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ABSTRACT 
 

DEVELOPMENT OF A  
THIN-FILM POROUS-MICROELECTRODE ARRAY (P-MEA) FOR  

ELECTRICAL STIMULATION OF ENGINEERED CARDIAC TISSUE 
 
 

Hiren Vrajlal Trada 
 

December 1st, 2014 
 
 

Electrical stimulation has been increasingly used by research groups to enhance 

and increase maturation of cells in an engineered cardiac tissue (ECT). Current methods 

are based on using off-the-shelf wires or electrodes to deliver a stimulus voltage to the  

in-vitro tissue in culture medium. A major issue with this approach is the generation of 

byproducts in the medium due to the voltage levels required, which are typically in the 

range of 5V-10V. No solution currently exists that can accomplish electrical stimulation 

of cells in an ECT at a low voltage level. Therefore, in this study a novel, porous, thin-

film, microelectrode array (PMEA) device is proposed. The primary advantage of this 

device is the ability to successfully function at a very low voltage thus minimizing any 

undesirable oxidative byproducts in the culture environment or cell injury. This was 

achieved by designing and fabricating a thin device capable of being embedded in the 

ECT to deliver voltage. The P-MEA device is essentially a thin-film cable i.e. a 

conducting wire encapsulated with an insulating material; in this case thin-film gold 

electrodes sandwiched between two layers of insulating polyimide. 
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Major features of the P-MEA include overall dimensions of 10mm width and 

82mm length, four arms to allow movement of the individual sensor pads within ECTs, 

each embedded electrode arm incorporates eight 100μm x 200μm rectangular pores 

surrounding a 950μm x 340μm exposed electrode, large pads on either side of the porous 

embedded sensor to function as return electrodes, suture holes to aid in-vivo suturing and 

stabilization and eight electrode connector pads. 

Average thickness of the device was 16µm, with an average electrode film 

thickness of 0.4μm. Electrode resistance ranged from 69.45Ω to 78.52Ω. Electrochemical 

impedance spectroscopy was performed on the P-MEA electrodes and it confirmed that 

the P-MEA successfully operates in the 0.01V to 1.0V range with favorable charge 

transfer characteristics. Proof of principle experiments confirmed the ability of the P-

MEA to effectively embed within the ECT and electrically stimulate it during chronic,  

in-vitro culture. Histology imaging shows that the embedding of the device has no 

adverse effects on the ECT and the cardiomyocytes are aligned within the tissue. 

Experiments are ongoing to evaluate the role of electrical stimulation on the maturation 

and function of ECTs which are made of stem cells and other sources.  

In summary, this device is capable of safe low-voltage electrical stimulation of 

engineered cardiac tissues (ECTs); it has been designed, fabricated, and its ability to 

function as a low-voltage stimulus device has been validated using electrochemical tests 

and in-vitro culture experiments. The design and fabrication of the device went through 

three major iterations. A final manufacturing process was refined and successfully 

transferred to the UofL MNTC staff for subsequent manufacturing. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Cardiac Injury, Remodeling, and Repair 

 Cardiovascular Disease (CVD) is the leading cause of mortality in the United 

States (and indeed worldwide). The American Heart Association (AHA), working in 

conjunction with other government health agencies, releases an annual report titled 

‘Heart Disease and Stroke Statistics’, detailing the statistics relating to heart disease in 

the United States [1]. In their ‘2014 Update’ the AHA reveals that Cardiovascular 

Diseases account for more than 30% of all deaths in the United States. 

 While this number is large, the rate has been steadily declining over the last 

decade. However, even with the declining rate, the burden of CVD remains very high 

with total annual costs in excess of $650 billion. Projected estimates have this number 

crossing an unsustainable $1 trillion in the next 20 years (see chart shown in Figure 1.1). 

The AHA lays out target goals to reduce this burden by emphasizing healthy lifestyles 

and habits. Heart disease can be prevented to a certain extent by a healthy lifestyle, but 

not completely eliminated.  

One fundamental cause for the large financial and health burdens of heart disease 

is the inability of the heart to replace damaged heart cells following injury.  The heart 

tissue is made up of multiple cells types including cardiomyocytes (CM), fibroblasts, and 

endothelial cells within a complex extra-cellular matrix [2, 3]. The human heart consists
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has negative impacts on cardiac muscle performance by increasing tissue stiffness, 

altering contractile properties, and introducing barriers to efficient tissue electrical 

depolarization and mechanical shortening.   

It seems logical that the damage caused due to a loss of CM could be reversed by 

an influx of new cells. For this to occur, the cardiac tissue needs to be supplied with new 

functional, healthy CM to repair the damaged area. This can be accomplished in two 

ways; stimulation of in situ CM proliferation or implantation of new CM via various 

methods.  To date, no effective methods to trigger the proliferation of in situ mature CM 

has been validated, as thus, this approach is not a current pre-clinical or clinical option.  

However, there have been various approaches to implant a wide range of cells and cell 

formulations into preclinical models of cardiac injury and into patients with cardiac 

injury.  One strategy to stimulate cardiac repair is the direct injection of cells into 

damaged regions of the heart with the goal of regenerating healthy myocardium.  

However, this method of direct injection is not reliable since the implanted cells 

uniformly die within 30 days [4]. There are various theories as to the etiology of cell 

death for these implanted cells including a hostile microenvironment (hypoxia, 

inflammation), abnormal cell-cell interactions, and abnormal cell-matrix interactions. 

An alternate approach is the generation of 3-dimensional engineered cardiac 

tissues (ECTs) that can be implanted onto the heart in order to restore cardiac tissue and 

function. The focus of this thesis is the development of a strategy and device for the 

electrical stimulation of engineered cardiac tissues, and so the majority of the following 

text focuses on that application of cellular repair of the damaged heart.   
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The field of Tissue Engineering, more specifically, Cardiac Tissue Engineering, 

uses scaffolds to create tissue made of cardiac cells. Engineered Cardiac Tissue (ECT) 

made from such cells can be used as in-vitro models for research studies on myocardial 

function, pharmacology, and diseases. The overarching goal of Cardiac Tissue 

Engineering is to develop cardiac tissues in-vitro with the same morphological and 

functional properties as native in vivo myocardium. The engineered tissues can be 

implanted onto a diseased or an infarcted heart wall, which can no longer perform its 

cardiac functions, with the purpose of repairing the area and to introduce some sort of 

functionality back to the damaged area.  

To be feasible for implantation, an in-vitro engineered cardiac tissue needs to 

have similar properties to its native in vivo target tissue.  During embryo development the 

growing heart consists of cells that differentiate and proliferate into cardiac tissues. These 

cardiomyocytes are subject to mechanical loading and electrical stimulus to drive their 

development; as the cells mature, the heart forms. Soon after birth, the cells lose the 

ability to proliferate and we are born with all the cardiac cells that we will ever have in a 

lifetime. 

Cardiac tissue can be engineered from a variety of cell sources; however mature 

cells do not have the ability to proliferate and are therefore less desirable to form and 

remodel ECTs. Immature cells from embryonic sources have the ability to differentiate 

and proliferate if they are subjected to the mechanical and electrical conditions found in 

native tissue. A 2-dimensional structure cannot mimic a native biological environment; 

hence the need arises to create a bio-mimetic 3-dimensional structure to simulate native 

tissue. Despite 3D geometries, the maturation of in-vitro ECTs can be delayed relative to 
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native in vivo immature myocardium, leading to the use of various conditioning protocols 

to accelerate ECT maturation [5]. In-vitro cyclic mechanical loading has been shown to 

accelerate ECT CM proliferation and functional maturation similar to the biologic effects 

of mechanical load in vivo [6]. Electrical stimulation has also been used to accelerate the 

maturation of proliferating stem cell derived CM within ECTs using adjacent electrodes 

to connect with the engineered tissue [7-9]. These electrode arrays can be used to 

quantify cardiac tissue maturation via the voltage thresholds required to simulate CM 

contraction and record depolarization and conduction.  

