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ABSTRACT	

MULTILAYER	ELECTRET	ACTIVATED	BY	DIRECT	CONTACT	SILICON	ELECTRODE	

Mark	M	Crain	III	

November	11,	2014	

Electrets	 used	 in	 microelectromechanical	 systems	 (MEMS)	 devices	 are	 often	

formed	by	corona	charging,	where	ionized	gases	are	generated	in	an	electric	field	to	

introduce	 a	 charge	 to	 the	 electret	 surface.	 	 The	 purpose	 of	 this	 study	 was	 to	

investigate	 a	 new	 technique	 for	 creating	 an	 electret	 from	 a	 plasma	 enhanced	

chemical	vapor	deposition	(PECVD)	multilayer	film	of	SiO2/Si3N4/SiO2	using	a	direct	

contact	electrode	of	silicon.		The	electret	formation	takes	advantage	of	deep	traps	in	

silicon	nitride,	which	are	known	to	develop	from	hydrogen	interactions	with	silicon	

dangling	bonds	and,	in	some	stoichiometries,	nitrogen	dangling	bonds.		The	electret	

activation	process	has	been	optimized	for	maximum	effective	surface	voltage	(ESV).		

The	deposition	and	activation	process	for	the	electret	has	the	additional	benefit	of	

using	 commercially	 available	 equipment	 present	 in	 many	 microelectronic	

fabrication	 facilities.	 	 Standardized	 processes	 for	 depositing	 the	 PECVD	 film	 stack	

and	activating	the	electret	with	a	wafer	level	bonder	have	been	developed.	
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Using	 this	 new	 process,	 electret	 films	 have	 been	 produced	 with	 positive	 and	

negative	effective	surface	voltages	 in	excess	of	+/‐194.0	V.	 	Extrapolated	 lifetimes,	

based	 on	 thermal	 decay	 studies,	 are	 calculated	 to	 be	 57	 years	 and	 23	 years	 for	

positive	 and	negative	 electrets	 respectively	 if	 they	 are	maintained	 in	moderate	 to	

low	humidity	environments	below	125°C.	 	Activation	energy	 levels	 in	positive	and	

negative	electrets	are	1.4	eV	and	1.2	eV	respectively.	 	This	new	electret	multilayer	

film	stack	and	direct	charging	method	produced	thin	film	electrets	with	a	half‐life	5	

times	 greater	 than	 that	 reported	 in	 literature	 by	 other	 groups	 using	 PECVD	

multilayer	electrets	[1,	2].	

A	 new	 application	 was	 investigated	 to	 see	 how	 an	 electret	 may	 benefit	

semiconductor‐liquid	 interactions.	 	 The	 PECVD	 electret	 was	 used	 to	 apply	 a	 gate	

bias	to	the	back	side	of	a	double	side	polished	silicon	wafer	to	determine	the	effect	

of	 gate	 bias	 on	 the	 etch	 rates	 of	 an	 anisotropic	 silicon	 etch	 in	 25%	 wt.	

tetramethylammonium	 hydroxide	 (TMAH).	 	 Our	 results	 show	 that	 the	 positively	

charged	 electret	 produced	 a	 statistically	 significant	 increase	 in	 etch	 rate,	 when	

compared	to	neutral	and	negatively	charged	electrets,	as	the	silicon‐TMAH	interface	

approached	the	depletion	region	produced	by	the	electret.		The	mean	values	of	the	

silicon	 etch	 rate	 were	 evaluated	 for	 the	 last	 hour	 of	 etching	 with	 samples	

categorized	 by	 electret	 potentials	 as	 positive,	 negative	 or	 neutral.	 	 The	 positive	

potential	electret	had	a	mean	etch	rate	of	12.0	um/hr	for	silicon	as	compared	to	8.8	

um/hr	and	8.6	um/hr	for	negatively	and	neutrally	charge	electrets	respectively.		The	

one	way	Analysis	Of	Variance	(ANOVA)	of	the	silicon	etch	rates	between	the	neutral	
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(control)	PECVD	film	and	the	positive	electret	had	a	P	value	of	0.009	and	falls	within	

the	1%	significance	level,	showing	that	it	is	very	likely	that	the	positive	electret	film	

has	an	effect	on	the	final	etch	rate	of	the	silicon	under	null	hypothesis	testing.	
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Figure	66.		Positive	potential	ESV	“interaction”	plot	of	temperature	(°C),	time	(hrs),	

and	applied	voltage	(V).	 104 



xxii	

	

Figure	67.		The	ITPD	plot	for	a	sample	from	wafer	3	shows	the	ESV	as	a	function	of	

time,	aged	at	300°C.	The	sample	was	activated	at	300	V	 for	1	hour	at	170°C.	 	The	

best	 fit	 regression	 to	 the	 exponential	 decay	 is	 provided	with	 the	 95%	 confidence	

interval	and	95%	prediction	interval.	 106 

Figure	68.		The	ITPD	plot	for	a	sample	from	wafer	3	shows	the	ESV	as	a	function	of	
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best	 fit	 regression	 to	 the	 exponential	 decay	 is	 provided	with	 the	 95%	 confidence	

interval	and	95%	prediction	interval.	 107 

Figure	69.		Positively	charged	electret,	semi‐log	plot	of	the	exponential	decay	rate	vs	

1000/Temperature.	 	 Samples	 from	 each	 of	 the	 4	 wafers	 were	 subjected	 to	

accelerated	aging	at	325°C,	300°C,	275°C,	250°C,	and	200°C.	 109 
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Figure	71.		A	band	diagram	of	a	the	MIS	etch	stop	with	bias	between	gate	and	silicon	
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Figure	 72.	 	 A	 linear	 best	 fit	 for	 etch	 depth	 samples	 as	 a	 function	 of	 the	 time	

remaining	to	the	end	of	the	silicon	etch	are	grouped	by	electret	potentials;	positive,	

negative,	and	neutral.	 114 
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1 INTRODUCTION	

Electrets	are	materials	with	permanent	“net”	and	“polarized”	charges	that	reside	

on	 the	 surface	 or	within	 the	material	 [3].	 	 Electrets	 are	 beneficial	 for	 providing	 a	

continuous	 electrostatic	 potential,	 over	 a	 range	 of	 fractional	 volts	 to	 several	

thousand	volts,	without	the	use	of	an	external	power	supply.		The	electret	provides	

an	 apparent	 potential	 at	 its	 surface,	 referred	 to	 as	 the	 effective	 surface	 voltage	

(ESV).	 	 Thin	 film	 electrets	 have	produced	 some	 revolutionary	devices	 such	 as	 the	

electret	microphone	and	nonvolatile	memory	which	remain	 functional	 for	decades	

[4‐6].	 	 Traditionally,	 field	 effect	 transistor	 (FET)	 microphones,	 also	 known	 as	

electret	condenser	microphones	 (ECMs),	are	made	with	an	electret	consisting	of	a	

Mylar	 or	 Polytetrafluoroethylene	 (PTFE)	 [3,	 7,	 8].	 	 Integration	 of	 surface	 mount	

electret	microphones	has	been	limited	due	to	the	inability	of	the	polymer	electret	to	

maintain	 a	 charge	 throughout	 the	 surface	mount	 reflow	 process	which	 can	 be	 as	

high	at	260°C.		Inorganic	electret	materials,	such	as	silicon	oxide	and	silicon	nitride	

have	 been	 shown	 to	 provide	 stable	 electret	 charge	 at	 elevated	 temperatures	

exceeding	 surface	mount	 reflow	 process	 [2,	 7‐10].	 	 Research	 has	 been	 conducted	

with	these	inorganic	electret	materials	to	 integrate	them	in	to	MEMS	microphones	

providing	 the	 benefits	 of	 system	 integration	 and	 charge	 stability	 [8,	 9].	 	 The	

mechanical	properties,	together	with	the	established	integration	of	silicon	oxide	and	
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silicon	nitride	 films	 in	MEMS	platforms,	makes	 these	 films	 an	 excellent	 choice	 for	

integrating	 electrets	 into	 MEMS	 devices	 [11].	 	 The	 benefits	 of	 electrets	 as	 a	

permanent	or	semi‐permanent	electric	field	source	has	been	realized	in	many	other	

applications;	Xerography	[6,	12],	dosimeters	[13,	14],	pressure	sensors	[10],	energy	

harvesters	[15],	electro‐active	polymer	(EAP)	actuation	[16,	17],	and	solar	cells	[18].	

