increase, so the tunneling current decreases. 

 Fabrication and Measurement setup 4.2

Figure 4.1 shows the fabrication process of a cantilever beam with a 

tunneling oxide. The starting wafer is a heavily doped P-type (100) Silicon 

wafer, which is around 500 um thick. A 500 nm thick thermally grown oxide 

layer is patterned by wet etching. Then, a thin oxide layer (around 3.8 nm) is 

grown with an area of 1 mm2. Finally, Aluminum is sputtered and patterned as 

contacts.  The length of the device is around 2 cm, and the width is 0.5 cm.  

 

Si
SiO2

Si
SiO2

Si
SiO2 SiO2

Si
SiO2 SiO2

Al

Al  

(a)  
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(b)  

Figure 4.1 Fabrication process and the figure of MOS tunneling current 

strain sensor. (a). Fabrication process; (b). Picture of the device. 

 

To minimize noise in MOS tunneling current, a very high quality gate 

oxide is desired. Four different methods are employed to grow gate oxide. 

They are PECVD, ALD, RTP and dry oxidation in furnace. Among these 

methods, it is found that dry oxidation in furnace provides the highest quality.  

At 800 oC, a heavily doped p type wafer grows 2.4 nm thick oxide in one 

minute. The uniformity of gate oxide can be characterized by an ellipsometer. 

Figure 4.2 shows that five positions on a wafer are chosen for the uniformity 

measurement. Table 3 gives the measurement result.   
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Figure 4.2 P type wafer for uniformity measurement using ellipsometer. 

Table 3  

Uniformity measurement result 

Positions Thickness (nm) 
1 2.38 
2 2.45 
3 2.39 
4 2.41 
5 2.39 

 

One quick method to know whether the gate oxide is good or not is to 

measure current vs. gate voltage (IV curve). Figure 4.3 (a) shows a good gate 

oxide, which IV curve is more like log function. Figure 4.3 (b) shows a bad 

gate oxide, which IV is close to linear function. Besides, the current of good 

device is much smaller than the bad device. However, a device with a log 

function like IV curve does not mean the device has a very high quality gate 

oxide. Further measurement like noise characterization is needed, which will 

be discussed in later sections.  

 

 

(a)  
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(b)  

Figure 4.3 IV curve for MOS capacitor. (a). Good device; (b). Bad device. 

 

Figure 4.4 shows the measurement setup. One end of the beam was 

glued to a metal stage by conductive epoxy, while the other end was 

deformed by scrolling a micrometer. The MOS capacitor is located in the fixed 

end. The micrometer positions are converted to strain. The tunneling current 

was recorded by an HP4156c Semiconductor Parameter Analyzer. Both 

uniaxial tensile strain and uniaxial compressive strain are in the <110> 

direction. 
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(a)  

 

(b)  

Figure 4.4 Photograph of measurement setup, and illustration of MOS 

tunneling current strain sensor using cantilever beam. The MOS device is 

near the fixed end. (a). Measurement setup; (b). Illustration of MOS tunneling 

current strain sensor using cantilever beam. 

 

All the measurements were done by increasing the strain from 0% to 

0.112% at the step of 0.016%, and then decreasing the strain from 0.112% to 

0% at the step of 0.016%. During each step, there are 25 samples with a 

sampling time of 2 seconds. 

 DC experiments of strain effects on tunneling current 4.3

The results of tensile strain and compressive strain are given in the 

Table 4, Figures 4.5 & 4.6 and Figures 4.7 & 4.8 respectively. The blue solid 

lines are the measured tunneling currents, which drifts with time. Since in the 

beginning the currents decrease or increase sharply, only data captured after 

50 seconds which is stable, is considered. To calculate noise and sensitivity, 

drift has to be removed which is shown as the red dot line. There are some 
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spikes in the measured results of 1V, 0.5V and -1V. These spikes appear at 

the time that the strains are changed, which are introduced by human body 

and are ignored in the analysis.  

Table 4  

Analysis of experiment data 

 

Table 4 analyzes noise (SD or SD/avg), sensitivity (ΔIg/Ig or GF) and 

drift. Here avg is the average tunneling current of 25 samples with a sampling 

time of two seconds at zero strain. SD is standard deviation of 25 samples 

with a sampling time of two seconds at zero strain. Drift which unit is % per 

minute is calculated from 50 seconds to 800 seconds. Drift shows that 

tunneling current changes slowly even when there is no strain. GF is the 

gauge factor which equals to       

 
, where         . 

 Tensile strain 4.3.1

From the analysis in the Table 4 and Figure 4.5, it can be seen that 

tunneling current increases as gate voltage increases. The noise or SD 

decreases two orders of magnitude from 0.5V to 1V, and it keeps the same 

order of magnitude from 1V to 2V. SD/avg at 2V is 0.022%, which means a 

Voltages 
(V) 

Avg 
(nA) 

SD 
(A) 

  

   
 

(%) 

       
200 

MPa (%) 

GF Drift rate 
(% per 
minute) 

2 (tensile) 76.22 1.7E-11 0.022 -2.5 22.3 0.456 
1.5 14.17 5E-12 0.03 -2.0 17.8 0.413 
1 1.415 1.0E-13 0.007 -2.2 19 0.124 

0.5 0.031 2.3E-13 0.7   -0.104 
-1 0.147 3.6E-13 0.24 0.38 3.4 -0.52 
2 

(compressive) 
75 2.0E-11 0.026 2.1 19 0.416 

1 1.085 4.4E-13 0.04 1.8 16 0.608 
0.5 0.039 1.5E-14 0.038 1.2 11.2 -0.464 
-1 0.155 1.1E-13 0.07 -0.38 3.4 -1.48 

mailto:88nA@2V
mailto:1.2nA@1V
mailto:230pA@-1V
mailto:2nA@-1.5V
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strain induced current changing less than 0.022% at 2V cannot be measured. 

The sensitivity at 2V at the strain of 0.112% is -2.5%. Therefore, if minimum 

detectable strain at 2V equals to 0.112% / (2.5% / 0.022%), which is 0.001%. 

Likewise, the minimum detectable strain at 1V is around 0.0005%. The 

minimum detectable strain at 0.5V and -1V are around 0.112%, which are 

large.  

The current drifting is observed. Table 4 and Figure 4.5 show that the 

drift rate changes from negative to positives as gate voltage increases from 

0.5V to 2V. From 1V to 2V of tensile experiment, it seems like drift rate 

increases. However, as find in compressive experiment, from 1V to 2V, drift 

rate decreases a little bit. Since the same device is used, the drift rate should 

show the same result, but it did not. Therefore, drift in tunneling current need 

more experiment to characterize. 
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Figure 4.5 Tunneling current versus time at different gate voltages and 

different tensile strain. 

 

In Figure 4.6, as the theories predict, tensile stress causes the MOS 

tunneling current to decrease at the positive voltage. In the other hand, tensile 

stress causes the MOS tunneling current from metal to Silicon to increase at 

the negative voltage. The sensitivity (ΔIg/Ig) and gauge factor decreases from 

1V to 1.5V, but increases from 1.5V to 2V. 
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Figure 4.6 Tunneling current change versus tensile strain. 

 

 
 Compressive strain 4.3.2

Figures 4.7 & 4.8 show that the compressive stress responses are 

contrary to the tensile stress responses. Compressive stress causes MOS 

tunneling current to increase at positive gate voltages, while decrease at 

negative gate voltages.  

Since the same device is used for both tensile and compressive stress 

measurement, the SD should be close to those of tensile strain. However, the 

SD at 1V is four times larger than that of tensile strain, while the SD at 0.5V is 

ten times smaller and the SD at -1V is three times smaller. The difference 

may come from the electrode contact or environment like temperature, since 

the compressive strain measurement was conducted at different time. 

Sensitivity at 2V and 1V are better than those at 0.5V and -1V. 
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Figure 4.7 Tunneling current versus time at compressive strain. 
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Figure 4.8 Tunneling current change versus compressive strain. 

 

 Discussion 4.3.3

As part of the experiment, noise, sensitivity and drift of MOS tunneling 

current strains sensor were studied. Noise of positively biased tunneling 

current is less than that of negatively biased tunneling current. Besides, noise 

decreases as gate voltage increases. Tensile stress decreases positively 

biased MOS tunneling current, and increases negatively biased MOS 

tunneling current. Compressive stress shows an opposite effect on MOS 

tunneling current. Sensitivity of MOS tunneling current strain sensor increases 

as gate voltage increases. However, under tensile stress, sensitivity of 

positively biased MOS tunneling current strain sensor decreases a little and 

then increases. Drift does not show a clear pattern from the experiment, which 

requires further study.  