Most research groups accomplish in-vitro stimulation of excitable tissue, such  as 

ECTs, using readily available, off-the-shelf components to achieve in-vitro electrical field 

stimulation. These are primarily wires made from platinum, stainless steel electrodes or 

carbon rods as shown in the layout in figure 1.2 [7, 9-12]. 

 

 

 

Figure 1.2: Typical setup used by most research groups to achieve electrical stimulation. More 

often than not it involves two conducting rods (platinum or carbon) to carry the electrical signal 

from a stimulator. 

 

Typical ECT

 Rods/Wires 
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A simple rod electrode may not be ideally suited to the task due to the high 

voltage required to initiate tissue depolarization and pacing (usually 5V to 10V).   

However, these voltages far exceed the water electrolysis threshold voltage of 1.23V [13] 

and can produce gas bubbles in the culture medium which may impede nutrient stability, 

delivery, and cause cell injury. Another confounding variable is the high-glucose content 

of standard ECT culture media. Electrical voltages in the range of 4V to 5V (and above) 

cause redox reactions in the media, reducing and oxidizing glucose to form sorbitol and 

gluconate respectively [14, 15]. The negative consequences of released gases, compounds 

and substrate oxidation can also lead to undesirable shifts in culture media pH. A solution 

which has been designed solely for the purpose of investigating cardiac tissue does not 

exist. 

In this dissertation, a novel device is presented that was designed and fabricated to 

accomplish the tasks of stable, in-vitro, acute and chronic ECT electrical stimulation at 

much lower threshold voltages via direct contact and coupling to cells embedded within 

ECT. This was achieved by designing and fabricating a thin-film, porous, multiple 

electrode array (P-MEA) that could be embedded within the ECT at the time of ECT 

formation. 
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1.2 Objective Statement 

The objective of this study is to develop a thin-film microelectrode array that can be 

embedded into an engineered cardiac tissue for the purpose of electrical stimulation. 

  

1.3 Hypothesis 

A microfabricated thin-film device embedded into an engineered cardiac tissue can 

achieve efficient electrical stimulation of cells at a much lower voltage compared to 

existing methods. 

 

Corollary 1: 

Embedding a thin-film device will not cause adverse effects or reactions in the 

tissue. 

Corollary 2:  

Electrical stimulation of ECT with the aid of this device can be achieved at 1V or 

less (compared to 5V or more for existing methods). 

Corollary 3:  

Electrical stimulation of ECT (using said device) can aid in the functional 

maturation of the ECT. 
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1.4 Specific Aims 

Specific Aim 1: 

To design and develop a P-MEA device via an iterative design process for use in 

ECT experiments. This includes designing and fabricating a custom macro-micro 

interface for electrical coupling to pacing and/or recording systems. 

Specific Aim 2:  

To develop the fabrication process flow, and in subsequent iterations, to refine the 

process to obtain high yield suitable for repetitive manufacturing. 

Specific Aim 3:  

To perform electrochemical characterization of the device to determine safe 

operating limits. This includes data analysis and computer simulation of the device using 

an equivalent electrochemical model. 

Specific Aim 4:  

To accomplish in-vitro electrical stimulation of Engineered Cardiac Tissue (ECT), 

including comparison of three groups of ECTs: [1] Control (non-embedded ECTs),       

[2] Sham ECTs (embedded but non-stimulated), and [3] Device ECTs (embedded and 

stimulated). 

(a) Acute Pacing - data generation and collection of threshold voltages, intrinsic 

beat rates and maximum pacing rates. 

(b) Chronic Pacing – effects of electrical stimulation on threshold voltages, beat 

rates, and on tissue morphology, proliferation, and maturation. 

Specific Aim 5: 

 Validate the findings through peer-reviewed publications. 
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Blood flows through the heart without stopping; the atrium receives it and pushes 

it to the ventricles which send it out of the heart. If the blood flow decreases or stops for 

any reason, the heart suffers a myocardial infarction (MI). Cells start dying in the affected 

area and a healing response is initiated. However, adult cardiac cells cannot divide and 

proliferate to replace the ones that are lost. Scar tissue forms over the affected area which 

results in diminished capacity of the heart. 

Strategies for repair of a diseased heart have had two approaches; (a) direct 

injection of cells into the diseased site, (b) grafting a cardiac patch on to the affected area 

[5, 32]. The issue with direct injection of cells into the damaged tissue is that nearly 90% 

of the cells die out within 2-4 weeks of application [5]. The second approach is the focus 

of cardiac tissue engineering. Interest in tissue engineering by numerous research groups 

in the past decade or so has generated a wealth of knowledge about the field [6, 7, 12, 13, 

15, 21, 37, 39, 41-48].  

To repair the damage caused due to a MI, a cardiac patch has been suggested, 

which can be grafted on to the scar tissue to render back a degree of functionality. A 

cardiac patch is essentially a scaffold made of collagen or similar natural polymer with 

cardiac cells seeded on to the scaffold. The cells for such patches can be obtained from a 

variety of sources such as; embryonic or neonatal cardiomyocytes, embryonic stem cells 

(ESC) and induced pluripotent stem cells (IPS) among others. A novel method was 

presented by Hirose et. al. where they used human aortic endothelial cells (HAECs) to 

create a sheet of a monolayer of cells, called cell sheets [16]. These cell sheets are seeded 

on temperature sensitive tissue culture dish surfaces which change to hydrophilic when 

their temperature is lowered to 32°C from the normal culture temperature of 37°C. This 
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causes the sheets to detach from the culture dish without the use of digestive enzymes. 

Shimuzu et al were successful in creating multiple layers of electrically coupled cell 

sheets and grafting on rat hearts [17-20]. 

The goal of cardiac tissue engineering is to generate functional 3D tissues that can 

be implanted in-vivo to facilitate cardiac repair and regeneration. An engineered tissue 

comprises cellular and extracellular components, undergoes remodeling and maturation 

during in vitro culture, and requires both structural and functional integration for 

successful in vivo implantation and survival [37]. In general, successful integration of 

engineered tissues requires that the implanted biomaterials have both biologic and 

biomechanical compatibility with the target tissues and microenvironment [38]. These 

general principles are relevant to the generation of 3D engineered cardiac tissues (ECTs) 

and various approaches have been used to generate in vitro functional cardiac tissues 

from a variety of stem, embryonic, fetal, and neonatal cell types [39-44], various 

biomaterial formulations [45-48], with successful in vivo implantation [49-51].   

 Cardiac cells in their natural biological environment are subjected to 

dynamically changing mechanical and electrical forces during development and in 

response to injury [52]. Standard 2D cell cultures do not mimic this dynamic 

environment, hence 3D environments are required for immature cardiomyocytes (CM) to 

proliferate, differentiate, and form functional tissues.  These 3D formulations are 

designed to provide realistic mechanical loading conditions with adequate nutrient 

support to facilitate tissue maturation.   

 Despite 3D geometries, the maturation of in vitro ECTs can be delayed 

relative to native in vivo immature myocardium, leading to the use of various 
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produce gas bubbles in the culture medium which may impede nutrient stability and 

delivery [30]. Another variable is the high-glucose content of standard ECT culture 

media. Electrical voltages in the range of 5V cause redox reactions in the media, reducing 

and oxidizing glucose to form sorbitol and gluconate respectively [31-34]. The negative 

consequences of released gases, compounds and substrate oxidation can also lead to 

undesirable shifts in culture media pH. Moreover, electrical stimulation at high voltages 

can cause direct damage to the tissue by local heating and/or over-stimulation [35]. To 

eliminate these problems the stimulation voltage should be kept as low as possible, 

ideally less than the water electrolysis voltage level of 1.23V. 