Thermally	 assisted	 poling,	 corona	 charging,	 and	 electron	 beam	 exposure	 are	

three	methods	frequently	used	to	produce	electret	materials.	 	Each	method	has	its	

benefits	and	limitations;	the	best	choice	depends	on	the	material	to	be	charged,	the	

application,	 and	 cost	 effectiveness.	 	 Corona	 charging	 and	 electron	 beam	 exposure	

are	 frequently	 used	 in	microfabricated	 devices;	 corona	 charging	 is	 limited	 by	 the	

requirement	of	ion	exchange,	and	both	corona	charging	and	electron	beam	exposure	

are	limited	by	single	polarity	charging,	and	custom	equipment	to	form	the	electret.		

Thermally	assisted	poling	is	the	oldest	method	of	electret	formation.		In	this	method,	

a	mixture	of	carnauba	wax	and	colophony	(tree	sap)	 is	heated	to	 its	melting	point	

while	 a	 high	 electric	 field	 is	 applied	 between	 two	 electrodes	 in	 contact	 with	 the	

mixture;	 the	mixture	 is	 cooled	 to	 solidification	under	 the	 electric	 field	 to	 produce	

the	 electret.	 	 Direct	 contact	 poling	 is	 rarely	 discussed	 as	 part	 of	 a	 MEMS	 based	

manufacturing	process	and	has	not	been	addressed	for	multilayer	SiO2/Si3N4	films.		

The	 new	 process	 presented	 does	 share	 some	 similarities	 to	 charge	 trap	 flash	

memory	 devices,	 with	 important	 differences	 in	 increased	 film	 thickness	 and	 the	

open	faced	charged	film	being	unique	to	the	electret	produced.	The	purpose	of	this	

study	 is	 to	develop	a	PECVD	SiO2/Si3N4/SiO2	electret	with	a	direct	contact	 thermally	
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assisted	poling	process	that	requires	no	ionic	interface	with	the	PECVD	film	surface	as	

part	of	the	charging	process,	can	produce	both	positive	and	negative	effective	surface	

voltages	with	a	single	process	polarization,	and	can	be	conducted	with	commercially	

available	 semiconductor	processing	 equipment.	 	 There	 are	 three	main	 aims	 to	 this	

study	which	will	be	investigated.	

The	primary	aim	is	to	develop	a	high	temperature	electret	that	can	be	programed	

to	provide	a	positive	or	negative	effective	 surface	voltage.	 	 A	new	method	of	 direct	

contact	electret	activating	a	PECVD	multilayer	of	SiO2/Si3N4/SiO2	is	introduced	with	

a	 study	 on	 optimizing	 the	 effective	 surface	 voltage	 of	 the	 film	 generated	 using	 a	

SUSS	SB6+	anodic	bonding	 system.	 	The	design	of	 experiment	 consists	of	 a	23	 full	

factorial	analysis	as	a	function	of	activation	temperature,	process	time,	and	applied	

voltage.			

A	secondary	aim	of	this	study	is	to	determine	the	activation	energy	of	the	electret	

film	 required	 to	 neutralize	 the	 effective	 surface	 voltage.	 	 The	 activation	 energy	 is	

determined	 by	measuring	 the	 open	 circuit	 isothermal	 decay	 rate	 of	 the	 electret’s	

effect	 surface	 voltage	 over	 time.	 	 The	 measurement	 is	 made	 at	 several	 elevated	

temperatures	to	determine	the	exponential	decay	rate	of	the	charge.		This	data	is	fit	

to	 the	 Arrhenius	 function	 and	 the	 activation	 energy	 for	 positive	 and	 negative	

electrets	is	determined.	

A	 tertiary	 aim	 is	 to	 explore	 the	 implementation	 of	 the	 electret	 as	 part	 of	 an	

electrochemical	etch	stop	process.	 	The	electret	acts	as	the	“on	wafer”	bias	required	



4	

	

for	strong	inversion	and	produces	a	depletion	region	for	an	etch	stop,	similar	to	the	

MIS	etch	stop	presented	by	other	groups	[19].		The	electrochemical	etch	stop	makes	

use	of	a	reverse	bias	at	the	dielectric‐silicon	interface	as	in	a	MOSFET	and	other	MIS	

devices.	 	 Application	 of	 the	 electret	 in	 this	 type	 of	 etch	 stop	 targets	 a	 number	 of	

benefits	including;	

‐ no	external	power	supply	for	the	strong	inversion	of	the	MIS,	

‐ no	additional	doping	of	the	silicon,	as	required	for	a	p‐n	junction	etch	stop,	

‐ easy	thermal	neutralization	of	charge,	

‐ and	adjustable	thickness	control.	

The	PECVD	film	is	treated	at	the	die	 level	 in	a	direct	contact	activation	process	

and	test	die	are	fabricated	to	determine	if	the	electret	is	applicable	to	an	etch	stop	in	

silicon.		The	electret	is	protected	from	direct	etchant	contact	with	the	use	of	special	

etch	 cells	 and	 the	 etchant	 approaches	 the	 electret‐silicon	 interface	 as	 the	 silicon	

etches.	 	A	number	of	 timed	etches	are	made	and	 the	progress	of	 the	etch	depth	 is	

monitored	 over	 time	 to	 determine	 if	 the	 charge	 of	 the	 electret	 produces	 and	

effective	depletion	region	to	terminate	the	etch	process.		The	effect	of	the	electret’s	

potential	 on	 the	 final	 etch	 rate	 of	 silicon	 is	 determined	 by	 the	 “Null	 Hypothesis”	

method.	 	 The	 “Null	 Hypothesis”	 for	 this	 set	 of	 experiments	 is	 that	 there	 is	 no	

statistical	 difference	 in	 the	 final	 etch	 rate	 between	 samples	 grouped	 by	 electret	

potential.	 	 An	 ANOVA	 is	 performed	 to	 determine	 if	 the	 null	 hypothesis	 can	 be	

rejected	between	any	group	of	samples	based	on	the	charge	of	the	electret.	
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These	 early	 electrets	 where	 formed	 as	 dielectric	materials	 consisting	 of	 wax	 and	

rosin	 developed	 net	 charges	 when	 cast	 and	 cooled	 in	 iron	 molds.	 	 Additional	

observations	had	been	made	by	Heaviside	 in	 the	 late	1800’s.	 	Heaviside	observed	

mobile	 charges	 within	 the	 insulating	 material	 migrating	 due	 to	 external	 applied	

potential	 and	due	 to	 fixed	polarization	within	 a	 dielectric	material.	 	 These	mobile	

charges	 effectively	 mask	 the	 fixed	 charge	 from	 external	 surroundings.	 	 It	 was	

around	 1920	 that	 Mototaro	 Eguchi	 combined	 these	 two	 effects	 and	 was	 able	 to	

create	 thermoelectrets	 by	 applying	 external	 electric	 fields	 during	 the	 cooling	 and	

solidification	process	[6].		An	appreciation	for	the	complex	nature	of	currents	within	

the	 electret	 during	 charging	 and	 discharging	 developed	 in	 the	 early	 1900’s,	 as	 it	

became	clearer	 that	multiple	 current	 sources	were	acting,	 some	caused	by	 charge	

injection	and	others	by	ion	mobility	and	bond	breaking	[24].	Properties	of	electrets	

on	ionized	gas	and	on	the	polarization	of	water	have	been	understood	for	nearly	a	

century	[25].	

