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ABSTRACT 

This thesis project consists of the development of a computerized image processing 

system to preprocess microvascular images of the mouse Latisimus Dorsi Muscle (LDM). 

This research has been conducted in association with the Division of Plastic and Reconstruc­

tive Surgery at the University of Louisville. The input to the system is a set of 35 or more 

overlapping microscopic fields or sub_images containing segments of the LDM microcir­

culation, the output is an adjacent single montage encompassing the entire LDM microvas­

culature. The developed system presents practical solutions to the problems of image regis­

tration, overlap resolution, and image segmentation, in addition, the results of this project 

include simple geometrical measurements of the microvascular system such as length, tor­

tuosity, and directionality. In future projects, the measurements should be further analyzed 

to study the LDM microcirculation. The entire system was written in C/C++ languages, and 

the Bluestone's UIM/X GUI builder. The system was implemented on the Speed School's 

HP-9000 Unix system. The system also takes advantage of the image processing libraries 

(ImageMagick) available on the system. 

III 



ACKNOWLEDGMENTS 

The author would like to thank Dr. Ahmed Desoky for directing and providing in­

struction throughout the preparation of this thesis. Thanks are also given to Dr. John Barker 

for his help in writing up the introduction, Dr. Khaled Kamel for his help and support 

throughout the course of study, Mr. Sean Carroll and Mr. Shaad Bidiwala for their help in 

formulating the requirements of the system. Finally special thanks go to the author's parents 

Mr. Mansour and Mrs. EI-Ehwany for their support. 

IV 



TABLE OF CONTENTS 

Page 

ABSTRACT ......................................................... III 

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . .. iv 

TABLE OF CONTENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 

LIST OF FIGURES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. vii 

LIST OF TABLES .................................................... ix 

INTRODUCTION .................................................... 1 

A. Biological Methodology .......................................... 2 

B. Image Acquisition and Digitization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

C. Image Registration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

D. Image Segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5 

IMAGE RECONSTRUCTION ......................................... 8 

A. Image Registration 8 

B. Overlap Resolution ............................................... 10 

C. Reconstruction Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 14 

IMAGE SEGMENTATION .................................•.••.•••... 15 

A. Center Point Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 16 

B. Edge Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 16 

v 



C. Center Point Interpolation ......................................... 17 

D. Filling Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 17 

E. Cascaded Sections of a Vessel Segment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 17 

F. Segments with Bifurcations ........................................ 18 

G. Image Preprocessing ............................................. 19 

H. Quantification .................................................. 19 

1. Diameter (D) .................................................... 19 

2. Tortuousity (T) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 19 

I. Other Attempted Algorithms ........................................ 20 

RESULTS ........................................................... 23 

A. Image Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 23 

B. Image Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 29 

C. Image Segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 35 

DISCUSSION ........................................................ 43 

A. Image Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 43 

B. Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 44 

CONCLUSIONS AND RECOMMENDATIONS . .......................... 46 

REFERENCES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 47 

VITA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 49 

VI 



Figure 1 

Figure 2 

Figure 3 

Figure 4 

LIST OF FIGURES 

Page 

Overview of system components. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2 

Video microscopy setup ................................... 4 

Layout of K digitized sub_images . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5 

Input for Registration Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 9 

Figure 5 Outline of registered sub_images ............................ 10 

Figure 7 Overlap resolution by Average Filter ......................... 12 

Figure 8 Overlap resolution with Max Contrast Filter. . . . . . . . . . . . . . . . . . .. 13 

Figure 9 Step of Reconstruction Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . .. 14 

Figure 10 Cross sections defined by edge detection algorithm. ............. 15 

Figure 11 Intensity profile at a cross section . . . . . . . . . . . . . . . . . . . . . . . . . . .. 16 

Figure 12 Edge interpolation at a cross section. . . . . . . . . . . . . . . . . . . . . . . . .. 17 

Figure 13 Segmenting Bifurcated Vessels ............................ " 18 

Figure 14 Output of Dynamic Thresholding Algorithm ................... 21 

Figure 15 Output of Relaxation Method ............................... 22 

Figure 16 A Sample digitized sub_image .............................. 23 

Figure 17 CBC Registration Surface: PI (216,75) P2 (216,75) . . . . . . . . . . .. 25 

