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ABSTRACT 

MODULATION OF HOST POLYUBIQUITINATION BY THE ANKB F-BOX PROTEIN 

OF LEGIONELLA PNEUMOPHILA 

William M Bruckert 

 December 1, 2014 

 Legionella pneumophila is a facultative intracellular pathogen that infects a wide 

array of protozoan hosts and human alveolar macrophages. L. pneumophila is dependent on a 

functional Dot/Icm type IVB secretion system that translocates bacterial effector proteins 

into the host cell cytosol. L. pneumophila genomes encode more than 250 effector proteins, 

many of which inhibit host cellular processes to form a favorable niche termed the 

Legionella-containing vacuole (LCV). The eukaryotic-like Dot/Icm translocated effector 

AnkB contains two eukaryotic-like ankyrin protein-protein interacting domains, one 

eukaryotic-like F- box domain and an eukaryotic C-terminal CaaX motif. Immediately 

following attachment of extracellular bacteria, AnkB is translocated into the host cell where 

it is rapidly farnesylated and anchored to the plasma membrane beneath the attached 

extracellular bacteria. AnkB recruits the host cell SCF1 E3 ubiquitin ligase machinery to the 

point of attachment and promotes the lysine48-linked polyubiquitination of the AnkB 

substrates. Interestingly, the proteasomal degradation of the lysine48-liked polyubiquitinated 

proteins increases the levels of intracellular free amino acids within 15 minutes of attachment 

of extracellular bacteria. This early increase in free cellular amino acids is needed to prevent 

a starvation response and inhibits differentiation into the non-replicative phase which 
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facilitates intracellular replication. The polyubiquitinated proteins surrounding the LCV have 

a wide range of cellular functions, and include the amino acid transporters SLC1A4 and 

SLC3A2 and the sodium bicarbonate transporter SLC4A7. In addition the ubiquitinated 

proteome of the WT strain, the LCV contains proteins involved in the immune response, 

including interferon regulatory factor 7 and Interleukin-1 receptor-associated kinase 1a. The 

complete LCV proteome of the WT strain as well as the ankB mutant strain contained E2 

ubiquitin-conjugation enzymes, E3 ubiquitin ligases and ubiquitin peptidases. Bioinformatic 

analysis determined the major metabolic networks within the LCV proteome, including the 

phosphatidylinositol 4,5 diphosphate pathway and multiple amino acid synthesis pathways. 

These data showed that AnkB is polyubiquitinated on lysine 67 through lysine11-linked 

polyubiquitination. While lysine11-linked polyubiquitination has been shown to target the 

modified protein for proteasomal degradation, stability of AnkB is not affected following 

ubiquitination. This highlights a novel example of an F-box effector protein that is modified 

though lysine11-linked polyubiquitination. Taken together, AnkB manipulates multiple 

eukaryotic cellular pathways to enable intra-vacuolar proliferation of L. pneumophila.    
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INTRODUCTION 

I. Etiology and historical aspects of Legionnaires’ disease 

Legionnaires’ disease was first described in 1976 following an outbreak of 

pneumonia at the American Legion Convention in Philadelphia, Pennsylvania, which 

included 34 death [1, 2]. The causative agent was determined to be a facultative intracellular 

Gram-negative bacterium, assigned the name Legionella pneumophila and the strain was 

designated Philadelphia-1 [1]. L. pneumophila belongs to the Legionellaceae family in the 

gamme-2 subdivision of the Proteobacteria, in which the Legionellales order has been 

created [3-5]. The Legionellales order contains two families: Legionellaceae and 

Coxiellaceae, each having the characteristics of being intracellular parasites infecting 

humans, animals and protozoa [6]. Within the Legionellaceae family there are ~60 species 

and 72 serogroups of bacteria which have been isolated from clinical and environmental 

conditions [7, 8]. L. pneumophila consists of 16 serogroups, of which serogroup 1 is the most 

common in infection, followed by 4 and 6 [9, 10]. In the United States L. pneumophila 

represents more than 90% of community or hospital acquired Legionnaires’ disease cases, 

with serogroup 1 responsible for approximately 70% [10]. However, in Western Australia 

and New Zealand L. longbeachae accounts for 30.4% of community acquired Legionnaires’ 

disease cases [11, 12].
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II. Epidemiology and clinical manifestations of legionellosis 

      L. pneumophila is capable of causing Legionnaires’ disease and Pontiac fever, both 

known as legionellosis. Humans acquire legionellosis through the inhalation of 

L.pneumophila containing aerosols, primarily from mechanical means such as showers, water 

fountains, spas and  air conditioning towers [13-15]. Following an incubation period of 2-10 

days the initial clinical symptoms of Legionnaires’ disease, often nonspecific, include mild 

cold symptoms, malaise, low fever, headache, anorexia and muscle aches [8, 16, 17]. 

Without treatment, symptoms progress to a high fever accompanied by a life threatening 

pneumonia, fibrinolysis, cellular infiltrations of macrophages and neutrophils, and alveolar 

damage [8, 18, 19]. Pontiac fever is an acute, self-limiting, non fatal respiratory infection 

without pneumonia [20]. The symptoms of Pontiac Fever, which mimic influenza infection, 

are fever, chills, sore throat, abdominal pain and a nonproductive cough [20-22]. The 

immune system of the host is critical for L. pneumophila  infection, as healthy individuals 

typically clear the infection, individuals with chronic lung diseases, diabetes or chronic renal 

failure have a high risk of disease development if infected [10, 23]. Annually there are an 

estimated 25,000 worldwide cases of pneumonia caused by  L. pneumophila, with 

approximately 10,000 cases in the USA according to the Center of Disease Control and 

Prevention, with a mortality rate ranging from 7-24% [24]. However, it is assumed that only 

2-10% of Legionnaires disease cases are reported [25]. Nosocomial L. pneumophila 

infections have a fatality rate  reaching 50% and are associated with recent surgeries, 

mechanical ventilation, and transplant procedures such as heart and liver [26-28]. 

Legionnaires’ disease is always transmitted from the environment to humans; therefore, 
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environmental monitoring of cooling towers and related water sources should be routinely 

surveyed to control the spread of the disease.  

 

III. Ecology of L. pneumophila within the aquatic environment. 

      L. pneumophila is ubiquitous in natural water sources such as rivers and lakes, as well 

as manmade water systems such as air conditioning units, water fountains and  cooling 

towers [13, 14, 29, 30]. L. pneumophila and other bacterial species form biofilms in the 

aquatic environment, which have been shown to increase their resistance to microbial 

disinfection techniques such as chlorination and UV treatment [31, 32]. Within aquatic 

environments L. pneumophila invade and replicate within many species of protozoa, which 

play a pivotal role in the amplification of the organism as well as providing an intracellular 

habitat capable of providing adequate nutrients and protecting the bacteria from high 

temperature, drying, and chlorination of the extracellular environment [33, 34].                     

L. penumophila grown in amoeba have a greatly increased resistance to the antimicrobial 

properties of the biocides polyhexamethylene biguanide (PHMB) and benzisothiazolone 

(BIT), and are 1,000 fold more resistant to the antimicrobial effects of rifampin and 

ciproflaxin [35, 36]. Furthermore, L. pneumophila grown in amoeba are 100 and 10 fold 

more invasive for epithelial cells and macrophages, respectively [37]. This increase in 

infectivity is associated with changes in bacterial morphology, cell wall composition and 

structure, and the route of entry into macrophages [34, 38, 39].  
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IV. Transmission and entry of L. pneumophila to amoeba and macrophages        

Inhalation of aerosolized water droplets containing infectious L. pneumophila can 

occur through multiple routes following the bacteria-protozoan interaction. Following escape 

from the protozoan host or biofilm, infectious extracellular L. pneumophila can be 

transmitted to humans through a contaminated water source. Other possible routes of 

infection include the inhalation of excreted L. pneumophila-filled vesicles or amoeba filled 

with L. pneumophila [40, 41]. L. pneumophila uptake into macrophages is mediated by 

human monocyte complement receptors CR1 and CR3 which trigger microfilament-

dependent phagocytosis, while L. pneumophila uptake by amoeba is microfilament-

independent [42-44]. L. pneumophila attachment to the protozoan host Hartmannella 

vermiformis is associated with a 170-kD galactose/N-acetyl-D-galactosamine (Gal/ GalNAc) 

inhibitable lectin and subsequent tyrosine dephosphorylation of multiple host cytoskeletal 

proteins [45-47]. However, in Acanthamoeba polyphaga bacterial attachment is not 

associated with the galactose/N-acetyl-D-galactosamine (Gal/ GalNAc) inhibitable lectin, and 

there is only a slight tyrosine dephosphorylation of a single host protein [45]. Uptake into H. 

vermiformis occurs mainly through cup-shaped invaginations (zipper phagocytosis), while 

coiling phagocytosis is used by Acanthamoeba castellanii and human macrophages [37, 47-

49]. Thus, L. pneumophila has evolved diverse mechanisms to invade different species of 

amoeba and human macrophages by using different ligands and receptors on the host cell for 

attachment.  
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V. L. pneumophila intracellular life cycle  

In contrast to the diverse mechanisms of attachment and uptake of L. pneumophila by 

protozoa and human cells, intracellular trafficking and survival techniques of the bacterium 

are indistinguishable between the two evolutionary distant hosts [50-52]. Upon inhalation of 

infectious L. pneumophila water droplets, human alveolar macrophages use coiling 

phagocytosis to ingest the bacterium [53, 54]. Following entry, L. pneumophila intercepts 

ER-to-Golgi vesicular traffic and resides in a membrane-bound vacuole (Legionella-

containing vacuole) that becomes surrounded with endoplasmic reticulum derived smooth 

vesicles, mitochondria and other host cell organelles within five minutes [51, 55, 56]. Within 

4 hours following infection the smooth vesicles on the Legionella containing vacuole (LCV) 

are replaced with a ribosome studded multilayer membrane derived from the rough 

endoplasmic reticulum [48, 52, 57]. Importantly, wild type L. pneumophila evades 

phagosome-lysosome fusion in human macrophages or amoeba as seen by the absence of the 

lysosomal markers LAMP-1, LAMP-2 and cathepsin D on the LCV [48, 58-60]. L. 

pneumophila begins multiplying after a four hour log phase, and continues until the LCV 

membrane ruptures, releasing bacteria into the cytosol where two-three rounds of additional 

replication occur [13, 61]. Eventually the lack of nutrients causes a starvation response and 

differentiation into the post exponential phase, resulting in the bacteria lysing the 

macrophage and release of bacteria into the extracellular environment to infect a new host 

[51, 52]. During infection of macrophages, L. pneumophila causes activation of caspase-3 

throughout the infection, however, apoptotic cell death is not initiated until late stages of the 

infection [62-66]. L. pneumophila prevents premature caspase-3 induced apoptotic cell death 

by triggering anti-apoptotic signaling through NF-kappaB activation and inhibition of the 
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type I interferon response [67-69].  L. pneumophila has been shown to kill human 

macrophages and A. polyphaga through temporal induction of necrosis, mediated by the 

pore-forming toxin activity of L. pneumophila upon termination of intracellular replication 

[61, 70, 71]. Mutants defective in pore-forming toxin activity replicate to the same extent as 

the wild type strain, however, they fail to lyse the host cell and remain trapped within the 

LCV [61, 72]. Therefore, intracellular replication and phagosomal remodeling through 

interception of host cell vesicular trafficking is independent of host cell lysis. 

 

VI. Characterization of the LCV proteome 

 Using the JR32 Philadelphia-derived strain of L. pneumophila the LCV proteome has 

been profiled from RAW264.7 mouse macrophages [73, 74]. The LCV proteome has also 

been generated using the Corby strain of L. pneumophila in the amoeba host Dictyostelium 

discoideum [73-75]. While the LCV proteome from RAW264.7 macrophages presents 

information on LCV biogenesis, RAW264.7 macrophages originate from the BALB/C 

mouse, whose primary macrophages are non-permissive to L. pneumophila infection [76, 

77]. The LCV proteome analysis from Dictyostelium discoideum contained 566 host proteins 

[73], while the LCV proteome from RAW264.7 macrophages contained 1156 proteins [74]. 

A large proportion (>50%) of the identified proteins were associated with cellular 

metabolism, while proteins involved in signaling and trafficking were found in lower 

abundance (~10% each) [74].  The LCV recruits small GTPases, such as Rab1, Sar1 and 

ADP ribosylation factor 1, which are critical for ER-to-Golgi trafficking [56, 78, 79]. In 

addition, 14 other Rab GTPases were identified in the proteome which include Rab2, Rab4, 

Rab5, Rab7, Rab8 [74]. These Rab GTPases indicate the fusion of the LCV with early and 
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late endosomes and distinct vesicle trafficking pathways in the host cell. The LCV is 

decorated with phospatidylinositol-4 phosphate (PI(4)P), which multiple Dot/Icm bacterial 

secreted effector proteins (SidC, SidM, SdcA, Rid) bind on the LCV membrane [80-82]. 

While there were 60 Dot/Icm effector proteins identified in the RAW264.7 LCV proteome 

analysis, some of these effectors have transmembrane domains which could allow them to 

localize to the LCV (MavP, MavE), it is unknown how the other effector proteins anchor into 

the LCV [74, 83]. Post-translational modifications, such as farnesylation or ubiquitination, of 

effector proteins could alter their sub-cellular localization and allow the effectors to localize 

with the LCV, or with vesicles that fuse with the LCV during vacuole biogenesis. The 

effectors on the LCV could interact with specific host proteins critical for intracellular 

survival.  

 

VII. L. pneumophila metabolism 

L. pneumophila obtains carbon and energy from amino acids, primarily through the TCA 

cycle, with Ser, Glu, Tyr and Thr used for growth in vitro, and Cys, Gln, Ser, and Arg 

supporting growth in vivo [84, 85]. L. pneumophila is auxotrophic for 7 amino acids (Cys, 

Met, Arg, Thr, Val, Ile and Leu), and expresses ~12 classes of ATP-binding cassette 

transporters [86] and amino acid permeases encoded in the genome [87, 88]. Intracellular 

replication of L. pneumophila is dependent upon the host cell amino acid transporter 

SLC1A5 during intracellular infection of human macrophages [85, 89].With L. pneumophila 

having a doubling time of ~40 minutes in macrophages and amoeba, acquisition of host 

amino acids is critical to provide the essential nutrients to support the energy spent during 

intracellular survival and proliferation [90]. It has been shown that L. pneumophila 
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incorporates host cell amino acids during infection of Acanthamoeba castelannii,[91]. 

Therefore it is likely that host amino acid transporters are localized to the LCV; however, this 

has not been evaluated. While amino acids are the major source of carbon and energy, L. 

pneumophila can convert exogenous glucose to pyruvate through the Entner-Doudoroff 

pathway [88, 92]. The Entner-Doudoroff pathway plays an important role in the infection 

process since Entner-Doudoroff pathway mutants have a significant growth defect in 

Acanthamoeba culbertstoni, A/J mouse macrophages and A549 human epithelial cells [92]. 

Interestingly, the ankB mutant which is defective for intracellular replication due to a lack of 

amino acids, can be rescued for growth with the addition of pyruvate to the growth medium 

[86]. Therefore, intracellular replication of L. pneumophila is dependent upon more than 

amino acids, and is a combination of other carbon and energy sources, although amino acids 

are the major source of carbon and energy.  

 

VIII. L. pneumophila biphasic life cycle 

In natural environments, L. pneumophila alternates between a replicative phase and a 

highly infectious nonreplicative transmissive phase [34, 93]. As vacuole nutrients become 

limiting during late stages of intra-vacuolar proliferation, exponential phase bacteria respond 

by producing the alarmone ppGpp, which stimulates signaling pathways responsible for the 

differentiation and phenotypic phase variation seen upon entering the post-phase [94, 95]. 

The ppGpp synthases RelA and SpoT are essential for phenotypic variation and become 

activated during nutrient limitation at the end of intracellular replication, which causes an 

increase in the alarmone ppGpp [94-96]. In response to the increase of ppGpp the sigma 

factor RpoS and the LetA/S two component system coordinate the activation of many 
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transmission virulence traits (cytotoxicity, flagellum synthesis, increased osmotic resistance, 

increased resistance to extracellular stresses, and evasion of the endocytic pathway). These 

transmission virulence traits are not expressed by exponential replicating bacteria, and are 

thought to be required for escaping a nutrient-deprived host, gaining entry into the next host, 

and suppressing traits dedicated to intracellular replication [94-96]. The repressor of 

transmission traits, CsrA, is active exclusively during the replicative phase while lysosomal 

evasion traits are inactive during intracellular replication [60, 97]. The flagella sigma factor 

FliA, which activates several genes needed for flagellum development, is required for the 

post-exponential traits of motility, cytotoxicity,  infectivity and lysosome evasion [98, 99]. 

Genes regulated by FliA could explain how L. pneumophila can exit one host and block 

phagolysosomal fusion in the next.  

 

IX. L. pneumophila type II and 1V secretion systems 

Gram-negative bacteria have developed sophisticated secretion systems in order  

to deliver effector molecules from the bacteria cell to the cytoplasm of the  host cell or to the 

extracellular environment. Of the eight well characterized secretion systems in Gram-

negative bacteria, L. pneumophila contains a functional type II (Lsp) and type IV (Dot/Icm) 

secretion system [100-103]. The L. pneumophila type II  secretion system involves the Sec or 

Tat pathway, which secretes proteins across the bacterial inner membrane to the periplasm, 

where proteins are unfolded and secreted across the outer bacterial membrane through the 

type II secretion system complex [104, 105]. The L. pneumophila type II secretion system is 

responsible for the secretion of many degradative enzymes such as acid phosphatases, 

lipases, aminopeptidases, and a zinc metalloprotease [106-109]. L. pneumophila type II 
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secretion is required for the intracellular infection of Acanthamoebae and Hartmannellae, 

optimal intracellular infection of human macrophages, and virulence in the murine model 

[100, 110, 111]. 

The Dot/Icm Type IVB secretion system was coincidentally discovered by 2 groups 

who sought to determine L. pneumophila virulence traits by generating spontaneous mutants 

and assessing their ability to replicate within macrophages, and to avoid phagosome-

lysosome fusion [112, 113]. The L. pneumophila spontaneous avirulent strain 25D was 

restored for intracellular replication when a region of the chromosome (intracellular 

multiplication (Icm)) was complemented with the wild type strain region of the chromosome 

[113-115]. Subsequently, a second region of the genome (defect in organelle trafficking 

(Dot)) was able to restore phagosome-lysosome evasion and association with host cell 

organelles in an avirulent strain [112, 116]. The Dot/Icm loci are composed of 26 genes 

responsible for the assembly of a sophisticated type IVB secretion system [103, 117, 118]. 