Inorganic	 electrets	 including	 SiO2,	 Si3N4,	 silicon	 oxynitride,	 and	 alumina	 have	

been	well	 studied	 and	 they	 are	 popular	 choices	 in	 traditional	 semiconductor	 and	

MEMS	applications	[10,	26].	 	These	inorganic	electrets	provide	a	number	of	charge	

trapping	 mechanisms;	 making	 use	 of	 dangling	 bonds,	 hydrogen	 defects,	 and	

bandgap	 interfaces.	 	 The	 wide	 bandgap	 of	 the	 outer	 silicon	 oxide	 films,	 in	

comparison	to	the	interior	silicon	nitride	film,	provides	a	number	of	charge	trapping	

opportunities.	 	 Composite	 multilayer	 inorganic	 electrets	 are	 favored	 over	 single	
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them.		The	surface	charge	density,	σp,	at	the	face	of	each	plate	varies	proportionally	

with	the	potential,	V,	between	the	plates,		

	 ܧ ൌ ݐܸ ൌ
ఙ೛
ଶ೚
	,	 Equation	1	

where	t	is	the	distance	between	plates	and	o	is	the	permittivity	of	free	space.	

An	 ideal	 capacitor	 contains	 identical	 charge	 densities	 on	 each	 plate,	 one	 net	

positive	and	the	other	net	negative.	 	While	the	capacitor	can	store	this	energy	in	a	

quasi‐permanent	 time	 frame,	 the	 charges	 are	 mobile	 within	 each	 plate	 and	 will	

readily	migrate	 to	 equalize	 in	 potential	 if	 given	 the	 opportunity.	 	 As	 the	 potential	

between	the	two	conductive	layers	is	increased,	the	charge	(σp)	on	each	conductive	

plate	 also	 increases.	 	As	 the	 charge	density	on	 the	 conductive	plate	 increases,	 the	

electric	field	between	the	two	plates	increases.	As	presented	in	the	detail	of	Figure	

7(b),	 the	 charge	 movement	 within	 the	 dielectric	 is	 limited	 and	 no	 charge	 is	

transferred	from	the	dielectric	to	the	conductive	plates.		Mobile	charges	and	dipoles	

in	 the	 insulator	 respond	 in	 opposition	 to	 this	 electric	 field	 and	 reduce	 the	 net	

electric	 field	 between	 the	 two	 conductive	 plates	 when	 compared	 to	 an	 identical	

parallel	plate	configuration	without	the	dielectric.		The	electric	field,	E,	between	the	

parallel	conductive	plates	is	given	by,		

	 ܧ ൌ
ఙ೛

ଶ೚ೝ
	,	 Equation	2	
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and	results	in	an	electric	displacement,	Ddielectric,	for	the	basic	dielectric	

	 ሬሬറௗ௜௘௟௘௖௧௥௜௖ܦ ൌ ሬറܧ௢ߝ ൅ ሬܲറ ൌ 	.ሬറܧ௢ߝ௥ߝ Equation	4	

The	electric	displacement	provides	a	complete	description	of	the	resulting	force	due	

to	 the	 electric	 field	 and	 polarization	 [40].	 	 It	 is	 not	 required	 that	 the	 relative	

permittivity	of	the	material,	r,	be	constant.		The	relative	permittivity	of	paraelectric	

materials	 typically	decreases	as	 the	electric	 field	 increases,	as	presented	earlier	 in	

Figure	 3.	 	 The	 displacement	 field	 becomes	 more	 interesting	 with	 ferroelectric	

materials	where	residual	polarization	exists	without	any	electric	field.		In	this	case,	

the	polarization	of	a	ferroelectric	material	can	be	treated	as	a	constant	and	for	the	

rest	of	this	discussion	will	be	considered	as	a	component	of	electrets,	referred	to	as	

Pelectret.		Electrets	may	also	have	space	charges	and	surface	charges.		In	device	design	

and	 many	 practical	 applications	 these	 real	 charges	 are	 lumped	 together	 as	 an	

effective	surface	charge,	σelectret.		The	summation	of	the	electric	field	induced	electric	

displacement	 (Equation	 4),	 the	 permanent	 polarization,	 and	 the	 effective	 surface	

charge	represent	the	complete	electric	displacement	field	

	 ሬሬറ௘௟௘௖௧௥௘௧ܦ ൌ ሬറܧ௢ߝ௥ߝ ൅ റ௘௟௘௖௧௥௘௧ߪ ൅ ሬܲറ௘௟௘௖௧௥௘௧.	 Equation	5	

The	 general	model	 presented	 in	 Figure	 10	 is	 useful	 in	 understanding	 how	 the	

charge	 of	 a	 thin	 film	 electret	 affects	 its	 surroundings.	 	 The	 effects	 of	 a	 moving	

conductive	plate,	effective	surface	charge	measurements,	and	the	electret’s	effect	on	
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௢௫௜ௗ௘ݐ	 	

௢௫௜ௗ௘ܦ
௢௫௜ௗ௘

	൅ ௡௜௧௥௜ௗ௘ݐ
௡௜௧௥௜ௗ௘ܦ
௡௜௧௥௜ௗ௘

൅ ௔௜௥ݐ
௔௜௥ܦ
௔௜௥

ൌ ௢ܸ	
Equation	6

The	displacement	 fields	of	 the	oxide	 layer	and	air	 layer	are	defined	by	the	surface	

charge	density	of	their	respective	metal	electrodes	

	 ௢௫௜ௗ௘ܦ ൌ 	ଵߪ Equation	7

	 ௔௜௥ܦ ൌ 	.	ଶߪ Equation	8

Any	 change	 in	 the	 displacement	 field	 intensity	 is	 modeled	 to	 be	 due	 to	 a	 fixed	

surface	charge	density	between	layers	

	 െܦ௢௫௜ௗ௘ ൅ ௡௜௧௥௜ௗ௘ܦ ൌ 	௢௫ି௡௜ߪ Equation	9

	 െܦ௡௜௧௥௜ௗ௘ ൅ ௔௜௥ܦ ൌ 	.	௡௜ି௔௜௥ߪ Equation	10

In	 the	 “non‐electret”	 case,	 there	 are	 no	 fixed	 charges	 in	 the	 dielectrics	 or	

interfaces,	 ௢௫ି௡௜ߪ ൌ ௡௜ି௔௜௥ߪ ൌ 0.	 	 The	 displacement	 field	 in	 each	 region	 of	 film	 is	

equal,	 ௢௫௜ௗ௘ܦ ൌ ௡௜௧௥௜ௗ௘ܦ ൌ 	,௔௜௥ܦ regardless	 of	 any	 applied	 voltage,	 Vo.	 	 With	 no	

charges	 located	 at	 the	 oxide‐nitride	 interface	 and/or	 the	 nitride‐air	 interface,	

ଵߪ 	൅	ߪଶ ൅	ߪ௢௫ି௡௜ ൅ ௡௜ି௔௜௥ߪ ൌ 0.	 	 The	 charge	 on	 metal1	 and	metal2	 are	 oppositely	

charged	and	equal	in	magnitude,	ߪଵ 	൅	ߪଶ ൌ 0.	
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Here	metal2	acts	as	the	free	electrode	(electrostatic	meter	probe)	and	its	potential	is	

adjusted,	 using	 feedback	 control	 circuitry,	 to	 a	 point	 that	 ௔௜௥ܦ 	ൌ 0	 and	 ௡௜ܦ 	ൌ 0,	

which	means	that	ߪଶ ൌ 0	and	ߪ௢௫ି௡௜ ൌ െߪଵ.		Equation	6	simplifies	to	

	
௢௫௜ௗ௘ݐ

௢௫ି௡௜ܦ
௢௫௜ௗ௘

ൌ ௢ܸ	
Equation	13

where	the	voltage,	in	Figure	11,	is	the	effective	surface	voltage	of	the	electret	film	as	

measured	by	the	electrostatic	voltmeter.		As	an	example,	with	a	permittivity	of	3.45	

(10)‐11	C/(V*M)	and	a	silicon	oxide	thickness	of	1650	nm,	an	interface	charge	of	4.71	

mC/m2	 at	 the	 blocking	 oxide‐silicon	 nitride	 interface	 will	 produce	 an	 effective	

surface	voltage	of	225V.	