Since it is preferred for noise as small as possible, it is better to let 

MOS tunneling current strain sensor work in inversion region. The following 

sections will show the building of models for ECB tunneling current and EVB 
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tunneling current to theoretically study sensitivity of MOS tunneling current 

strain sensor in inversion region. 

 AC experiments of strain effects on tunneling current 4.4

During the DC experiment of strain effects on tunneling current, strain 

was measured by measuring the strain-induced tunneling current changing 

through a Metal-Oxide-Semiconductor sandwich from a DC voltage. To 

overcome the electronic noise, substantial averaging was utilized.  In this 

section an improved method of measuring the strain from the tunneling 

current is demonstrated in which an AC signal is utilized, and the AC current 

is measured. This approach substantially reduces the noise by avoiding the 

1/f noise. The optimal conditions for the AC technique are to use a high 

frequency to avoid 1/f noise and a low DC bias. The MOS tunneling current 

strain sensor used to compare the performance has a 2.3 nm thick SiO2 gate 

oxide. To compare the performance, both DC method and AC method are 

performed. Only uniaxial <110> tensile stress at positive bias is studied, which 

is enough to compare the performance to DC method. The way to apply 

stress to the device is the same as Figure 4.4.  

 The principle of AC measurement 4.4.1

The setup of the AC measurement is shown in Figure 4.9. A function 

generator is used to generate a sine wave AC voltage and a TTL reference 

signal. The AC voltage is applied to the device. Tunneling current from the 

device is fed into a pre-amplifier and lock-in amplifier. The silicon cantilever is 

deformed by a micrometer at the free end, and the micrometer positions are 

converted to strain. 
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(a) 

R

C
 

(b) 

Figure 4.9 (a) The top one is the setup for strain measurement and the 

bottom one is the setup for noise spectrum measurement. (b) The equivalent 

circuit for a MOS tunneling sensor. 

 

A lock in amplifier is an efficient tool to extract signal from noise. The 

noise reduction depends on the bandwidth (time constant, τ) of low pass filter 

and the modulation frequency. The general principal of lock in amplifier can 

be described by the following equations. The equivalent circuit of the MOS 

tunneling device is a RC network in parallel (Figure 4.9(b)), so the signal from 

the preamplifier and the reference from the function generator are, 

Vs=V0cos(w0t)+V1sin(w0t)+δt (4.1) 
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Vref=cos(w0t+ϕ) (4.2) 

 
where V0cos(w0t) is the signal from the resistor, V1sin(w0t) is the signal from 

the capacitor, δt is the noise, ϕ is the phase delay between reference channel 

and signal channel and Vref is the reference signal. After supplying both signal 

and reference to the lock in amplifier have 

VsVref=( V0cos(w0t)+V1sin(w0t)+δt) cos(w0t+ϕ) 
 

=1/2V0cos(ϕ)+1/2V0cos(2 w0t+ϕ)… 
 

+1/2V1sin(ϕ)+1/2V1sin(2 w0t+ϕ)… 
 

          +δt cos(w0t+ϕ) 

(4.3) 

 

After a low pass filter, the final signal becomes, 

V=1/2V0cos(ϕ)+1/2V1sin(ϕ) (4.4) 

 
The signal is 1/2V0cos(ϕ), however due to the phase delay, the final 

signal includes a signal from the capacitor. If V1 is close to V0, the influence 

from the capacitor could be very large, and it will harm the accuracy of 

measurement. There are several sources causing this phase delay, like the 

amplifiers and the BNC cables. In our measurement, the major phase delay 

comes from the function generator, Agilent 33220a, which means the phase 

of the AC voltage and the TTL reference signal are not same. This phase 

delay varies with frequencies. For example, there is a 15 degree delay at 1 

kHz compared to 1 Hz. In order to get an accurate signal, it is necessary to 

exclude the phase delay by adjusting the phase of the reference channel of 

the lock in amplifier. 
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 Results and discussion 4.4.2

4.4.2.1 Noise and drift current 

Before using lock in amplifier, a proper modulation frequency must be 

determined by the analysis of the noise spectrum of the device. The noise 

spectrum at a DC voltage of 0.7 V is shown in Figure 4.10. From the noise 

spectrum, we find that there is a 1/f noise in the low frequency region. It 

should be expect that the as the modulation frequency moves from the low 

frequency region to the white noise region, the noise should drop.  

 

Figure 4.10 Noise spectrum. 

 

The modulation frequencies we choose are 10 Hz, 100 Hz and 1 kHz, 

and the time constant is kept at 100 ms. The gain of the preamplifier is 5 µA/V, 

which provides a 10 kHz band width. The measurement results are shown in 

Figure 4.11, and the standard deviations/average (SD/avg) are given in Table 

5. Both standard deviation and average are calculated from 50 continuous 

samples. It is clear that when the modulation frequency changes from the 1/f 

noise region to the white noise region, the noise decreases.  
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Figure 4.11 AC measurement at different frequencies when the time 

constant is 100 ms. 

 

 Table 5  

Noise measurement at different frequencies 

 10 Hz 100 Hz 1 kHz 
SD/avg 0.012% 0.009% 0.002% 

 

Figure 4.11 also show that the drift tunneling current observed in the 

DC method is not improved by the AC measurement, which can be explained 

by the following equations. Adding a modulation signal to (4.1) and only 

consider the resistor part get 

Vs
’=cos(w1t)V0cos(w0t) (4.5) 

where    (   ) is introduced by the drift tunneling current and    is usually a 

very small frequency which is far less than   . The drift tunneling current may 

not be a simple sine wave, but if the drifting is very slow, an assumption of a 
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sine wave is enough for the analysis. According to our experiment, it is true 

that the drifting is at a very low frequency which is far less than 1 Hz. The 

output of lock in amplifier is, 

V’=1/2cos(w1t)V0cos(ϕ) (4.6) 

Thus the AC measurement using lock in amplifier cannot get rid of the 

drift tunneling current.  

To see the effects of the time constant, 1 kHz is chosen as the 

modulation frequency and vary time constant τ from 10 ms to 1 s. Figure 4.12 

and Table 6 show the results. The noise decreases substantially as the time 

constant is increased. In Table 6, the noise observed from the DC 

measurement (Figure 4.14(a)) is also included. The time constant of DC 

measurement is 0.6 s, and its noise is close to that of the AC method at 0.08 

s. To have a noise of 0.005%, AC method is almost eight times faster than the 

DC method. Figure 4.12(b) shows that noise reduction below 100 ms is more 

efficient. 

 
 

(a) 
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(b) 

Figure 4.12 (a) AC measurement of different time constant at 1 kHz; (b) 

SD/avg vs. time constant. 

 
 

Table 6  

Noise measurement at different time constant 

 10 ms 50 ms 100 ms 1 s DC 

SD/avg 0.02% 0.007% 0.003% 0.002% 0.005% 

SD/avg/τ 2% 0.14% 0.03% 0.002% 0.008% 

 

4.4.2.2 Sensitivity  

The sensitivity for both the DC and the AC method is defined as ΔIg/Ig, 

where Ig is the tunneling current. Although it is the voltage from the lock in 

amplifier that is measured for the AC method, ΔIg/Ig equals ΔVg/Vg.  

Figure 4.13(a) presents how the tunneling current at Vdc=0.7 V 

changes with the tensile strain which is along [110] direction. The strain is 

increased from 0% to 0.036% and then decreased to 0% at a step of 0.012%. 

The same procedure is also applied to the DC voltages at 0.5 V, 0.6 V, 0.8 V, 
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0.9 V and 2 V. Figure 4.13(b) shows how the sensitivity changing with the DC 

voltages at the strain of 0.012%. As the theory predicts, the sensitivity drops 

and eventually becomes negative.  