Type IV secretion systems (T4SS) are macromolecular systems with homology to the 

conjugation machinery required for the conjugation of plasmids between bacteria [103, 119, 

120]. The Dot/Icm secretion system is made up of 22 structural proteins, many of which are 

membrane associated, and 5 chaperone proteins that interact with effector proteins in the 

bacteria cytoplasm [121, 122]. In contrast to the Lsp Type II secretion system which secretes 

approximately 20 proteins, primarily degradation enzymes to the extracellular environment, 

the Dot/Icm secretion system translocates more than 250 bacterial proteins directly into the 

host cell cytoplasm [123]. L. pneumophila is naturally competent in the environment, 

therefore the ability to transfer the Dot/Icm effector proteins from one bacterium to another 

could account for this extraordinary number of effectors compared to other bacteria [124]. 
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Despite the requirement for a functional type IV secretion system for intracellular replication 

and phagosome-lysosome evasion, loss of single effectors rarely cause a significant growth 

defect [125, 126]. This is thought to primarily result from redundancy among the effector 

proteins, however single deletion mutants of many effectors have not been analyzed [125].  

 

X. L. pneumophila Dot/Icm substrate identification and functions 

The requirement of the Dot/Icm secretion system for intracellular infection has lead 

research into the identification and characterization of the translocated substrates. Techniques 

utilized to identify L. pneumophila translocated effectors include genetic assays in yeast, 

proteins interacting with Dot/Icm components, bioinformatic searches for genes encoding 

eukaryotic domains, and direct translocation assays looking for the presence of the effector 

protein within host cells [123, 127-130]. In addition, L. pneumophila effector proteins were 

identified by using the T4SS chaperone-like IcmW protein as bait in a yeast two-hybrid 

screen [127]. Translocation has been determined using fusion reporters such as the adenylate 

cyclase and beta-lactamase assays, where the bacterial gene of interest is fused to the 

Bordetella pertussis adenylate cyclase catalytic domain, or the carboxyl end of TEM-1 beta-

lactamase, respectively [123, 131, 132]. The calmodulin-dependent adenylate cyclase assay 

causes a dramatic increase in intracellular cyclicAMP levels when the fusion protein is 

translocated into host cells [133]. In the fluorescent resosnance energy transfer (FRET) assay 

based on TEM-1 β-lactamase activity, the host cells are loaded with a β-lactamase substrate 

(CCF4-AM), which emits green fluorescence (520nm). If the effector protein containing the 

TEM-1 fusion reporter is translocated into loaded cells, the substrate will be cleaved and emit 

blue fluorescence (447nm), allowing translocation to be determined by measuring the ratio of 
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cleaved to uncleaved substrate in infected cells. Antibodies specific for Dot/Icm substrate 

proteins have been utilized in confocal microscopy to determine sub-cellular localization in 

the host cell [124, 134-136].  

Sequence analysis of L. pneumophila genomes identified many of the predicted and 

experimentally verified Dot/Icm substrates are similar to eukaryotic proteins or have motifs 

commonly found in eukaryotic proteins [137, 138]. These effectors are thought to have been 

acquired through horizontal gene transfer during the evolution of L. pneumophila with 

primitive eukaryotic host cells such as amoeba [137, 138]. L. pneumophila encodes effectors 

with eukaryotic like motifs such as Set domains, ankyrin domains, U-box and F-box motifs, 

and eukaryotic like proteins such as sphingosine kinase and phosphatases [139, 140]. Many 

of the eukaryotic like proteins interfere with host cell pathways contributing to intracellular 

trafficking, and manipulation of host cell processes that are advantageous to intracellular 

bacterial survival [141, 142].  

Despite the requirement for a functional type IV secretion system for intracellular 

replication and phagosome-lysosome evasion, loss of a single effector rarely causes a 

significant defect in intracellular replication [125, 126]. The effector protein DrrA (SidM) is 

necessary for host cell Rab1 recruitment to the LCV, while the effector protein LidA 

enhances this Rab1 recruitment, showing a specific redundancy in the functions of different 

effector proteins [143-145]. The host guanosine triphosphatase (GTPase) Rab1 is recruited to 

the LCV within 5 minutes of uptake, and is involved in the recruitment of ER-derived 

vesicles to the LCV to create a replicative niche [78, 146, 147]. A lidA mutant of  L. 

pneumophila strain has a slight growth defect in human macrophages, while intracellular 

replication of a DrrA (sidM) mutant strain was similar to wild-type L. pneumophila [134, 



13 

143]. The L. pneumophila effector protein SdhA has been shown to be involved in 

maintaining the integrity of the LCV and preventing host cell death through suppression of 

type 1 interferon, while the effector SidF also inhibits host cell death by inhibiting pro-

apoptotic signaling through Bcl2 [69, 148, 149]. Interestingly, a L. pneumophila  sdhA 

mutant strain was severely impaired for intracellular growth within A/J mouse macrophages 

due to caspase-1 dependent host cell death [150, 151]. However, in U937 macrophages and 

D. discoideum intracellular replication was only partially impaired in the sdhA mutant strain 

[150]. In contrast to the effectors causing anti-apoptotic signaling at least five effectors of  L. 

pneumophila are capable of causing caspase 3 activation [152]. Inhibiting host protein  

translation is one of the main mechanisms of L. pneumophila effectors [153, 154].  At least 5 

effectors (Lgt1, Lgt2, Lgt3, SidI, SidL) inhibit host protein translation by modifying the host 

elongation factor eEF1A or by binding the host elongation factor EF1Bγ, which blocks 

protein translation [153, 155].  Importantly, the effectors that block translation lead to an 

exasperated Map kinase response where host transcribed mRNA fail to be translated [155]. 

During L. pneumophila induced translation inhibition, selected genes such as IL-1α and IL-

1β are still translated, which is likely due to them being the most abundant transcripts during 

L. pneumophila infection [155, 156].  These examples highlight the ability of L. pneumophila 

to manipulate a wide variety of host cellular pathways to obtain a favorable intracellular 

environment during infection.  

 

XI. L. pneumophila eukaryotic-like ankyrin proteins 

Through bioinformatic analysis of L. pneumophila genomes, many eukaryotic-like 

proteins have been identified, which are thought to have been acquired through horizontal 
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gene transfer [129, 137, 138, 142]. Eukaryotic proteins containing ankyrin domains are 

broadly distributed in the cytoplasm and the nucleus and act as adaptors to mediate specific 

protein-protein interactions [157, 158]. The 33 amino acid ankyrin repeat (ANK) is the most 

prevalent motif found in protein databases [159-163]. Eukaryotes contain the majority of 

ankyrin repeat proteins, while bacteria, archaea and viruses have ankyrin repeat proteins as 

well [159]. Eukaryotic ankyrin proteins are involved in development, cell signaling, 

inflammatory response, inhibition or development of tumors, cell-cycle regulation and signal 

transduction [164-166]. The ankyrin motif exhibits helix-turn-helix conformation, with the 

beta loop projected outward to bind the target protein [167-169]. The ANK repeat binding 

site consists of six non-conserved amino acid residues, which determine the specific target of 

the ankyrin protein [170, 171]. Ankyrin proteins have been identified in many different 

bacterial pathogens such as Wolbachia, Pseudomonas, Coxiella, Anaplasma and Legionella 

[129, 172-175]. Coxiella burnetti translocated ankyrin proteins localize to different host cell 

organelles, where they are hypothesized to manipulate host cell processes such as apoptosis 

and vesicular fusion events critical for infection [174].  

L. pneumophila strains Corby, Lens, Paris and Philadelphia contain at least eleven 

common ankyrin genes (ankB, ankC, ankD, ankE, ankF, ankG, ankH, ankI, ankJ, ankK, 

ankN), which exhibit extensive size and sequence variation [129, 159].The ankyrin proteins 

in L. pneumophila vary extensively, such as containing between 1-11 ANK repeats, one F-

box domain, and one SET motif [129]. Adenylate cyclase translocation assays revealed at 

least eight of the ankyrin proteins are translocated into the host cell through the Dot/Icm 

T4SS [176]. Most of the ankyrin genes are upregulated in vitro and within A. polyphaga 

during the transition to the post-exponential phase in an RpoS-dependent mechanism [129, 
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177]. While eight of the ankyrin genes are dispensable for intracellular growth, AnkH, AnkJ, 

and AnkB play crucial roles in the infection of hMDMs and multiple protozoan hosts [129, 

131]. The L. pneumophila ankH and ankJ mutant strains exhibit a major defect in 

intracellular replication within human macrophages, a partial defect within A. polyphaga and 

H.vermiformis, and are attenuated in the mouse model of Legionnaires’ disease [129, 176]. 

The ankyrin domains and the last ten C-terminal amino acid residues of AnkH and AnkJ are 

required for translocation and proficient intracellular replication [176]. The ankH and ankJ 

mutant strains exhibited similar intracellular trafficking as the wild-type strain, indicating 

these effector proteins are not involved in vacuole formation or trafficking, but are needed to 

promote intracellular replication within the LCV [176].  

 

XII. L. pneumophila manipulation of host prenylation machinery 

Prenylation is an irreversible post-translational lipid modification of a protein, involving 

the covalent addition of a 20-carbon geranygeranyl group or a 15-carbon farnesyl isoprenoid 

group, to a cysteine residue within the conserved C-terminal CaaX motif (in which “a” is any 

aliphatic amino acid and “X” is any amino acid)  [178, 179]. This modification increases 

protein hydrophobicity, which results in anchoring of the protein to the lipid bilayer of cell 

membranes or organelle membranes [180, 181]. In humans three different protein 

prenyltransferases facilitate protein prenylation: two geranylgeranyl protein transferases 

(GGtase I and II) and one farnesyltransferase (FTase) [182, 183]. Following prenylation of 

the cysteine, the terminal “aaX” tripeptide is cleaved by RAS-converting enzyme 1 (RCE-1), 

and the prenylcysteine is carboxymethylated by isoprenyl cysteine carboxyl methyl 

transferase (ICMT) [184, 185].  Labeling experiments have estimated that ~2% of the 
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mammalian proteome is prenylated, and the characterized farnesylated or geranylgeranylated 

proteins include kinases, phosphatases, GTP-binding proteins and nuclear lamins [186, 187]. 

The most characterized CaaX motif proteins are Ras GTPases and trimeric G proteins, which 

require an additional signal to target specific cellular compartments [188, 189]. The signal in 

Ras proteins is located immediately upstream from the CaaX motif known as the 

hypervariable domain, while trimeric G proteins must become modified through the 

attachment of the fatty acid palmitate or myristate on the α subunit [190, 191]. CaaX motif-

containing proteins are involved in cellular signaling processes and regulatory events 

including cell proliferation, differentiation, metabolism, apoptosis and nuclear stability [192-

194].  

Genomic analyses of 17 intracellular and extracellular pathogens predicted 54 

proteins from 14 species, including Salmonella, Legionella, Yersinia, Francisella among 

others, have the C-terminal CaaX motif that could be subjected to host prenylation [195, 

196]. The Salmonella enterica T3SS effector protein SifA is geranylgeranylated, resulting in 

localization to the Salmonella containing vacuole (SCV) and Salmonella-induced filaments, 

where it interacts with host cell Rab7, and plays a role in preventing Salmonella-containing 

vacuole-lysosome fusion [197, 198]. In the L. pneumophila strains Philadelphia, Lens, 

Corby, and Paris eleven CaaX motif-containing proteins (CMPs) were identified, with six of 

the proteins being conserved among the sequenced L. pneumophila strains [199, 200]. The 

adenylate cyclase translocation assay identified seven of the Legionella CMPs are 

translocated into the host cell through the Dot/Icm T4SS [199, 200]. Legionella CMPs are 

substrates of eukaryotic prenylatransferases, causing lipidation and enabling their targeting to 

specific cellular membranes [199]. When ectopically expressed in human cells, Legionella 
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CMPs localize as intense punctuate spots or around the cell periphery, indicating vesicular or 

plasma membrane localization, respectively [199]. Inhibition of prenylatransferases cause a 

significant but modest increase in wild-type LCV’s acquiring the lysosomal markers LAMP1 

and Cathepsin D [199]. Therefore, manipulation of host cell prenylation machinery through 

L. pneumophila CMPs contributes to evasion of phagosome-lysosome fusion and enhances 

the ability of remodeling of the LCV.   

  

XIII. Bacterial manipulation of host ubiquitination machinery 

 Posttranslational modifications of proteins are conserved mechanisms for regulating 

protein activity, localization, conformation, or stability. Protein modifications, usually driven 

by enzymes, include phosphorylation, lipidation, protonation, ubiquitination, and prenylation. 

Many pathogenic bacteria use translocated effectors to manipulate host cell posttranslational 

machineries to promote intracellular bacterial replication and survival.  

 Ubiquitination is a conserved eukaryotic post-translational protein modification 

involving the addition of a 76 amino acid ubiquitin moiety onto a substrate protein via 

isopeptide bond between free carboxy group on the terminal glycine of ubiquitin and the ɛ 

amino on lysine of the target protein [201, 202]. Polyubiquitination is the covalent linkage of 

ubiquitin monomers through 1 of 7 lysine residues in ubiquitin (K6, K11, K27, K29, K33, 

K48, K63) [202, 203]. The fate of the polyubiquitinated protein depends on the lysine residue 

within ubiquitin that is involved in the ubiquitin-ubiquitin chain linkage [203, 204]. 

Polyubiquitination through K63 regulates nonproteolytic cellular processes, such as 

`transcriptional activation, protein localization, innate immune response, cell cycle 

progression and DNA damage response [205-208]. If ubiquitin monomers are linked through 
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K48 residues, the substrate protein is recognized by the 26S proteasome and degraded [209, 

210]. While polyubiquitination through K6, K11, K27, K29 and K33 is less studied, however 

with new techniques it is becoming more common to observe these types of 

polyubiquitination, it has been shown these linkage patterns can cause substrate degradation, 

endocytosis, signaling and regulation [211-213]. Polyubiquitination occurs through a three-

step process involving activation of ubiquitin by an E1 enzyme [214], allowing for transfer of 

the ubiquitin moiety to a ubiquitin-conjugating enzyme (E2) [215], followed by transfer onto 

the targeted protein via substrate specific ubiquitin-protein ligases (E3) [216]. There are 

>1,000 estimated substrate-specific ubiquitin ligases, classified into two major groups, 

RING-type and HECT-type [216, 217]. The SKP1-CUL1-F-box (SCF) complex is a well 

characterized RING-type E3 ubiquitin ligase complex [218]. The E2 ubiquitin conjugating 

enzyme binds the RBX1 RING finger protein, which associates with the C terminus of the 

cullin (CUL1) [215]. The F-box domain of the F-box protein binds directly to SKP1, which 

links the F-box protein to CUL1 to cause ubiquitination of the substrate protein that is bound 

to another domain of the F-box protein [219, 220]. F-box containing proteins generally have 

a recognizable substrate protein binding domain, such as a WD40 or a leucine rich repeat, 

which bind specific substrates to be ubiquitinated [221, 222].  

Bioinformatic analyses have revealed eukaryotic-like F-box proteins in human 

pathogens, plant pathogens, viruses, and amoebal endosymbionts [223-225]. The plant 

pathogen Agrobacterium encodes 694 potential F-box proteins, while there have been ~70 F-

box proteins identified in humans [226, 227]. L. pneumophila encodes five F-box proteins 

(AnkB, LegU1, LicA, Lpg2224, Lpg2525) that are translocated into host cells through the 

Dot/Icm T4SS [228]. LegU1 and AnkB associate with the SKP1 and CUL1 components of 
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the SCF E3 ubiquitin ligase complex, while LicA only interacts with SKP1 [228]. LegU1 

specifically interacts with and causes ubiquitination of the host cell chaperone protein BAT3 

[228]. In BAT3 knockout mammalian cells there is an increased resistant to ER stress, 

therefore, multiple L. pneumophila F-box proteins could target BAT3 for proteasomal 

degradation to modulate the host ER stress response [228] The L. pneumophila Dot/Icm 

translocated effector LubX contains 2 domains very similar to the U-box, a domain found in 

eukaryotic E3 ubiquitin ligases [229]. LubX functions as an E3 ubiquitin ligase, causing 

polyubiquitination and proteasomal degradation of the L. pneumophila effector protein SidH 

[230]. A number of bacterial pathogens such as Yersinia, Salmonella and Pseudomonas have 

effector proteins that manipulate eukaryotic ubiquitination machinery [231]. The Salmonella 

effector SopA is ubiquitinated in a proteasomal dependent manner [232, 233], while SopB is 

ubiquitinated through K63-linked polyubiquitination which alters its subcellular localization 

[234]. The Pseudomonas aeruginosa effector ExoU could be modified through a diubiquitin 

chain following translocation [235, 236]. To date no bacterial effector protein has been found 

to be modified through K6, K11, K27, K29 or K33-linked polyubiquitination. Interestingly, 

intracellular replication by L. pneumophila is dependent upon K48-linked polyubiquitination 

of the LCV in a proteasome-dependent mechanism [237, 238]. Therefore, L. pneumophila 

utilizes acquired eukaryotic-like F-box proteins to manipulate the host cell ubiquitination 

machinery for regulation of bacterial effector proteins and host cell targets.  

  

 

 

 



20 

XIV. L. pneumophila T4SS effector AnkB 

 

 

Figure 1. A model of the domain structure of AnkB. AnkB is a eukaryotic-like F-box 

protein that contains 2 ankyrin domains. The C-terminus of AnkB contains a 

eukaryotic CaaX motif (CLVC).  