Figure 18 CBC Registrz.tion Surface: P 1 (350.271) P2(350, 271) .......... 25 

Figure 19 CBC Registration Surface: PI (402.53) P2 (402,53) ............. 26 

Figure 20 CBC Registration Surface: PI (402,53) P2 (407,58) . . . . . . . . . . .. 26 

Figure 21 CC Registration Surface: PI (216,75) P2 (216.75) ............. 27 

VII 



Figure 22 CCRegistrationSurface: PI (350,271) P2(350,271) ........... 28 

Figure 23 CC Registration Surface: PI (402,53) P2 (402,53) ............. 28 

Figure 24 Sub_images used in the registration process. . . . . . . . . . . . . . . . . . . . 30 

Figure 25 Result of Registration Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 

Figure 26 Outline of the registered sub_images ......................... 32 

Figure 27 Overlap resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 

Figure 28 Completed LDM muscle image ............................. 34 

Figure 29 A sample vessel segment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 

Figure 30 Gray level distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 

Figure 31 Center line 36 

Figure 32 Edges.............. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 

Figure 33 Vessel body ............................................. 37 

Figure 34 Center line of a complete LDM muscle ....................... 38 

Figure 35 Edges of a complete LDM muscle ........................... 39 

Figure 36 Segmented LDM muscle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

Figure 37 Histogram Distribution of the Vessel Length ................... 41 

Figure 38 Histogram Distribution of the Vessel Diameter. . . . . . . . . . . . . . . . . . 42 

Figure 39 Histogram Distribution of the Vessel Tortuousity . . . . . . . . . . . . . . . . 42 

Vlll 



LIST OF TABLES 

Page 

Table 1 Summary of CBC Test Cases. ............................ 24 

Table 2 Running Times for the Registration Methods. . . . . . . . . . . . . . . . . 24 

Table 3 Results of Quantification of a complete LDM muscle ......... 41 

Table 4 PS Values for Different Test Windows. ..................... 43 

IX 



CHAPTER I 

INTRODUCTION 

Scientists in the life sciences have studied the microcirculation for several hundred 

years. Some of the first published uses of a microscope were to observe these tiniest blood 

vessels to which they gave the name capillaries [I ],[2] . At that early stage, the science of 

microcirculation was based on observing and describing phenomena in these small vessels. 

In more recent years the development of better microscope illumination and optics, and more 

importantly on-line methods for measuring the highly dynamic and constantly changing 

microcirculation has vastly advanced our understanding ofthis vital part ofthe cardiovascu­

lar system. 

In the past, high magnification observation provided by a microscope was limited 

to viewing only one specific site in the microcirculation, (a section of arteriole, or venule 

or 5 to 8 capillaries at any given time). If one wishes to view other sections ofthe microvascu­

lar network, the microscope stage preparation must be moved to the new site leaving the orig­

inal site behind. In other words two or more parts of the microcirculation cannot be viewed 

simultaneously. It follows that, using currently available measuring techniques, one cannot 

view and measure the entire microvascular network as a whole. An analogy to this is that 

one cannot see individual trees and the entire forest at the same time. 

Traditional measurements of the microcirculation have been performed at several in­

dividual sites and based on changes at each of these, it is inferred that the entire network is 

changing accordingly. In many physiological circumstances in tissue, these methods suffice, 

however, there are some phenomenon affecting the microcirculation which change the net-
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work as a whole. In these cases it impossible to infer that changes occurring at select sites 

describe changes of the entire network. An example of this and the reason why we developed 

the viewing/measuring system described herein is when a muscle is made ischemic (reduced 

blood flow to levels which cause metabolic and thus vascular architectural changes), hemo-

dynamic changes cause the entire vascular network to redistribute blood flow throughout the 

muscle in an attempt to compensate regional decreases of blood supply. 

In order to study changes in an entire microvascular network as well as at individual 

sites, we have developed a videomicroscopy system in which we capture adjacent high mag-

nification fields one by one until the entire vascular network has been scanned, then these 

fields are pieced back together into a montage of the entire microcirculation. This system 

allows us to view and measure the tree and the forest simultaneously. 