The amplitudes of AC voltages chosen for the AC measurements are 

20 Vrms, 50 Vrms, 100 Vrms and 200 Vrms, while the device is biased at 0.7 

V. The results are given in Figure 4.14. The measurement procedure is the 

same as the DC measurement. Figure 4.14(b) shows that the sensitivity of AC 

method first increases, but then decreases with the increasing of the AC 

amplitude. This can be explained by that the AC method measures the slope 

of the current vs. voltage curve of the DC method. Taking 20 mV as an 

example, as the amplitude is small, the current is determined by both the high 

peak 0.7+0.028=0.728 V and the low peak 0.7-0.028=0.672 V. At tensile 

strain, the sensitivity at the low peak is larger than that of the high peak, which 

in turn reduces the slope changing, so the sensitivity is reduced. As the 

amplitude increases, the influence from the low peak weakens and the 

sensitivity tries to increase, but the sensitivity at high peak decreases, so 

there is a competition. When the amplitude is smaller than 100 mV, the low 

peak weakening has more influence on the sensitivity, so we see the 

sensitivity increase. When the amplitude is larger than 100 mV, the sensitivity 

at high peak dominates, decreasing sensitivity is observed. As a result, the 

AC method will have a lower sensitivity than the DC method at the same DC 

offset. 
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(a)  

 

(b)  

Figure 4.13 DC method. (a) tunneling current at Vdc=0.7 V; (b) strain 

response at different DC voltages at the strain of 0.012%. 
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(a)  

 
(b)  

Figure 4.14 AC method. (a) tunneling current at Vrms= 100 mV, Vdc=0.7 V 

and 1 kHz; (b) strain response at different DC voltages at the strain of 0.012%. 

 

 Conclusions 4.4.3

The DC and the AC measurement techniques for the MOS tunneling 

strain sensor are compared, and it is found that AC method has a better 

performance in noise reduction. When the modulation frequency used in the 

AC measurement is far from the 1/f noise, the AC measurement technique is 
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found to eight times faster than the DC measurement to get a same level of 

noise. The sensitivity of AC method is close to the sensitivity of the DC 

technique. However, a drift current is observed in both methods, and it is 

impossible to be removed by the AC method. 
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CHAPTER 5  

MOS STRAIN SENSOR SENSITI.ITY STUDY BASED ON ECB AND E.B 

MODELING 

 

 Introduction 5.1

This chapter builds simulation models for MOS tunneling current strain 

sensor. The purpose of modeling is to provide an explanation for the 

experimental results, and to better understand how to optimize a tunneling 

current strain sensor.  

The tunneling current through an MOS structure has been well studied. 

However, there is very little literature on the change of the tunneling current 

with respect to strain.  Several groups have studied the change of the NMOS 

gate current in the inversion region, but they only considered tunneling from 

the conduction band of the substrate to the gate (ECB tunneling) [55-57]. ECB 

tunneling has been successfully applied to explain the gate tunneling current 

in NMOS transistors for zero strain, or for a strained MOSFET with low 

substrate doping concentrations.  This chapter will show that the valence 

band tunneling (EVB tunneling) is necessary to explain the sensitivity of a 

MOS tunneling current strain sensor, especially when the substrate doping 

concentration is high to minimize series resistance, or when a large gate 

voltage is applied.  The tunneling current was calculated using both ECB and 

EVB tunneling, and the effects of doping concentration were studied. The 
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model used is appropriate for a NMOS tunneling current strain sensor made 

on a (001) silicon wafer which is positively biased to the inversion region. 

Section 5.2 and Section 5.3 discuss ECB modeling and EVB modeling 

and verify the modeling results with experiment results from other groups. 

Then Section 5.4 uses models to simulate the proposed devices used in DC 

measurement. Section 5.5 studies the influence from substrate doping 

concentration.  

 ECB modeling 5.2

For ECB tunneling current, Thompson’s group built a model to simulate 

the stress altered gate current by self-consistently solving Schrodinger 

equation and Poisson equation for the quantized carrier layers and solving the 

tunneling probability using the transfer-matrix-method [17, 55]. The model 

requires a lot of effort and time to compute. To predict how MOS tunneling 

current changes with strain in the inversion region quickly and accurately, 

computationally efficient models are built. Here approximate methods are 

used to solve the energy quantization and the WKB method to solve the 

tunneling probability. The strain induced energy shift can be expressed by 

deformation potential theory [58]. Two approximate methods to solve the 

energy quantization are employed and compared. For the energy 

quantization, the tunneling current is computed as a function of stress for 

each method. 

The models are built for n-type MOS capacitor on a (001) wafer with a 

heavily doped n-type poly-silicon gate. The gate current and electron energy 

quantization are along the <001> direction or Z direction. As shown in Figure 

5.1, the MOS capacitor is positively biased to the inversion region, in which 



71 
 

the electrons’ energies are quantized. The six degenerate conduction band 

minimum are divided into two groups, the two-fold degenerate Δ2 group 

whose longitudinal effective mass is along the <001> direction, and the four-

fold degenerate Δ4 group whose transverse effective mass is along the <001> 

direction. Since the longitudinal effective mass is larger than the transverse 

effective mass, the Δ2 group has lower energy levels. The MOS capacitor’s 

tunneling current through the silicon dioxide is determined by (1) the energy 

barrier height between the silicon conduction band edge and the SiO2 

conduction band edge; and (2) the electrons’ out of plane effective mass. 

When a <110> uniaxial tensile strain is induced, the band gap of silicon is 

decreased and conduction band edge of silicon is lowered. In addition, the Δ2 

valleys are lowered in energy and the Δ4 valleys are raised in energy. As a 

result, both effects decrease the tunneling current. In contrast, as a <110> 

compressive strain is applied, the tunneling current is increased. 

 

SiO2 P type SiliconN type Poly-silicon 
or metal

Δ2

Δ4

Ef1
Ec1

Ev1

Ef2

Ec2

Ev2

Ehh, Elh

ECB

EVB

 

Figure 5.1 NMOS in inversion region. 
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 Approximate methods for quantized inversion layer 5.2.1

The sub-bands of inversion layer of NMOS capacitor can be obtained 

by self-consistently solving the Schrodinger equation and Poisson equation. 

Using the effective mass approximation, the electronic wave function can be 

written as [59],  

    (     )      ( ) 
              (5.1) 

where     (     ) is the envelope of the ith energy level,     ( ) is the 

envelope along the z direction, θ is determined by    and   ,   denotes Δ2 and 

Δ4 and equals to 2 for Δ2 or 4 for Δ4, j denotes the sub-bands levels. This 

approximation decouples the 3D Schrodinger equation into a 1D equation,  

[ 
  

     
 

  

   
   ( )]     ( )          ( ) (5.2) 

where      is the sub-band energy level (the conduction band edge at 

the surface is the relative 0 ev),   is the electron charge,   is Plank’s constant, 

     is the electron effective mass in the z-direction, and  ( ) is the potential 

well which is determined by the Poisson equation, 

   ( )

   
   ( )     (5.3) 

where  ( )  is the charge density including both depletion layer and 

inversion layer, and     is the dielectric constant of silicon. Since the charge 

density solved from the Schrodinger equation will influence the potential well 

and the potential well in turn determines the charge density, a self-consistent 

way to solve Schrodinger equation and Poisson equation is needed. To obtain 

accurate results, a numerical method to solve differential equations may be 
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employed which is quite time consuming and costly. Alternatively, a triangular 

potential well approximation method may be used to simplify the self-

consistent coupling, which leads to the well-known Airy equation solutions 

[60], 

    ( )      (        
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where      is the penetration distance of the inversion layer carriers 
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from the surface,    is the surface electric field,       is depletion layer charge 

concentration,      is the total inversion layer charge concentration,    is the 

surface band bending without contribution of inversion layer,    is substrate 

doping concentration,        
 is the sub-bands charge concentration,    is the 

Boltzmann constant, T is the temperature,      is the density of states 

effective mass per valley,     ⁄
 is the valley degeneracy,    is the Fermi level 

relative to the surface conduction band edge,    is the surface potential,     is 

the average distance inversion layer carriers from the surface,    is the band 

gap and    is the intrinsic carrier concentration. However, this triangular 

potential well method only provides good approximate results when the 

inversion layer charge density is smaller than the depletion charge density. A 

variational method was proposed by assuming that most of charges occupy 

the ground sub band and using a trial eigenfunction. The ground energy levels 

can be described as [60, 61], 
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(5.15) 

 
This equation can be applied to both Δ2 and Δ4 by using different out of 

plane effective masses,     , for Δ2 and Δ4. Since the higher states have less 

influence, we still use (5.5) & (5.6) for the higher states. Table 7 gives the 

value of parameters used in the modeling.    is the free space electron mass. 



75 
 

 

Table 7  

Values of effective masses used in this paper. 

     0.98   
     0.19   
     0.19   
     0.417   

 
 

Figure 5.2 shows the sub-bands and the Fermi level for the triangle 

approximation method and the variational method, as well as the self-

consistent method solving differential equations using Schred [62]. E21 is the 

ground state for the Δ2 valley, and E41 is the ground state for the Δ4 valley. 