 

The L. pneumophila ankB gene, conserved among all sequenced strains, encodes a 

172 amino acid protein that contains two eukaryotic-like ankyrin domains and a conserved N 

terminus eukaryotic-like F-box domain [129, 131]. In the Paris strain and the AA100/130b 

strain of L. pneumophila, a mutation in ankB causes a severe defect in intracellular 

replication in human macrophage and A. polyphaga [131, 238, 239]. However, in the 

Philadelphia-derived Lp02 strain, a mutation in ankB does not result in a growth defect 

within human macrophages or amoeba [228]. In the AA100/130b strain, in-frame deletions 

of single ankyrin domains in the ankB gene result in a partial defect in intracellular 

replication, while a deletion in both ankyrin domains abolishes intracellular replication 

identical to the ankB null mutant [240]. Upon extracellular bacterial attachment, AnkB is 

translocated and triggers assembly of polyubiquitinated proteins directly beneath bacterial 

attachment site [238]. The C-terminal CaaX motif of AnkB is prenylated though the addition 

of a farnesyl group, enabling AnkB to anchor into the plasma membrane beneath bacterial 

attachment and subsequently to the cytosolic face of the LCV membrane [135]. Through 

conserved residues in the F-box domain, AnkB directly interacts with the SKP1 component 
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of the SCF1 E3 ubiquitin ligase complex to recruit K 48 -linked polyubiquitinated proteins to 

the LCV [241]. The K 48 -linked polyubiquitinated proteins are degraded by the proteasomes 

to generate a surplus of free cellular amino acids that are utilized by the bacterium to provide 

the carbon and energy for intracellular replication [86]. When macrophages are supplemented 

with an amino acid mixture, the ankB mutant strain is rescued for intracellular growth, 

suggesting that the function of AnkB is to provide amino acids as nutrients for intra-vacuolar 

bacteria [86]. Therefore, AnkB exploits eukaryotic cellular processes to trigger K48 -linked 

polyubiquitination on the LCV. The polyubiquitinated substrates are degraded by the 26S 

proteasome to generate free cellular amino acids that are imported into the LCV for use as a 

carbon and energy source.  
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SPECIFIC AIMS 

AnkB is the only ankyrin effector to be translocated from the site of extracellular 

bacterial attachment [129] and it has been shown that polyubiquitinated proteins appear 

within 15 minutes of bacterial attachment. Therefore, it is likely that AnkB is farnesylated 

immediately following bacterial attachment, and interacts with the SCF1 E3 ubiquitin ligase 

complex to cause polyubiquitination of its substrates. The proteasomal degradation of the 

polyubiquitinated substrates will generate an increase in free cellular amino acids to inhibit 

differentiation into the non-replicative phase and power intracellular replication.                    

L. pneumophila is auxotrophic for seven amino acids, therefore acquisition of host cell amino 

acids is critical for intracellular survival and replication. Further characterization of the 

ubiquitinated proteins localized to the LCV will provide potential substrates of AnkB that 

can be further investigated to determine their role during L. pneumophila infection.  

 

I hypothesize, that once L. pneumophila makes contact with the host cell, AnkB is 

rapidly translocated and farnesylated which allows it to integrate into the LCV membrane 

and interact with the host SCF1 E3 ubiquitin ligase complex to cause polyubiquitination of 

the LCV. 
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To test this hypothesis my specific aims are: 

Specific Aim 1: Study the kinetics of AnkB translocation upon attachment of extracellular    

L. pneumophila, and determine if the host cell farnesylation and ubiquitination machineries 

are localized and manipulated at the site of extracellular bacterial attachment. 

Specific Aim 2: Characterize the complete and ubiquitinated proteome of the Legionella-

containing vacuole from human macrophages.  

Specific Aim 3: Determine if AnkB is ubiquitinated and the type of polyubiquitin chain 

linkage.
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MATERIALS AND METHODS 

 

Bacterial strains, cell cultures  

L. pneumophila strain AA100/130b (ATCC BAA-74), the isogenic ankB and dotA 

mutants were grown on buffered charcoal yeast extract (BCYE) agar plates for 3 days at 

37°C prior to use in infections as described previously [131]. Escherichia coli strain 

DH5α was used for cloning and plasmid preparation purposes. Human monocyte-derived 

macrophages (hMDMs) and U937 cells were cultured using RPMI1640 media as we 

described previously [238]. HEK293T cells were grown in Dulbecco’s modified Eagle’s 

medium (DMEM) supplemented with 10% FBS (BioWest) and 200mm L-glutamine 

(Corning) at 37°C in 5% CO2 atmosphere.  

 

Plasmids and DNA manipulations. 

The ankB gene was cloned into the mammalian expression vector p3XFlag-CMV-10. 

Generation of the 3X-Flag ankB-9L10P, 3X-Flag ankBΔFbox and 3X-Flag-tagged AnkH were 

described previously [176, 238]. The HA-tagged-Trim21 was a kind gift from Dr. Yong-Jun 

Liu at the University of Baylor. The plasmid PXDC61M, which contains the blaM gene 

encoding the mature form of TEM-1 beta-lactamase, was obtained from Dr. Zhao-Qing Luo at 

Purdue University. The ankB gene was PCR amplified with restriction enzymes and cloned in 

frame with the beta-lactamase at the BamHI-XbaI sites to generate a transcriptional fusion 

protein. The resulting plasmid was introduced into L. pneumophila strain AA100/130b and the
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dotA mutant. To verify expression of the fusion proteins in L. pneumophila, strains harboring 

pXDC61M were grown on BCYE containing chloramphenicol, IPTG (0.5mM) and analyzed 

by western blotting. Protein from 1X108 bacteria was transferred to nitrocellulose membranes 

and detected by western blot with a primary monoclonal antibody specific to TEM-1 β-

lactamase (QED Bioscience) and anti-mouse peroxide conjugate as a secondary antibody.   

 

Quantitative Real Time PCR  

Real-time qPCR on attached bacteria was performed as described previously [131, 

177]. Briefly, hMDMs were plated at a density of 5 X 105 in 24 well plates and treated with 1 

µM cytochalasin D for 30 minutes prior to infection. The hMDMs were then infected with WT 

bacteria at a multiplicity of infection (MOI) of 10 for 0, 7.5 or 15 minutes, and intimate and 

synchronized attachment was achieved by centrifugation at 1000rpm for 5 minutes. To assess 

RNA expression levels of ankB, mompS and 16S RNA in response to attachment to hMDMS 

total RNA was extracted from infected cells at the indicated time points using the RNeasy Mini 

Kit (Qiagen, Valencia, CA) as recommended by the manufacturer. Total RNA was treated with 

DNase I (Ambion, Austin, TX) at 37°C for 30 min. Equal amounts of total RNA from infected 

cells were used for cDNA synthesis using Superscript III Plus RNase H reverse transcriptase 

(RT) (Invitrogen, CA) and random primers. Real-time qPCR was done in triplicate using the 

Power SYBR Green PCR Master Mix Kit in a 20 μl reaction volume, as recommended by the 

manufacturer (Applied Biosystems, CA), using specific primers.  The PCR conditions were 2 

min at 94°C initially followed by, 10 sec at 96°C and 20 s at 47°C and 15 s at 72°C for 40 

cycles. Changes in mRNA expression were determined by the comparative CT method 

(threshold cycle number at the cross-point between amplification plot and threshold) and 
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values were normalized to 16S RNA. Negative or positive values were considered as down-

regulation or up-regulation when there was a minimum of two-fold difference of gene 

expression.  

 

Preferential plasma membrane permeabilization and loading of the cytosol with 

antibodies 

Human monocyte-derived macrophages (hMDMs) were isolated and maintained as 

described previously [131]. Monocytes were seeded in 24 well plates at 1X106 cells/well. Cells 

were treated with cytochalasin D (5 µg/ml), an actin polymerization inhibitor, prior to infection 

and throughout the experiment. hMDM plasma membranes were selectively permeabilized for 

5 minutes at room temperature with a RPMI 1640 solution containing digitonin (50 µg/ml) as 

well as anti-AnkB antiserum [135]. Following plasma membrane permeabilization cells were 

extensively washed with media and infected with wild type L. pneumophila as well as the 

ankB, ankB169C/A and dotA mutant strains at a MOI 10 for 15 minutes. Monocytes were 

extensively washed with media and incubated an additional 30 minutes for antibody-antigen 

interaction. Cells were then fixed with 3.7% formaldehyde for 15 minutes at room temperature. 

To ensure cytochalasin D inhibited phagocytosis and bacteria remained extracellular, antibody 

labeling of L. pneumophila with specific rabbit polyclonal anti-serum was performed prior to 

permeabilization, followed by Alexa Fluor 488 donkey anti-mouse secondary antibody. 

(Invitrogen). Cells were then permeabilized with 0.1% Triton X 100 for 10 minutes at room 

temperature, followed by anti-AnkB antiserum detection by Alexa Fluor 555-conjugated 

donkey anti-rabbit IgG (Invitrogen).  
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TEM translocation assay 

The U937 cells were grown in RPMI 1640 containing 10% FBS and seeded in black 

clear- bottom 96 well plates at 1X105 cells/well and treated with phorbol ester (PMA) at 48h 

prior to infection. L. pneumophila strains containing the TEM-1 fusion proteins were grown 

for 3 days on BCYE containing chloramphenicol (5µg/ml) and then streaked on BCYE 

containing chloramphenicol and 0.5 mM Isoprpyl β-D-1-thiogalactopyranoside (IPTG) to 

induce expression of the fusion proteins. Cell monolayers were loaded with the β-lactamase 

substrate CCF4 by adding 20µl of 6X CCF4-AM solution (LiveBLAzerTM-FRET B/G Loading 

Kit, Invitrogen) containing 0.1M probenecid. Cells were incubated with the solution for 2 

hours at room temperature. U937 cells were treated with the actin polymerization inhibitor, 

cytochalasin D (5 µg/mL), for 1hr prior to infection and maintained throughout the infection 

using different MOIs. Plates were centrifuged (300g, 5 min) to initiate bacterial-cell contact 

and incubated at 37°C for 10 minutes. Fluorescence was quantified on a BioTek Synergy HT 

Microplate Reader with excitation at 405nm, and emission was detected at 460nm and 530nm. 

Bacterial effector translocation was determined by the emission ratio 460nm/530nm to 

normalize the β-lactamase activity to non-infected substrate loaded cells.  

 

Recruitment of host farnesylation and ubiquitination machinery to sites of L. 

pneumophila attachment. 

A total of 5 X 105 hMDMs on glass coverslips in 24 well plates were pretreated for 30 

minutes with cytochalasin D (5 µg/ml) and then infected with wild type L. pneumophila and 

the ankB and dotA mutants at an MOI of 10 for 15 minutes. Processing of infected cells for 

confocal microscopy was performed. Briefly, fixed and permeabilized cells were blocked for 
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1h with 3% BSA-PBS and then mouse anti-L. pneumophila anti-serum (1/1000 dilution), and 

anti-Skp1, anti-Cul1, anti-FTα, anti-RCE1 and anti-IcmT antibodies (1/200 dilution) (Abcam, 

Cambridge, MA) were added to 3% BSA-PBS and incubated at room temperature for 1h. 

Following extensive washing with 3% BSA-PBS, bound antibodies were detected with Alexa 

Fluor 488 or 555-conjugated donkey anti-rabbit or mouse IgG antibodies (Invitrogen, 

Carlsbad, CA) for 1h. Following this, the glass cover slips were mounted on glass slides using 

ProLong Gold anti-fade reagent (Invitrogen, Carlsbad, CA). The fixed cells were examined 

with an Olympus FV1000 laser scanning confocal microscope as described previously [238]. 

On average, 8-15 0.2 um serial Z sections of each image were captured and stored for further 

analyses, such as cropping and centering the images, using Adobe Photoshop CS5. 

 

Gas Chromatography-Mass Spectrometry analyses of free amino acids   

The cellular levels of free amino acids was determined as part of the global 

metabolomics profile. The hMDMs cells were seeded in 6 well plates at 1 X 106 and prior to 

infection the cells were treated with 1 µM cytochalisin D for 30 minutes. The hMDMs were 

infected with WT or ankB mutant L. pneumophila at an MOI of 100 for 1h and the infected 

cells were lysed in aqueous 90% methanol. Lysates were stored at -20°C for 1h and then 

centrifuged (21000 x g at 4°C) for 10 min. The resulting supernatants were dried using a Speed-

Vac and prepared for GC-MS. 

All GC-MS analysis was performed at the University of Utah Metabolomics core 

facility using a Waters GCT Premier mass spectrometer fitted with an Agilent 6890 gas 

chromatograph and a Gerstel MPS2 autosampler. The dried samples were suspended in 40 µL 

of a 40 mg/mL O-methoxylamine hydrochloride in pyridine and incubated for one hour at 
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30°C. A 25 µL sample of this solution was transferred to auto-sampler vials followed by the 

addition of N-methyl-N-trimethylsilyltrifluoracetamide and further incubated for 30 minutes 

at 37°C with shaking. A 1 µL sample was injected to the gas chromatograph inlet in the split 

mode set to a 10:1 ratio. Injector temperature was held at 250°C. The gas chromatograph had 

an initial temperature of 95°C for one minute followed by a 40°C/min ramp to 110°C with a 

hold time of 2 minutes. This was followed by a second 5°C/min ramp to 250°C then a third 

ramp to 350°C and a final hold time of 3 minutes. A 30 m Restek Rxi-5 MS column with a 5 

m long guard column was employed for analysis. Data were collected by MassLynx 4.1.   Data 

analysis for free cellular amino acids was performed using QuanLynx which quantified the 

area under the curve for each amino acid. All data was saved to an Excel spread sheet for 

further analysis. This analysis includes most of the amino acids, but His is difficult to detect 

and Cys makes disulfide bonds with proteins and is also difficult to detect. In our samples, Arg 

and Asn were not detectable by the methodology used. The GC-MS analysis gives relative 

results of the area under the curve for the same amino acid, and is not quantitative relative to 

other amino acids within the same sample. Since the GC-MS analyses compare levels of the 

same metabolite/amino acid between different samples/treatments, the results are presented as 

a ratio of infected/un-infected cells.  

 

..Legionella-containing vacuole purification 

 A total of 6 X 108 U937 macrophages were plated in T175cm flask in 60ml RPMI 

media supplemented with 10% FBS. At a multiplicity of infection of 50 bacteria per 

cell Legionella containing vacuoles were formed by internalization of bacteria diluted 

in 20ml RPMI media. Internalization of the bacteria was performed for 30min at 37˚C 
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under 5% CO2. Cells were washed 3X in PBS and then incubated in growth media for 

4hrs at 37˚C under 5% CO2. After 4hrs cells were washed 3X in PBS (4˚C) and scraped 

into a 50ml screw cap centrifuge tube and pelleted at 4˚C for 5min at 450g. Cells were 

resuspended in homogenization buffer (250mM sucrose, 20mM Hepes/KOH (pH7.2) 

+0.5mM EGTA (pH 8.0)) and pelleted by centrifugation at 675g for 6 minutes at 4˚C. 

Cells were then resuspended in homogenization buffer with protease inhibitors (Roche 

cocktail) at 2X10^8/ml. Cells were lysed with a dounce homogenizer on ice and 

visualized under light and confocal microscopy to ensure effective cell lysing and 

Legionella vacuole integrity. Whole cells and nuclei were then pelleted in an1.5ml tube 

for 3.5min at 344g. The supernatant was placed in a new 1.5ml tube and centrifuged for  

3.5min at 344g resulting in the post nuclear supernatant (PNS). The PNS was brought 

to a final concentration of 39% sucrose. The sucrose solutions for the step gradient 

were made in w/v in 20mM Hepes /KOH (pH 7.2). The sucrose step gradient was made 

by layering the PNS (39% sucrose) onto 2ml 55% sucrose layered onto 1ml 65% 

sucrose in a 14mm X 89mm Beckman ultracentrifuge tube. We then layered 2ml 10% 

sucrose onto 2ml 25% sucrose solution onto the PNS. The sucrose gradient was 

centrifuged for 1hr at 100,000g at 4˚C in a swinging bucket rotor (Beckman SW41). 

The LCVs were isolated from the 55%-65% interface using a 16g needle and not 

disturbing any other fraction. LCVs were placed into 10ml PBS (4˚C) and centrifuged 

at 40,000g (SW41) for 30min at 4˚C. Pelleted LCVs were solubilized in 1% Triton X-

100 in PBS for 30 minutes on ice. Following centrifugation at 10,000g for 5 minutes to 

pellet bacteria, the supernatant containing eukaryotic proteins associated with the LCV 

was stored at -80˚C.  
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…Antibodies and Confocal Microscopy for LCV isolation 

 Isolated LCVs were plated onto 24 well coverslips pretreated with poly-L-lysine 

and allowed to adhere for 1 hr. Extravacuolar L. pneumophila were labeled with a 

rabbit anti- L. pneumophila antibody prior to permeabilization for 1 hr. LCVs were then 

permeabilized with methanol (-20˚C) for 5 minutes, blocked with 3% BSA for 1 hr and 

then labeled with a mouse anti-L. pneumophila antibody for 1 hr. Secondary antibodies 

used were Alexa Flour goat anti-mouse 488 and Alexa Flour goat anti-rabbit 555. 

Polyubiquitinated proteins present on the LCVs were labeled with a mouse anti-

polyubiquitin antibody (Enzo Life Sciences) for 1hr prior to vacuole membrane 

permeabilization and visualized with Alexa Flour goat anti-mouse 488.  

 

Protein Digestion for Mass Spectrometry 

For Mass Spectrometry analysis, TCA precipitated proteins were resuspended in 

8M urea, 50mM Tris pH 8.5. Resuspended peptides were diluted 1:1 with 50mM Tris 

pH 8.5 to lower the urea concentration to 4M prior to digestion with endoproteinase 

Lys-C (10ng/uL) for 8hrs. Digestions were further diluted 4:1 with 50mM Tris pH 8.5 

to lower the urea concentration to 1M urea prior to digestion with trypsin (5ng/uL) for 

8hr. Peptides were desalted using a 50mg tC18 Sep-Pak (Waters). 
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   Ubiquitinated Protein immunoprecipitation for ubiquitinated LCV proteome 

analysis 

Ubiquitinated peptides were immunoprecipitated using ubiquitin motif 

immunoaffinity beads (Cell Signaling Technology) as recommended by the 

manufacturer with the following modifications [242]. Desalted peptides were dissolved 

in 1.0-1.4 mL of IAP buffer (50 mM MOPS-NaOH, pH 7.2, 10 mM Na2HPO4, 50 mM 

NaCl). The pH was adjusted to 7.2 with 1M NaOH.  The peptide solution was cleared 

by centrifugation for 5-10 min at 13,200g. The supernatant was transferred to a new 

tube and cooled on ice for 10 minutes. The cooled peptide solution was transferred to 

the tube with the antibody beads and incubated on a rotator at 4˚C for 60 min. The 

beads were washed 4 times with 1mL IAP buffer, followed by 1 wash with 1mL water. 