Reconstruction Phase 
I I 

rl Registeration ~,--R_~_:_:_lr_~~_i~_n--,H ~gmentation ~,--Q_u_a_n_ti_fi_ca_t_io_n.....l~' 
Image Acquisition Analysis 

Figure I Overview of system components 

A. Biological Methodology 

The LDM of male homozygous (hr/hr) hairless mice (30-35g; 24-28 wks) was used 

because its vascular architecture is similar to that of humans, presenting a single neurovascu-

lar pedicle, the thoracodorsal artery, vein, and nerve (TA VN), and receiving additional blood 

supply from perforating vessels entering the muscle from deep (intercostal muscles) and su-
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perficial (subeutaneaus tissues) .. Its thin structure (200,um) penn its trans- and epi-illumina­

tion and direct observation of microvasculature using video microscopy. Pentobarbital 

(60mg/kg; i.p.) anesthesia was used for all manipulations of the animals. 

The LDM is exposed, leaving the TAVN and all the perforating vessels feeding the 

LDM from beneath intact. For visualization of the microcirculation, the LDM of an anesthe­

tized mouse was gently extended over an observation platfonn. Mouse and platfonn were 

placed on the stage of a stereo microscope, the LDM was then epi-illuminated and viewed 

at X300 magnification. 

B. Image Acquisition and Digitization 

An FG-I 00 Image Processor was used for image digitization, the board was installed 

on a VAX-AI workstation, the resolution of the digitized images was 640x480x255. The 

digitized images were transferred over an Ethernet LAN to an HP-9000 workstation running 

HP-UX 9.0 I, where all subsequent image processing took place. The FG-I 00 board has ex­

tensive capabilities for real-time image processing, only the digitization features were use. 

Resolution of the digitized sub_images was 640x480x255. 
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,-------------- ro Computer -----II~~ 

VCR 

Camera 

o 

Figure 2 Video microscopy setup 

c. Image Registration 

The analysis of the image starts with capturing individual adjacent microscope fields 

of the LDM microcirculation on video tape using a microscope, camera and VCR. Later a 

Frame Grabber is used to capture and digitize the frames from the replayed video tape. Multi-
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pIe adjacent digitized sub_images make up "K" or the entire LDM microcirculation .. The 

resulting sub_images are of poor quality, and are highly overlapping. 

~ 
DDD ... ~ 

[]tJ B 
Figure 3 Layout ofK digitized sub_images 

A semi-automated system is used to register the K sub_images together with a hu-

man expert visually inspecting the sub_images and highlighting common features in neigh-

boring images. A registration technique is then applied to compute the exact match between 

these features. Several registration techniques have been investigated [12]. In this work we 

have experimented the usage of two registration techniques (1) Coincident Bit Counting 

(CBC) registration method [13], and (2) Cross Correlation (CC) registration method [14] . 

Finally the overlapping areas of the registered sub_images were resolved. 

D. Image Segmentation 

The result of the registration phase is a large image of the complete LDM microcir-

culation, for clearer images and further analysis it is necessary to separate the blood vessels 

of interest from the background, and produce a binary image. 

Several approaches exist for image segmentation, the first approach is image thresh-

olding , in this technique all pixels with gray level above a certain threshold are classified 

as object, otherwise, they are classified as background. Thresholding limit can be set global-

ly for the whole image, or locally computed in the neighborhood of each individual pixel. 



6 

Edge detection techniques can also be used to segment the images we are dealing 

with in this project [3]. A straight forward edge detection technique consists of applying a 

differential operator on the image. Differential operators give maximum response to edges, 

and minimum response to uniform background, however, they are highly susceptible to 

nOIse. 

A more elaborate edge detection technique would utilize graph searching techniques 

for optimal edge detection [4]. First we apply a local operator to generate a set of candidate 

edge points, construct a graph with the edge candidates as nodes, and the costs of the links 

from one node to the other is set according to a formula depending on the relative positions 

of the two pixels, and the local operator's response at these two pixels, then search for the 

optimal edge using a graph searching technique. Algorithms published in [5], and [6] are two 

such methods. 

Another class of segmentation algorithms region growing algorithms [7]. In these a 

seed pixel is found which is representative ofthe region. From this seed pixel the region is 

expanded with its neighboring pixels if those neighboring pixels meet a certain criterion 

based on their gray levels. The process is stopped when no more pixels can be added to the 

region. As Johnson discussed in his thesis, region growing techniques are very sensitive to 

the initial seed point, and are historically known to be slow [8]. 