From Figure 3, it is observed that at low voltages the sub-bands from the two 

approximate methods are close to the results from Schred. However, the 

difference between the approximate methods and Schred becomes large as 

the voltage increases. It is clear that compared with the triangle approximate 

method, the variational method gives a better fit. 
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Figure 5.2 Sub-bands vs. gate voltage. The doping concentration of p-type 

substrate is 1e17 cm-3. The doping concentration of n-type poly gate is 1e20 

cm-3. The thickness of gate oxide is 2.19 nm.  

 
 ECB tunneling current using WKB approximation 5.2.2

After obtaining the sub-bands, the WKB approximation method is used 

to obtain the direct tunneling current, 

    ∑
        

    
    (5.16) 

 
where  

       
   

      
 (5.17) 

 
Here TR is the modified WKB approach tunneling probability [56, 57, 

63].       is the modified WKB approach tunneling probability, which is 

expressed as [57]: 

                (5.18) 

where        is the classic WKB approach tunneling probability for 

each sub-bands.      is the correction factor considering reflection within the 

gate oxide.        and      are expressed below: 
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where the Franz dispersion relation is used to calculate       .    is 

the gate oxide band gap, which is equal to       .     is the electron effective 
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mass, which equals to        for an Al gate and        for a poly-Silicon 

gate, where    is free space electron mass.     is electrical field in oxide.     

is electron energy referred to the gate oxide conduction band edge, which 

equals to                 at the cathode side and              

        at the anode side.    is the tunneling barrier between the edge of 

oxide conduction band and the edge of Silicon conduction band, which equals 

to       . This analysis ignores the electron kinetic energy parallel to interface. 

Using the parabolic dispersion relation,         √
     

    
 and        

√
             

    
 are the electron group velocity incident and leaving the oxide, 

respectively, where      is the electron out-of-plane effective mass. Under the 

Franz dispersion relation,            
 

         
√

      (          )

   
 and 

         
 

       
√

    (        )

   
 are the group velocity of electrons at the 

cathode and the anode within gate oxide. Other parameters used in modeling 

are the same as [64]. Details about TR refer to Chapter 2.   

Figure 5.3 shows the gate current from modeling and experiment. Both 

methods give a gate current that is similar compared to the experimental 

result for voltages larger than 1 V. There is minimal difference between the 

two modeling methods from the gate current modeling with zero stress.  
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Figure 5.3 Gate current density vs. gate voltage. The device parameters 

are the same as used in Figure 5.2. The experiment results are from [65]. 

 

 Strain induced ECB tunneling current changing 5.2.3

Considering an <110> uniaxial stress is applied to the wafer, and 

applying deformation potential theory, the sub-bands with stress can be 

obtained, 
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where           ,           ,                   ,     

               . As a result, the tunneling current with stress can be 

obtained by substituting the sub bands with stress into (5.16), which is, 

    ( )  ∑
   

      ( )

  
   ( )  ∑

   
      ( )

  
   ( )  (5.23) 

 
The change in tunneling current can be expressed as, 
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     ⁄ ( )  
(  ( )  )

 
 (5.24) 

Figure 5.4 shows the comparison between triangle potential approach 

and the variational approach for    ⁄ ( ), as well as the comparison to the 

experimental results for both approaches. Figure 5.4 indicates that the 

variational approach is closer to the experimental results.  

 

 

Figure 5.4 Modeling vs. experimental results. For the tensile case, the 

doping concentration is 5e17 cm-3 for the p-type substrate and 1e20 cm-3 for 

the n-type poly gate. The thickness of gate oxide is 1.3 nm. The experimental 
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data for the tensile is from [55]. For the compressive case, the doping 

concentration is 1e17 cm-3 for the p-type substrate and 1e20 cm-3 for the n-

type poly gate. The thickness of gate oxide is 1.3 nm. The experimental data 

for the tensile is from [66]. 

 

In some papers, a correction coefficient η is used in (5.7), which is 

modified to, 

   
 (           )

   
 (5.25) 

 
It is typically some number between 0.5 and 1 [66-68]. In Figure 5.5, 

   ⁄  vs. voltage are plotted for ±200 MPa stress. The sensitivity decreases as 

the voltage increases for both tensile stress and compressive stress. The 

triangle method with        has a larger change in current than for    . 

The correction factor may be chosen to fit experiment, but it is not known a 

priori. 
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Figure 5.5 Percent change in current density versus voltage.  The tensile 

and compressive stress are both 200 MPa. The parameters are the same as 

Figure 5.4. 

 Summary of ECB tunneling current modeling 5.2.4

For this study, two computationally efficient models are built to study 

stress induced gate current changing for NMOS capacitor which is biased to 

inversion region.  The computational efficiency comes from the adoption of 

approximate method for the sub-bands and WKB method for the tunneling 

probability. The sub-bands from these two models are compared with Schred 

which solves differential equations self-consistently, which shows that the 

results from the variational method are closer to Schred than the triangle 

approximate method. The two approximation methods provide nearly the 

same current without stress, but when stress is applied, the variational 

method provides an answer that is much closer to experiment. This model can 

be used to better model and understand MOS tunneling current sensors. 

 EVB modeling 5.3

Unlike ECB tunneling current, the electrons in the valence band are not 
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confined in a 2D layer at the surface, so quantization is not necessary. As 

shown in Figure 5.1, the Fermi level at gate,    , is set to be the relative 0 

energy level.     is the Fermi level in substrate.     and     are the 

conduction band edges of the gate and substrate, respectively.     and     

are the valence band edges of the gate and substrate, respectively.  

    and     are the difference between     and     for the heavy hole 

band and the light hole band. When there is no stress,                . 

When there is uniaxial stress, the heavy hole band and the light hole band are 

split. For a metal gate, there is no band gap, so     and     do not have to be 

larger than 0 for tunneling to occur. The EVB tunneling current can be 

expressed as: 

               (5.26) 

where     is the component in which electrons have a heavy hole 

effective mass and     is the component in which electrons have a light hole 

effective mass. Adopting a model from Tsu and Esaki [69],     and     may be 

obtained: 
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where     equals        and     equals       .   ( ) and   ( ) are 



83 
 

the Fermi-Dirac distribution for electrons in the gate and the substrate, 

respectively, where        . In the inversion region, because the 

difference between     and     is much larger than    ,   ( )   , where    

is Boltzmann’s constant and   is room temperature.      and      are 

modified WKB approach tunneling probability similar to    used for ECB 

tunneling current modeling, but for the valence band. The tunneling barrier in 

     and      is the difference between the oxide conduction band edge and 

   , which equals to        . For the aluminum gate, without a band gap in 

the gate,      could be less than     . In (5.27) and (5.28),    is assumed to 

be neglectable in   ( ) and   ( ).  

Figure 5.6 shows EVB modeling results compared with a compact 

model [70]. Since it is poly-gate, (5.26), (5.27) and (5.28) are only valid, when 

    and     are       . Besides,          . 

 

Figure 5.6 EVB modeling. The parameters used in EVB modeling are the 

same as those in Figure 2 in [70]. 
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When <110> uniaxial stress is applied, the heavy hole band and light 

hole band are split as follows: 

   
                 (5.29) 

   
                 (5.30) 

 
where                   and                 .      and      

are the band shift for heavy hole band and light hole band, respectively. It is 

difficult to get an analytic equation for the valence band shift under uniaxial 

stress. For this work, the valence band shift was interpolated from the 

simulation results from [71]. The sensitivity expression for EVB tunneling 

current is similar to (5.24). 

 ECB and EVB tunneling current modeling for the MOS tunneling 5.4

current strain sensor used in the DC measurement 

In the previous sections, models for ECB and EVB tunneling current 

are built. The section uses these models to simulate the MOS tunneling 

current strain sensor used in the DC measurement. The device is NMOS 

capacitor with Al gate. The thickness of gate oxide is 3.7 nm. The substrate 

doping concentration is 2.0e18 /cm3. Table 8 give sensitivity vs. gate voltage 

from DC measurement in Chapter 4. The models discussed later fit this table. 

 

Table 8  

Sensitivity vs. gate voltage from our group’s experiment. 

Gate voltage (V) Sensitivity (%) 
1 -2.2 

1.5 -2.0 
2 -2.5 
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Figure 5.7 shows the current density versus gate voltage. It is clear that 

at a low voltage, the ECB tunneling current dominates. However as the gate 

voltage increases, the EVB tunneling current increases rapidly and becomes 

nearly the same as the ECB tunneling current. Then the total current density 

is determined by both ECB tunneling current and EVB tunneling current. As 

discussed in the following section, the sensitivity is also expected to be 

determined by the ECB tunneling at low voltage, but the influence from the 

EVB tunneling current becomes more important as the gate voltage 

increases.  