The thin-film porous microelectrode array presented in this dissertation, aims to 

eliminate the problems associated with current methods by embedding an electrode inside 

the ECT. The device would be encapsulated by the tissue and make direct contact with 

the cells during electrical stimulation. This would allow the use of low voltage levels to 

accomplish safe in-vitro pacing of ECT. To the best of knowledge, with an investigation 

of past and present published work, such a device does not exist for electrical stimulation 

of engineered cardiac tissue. A successful P-MEA device would be a unique contribution 

to the field of cardiac tissue engineering. 
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CHAPTER II 

DESIGN 

 

2.1 Initial Design 

The ECT utilized in this research are small, 3-dimensional, cylindrical, gelatinous 

structures primarily comprised of collagen, matrigel and cardiac cells; approximately 

15mm in length and 2mm in diameter [40]. The ECT was grown inside a commercially 

available 6 culture well plate (Tissue Train Plate, FlexCell, International) that includes 

two anchor end tabs in each well. The microelectrode array had to interface with the ECT 

and provide an external electrical connection. To determine the optimal device 

dimensions for embedding the device in the 3D ECT, paper mock-ups were used inside 

the culture well (Figure 2.1). This allowed the determination of device features that were 

essential to the primary function as well as additional convenience features.  

The following key design areas were identified using the mock setup: the 

embedded portion, the dimensions of the device, and the contacts for external 

connections. The embedded portion was the most critical area of the device since the 

cells in the tissue interact with exposed pads in the device. This required a metal 

electrode region with maximum contact surface area possible within the tissue area as 

well as a relatively strong physical connection. Since the tissue comprises of cardiac cells 

it has native beating which results in physical movement of the ECT. 
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during in-vitro culture. A exposed metal electrode in each embedded arm makes contact 

with the cells. The porosity of the structure increases retention of the device in the tissue. 

The device has to feed over the top edge of the covered culture plate to an external 

connector, requiring a relatively long conductive connector element. Using the initial 

mock-up, approximate dimensions for the device were determined. 

(a) Composite length between 50mm and 90mm. 

(b) Width of 20mm. 

(c) Total of 4 arms with porous features in each “arm” for embedment. 

(d) Porous features should allow 2-4 exposed electrodes in each arm. 

A design based on these criteria was created and is featured in Figure 2.2. Total 

dimensions of the device are 50mm x 20mm, the four arms are ‘10mm x 2mm’ separated 

by a distance of 4mm each. Each individual arm consists of a porous grid of 5 x 25 

openings and each opening is 200µm x 200µm in size. Spacing between each porous 

opening is also 200µm in each direction. The green rectangle represents an ECT and is 

used to depict the approximate positioning of the ECT within the device. 

The design was fabricated using standard microfabrication techniques and several 

prototypes were created using a single layer of polymer material. The purpose of the 

design was to study the physical effects of embedding the device into the ECTs and 

material bioeffects on the engineered tissues. To achieve this goal, it was not necessary to 

include electrodes in the prototype. Hence, version 1 of the P-MEA device does not 

feature any metal electrodes or connection pads. The initial idea was to include space for 

four electrodes in each arm for a total of sixteen electrodes in each device. 
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2.3 Version 3 

Version 3 is the current and final version of the P-MEA device. Figure 2.6 

presents the design layout of the P-MEA device with close-up views of key sections. 

Unique design features of version 3 include: 

• Width of 10 mm and length of 82 mm to allow electrical connections (2.6a).  

• Four arms to allow movement of ECT between the individual device pads (2.6a). 

• Total of four embedded electrodes in each device (2.6b). 

• Four large pads on either side of the ECT which act as return electrodes during in-

vitro testing (2.6b). 

• Suture holes in each of the large pads to aid in-vivo suturing and contact (2.6b). 

• The top polymer layer was windowed in specific locations (unshaded red areas) to 

allow electrode contact with the cardiac tissue and for external electrical 

connections (Fig 2.6a). 

• Electrode dimensions are (0.09mm x 80mm); electrodes run the entire length of 

the device (2.6b). 

• Each of the eight contact pads (2d) connect with one of eight small or large 

electrode pads (2.6b). 

• Porosity: Each embedded electrode incorporates eight 100µm x 200µm 

rectangular openings surrounding an electrode pad which is 950µm x 340µm 

(2.6c). 

• Curved indented markers for easy positioning of the exposed electrodes in the 

ECT (2.6c). 
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representative of an embedded ECT. (b) Blown-up view of the main device area. The 

small pads were embedded inside the ECT, while the big pads are in the culture medium.  

(c) Close-up view of one of the embedded pads. The porous feature is highlighted by the 

8 rectangular openings on either side of the small pad. The area in shaded red indicates 

the electrode portion covered by the polyimide. (d) Contact area with the connection 

pads. 

For making external connections spring-probe connectors were used which were 

mounted on a custom board. The device was designed for use with a specific linear 

arrangement of spring probes and the contact areas were designed so alignment and 

interfacing are convenient. The circuit board was designed in CIRCAD and prototypes 

were created. After several pilot trials and modifications, the circuit board was 

outsourced for manufacturing 40 boards. The supporting board was made from 6mm 

thick acrylic sheets of 12”x12” dimensions. The design was created in L-EDIT and was 

used as an outline in a laser beam cutter and polisher. Figure 2.7 shows one setup of the 

supporting board along with two circuit boards. Each of the circuit boards has a spring-

probe connector at the front end to make contact with the connecting pads on the P-MEA 

device. The other end has a custom wiring harness which takes the connections to larger 

board for multiple parallel connections. 
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CHAPTER III 

FABRICATION 

 

3.1 Materials 

 The primary considerations in the choice of materials for the P-MEA devices were 

(1) bio-compatibility and (2) mechanical flexibility. Since the device is embedded inside 

tissue with living cells, the choice of materials had to be limited to biocompatible 

materials. Biocompatibility requires that all materials are both non-toxic and non-

reactive. The usage scenarios include in-vitro and in-vivo applications where the device 

is required to be highly flexible while being strong enough to withstand bending and 

folding, but not break or damage the electrical conductor. Other considerations required 

the device design and material to be able to deliver sufficient voltage to elicit a response 

from the ECT at a safe level. This should be accomplished without causing any Faradaic 

reactions which could create and release unwanted compounds leading to material 

corrosion and deterioration which would further lead to tissue toxicity and cell death. 

[60]. In his review article, Merrill has compiled and listed an excellent table with 

materials that have been used by various researchers over the years [60, Table 1, Pg. 

185]. The table primarily lists materials by their classification of biocompatibility and 

toxicity.  

Among the insulators, polyimide is a polymer material which has both flexibility and 

bio-compatibility. Polyimide is available from HD MicroSystems in liquid form suitable 
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to be deposited and cured to achieve a desired thickness. The polyimide chosen for the P-

MEA, PI-2611, is specifically designed for microelectronic applications and has excellent 

thin-film properties such as low stress, low coefficient of thermal expansion (3 ppm/°C), 

high tensile strength (350 MPa), and good ductility. The insulating material has to 

undergo metal deposition twice during the fabrication process and PI-2611 can withstand 

it without any evident damage to the film. Cured film thickness ranges from 3µm-9µm. 

The target thickness for the device, which includes a dual layer of the insulating polymer, 

was 15µm-18µm. This required the final cured thickness of one single layer to be 

approximately 8µm.  