Relaxation techniques [10],[ I 1] were also attempted in our search for a proper seg­

menting algorithm. Relaxation is an iterative process which makes probabilistic classifica­

tions at every pixel at each iteration. The probabilities are adjusted at each iteration depend­

ing upon the presence of either supporting or conflicting evidence at neighboring pixels. 

Bearing in mind the size of the image we have (2000x2000), and the necessity to de­

tect most of the blood vessel network, we have abandoned the above mentioned techniques 
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due to their computational complexity and a simpler, more computationally efficient algo­

rithm was sought. 

The objective of this phase of our project was to develop a simple segmentation algo­

rithm that requires minimum user intervention, and produces consistent results. The user de­

fines the beginning and the end of a blood vessel segment, and the program iteratively deter­

mines the center-line, and the boundaries of the blood vessel between these two points. 

The organization of this thesis is as follows, chapter II describes the methods used 

in the registration of the images, chapter III discusses the segmentation algorithm. Chapter 

IV presents the results of our work and a discussion of our results is presented in chapter V. 

Finally chapter VI contains conclusions and recommendations. 



CHAPTER II 

IMAGE RECONSTRUCTION 

A. Image Registration 

Image registration is the process of geometrically aligning two images of the same 

object. Several registration techniques exist in the literature [12]. The one implemented here 

is based on the CBC registration method [13]. 

The registration process takes a set S of K images, and outputs a displacement vector 

v = [(X2, Y2), ... , (X/c, Yk)], where (Xj, Yi) is the displacement between upper left comer of 

image j and the upper left comer of image 1. 

To register two images, an NxN window, centered around point PI is selected from 

image I, and another point P2 is selected from image II. These points are user selected in the 

current implementation. 

The CBC function is defined as : 

,j1'~N/2 ,j.f~N/2 

R(P2) = I I F(II(PI.x + Ax,PI·y + Ay) ® 12(P2.x + Ax,P2·y + Ay» (l) 
,jl'~ -N/2,jp -N/2 

where ® is the XNOR operator, and F(.) is a function that counts the number of bits set to 

I in its argument. 

The peak of the CBC function determines the actual match point. 



Image I 

I I 

I p. I 
I I I 

Image II 

Figure 4 Input for Registration Method 

The Cross-Correlation function is defined as : 

;=N-I.i=N-' 

R(P2) = L L [I,(P,.x + Llx,P,.y + Lly) - ,u,]·[I2(P2.x + Llx,P2·y + Lly) - ,u2] (2) 
;=0 ;=0 

Where 

,u, is the average of window centered around PI, 

,u2 is the average of window centered around P2. 

9 

As in the CBC method, the peak of the registration surface indicates the best match. 

The means of which were subtracted to pronounce the registration surface peaks. 

The illumination method used resulted in images with illumination maximum near 

the center of the image, and fades gradually as we move outwards. To compensate for that, 

the digitized sub_images were taken for highly overlapping areas. Captured sub_images 

were histogram equalized before registration. 
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B. Overlap Resolution 

The result of the registration process is a set of overlapping images, an overlap reso-

lution (OR) algorithm will resolve the grey level of pixels that overlap. 

r- - -- --- -- -- -- - - - -- - - ... 
I 

I :1 
111----, I 
: ; I p (x, y; : : I 
I ~ --1- -------------~ --: I 
I L I..J 
I 
L ______ ..J 

Figure 5 Outline of registered sub_images 

In this work we have experimented with several filters for the overlap resolution, the 

Max filter was the only one which gave satisfactory results. Other filters we have experi-

mented with were Average Filter, Average Filter with Clipping, Max Contrast Filter, and 

Max contrast Filter with Clipping. 

1 . Max Filter 

Let 0 be the set of images overlapping at point P(x,y), Figure 5, the grey level as-

signed to P is 

I(x,y) = max(I,{x,y» (3) 
iEO 

2. Average Filter 

In this filter the grey level of the overlapping pixels is resolved by taking their 

average. 