Isothermal	potential	decay	(ITPD)	data	is	collected	by	taking	ESV	measurements	

as	a	 function	of	 time	at	a	specified	 temperature	 [2].	 	The	exponential	decay	of	 the	

ESV	at	different	elevated	temperatures	allows	for	extrapolation	of	the	ESV	at	room	

temperature	 (or	 the	 designed	 operating	 temperature)	 so	 that	 the	 system	making	

use	of	the	electret	film	can	determine	its	useful	lifetime.		It	is	important	to	recognize	

that	multiple	slopes	may	emerge	on	the	Arrhenius	plot	of	the	lifetime	coefficient	as	a	

function	of	temperature.		This	can	be	due	to	increases	of	thermal	energy	required	to	

initiate	 charge	migration	 in	 electron/hole	 trapping	mechanisms,	 dipole	 relaxation	

times,	and	ion	migration	[43].		Protective	coatings	promoting	hydrophobic	behavior	

of	the	electret	may	deteriorate	at	elevated	temperatures	and	present	it	in	ITPD	data	

above,	the	decomposition	temperature	of	the	protective	coating.	
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2.7.2 Corona	Charging	

Corona	charging	is	inexpensive	to	implement	and	is	easy	to	implement	for	large	

surface	areas.		Without	heating	the	charge	material,	its	charging	method	is	limited	to	

surface	 charging	 and	 ferroelectric	 polarization	 [22].	 	 Heating	 the	 electret	 during	

corona	 charging	 can	 assist	 the	 electret	 activation	 process;	 thermally	 assisted	

activation	 with	 the	 corona	 field	 applying	 the	 potential	 to	 the	 electret	 surface	

provides	 additional	 opportunities	 with	 volume	 charging	 and	 a	 broader	 range	 of	

dipole	charging	effects	[22].	

Corona	 charging	 is	 a	 frequently	used	method	 that	makes	use	of	 ionized	gases;	

the	process	can	run	at	atmospheric	pressures.	 	 In	 the	case	of	corona	charging,	 the	

ions	produced	from	ionized	gas,	which	is	often	room	air,	are	propelled	to	the	surface	

of	the	electret	activated	material.		There	are	a	number	of	reactions	caused	by	corona	

charging	that	can	complete	the	electret	activation.		Ions	can	react	with	the	surface	of	

the	film	and	complete	a	covalent	bond	which	results	in	a	net	charge	at	the	surface.		

The	 ions	 can	also	 accumulate	 at	 the	 surface	without	bonding	and	act	 as	 a	 flexible	

charge	distribution	 that	applies	a	potential	 through	 the	dielectric	 film	 [2].	 	During	

heating	 this	 ion	 induced	 field	applies	 the	potential	 required	 for	 thermally	assisted	

poling.	 	As	a	third	process,	the	ions	may	not	bond	with	the	surface	but	may	diffuse	

into	 the	 surface	 of	 the	 electret	 film	 with	 a	 resulting	 net	 ionization	 charge	

distribution	just	below	the	surface.		Corona	activation	of	PTFE	is	transformed	from	a	



	

su

te

d

ch

p

d

v

w

th

a

urface	 char

emperature

Continuo

ischarge	sy

harging	for	

oint	discha

evelopment

Figure	13

Electron	

acuum.	 	 So

well	as	 local

he	 electret	

ssistance.	 	

rge	 effect	 t

es	approach

ous	 rolled	 p

ystems	to	pr

silicon	bas

arge	and	gri

ts	with	in	si

3.		Corona	ch

beam	 cha

urces	 are	 a

lized	patter

and	 can	 al

Electron	 b

to	 space	 ch

ing	the	glas

polymer	 she

romote	eve

sed	MEMS	d

id,	 as	 show

itu	device	le

harging	sch

rging	 of	 th

available	wh

rning.	 	Elect

so	 provide	

beam	 charg

27	

harge	 activa

ss	transition

eets	 and	 xe

n	charging	

devices	is	tr

wn	 in	Figure

evel	chargin

hematic	with

he	 dielectri

hich	 can	 pr

tron	beam	c

surface	 an

ging	 can	 pr

ation	 with	

n	temperatu

erography	 s

along	the	w

raditionally	

e	13,	 althou

ng	using	bui

h	heat	assist

ic	 typically	

rovide	 large

charging	pr

nd	 polarizat

roduce	 the	

thermally	

ure	of	PTFE	

systems	 typ

width	of	the

done	at	wa

ugh	 there	ha

lt	in	microe

tance	[44].	

requires	 p

e	 surface	 a

rovides	volu

tion	 chargin

obvious	 ne

assisted	 p

[6].	

pically	 use	

e	sheet.	 	Co

afer	level	w

ave	been	 re

electrodes	[4

	

processing	

rea	 coverag

ume	chargin

ng	with	 the

egative	 cha

oling	

wire	

orona	

with	a	

ecent	

44].	

in	 a	

ge	 as	

ng	 to	

ermal	

arged	



	

re

ch

th

su

ch

d

2

io

p

im

k

b

th

e

lo

2

ca

e

egions	 in	 t

harged	 regi

he	substrat

ubstrate	 lea

harging	can

amage	[6,	2

2.7.3 Elect

Back‐ligh

onization	of

ropelled	by

mplanting	 c

inetic	 energ

elow	the	su

he	implant	i

lectrons	to	

oss	of	negat

 Charg2.8

Silicon	ox

andidates.		

nvironment

the	 insulato

ions	due	 to

e;	 secondar

aving	 a	 net

n	 take	adva

22].	

tron	Beam

ht	 Thyratro

f	a	noble	ga

y	the	high	el

can	 produc

gy	of	 the	el

urface	of	the

increased.		W

be	scattered

tive	charges

ge	Traps	in

xide	and/or

These	inorg

ts	while	ma

or.	 	 Electro

o	 the	 second

ry	electrons

t	 positive	 r

ntage	of	 th

m	Implant

on	 (BLT)	 so

as,	such	as	h

lectric	field	

e	 net	 posit

lectrons.	 	 L

e	film.		As	t

With	high	e

d	out	of	the

	[45].	

n	SiO2	and	

r	silicon	nit

ganic	electr

aintaining	th

28	

on	 beam	 c

dary	 emissi

s	within	 the

region	 [45]

e	newly	cre

ources	 mak

hydrogen,	u

to	implant	

tive	 or	 nega

ow	energy	

the	implant

energy,	the	e

e	film,	result

Si3N4	

ride	have	s

rets	are	not

heir	charge

charging	 ca

ion	 and	 sca

e	substrate	

].	 	 Thermal

eated	 traps

ke	 use	 of	 t

under	vacuu

into	the	ele

ative	 electr

electrons	w

t	energy	is	i

electrons	ca

ting	in	a	pos

everal	adva

ted	for	with

e	[7].	 	 Inorg

an	 also	 pro

attering	of	 e

can	be	kno

lly	 assisted

s	generated	

the	 Townse

um.	 	The	fr

ectret	surfac

ret	 films	 de

will	 embed	

increase	the

an	actually	c

sitive	charg

antages	as	e

hstanding	hi

ganic	electre

oduce	 posit

electrons	w

ocked	out	o

d	 electron	 b

by	 the	elec

end	 avalanc

ee	electron

ce[46].		Elec

epending	 on

themselves

e	mean	dep

cause	secon

ge	because	o

electret	mat

igh	tempera

ets	compos

tively	

within	

of	 the	

beam	

ctron	

ching	

s	are	

ctron	

n	 the	

s	 just	

pth	of	

ndary	

of	the	

terial	

ature	

ed	of	



29	

	

silicon	 nitride	 or	 silicon	 oxide	 can	 have	 a	 thermally	 stimulated	 discharge	

temperature	as	high	as	500°C	where	traditional	fluorinated	electrets	like	PTFE	have	

a	lower	thermally	stimulated	discharge	temperature	in	the		range	of	200°C	to	250°C	

[22].		Silicon	nitride	and	silicon	oxide	are	also	compatible	with	microelectronic	and	

microfabrication	 processing.	 	 This	 is	 particularly	 advantageous	 given	 the	

microfabrication	 capability	 of	 getting	 this	 fixed	 charge	 to	 interact	 in	 a	 controlled	

manner	over	such	small	dimensions.	Effective	surface	voltages	of	‐300	V	have	been	

reported	for	SiO2/Si3N4	electrets	[26].	