The peptides were eluted from the beads by adding 55µl 5% Formic Acid (FA), mixed 

and incubated at room temperature for 10 min. The beads and elution buffer were 

transferred to a Teflon spin column and the eluate was collected by centrifugation. The 

beads were washed with 45µl 0.1% TFA and combined with the first eluate [242]. The 

peptides were desalted using StageTips [243] and nanoLC-MS2 data was collected. 

  

nanoLC-MS2 data collection 

In collaboration with Dr. Steve Gygi, Dr. Ryan Kunz and Ross Tomaino at the 

Harvard University Taplin Mass Spectrometry Facility mass spectrometry data were 

collected on an Orbitrap Fusion mass spectrometer equipped with an easy nano-LC 

1000 for sample handling and liquid chromatography. Peptides were separated on a 75 

µm x 30 cm hand-pulled fused silica microcapillary column with a needle tip diameter 
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less than 10 µm and packed with 1.8 μm 120Å GP-C18 beads from Sepax Technologies 

Inc. The column was equilibrated with buffer A (3% ACN + 0.125% FA). Peptides 

were loaded onto the column at 100% buffer A. Separation and elution from the column 

was achieved using a 90 min 3-25% gradient of buffer B (100% ACN + 0.125% FA). 

Survey scans of peptide precursors from 400 to 1400 m/z were performed at 120K 

resolution (at 200 m/z); AGC, 50k; max injection time, 100ms; monoisotopic precursor 

selection turned on; charge state, 2-6; dynamic exclusion, 45s with a 10 ppm tolerance. 

Tandem MS was performed in top speed mode (2 second cycles) starting with the most 

intense precursor having an intensity greater than 5k. Parent ions were isolated in the 

quadrupole (0.7 m/z isolation window). Collision induced dissociation was performed 

in the ion trap with a rapid scan rate; 35% collision energy; AGC, 10k; max injection 

time, 35ms; parallelizable time was turned on. 

 

Mass spectrometry data analysis 

 A suite of in-house software tools, created by Dr. Steve Gygi, was used for .RAW 

file processing, controlling peptide and protein false discovery rates, and assembling 

peptide level data into protein level data [242, 244]. The MS/MS spectra were searched 

using the SEQUEST algorithm [245] against a composite protein database consisting of 

all protein sequences from the Uniprot human database (88,501 proteins) along with 

common contaminating proteins (111 proteins) in both the forward and reverse 

direction. Sequest parameters used to search the MS data were: precursor tolerance, 

50ppm; fragment ion tolerance, 1Da; fully tryptic; 2 missed cleavages; variable 

modifications of oxidized methionine (15.9949 Da), alkylation of cysteine (57.0214), 
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and diGlycine motif on lysine (114.0429). A target-decoy strategy was used to 

determine false discovery rates [246]. The peptide-level false discovery rate was 

restricted to <1% by using linear discriminate analysis based on several different 

SEQUEST parameters including Xcorr≥1.0, deltaXcorr, charge state, and a minimum 

peptide length of 7 amino acids [244]. An algorithm similar to Ascore was used for 

diGlycine localization and site quantification [242, 247]. The localization score is based 

on the Ascore algorithm, where a localization score ≥19 indicated >99% certainty in 

site localization [247]. Protein identifications for the complete proteome of the WT 

strain and ankB mutant strain are based on at least 2 unique peptides.  

 

MetaCore Software Analysis 

MetaCore is an integrated software suite for functional analysis of various aspects 

of screening data [248, 249]. MetaCore software determines the most significant 

relationships among the proteins analyzed such as Pathway Maps, GO Processes, Process 

Networks and Metabolomic Networks. For our analysis the software determined the most 

significant relationships shared among the WT strain LCV proteome and a separate 

analysis for the ankB mutant strain. MetaCore software is available online and was 

obtained through the University of Louisville license. The excel spreadsheet containing 

the complete WT strain LCV proteome and the ankB mutant stain LCV proteome were 

separately uploaded into the start page and an enrichment analysis workflow was 

generated.  
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Transfection of HEK293T cells. 

The ankB gene was cloned into the mammalian expression vector p3XFlag-CMV-10. 

Generation of the 3X-Flag ankB-9L10P, 3X-Flag ankBΔFbox and 3X-Flag-tagged AnkH 

were described previously [176, 238]. The HA-tagged-Trim21 was a kind gift from Dr. 

Yong-Jun Liu at the University of Baylor. HEK293T cells were grown to ~70% 

confluency and plated onto poly-L lysine treated 6 well plates. Following 24 h incubation 

HEK293T cell monolayers were transfected with ~2ug plasmid DNA/well using 

polyethylenimine (Polysciences) for 24 h.  

 

Cycloheximide inhibition 

HEK293T cells plated in 6 well plates were transfected with 3XFlag-AnkB for 24 

hr. The proteasomal inhibitor MG132 (Selleckchem) used at 20uM was added to the 

indicated cells 2 hours prior to cycloheximide treatment at 100ug/ml. At indicated time 

points cells were lysed and subjected to SDS-PAGE and immunoblotting with anti-Flag 

and anti-actin antibodies. 

 

In vivo co-immunoprecipitation  

HEK293T cells were transfected with3X-Flag AnkB, AnkB9L10P, AnkBΔFbox, 

AnkH, HA-tagged Trim21 for 24 hr and collected in lysis buffer containing 50 mM Tris 

pH 7.4, 0.25M NaCl, 0.5% Triton X-100, 1mM EDTA, 50mM NaF, 0.1mM Na3VO4 and 

EDTA-free protease inhibitor cocktail (Roche). Flag-tagged and HA-tagged proteins were 

immunoprecipitated using anti-Flag M2 agarose (Sigma) or anti-HA affinity gel (Sigma) 

according to the manufacturer’s instructions.  
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Antibodies and Western Blot 

Immunoprecipitated proteins were heated at 99°C for 5 minutes in sample buffer 

(Pierce) and separated by 10.4-15% SDS-PAGE electrophoresis and transferred to a 

PVDF membrane. Anti-Flag (Sigma) used at 1:1000, anti-actin (Proteintech) used at 

1:15000, anti-ubiquitin (Cell Signaling) used at 1:1000, anti-K48 ubiquitin (Cell 

Signaling) used at 1:1000, anti- K63 ubiquitin (Cell Signaling) used at 1:1000, anti-M45 

used at 1:50 were incubated overnight in 5% milk at 4°C. Anti-HA (Cell Signaling) was 

used at 1:1000 incubated in 5% BSA overnight at 4°
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RESULTS 

Section 1. Rapid Nutritional Remodeling of Macrophages 

Upon Attachment of Legionella pneumophila 

 

Triggering transcription of ankB upon attachment of L. pneumophila to human 

macrophages 

 Upon entry of the ankB mutant to macrophages or amoeba, it exhibits a dramatic 

starvation response and differentiation into the non-replicative phase, but both phenotypes are 

circumvented by amino acids supplementation [86]. Similar phenotypes are also exhibited by 

the WT strain upon entry into proteasome-inhibited cells, and in both cases the respective 

phenotypes are circumvented upon supplementation of amino acids [86]. L. pneumophila is 

auxotrophic for seven amino acids, therefore, acquisition of host cell amino acids is critical to 

provide the carbon and energy needed during intracellular replication [250]. Previous data 

indicates AnkB as the major contributor to host amino acid retrieval, therefore, translocating 

AnkB upon intimate attachment with the host cell will increase the host cell amino acid levels 

prior to LCV formation [86]. Investigating the function of AnkB from attached extracellular 

bacteria can lead clues into how L. pneumophila manipulates the host cell polyubiquitination 

machinery to increase the host amino acid levels prior to bacterial entry.   

We tested the hypothesis that WT L. pneumophila likely employs AnkB during initial 

stages of interaction with the host cell to circumvent the amino acids starvation response and 

the associated phenotypic modulations. We determined whether attachment of L. pneumophila 
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to host cells triggered transcription of AnkB. To determine this, human monocytes-derived 

macrophages (hMDMs) were pre-treated with cytochalasin D for 30 minutes to block 

phagocytosis and then infected with WT L. pneumophila at an MOI of 10 for 0, 7.5 and 15 

minutes. This bacterial attachment protocol resulted in attachment of 1-2 bacteria/ cell in ~50% 

of the cells in the monolayers. Block of bacterial entry into hMDMs by cytochalasin D was 

confirmed by treatment of the infected cytochalasin D-treated monolayers by gentamicin, 

indicating that the bacteria were extracellular [86]. Following RNA purification and cDNA 

synthesis, expression of the ankB gene was determined by Real-Time qPCR using expression 

of the 16S RNA as an internal control, as we described previously [131, 176, 251]. Expression 

of the constitutively expressed mompS gene was used as a control.  Compared to expression of 

ankB at 0 minutes post-attachment, its expression was increased by 9-fold and 26-fold at 7.5 

and 15 minutes, respectively, post-bacterial attachment (Fig. 1). During the course of the 

attachment experiment no change was observed in expression of mompS (Fig. 1). These data 

show that transcription of ankB is triggered immediately upon attachment of L. pneumophila 

to hMDMs.  
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Figure 1: Expression of ankB upon intimate attachment to hMDMs. Quantitative Real-

Time PCR of ankB gene transcription by L. pneumophila at 0, 7.5 and 15 minutes post-

attachment to hMDMs.  The hMDMs were pre-treated with cytochalasin D and infected for 

the indicated time periods followed by total isolation of RNA and RT-PCR. Transcription of 

ankB, or the control gene mompS was normalized to 16S RNA levels. Fold changes in gene 

expression were compared to levels measured at time 0 minutes. Error bars indicate SEM.  The 

data are representative of three independent experiments. 

 

 

 

Translocation of AnkB into macrophages upon bacterial attachment 

To determine temporal and spatial translocation of AnkB upon intimate attachment of 

L. pneumophila to macrophages, we generated a L. pneumophila strain expressing a β-

lactamase-AnkB reporter fusion construct to monitor real-time translocation in cells pre-loaded 

with the CCF4 fluorometric β-lactamase substrate [132]. The human macrophage U937 cell 

line preloaded with CCF4 was pretreated with cytochalasin D, and then infected with L. 

pneumophila expressing β-lactamase fusions at various MOIs for 15 minutes (Fig. 2). 
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Hydrolysis of CCF4 was measured by quantifying blue (460nm) and green (530nm) 

fluorescence emission, and is reported as the 460nm/530nm ratio where a ratio greater than 1 

represents positive translocation. The data showed that AnkB was equally translocated into 

untreated or cytochalasin D-treated U937 macrophages. Translocation of AnkB by attached 

extracellular bacteria was completely dependent on a functional Dot/Icm T4SS, since the dotA 

translocation-defective mutant failed to translocate the effector (Fig. 2). As expected, 

increasing the MOI resulted in increased AnkB translocation in a dose-response manner, as 

evident by greater CCF4 hydrolysis (Fig. 2). No translocation was detected for the fatty acid 

biosynthetic enzyme, enoyl-CoA reductase (FabI), which was used as a negative control (Fig. 

2) [132]. These data show that attachment of L. pneumophila to macrophages triggers rapid 

translocation of the AnkB effector into the host cell. 
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Figure 2: Translocation of βlactamase -AnkB fusion protein by L. pneumophila upon 

intimate attachment to U937 cells. Cytochalasin D-treated U937 cells were infected with 

increasing MOIs of L. pneumophila strains expressing various βlactamase-fusion constructs 

and translocation was measured by monitoring hydrolysis of the fluorogenic substrate CCF4. 

A 460nm/530nm ratio greater than 1 indicates translocation of the fusion construct. Data 

represent mean values of three independent experiments.   

 

 

 

Host-mediated farnesylation and anchoring of AnkB to the cytosolic side of the plasma 

membrane beneath attachment sites of extracellular bacteria 

We decided to determine the cellular location of the native AnkB effector injected by 

attached extracellular bacteria. Using anti-AnkB antiserum on cytochalasin D-treated infected 

cells to detect cellular location of AnkB injected by attached extracellular bacteria was difficult 

to interpret by confocal microscopy. This was due to our findings that the injected AnkB was 

not detected in the cytosol but seemed to be localized beneath the attached extracellular WT 

bacteria, which also bound the anti-AnkB antibody. The resolution was not sufficient to 

differentiate injected AnkB localized intracellularly beneath bacterial attachment from AnkB 

contained in the attached extracellular bacteria.  Since the β-lactamase-AnkB reporter fusion 

was clearly injected by attached extracellular bacteria (Fig. 2), our microscopy findings 

suggested that the injected AnkB was likely localized exclusively beneath bacterial attachment 

sites.     
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To overcome the above mentioned caveat and to determine whether the injected native 

AnkB by attached extracellular bacteria was located beneath bacterial attachment sites, the 

cytosol of live hMDMs was pre-loaded with anti-AnkB antibodies prior to bacterial 

attachment. This would allow the antibody to bind AnkB upon its injection by attached 

extracellular bacteria [252-254]. This strategy also provides a clear and more solid 

interpretation of the data, since the anti-AnkB antibody is loaded to the host cell cytosol prior 

to inoculation of the bacteria. To load the host cell cytosol with the anti-AnkB antibodies prior 

to infection, the plasma membrane of live hMDMs was preferentially permeabilized with a 

low concentration of digitonin [252-254]. After loading the cells with the antibody and 

allowing the cells to heal the membrane damage for a few minutes, integrity of the plasma 

membrane was confirmed by impermeability to Trypan blue (data not shown). Without 

digitonin treatment, the plasma membrane of hMDMs was impermeable to anti-AnkB 

antibodies, as expected (Fig. 3). The antibody-loaded hMDMs were treated with cytochalasin 

D to prevent phagocytosis and then infected at a MOI of 10 with WT L. pneumophila or the 

isogenic mutants, dotA or ankB.  The cells were then fixed and processed for confocal 

microscopy. This bacterial attachment protocol resulted in an average attachment of 1-2 

bacteria/ cell in ~50% of the cells in the monolayers. To allow differentiation between 

extracellular and intracellular bacteria, extracellular L. pneumophila were labeled with specific 

antibodies prior to permeabilization of the infected cells. When the hMDMs were 

permeabilized with digitonin and loaded with anti-AnkB antibodies, the loaded antibody was 

detectable as red patches throughout the cytosol of ~98% of the cells, indicating successful 

loading of the cells with anti-AnkB antibodies to prior to infection (Fig. 3). When hMDMs 

were infected with wild type L. pneumophila, 52% of attached extracellular bacteria co-
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localized with AnkB exclusively beneath the site of bacterial attachment (Fig. 3). The 48% of 

extracellular bacteria that do not not co-localize with anti-AnkB could be due to the low 

amount of AnkB translocated, the level of antibody detection, or the bacteria not yet 

translocating AnkB into the cell. In addition, AnkB must be farnesylated to anchor into the 

plasma membrane beneath attached extracellular bacteria, therefore, multiple biological and 

technical reasons can account for the 48% of extracellular bacteria that lack co-localization to 

the site of extracellular bacterial attachment. As expected, the dotA translocation-defective 

mutant and the ankB mutant did not co-localize with AnkB (5% and 0% respectively) (Student 

t-test, P<0.007 and 0.003, respectively) (Fig. 3).   

Since AnkB is hydrophilic and its anchoring to the LCV membrane is mediated by host 

farnesylation within amoeba and macrophages [135, 255], we determined whether host 

farnesylation was required for the exclusive localization of AnkB to the cytosolic side of the 

plasma membrane beneath the sites of bacterial attachment. The cytosol of hMDMs was pre-

loaded with anti-AnkB antiserum prior to infection, as described above. Cytochalasin-D treated 

cells were infected by the farnesylation-defection ankB-169C-A substitution mutant in the CaaX 

motif, which has been shown to be translocated into the host cell [135]. The data showed that 

infection by the ankB-169C-A substitution mutant resulted in failure to anchor AnkB to the 

plasma membrane beneath bacterial attachment sites (Student t-test, P<0.005) (Fig. 3). 

Therefore, host farnesylation anchors the injected AnkB by attached extracellular L. 

pneumophila to the cytosolic side of the plasma membrane directly and exclusively beneath 

bacterial attachment sites. This is the first demonstration of farnesylation-mediated anchoring 

of an injected bacterial effector to the inner leaflet of the plasma membrane beneath bacterial 

attachment sites. 
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Figure 3: Anchoring of native AnkB injected by attached L. pneumophila to the cytosolic 

side of the plasma membrane of hMDMs beneath bacterial attachment sites.  

Representative confocal microscopy images of cytochalasin D-treated infected hMDMs that 

were preloaded with anti-AnkB antisera (red) in the absence of (A) or presence (B) of digitonin.  

The hMDMs were infected by L. pneumophila strains (green) for 15 minutes. The numbers in 
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the merged images of all panels are mean and standard deviation of the frequency of anchoring 

AnkB to the plasma membrane beneath attached extracellular bacteria. The data represent 

analyses of 100 infected cells and are representative of three independent experiments.   

 

 

 

Recruitment of the host farnesylation machinery to the plasma membrane beneath 

attached extracellular L. pneumophila 

 Since during infection host-mediated farnesylation of AnkB anchors it to the LCV 

membrane, and AnkB was exclusively localized beneath bacterial attachment sites, we tested 

the hypothesis that the host-farnesylation enzymes FTase, IcmT and RCE1 were recruited to 

the plasma membrane by attached extracellular bacteria to anchor AnkB to the plasma 

membrane. Cytochalasin D-treated hMDMs were infected with wild-type L. pneumophila and 

the isogenic mutants ankB and dotA at an MOI of 10 for 15 minutes. The cells were then 

immediately fixed and processed for confocal microscopy to determine if FTase, IcmT and 

RCE1 were recruited beneath the sites of bacterial attachment. The data showed that FTase, 

IcmT and RCE1 were all recruited beneath attachment sites of wild-type bacteria at a frequency 

of ~85% (Fig. 4A, B, C). In contrast, FTase, IcmT and RCE1 were recruited at a frequency of 

only ~10%, beneath attachment sites of the dotA mutant (Student t-test, P<0.006, 0.007, 0.006, 

respectively) (Fig. 4). FTase, IcmT and RCE1 were recruited at a significantly reduced 

frequency of 43, 47 and 41%, respectively (Student t-test, P<0.01), beneath attachment sites 

of the ankB mutant bacteria (Fig. 4). The moderate reduction in recruitment of the host 

enzymes by the ankB mutant is most likely due to the fact that the other ~12 farnesylated 
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effectors of Legionella injected by the ankB mutant [200, 256] interact with the host 

farnesylation enzymes, while the translocation-defective dotA mutant is severely defective in 

recruitment of the host enzymes [135]. These data indicate that upon attachment of L. 

pneumophila the Dot/Icm apparatus is essential for recruitment of the host enzymes into the 

plasma membrane beneath the sites of bacterial attachment. This is the first example of 

recruitment of the host farnesylation machinery by attached extracellular bacteria to anchor an 

injected effector to the cytosolic side of the plasma membrane exclusively beneath bacterial 

attachment sites. 