3. Average Filter with Clipping 

This has the same idea as the above filter, pixels with grey levels above a certain 

threshold, or below another threshold were discarded from the averaging process. 

4. Max Contrast Filter 

In this filter, the contrast of an MxM window centered around each pixel is com-

puted, we resolve the grey level of the overlapping pixels by selecting the grey level of 

the pixel with highest window contrast. 

5. Max Contrast Filter with Clipping 

Same as Max Contrast filter, pixels with window contrast values above or below 

certain threshold were discarded. 

II 

Filters (2}-{5) above resulted in images with step change in illumination across 

sub_image boundaries (Figure 7), and in loss of information in parts of the resultant image 

( Figure 6 ). The Max filter was able to overcome these problems and resulted in uniformly 

illuminated constructed image while preserving all the details of the original sub_images. 
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Figure 7 Overlap resolution by Average Filter 
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Figure 8 Overlap resolution with Max Contrast Filter 
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c. Reconstruction Procedure 

Due to hardware constraints, the developed system displays up to six sub_images at 

a time. Therefore the captured sub_images have to be registered and merged in two steps. 

First step produces intermediate images from the captured sub_images. Second step the in-

termediate images are registered and merged together to form the final image. 

First 6 sub_images Second 6 sub_images Last 6 sub_images 

CD CD··· (0 CD 0) ... @ C9 (9 ... @ 

Intermediate 

Images C--::> C::> c::> 
~ / 

FInal Image C :::::> 
-----------------

Figure 9 Step of Reconstruction Procedure 



CHAPTER III 

IMAGE SEGMENTATION 

In our implemented algorithm, a human expert visually examines the image, and de-

fines two points, (A, and B), each at one end ofa section ofa vessel segment with small curva-

ture. Figure 10 (a) illustrates an example of this selection. 

B 

(a) Two end points selected by user 

(b) Horizontal 
cross sections 

N 
( c) Vertical 

cross sections 

Figure 10 Cross sections defined by edge detection algorithm. 

N equispaced cross sections of the vessel segment under study are then· obtained. 

These cross sections are all parallel, and are either vertical or horizontal as determined by 

the following rule, if jL1xl < jL1YI ' then cross sections are horizontal, else they are vertical. 

In the above rule Llx = XA - xB,and Lly = YA - YB' Figure 10 (b)-{c) illustrate these two cases. 

These cross sections will produce N intensity profiles Ii, i = 1 .. N, Figure 11 shows the gray 
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level distribution across one profile. The width of each cross section is constant and equal 

to W, these N cross sections are centered around the line segment AB. 

! 
o .. • 

-I • > 
~I .. 

I~----~------~----~----~ .. 
o • 10 1. _ 

DJ.tana. 

Figure 11 Intensity profile at a cross section 

The following 4 procedures are then applied on each cross section. 

A. Center Point Detection 

Examine profile I;, and find the point with minimum gray level Pi. Pi will be taken 

as the initial estimate of the midpoint of the blood vessel at cross section i. 

B. Edge Detection 

F or each profile I;, find the two points 4 I, and 42, defined by the following equation: 

I,(da) = KCi2 + I,(P;) (5) 
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where, Cj I is the contrast at cross section i to the left ofPj, Cj2 is the contrast at cross section 

i to the right of Pi, and K is an empirical constant. 

! 

! 
II 

8 
-II • > • .... 1 ,. 
U 
L 

.. 

"I 

o • '0 
Dr.tana. 

,. 
Figure 12 Edge interpolation at a cross section 

C. Center Point Interpolation 

-
The center point of the segment at cross section i is taken is the midpoint between 

the two edge points detected in the previous step. 

D. Filling Algorithm 

Filling of the vessel body is achieved by filling in the spaces between the cross sec-

tions. For each space in between two cross sections, we draw a set oflines having the same 

orientation as that of the cross sections. Each line will have one end point on the line segment 

do <i(i-I) I, and the other end point on 42 <i(i-1)2. 