Charge	 trapping	 is	 an	 important	 part	 of	 nonvolatile	 memory	 (NVM).	 	 A	

multilayer	 film	 of	 SiO2/Si3N4/SiO2	 on	 a	 silicon	 wafer	 is	 used	 to	 construct	 the	

nonvolatile	 gate	 used	 in	 	 silicon‐oxide‐nitride‐oxide‐silicon	 (SONOS)	 memory	 [5,	

47].		The	multilayer	properties	of	a	SiO2/Si3N4	film	on	silicon	are	considered	as	wide	

bandgap	 materials.	 	 Multilayer	 dielectrics	 provide	 additional	 charge	 trapping	

opportunities	with	the	collection	of	 interface	trapped	charges,	and	setting	barriers	

for	 fixed	 trap	 charges	 and	mobile	 ion	 charges.	 	 The	 charge	 trapping	 effects	 have	

been	show	to	survive	15	hrs	of	elevated	temperature	at	150°C	[47].		The	multilayer	

film	 traps	 charges	 in	 the	 silicon	 nitride	which	 hold	 the	 state	 of	 the	 gate	memory	

[48].	 	The	high	hydrogen	content	within	the	deposited	silicon	nitride	film	provides	

for	 Si‐H,	dangling	bonds	and	Si‐Si	 states	 that	 act	 as	 amphoteric	 traps	 for	 trapping	

charges	[49].		Elevated	temperature	studies	on	SONOS	memory	devices	have	shown	

that	 elevated	 temperatures	 of	 175°C	 are	 detrimental	 to	 excess	 electron	 charge	
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Leonov	provides	details	on	an	effective	procedure	for	pre	and	post	annealing	in	

conjunction	 with	 corona	 charging	 of	 the	 electret.	 	 The	 results	 show	 that	

pretreatment	 of	 the	 LPCVD	 generated	 silicon	 nitride	 with	 thermal	 oxide	 layers	

benefit	 from	 a	 dehydration	 bake	 when	 it	 comes	 to	 the	 decay	 life	 of	 the	 electret	

charge.	 	 The	 results	 also	 show	 that	 a	 post	 processing	 anneal	 of	 around	 250°C	

initially	causes	a	rapid	 field	 loss;	 it	has	also	be	documented	by	Leonov	that	a	heat	

pretreatment	 at	 450°C	 produced	 the	most	 durably	 held	 field	 and	with	 only	 1‐2%	

charge	 loss	as	compared	to	a	 typical	20%	loss	by	process	with	 lower	temperature	

pretreatments	of	 the	 film	 [28].	 	The	 range	of	 temperature	 ranges	used	 in	pre	and	

post	 treatments	 show	 that	 multiple	 charge	 trapping	 mechanisms	 are	 involved.		

Surface	 treatment	modifications	 to	 silicon	 nitrides	 and	 silicon	 oxides	 have	 shown	

drastic	 differences	 in	 the	 lifetimes	 of	 the	 electret	 charge.	 	 The	 lateral	 surface	

conduction	 on	 a	 silicon	 oxide	 surface,	 which	 normally	 makes	 it	 a	 poor	 electret	

candidate,	is	easily	modified	with	a	coating	of	HMDS	to	minimize	surface	conduction	

resulting	in	an	electret	with	a	lifetime	constant	of	over	400	years	[7].	 	This	coating	

process	is	performed	to	remove	water	vapor	and	prevent	reabsorption	of	the	water	

in	to	and	on	the	surface	of	the	film	since	it	has	been	well	documented	that	water	and	

humidity	 cause	 neutralization	 of	 the	 effective	 surface	 voltage	 as	 polarized	 water	

molecules	 adsorb	 to	 the	 electret	 and	mask	 the	 charge	 [11].	 	 Upon	deposition,	 the	

HMDS	 reacts	 to	 form	 a	 trimethylsilyl	 (TMS)	 monolayer	 on	 the	 multilayer	 PECVD	

electret		[7,	53].		The	TMS	monolayer	makes	the	multilayer	surface	hydrophobic	and	

prevents	 the	 deleterious	 effects	 of	 humidity	 from	 neutralizing	 the	 electret.		
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poling	[55],	Figure	16.		LPCVD	has	been	used	as	a	method	for	producing	SRN	films.		

LPCVD	silicon	nitride	films	are	generated	in	a	temperature	range	of	700‐900°C	from	

dichlorosilane	 and	 ammonia	 gas,	 although	 the	 excess	 ammonia	 gas	 concentration	

makes	it	relatively	easy	to	produce	stoichiometric	Si3N4.		Hydrogen	is	a	component	

to	 LPCVD	 and	 PECVD	 nitrides	 and	 oxides	 due	 to	 the	 use	 of	 silane	 and	 ammonia	

gases.	 	 LPCVD	 silicon	 nitride	 typically	 contains	 a	 lower	 hydrogen	 content	 verses	

PECVD	silicon	nitride,	8%	vs	25%	respectively.		LPCVD	silicon	nitride	can	be	a	good	

barrier	 to	hydrogen	diffusion	and	has	resistivity	on	 the	order	of	1016	ohm*cm.	 	 In	

contrast,	the	PECVD	silicon	nitride	has	a	high	hydrogen	content	and	the	resistivity	is	

on	 the	 order	 of	 105	 to	 1021	 ohm*cm	 [56].	 	 The	 hydrogen	 content	 is	 considered	 a	

liability	 to	 producing	 durable	 insulators	 with	 high	 breakdown	 voltages	 but	 the	

silicon‐hydrogen	and	nitrogen‐hydrogen	bonds	produce	defects	which	can	become	

active	charge	traps	when	the	hydrogen	 is	released	during	heating	and	under	 large	

electric	fields.		The	electron	trap	density	within	the	bulk	of	silicon	nitride	increases	

as	 the	 temperature	decreases	 from	150°C	to	room	temperature.	 	As	 this	 total	 trap	

density	increases	with	lowering	temperature,	the	interface	electron	trapping	at	the	

Si3N4/SiO2	 interface	decreases	[55].	 	Ultrathin	films	and	films	over	10nm	take	 into	

consideration	Trap	Assisted	Tunneling	(TAT)	[57,	58].	

Frenkel	 Poole	 (FP)	 conduction	 is	 considered	 the	 primary	 source	 of	 charge	

transfer	 with	 fields	 applied	 across	 SiO2	 and	 Si3N4	 films	 over	 10	 nm	 [5,	 59].	 	 The	

Frenkel	 Poole	 effect	 occurs	 under	 high	 electric	 fields,	 starting	 at	 2‐5	 MV/cm	 for	

silicon	nitride,	and	is	due	to	electrons	or	holes	migrating	from	one	shallow	trap	site	
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hydrogen	 atoms	 and	 increase	 the	 number	 of	 dangling	 bonds	 while	 annealing	 in	

hydrogen	can	decrease	the	dangling	bonds	[4,	5].	

Charge	traps	can	be	generated	in	SiO2	under	thermally	assisted	electric	fields	of	

1.5	MV/cm	[65,	66]	.		The	hot	carrier	electrons	injected	into	the	oxide	are	capable	of	

releasing	hydrogen	from	defect	locations	near	the	anode	surface	when	the	electron	

energy	 is	 2eV	 or	 greater.	 	 These	 positive	 charged	 hydrogen	 ions	 can	 migrate	 to	

cathode	region	of	 the	oxide	creating	 interface	states	near	 the	cathode	 for	electron	

traps,	Figure	18.		This	process	is	considered	independent	of	oxide	thickness	for	films	

over	10	nm.	 	This	process	a	good	candidate	 for	each	of	 the	dielectric	 layers	 in	our	

PECVD	multilayer	film.	 	The	effect	of	hydrogen	on	the	performance	of	NVM	is	well	

documented	and	particularly	a	concern	in	hydrogen	rich	PECVD	films		[49,	61,	67]		

Higher	 energy	 hot	 carrier	 electrons	 can	 produce	 inelastic	 scattering	 capable	 of	

producing	 secondary	 electron‐hole	 pairs	 available	 to	 fill	 deep	 trap	 locations	 [68].		

Annealing	 samples	 in	 the	 temperature	 range	 of	 200°C	 to	 300°C	 releases	 the	

hydrogen	from	Si	and	N	bonds	in	silicon	nitride	leaving	them	as	susceptible	trapping	

locations	[5].	