 

 

 

Figure 4: The farnesylation machinery components, FTα, RCE1 and IcmT are recruited 

beneath attachment sites of L. pneumophila to hMDMs.  The hMDMs pre-treated with 

cytochalasin D were infected by the wild-type (WT) L. pneumophila and the isogenic dotA or 

ankB mutants for 15 minutes. Representative confocal microscopy images of infected hMDMs 

cells showing co-localization of (A) FTα, (B) RCE1 and (C) IcmT proteins to attached WT, 

ankB or dotA bacteria. Bacteria were labeled with anti-Lpn antibody (green) and FTα, RCE1 
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or IcmT were labeled with the respective specific antibodies (red) and then analyzed by 

confocal microscopy. The arrowheads indicate intense co-localization of FTα , RCE1 or IcmT 

with the WT strain. The numbers in the merged images of all panels are mean and standard 

deviation of the frequency of recruitment of FTα , RCE1 or IcmT beneath attached extracellular 

bacteria.  The data represent analyses of 100 infected cells and are representative of three 

independent experiments.   

 

 

 

Recruitment of the host SCF1 ubiquitin ligase complex beneath attached extracellular     

L. pneumophila 

 During ectopic expression, the AnkB effector interacts with the host Skp1 component 

of the SCF1 E3-ubiquitin ligase complex, but the location of this interaction during infection 

is not known [238, 239]. Since AnkB is exclusively localized to the Legionella-containing 

vacuole (LCV) membrane during infection and to the plasma membrane beneath attached 

extracellular L. pneumophila, we tested the hypothesis that the SCF1 ubiquitin ligase was 

recruited to the LCV where it interacts with AnkB and that this recruitment was rapidly 

initiated at the plasma membrane beneath bacterial attachment sites. To determine recruitment 

of SCF1 to the LCV, hMDMs were infected at an MOI of 10 for 1h with wild-type L. 

pneumophila or the ankB or dotA translocation-defective isogenic mutant. The data showed 

that both Skp1 and Cul1 components of the SCF1 were recruited to the LCV of the WT strain 

at a frequency of 82-84% (Fig. 5).  Recruitment of both host cell components was dependent 

of a function Dot/Icm translocation system, since the dotA translocation-defective mutant was 

severely defective in this recruitment (Fig. 5). To determine whether recruitment of the SCF1 
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components was initiated by attached extracellular bacteria, cytochalasin D-treated hMDMs 

were infected at an MOI of 10 for 15 minutes. Gentamicin treatment of cytochalasin D-treated 

control cells sterilized the monolayer, which confirms effectiveness of blocking bacterial entry 

by cytochalasin D (data not shown). The cells were fixed immediately and processed for 

confocal microscopy. The data showed that Skp1 and Cul1 were recruited beneath bacterial 

attachment sites at a frequency of ~80%. This recruitment was dependent on a functional 

Dot/Icm type IV secretion system, since Skp1 and Cul1 were recruited at a frequency of only 

~10% by attached translocation-defective dotA mutant bacteria (Student t-test, P<0.008) (Fig. 

5). Only 34 and 30% of attached ankB mutant bacteria recruited Skp1 and Cul1, respectively 

(Fig. 5), which was significantly less than wild-type bacteria (Student t-test, P<0.01). These 

data show that the Dot/Icm translocation system of L. pneumophila is essential for recruitment 

of the SCF1 ubiquitin ligase to the LCV and that this recruitment is initiated at the plasma 

membrane beneath sites of bacterial attachment. This is the first example of recruitment of the 

host SCF1 to a pathogen-containing vacuole and the initiation of this process at the cytosolic 

side of the plasma membrane beneath bacterial attachment sites. 
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Figure 5: Recruitment of the SCF ubiquitin ligase components Skp1 and Cul1 beneath 

attachment sites of L. pneumophila to hMDMs and the LCV.  Untreated (A) or cytochalasin 

D pre-treated (B) hMDMs were infected by the wild-type (WT) L. pneumophila and the 
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isogenic dotA or ankB mutants for 2 hours (A) or 15 minutes (B), followed by fixation and 

processing for confocal microscopy. Representative confocal microscopy images of infected 

hMDMs cells show co-localization of Skp1 and Cul1 proteins (red) with the LCV (green) (A) 

and with attached extracellular L. pneumophila (B). The arrowheads indicate intense co-

localization of Skp1 or Cul1 with the WT bacteria. The numbers in the merged images of all 

panels are quantification of the frequency of recruitment of Skp1 or Cul1 beneath attached 

extracellular bacteria. The data represent analyses of 100 infected cells and are representative 

of three independent experiments.  

  

 

 

Elevated levels of cellular amino acids triggered by attached extracellular L. pneumophila 

 The ultimate function of the LCV membrane-anchored AnkB effector is to generate 

high levels of cellular amino acids through host proteasomal degradation of K48-linked 

polyubiquitinated proteins [86]. Therefore, we determined whether the injected AnkB by 

attached extracellular L. pneumophila resulted in elevated levels of cellular amino acids 

through degradation of the polyubiquitinated proteins assembled beneath bacterial attachment 

sites [238]. To achieve this, cytochalasin D-treated hMDMs were infected by the wild-type 

strain or the isogenic ankB mutant L. pneumophila.  Trypan blue straining of the cells showed 

that there was no detectable effect of cytochalasin D on permeability of the plasma membrane 

(data not shown). The hMDMs were lysed and the relative levels of free amino acid were 

determined by GC-MS. The data showed that attached wild-type L. pneumophila triggered a 

rapid rise in the levels of amino acids, relative to uninfected cells (Student t-test, p <0.001) 
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(Fig. 6). In contrast, attachment of the ankB mutant bacteria to hMDMs did not alter cellular 

levels of amino acids relative to uninfected cells (Fig. 6). A detailed working model of AnkB-

dependent nutritional preparation of the host cell is shown, which depicts the translocation, 

rapid farnesylation and polyubiquitination of the AnkB targets directly beneath the attachment 

sites of extracellular bacteria (Fig. 7). Thus, translocation of AnkB by attached extracellular L. 

pneumophila results in increased levels of cellular amino acids, which are needed to block a 

potential starvation response and differentiation of L. pneumophila into the non-replicative 

phase (Fig. 7). This is the first example of a strategy by an intracellular pathogen to trigger 

rapid nutritional remodeling of the host cell upon attachment to the plasma membrane, and as 

a result, a gratuitous surplus of cellular amino acids is generated to support proliferation of the 

incoming pathogen. In addition, the AnkB-dependent increase in free cellular amino acids can 

be achieved within 15 minutes of extracellular bacterial attachment.  
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Figure 6: Intimate attachment of L. pneumophila to hMDMs triggers an increase in 

cellular levels of free amino acids. The hMDMs pre-treated with cytochalasin D were 

infected for 15 min, followed by preparation of cellular lysates and determination of the 

relative levels of cellular amino acids by GC-MS. Amino acid levels are expressed as the fold 

ratio of infected/uninfected hMDMs. The analyses were performed in triplicates, and the data 

shown are one of three representative experiments. The data represent analyses of 100 infected 

cells and are representative of three independent experiments.   

 

 

Fold Ratio of Amino Acid Levels 
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Figure 7: A working model of AnkB-mediated nutritional preparation of the host cell 

by attached extracellular L. pneumophila. Upon bacterial attachment, the Dot/Icm 

translocation system is triggered to inject bacterial effectors, one of which is AnkB.  The host 

farnesylation enzymes are recruited beneath bacterial attachment sites and are essential for 

farnesylation of AnkB, which enables anchoring this effector to the cytosolic side of the 

plasma membrane beneath bacterial attachment sites.  The host SCF1 ubiquitin ligase 

complex is recruited to the plasma membrane where it interacts with the F-box domain of 

AnkB to trigger assembly of K48-linked polyubiquitinated proteins beneath bacterial 

attachment sites.  Proteasomal degradation of the K48-linked polyubiquitinated proteins 

generates higher levels of cellular amino acids, particularly the limiting ones, such as 

cysteine, which is a metabolically preferable source of carbon and energy for L. 

pneumophila.  The availability of higher levels of cell amino acids upon entry of L. 

pneumophila circumvents the entering bacterium from a potential starvation response and 

differentiation into the motile non-replicative phase.  The elevated cellular levels of amino 

acids trigger differentiation of L. pneumophila into the replicative phase and are main sources 

of carbon and energy that feed the TCA cycle to power intracellular bacterial proliferation. 
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Discussion Section 1 

L. pneumophila has acquired a large array of eukaryotic-like proteins possibly 

through horizontal gene transfer through evolution with protozoan host [137, 138]. While 

~300 effectors are translocated through the Dot/Icm type IVB secretion system, intracellular 

replication of L. pneumophila strain AA100/130b and the Paris stain is dependent upon the 

bona fide F-box effector AnkB [131, 239]. This unique ability for a single effector to dictate 

the fate of intracellular survival shows the importance to characterize the function of AnkB 

during infection. L. pneumophila utilizes AnkB, which interacts with the SCF1 E3 ubiquitin 

ligase complex to trigger K48-linked polyubiquitination that are targeted for proteasomal 

degradation. This increases the levels of free cellular amino acids above the threshold needed 

for intracellular replication [86]. This increase in free cellular amino acids is crucial to 

prevent a starvation response and differentiation into the non-replicative phase [86]. When 

the host cell proteasomes are inhibited WT L. pneumophila undergoes a starvation response, 

similar to the ankB mutant strain, that can be reversed through the addition of amino acids 

into the cell culture medium [86].We have shown AnkB is translocated from attached 

extracellular bacteria, where it anchors directly beneath attached extracellular bacteria 

through host-mediated farnesylation of the CAAX motif in the C-terminus of AnkB [241]. 

The K48-linked polyubiquitinated proteins surrounding the LCV have been observed 

throughout the infection, therefore unlike some Dot/Icm effectors such as RalF and SidC, 

AnkB is functional throughout the infection [257, 258].  

The translocation of AnkB from attached bacteria shows a necessity for the 

immediate increase of amino acid sources, which provides the carbon and energy required for 
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intracellular replication. While it is not uncommon for L. pneumophila effectors to be 

translocated from attached extracellular bacteria, this has only been shown for a relatively 

small number of the ~300 effectors [258]. Interestingly, AnkB is the only ankyrin effector 

shown to be translocated from attached bacteria when seven L. pneumophila ankyrin 

effectors were analyzed [176]. It is possible that L. pneumophila translocates a subpopulation 

of the effectors upon bacterial attachment that are needed for critical aspects of infection, 

such as early LCV maturation and nutrient acquisition. Due to the biphasic life cycle of L. 

pneumophila, which uses nutrient deprivation as a major signal for switching from the 

replicative phase to the transmissive phase, the immediate AnkB-dependent increase in free 

cellular amino acids can be easily justified. When the AnkH and AnkJ effectors are deleted, 

there is a slight defect in intracellular replication, however neither are translocated upon 

attachment [176]. Future studies investigating effector translocation kinetics will provide 

crucial details to how L. pneumophila determines when certain effectors are translocated.  

The host cell ubiquitination and farnesylation machinery are recruited within 15 

minutes to the sites of extracellular bacterial attachment. While AnkB is the only CaaX motif 

containing effector shown to be translocated upon bacterial attachment, some of the other 

CaaX motif containing effectors are also probably translocated upon attachment, since ~40% 

of the ankB mutant strain attached extracellular bacteria recruit the host cell farnesylation 

machinery enzymes FTα, RCE1 and ICMT. The recruitment of host farnesylation machinery 

is critical for the function of AnkB, since farnesylation of AnkB is required in order to 

anchor into the cytosolic face of the LCV membrane [135] and to function as a platform for 

the recruitment of K48-linked polyubiquitinated proteins to the LCV. L. pneumophila is the 

only intracellular pathogen known to recruit the farnesylation enzymes to the point of 
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extracellular bacterial attachment, as well as to the LCV, to allow anchoring of bacterial 

effector proteins. Interestingly, the Salmonella effectors Ssel and SspH2 are S-palmitoylated, 

through the addition of a lipid moiety to the effector, which enables the effector to alter its 

sub-cellular localization by anchoring into the plasma membrane [259]. Similar to AnkB, this 

host-mediated post-translational lipidation is required for the function of the Salmonella 

protein in vivo [135, 259]. This shows a unique ability of a pathogen to exploit the host cell 

by manipulating the farnesylation machinery for modification of bacterial effector proteins. 

Further investigation into effectors that are translocated from attached extracellular bacteria 

could prove valuable to determine host cellular processes that are manipulated from attached 

bacteria that could benefit the infection.   

 While there are seven L. pneumophila effectors harboring the eukaryotic CaaX motif, 

there are only five F-box proteins in L. pneumophila (Lpg2525, LicA, PpgA, LegU1 and 

LegAU13 which is the AnkB homologue in the Philadelphia L. pneumophila strain) [131, 

228]. Three of these are bona fide F-box proteins (LicA,AnkB LegU1) that interact with the 

Skp1 component of the SCF1 E3 ubiquitin ligase complex, while the predicted F-box motifs 

identified in PpgA and Lpg2525 may not be functional in the eukaryotic hosts, as they do not 

bind Skp1 [228]. Therefore, in addition to AnkB, L. pneumophila has acquired 3 additional 

functional F-box proteins that likely ubiquitinate other host proteins in a proteasomal 

dependent manner similar to AnkB [228]. The F-box protein LegU1 has been shown to 

ubiquitinate the eukaryotic protein BAT3 [228], but the effect of this ubiquitination is not 

known. Importantly, unlike AnkB in the AA100/130b strain and the Paris which is required 

for LCV polyubiquitination and intracellular replication, the homologue to AnkB in the 

Philadelphia strain LegAU13 does not cause polyubiquitination of the LCV and is not 
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required for intracellular replication [131, 228, 239, 260]. Therefore, the genetic diversity 

within ankB demonstrates the capability of L. pneumophila to survive intracellularly through 

several different mechanisms not shared among the strains. Determining the targets of AnkB 

in each of the strains could provide a solution for the phenotypic differences observed among 

the L. pneumophila strains. It is possible that the substrates of AnkB are different among the 

strains and specific substrates recognized by AnkB in the AA100/130b strain and the Paris 

strain provide the amino acids needed to support intracellular replication. L. pneumophila is 

auxotrophic for seven amino acids, indicating the preference and importance of obtaining 

host amino acids during the infection. In the Philadelphia strain of L. pneumophila the LCV 

is polyubiquitinated by the effector SidC, however the consequence of this polyubiquitination 

is not known [261]. 

 Similar to the farnesylation enzymes, the Skp1, Cul1 and Rbx1 components of the 

SCF1 E3 ubiquitin ligase complex are cytosolic enzymes in mammalian cells [218]. The 

recruitment of the SCF1 complex to the plasma membrane beneath extracellular bacteria 

most likely results from the strong interaction the F-box proteins with the cytosolic Skp1 

enzyme. This highlights the first example of the host cell ubiquitination machinery being 

recruited to the site of attachment of extracellular bacteria to provide a function critical to the 

subsequent intracellular survival of L. pneumophila.  

 Taken together, the recruitment of the eukaryotic farnesylation and ubiquitination 

machineries to the point of extracellular bacterial attachment show a unique ability of an 

intracellular pathogen to manipulate host cell machineries to provide altered sub-cellular 

localization of bacterial effector proteins. The strategies are utilized by L. pneumophila to 

create a surplus of amino acids and prevent a starvation response. Further research will 
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probably lend evidence to other intracellular pathogens to trigger a surplus of host cell 

nutrients in order to support the high energy demands needed for intracellular replication.  
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Results Section 2. The complete and ubiquitinated proteome of the Legionella-containing 

vacuole within human macrophages. 

 

Purification of the LCV from human macrophages 

Due to the requirement of lysine48-linked polyubiquitination of the LCV in the 

AA100/130b L. pneumophila strain, we sought to determine the identity of the 

ubiquitinated proteins localized to the LCV. Some of these ubiquitinated proteins 

localized to the WT strain LCV are possible targets of the F-box effector protein AnkB 

which acts as the scaffold protein to cause lysine48-linked polyubiquitination of its 

ankyrin domain substrates on the LCV. To determine the identity of the ubiquitinated 

proteome, LCV’s must be isolated from the WT strain and ankB mutant strain, therefore 

we sought to determine the identity of all host proteins on the LCV in addition to the 

ubiquitinated proteome. In addition, this work will provide the first proteome of the LCV 

isolated from human macrophages, the only known mammalian host.  

 U937 human macrophages were infected with L. pneumophila WT strain 

AA100/130b or its isogenic ankB mutant strain. The ankB mutant strain evades 

lysosomal fusion and is localized within an ER-derived LCV, similar to the WT strain 

[131]. However, the ankB mutant strain fails to replicate within human macrophages and 

amoeba due to the levels of cellular amino acids being below the threshold needed as the 

major source of carbon and energy to support intra-vacuolar proliferation of L. 

pneumophila [86, 250, 262].  The U937 human macrophage cell line is widely used in 

studies on Legionella-human macrophage interaction and was used in this study instead 

of primary human monocytes due to the need of a large number of cells to isolate LCVs, 
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since only ~20% of the cells become infected.  Following a 4h infection of 6X108 U937 

macrophages, LCVs were purified according to previously reported protocols with minor 

modifications [147, 263]. Cells were lysed through dounce homogenization and the post-

nuclear supernatant (PNS) was used to isolate LCVs through density ultracentrifugation 

on a discontinuous sucrose gradient which resulted in purified LCVs at the 55-65% 

interface (Fig. 8A). To ensure vacuole integrity following purification, isolated LCVs 

were evaluated using confocal microscopy after differential membrane permeabilization 

as well as vacuole marker staining to ensure the LCV membranes were intact (Fig. 8 B-

C). Vacuoles were labeled with a polyclonal anti-Legionella antibody prior to vacuolar 

permeabilization, which resulted in ~20% of bacteria being labeled (data not shown), 

while 100% of bacteria were labeled after vacuolar membrane permeabilization, 

indicating the LCV membrane is intact on ~80% of the isolated LCVs (Fig. 8B). We next 

evaluated the presence of polyubiquitinated proteins, which showed that ~70% of isolated 

LCVs were decorated with polyubiquitinated proteins (Fig. 8C). Isolated LCVs were 

solubilized in 1% Triton X-100 and the eukaryotic proteins associated with the LCV were 

identified by high throughput Liquid Chromatography coupled with tandem Mass 

Spectrometry (LC-MS). The MS was loaded with 2µg of protein for each LCV sample. 