The most common and popular choices for thin-film metal electrodes are gold and 

platinum, both noble metals. They are highly desirable for their electrical properties as 

well as ductility and malleability. Platinum has been used extensively and is highly 

popular as a stimulating material, more so than gold. The choice between platinum and 

gold was simple logistics and economics; gold was less expensive and readily available 

(at MNTC, Louisville) for the fabrication of P-MEA prototypes. Gold does not corrode 

like other metals but it requires an adhesion layer because it does not adhere well to 

surfaces [79]. Chrome, nickel or titanium can be used as adhesion layers for thin-film 

gold depositions. In a theoretical study of metal-polyimide interfaces, Marta Ramos 

compared and contrasted bonding strength and adhesion energies of chrome and nickel to 

polyimide [68]. Although the calculations seem to suggest chrome as having higher 

adhesion energy than nickel, P-MEA experiments showed nickel as a better adhesion 

layer for gold on polyimide. 
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                                     (b)                                                       (c) 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Fabrication process flow. (a) Left column shows the cross-sectional view of 

the (cut shown by the green arrow lines in 3.1 (a)) (b) Right column shows the flowchart 

for the processing steps.  
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3.3 Fabrication Process 

 

3.3.1 Silicon Wafer Cleaning 

 A 4” silicon wafer was used as a handle wafer to support device fabrication. 

Before commencing fabrication, the wafers were subject to a standard cleaning procedure 

known as RCA clean to remove organic, ionic and metallic contamination from the wafer 

surface [ref. Kern W.]. The wafers were subjected to a two-step immersion-cleaning 

process in which the silicon surface was first treated to a mixture of hydrogen peroxide 

(H2O2) and ammonium hydroxide (NH4OH) heated to 75℃ (removes organic particles and contamination). The second step involved a solution of hydrochloric acid (HCL) 

and H2O2 to remove ionic and metallic contamination. The wafer was then rinsed with 

deionized (DI) water and blow-dried with nitrogen (N2). A dehydration bake was 

performed immediately following the RCA clean process on an open hotplate at 115℃ for five minutes.  

 

3.3.2 Depositing Polyimide 

The polyimide PI-2611 is a viscous liquid stored in the manufacturer’s bottle at a 

recommended temperature of -18℃ to maximize its shelf life to two years [PI-2600 

Series Product Bulletin, Figure 3.2 (a)]. It is taken out and stored in small quantities at 

room temperature at need. Room temperature PI-2611 was spin-coated on each wafer in 

four static-dispensing steps to allow an even coating of the polyimide. The silicon wafer 

was first placed on a wafer chuck in a spin-coater (Headway Research, Garland, TX). 

The material is deposited on to the center of the wafer by directly dropping from the 



 

b

an

d

T

 

T

ar

 

 

F

w

ottle to crea

nd flow on t

eposition w

Table 3.1. 

Table 3.1: Sp

re used to sp

Step 

1 

2 

3 

4 

igure 3.2: (a

wafer. 

ate a ‘five ce

the wafer su

was finalized

pin paramete

pread the pol

a) PI2611 bo

ent coin’ siz

urface to elim

d by spinnin

ers for depos

lyimide and 

Speed (rpm

500 

1500

3000

0 

ottle stored i

30 

zed layer. Th

minate any t

ng the wafer

sition of Pol

evenly coat 

m) Ra

    

in refrigerato

he PI-2611 w

trapped air b

r according 

lyimide PI-2

the surface.

amp Rate (rp

100 

150 

1000 

500 

or. (b) Spin-

was then all

bubbles (Fig

to the para

2611 on Si w

 

pm/s) D

-coating PI-2

owed to stab

gure 3.2.(b))

ameters show

wafer. Two 

Duration (sec

10 

20 

20 

0 

2611 on a si

bilize 

. The 

wn in 

steps 

cs) 

 

ilicon 



 

3

im

co

th

E

cu

1

su

co

F

d

ch

.3.3 Therma

A sof

mmediately 

oated layer 

hermally cu

Engineering 

uring proces

00ºC /hour a

ubject to d

ontinuously 

igure 3.3: P

iameter) are

hamber), acr

al Curing 

ft bake was

following th

of polyimid

ured in a 

Systems, Li

ss starting t

and a total cu

dehydration 

supplied acr

PI cure vacuu

 loaded vert

ross the surf

s performed

he spin-coati

de. Followin

high tempe

ivermore, Ca

emperature 

uring time o

cycles to r

ross the surf

um oven fro

tically and ni

face of the w

31 

at 115ºC f

ing. This step

ng the soft b

erature vac

alifornia) at

was 50ºC w

f 7 hours (Fi

remove oxy

face of the w

om Yield En

itrogen gas f

wafer. (Image

for three m

p removes a

bake, the po

cuum oven 

t 350ºC for 

with heating

igure 3.4). T

ygen and m

wafer to main

ngineering S

flows in a pe

e source: com

minutes on a

all residual m

olyimide-coa

(YES-PB 

one hour (F

g and coolin

The vacuum 

moisture. Ni

ntain an inert

Systems. Wa

erpendicular

mpany webs

an open hot

moisture from

ated wafers 

6-2P-CP, Y

Figure 3.3). 

ng ramp tim

environmen

itrogen gas 

t environmen

 

afers (up to 

r direction (t

site). 

tplate 

m the 

were 

Yield 

 The 

mes of 

nt was 

was 

nt. 

6” in 

to the 



32 
 

 

Figure 3.4: Temperature profile of a seven hour thermal curing process for the polyimide 

PI-2611 in a YES vacuum oven with heating and cooling ramp rates of 100℃/hour. 

 

3.3.4 Photolithography (Mask 1)  

 A pattern for the electrodes was created on the polyimide surface using a 

photomask and photoresist. A photomask is a glass plate with a coating of chromium 

created in a laser patterning system (Heidelberg DWL 66FS) based on the design 

developed in L-Edit software (Tanner EDA, Monrovia, CA). The pattern was transferred 

from the mask to the wafer in a light sensitive resist via exposure to ultraviolet (UV) 

light. The resist was coated on to the surface and then UV exposure (partially blocked by 

the mask) enables an identical imprint to be created in the photoresist layer. This was 

accomplished by loading the mask and the wafer in a mask aligner (MA/BA6, SÜSS 

MicroTec AG, Garching, Germany; Figure 3.5). 
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such as aqua regia (hydrochloric acid + nitric acid) or AU-5 (potassium iodide). 

Moreover these are dark in color and make the submerged sample nearly impossible to 

observe. A lift-off process eliminates the etching step by creating a hanging retro edge 

profile in the patterned photoresist layer. The metal is deposited on the resist; the 

unwanted resist is soaked in a solvent and removed along with the unwanted metal. The 

lift-off process used for the P-MEA fabrication is listed in Figure 3.6. 

 

 

Figure 3.6: Photoresist lift-off process flow. The toluene soak hardens the top of the 

resist, leaving overhanging edges at the sidewalls of the resist. 

 A G-line photo resist S1827 (Microposit S1800 series, MicroChem Corp., 

Newton, MA) was used to first create the pattern (using Mask 1) over which the metal 

was deposited. The photoresist is spin-coated on the polyimide-coated wafer surface 

using the parameters listed in Table 3.2. A resist coating of 2.7µm was obtained using 

Spin-coat Photoresist

Soft bake (90℃, 60s)

UV Exposure (30s)

Develop photoresist 

Bake (90℃, 15s)

Toluene soak (60s)
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these parameters. A soft bake was performed on a hotplate at 90℃ for 60 seconds. Wafer 

and mask were loaded on to the mask aligner and exposed to UV light at a power density 

of 4.5 mW/cm2 for 20 seconds. The resist was subjected to a 60-second toluene soak 

(Avantor Performance Materials, Center Valley, PA) to harden the top layer of resist. 

Development of the exposed resist was performed in MF-319 (Avantor Performance 

Materials, Center Valley, PA) to create the desired pattern. 

 

Table 3.2: Spin parameters for coating photoresist S1827; total time was 18.7 seconds 

Step Speed (rpm) Ramp Rate (rpm/s) Duration (secs) 

1 500 500 0.2 

2 4000 1000 10 

3 0 1000 0 

 

Table 3.2: Spin parameters for coating photoresist S1827; total time was 18.7 seconds.  