Impact	ionization	is	significant	when	field	strengths	are	greater	than	7	MV/cm	in	

SiO2.		At	these	high	electric	fields,	the	electron	energy	distribution	broadens	and	the	

energetic	tail	of	hot‐electron	energy	is	significant	enough	to	cross	the	silicon‐oxide	

Schottky	barrier	height.	 	Using	deep‐level	 transient	 spectroscopy	 (DLTS),	 the	 trap	

levels	have	been	measured	for	ONO	layers	[69]	 .	 	ONO	has	hole	traps	that	are	0.5‐
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A	 number	 of	 complementary	 measurement	 techniques	 make	 it	 possible	 to	

understand	 the	 inner	 workings	 of	 the	 electret’s	 charge	 profile	 and	 properties.	 A	

review	 of	 additional	 measurement	 techniques	 can	 be	 reviewed	 in	 [6,	 38].	 	 The	

electric	field	originating	form	an	electret	is	measured	by	controlling	the	position	of	a	

grounding	plane	with	a	vibrating	capacitor	field	meter	to	an	effective	surface	voltage	

(ESV)	 to	 the	 electret.	 	 Measurements	 at	 elevated	 temperatures	 can	 be	 used	 to	

provide	 isothermal	 potential	 decay	 measurements.	 	 These	 two	 methods	 will	 be	

discussed	in	greater	detail	in	the	following	section.	

Thermally	stimulated	discharge	current	(TSDC)	or	thermally	stimulated	current	

(TSC)	is	measured	from	the	electret	as	charges	and/or	dipoles	relax	and	discharged	

as	a	 function	of	 temperature.	 	Charges	released	as	a	 function	temperature	provide	

an	 estimate	 for	 the	 energy	 level	 of	 the	 trapped	 charge.	 Thermally	 stimulated	

discharge	 (TSD)	 enables	 the	 identification	 of	 the	 relaxation	 mechanisms	 of	 the	

electret	as	a	function	temperature	[70].		Two	common	configurations	are	the	air‐gap	

TSD	 and	 the	 direct	 contact	 TSD.	 	 In	 the	 air‐gap	 TSD	 configuration	 the	 electret	 is	

between	two	electrodes	but	one	electrode	is	not	in	direct	contact,	 limiting	transfer	

of	charge	to	or	from	the	electret	[38].		The	direct	contact	TSD	configuration	is,	just	as	

described	in	its	name,	with	the	electret	sandwiched	between	electrodes.		The	use	of	

both	methods	on	a	material	helps	to	provide	a	complete	picture	of	the	charge	and	

polarization	responsible	 for	 the	electret	characteristics.	 	Monitoring	 the	current	of	

the	 air‐gap	 configured	 TSD,	 due	 to	 the	 discharge	 of	 the	 electret	 as	 it	 is	 heating,	

provides	 a	 temperature	 depended	 profile	 of	 the	 dipole	 relaxation	 temperatures.		
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Monitoring	the	current	of	the	direct	contact	TSD	configuration	while	the	electret	is	

heating,	allows	for	both	net	charge	and	dipole	relaxation	currents	to	be	monitored	

simultaneously.	 	Using	both	permits	separation	of	the	current	data	due	to	each	the	

charge	migration	and	the	dipole	relaxation.		

Deep‐level	transient	spectroscopy	(DLTS)	or	transient	capacitance	spectroscopy	

(TCS)	monitors	 the	variation	 in	capacitance	as	a	gradual	change	 in	 temperature	 is	

made	 [38].	 	 There	 are	 many	 variations	 to	 this	 measurement	 technique,	 in	

semiconductor	junctions	the	space	charge	region	is	pulsed	with	a	forward	biased	so	

that	trap	locations	can	be	refilled.		The	capacitance	is	monitored	over	time	to	look	at	

the	emptying	of	these	traps	at	various	temperatures.	

The	 pulsed	 electro‐acoustic	 (PEA)	 method	 uses	 two	 direct	 contact	 electrodes	

and	an	applied	electrical	pulse	to	apply	a	force	to	the	trapped	charges	of	the	electret.		

This	 induces	 a	 displacement	 in	 the	 electret	 which	 propagates	 to	 a	 piezoelectric	

crystal	 mounted	 on	 one	 side	 of	 the	 electret.	 	 The	 piezoelectric	 crystal	 in	 turn	

produces	an	electric	potential	which	can	be	monitored.	The	time	delay	between	the	

input	 signal	 and	 output	 of	 the	 piezo	 crystal	 provides	 information	 on	 the	 physical	

depth	of	 the	charges	within	 the	electret	and	 the	 intensity	of	 the	output	relative	 to	

the	input	provides	information	on	the	effective	charge	density	[38].	

It	is	possible	to	tell	what	part	of	the	electrets	electric	field	is	due	to	polarization	

by	 looking	 at	 the	 difference	 in	 the	 films	 permittivity	 before	 and	 after	 electret	

activation.	 	 It	depends	on	 the	magnitude	of	 the	 field	 through	 the	material	and	 the	
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section	2.10	‐	”Charge	Trapping	in	SiO2,	Si3N4,	 	and	Multilayer	Electrets”.	 	Diffusion	

based	migration	of	charge	would	dominate	if	no	activation	energy	is	required.		The	

activation	energy	required	to	release	charge	traps	is	provided	thermally.	 	The	trap	

sites	 are	 due	 to	 bond	 defects	 and	 band	 interfaces	 at	 junctions	 between	 dielectric	

layers	and	the	silicon	wafer.		The	charges	in	these	filled	trap	locations	have	a	greater	

probability,	at	higher	temperatures,	of	having	sufficient	energy	to	move	to	a	higher	

energy	state	where	they	can	either	drift	or	diffuse.		Externally	applied	electric	fields	

and	internal	electric	fields	provide	the	electric	field	for	drift.	

First	order	exponential	decay	is	a	common	occurrence	in	nature.		It	stems	from	a	

quantity,	such	as	a	concentration,	changing	with	time	in	constant	proportion	to	that	

quantity.		The	equation	

	 ݀ܰሺݐሻ
ݐ݀

ൌ െܰߣሺݐሻ	
Equation	15

represents	this	behavior	where	N(t)	is	the	concentration	at	any	given	point	of	time,	

t,	 where	 λ	 is	 the	 exponential	 decay	 constant.	 	 Given	 the	 initial	 condition	 of	 a	

concentration	No	at	time	t=0,	the	exponentially	decaying	quantity	is	determined	by	

integration	of	Equation	15,	resulting	in	

	 ܰሺݐሻ ൌ ௢ܰ݁ିఒ௧.	 Equation	16
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where	No	 is	 the	 initial	 concentration.	 	 The	mean	 lifetime	 is	 the	 average	 period	 of	

time	for	the	initial	concentration	to	react.		It	can	be	calculated	from	the	exponential	

decay	formula,	Equation	16.	 	The	mean	lifetime	(τ)	is	determined	by	integration	of	

the	time	weighted	decay	

	
߬ ݎ݋ 〈ݐ〉 ൌ

׬ ௧ே೚௘షഊ೟ௗ௧
∾
బ

׬ ே೚௘షഊ೟ௗ௧
∾
బ

	.	
Equation	17	

The	result	is	that	the	mean	lifetime	is	the	inverse	of	the	exponential	decay	quantity	

τ=1/λ.		At	time,	t=τ,	the	concentration	is	

	 ܰሺ߬ሻ ൌ ே೚
௘
	.	 Equation	18

Mean	 lifetime	 is	easy	 to	extract	 from	curve	 fits	and	but	 it	 is	usually	difficult	 to	

visualize	 e‐1	 of	 the	 initial	 concentration.	 	 For	 this	 reason,	 “half‐life”	 is	 often	

presented	 and	 provides	 a	 reference	 for	 the	 amount	 of	 time	 required	 for	 the	

concentration	to	drop	to	half	of	the	initial	value.		Minor	manipulation	of	Equation	16	

results	in	

	 ௛௔௟௙ି௟௜௙௘ݐ ൌ െ ௟௡ଵ ଶ⁄

ఒ
	.	 Equation	19

Half‐life	is	much	easier	to	visualize	than	exponential	decay	rate	or	mean	lifetime.		