The proteome was obtained from analyses of two LCV preparations of the WT strain and 

the ankB mutant, and only the proteins that were reproducible in both preparations were 

included in our analyses.  A positive protein identification for the proteome was based on 

at least two unique peptides.  Although numerous proteins were identified, it is likely that 

some proteins present with scarce quantities on the LCV are not detectable by our 

analyses. 
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Fig. 8. LCV purification using a discontinuous sucrose gradient. U937 macrophages 

were infected with WT L. pneumophila or the isogenic ankB strain at an MOI of 50 for 

30 minutes washed and the infection proceeded for 4 hours. Cells were lysed through 

dounce homogenization and the post-nuclear supernatant was used to isolate LCVs 

through density ultracentrifugation on a discontinuous sucrose gradient. A) Diagram of 

the sucrose gradient showing the isolated LCVs at 55-65% interface and B) confocal 

microscopy of isolated LCVs labeled with mouse anti-L. pneumophila following vacuole 
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membrane permeabilization. C) Confocal microscopy of isolated LCVs labeled with 

rabbit anti-L. pneumophila antiserum and mouse anti-polyubiquitin antibodies.  

 

  

 

The Total LCV Proteome  

The proteome of WT strain AA100/130b LCV contained 1,193 eukaryotic 

proteins, while the LCV of the ankB mutant strain contained 1,546 eukaryotic proteins 

(Supp Tables 1 and 2 that are found in Bruckert et al. Journal of Proteome Research) 

[264]. We profiled the proteins according to various cellular functions, including 

transcription/translation, vesicle trafficking, immune response, ribosomal proteins, 

ubiquitination, proteasome machinery components, signaling, cytoskeleton arrangement, 

and metabolism (Fig. 9 and 10). Using these categories we identified the largest 

proportion of WT strain LCV proteins to be involved in metabolism (21%) while 

cytoskeleton arrangement (12%), signaling (12%) and transcription/translation (11%) 

were highly represented (Fig. 9). Proteins involved in immune response (8%), ribosome 

machinery (6%), vesicle trafficking (6%) and ubiquitin-dependent proteolysis (6%) were 

significantly (p value ≤ 0.05) represented among the WT strain LCV proteome (Fig. 9). 

Despite the presence of additional proteins on the ankB mutant LCV, the overall 

distribution of the proteins based on cellular function were very similar to the WT strain 

LCV proteome (Fig. 9 and 10). The large numbers of shared proteins on isolated LCVs of 

WT strain and the ankB mutant were consistent with the findings that the ankB mutant 

strain is localized in an ER-derived LCV that evades lysosomal fusion [131] but lacks 
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sufficient levels of amino acids for intra-vacuolar proliferation [86]. The ankB mutant 

LCV contained 80% of the proteins on the WT strain LCV with an additional 354 

proteins primarily involved in regulation and initiation of translation, transcription, 

apoptosis, and immune response signaling. It is likely that degradation of lysine48-linked 

polyubiquitinated proteins on the WT strain LCV renders them undetectable by 

proteomic analysis. The degradation of lysine48-linked polyubiquitinated proteins on the 

WT strain LCV also alters the relative abundance of identifiable proteins in the proteome 

of the two strains. However, it is unknown if any of the additional 354 proteins on the 

ankB mutant strain LCV are the targets of AnkB.  

Proteome data of the WT strain LCV regarding metabolism identified proteins 

involved in neutral amino acid transport (SLC1A5, SLC38A2, SLC3A2), cationic amino 

acid transport (SLC7A1) and monocarboxylate transport (SLC16A1, SLC16A3) as well 

as a variety of ATPases involved in calcium, sodium and potassium transport. A large 

proportion of metabolism related proteins are involved in carbohydrate metabolism, 

especially glycolysis or glucose transport (7%), while 5% are involved in lipid 

metabolism. Both the ankB mutant and WT strain LCV proteomes harbor 

phosphatidylinositol phosphatases (INPP5D, INPPL1), kinases (PI4KA), 

phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating proteins (ARAP1, 

ASAP1) and guanine exchange factors (SWAP70, PREX1, DEF6) (Supp Tables 1 and 2 

that are found in Bruckert et al. Journal of Proteome Research) [264]. There are also 

proteins that bind to membranes or vesicles enriched in phosphatidylinositol that function 

in early endosomal trafficking (CLINT1, RUFY1) and receptor-mediated endocytosis 

(EPN1). Consistent with the findings that the LCV of the WT strain and the ankB mutant 
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strain is RER-derived, the proteome data revealed 70-80 (6%) 40S and 60S ribosomal 

associated proteins present on WT and ankB mutant LCVs (Fig. 2 and 3). Our data 

identified 6-7% of the WT and ankB mutant LCV proteomes play a role in vesicular 

trafficking, which included 8 small Rab GTPases (Rab1, Rab2, Rab5, Rab6, Rab7, 

Rab10, Rab11 , Rab14) as well as 4 sorting nexins and multiple ADP ribosylation factors 

involved in endocytic recycling, vesicle transport and vesicle budding. The ankB mutant 

LCV had 4 additional Rab GTPases (Rab8, Rab13, Rab27 and Rab35) (Supp Tables 1 

and 2 that are found in Bruckert et al. Journal of Proteome Research) [264]. The high 

similarity in ribosomal and vesicular trafficking proteins in WT and ankB mutant LCV 

proteomes is very consistent with the findings on biogenesis of the ankB mutant LCV is 

very similar to the WT strain [131].  

Proteins involved in apoptosis and immune responses, which comprise 8% of the 

WT strain LCV proteome, were also identified. These include multiple major 

histocompatibility complex proteins, ligands and receptors involved in T cell adhesion 

(intercellular adhesion molecule 1, 3) and signaling (leukocyte-associated 

immunoglobulin-like receptor 1, HCLS1 binding protein 3), promoters of  cell apoptosis 

(BCL2-associated athanogene 6, caspase recruitment domain family member 6), 

inhibitors of apoptosis (defender against cell death 1, FAM129B) and TNF-α regulators 

and proteins, which promote LPS-induced TNF-α production (thymocyte selection 

associated family member 2). The proteome of the ankB mutant LCV contained 84 of the 

92 immune response proteins on the WT strain LCV with an additional 42 proteins. 

These include 7 cluster of differentiation molecules (CD109, CD47, CD58, CD63, CD82, 

CD83, CD84), 2 BCL2 associated proteins (BAG3, BAX) and 2 negative regulators of 
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apoptosis (TNFAIP8 and AVEN) (Supp Tables 1 and 2 that are found in Bruckert et al. 

Journal of Proteome Research) [264].  

Proteins involved in cellular signaling pathways on the WT strain and the ankB 

mutant LCV include tyrosine-protein kinases that play a role in the response to 

environmental stress and cytokines such as TNF-α (MAP4), regulation of cell growth, 

differentiation, migration and the immune response (CSK), cytoskeleton remodeling in 

response to extracellular stimuli, cell motility and receptor endocytosis (ABL2, ARAP1). 

Additional signaling proteins included Rho GTPase activating proteins (ARHGAP1, 

ARHGAP17, ARHGAP18), Rab GTPase activating proteins (TBC1D10B, TBC1D15, 

TBC1D5) and guanine nucleotide-binding proteins (G proteins).  

The WT strain and ankB mutant LCV proteomes contained proteins involved in 

cytoskeletal membrane integrity and organization (actin, coronin) and proteins that 

regulate actin and microtubule polymerization (ARP2/3 complex, KANK1, LASP1,). 

Interestingly, molecular chaperones that play a role in the folding of actin and tubulin 

(CCT2-CCT8) were present on the LCV, possibly indicating following initial LCV 

formation various cytoskeleton proteins are constantly recruited to the LCV membrane 

[265].  

 

Validation of many of the proteins detected in the proteome of the LCV in our 

analyses comes from published studies that showed that at least 17 of the proteins 

identified in our proteome have been already shown to be localized to the LCV using 

different strategies, such as confocal microscopy [74, 79, 135, 147, 237]. The WT strain 

and ankB mutant LCV contain a significant portion (6%) of proteins involved in 

ubiquitination and proteasomal degradation (Fig. 9 and 10). In agreement with findings of 
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colocalization of farnesyltransferaseα [135], SKP1 [241] and p97 [237] with the LCV by 

confocal microscopy, our proteome data identified the SKP1 component of the SCF E3 

ubiquitin ligase complex and the ATPase p97 on the LCV. In addition, both proteomes 

contained RAD23A and RAD23B which serve as multiubiquitin chain receptors that bind 

to the 26S proteasome and delivers K48-linked polyubiquitinated proteins for proteasomal 

degradation. Four E2 ubiquitin conjugating enzymes and eight E3 ubiquitin ligases were 

identified on the WT strain LCV (Table 1). The E3 ubiquitin ligases identified on the WT 

strain LCV regulate apoptosis, NF-κβ activation and IFN-β production [266, 267]; while 

the E2 ubiquitin conjugation enzymes catalyze the synthesis of K48 and K63-linked 

polyubiquitin chains [260, 268] (Table 1). The eight ubiquitin specific peptidases on the 

WT strain LCV can act as deubiquitinases (VCPIP1(p97), USP14, USP15, USP9X), that 

are able to remove ubiquitin moieties from polyubiquitin chains, which prevents 

proteasomal degradation, or are involved in lysine48-linked polyubiquitination 

disassembly (USP5) (Table 1). The ankB mutant LCV contained nine E3 ubiquitin 

ligases of which three were found on the WT strain LCV (Table 2). The E3 ubiquitin 

ligases on the ankB mutant LCV are involved in regulation of DNA, p53 activation and 

mTORC1 signaling pathway [269, 270]. The ankB mutant LCV contained four additional 

ubiquitin-conjugating enzymes including two atypical ubiquitin conjugating enzymes 

(UBE2H, UBE2O) and UBE2M, which catalyze the attachment of the ubiquitin like 

protein NEDD8 onto other proteins (Table 2). 
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Fig. 9. Functional classification of eukaryotic proteins localized to the WT strain 

LCV. The 1193 eukaryotic proteins localized to the WT strain LCV identified by High 

Throughput LC/MS were grouped according to their cellular function according to the 

UniProt and GeneCards database sets.  
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Fig. 10. Functional classification of eukaryotic proteins localized to the ankB mutant 

strain LCV. The 1546 localized to the ankB mutant LCV identified by High Throughput 

LC/MS were grouped according to their cellular function according to the UniProt and 

GeneCards database sets.  
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MetaCore Analysis of the total LCV proteome 

Bioinformatic analysis of the LCV proteome was performed using MetaCore 

(Thomson Reuters) [248, 249]. MetaCore software determined the most significant 

relationships among pathway maps, process networks, GO processes and metabolomic 

pathways from eukaryotic proteins localized to the LCV. The top pathway maps 

identified in WT and ankB mutant LCV proteomes include regulation of the actin 

cytoskeleton by Rho GTPases, the role of PKA in cytoskeleton remodeling and integrin 

mediated cell adhesion. Signaling pathways including G-protein signaling - RhoA 

regulation pathway and G protein-α 12 signaling pathways were also identified in the 

proteome pathway enrichment analysis. The generated pathway maps correlate with the 

proteome data that reveal a large proportion (12%) of LCV proteins are involved in 

cytoskeletal formation of the LCV.  

Bioinformatic analysis of metabolic networks in the WT strain LCV proteome 

revealed the phosphatidylinositol-4,5-diphosphate pathway and phosphatidylinositol-

3,4,5-triphosphate pathway as two of the top five (Fig. 11). These data reflect the 

aforementioned results of a wide array of phosphatidylinositol-dependent proteins in the 

WT strain and the ankB mutant LCV proteomes. This is also consistent with findings that 

have shown the LCV is decorated with phospatidylinositol-4 phosphate (PI(4)P) to which 

multiple effector proteins (SidC, SidM, SdcA, RidL) bind on the LCV membrane [74, 

80]. Carbohydrate metabolism (glycolysis, gluconeogenesis and glucose transport) was 

the third most abundant metabolomic network identified; while valine, tryptophan and 

methionine synthesis and transport were identified in the top eight metabolic pathways 

represented in the LCV proteome (Fig. 11). Performing the MetaCore analysis on the 
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ankB mutant strain LCV proteome gave similar results to the WT strain LCV, such as the 

phosphatidylinositol-4,5-diphosphate pathway and phosphatidylinositol-3,4,5-

triphosphate pathway.  

When proteins found only on the WT strain LCV but not the ankB mutant LCV 

were analyzed through MetaCore, many of the pathways were consistent with the total 

WT strain LCV proteome, such as phosphatidylinositol-4,5-diphosphate pathway. The 

finding that the ankB mutant proteome contained 80% of the proteins present in the WT 

strain LCV proteome is consistent with the MetaCore analysis of very similar pathways 

in both of the proteomes. Interestingly, Ubiquitin-proteasomal proteolysis was identified 

as the second most abundant process network involved in WT strain LCV specific 

proteins despite the findings that the ankB mutant LCV proteome contains a majority of 

the proteins found in the WT strain LCV proteome. These results are consistent with the 

requirement of polyubiquitination of the WT strain LCV for intracellular replication. 

Another explanation could be due to the WT strain LCV containing 350 less proteins than 

the ankB mutant strain, therefore the increase in lysine48-linked polyubiquitinated 

proteins, proteasomal subunit proteins or the SCF1 E3 ubiquitin ligase components 

recruited to the WT LCV would be more significant due to the decreased number of total 

proteins identified in the WT LCV proteome.   
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Fig. 11. MetaCore enrichment analysis of metabolic networks in the WT Strain 

LCV proteome. The complete WT strain LCV proteome was analyzed through 

MetaCore software, using the enrichment analysis function, to identify the most 

significant metabolic networks.  
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The ubiquitinated proteome of the LCV 

 To identify ubiquitinated proteins on the WT and ankB mutant LCV, the 

solubilzed LCV proteins were immunoprecipitated with anti-ubiquitin antibodies and 

identified by LC/MS. We identified 24 ubiquitinated proteins on the WT strain LCV such 

as Annexin A2, Plasminogen activator inhibitor, Rab5 GDP/GTP exchange factor and 

Transitional endoplasmic reticulum ATPase (p97) (Table 2). The polyubiquitinated 

proteins identified on the LCV were K6, K11, K27 and K48-linked as evident from the 

findings that ubiquitin was ubiquitinated on the 4 lysine residues K6, K11, K27 and K48. 

Interestingly, 6 (25%) of the ubiquitinated proteins on the WT strain LCV play a role in 

the immune response such as interleukin-1 receptor-associated kinase 1 and Interferon 

regulatory factor 7, which play a key role in the signaling and regulation of the immune 

system against pathogens. Furthermore, we identified 2 amino acid transporters (SLC3A2 

and SLC1A4) and a sodium bicarbonate transporter (SLC4A7) to be ubiquitinated on the 

WT strain LCV. We analyzed these proteins through the Mammalian Ubiquitination Site 

Database [271] which contains a comprehensive list of all ubiquitination sites on 

mammalian proteins. The search revealed that 17 of the identified ubiquitinated proteins 

have been shown to be ubiquitinated on the same lysine residues as identified in our 

LC/MS analyses. However, three of the ubiquitinated proteins identified (Plasminogen 

activator inhibitor 2, Mast cell-expressed membrane protein 1, Isoform 13 of Sodium 

bicarbonate cotransporter 3) were not in the database, while four (Vimentin, Target of 

Myb protein 1, Receptor-type tyrosine-protein phosphatase C, Transient receptor 

potential cation channel subfamily V member 2) were in the database but have been 

previously shown to be ubiquitinated on other lysine residues than the ones we identified 
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in our analysis. The ankB mutant LCV contained 29 ubiquitinated proteins primarily 

involved in signaling (Integrin beta-1, beta-2 and alpha-5, Rho GDP-dissociation 

inhibitor 2) and ubiquitination (Cullin-5, the E3 ubiquitin ligase LAPTM5 and the E2 

Ubiquitin-conjugating enzyme E2N) (Table 3). The ankB mutant LCV had multiple 

ubiquitinated transporters, including the monocarboxylate transporter (SLC16A3), the 

glucose transporter (SLC2A3), and neutral amino acid transporters (SLC3A2, SLC1A5) 

as well as 2 ATPases (ATP2B4 and ATP13A3) (Table 3).  

While the WT strain and ankB mutant strain LCV had some common 

ubiquitinated proteins (p97, SLC3A2, tubulin), there was a significant difference in the 

ubiquitinated proteome among the two strains, as can be seen by the superscript alpha 

designation in the WT strain ubiquitinated proteome table (Table 3). The major 

differences in the ubiquitinated host proteins between the two strains could be attributed 

to the proteasomal degradation of K48-linked polyubiquitinated proteins on the WT strain 

LCV, and the dynamic changing nature of LCV. The ankB mutant LCV had multiple 

ubiquitinated proteins involved in intracellular trafficking (Rab1A, Rab14) and two 

GTPases (Rac1, RhoG), while the WT strain only contained one ubiquitinated protein 

involved in intracellular trafficking (Rab5 GDP/GTP exchange factor) (Table 3-4). 