 

3.3.5 Sputter Deposition 

 Sputter deposition or sputtering is a physical vapor deposition (PVD) process in 

which material from a target is removed and deposited on a wafer. In sputtering, the 

wafer and the target material are positioned across from one another in a vacuum 

environment and a high voltage is applied across them to create a negative potential at the 

target. The transport of material takes place in argon plasma where the Ar+ ions strike the 

target with energy to dislodge individual atoms from the target surface which in turn are 

transported on to the wafer surface. A magnet is held behind the source target to control 
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4.2 Equivalent Electrode Model 

Further evaluation of the P-MEA device was done by performing electrochemical 

experiments using the same scenario as the actual application. This involved the device 

transporting electrical signals from a stimulator to the ECT immersed in culture medium 

(Dulbeccco’s Modified Eagle Medium (DMEM), 11965-092 (high glucose), Gibco by 

Life Technologies, Grand Island, NY), which acts like an electrolyte. Since charge 

transfer takes place between the electrons in the electrode and ions in the electrolyte it 

was necessary to evaluate the performance of the electrodes while immersed in the 

culture medium. The four small exposed electrode pads embedded within the ECT were 

electrically coupled to form one common connection while the four large electrode pads 

in the culture medium were coupled to form the common return connection. To evaluate 

the electrochemical interface a representative equivalent circuit model needs to be used. 

Several models have been proposed to approximate the electrode-electrolyte interface. 

The most widely used model is a two-element model, which has resistance representing 

the electrode’s polarization resistance or impedance and a capacitance in parallel with the 

resistance [60-62]. The capacitance represents the charged layer at the electrode-

electrolyte interface which is caused due to the presence of a layer of charge at the 

electrode surface and an equal and opposite layer of charge in the electrolyte. This double 

layer of charge at the interface behaves akin to a capacitor and hence is called as the 

double-layer capacitance. Each parallel combination of the resistance and capacitance 

represents one set of electrodes. For the P-MEA device, the four small embedded 

electrodes were referred to as the ‘Working Electrode’ (WE) and the four large electrodes 

as the ‘Counter Electrode’ (CE). For the equivalent circuit model (Figure 4.3), R1 and C1 
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Charge transfer between the electrode and electrolyte can occur in three primary 

ways, non-faradaic charging and discharging, reversible faradaic reactions, and 

irreversible faradaic reactions. Of the three mechanisms, the first two are highly desirable 

while irreversible faradaic reactions are not due to the risk of electrode corrosion and 

tissue damage [60]. 

4.3 Electrochemical Impedance Spectroscopy (EIS) 

A safe operating limit for the device-electrolyte interface can be determined by 

assessing the performance of the electrodes in culture medium (DMEM) using 

Electrochemical Impedance Spectroscopy (EIS). EIS is an excellent tool for analyzing 

electrode performance in an electrolyte and can be used to determine presence or absence 

of irreversible reactions [24-27]. Impedance Spectroscopy, as the name suggests is the 

measurement of impedance of an electrical circuit over a range or spectrum of 

frequencies [70-72]. Electrochemical Impedance Spectroscopy is an analysis tool wherein 

a sinusoidal signal is applied to an electrochemical system or cell, and the current flowing 

through the cell is measured. The amplitude of the signal is kept very small; between 

1mV-10mV, to ensure a pseudo-linear response from the cell. The frequency range is 

typically varied from 1mHz to 1MHz. Due to the very small input signal frequencies, the 

EIS tests often take hours to complete the entire spectrum. To evaluate the performance 

and to determine operating limits, a DC component is applied with the AC signal and the 

voltage is varied over a desired testing range [70-73].  

  

The input voltage and current response can be represented by the following equations: (ݐ)ݒ = ଴ݒ sin(߱ݐ)                                            Eq.  4.1 
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(ݐ)݅ = ݅଴ sin(߱ݐ + Eq.  4.2                                     (ߠ                      

where θ is the phase shift of the signal. Using Ohm’s law, the impedance can be written 

as; ܼ =  ௩(௧)௜(௧) = ௩బ ୱ୧୬(ఠ௧)௜బ ୱ୧୬(ఠ௧ାఏ)                                      Eq.  4.3 

 ∴ ܼ = ଴ݖ  ୱ୧୬(ఠ௧)ୱ୧୬(ఠ௧ାఏ)                                              Eq.  4.4 

 

In the complex plane this equation can be represented as; ܼ(߱) =  ܼ଴(ܿߠݏ݋ +  Eq.  4.5                                    (ߠ݊݅ݏ݆

 

Equation 4.5 for the impedance contains real (Z’) and imaginary (Z”) 

components. The imaginary component is due to the capacitive-like behavior at the 

electrode-electrolyte interface. Plotting both values in a chart gives us a Nyquist plot for 

the system. For a simple equivalent circuit, similar to the one shown in figure 4.3 (b), this 

results in a semi-circle (shown in Figure 4.4). This circuit is also called as a single time 

constant circuit, as is evident from the one semi-circle in the plot. Multiple interfaces 

would result in multiple time constants and multiple semi-circles. Bode plots are used to 

view frequency and phase angle information. In a typical Bode plot, the magnitude and 

phase angle of the impedance vector is plotted against the frequency input. The phase 

plot indicates the behavior of the double layer capacitance at the interface. At low 

frequencies the ions in the electrolyte diffuse to the interface at a finite rate hence the 
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Nyquist plot has a linear response at low ω. RP shown in the figure indicates the 

polarization resistance of the electrode under investigation. It can be simply defined as 

the ability of the electrode to resist current flow. The higher the resistance, the lower the 

rate of corrosion and deterioration. So a semi-circle with a higher radius is always 

desirable in the Nyquist plot.  

 

Figure 4.4: Representative Nyquist plot for a single time constant interface. Nyquist plots 

don’t contain any frequency information, they can only represent impedances. 

 

The results from EIS are collected and used in a software simulator to generate 

values for the components in the equivalent circuit. The relationship between the 

impedance and the circuit components can be given by; 

 ܼ(߱) =  ܴௌ + ோುଵା௝ఠ஼ோು                                        Eq 4.6 
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From eq. 4.7 it can be seen that as frequency increases the impedance decreases 

and vice-versa. Plotting the impedance values in the Nyquist Plot results in the curve 

resembling an incomplete semi-circle. The greater the radius of the semi-circle, the 

higher the charge-transfer resistance. The semi-circle is the consequence of a single time-

constant circuit. This kind of circuit can be represented by the equivalent model (Figure 

4.3 (b)). 

For P-MEA voltage ranges of 0.01V, 0.1V and 1V, the imaginary component 

value was high which is attributable to the capacitive behavior of the double layer. The 

closer the interface behaves akin to a capacitor, the higher the value of the Z”.  The 

impedance values obtained for the 2V signal are so extremely small compared to the 

other voltages. Figure 4.8 (b) shows the high frequency range of the Nyquist plots 

wherein the low performance of the electrodes at 2V is evident. These are indicative of 

the presence of faradaic reactions that may result in electrode corrosion and cause 

damage to the tissue [24, 63-67]. 

In capacitors, there is a phase difference between voltage and current where 

voltage lags current. In an ideal capacitor, this phase shift is 90°. The phase plots of the 

EIS analysis are shown in Figure 4.9. For input voltages of 0.01V & 0.1V the electrodes 

displayed behavior very close to an ideal capacitor for frequencies between 1Hz to 1KHz. 

For the 1V signal the low frequency phase shift angle was initially lower.  However, the 

2V phase plot displayed a non-ideal, small phase shift. The phase plots indicate that the 

electrode-electrolyte interface behaved akin to a capacitor at the desired operating 

frequencies. Thus it can be concluded that during electrical stimulation the charge 

transfer takes place due to capacitive/non-faradaic reactions. 
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 The EIS data and fitted model values indicate that the P-MEA electrodes should 

be able to function within the range of 1V without causing cell or tissue damage.  