E. Cascaded Sections of a Vessel Segment 

For long vessel segments with high tortuosity, we have added an internal mechanism 

to ensure the continuity of center line detected, as well as the smoothness of the edges. 
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The user will click on several points along the vessel segment, such that the section 

enclosed between any two consecutive points is oflow curvature. For each section, the algo-

rithm is applied to detect the center line and edges. From one section to the next, a straight 

line is drawn to connect the end point of the center line of the first section with the start point 

of the center line of the second section. To ensure edge continuity from one section to the 

other within one vessel segment, a straight line is draw to connect edges of one section to 

those of the next. 

F. Segments with Bifurcations 

Figure 13 represents a sample of two intersecting vessels. The algorithm should be 

applied to vessel 1 first. When applying the algorithm to vessel 2, the algorithm extends the 

center line of vessel 2 until it intersects with the center line of vessel 1. The edges of vessel 

2 are drawn until they intersect with the edges of vessell. In the current implementation, 

the user must select PI (first point on vessel 2) such that it falls on the body of vessel 1. 

Vessel #1 

Vessel #2 

Figure 13 Segmenting Bifurcated Vessels 
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G. Image Preprocessing 

The images were scaled down to 50% of their original size, and a smoothing 3x3 filter 

was applied to the whole image. The scaling allowed us to manipulate the images within our 

limited disk resources while preserving all the vessels' qualities. 

H. Quantification 

The following measurements were done on the vessel segments being segmented. 

Data was collected while the algorithm was running. The length L of the vessel is the length 

of its center line, the area A of the vessel is the number of pixels drawn between the edges 

of the vessel, the straight line length S is the direct distance between the start of the center 

line of a vessel segment and the end point. 

Based on the above definition ofL, S, and A, we can define the following equations 

1. Diameter (D) 

d
. A; 
1=-

L; 

d= 

M-J 

IL,d; 
;=0 
M-J 

IL; 
;=0 

(6) 

(7) 

Where d; is the diameter of vessel segment i, and d is the weighted average diameter for M 

vessel segments. 

2. Tortuousity (T) 

T = L; - S; (8) 
, S; 

M-J 

IL;*T; 

T = -O=-M-_-J -

IL; 

° 

(9) 

Where T; is the toruousity of one vessel segment i, T is the tortuousity ofM vessel segments. 
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I. Other Attempted Algorithms 

We attempted several algorithms before instituting the one actually implemented. 

Relaxation techniques and dynamic thresholding were experimented with and both failed to 

give satisfactory results. 

In dynamic thresholding technique, we followed the method Rapson [15] imple­

mented for calculating the optimum gray level threshold, experimenting with several region 

sizes. All attempts failed to give satisfactory results. Often the background tissues were mis­

classified as blood vessels, and some vessels with low contrast were misclassified as back­

ground .. Figure 14 shows the result of running the dynamic thresholding algorithm on a 

complete LDM. 

We also experimented with relaxation techniques. This technique proved to be inap­

propriate for several reasons, first the computational complexity was very high, and second 

the results were not as expected. Figure 15 shows the results of running the relaxation algo­

rithm on a complete LDM. 
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Figure 14 Output of Dynamic Thresholding Algorithm 
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. Method . 15 Output of RelaxatIOn FIgure 



A. Image Registration 

CHAPTER IV 

RESULTS 

In this section, the CBC registration method is evaluated and compared to the Cross 

Correlation (CC) registration method [14], the results of registering six digitized sub_images 

and the resultant image is presented. The result of reconstructing a complete LDM is also 

presented. 

1. Results of CBC Method 

A sample digitized sub_image of 640x480 resolution was used ( Figure 16 ). A win-

dow of size 30x30 centered at point P I was selected surrounding a major feature in the image. 

The CBC method was then used to determine the correct position of the window in the 

sub_image. The search was performed in a neighborhood of 30x30 surrounding an initial 

point P2. 

Figure 16 A Sample digitized sub_image 
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Test Case I Test Case II Test Case III Test Case IV 

PI P2 (ilx,ily) P2 (ilx,ily) P2 (ilx,ily) P2 (ilx,ily) 

(216,75) (216,75) (0,0) (216,80) (0,-5) (221,75) (-5,0) (221,80) (-5,-5) 

(350,271) (350,271 ) (0,0) (350,276) (0,-5) (355,271 ) (-5,0) (355,276) (-5,-5) 

(402,53) (402,53) (0,0) (402,58) (0,-5) (407.,53) (-5,0) (407,58) (-5,-5) 

Table I Summary of CBC Test Cases. 