In	an	analogy,	half‐life	is	the	time	required	for	a	full	cup	to	become	half‐full.	 	With	

exponential	decay,	 the	 time	required	 for	a	 full	 cup	 to	become	half	 full	 is	 the	same	
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etching	with	SF6	and	other	associated	gases.	 	There	 is	plenty	of	 fantastic	 in	depth	

literature.		There	are	many	great	publications	providing	overviews,	in	depth	theory,	

and	application	[74‐79].	

The	focus	of	the	following	sections	will	be	on	anisotropic	etching.		The	process	of	

chemical	 etching	 of	 silicon	 can	 be	 broken	 down	 into	 “chemical”	 reactions	 and	

“electrochemical”	 reactions.	 	 “Chemical”	 reactions	 between	 the	 silicon	 and	

electrolyte	will	have	an	exchange	of	atoms	and	charge	which	are	exchanged	at	the	

interface.	 	The	net	charge	transfer,	and	thus	the	net	current,	between	them	is	zero.		

The	 charge	 transfer	 between	 the	 silicon	 and	 electrolyte	 is	 measured	 in	 “partial	

currents”	where	the	“anodic	current”	is	the	transfer	of	electrons	from	the	electrolyte	

to	 the	 solid;	 “cathodic	 current”	 is	 the	 transfer	 of	 electrons	 from	 the	 solid	 to	 the	

electrolyte.	 	 Hole	 transfer	 is	 the	 opposite	 direction	 of	 electron	 transfer	 for	 the	

respective	 partial	 currents.	 	 When	 the	 charges	 transfer	 between	 the	 solid	 and	

electrolyte	 is	 non‐zero	 the	 reaction	 is	 considered	 to	 have	 an	 “electrochemical”	

component	 the	 reaction.	 	 It	 is	 this	 electrochemical	 component	 that	 is	 frequently	

used	 to	 produce	 etch	 stops	 in	 silicon	 micromachining	 processes.	 	 This	

electrochemical	 component	 of	 the	 reaction	 can	 be	 produced	 by	 many	 factors;	

galvanic	 interaction,	 external	 applied	 potential,	 photogenerated	 electrons,	 or	

photogenerated	 electron/hole	 pairs.	 Without	 an	 externally	 applied	 potential	 the	

reaction	operates	at	an	“open	circuit	potential”	(OCP).	

There	 are	 multiple	 steps	 to	 the	 chemical	 reactions	 in	 bulk	 micromachining	

monocrystalline	silicon	using	KOH	or	TMAH/IPA	solutions	 	 to	anisotropically	etch	
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structures	 into	 the	 substrate.	 The	 exposed	 (111)	 planes	 in	 the	 silicon	 crystal	

structure,	shown	in	Figure	21,	are	less	susceptible	to	chemical	reactions	with	these	

solutions.	 	 KOH	 solutions	 typically	 provide	 mirror	 quality	 machined	 surfaces.		

Etching	in	a	(100)	plane	is	favored	over	etching	in	a	(111)	plane	by	a	ratio	of	100	to	

1	at	standard	etching	temperatures	between	70‐90°C	[80].		KOH	etching	technology	

is	not	CMOS	compatible	due	to	the	mobile	K+	ion,	and	is	therefore	inappropriate	for	

some	applications.		TMAH/IPA	solutions	can	provide	a	20	to	1	etch	selectivity,	again	

favoring	etching	in	(100)	planes	over	(111)	planes;	and	the	TMAH/IPA	technology	is	

CMOS	compatible.		The	addition	of	IPA	(2‐proponal)	improves	surface	quality	on	the	

etched	planes	and	is	responsible	for	doubling	the	etch	selectivity	available	from	an	

equal	concentration	of	TMAH	alone	[80].		Etching	in	the	direction	of	the	(100)	plane	

is	 favored	 over	 etching	 in	 the	 direction	 of	 a	 (111)	 plane.	 	 Any	 transient	 currents	

between	the	silicon	wafer	and	the	etchant	solution	are	short	lived	once	the	wafer	is	

placed	in	the	solution.		A	simple	anisotropic	etching	set	up	with	the	wafer	in	solution	

occurs	at	OCP	and	is	considered	a	chemical	reaction	[81].		The	complete	reaction	for	

the	chemical	etching	of	silicon	in	alkali	based	solutions	is	

	 Si	+	4H2O	→	Si(OH)4	+	2H2	.	 Equation	21

although	the	chemical	process	is	more	complicated	and	takes	place	in	a	number	of	

sequential	steps	for	both	the	[100]	face	with	two	back	bonds		

	 ＝SiH2	+	OH‐	+	H2O	→	＝SiHOH+	H2	+	OH‐	 Equation	22
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	 ＝SiHOH	+	OH‐	+	H2O	→	＝Si(OH)2+	H2	+	OH‐	 Equation	23

and	the	[111]	face	with	3	back	bonds	

	 (≡Si)2Si(OH)2	+	２H2O	→	２(＝Si‐H)＋Si(OH)4	 Equation	24

	 ≡Si‐OH‐	→	≡Si‐OH+	e‐	 Equation	25

	 ≡Si‐OH‐	→	≡[Si‐OH]++++	3e‐	 Equation	26

	 [Si‐OH]+++	+	3OH‐	→	Si(OH)4	 Equation	27

	 Si(OH)4	+	２OH‐	→	＝SiO2	(	OH)22‐+	２H2O	 Equation	28

as	presented	by	Wind	and	Hines	[82].		

54.74o

(1
11

)

(100)

(100)
Etch stopped
structure

	

Figure	21.	Anisotropic	etching	characteristics	of	(100)	silicon	wafer.			

There	are	a	number	of	factors	that	play	a	part	in	the	anisotropic	of	silicon	with	

alkali	 based	 solutions.	 	 Silicon	 atoms	 along	 the	 [100]	 face	 have	 two	 single	 back	
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bonds	 to	 silicon	atoms	within	 the	bulk	of	 the	 silicon.	 	Each	 silicon	atom	along	 the	

[100]	 face	 surface	 has	 two	 hydrogen	 terminated	 surface	 bonds	 available	 for	

interaction	 with	 the	 etch	 solution.	 	 Silicon	 atoms	 along	 the	 [111]	 silicon/etchant	

interface	are	more	stably	bound	to	the	bulk	of	the	silicon	substrate	with	three	single	

back	bonds	and	only	one	hydrogen	terminated	bond	to	react	with	the	etch	solution	

[71].		The	activation	energy	for	silicon	in	KOH	is	between	0.52	eV	and	0.69	eV	in	the	

<100>	direction	and	0.8	eV	and	1.0	eV	in	the	<111>	direction.		There	is	speculation	

that	there	is	more	at	work	than	a	difference	in	activation	energy	when	it	comes	to	

the	 etch	 selectivity	 between	 the	 <100>	 and	 <111>	 directions	 [71].	 	 The	 range	 of	

activation	energy	is	noted	to	be	dependent	on	the	molarity	of	the	KOH	solution	and	

the	best	etching	anisotropy	occurs	in	high	molarity	solutions	[83].		A	chemical	etch	

stop	mechanism	has	been	proposed	that	[111]	silicon’s	resistance	to	etching	in	high	

concentration	 KOH	 solutions	 is	 due	 to	 water	 molecules	 forming	 a	 layer	 with	 the	

hydroxylated	 surface	 silicon	 atoms	 preventing	 additional	 hydroxyl	 ions	 from	

reaching	the	surface	to	complete	a	soluble	reaction	and	continue	the	etching	process	

[83].	