 

Table 4.1:  Equivalent circuit parameters for an idealized P-MEA. R1 & C1 form the 

working electrode (small pads), R2 & C2 form the counter electrode (large pads) and Rs 

is the solution resistance. 

 

Vin RS R1 R2 C1 η1 C2 η2 

(V) (Ω) (Ω) (Ω) (F) (%) (F) (%) 

0.01 2.46E+02 2.22E+06 1.21E+03 3.14E-07 0.88 2.27E-06 0.73 

0.1 2.59E+02 4.30E+06 1.10 E+03 3.28E-07 0.88 1.01E-06 0.81 

1 2.95E+02 1.57E+06 1.86 E+03 2.57E-07 0.93 7.73E-06 0.88 

2 2.13E+02 5.37E+03 1.01 E+03 2.31E-07 0.67 2.14E-05 0.60 
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CHAPTER V 

ENGINEERED CARDIAC TISSUE 

 

5.1 Cell Isolation and Implant Creation 

Engineered Cardiac Tissue (ECT) was created from cardiac cells isolated from 

embryonic chick hearts. Cells were derived from embryonic chick ventricles to construct 

each ECT as previously published by Tobita [40]. Fertile White Leghorn chicken eggs 

were incubated in a forced-draft, constant-humidity incubator until Hamburger-Hamilton 

(HH) stage 31 (day 7 of a 21-day incubation period). The embryos were removed from 

the eggs and the heart was separated to excise the ventricles (Figure 5.1). Excised 

embryonic ventricles were enzymatically digested by using 2mg/ml of collagenase type II 

followed by 0.05% trypsin-EDTA solution (Invitrogen, Carlsbad, CA).  Isolated cells 

were preplated (filtering process) for 1 hour to reduce the non-cardiac cell population, 

large debris, and red blood cells. The isolated cells were then cultured on a gyratory 

shaker (60–70 rotations/min) for 24h to re-aggregate viable CMs. Approximately (3x106) 

cells/ml were mixed with acid-soluble rat-tail collagen type I (Sigma, St. Louis, MO) and 

matrix factors (Matrigel, BD Science, Franklin Lakes, NJ). 
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The following cell/matrix mixture was made: 

1) Isolated cells were suspended within a standard culture medium (Modified 

Dulbecco’s Essential Medium, Invitrogen) containing 20% FBS (Invitrogen). 

2) Acid-soluble collagen type I solution (pH 3) was neutralized with alkali buffer (0.2 

M NaHCO3, 0.2 M HEPES, 0.1 M NaOH) on ice. 

3) Matrigel (17% of total volume, BD Sciences) was added to the neutralized 

collagen solution. 

4) Cell suspension and matrix solution were gently mixed. The final concentration of 

collagen type I was 0.67 mg/ml. 

 Cylindrical-shaped ECT were constructed using a collagen type I-coated silicone 

membrane culture plate (Tissue Train, Flexcell International, Hillsborough, NC) and    

FX-4000TT system (Flexcell International).  The center of the Tissue Train culture plate 

silicone membrane was deformed by vacuum pressure to form a 20mm x 2mm trough 

using a cylindrical loading post (Tissue Train and FX-4000TT). The P-MEA device was 

then positioned across the vacuum-formed trough with the small exposed electrodes 

located directly above the trough (Figure 5.2 (a&b)). Approximately 200 µl of cell/matrix 

mixture was poured into the trough (Figure 5.2 (b)) and the composite structure was then 

incubated for 120 minutes in a standard CO2 incubator (37°C, 5% CO2) to form a 

cylindrical-shaped construct. Both ends of the construct were held by anchors attached to 

the Tissue Train culture plate (Figure 5.2 (c)). Once the ECT containing the P-MEA 

device solidified, the vacuum pressure was gradually released (Figure 5.2 (d)). The 

culture plate well was then filled with a growth medium containing 10% FBS and 1% 

chick embryo extract (SLI, Horsted Keynes, UK), and the ECT construct floated within 
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5.2 Electrical Stimulation 

The ECT samples were divided into three groups and named accordingly; 

[1] Control (had no embedded P-MEA) 

[2] Sham (were embedded with P-MEA, no chronic electrical stimulation) 

[3] P-MEA-Paced (embedded with P-MEA, chronic electrical stimulation). 

The electrical stimulation experiments consisted of two separate but related 

protocols; chronic pacing and acute pacing. An isolated programmable stimulator from 

Coulbourn Instruments (model A13-65, Lehigh Valley, PA) was used to generate 1V 

amplitude, biphasic pacing pulses with a pulse width of 1ms duration for both, positive 

and negative pulses (Figure 5.3). The acute pacing protocol was used to determine 

maximum pacing rates and minimum threshold capture voltages on days 3, 5, 7 & 10 of 

culture. The applied input frequency was 2Hz, which translated to 120 beats per minute 

(bpm). The minimum threshold voltage was determined as the lowest voltage required to 

elicit a response of 120BPM from the ECT. Then the input voltage was fixed at 1V and 

the frequency was increased in small steps above 2Hz. The tissue response was noted for 

every stimulus until the tissue was no longer able to capture the external stimulus to 

determine the maximum capture rate. Chronic pacing was initiated on day 3 of culture 

using a 1V, 2Hz, biphasic stimulus and applied continuously from culture day 3 to day 

10. The P-MEA-paced ECTs were subject to both, chronic as well as acute pacing while 

the sham ECTs were only subject to acute pacing on the same culture days . Intrinsic beat 

rates for all three groups were observed and recorded on days 3, 5, 7 & 10. A total of 60 

samples were tested, including 25 P-MEA-paced, 25 controls and 10 shams. ECTs which 

had diminished contraction capability (due to cell-cell coupling or other factors) were 
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discarded and not included in the report. ECTs that did not have data for all four days 

were not included as well. In addition, some ECTs suffered from contamination which 

resulted in cell death and tissue necrosis; these were not included in the data reported. 

 

Figure 5.3: The pacing protocol and the electrical stimulus applied across the ECT.  

Biphasic pulse of 1ms (negative and positive each) with a 2µs pulse gap. Initial 

stimulation frequency was 2Hz and was varied depending on the experiment. 

 

Table 5.1 (a): Intrinsic beat rates for Control ECTs (all values in bpm). 

Sample No. Day 3 Day 5 Day 7 Day 10 
1 56.00 46.00 48.00 48.00 
2 40.00 56.00 50.00 80.00 
3 34.00 36.00 36.00 36.00 
4 48.00 64.00 58.00 58.00 
5 50.00 56.00 36.00 34.00 
6 58.00 68.00 60.00 44.00 

Average 47.67 54.33 48.00 50.00 
Std. Dev. 9.24 11.76 10.35 17.06 
Std. Error ±3.77 ±4.80 ±4.23 ±6.97 

Day 3 Day 10 Day 5 Day 7     Chronic 
Pacing 

Acute Pacing 

2µs

1ms 

1V 
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Table 5.1 (b): Intrinsic beat rates for Sham ECTs (all values in bpm). 

Sample No. Day 3 Day 5 Day 7 Day 10 
1 16.00 56.00 56.00 54.00 
2 68.00 68.00 52.00 62.00 
3 46.00 36.00 44.00 42.00 
4 72.00 52.00 32.00 76.00 
5 38.00 86.00 50.00 44.00 
6 68.00 68.00 50.00 54.00 

Average 51.33 61.00 47.33 55.33 
Std. Dev. 22.08 17.05 8.45 12.50 
Std. Error ±9.01 ±6.96 ±3.45 ±5.10 

 

Table 5.1 (c): Intrinsic beat rates for P-MEA-paced ECTs (all values in bpm). 