The method was tested for three different windows (outlined in Figure 16 ). For each 

window, four di fferent values for P2 were tested. For each test case the surface of the registra-

tion method was plotted, and the displacement (~x,~y) between the peak of the surface and 

P2 was calculated. Table I summarizes the 12 test cases. Table 2 shows the running times 

for the CBC registration method as well as the Cross-Correlation method. Figures 5-7 are 

samples of the registration surfaces' plots. The CBC method was able to determine the cor-

rect position for all the test cases. 

CBC Cross-Correlation 

Minimum 1.06 0.72 

Maximum 1.20 0.75 

Average 1.144 0.738 

Table 2 Running Times for the Registration Methods. 
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Figure 17 CBC Registration Surface: PI (216,75) P2 (216,75) 
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Figure 18 CBC Registration Surface: PI (350,271) P2(350,271) 
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Figure 19 CBC Registration Surface: PI (402,53) P2 (402.53) 
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Figure 20 CBC Registration Surface: PI (402,53) P2 (407,58) 
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2. Results of the Cross-Correlation method 

The results of Cross-Correlation registration method are presented here. The test 

cases used here are the same as that used in evaluating the CBC method. This method was 

able to determine the correct match for all the test cases described earlier, however the peaks 

are not as clear as those resulting form the CBC method. Figures 9-11 are samples of the 

registration surfaces' plots. 
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Figure 21 CC Registration Surface: PI (216, 75) P2 (216,75) 
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Figure 22 CC Registration Surface: PI (350,271) P2 (350,271) 
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Figure 23 CC Registration Surface: PI (402,53) P2 (402,53) 
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B. Image Reconstruction 

Figure 24 shows a sample of the digitized sub_images, each is of resolution 

640x480x256. The result of the registration process is shown in Figure 25 . Figure 26 shows 

the outline of the registered sub_images. Figure 27 is the result of applying the overlap reso­

lution algorithm. The total number of sub_images digitized for this sample was fifty five. 

Six sub_images were registered at a time, resulting in nine intermediate images. The same 

technique was repeated several times until the complete LDM image was reconstructed 

(Figure 28 ) 
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Figure 24 Sub_images used in the registration process 
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Figure 25 Result of Registration Process 
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Figure 26 Outline of the registered sub_images 
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Figure 27 Overlap resolution 
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Figure 28 Completed LDM muscle image (Black background removed) 
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c. Image Segmentation 

The value ofW was 30, and N was chosen such that the separation between the cross 

sections was 4 pixels. The first and last cross section must intersect with points A, and B re­

spectively. 

Figure 29 is a vessel segment, with a low curvature. Figure 30 shows the gray level 

distribution in the neighborhood of this segment. Figure 31 - Figure 33 show the resulting 

center line, edges and vessel body as detected by our algorithm. 

A 

Figure 29 A sample vessel segment 
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Figure 30 Gray level distribution 

Figure 31 Center line 
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Figure 32 Edges 

Figure 33 Vessel body 

Figure 34 shows the results of running our proposed algorithm on a complete LDM. 

The values ofW, and N are the same as in the previous example. The total time required by 

the user to determine the end points for each vessel segment was 20 minutes. 

Figure 35 shows the output edges, and finally Figure 36 is the segmented vessel body. 
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Figure 34 Center line of a complete LDM muscle 
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Figure 35 Edges of a complete LOM muscle 
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Figure 36 Segmented LDM muscle 
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Level XI YI X2 Y2 L S A D T 

I Al 396 248 1000 542 862.66 671.75 8950 10.37 0.284 

2 A2 946 618 954 724 116.5 106.3 1236 10.6 0.09 

3 A2 658 520 684 580 72.7 65.3 606 8.33 0.11 

4 A2 700 516 724 422 119.8 97.01 1039 8.66 0.23 

5 A2 456 364 506 590 258.18 231.46 2782 10.77 0.11 

6 A3 520 536 670 642 191.6 183.67 2196 11.46 0.04 

7 A2 422 314 200 198 321.2 250.47 4026 12.5 0.282 

8 A3 292 318 314 402 101.62 86.8 1047 10.3 0.17 

9 A2 544 428 626 380 115.12 95.15 1239 10.7 0.211 

Table 3 Results of Quantification of a complete LDM muscle 
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Figure 37 Histogram Distribution of the Vessel Length 
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Figure 38 Histogram Distribution of the Vessel Diameter 
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Figure 39 Histogram Distribution of the Vessel Tortuousity 
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A. Image Registration 

CHAPTER V 

DISCUSSION 

In this section we discuss the registration functions experimented with, the quality 

of the digitized sub_images and different overlap resolution strategies that we tried. 