 

Figure 5.7 Calculated current density for the MOS strain sensor without 

strain, including the ECB tunneling current, EVB tunneling current, and the 

total tunneling current. A comparison to the experimental results are also 

shown.  

 

Figure 5.8 shows sensitivity vs. gate voltage for ECB under 200 MPa 

<110> uniaxial tensile stress. It is clear that sensitivity decreases with 

increasing gate voltage for ECB.  
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Figure 5.8 Sensitivity vs. gate voltage for ECB. 

 

Figure 5.9 shows the sensitivity versus gate voltage for EVB tunneling 

current under 200 MPa <110> tensile stress. Like the sensitivity versus gate 

voltage for ECB tunneling current, the sensitivity for EVB tunneling current 

also decreases as gate voltage increases. However, the sensitivity is much 

greater than for the ECB tunneling current, and never drops below 4%. 
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Figure 5.9 Calculated sensitivity vs. gate voltage for EVB tunneling current. 

 

The NMOS tunneling current is comprised of both the ECB tunneling 

current and the EVB tunneling current and are discussed in this section. The 

total current density,  , equals          .   ( )  is the total current density 

under stress. Similar to (5.24), the sensitivity is expressed as: 

   ⁄ ( )  
(  ( )   )

 
 (5.31) 

Figure 5.10 shows the calculated sensitivity versus the gate voltage for 

our group’s device, which agrees with the tensile results in our experiment. 

The total sensitivity does not simply decrease as the gate voltage increases, 

even though it decreases for both ECB tunneling current and EVB tunneling 

current. It is noticed that at the same gate voltage, the sensitivity for EVB 

tunneling current is larger than ECB tunneling current. When the gate voltage 

is small, the ECB tunneling current dominates total tunneling current, so its 

sensitivity dominates the total sensitivity. As the gate voltage increases, the 

EVB tunneling current becomes close to the ECB tunneling current, so the 

influence of the EVB sensitivity increases. Because the EVB tunneling current 

sensitivity is larger than ECB tunneling current sensitivity, it should be 

expected that the overall sensitivity increases as the gate voltage increases. 
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Figure 5.10 Sensitivity vs. gate voltage for total tunneling current. The line is 

calculated from the model, and the diamonds are the measured experimental 

results. 

 

 Different doping concentration 5.5

Doping concentration’s influence on sensitivity is studied in this section. 

Figure 5.11 shows current density and sensitivity vs. gate voltage for ECB for 

different doping concentration. As doping concentration increases, both 

current density and sensitivity for ECB decrease.  
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(a)  

 
(b)  

 

Figure 5.11 ECB modeling for different doping concentration. Parameters 

are the same as MOS tunneling current strain sensor in DC measurement. (a). 

Current density vs. gate voltage for ECB; (b). Sensitivity vs. gate current for 

ECB. 

 

Figure 5.12 shows current density and sensitivity vs. gate voltage for 
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EVB for different doping concentration. For EVB current density, doping 

concentration has larger influence at lower voltage, but less influence at 

higher voltage. For sensitivity, unlike ECB, doping concentration has little 

influence on EVB.   

 

 
(a)  

 
(b)  

Figure 5.12 EVB modeling for different doping concentration. Parameters 

are the same as MOS tunneling current strain sensor in DC measurement. (a). 
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Current density vs. gate voltage for EVB; (b). Sensitivity vs. gate current for 

EVB. 

 

Figure 5.13 shows the total gate current sensitivity vs. gate voltage at 

different doping concentration. The same device from MOS tunneling current 

strain sensor in DC measurement is used here. At low doping concentration, 

sensitivity decreases as gate voltage increases, which is similar to [55]. At 

high doping concentration, sensitivity decreases and then increases as gate 

voltage increases, which is similar to Table 7.  

 

Figure 5.13 Total sensitivity vs. gate voltage at different doping 

concentration. Parameters are the same as MOS tunneling current strain 

sensor in DC measurement. 

 

The difference comes from doping concentration, which changes both 

ECB and EVB and sensitivity. To explain this result, gate voltage and doping 

concentration are divided into three groups, low doping concentration (0.1e18 
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and 0.5e18 /cm3), low voltage and high doping concentration (2e18 and 

4.5e18 /cm3), and high voltage and high doping concentration. 

1) At low doping concentration, ECB current density is much larger than EVB 

current density at low voltage, and comparable to EVB current density at 

high voltage. In the same time, ECB sensitivity is larger than EVB 

sensitivity. Therefore, ECB has a larger influence on total gate current 

sensitivity at low doping concentration, which makes total gate current 

sensitivity decreases like ECB. 

2) At low voltage and high doping concentration, ECB is larger than EVB, and 

its sensitivity is larger than that of EVB, so ECB has a larger influence on 

sensitivity, which decreases.  

3) At high voltage and high doping concentration, EVB and ECB becomes 

comparable, and EVB sensitivity is larger than that of ECB, so EVB 

sensitivity makes total gate current sensitivity increase. 

As doping concentration continues to increase, we should expect that 

EVB dominates eventually in total MOS tunneling current, and its sensitivity 

will also eventually dominates which makes total gate current sensitivity 

decreases.  

 Summary 5.6

To better understand the sensitivity, we built computationally efficient 

models for both ECB tunneling current and EVB tunneling current. The 

computational efficiency comes from the adoption of approximate methods for 

the sub-bands for ECB tunneling current and WKB method for the tunneling 

probability for both ECB tunneling current and EVB tunneling current. The 

modeling results fit both this dissertation and other groups’ experiments. From 
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modeling, it is seen that at low voltages, ECB tunneling current dominates 

total tunneling current. However, at high voltages, EVB tunneling current 

becomes very important and comparable to ECB tunneling current, which will 

influence both total tunneling current and total sensitivity. Substrate doping 

concentration also changes the total tunneling current and total sensitivity. 

Therefore, when calculating the sensitivity for a MOS tunneling current strain 

sensor, it is important to consider both the ECB and EVB tunneling currents, 

especially for high voltages or high doping concentrations. These results are 

consistent with the measured results in this dissertation. 
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CHAPTER 6  

BULK ACOUSTIC LONGITUDINAL RF RESONATOR BASED ON MOS 

TUNNELING CURRENT STRAIN SENSOR 
 

 Introduction to RF MEMS resonator 6.1

The measurements in Chapter 4 shows that drift cannot be removed in 

both DC method and AC method. However, instead of measuring amplitude of 

MOS tunneling current, we can measure frequency changing by making a 

resonator sensor based on MOS tunneling current strain sensor. 

Resonator has been used vastly in oscillators, filters and sensors [72-

77]. Due to its high quality factor (Q), compatibility with CMOS process, low 

power, low cost batch fabrication and easy to miniaturize, RF MEMS 

resonator has been attractive alternative to Quartz crystal and SAW devices. 

RF MEMS resonator can also be integrated to CMOS circuit in one chip to 

reduce parasitic impedance and time delay for high frequency applications. 

Quartz crystal resonator and SAW resonator offer a large Q, great 

temperature stability and high reliability. However they cannot be made on-

chip and suffer from poor resistance to shock [78-83].  

There are basically three categories of RF MEMS resonator. They are 

capacitive resonator, piezoelectric and piezoresistive resonators. Capacitive 

resonator usually actuates resonation using electrostatic force and senses 

resonation through capacitance changing during resonation. The benefit of 
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capacitive sensing is low temperature dependence. However the capacitance 

changes can be extremely small, which can be buried in noise and parasitic 

capacitance [84-86]. Piezoelectricity is a phenomenon that in some materials 

an electrical field can be generated when these materials are subject to 

mechanical deformation. Piezoelectric sensing only applies to applications 

under non-static strain. Piezoelectric resonators usually adopt metal - 

piezoelectric material - metal sandwich structure. The most common 

piezoelectric materials used in RF MEMS resonators are aluminum nitride. 

The disadvantage of piezoelectric resonators is that it is not able to integrate 

with IC in one die [87-89]. Piezoresistive sensing detects resistance changing 

due to resonation. Although the theory and fabrication process of these 

accelerometers are simple, the temperature sensitivity and poor noise limit the 

performance [90, 91]. 

According to shapes, anchors and actuation, there are several different 

categories of resonators [92]. Table 9 lists some common types of resonators. 

Each type has several different modes depends on how it is actuated. For 

example, when the electrode pad of a clamp – free resonator is placed below 

the beam, beam vibrates up and down. However if the electrode is placed 

along the beam and at the free end, the beam vibrates longitudinally.  