Furthermore, the ubiquitinated proteins on the WT strain LCV that were excluded from 

the ankB mutant strain LCV can be utilized to determine the AnkB substrates, that are 

required for intracellular replication.  
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Discussion Section 2 

While the LCV proteome has been characterized from the mouse macrophage cell 

line RAW264.7 and D. discoedium [73, 74], there has not been a complete LCV proteome 

analysis from human macrophages. While RAW264.7 mouse macrophages support 

intracellular replication, they originate from the BALB/C mouse, which are non-permissive 

to L. pneumophila infection [76, 272]. Therefore, generation of the LCV proteome from 

human macrophages is a valuable resource for studies focusing on LCV biogenesis within 

human cells. Due to the requirement of K48-linked polyubiquitinated proteins on the LCV, 

determining the ubiquitinated proteome of the LCV will show host proteins modified during 

infection that could be crucial for intracellular replication. Utilizing the ankB mutant strain as 

a control for generating the proteome is valid due to the similarity in LCV biogenesis and 

trafficking to the WT strain. In addition, utilizing the ankB mutant strain allowed the 

identification of WT strain-specific ubiquitinated proteins, some of which could be ankB 

substrates that are required for intracellular replication.  

The WT strain LCV proteome contained a unique assortment of E2 ubiquitin-

conjugation enzymes and E3 ubiquitin ligases. Out of the 4 E2 ubiquitin-conjugation 

enzymes (UBE2K, UBE2N, UBE2L3, UBEV1) only UBE2K and UBE2L3 synthesize K48-

linked polyubiquitinated chains [268]. The WT strain LCV proteome confirmed previous 

results of the SKP1 component of the SCF1 E3 ubiquitin ligase complex and VCP (p97) 

localized to the LCV [237, 241]. Interestingly, SKP1 and VCP are needed for intracellular 

replication, due to SKP1 ubiquitinating AnkB substrates and VCP removing the K48-linked 

polyubiquitinated proteins from the LCV for proteasomal degradation [237, 238]. Therefore, 

UBE2K and UBE2L3 could be the missing piece of LCV polyubiquitination, and function to 
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polymerize the K48-linked polyubiquitination of the AnkB substrates. Interestingly, we 

identified multiple ubiquitin specific peptidases on the LCV which function in a regulatory 

role to prevent proteasomal degradation of the ubiquitinated protein [204]. Ubiquitin 

peptidases remove conjugated ubiquitin from linkages other than K48, which complicates the 

identification of LCV associated ubiquitinated proteins. These peptidases could also alter the 

state of LCV ubiquitination, thereby influencing protein turnover in the infected cell. The 

function of the E3 ubiquitin ligases on the LCV could prove valuable to determine if they are 

modifying bacterial proteins or if they are recruited to the LCV by effector proteins in a 

manner to direct ubiquitination of specific target proteins. The E3 ubiquitin ligase Huwe1 

found in the WT strain LCV proteome regulates apoptosis through ubiquitination of Mcl-1 

[267], while the E3 ubiquitin ligase Birc6 found on the WT strain and ankB mutant strain 

LCV ubiquitinates apoptotic proteins in a proteasomal dependent manner [266]. Other anti-

apoptotic proteins on the LCV such as defender against cell death could play an important 

role in preventing host cell apoptosis and therefore limiting bacterial replication. The pro-

apoptotic proteins on the LCV, such as apoptosis-inducing factor, show a unique balance 

between pro and anti-apoptotic events during L. pneumophila infection. This balance is of  

importance due to L. pneumophila activating caspase 3, which does not lead to apoptosis, as 

well as determining why permissive macrophages are resistant to apoptotic stimuli during 

infection [62, 63, 67, 68].  

Due to the essential recruitment of polyubiquitinated proteins to the LCV in                 

L. pneumophila strain AA100/130b and the Paris strain [238, 239], we sought to determine 

the identity of these ubiquitinated proteins to decipher which host proteins were manipulated 

during infection of human macrophages. Six of the 24 ubiquitinated proteins found on the 
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WT strain LCV are involved in the immune response. These ubiquitinated immune response 

proteins include interferon regulatory factor 7 (IRF7) and interleukin-1 receptor-associated 

kinase 1 (IRAK1). IRF7 is a key transcriptional regulator of type I interferon (IFN)-

dependent immune responses, which is critical for clearance of many DNA and RNA viruses 

[273]. Interestingly, the E3 ubiquitin ligase Trim21 ubiquitinates IRF7 in a proteasomal 

degradation manner [274]. Furthermore, IRF7 ubiquitination could also contribute to the 

inhibition of apoptosis during L. pneumophila infection. IRAK1 plays a role in mediating 

pro-apoptotic signaling in response to bacterial LPS [275]. Therefore, similar to IRF7, the 

ubiquitination of IRAK1 could play a significant role in intracellular immune response 

during infection [273]. The ankB mutant strain LCV ubiquitinated proteome contained 

Rab1A and Rab14. While Rab1A plays a crucial role in LCV remodeling and trafficking 

[78], this ubiquitination could explain an additional regulatory mechanism for LCV 

biogenesis and endo-lysosomal evasion. Additionally, the ankB mutant strain ubiquitinated 

proteome contained multiple proteins involved in ubiquitination and amino acid transport, 

such as the ubiquitin-conjugating enzyme E2N, cullin5, SLC1A5 and SLC3A2. The WT 

strain ubiquitinated proteome also contained the amino acid transporter SLC3A2 as well as 

the amino acid transporter SLC1A4. The ubiquitination of these amino acid transporters 

could alter their subcellular localization to enable their localization to the LCV. This could 

explain how intra-vacuolar L. pneumophila is able to transport amino acids across the LCV 

lumen to provide the carbon and energy essential for intracellular replication. The 

ubiquitinated proteome of the WT and ankB mutant strain LCV each contained K6, K11, K27 

and K48-linked polyubiquitinated proteins. Further studies are needed to determine the chain 

linkages of the ubiquitinated proteins as well as characterizing the importance of the non-
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K48-linked polyubiquitinated proteins. While it is known the K48-linked polyubiquitinated 

proteins are essential for intracellular replication [86], the other ubiquitinated proteins could 

prove valuable to decipher vacuole remodeling and biogenesis.   

L. pneumophila must acquire nutrients primarily in the form of amino acids from the 

host during infection [86, 262]. It is not known how amino acids are transported into the 

LCV lumen, however it is known that the eukaryotic amino acid transporter SLC1A5 is 

required for intracellular replication within human macrophages [85]. In the WT strain and 

the ankB mutant strain LCV proteomes we identified five amino acid transporters (SLC1A4, 

SLC1A5, SLC3A2, SLC7A5, SLC38A2). While SLC1A5 is required for L. pneumophila 

infection of human macrophages [85], there could be multiple amino acid transporters on the 

LCV that function together to bring a variety of amino acids into the LCV. The more 

important question is what directs these amino acid transporters to the LCV and how they 

anchor into the LCV membrane. A transmembrane L. pneumophila effector could bind these 

transporters and stabilize them on the LCV membrane allowing import of amino acids, or the 

transporters could fuse with the LCV by recruitment of ER vesicles. We currently favor the 

second possibility, since the SLC transporters are transmembrane proteins. Due to the wide 

array of protozoan host L. pneumophila infects, having the ability to localize multiple amino 

acid transporters to the LCV would be a beneficial solution to nutrient acquisition in various 

host.  

The LCV proteome also contained two monocarboxylate transporters SLC16A1 and 

SLC16A3 that have the ability to transport pyruvate across the LCV membrane [276]. While 

amino acids are the main source of nutrients, the ankB mutant is restored for intracellular 

replication in human macrophages and amoeba when pyruvate is added to the culture 
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medium [86]. Therefore, incorporation of these monocarboxylate transporters into the LCV 

membrane could provide a dual strategy for L. pneumophila acquisition of sources other than 

amino acids, such as pyruvate. L. pneumophila has been shown to use glucose as an 

intracellular energy source [92], the glucose transporters identified in the LCV proteomes 

(SLC2A1, SLC2A3, SLC2A13) could allow another, yet minor, source of carbon and energy 

to support intracellular replication. With our knowledge of L. pneumophila nutrient 

acquisition not well understood, this proteome analysis in human macrophages will be a 

tremendous resource to enable studies into more specific transporters not previously known 

to be localized to the LCV. While SLC1A5 is required for infection it is more likely that 

combinations of amino acid, monocarboxylate and glucose transporters are recruited to the 

LCV to provide intra-vacuolar L. pneumophila with a diverse portfolio of sources of carbon 

and energy.   
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Results Section 3. Lysine11-linked polyubiquitination of the AnkB  

 

effector of Legionella pneumophila 

 

Ubiquitination of the L. pneumophila translocated effector AnkB  

It has been shown that eukaryotic F-box proteins undergo autoubiquitination 

through the direct interaction with the SCF1 E3 ubiquitin ligase complex [221, 226]. 

However, to our knowledge ubiquitination of F-box proteins independent of their F-box 

domain has not been investigated. To further investigate the function of F-box proteins 

we choose to further characterize the eukaryotic F-box L. pneumophila effector protein 

AnkB.  

To determine whether AnkB undergoes ubiquitination within eukaryotic cells, we 

immunoprecipitated ectopically expressed Flag-tagged AnkB and analyzed by Western 

Blot. In addition to the native AnkB band at ~23kDa there were two distinct bands at 

~37kDa and ~75kDa, as well as a smear of high molecular weight proteins recognized by 

anti-Flag antibodies (Fig. 12). No bands were detected in the lysate of cells transfected 

with the vector alone, which suggested that the distinct bands at ~37kDa and ~75kDa 

may correspond to the potential addition of two and six ubiquitin monomers to AnkB 

since 1 ubiquitin monomer is 8.5 kDa (Fig. 12). Re-probing that membrane with anti-

ubiquitin antibodies on AnkB showed the presence of higher molecular mass species that 

were ubiquitinated (Fig. 1). To ensure that ubiquitination of AnkB was not only limited to 

the L. pneumophila strain AA100/130b we also analyzed AnkB from the L. pneumophila 

Paris strain [239], which lacks the C-terminal CaaX motif [135]. We performed 

immunoprecipitation of Flag-tagged AnkB Paris and probed the membrane with anti-Flag 

antibodies. Similar to the AA100/130b-derived AnkB, the Paris strain AnkB showed 
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distinct bands and a high molecular weight smear that suggested the ubiquitination of 

AnkB (Fig. 12).  

AnkB is a bona fide F-box protein [238, 239] and its F-box domain interacts 

directly with the SKP1 component of the host SCF1 E3 ubiquitin ligase complex on the 

LCV [238, 239]. To determine if the F-box domain of AnkB was required for its 

ubiquitination, we transfected HEK293T cells with an AnkB variant lacking the F-box 

domain and immunoprecipitated the protein. Western blot analysis showed the deletion of 

the F-box domain of AnkB did not have an impact on its ubiquitination (Fig. 13). To 

ensure that deletion of the F-box domain did not have an impact on the structure of 

AnkB, we utilized an AnkB substitution mutant (AnkB9L10P/AA) within the F-box 

domain that does not bind to SKP1 [238]. Following immunoprecipitation of 

AnkB9L10P/AA, the western blot showed that (AnkB9L10P/AA) was ubiquitinated similar 

to the native AnkB (Fig. 13). Taken together these results highly suggest that AnkB is 

ubiquitinated and its ubiquitination is independent of the interaction of its F-box domain 

with the host SCF1 E3 ubiquitin ligase complex, which indicates that AnkB is modified 

by a host ubiquitin ligase.   
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Fig. 12. Ubiquitination of ectopically expressed L. pneumophila strain AA100/130b 

and the Paris strain AnkB. HEK293T cells were transfected with 3X-Flag tagged AnkB 

from L. pneumophila strain AA100/130b or the Paris strain. Cell lysates were purified 

with anti-Flag agarose and analyzed by immunoblotting with anti-Flag and anti-ubiquitin 

antibodies. 
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Fig. 13. Ubiquitination of AnkB variants lacking the F-box domain. 

HEK293T cells were transfected with the AnkB variants 3XFlag-tagged AnkB9L10P or 

3XFlag-tagged AnkBΔFbox. Cell lysates were purified with anti-Flag agarose and 

analyzed by immunoblotting with anti-Flag antibodies 

 

 

 

Interaction of AnkB with the E3 ubiquitin ligase Trim21  

 The ubiquitination of the AnkB variant lacking the F-box domain, as well as the 

AnkB9L10P/AA substitution variant allowed us to exclude a role for the SCF1 E3 

ubiquitin ligase in AnkB ubiquitination. We came to this conclusion since AnkB is 

unable to bind the SKP1 component in either of these AnkB flag-tag variants (AnkB9L10P 

and AnkBΔFbox) , therefore it is highly unlikely that the ubiquitination of AnkB is 

dependent upon the SCF1 E3 ubiquitin ligase complex. In addition the targets of AnkB 
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can not be ubiquitinated by AnkB in the absence of the F-box domain of AnkB, therefore 

the ubiquitination of the AnkB variants (AnkB9L10P and AnkBΔFbox) highly suggest 

AnkB, and not its interacting substrates, are ubiquitinated through an E3 ubiquitin ligase 

complex other than the SCF1 complex. Therefore, we sought to determine the E3 

ubiquitin ligase that interacts with AnkB. We immunoprecipitated Flag-tagged AnkB 

from HEK293T cells and performed MS analysis on the proteins that co-

immunoprecipitated with AnkB. Our mass spectrometry data showed that the RING-

finger protein Ro52 (Trim21) co-purified with AnkB. To confirm AnkB directly interacts 

with Trim21, we co-transfected HEK293T cells with Flag-tagged AnkB and HA-tagged 

Trim21. Following cell lysis, Flag-tagged AnkB was co-immunoprecipitated with anti-

Flag antibody and the immunoprecipitate was immunoblotted with anti-HA tag antibody. 

A ~52 kDa band, the correct molecular mass for Trim21, co-immunoprecipitated with 

AnkB (Fig. 14A). When the co-immunoprecipitation was reversed through 

immunoprecipitation with anti-HA antibody and the immunoprecipitate was 

immunoblotted with anti-Flag antibodies, the correct molecular mass band corresponding 

to AnkB was detected (Fig. 14B). To determine if the Trim21-AnkB interaction was 

specific for AnkB, we utilized the L. pneumophila translocated effector protein AnkH as 

a control in the co-immunoprecipitation. The Flag-tagged AnkH was co-

immunoprecipitated with anti-Flag antibodies and the resulting immunoprecipitate was 

immunoblotted with anti-HA antibodies. Unlike AnkB, Trim21 did not co-

immunoprecipitate with AnkH (Fig.14A). This was confirmed by reversing the co-

immunoprecipitation and Western Blot, which also showed lack of interaction of Trim21 

with the AnkH control (Fig. 14B). Taken together, these results indicate AnkB 
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specifically interacts with the E3 ubiquitin ligase Trim21. This is the first example of an 

interaction of a bacterial effector with the host Trim21 ubiquitin ligase.  

 

 

 

 

Fig. 14.AnkB directly interacts with the E3 ubiquitin ligase Trim21. (A) Flag-tagged 

AnkB or Flag-tagged AnkH were co-transfected with HA-tagged Trim21 in HEK293T 

cells. Flag-tagged AnkB or Flag-tagged AnkH were co-immunoprecipitated with anti-

Flag agarose and the resulting supernatants were immunoblotted with anti-HA antibodies 

and anti-Flag antibodies. (B) HA-tagged Trim21 was co-immunoprecipitated using anti-

HA agarose and the resulting supernatants were analyzed by immunoblotting with anti-

Flag antibodies and anti-HA antibodies.  

 

 

 

Ubiquitinated AnkB is not degraded by the proteasome  

When proteins are polyubiquitinated through K48-linked polymerization of 

ubiquitin are degraded by the proteasome [202]. To determine whether ubiquitination of 

AnkB led to its proteasomal degradation we utilized the proteasomal inhibitor MG132 
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and determined the stability of AnkB in the presence or absence of the protein synthesis 

inhibitor cycloheximide. To ensure the MG132 proteasome inhibitor blocked proteasomal 

degradation, treated or untreated cells were lysed and the resulting western blot 

membrane of total cell lysate was probed with anti-ubiquitin and re-probed with anti-

actin antibodies. As expected, cells treated with MG132 had a large increase in the 

amount of ubiquitinated proteins compared to untreated cells (Fig. 15A). When AnkB 

was co-immunoprecipitated from cells left untreated or treated with MG132 there was not 

a difference in the amount of purified ubiquitinated AnkB (Fig. 15B). Our data showed 

that upon proteasomal inhibition, ubiquitinated AnkB was stable over the three hour 

experiment (Fig. 15C). Therefore, ubiquitination of AnkB does not result in its 

proteasomal degradation or shortening of its half-life (Fig. 15C).  
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Fig.15. Ubiquitinated AnkB is not degraded by the proteasome. (A) HEK293T cells 

were untreated or treated with 20uM MG132 for 3 hours. Cells were lysed and the 

resulting immunoblot was probed with anti-ubiquitin and anti-actin antibodies. (B) 

HEK293T cells transfected with 3X-Flag tagged AnkB were treated with 20uM MG132 

for 3 hours or left untreated. An equivalent number of cells were lysed, and Flag-tagged 

AnkB was immunoprecipitated using anti-Flag agarose, and subjected to immunoblotting 

with anti-Flag and anti-ubiquitin antibodies. (C) HEK293T cells transfected with Flag 

tagged AnkB were treated with the protein synthesis inhibitor cycloheximide. To inhibit 
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proteasomal degradation, a subset of the cells were treated with 20uM MG132 two hours 

prior to cycloheximide treatment. At the indicated time points cells were lysed and 

equivalent amounts of protein were subjected to immunoblotting with anti-Flag and anti-

actin antibodies. 

 

 

 

Polyubiquitin linkages of polyubiquitinated AnkB 

Ubiquitin contains 7 lysine residues, all of which can be utilized to polymerize 

ubiquitin on the substrate protein [202]. To determine if AnkB was polyubiquitinated 

through K48and K63-linked polyubiquitination, we utilized antibodies specific for K48-and 

K63-linked polyubiquitinated proteins. These are the most studied forms of 

polyubiquitination, therefore there are commercial antibodies available. The 

immunoprecipitated AnkB did not bind antibodies specific for K48 and K63-linked 

polyubiquitinated proteins compared to total cell lysate control (Fig. 16). When the 

membrane was stripped and re-probed with anti-Flag antibodies, ubiquitinated AnkB was 

detectable (Fig. 16). Taken together, these results highly suggest that AnkB is 

polyubiquitinated through lysine linkages other than K48 or K63. If AnkB was 

polyubiquitinated through K48 or K63 we would expect to see a similar high molecular 

weight smear that was observed with the anti-ubiquitin antibodies (15B). 