1 . Registration Functions 

We have experimented with two registration functions, eBe and ee, both yielded 

correct results in all of or test cases. We choose the peak sharpness measure [14] as another 

criterion for selecting the registration method to be used. Let p be the height of the peak, q 

the height of the registration surface 3 pixels away from the peak location, q/p is the peak 

sharpness PS, with 0 indicating a perfect peak, and 1 indicates no peak at all. Table 3 lists 

. PS values for the different tests we ran on the registration methods. The values were com-

puted at 4 neighbor points surrounding the peak. It is clear the eBe outperforms ee under 

this criterion, and is considered more robust. eBe is more computationally intensive than 

ee, however, the robustness of the method was more important than its computational com-

plexity, thus we chose the eBe as the method of registration. 

eBe ee 
Window 1 (216,275) 0.62 0.76 

Window 2 (350, 271) 0.64 0.33 

Window 3 (402, 53) 0.62 0.65 

Table 4 PS Values for Different Test Windows. 
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2. Digitized Sub_image Quality 

The digitized sub_images were of very poor quality, presenting low contrast, and 

high variance inside regions of the same object. The illumination faded out as we moved 

away from the center of the image. Histogram Equalization was performed on the sub_imag­

es to enhance the contrast, and enable the human expert to identify the common features in 

the sub_images more easily. 

B. Image Segmentation 

In this section, we discuss the segmentation algorithm parameters, sensitivity and 

performance under different conditions. 

1 . Algorithm Parameters 

The selection of the parameter W greatly affects the performance of the algorithm. 

In this algorithm we assume that the cross section encompasses only one vessel segment. In­

creasing W enables us to work on segments of the vessel with higher curvature (with wider 

cross sections we are sure that the edges, as well as the center line will be included in the cross 

section). However, with higher cross section width, we were not able to deal with thin, adja­

cent segments (the algorithm will, in some cases, misidentify the point Pi, and thus Ei/, and 

Ei2 ). In this work we have chosen a fixed value for W that enables us to work with the narrow­

est vessels of interest. We had to operate on vessels with high curvature on several stages and 

obtained satisfactory final results. On further work, we would like to experiment with a dy­

namic value of W. 

2. Algorithm Sensitivity to User Input 

The algorithm determines the number of cross sections, their orientation and starting 

location from the two points A, and B defined by the user. Orientation and number of cross 

sections are insensitive to the variations in A, and B. The first and last cross sections' loca­

tions are dependent on the exact location of A, and B respectively. When working with cas-
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caded vessel segments, point B of one segment must coincide with point A of the next seg­

ment to ensure continuity of the detected edges. 



CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

The system developed in this thesis is to reconstruct and segment microcirculatory 

images, as well as obtain several morphological measurements. The system will allow re­

searches to more precisely reconstruct the microvascular sub_images, and produce more ac­

curate, and consistent results. Even though this system was developed for a specific project 

at the University of Louis ville Division of Plastic and Reconstructive Surgery, it can be easi­

ly adapted and used in other medical research projects with the same nature. 

The first recommendation would be to improve the quality of the microscope images 

which are captured and digitized. Improvements in the original sub_images would greatly 

enhance the resultant images, as well as enable us to exploit different registration and seg­

mentation algorithms that were not possible to use with the current images. 

The registration and segmentation algorithms needs to be further developed so as to 

minimize the user interaction. 

The system is currently implemented in two separate modules, integrating the two 

modules in one seamless work environment is an essential step towards allowing non-tech­

nically oriented researchers to use the system. The Image Reconstruction module was the 

result of months of spiral development, the patches and mix of C/C++ present in the code 

would make its maintenance very hard. Re-coding this module should be the first step taken 

before any modification is done to that module. 
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