 

 

 

 

 



96 
 

Table 9  

Summary of vibrating shapes 

Resonator types Description  Performance 
Clamp – clamp [93] An electrode is placed in 

plane or under the 
clamp – clamp beam to 
form transducer 
capacitor.  

1 MHz - 100MHz; Q 
degraded due to anchor 
dissipation at high 
frequency.  

Clamp – free [94] The clamp can be at 
one end or in the middle 
of the beam. 

High Q; lower anchor 
dissipation. 

Free – free [95] The anchor is located at 
the vibration node point 
and suspended by other 
beams.  

10 MHz – 100 MHz; 
high Q at high 
frequency. 

Square [96] A square plate is 
suspended. It can 
zooming in and out in-
plane or vibrate out-of-
plane. 

10 MHz - 500MHz; high 
output power; high Q at 
high frequency. 

Disk [97] A disk plate is 
suspended. It is like 
square plate. 

20 MHz – 1.5 GHz; high 
output power;  

Ring [98] A ring is suspended like 
square plate. 

100 MHz – 5 GHz; Q is 
around 1 K – 10 K. 

 

This chapter proposes a new type of RF MEMS resonator based on 

MOS tunneling current strain sensor. This new type of RF MEMS resonator 

will be thoroughly discussed from design, fabrication to measurement.  

 Bulk Acoustic RF resonator based on MOS tunneling current 6.2

strain sensor 

The goal is to demonstrate a RF resonator based on MOS tunneling 

current strain sensor. A simple structure which can provide enough strain is 

preferred. Therefore, the bulk acoustic resonator, which is easy to fabricate, 

provides high Q and enough strain is adopted. The following sections will 

thoroughly discuss this type of resonator, including basic theories about 

resonators.  
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 Principle of bulk acoustic RF resonator 6.2.1

Figure 6.1 shows the 3D structure of a bulk acoustic RF resonator and 

a schematic showing work principle. In Figure 6.1 (a), the green parts 

represent beam, electrodes and anchor. The white parts are insulators which 

isolate beam and electrodes. The yellow part is the substrate. The anchor is 

located in the middle of the beam, which is the vibration node point. The beam 

and anchor are normally grounded, while the driving signal is feed on the 

electrodes on both sides. As shown in Figure 6.1 (b), under electric static 

force, the two ends of the beam move along opposite direction. One of the 

benefits of this type of structure is less energy dissipation to anchor and 

substrate, which leads to high quality factor. 

The lowest resonance frequency (  ), effective mass ( ), damping 

coefficient ( ) and the spring constant ( ) can be expressed as 

   
 

  
√

 

 
 (6.1) 

  
   

 
 (6.2) 

  
   

 
 (6.3) 

  
    

  
 (6.4) 

Where   is the material density,   is the beam cross sectional area,   

is the length of the beam,   is the viscous damping losses,   is the Young’s 

modulus.  
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Electrode

Anchor and 
electrode

Electrode

 

(a)  

 

(b)  

Figure 6.1 (a) 3D structure of a bulk acoustic RF resonator; (b) a schematic 

showing working principle of longitudinal mode beam resonator [9].  

 

 Fabrication of Bulk Acoustic RF resonator based on MOS 6.2.2

tunneling current strain sensor 

A silicon on insulator (SOI) wafer is used to make the device. The SOI 

wafer has a lightly doped P-type substrate, a 1 µm thick oxide layer and a 20 

µm heavily doped P-type top layer silicon. The resistivity of top layer silicon is 
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0.01 Ohm-cm, while the resistivity of the substrate is 20 Ohm-cm. It is easy to 

fabricate a bulk acoustic RF resonator using standard MEMS process on SOI 

wafer. It is also very easy to make MOS capacitors. Therefore, there is no 

need to elaborate every process. However, it is very tricky to make a 

resonator together with a MOS capacitor on the resonator beam. Several 

issues during fabrication and what we do to solve these issues are discussed 

here.  

1) If DRIE is done first to etch silicon to form the resonator, there will be 20 

µm thick steps on the surface. It is difficult to spin on photoresist 

smoothly on such surface, thus it is difficult to pattern MOS capacitors 

on the beams. Therefore, the MOS capacitors have to be made first  

2) Another issue is contact. A perfect contact of electrodes between metal 

gate and silicon requires none oxide and clean silicon surface. Since we 

thin gate oxide has to be grown for the MOS capacitors, there is also 

gate oxide grown on the contact pads. One way to remove gate oxide 

on the contact pads is to use one more mask to pattern a protection 

layer for MOS capacitors and etch thin gate oxide for electrode, 

however this step may damage MOS capacitors during BOE. Besides, 

lift off for metal has to be performed, after sputtering. This step would 

also damage MOS capacitors. Therefore, gate oxide on the contact 

pads has to be kept. After the fabrication is completed, a high DC 

voltage can applied on the contact pads to break this thin oxide.  

3) Traditionally, people usually do BOE to etch oxide layer in SOI to 

release resonator beams. Since this step takes several hours, it could 

be a serious threat to MOS capacitors. Therefore, one more step to etch 
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substrate silicon layer to open a window is proposed, which makes the 

etching oxide layer much faster through the bottom.  

4) It is also a problem when comes to which silicon layer to etch first. To 

etch a 400 µm thick silicon layer, it could take several hours. If we etch 

bottom layer first, the photoresist on the top layer could be deteriorated 

badly, which was supposed to be perfect for DRIE for resonators. If the 

top layer of silicon is etched to form resonators before substrate etch, 

this long time DRIE could also damage the shape of resonators. A very 

good protection layer covering top layer after top layer is etch probably 

a better choice than the deterioration of the photoresist on the top layer. 

Therefore, it is proposed that top layer is etched first and then the 

bottom substrate. 

5) After open a window in the substrate, there are two options to etch the 

sacrificial oxide layer. One is BOE. Another one is RIE. Both need 

protection layer. Since some dies could be etched off during DRIE, it is 

difficult to spin photoresist layer as a protection layer. Therefore, a 

crystal bond is used as the protection layer. BOE will not attack silicon, 

so it can preserve the shapes of resonators. RIE is an isotropic way to 

etch SiO2 which also etches silicon more or less depending on the 

precursors, so RIE could damage the devices. Therefore, BOE is 

chosen to etch sacrificial layer of SOI wafer. 

As a summary of the process, first, the MOS capacitors are made and 

then make resonators. When the resonators are made, the top layer is etched 

first and then substrate layer. Both use DRIE. Before etching the sacrificial 

layer in BOE, the top layer is covered with crystal bond. In the end, acetone is 
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used to remove crystal bond. However, it should be pointed out that every 

step in DRIE and BOE could damage MOS capacitors. Figure 6.2 (a) shows 

the resonators with MOS capacitors before the sacrificial layer is etched. 

Figure 6.2 (b) to Figure 6.2 (d) shows the final device. Unfortunately, there is 

a misalignment between top layer and the substrate. The resonator should be 

located in the middle of the substrate window. The misalignment comes from 

misalignment of the optical system of bottom side alignment (BSA) in Karl 

SUSS Mask Aligner MA6/BA6. This misalignment of the optical system should 

not happen, if a routine maintenance is carried. This misalignment make most 

beams’ release fail, like devices in Figure 6.2 (b) & (c). Even if some beams 

are released fully, the resonators could suffer from energy dissipation to 

anchors due to loss of symmetry, like device in Figure 6.2 (d). Figure 6.2 (e) 

shows the packaged device for testing. 

Gap Contact 
pad

MOS 
capacitor
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(a)  

 

(b)  

 

(c)  



103 
 

 

 

(d)  

 

(e)  

Figure 6.2 SEM picture and microscope picture of fabricated devices. (a) 

SEM pictures for top layer before etching sacrificial layer of SOI wafer. (b) 
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Optical microscope picture for the final device which is misaligned and not 

fully released. (c) SEM picture of substrate layer for the final device which is 

misaligned. (d) Optical microscope picture of the final device which is 

misaligned but full released. (e) Packaged devices for testing. 

 

In Figure 6.2 (a), the contact pads for the AC driving voltage are 

labelled as A & C, pad B is DC input on the MOS capacitor, pad D is the 

ground, and E is the place where the MOS capacitor is. Aluminum on pads A, 

C & D is sputtered onto a thin oxide which will be broken through high voltage. 

Between aluminum and silicon on pad B, there is a 315 nm thick SiO2. Table 

10 gives dimensions of the resonator. On each die, there are several devices. 