Sample No. Day 3 Day 5 Day 7 Day 10 
1 72.00 66.00 88.00 92.00 
2 30.00 48.00 46.00 72.00 
3 68.00 74.00 88.00 74.00 
4 68.00 34.00 38.00 8.00 
5 68.00 20.00 52.00 12.00 
6 58.00 60.00 58.00 10.00 
7 74.00 64.00 66.00 64.00 
8 30.00 54.00 70.00 66.00 
9 24.00 68.00 74.00 82.00 
10 72.00 58.00 62.00 60.00 
11 74.00 64.00 66.00 66.00 
12 22.00 36.00 76.00 74.00 
13 48.00 42.00 72.00 74.00 

Average 54.46 52.92 65.85 58.00 
Std. Dev. 20.74 15.91 14.84 28.55 
Std. Error ±5.75 ±4.41 ±4.12 ±7.92 
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Table 5.1 lists the intrinsic beat rates for control (n=6), sham (n=6) and P-MEA-

paced (n=13) ECTs. Comparing the data from the table, it was evident that embedment of 

the P-MEA device does not cause any adverse effects in the contraction of the ECT. In 

fact, the reverse was true, since the intrinsic beat rates were higher in nearly all cases. 

The intrinsic beat rates obtained were higher for sham and P-MEA-paced ECTs 

compared to control ECT by an average value of 8bpm (Figure 5.4). This could be 

attributed to the increased stiffness as a result of the tissue encapsulation around the P-

MEA. The values of control and sham ECTs were similar with the shams having higher 

values. The P-MEA-paced ECTs varied significantly on day 7, an effect that can be 

attributed to the chronic electrical stimulus being applied to the tissue.  

 

Figure 5.4: Chart comparing intrinsic beat rates for all three groups. P-MEA embedded 

ECTs have higher beat rates than control ECTs. 
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Table 5.2: Maximum pacing rates for P-MEA-paced ECTs (all values in bpm). 

Sample No. Day 3 Day 5 Day 7 Day 10 
1 272.00 352.00 428.00 286.00 
2 316.00 286.00 222.00 250.00 
3 240.00 316.00 352.00 300.00 
4 286.00 334.00 352.00 375.00 
5 352.00 352.00 352.00 333.00 
6 232.00 210.00 274.00 232.00 
7 180.00 300.00 274.00 274.00 
8 300.00 261.00 262.00 250.00 
9 180.00 316.00 316.00 261.00 
10 300.00 316.00 316.00 286.00 
11 300.00 316.00 316.00 286.00 
12 274.00 334.00 354.00 316.00 
13 274.00 376.00 354.00 316.00 

Average 269.69 313.00 320.92 289.62 
Std. Dev. 50.31 42.95 53.45 38.98 
Std. Error ±13.95 ±11.91 ±14.82 ±10.81 

 

 

Figure 5.5: Chart showing maximum pacing rates of chronically stimulated ECTs. Max 

rates peak at day 7 and decline thereafter. 
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Table 5.3: Minimum threshold voltages (in volts) for P-MEA-paced ECTs at 120bpm. 

Sample No. Day 3 Day 5 Day 7 Day 10 
1 0.60 0.60 0.50 0.70 
2 0.40 0.50 0.50 0.60 
3 0.40 0.30 0.35 0.50 
4 0.30 0.25 0.35 0.45 
5 0.25 0.40 0.35 0.35 
6 0.30 0.30 0.35 0.40 
7 0.50 0.30 0.25 0.30 
8 0.25 0.40 0.40 0.30 
9 0.30 0.40 0.35 0.30 
10 0.40 0.40 0.40 0.50 
11 0.30 0.30 0.35 0.40 
12 0.30 0.50 0.40 0.40 
13 0.20 0.50 0.30 0.30 

Average 0.35 0.40 0.37 0.42 
Std. Dev. 0.11 0.11 0.07 0.13 
Std. Error 0.03 0.03 0.02 0.03 

 

 

Figure 5.6: Minimum threshold voltage for ECT capture at 120bpm; well below 0.5V. 
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The conclusive evidence of functionality of the P-MEA can only be determined 

from the ability of the device to stimulate, pace, and capture live tissues. Successful and 

consistent stimulation of tissues was accomplished using the P-MEA device with 

voltages ranging from 0.35V to 0.42V. Compared to voltages used by other research 

groups [], the obtained average threshold voltage of 0.4V (using the P-MEA) was much 

lower than the water electrolysis voltage and much lower than the target of 1V (Table 5.3 

& Figure 5.6). This results in a huge advantage over existing methods in terms of stability 

of the culture medium and tissue contamination due to byproducts because of higher 

voltages. Maximum pacing capture rates follow an increasing trend with the highest 

values reached on day 7, which align well with the highest rates of intrinsic contraction 

also recorded on day 7. The tissue seems to be maturing and reaching a peak at or around 

day 7 of tissue culture. 

 

5.3 Histological and Immunofluorescence Staining 

Histological staining and analysis was performed on ECT samples after the end of the 

10-day culture period. Day 10 ECT samples were fixed with 4% paraformaldehyde at 

room temperature for 15 minutes and embedded in paraffin blocks. 4µm serial sections 

were cut longitudinally for histological staining.  Hematoxylin-Eosin (HE) staining was 

performed and light micrographs were taken using Nikon Eclipse E600 microscope. The 

images were captured by SPOT color camera operated by Spot Advance software. ECT 

slides were treated with 0.1 M Glycine and 0.5% Triton X-100 for 30 minutes at room 

temperature after slides were de-waxed, hydrated and rinsed in 1xPBS for three times. 5-

Ethynyl-2'-Deoxyridine (EdU) (a marker for cell proliferation) staining was performed 
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according to Click-iT EdU Imaging Kits protocol (Invitrogen, C10339), then mouse 

monoclonal anti-Troponin T (Thermo, Cat# Ms-295-p0) 1:400 in 1%BSA was applied to 

the tissue sections overnight, followed by Alexa Fluor 488-conjugated donkey anti mouse 

1:400 (Life Technologies). Slides were mounted with ProLong® Gold Antifade Reagent 

(Life Technologies). Immunofluorescent images were collected using (1) a Nikon Eclipse 

E800M microscope with dry 10x, 20x, 40x Plan Fluor objective lens with 0.75 NA and 

Qlympus DP72 camera to generate images with a 1360x1024 pixel density, or (2) a 

Nikon Eclipse Ti Confocal System attached to a Nikon Ti-E inverted microscope 

platform and Nikon Plan Apo 60x oil DICH objective lens with 1.4 NA to capture images 

with a 2048x2048 pixel density.  10 regions per section were imaged in a blinded fashion 

and analyzed using NIH ‘Image J’ software to count TnT and EdU positive cells to assess 

cell number, identity, and proliferation rates. The software was used to perform manual 

counting of cell nuclei, identify cardiomyocytes and proliferating cells. In addition, 

counting was performed using an algorithm written by Will J. Kowalski [originally 

published by Xu, F., Beyazoglu, T., Hefner, E., Gurkan, U.A., and Demirci, U. (2011)].  

Figure 5.7 (a-i) shows representative histologic samples. ‘Control’ ECTs did not have 

embedded P-MEAs, ‘Sham’ ECTs (P-MEA Non-Paced) had non-stimulated embedded 

devices, and ‘P-MEA Paced’ had stimulated P-MEA. The physical shape of the control 

ECT was cylindrical with the ends being splayed and nearly flat as they grab hold of the 

tabs.  ECTs were cylindrical between the device arms and splayed and flat immediately 

adjacent to the embedded pads. The tissue was sliced longitudinally and 10 random areas 

of each section were examined. The control samples had myocardial tissue with 

cardiomyocytes (CM) predominantly aligned along the longitudinal axis.  The sham and 
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P-MEA-paced ECT cardiomyocytes were aligned according to the preferential electric 

field generated by the applied electrical stimulus. Since there were four embedded pads 

and four external pads for the return electrode the electric fields are varied. Cardiac 

Troponin-T (TnT) staining identified myofibers in the tissue aligned along the 

longitudinal tissue axis in all three groups. DAPI images showed the total cell nuclei 

(blue color) and the merged image shows TnT with DAPI and 5-Ethynyl-2'-Deoxyridine 

(EdU). Cell counts indicated that an average of 76 ± 2% of the cells were cardiac vs. 24 ± 

2% non-cardiac. Cardiac cell proliferation was found to be very low; Control 2 ± 1% 

(n=4), Sham 5 ± 2% (SE) (n=4), and P-MEA Paced 1 ± 0% (SE) (n=8). Electrical 

stimulation of ECT (created from embryonic cells) had negligible effect on cell 

proliferation in the tissue. 
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Figure 5.9 shows the active and total force generated by the ECT paced at 2Hz 

and 4Hz. Active stress can be calculated by dividing the recorded values with the Cross-

Sectional Area (CSA) of the tissue as long as the geometry of the ECT is cylindrical. 