Since AnkB is most likely not modified through K48 or K63-linked 

polyubiquitination we sought to determine the chain linkage of the ubiquitin polymers of 

ubiquitinated AnkB by mass spectrometry. Depending on the lysine residue within 
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ubiquitin that contains the ubiquitin-ubiquitin linkage, a characteristic mass shift increase 

of 114 Da (di-glycine) is observed by mass spectrometry [242]. The Flag-tagged AnkB 

was ectopically expressed in HEK293T cells and immunoprecipitated using anti-Flag 

antibody. Immunoprecipitated proteins were resolved by SDS-PAGE and visualized by 

Coomassie blue staining (Fig. 17). Of the several bands corresponding to AnkB with a 

different number of ubiquitin moieties, the most prominent band at ~75kDa (AnkB +6 

ubiquitin moieties) was analyzed by mass spectrometry to determine the modified lysine 

residues within AnkB and ubiquitin. Mass spectrometry analysis and the resulting spectra 

detected ubiquitination of AnkB on K67 in the peptide (63-75), that was generated 

following trypsin cleavage of the ~75kDa band (Fig. 18A). Greater than 90% of the b and  

y ions with +1, +2 and +3 charges were detected, which provided clear evidence for the 

ubiquitination of AnkB on K67 (Fig. 18A and B). When analyzing other bands from the 

Coomassie stained gel by mass spectrometry we did not observe ubiquitination of AnkB, 

however, many of the lysine residues within AnkB were not even observed following 

protein digestion. Within the same ~75kDa band, ubiquitin was ubiquitinated on K11 in 

the peptide (7-27) (Fig. 19). The b ions with a +1 charge and the y ions with a +2 charge 

surrounding the modified lysine residue of ubiquitin are shown and the calculation 

provided direct evidence for ubiquitination of ubiquitin on K11 (Fig. 19A and B). 

Although phosphorylation of proteins has been shown to be a signal for protein 

ubiquitination [277], we did not detect phosphorylated AnkB in the MS analysis (data not 

shown). If the phosphorylated amino acid of AnkB was detected we could possibly 

substitute the phosphorylated residue to inhibit the ubiquitination of AnkB. To inhibit 

host cell ubiquitination we generated a substitution mutant of the ubiquitinated K residue 
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in AnkB (AnkBK67R). However, following immunoprecipitation the resulting 

immunoblot analysis showed AnkB ubiquitination was not inhibited with this substitution 

(Fig. 20). As seen with many eukaryotic proteins and the SopB effector in Salmonella, 

ubiquitination can occur on multiple K residues within a protein [234, 278]. Taken 

together, AnkB is ubiquitinated on K67 through K11-linked polyubiquitination, and the 

functional result of the K11-linked polyubiquitination remains to be determined.  

.  

 

 

 

 

Fig. 16. AnkB is not polyubiquitinated through K48 or K63 linkages. 

Immunoprecipitated Flag-tagged AnkB was analyzed by immunoblotting with antibodies 

specific for K48-linked polyubiquitinated proteins or antibodies specific for K63-linked 

polyubiquitinated proteins. Cell lysate was used as a control and anti-Flag antibodies 

were used to show ubiquitinated Flag-tagged AnkB.    

 



94 

 

 

 

Fig. 17. Commassie stain of immunoprecipitated AnkB.  

Flag-tagged AnkB was immunoprecipitated from transfected HEK293T cells and 

analyzed by SDS-PAGE and Commassie blue staining. 
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Fig. 18A 
 
 

 

Fig. 18B 
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Fig. 18. AnkB is ubiquitinated on lysine 67. The band at ~74kDa (AnkB +6 ubiquitin) 

was analyzed by mass spectrometry and the resulting spectra within the ubiquitinated 

AnkB peptide (63-75) is shown with the b (blue lines) and y ions (red lines). (B) The 

fragmentation pattern of the +1, +2 and +3 charges of the b and y ions within the AnkB 

peptide (63-75). 

 

 

 

 

 

 

Fig. 19A 
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Fig. 19B 

 

Fig. 19. AnkB is polyubiquitinated through lysine11 of ubiquitin. (A) The previously 

analyzed ~74kDa ubiquitinated AnkB band was analyzed by mass spectrometry for 

ubiquitination of ubiquitin. The resulting spectrum of the modified ubiquitin peptide (7-

27) is shown along with the b (blue lines) and y ions (red lines) detected. The b ions with 

a +1 charge and y ions with a +2 charge are shown with the mass/charge ratio calculated 

to show ubiquitination on lysine 11 of ubiquitin. (B) The fragmentation pattern of the b 

and y ions with a +1 and +2 charge within the ubiquitin peptide (7-27). 
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Fig. 20. Substitution of AnkB K67 does not inhibit polyubiquitination. The 

ubiquitinated lysine residue in AnkB was substituted with an arginine (AnkBK67R) and 

transfected into HEK293T cells. Cell lysates were purified with anti-Flag agarose and 

analyzed by immunoblotting with anti-Flag antibodies.  
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Discussion Section 3 

Ubiquitination of eukaryotic proteins results in a myriad of biological consequences, 

such as proteasomal degradation, alteration in subcellular localization, signaling cascades and 

DNA repair [202, 209]. Intracellular bacteria have developed ingenious mechanisms to 

manipulate eukaryotic ubiquitination machinery for their own benefit [231, 235]. This 

manipulation can come from bacterial effectors that act as deubiquitinases, E3 ubiquitin 

ligases and F-box proteins that function identical to their eukaryotic counterpart [223, 231, 

261]. F-box proteins, such as AnkB, typically cause proteasomal degradation of substrate 

proteins [279]. The substrates of AnkB are polyubiquitinated through K48-linkages and are 

degraded by the proteasomes, however, these targets are unknown [86]. While it has been 

shown that F-box proteins undergo autoubiquitination, which results in their proteasomal 

degradation, modification of F-box proteins through polyubiquitin chain linkages other than 

K48 has not been shown [280]. Autoubiquitination of F-box proteins is primarily a control 

mechanism to limit constant degradation of their substrates and unwanted protein turnover. 

Therefore, ubiquitination of F-box proteins resulting in proteasome-independent functions 

would be novel. Perhaps F-box proteins are ubiquitinated by non K48-linked 

polyubiquitination to interact with a specific substrate, or it could repress the downstream 

signaling events that occur through F-box mediated protein-protein interactions. F-box 

proteins regulate a wide array of cellular functions through proteasomal degradation of their 

substrates, so it could be easily perceived that ubiquitination of the F-box protein could alter 

this regulation allowing more possibilities for their cellular function.    

Bacterial effectors have been shown to undergo ubiquitination during infection, 

however the majority are K48-linked polyubiquitin chain linkages, which lead to proteasomal 
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degradation [231, 281]. Detection of effector ubiquitination can be challenging, as a specific 

antibody to the effector is needed or a tag, such as HA is needed to perform 

immunoprecipitation. Fusing a tag to the effector can affect the translocation or alter the 

functions of the protein in vivo. Therefore, bacterial effectors could be modified through 

ubiquitination more commonly than has been shown in the literature due to the technical 

difficulties. The Salmonella effector SopB has been shown to be ubiquitinated through K63-

linked polyubiquitination, which alters the subcellular localization during infection, while 

SopE and SptP are ubiquitinated and degraded by the proteasome [234, 282]. These 

examples highlight the ability of bacterial effector proteins to be ubiquitinated by the host 

cell machinery with biochemical consequences on their location, stability, or function.                         

The Philadelphia strain of L. pneumophila contains five F-box proteins, of which two 

were shown to be ubiquitinated during ectopic expression [228]. One of these F-box proteins 

shown to be ubiquitinated was LegAU13, which is the homologue to AnkB in the 

Philadelphia strain [228]. Interestingly, LegAU13 in the Philadelphia strain is not required 

for intracellular replication in human macrophages or amoeba [228], while AnkB in the 

AA100/130b strain is required for intracellular replication [131]. Furthermore, LegAU13 in 

the Philadelphia strain of L. pneumophila does not cause polyubiquitination of the LCV, 

which is mediated by another L. pneumophila effector SidC [261]. However, the SidC 

mediated polyubiquitination of the LCV is not required for intracellular replication. It has 

been shown that LegAU13 directly interacts with Skp1 and Cul1 of the SCF E3 ubiquitin 

ligase complex, however the targets are unknown [228]. Therefore, this diversity in a single 

effector protein reveals how L. pneumophila has a multitude of mechanisms that give rise to 

intracellular replication. Unfortunately, it was not shown if LegAU13 is ubiquitinated in the 
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absence of the F-box domain, therefore it is not known if this ubiquitination is due to 

autoubiquitination in the Philadelphia strain. However, due to the ubiquitination of the Paris 

strain AnkB in a non-degradative manner, it is likely the same occurs for the Philadelphia 

strain AnkB as well. This raises an intriguing question as to how different L. pneumophila 

strains utilize the effector proteins they have acquired. While this dissertation focuses on 

AnkB, there is a multitude of effector proteins that allow L.pneumophila to avoid 

phagasome-lysosome fusion and the formation of the LCV which provides the platform for 

AnkB to function upon.  

The K11-linked polyubiquitination of AnkB introduces two novel findings to cellular 

biology. It is the first bacterial effector protein shown to be polyubiquitinated through K11 

linkages, and the first prokaryotic or eukaryotic F-box protein shown to be polyubiquitinated 

through K11 linkages. Interestingly, K11-linked polyubiquitination of AnkB does not lead to 

proteasomal degradation. Unlike other examples of K11-linked polyubiquitination, the 

stability of AnkB is not affected. Unlike other examples of K11-linked polyubiquitination that 

have primarily been seen by proteins involved in the cell cycle regulation through 

ubiquitination by the Anaphase –promoting complex E3 ubiquitin ligase, AnkB is a bacterial 

effector that lacks these properties [283, 284]. This atypical K11-linked ubiquitination of a 

bacterial effector raises the question if other effectors are modified through similar 

polyubiquitin chain linkages. We have observed the ubiquitination of AnkB on several 

different K residues through mass spectrometry, and the K residues were located in the C 

terminus and N terminus of the protein. It has been shown for bacterial effectors as well as 

eukaryotic proteins that ubiquitination can occur on multiple K residues and there is little 

specificity as to which K is modified [234, 278]. When two of the ubiquitinated K residues of 
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AnkB were substituted with arginine residues, ubiquitination of AnkB still occurred (though 

likely on other K residues). Therefore, it was not possible to determine if the ubiquitination is 

needed for the functional aspects of AnkB or for intracellular replication of L. pneumophila. 

AnkB contains 19 K residues, therefore we did not proceed with the substitution as we were 

concerned that substitution of 19 residues could lead to the protein function being 

compromised. However, if we could determine that the ubiquitination occurs in a specific 

region or domain of AnkB, this substitution procedure would be more accurate. Determining 

which eukaryotic E3 ubiquitin ligases are able to recognize bacterial proteins, and how this 

recognition can occur, should strengthen the information on effector ubiquitination. The K48-

linked polyubiquitination of effectors can be explained as being a foreign protein, therefore 

the E3 ubiquitin ligases marks the protein for proteasomal degradation. The mechanisms 

underlying polyubiquitination of effector proteins independent of proteasomal degradation is 

nonexistent. 

There is limited knowledge on ubiquitination other than K48 or K63, which 

includes (K6, K11, K27, K29, K33). Importantly, the K11-linked polyubiquitination of AnkB 

shows another mode of ubiquitination of bacterial effector proteins independent of 

proteasomal degradation. The ubiquitination of AnkB could result in a-conformational 

change, therefore causing AnkB to release the substrates of the ankyrin domains. This 

type of signaling has been seen with K29-linked polyubiquitination [285]. It does not 

appear that this ubiquitination would affect the subcellular localization of AnkB, as it is 

anchored into the LCV membrane through host-mediated farnesylation immediately 

following translocation [135, 241]. The ubiquitination of AnkB most likely occurs on the 

LCV during infection, however the timing of this is yet to be determined. Ubiquitination 
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of SopB from Salmonella does not occur until ~1 hour after infection, therefore in vivo 

ubiquitination analysis should be evaluated at multiple time points during infection [234]. 

The function of AnkB during infection is to provide an increase in free cellular amino 

acids, which is essential to support replication. Therefore the absence of proteasomal 

degradation during ectopic expression of AnkB supports the hypothesis that AnkB is 

functional throughout the infection. Further research into the mechanisms of this K11-

linked polyubiquitination will answer unknown questions regarding this mode of 

polyubiquitination. Therefore, while the function is unknown, this represents novel 

polyubiquitination of an F-box protein, and could present valuable information on the 

function of F-box proteins 
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CONCLUSIONS AND FUTURE DIRECTIONS 

 

This project has determined the initial kinetics and mechanisms of the                       

L. pneumophila effector AnkB upon intimate contact of extracellular bacteria with the 

eukaryotic host. AnkB is the only one of seven eukaryotic-like ankyrin proteins in                       

L. pneumophila to be translocated from attached extracellular bacteria. This shows an unique 

ability for a bacterium to prioritize the translocation of certain effectors, probably the effector 

proteins that are needed for early aspects of intracellular replication. We conclude that AnkB 

is translocated from attached extracellular bacteria to generate a surplus of amino acids that 

prevents differentiation from the replicative phase to the transmissive phase and will power 

subsequent intracellular replication. This pre-programming of the nutrient sources in the host 

cell by AnkB shows a level of sophistication L. pneumophila has obtained to generate a 

favorable nutrient rich environment within human macrophages and amoeba.  

The recruitment of the farnesylation and ubiquitination machinery is dependent on the 

Dot/Icm secretion system; AnkB appears to play a critical role in this recruitment as the ankB 

mutant strain is less efficient at recruitment compared to the WT strain. While                       

L. pneumophila is the only intracellular pathogen known to recruit host cell farnesylation and 

polyubiquitination machineries to the point of extracellular bacterial attachment, 

undoubtedly, other intracellular pathogens manipulate host cellular processes during the 

initial infection process to establish a suitable niche for intracellular replication. 
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The polyubiquitinated proteins on the LCV have a wide range of cellular processes, 

including immune response and nutrient transport. L. pneumophila encodes at least 2 E3 

ubiquitin ligases, which could potentially ubiquitinate some of the immune response proteins 

included in the ubiquitinated proteome, causing their proteasomal degradation and thereby 

influencing the immune response of the cell. To determine the substrates of AnkB is an 

ongoing process that will identify specific eukaryotic proteins that are degraded by the 

proteasomes to generate a surplus of amino acids. Ankyrin domains have the ability to bind 

more than one interacting protein. Therefore it is unknown how many substrates AnkB has or 

if the substrates are proteins expressed in high abundance. The ubiquitinated proteome can be 

utilized in RNAi knockdown experiments of the identified proteins, which can help 

distinguish which ubiquitinated proteins are required for intracellular replication. The 

unknown ubiquitinated targets of AnkB are most likely in the ubiquitinated proteome of the 

WT strain and therefore we have reduced the amount of possible binding partners from the 

~250 proteins localized to WT strain LCV’s and excluded from the ankB mutant strain LCV. 

The K48-linked polyubiquitinated substrates of AnkB are degraded by the proteasomes, 

therefore another possibility is that proteins found on the ankB mutant strain LCV and 

excluded on the WT strain LCV could be the AnkB substrates. However, due to the 

published confocal microscopy data showing the cloud of polyubiquitinated proteins 

surrounding the LCV throughout infection, we favor the former possibility. The E2 ubiquitin-

conjugating enzymes and the E3 ubiquitin ligases in the complete LCV proteome can help 

decipher the complexity of the LCV ubiquitination and perhaps determine additional host cell 

ubiquitination machinery that is required for infection, which was previously shown for the 

SCF1 E3 ubiquitin ligase complex. Knockdown experiments using RNAi on the E3 ubiquitin 
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ligases and the E2 ubiquitin-conjugating enzymes can determine which are needed and 

possibly manipulated by L. pneumophila during infection. Furthermore, the identified E3 

ubiquitin ligases can polyubiquitinate L. pneumophila effectors leading to their proteasomal 

degradation, altered sub-cellular localization or function.  

To date we have not been able to inhibit the ubiquitination of AnkB by substituting 

the ubiquitinated lysine residue with an arginine residue. Therefore, we have not been able to 

determine the effect of the lysine11-linked polyubiquitination of AnkB. However, the 

polyubiquitination of AnkB does not result in its proteasomal degradation. As AnkB is the 

first F-box protein shown to be modified through lysine11-linked polyubiquitination, 

determining the mechanism could add valuable evidence into the field of 

lysine11polyubiquitination. Lysine11-linked polyubiquitination of AnkB could possible 

disrupt the binding between the ankyrin domains of AnkB and their target proteins or 

possibly cause some downstream signaling events to occur. Future studies will be to 

substitute multiple lysine residues in AnkB with arginine residues, and perform the same 

immunoprecipitation experiments to determine if lack of ubiquitination changes the function 

of AnkB. This substitution method was performed with the Salmonella effector SopB, where 

they noticed SopB was polyubiquitinated through K63 and the result was an altered sub-

cellular localization[234]. Understanding the mechanism of the lysine11-linked 

polyubiquitination will provide information on effector protein polyubiquitination, which is a 

field with only a few examples. While AnkB specifically interacts with Trim21 it has not 

been experimentally verified that Trim21 ubiquitinates AnkB. Using siRNA against Trim21 

did not abolish the ubiquitination of AnkB, therefore we could not conclude Trim21 

ubiquitinates AnkB (data not shown). However, technical issues with anti-Trim21 antibodies 
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possibly played a role in determining efficient knockdown. Therefore, future experiments 

would look into the AnkB-Trim21 interaction and determine if Trim21 is the E3 ubiquitin 

ligase responsible for the ubiquitination of AnkB. This can be achieved by 

immunoprecipitating AnkB from Trim21 knockout cells and detecting ubiquitination of 

AnkB by Western Blot or more specific mass spectrometry. To determine if Trim21 is a 

substrate of AnkB we can perform co-immunoprecipitation experiments with an AnkB 

variant lacking the ankyrin domains and probe the Western Blot membrane with anti-Trim21. 

These future experiments will help solidify the mechanism AnkB utilizes during intracellular 

infection to provide the gratuitous supply of amino acids.
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