There are two grounds on the device. One is pad D, and another one is the 

substrate layer on the bottom. A ground on the substrate layer is necessary to 

minimize the driving voltage crosstalk with pad B & D through the substrate 

layer. 

 

Table 10  

Parameters of the resonator 

Parameter Definition Value 
L The length of pads 340 µm 
L1 The length of Al contact 

of pad B 
300 µm 

T1 The thickness of oxide 
layer of SOI wafer 

1 µm 

T2 The thickness of oxide 
layer of pad B 

315 nm 

l The length of beam 310 µm 
w The width of beam 35 µm 
h The height of beam 20 µm 
g The gap between beam 

and pad A or C 
2 µm 

LL The length of one die 6 mm 
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An equivalent circuit for MOS tunneling current sensing method 

including equivalent circuit for resonator, driving circuit and parasitic 

components is shown in Figure 6.3. Table 11 explains the definition of the 

components in the equivalent circuit, and gives the theoretical number from 

fabrication. Here A, B, C and D in the definition mean silicon on these pads.  

 

Table 11  

Definition of components used in equivalent circuit 

Component  Definition Value 
Ca Capacitor between A and resonator 

beam 
3.1 fF 

Cag Capacitor between A and handler 
layer 

4 pF 

Cbb Capacitor between Aluminum 
contact and beam on pad B 

9.861 pF 

Cbdg Capacitor between B and handler 
layer in parallel with capacitor 
between D and handler layer 

8 pF 

Cc Capacitor between C and beam 3.1 fF 
Ccg Capacitor between C and handler 

layer 
4 pF 

Cg Capacitor between handler layer and 
package 

400 pF 

Cmos The MOS capacitor between B and 
beam 

6.9 pF, 17.2 pF, 
20.7 pF, 100.1 pF 

(Dependent on 
area) 

Rmos The MOS capacitor’s resistance Dependent on 
area & voltage 

Rg The resistor between substrate and 
package 

>220 (10 MHz) 

R1 The resistor at the DC input Best close to 
Rmos 
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Figure 6.3 Equivalent circuit for MOS tunneling current sensing method. 

 

Cmos depends on the area of MOS capacitors and thickness of gate 

oxide. Here they are calculated for 2 nm thick gate oxide and several different 

areas. Rmos not only depends on the area of MOS capacitors and thickness 

of gate oxide, but the gate voltage, since gate voltage vs. tunneling current is 

not linear.  

The resistor at the DC input, R1, should be chosen carefully to output a 

detectable AC voltage. Assuming DC supply is   and Rmos equals  (  

     ) at resonance, where       , α is related to stress, which is far less 

than 1. Thus, 

      
    

       
  

 (       )

 (       )    
 (6.5) 

If     , 

       (6.6) 

If     , 
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 (       )

  
 (6.7) 

The AC component is very small, and it makes measurement difficult 

especially with RF crosstalk present. 

If     , 

      
       

       
    

 

       
 (6.8) 

This output distorts the pure sine wave of AC output and induces 

harmonics. The output spectrum of this output in the frequency domain can be 

analyzed using FFT. Assuming         ,      , the output spectrum is 

shown in Figure 6.4. In Figure 6.4 (a), when    , the harmonics are 

present. In Figure 6.4 (b), when    , the harmonics are depressed and the 

output is an almost pure sine wave. In most cases,   is far less than 1. 

Therefore, it is best to choose a resistance close to the MOS capacitor’s 

resistance. 

 

(a)  
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(b)  

Figure 6.4 The output spectrum when     . (a)    . (b)    . 

 

 Bulk acoustic RF resonator testing 6.2.3

This section discusses testing setup for the bulk acoustic RF resonator. 

The resonator is made to demonstrate the sensing method using MOS 

tunneling current strain sensor. However, the resonator can also work as a 

capacitive resonator. The resonator will be tested first using the traditional 

capacitive sensing method, and then using MOS tunneling current strain 

sensor way.  

Figure 6.5 gives the measurement setups for capacitive sensing and 

MOS tunneling current sensing. A RF impedance analyzer Hp4294a is used 

to measurement the resonator. The schematic in Figure 6.5 (a) shows the 

setup for capacitive sensing method. Hp4294a outputs both DC bias and AC 

voltage from the connectors of Hpot and Hcur to the left and right electrodes. 

The connectors of Lpot and Lcur receive signal from the top electrode which 
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is in contact with beam. The schematic in Figure 6.5 (b) shows the set up for 

MOS tunneling current sensing method. The driving signal is supplied by a 

network analyzer and a DC source in the right of the schematic. The DC 

source in the left of the schematic is applied to the MOS capacitor, and 

tunneling current through the MOS capacitor is fed into the network analyzer. 

Figure 6.5 (c) is the picture of measurement set up for the capacitive sensing 

method. The device is put on a breadboard and put in an aluminum vacuum 

box. The aluminum box has vacuum BNC connectors to the outside 

instruments. 

Next, the motional resistance   , the motional capacitance   , and the 

motional inductance    for equivalent circuit of resonator are defined. They 

can be expressed as 

   
√  

   
 (6.9) 

   
  

 
 (6.10) 

   
 

  
 (6.11) 

Where   is the electromechanical transduction factor, which relates 

vibration velocity to the motional current or the ac voltage to the actuation 

force. For the capacitive sensing method,   can be expressed as 

       
  

   (6.12) 

Where   is the permittivity,   is the cross section area,     is the dc 

bias,   is the distance between beam and electrode pad. Assuming     

     and          [85], according to the parameters in Table IX and 

equations (6.1) – (6.4) and (6.9) – (6.12), we can get              , 
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            ,                and          .  

 

RF impedance analyzer

 

(a)  

 

(b)  
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(c)  

Figure 6.5 Schematic for measurement set up. (a) Capacitive sensing 

method measurement set up. (b) MOS tunneling current sensing method 

measurement set up. (c) Picture of the measurement set up. 

 

 Testing and discussion 6.2.4

Unfortunately, the first try to make a bulk acoustic resonator based on 

MOS tunneling strain sensor was not successful. The MOS capacitors are 

broken, which were good before DRIE. There is a very large possibility that 

MOS capacitors can be damaged during DRIE and sacrificial layer etching as 

discussed in Section 6.2.2. However, even the capacitive sensing method 

doesn’t work. Here several facts that could make the capacitive sensing test 

fail are listed. 

1) Degraded Q due to misalignment. One of the benefits of this design is 

the driving force symmetrically actuate the beam and anchor is located 

at the vibration node point. However due to misalignment, the symmetry 

could be degraded. 
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2) Cross-talking in testing circuit. A breadboard is used in test, which is not 

a good choice for RF testing, but should be fine for 10MHz. Short and 

neat wiring, plus grounding all unused pins should prevent large cross-

talking. Replacing device with resistor shows that there is very little 

cross-talking in testing circuit. 

3) Cross-talking in device. There is always cross-talking through substrate. 

Usually substrate should be grounded to minimize this cross-talking. 

However, we didn’t sputter any metal on the bottom of the substrate, but 

used conductive epoxy to glue device to package. This conductive 

epoxy works well for DC measurement, but could be a problem for RF 

measurement.  

 Among all of these three facts, cross-talking in device is the most 

suspicious one. The device is pasted to the package by silver epoxy, which 

contact impedance is unknown. A RF impedance analyzer, Hp4294a, is used 

to measure the impedance on the substrate. Three groups of capacitance and 

resistance, A or C to Bottom, B to Bottom and D to Bottom (refer to Figure 6.2 

(a) and Table 10 for definitions) are measured. The results are shown in Table 

12. From A (or C) to Bottom, we can see that the capacitance keeps 

consistent and is close to Cag or Ccg from Table 10, but the resistance 

decreases with increasing frequency. The resistance from B to Bottom and D 

to Bottom are close to A or C to Bottom. The capacitance is almost twice of A 

or C to Bottom, because B and D are connected through beam.  
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Table 12  

Measurement results for substrate impedance 

 Frequency (Hz) R (Ω) C (pF) 
A (or C) to Bottom 50K 8K 4.85 
 100K 6.6K 4.75 
 1000K 667 4.5 
 10 M 331 4.4 
B to Bottom 1000K 459 7.66 
 10 M 220 7 
D to Bottom 1000K 344 8.6 

 

From Table 12, it is found that at 10 MHz, the substrate resistance is at 

least 220 Ω. This resistance can come from the resistance of substrate itself, 

or the contact on the bottom of substrate. However COMSOL can be used to 

verify that the resistance of substrate itself is small. Figure 6.6 shows the 

modeling results. The total current is calculated using surface integration of 

the current density, which is 0.054 A at 1 V. Therefore the resistance is 

around 18 Ω. Therefore this high resistance comes from the poor contact on 

the bottom of substrate. 
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Figure 6.6 COMSOL modeling. The top bulk is contact which is 340 µm (x) 

*340 µm (y) *100 µm (z). The bottom bulk is Silicon which is 6mm (x)* 6mm 

(y)* 400µm (z). The voltage is 1 V. 