However, deformation of the ECTs was noted at the sites of P-MEA implantation such 

that CSA cannot be accurately determined (Figure 5.8). Higher total force was recorded, 

but similar active force generated by the sham and P-MEA-paced ECTs versus control 

ECTs. Average total force generated by control, sham and P-MEA-paced ECTs was 

[1.78mN ± 0.22mN (SE) for 2Hz, 1.70mN ± 0.22mN (SE) for 4Hz]; [2.45mN ± 0.31mN 

(SE) for 2Hz, 2.38mN ± 0.31mN (SE) for 4Hz]; [2.48mN ± 0.27mN (SE) for 2Hz, 

2.40mN ± 0.27mN (SE) for 4Hz] respectively. The higher total force in the P-MEA 

embedded ECTs may be due to increased ECT stiffness due to the presence of the P-

MEA or to changes in the ECT material properties in response to chronic pacing.   

Electrical stimulation seems to have had a negligible effect on the force generation by the 

ECT. Additional experiments are required with variations in the number of embedded P-

MEA arms and distance between P-MEA arms to determine a direct effect of embedded 

P-MEAs on ECT material properties.   

   

     

Figure 5.9: ECT force recordings. Passive and active total force generated by the ECT 

paced at 2 and 4 Hz (all force values in mN). 
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CHAPTER VI 

CONCLUSION 

 

6.1 Device success and shortcomings 

A novel device capable of low-voltage electrical stimulation of engineered cardiac 

tissue has been designed, fabricated, and validated. The primary advantage of this device 

is the ability to succesfully stimulate ECT at a voltage of 0.5V, which is 10 times lower 

than current methods. The low voltage minimizes any undesirable oxidative by-products 

in the culture environment or cell injury. In addition, a number of features relevant to in 

vitro as well as in vivo applications have been incorporated. The device was shown to be 

thin and flexible enough for embedment and robust enough to accomplish tissue capture 

over a period of several days (primary hypothesis proven, corollary 1 & 2).  

 The P-MEA device has undergone three major transitions during its development 

(Figure 6.1). version 1 was used to determine physical dimensions and drawbacks and 

contained no electrodes; version 2 was designed with electrodes and used for embedment 

and stimulation. One major flaw with version 2 was its inability to stimulate at a low 

voltage. This was due to the method of stimulus application. The two outer arms (two 

electrodes each) were used as the working and return electrodes for delivering the 

stimulus. The higher voltages (3V) required to elicit a response caused electrode 

deterioration and resulted in undesirable byproducts being released into the culture 

medium, which in turn resulted in cell death and tissue damage as shown in Figure 6.2. 
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Version 3 of the P-MEA was developed to overcome the problems caused by 

version 2. This included a change in the design as well as the stimulation philosophy. 

Instead of using the embedded pads as return electrodes, a change was made to separate 

and reposition the return electrodes outside the ECT. This major change allowed an 

increase in the area of the electrodes which resulted in a decrease in the required voltage. 

version 3 of the P-MEA has lasted for a duration of 2 weeks continuous in-vitro 

application without any corrosive effects (specific aim 1 accomplished). 

The fabrication process flow was developed and refined over the evolution of the 

design to obtain a high yield of devices. This process is now transferred to a 

manufacturing foundry (MNTC, Louisville) (specific aim 2 accomplished). 

Electrochemical characterization was performed on the P-MEA by conducting 

electrochemical impedance spectroscopy experiments. The data generated during these 

experiments was analyzed and computed using a simulation software to generate element 

values for an equivalent electrical model (specific aim 3 accomplished). 

Histological staining and force measurements did not reveal any substantial 

differences between the paced ECT and non-stimulated controls. Cardiac cell 

proliferation was found to be very low in stimulated ECT. Force measurements for 

embedded ECT were higher than control ECT but with negligible differences between 

stinulated and non-stimulated. Thus the conclusion is that electrical stimulation did not 

have any appreciable effect on the functional maturation of embyronic cell cardiac tissue. 

(corollary 3 disproven/negative). 
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One of the drawbacks of the P-MEA is that it’s embedded nature caused minor 

changes in ECT form and structure. Since the ECT was separated by the P-MEA device 

arms, it caused a ‘splayed’ effect between each pair of the arms. Without a disruption, the 

ECT compacts physically to result in a cylindrical structure. The embedment resulted in a 

thinning of the ECT; instead of a circular cross-section it caused a flatter and wider 

physical layout. In several ECT, thinning associated with P-MEA embedding resulted in 

the inadvertant removal of the P-MEA out of the ECT (Figure 6.3). 
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6.2 Current and Future Work 

Ongoing applications of the P-MEA include using the P-MEA to stimulate 

cardiomyocyte (CM) maturation in stem cell derived ECT where CM maturation is 

known to be delayed. Some research groups have shown maturation of stem cell derived 

tissue using electrical stimulation. Currently, the P-MEA is being used for in-vitro 

stimulation of two types of stem cell ECT; (1) Human Induced Pluripotent Stem (IPS) 

cells and (2) Mouse Adipose Stem Cells (ASC). Observed stimulation voltages range 

from 0.9V-3V for the IPS ECT and 0.5V-1V for ASC ECT. 

Current and future work involves implantation of P-MEA embedded ECT onto 

the rat epicardium to test the ability to electrically couple implanted ECTs to the recient 

myocardium.  Once the P-MEA device embedded within the ECT becomes electrically 

coupled to the underlying epicardial tissues, the device should facilitate electrical pacing, 

mapping, and recording experiments.  Pilot in vivo P-MEA embedded ECT implantation 

trials have been carried onto the surface of the adult rat myocardium similar to previously 

published method for ECT mediated cardiac repair [28] with the P-MEA device sutured 

on to the surface of a rat heart for a period of three weeks (Figure 6.4). High resolution 

ultrasound imaging during pacing protocols confirmed the electrical coupling of the P-

MEA to the recipient heart. Pilot trials have shown the ability of the P-MEA to survive 

implantation in vivo for the duration of the three week experiment, though additional 

experiments are required to fully assses P-MEA biocompatibility and functional 

coupling. These data will be valuable in guiding the pre-clinical translation of this 

approach. 
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6.3 Pending Outcomes 

1.  The following manuscript is in revision after a favorable review: 

     Trada H, Vendra V, Tinney JP, Yuan, FP, Jackson D, Walsh K, Keller BB.  

Implantable thin-film porous microelectrode array sensor (P-MEA-S) for electrical 

stimulation of engineered cardiac tissues. BioChip Journal (in revision, Dec. 2014). 

 2.  Ongoing experiments are utilizing the P-MEA to evaluate the effect of chronic 

electrical stimulation on the structural and functional maturation of ECTs generated 

from human-iPS derived CM and murine-ASC derived CM.  These studies will lead to 

additional publications where I will be a contributing author. 

 3.  A provisional patent has been filed by UofL related to the reduction to practice of 

the P-MEA device.  
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