 

A SPICE simulation is used to find out why this high substrate contact 

resistance hinders the capacitive sensing testing. Figure 6.7 (a) shows a 

simplified equivalent circuit for capacitive sensing. R3 is the output. Figure 6.7 

(b) shows the simulation result with         . It is clear that the response is 

so small that it is easy to be buried in noise. Figure 6.7 (c) shows the 

simulation result with       , which has a larger output. 

 

(a)  

 

(b)  
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(c)  

Figure 6.7 Spice modeling of substrate contact influence on capacitive 

sensing method. (a) Equivalent circuit for capacitive sensing method. R3 is 

the output. (b) Simulation result with         . (c) Simulation result with 

      . 

 

 Suggestions for improvement in future  6.3

Although the first try is not successful, some useful tips for next try are 

learned. To easy measure resonance using capacitive method, the 

impedance of substrate contact has to be reduced. This can be done by 

sputtering metal on the bottom instead of using conductive epoxy. The area of 

contact pads can also be reduced to reduce cross-talking among them. The 

motional resistance    can be reduced by increasing electromechanical 

transduction factor   or reducing effective mass. Since the goal is to make a 

RF resonator based on MOS tunneling current strain sensor, the most 

important thing is to protect MOS capacitors during DRIE and sacrificial layer 

etching. Perhaps some process protocols from integrated CMOS-MEMS 

products can be adopt to protect MOS capacitors.  
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CHAPTER 7  

CONCLUSIONS AND FUTURE DIRECTIONS 

 

 Conclusions  7.1

MEMS strain sensors have been widely researched and 

commercialized for decades, which can be used in pressure sensor, 

accelerometer and gyroscope. Nowadays, portable electronics have an 

increasing requirement for low power sensors, which motivates our research 

on MOS tunneling current strain sensor. Due to high resistivity of gate oxide, 

the tunneling current can be in the nano-amp range, which is a good 

alternative for low power sensing. In this dissertation, a low power MOS 

tunneling current strain sensor is demonstrated. In the experiment, the noise, 

sensitivity and drift are characterized. A computationally efficient model for 

MOS tunneling current is built, which fits this dissertation’s experiments as 

well as other groups’ experiments. A bulk acoustic RF resonator based on 

MOS tunneling current strain sensor is also made. The resonator doesn’t 

work. The reasons why the resonator does not work are discussed, and 

possible modifications for future research are proposed. In conclusion, the 

main contributions of this dissertation can be summarized as: 

1) A low power strain sensor was made. From DC measurement, it is 

found that the minimum detectable strain with regards to noise and 

sensitivity. It is also found that the gauge factor of MOS 
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tunneling current strain sensor is in the range of piezoresistive 

strain sensor.  

2) In DC measurement, the MOS tunneling current strain sensor is 

studied thoroughly from positively bias to negatively bias. With 

regards to noise, it is found that the device performs best in the 

inversion region.  

3) The current drift in MOS tunneling current is studied at different 

biases. It is found that at different bias, drift behaves different. At 

high bias, the drift rate is large and MOS tunneling current 

increases. At low bias, MOS tunneling current decreases. 

4) A lock-in amplifier is used to perform AC measurement to 

characterize MOS tunneling current strain sensor. It is found that 

sensitivity of AC method is close to DC method, but AC method is 

more efficient in reducing noise than DC method. As for drift, it is 

fount that it is impossible to remove drift using AC method. 

5) Computationally efficient models are built for MOS tunneling current 

considering both ECB tunneling current and EVB tunneling current. 

The computational efficiency comes from the adoption of 

approximate methods for the sub-bands for ECB tunneling current 

and WKB method for the tunneling probability for both ECB 

tunneling current and EVB tunneling current. The model fits 

experimental results well. It is found that it is acceptable for current 

density modeling if only ECB tunneling current is considered like 

other groups did. However, when substrate doping concentration is 

large, EVB tunneling current has to be included for sensitivity study. 
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6) A bulk acoustic RF resonator based on MOS tunneling current 

strain sensor is made. Although the resonator did not work, possible 

reasons for not working are discussed, which is helpful for future 

research. From this first try, it is also found that which processes 

are critical.  

 Future directions 7.2

Directions of future research are proposed and discussed in this 

section. They are sensitivity study at different stresses, bolometer based on 

MOS tunneling current and continuing research on RF resonator based on 

MOS tunneling current strain sensor.  

 Sensitivity study at different stresses 7.2.1

The purpose of sensitivity study at different stresses is to improve the 

performance of the sensors. The minimum detectable strain is determined by 

both the sensitivity and the noise. Increasing the sensitivity and lowering the 

noise both can achieve a smaller the minimum detectable strain. Making very 

high quality ultrathin SiO2 is the fundamental way to reduce noise. It requires 

very high quality of wafers, very precise control of gas flow rate, temperature 

and ultra-low contaminations, which is very time consuming. Therefore an 

alternative approach is to study sensitivity at stresses along different 

orientations. Silicon at different type of stresses may cause different changes 

to the band structure, which will change the sensitivity of tunneling current 

response to stress.  

The setup of the experiment is shown in Figure 7.1. A (001) wafer with 

MOS devices arranged circularly is laid on an O-ring. A micrometer presses 

the center of the wafer to introduce stress to the wafer, so stresses at different 
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directions will be applied to MOS devices at different locations. Tunneling 

current is measured by a semiconductor parameter analyzer. 

 

Figure 7.1 Setup for sensitivity study at different stresses. 

 

 Continuing research on RF resonator based on MOS tunneling 7.2.2

current strain sensor 

Some ideas are learned from this first failure try on RF resonator based 

on MOS tunneling current strain sensor.  

1) It is best to make a capacitive resonator without MOS tunneling 

current strain sensor. This capacitive resonator can be used to 

verify whether the resonator will resonate. Without MOS tunneling 

strain sensor, process will be simple and it is easy to control 

process quality.  

2) Reduce contact pads to reduce parasitic capacitors which will then 

decrease cross-talking.  
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3) Use a SOI wafer with both top layer and substrate layer heavily 

doped. This can decrease resistance in the substrate, which also 

helps reduce cross-talking.  

4) Use SOI wafer with a thinner top layer which will make DRIE much 

easier, and in the same time decreases motional resistance.  

5) To easy measure resonance using capacitive method, we need to 

reduce the impedance of substrate contact. Sputtering metal on the 

bottom instead of using conductive epoxy is necessary.  

6) Since the goal is to make a RF resonator based on MOS tunneling 

current strain sensor, the most important thing is to protect MOS 

capacitors during DRIE and sacrificial layer etching. Perhaps some 

process protocols from integrated CMOS-MEMS products can be 

adopt to protect MOS capacitors.  

 Bolometer based on MOS tunneling current 7.3

During the research, it is found that MOS tunneling current is also very 

temperature sensitive, which makes it a potential technology for bolometer. 

There are several facts about MOS tunneling current’s response to 

temperature changing: 

1)  For ultrathin gate oxide, there are two main MOS tunneling current. 

Above 348 K, MOS tunneling current exponentially depends on 1/T, 

which means thermionic type of emission dominates. Below 348 K, 

MOS tunneling current weakly depends on temperature, which 

means direct tunneling current dominates [26].  

2) Another fact is that the thinner the gate oxide and the lower the 

doping concentration, the higher sensitive the direct tunneling 
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current responses to temperature changing [99].  

3) The third fact is that MOS capacitor at low electric field gives more 

sensitive to temperature changing [100]. 

Figure 7.2 lists parameters of some commercial and state-of-art uncool 

infrared bolometers.  Table 13 gives some measurement results using the 

MOS capacitors. The measurement is done using a temperature controllable 

vacuum chamber and a semiconductor parameter analyzer. To achieve at 

least the performance of the existing bolometers, future research needs to 

reduce noise by growing high quality gate oxide or increase MOS tunneling 

current response to temperature. 

 

Figure 7.2 Table of commercial and state-of-the-art R&D uncooled infrared 

bolometers. 

Table 13  

Experiment result 

Devices  NETD 
3.9 nm gate oxide, aluminum gate 290 mK 
3.9 nm gate oxide, nickel gate  110 mK 
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