The	 background	 concentration	 of	 dopants,	 along	 with	 crystallographic	

orientation,	 in	 silicon	 also	 has	 an	 effect	 on	 the	 outcome	 of	 chemical	 and	

electrochemical	 reactions	 [84].	 	 A	 voltammogram	 provides	 valuable	 insight	 to	

different	 modes	 of	 interaction	 between	 the	 silicon	 and	 electrolyte	 exhibiting	

variations	in	current	density	as	a	function	of	potential,	Figure	22,	for	KOH	solutions	

and	,Figure	23,	for	TMAH	solutions.		Variations	of	partial	currents	and	their	impact	
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not	change	much	from	the	OCP	etch	rate.	 	Potentials	 just	anodic	to	the	OCP	would	

increase	the	oxidation	rate	of	the	silicon	and	assist	in	producing	a	hillock	free	[100]	

surface.		The	third	mode	is	a	strong	anodizing	potential.		At	this	potential	the	current	

starts	 to	drop	off	 and	etching	 is	 reduced	due	 to	 the	heavy	oxidation	of	 the	 silicon	

which	produces	a	barrier	to	additional	etching.		The	differences	between	the	p‐type	

and	n‐type	potentials	are	 important	when	 looking	at	p‐n	 junction	etch	stops.	 	 It	 is	

also	important	to	keep	the	potentials	measured	by	voltammogram	in	consideration	

when	 looking	 at	 the	 electrochemical	 etching	differences	 between	 [100]	 and	 [111]	

silicon	 planes	 [89],	 Figure	 24.	 	 Through	 cyclic	 voltammetry,	 etching	 in	 KOH	 of	 a	

rectangular	 region	on	a	 [100]	 silicon	wafer	 shows	 the	effect	of	 current	 transfer	at	

given	 potentials	 between	 the	 silicon	 substrate	 and	 a	 saturated	 calomel	 electrode	

(SCE)	constructed	of	mercury	chloride		[85,	89,	90]	
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TMAH	 is	 another	 common	 etchant	 used	 with	 silicon	 and	 a	 band	 diagram	 is	

constructed	in	the	same	fashion	as	for	KOH,	Figure	28.		The	Fermi	level	of	TMAH	is	

below	the	Fermi	level	for	n‐type	silicon	and	moderately	doped	p‐type	silicon	at	the	

open	circuit	potential			(OCP).		According	to	Nemirovsky,	the	band	diagram	of	silicon	

with	 the	 electrolyte	 etchant	 correctly	 shows	 the	 Fermi	 levels	 of	 the	 silicon	 and	

electrolyte	 are	 not	 aligned	 and	 therefore	 that	 the	 system	 is	 not	 in	 thermal	

equilibrium	[92].		The	OCP	is	generated	by	the	two	stage	chemical	reaction;	first,	the	

reduction	of	water	to	hydroxyl	ions	and	hydrogen	gas;	the	second,	the	oxidation	of	

silicon.	 	 These	 two	 reactions	make	 up	 the	 silicon	 etching	 process	 in	 alkali	 based	

solutions.	

Reactions	can	occur	between	a	semiconductor	and	electrolyte	utilizing	both	valence	

and	conduction	bands	between	the	electrolyte	or	a	single	band.		In	this	case,	the	

valence	band	is	responsible	for	the	transfer	regardless	of	whether	it	is	n‐type	or	p‐

type	[93],		

Figure	29.	 	As	the	oxidizing	agent	 is	reduced	in	the	electrolyte	of	 this	example,	

additional	holes	drift	in	to	the	semiconductor	and	a	quasi‐Fermi	level	is	generated	in	

the	n‐type	semiconductor.	
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Acero	was	able	to	show	that	TMAH	can	be	used	in	an	electrochemical	etch	stop	

similar	to	KOH.		The	study	included	TMAH	solutions	of	25%	and	2.5%	wt,	with	and	

without	 IPA.	 	An	n‐type	membrane	was	 fabricated	using	 this	etch	stop	using	a	PN	

junction	as	the	depletion	region.		The	etch	stop	setup	shown	in	Figure	34	makes	use	

of	a	three	electrode	configuration	where	the	n‐type	region	of	the	silicon	is	connected	

to	 the	 potentiostat.	 	 The	 reverse	 bias	 between	 the	 p‐type	 and	 n‐type	 regions	 is	

controlled	 by	 maintaining	 a	 sufficient	 positive	 potential,	 from	 n‐type	 to	 p‐type	

material,	 on	 the	 silicon	 (work	 electrode)	 relative	 to	 the	 TMAH	 etch	 solution,	

(reference	 electrode).	 	 It	 was	 noted	 by	 the	 authors	 that	 the	 electrochemical	 etch	

stop	of	n‐type	silicon	occurs	at	potentials	anodic	to	the	OCP	in	this	configuration	and	

that	the	current	through	the	work	electrode	peaks	at	the	onset	of	silicon	passivation.		

Ashruf	point	out	the	advantage	of	TMAH	over	KOH	in	an	anodic	etch	stop	process	in	

that	 TMAH	 is	 very	 sensitive	 to	 silicon	 oxides	 as	 a	 masking	 layer,	 where	 the	

selectivity	between	[100]	silicon	and	silicon	oxide	is	much	lower	with	KOH	etchants	

[81].	 	A	four	electrode	configuration	has	also	been	developed,	Figure	35.	 	The	four	

electrode	 configuration	 provides	 better	 etch	 stop	 control	 and	 allows	 the	 reverse	

bias	 of	 the	 pn	 junction	 to	 be	 maintained	 independently	 of	 the	 silicon‐etchant	

potential	[98].	
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The	metal	 insulator	 silicon	 (MIS)	 etch	 stop	 configuration	 in	 p‐type	 silicon	 is	 a	

variation	of	the	reversed	bias	p‐n	junction	etch	stop.		The	strong	inversion	layer	of	

the	 biased	 MIS	 produces	 the	 depletion	 region..	 In	 the	 case	 of	 the	 MIS	 etch	 stop	

(shown	 in	 Figure	 36),	 it	 is	 critical	 that	 the	 voltage	 (V2)	 is	 tuned	 and	maintained	

between	 the	silicon	wafer	and	the	etchant	solution	 for	 the	anodic	oxidation	of	 the	

substrate	 to	 occur	 just	 prior	 to	 reaching	 the	 depletion	 region.	 	 It	 is	 in	 this	 region	

where	the	quasi‐Fermi	level	of	free	electrons	decreases	and	electrons	are	no	longer	

injected	back	into	the	solution	to	propagate	the	production	of	hydroxides	needed	for	

silicon	to	continue	etching	[99].		The	current	flow	between	the	silicon	substrate	and	

the	 etchant	 is	maintained	 by	 the	 external	 voltage,	 V2,	 applied	 between	 the	 silicon	

substrate	and	etchant,	draws	the	anodic	current	required	to	stop	the	etch	once	the	

etch	 front	 reaches	 the	 strong	 inversion	 region	 of	 the	MIS	maintained	 by	 external	

bias	V1.	
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the	 silicon	 substrate	 via	 PECVD.	 	 The	 silicon	 nitride	 and	 silicon	 oxide	 films	were	

deposited	at	the	same	temperature,	but	at	different	pressures,	550	mtorr	and	1000	

mtorr,	 respectively,	 using	 the	 silane/argon,	 ammonia,	 nitrous	 oxide	 and	 nitrogen	

gas	rates	shown	 in	Table	1.	 	The	silicon	nitride	was	deposited	using	RF/LF	power	

pulse	parameters	of	20W	for	30	sec/50W	for	2	seconds	 to	minimize	 film	stress	 in	

the	silicon	nitride	while	the	silicon	oxide	was	processed	with	20W	of	RF	power	only.	

Prior	 to	 the	 thermally	 assisted	poling,	 the	 SiO2/Si3N4/SiO2	 films	were	placed	on	 a	

200°C	hotplate	in	atmosphere	for	one	hour	to	remove	excess	water	which	had	been	

absorbed	by	the	SiO2/Si3N4/SiO2	from	the	air.		This	“bake	out”	was	followed	up	with	

a	hexamethyldisilizane	(HMDS)	spin	coat	at	4000	RPM	for	10	seconds	to	produce	a	

hydrophobic	 surface	 on	 the	 SiO2/Si3N4/SiO2	 and	 prevent	 future	water	 absorption	

from	humid	air.			

Table	1.		PECVD	process	parameters	

The	film	thickness	of	each	SiO2	and	Si3N4	layer	was	determined	by	first	running	

preliminary	 wafers	 with	 a	 single	 film	 layer	 of	 SiO2	 or	 Si3N4	 and	 measuring	

selectively	etch	and	unetched	regions	by	surface	profilometry	(Dektak	8,	Veeco	Inc.,	

Temp.	 Pressure	 RF	 LF	 5%	SiH4/Ar	 NH3	 N2O	 N2	

(°C)	 (mtorr)	
Power	
(W)	

Pulse	
(sec)	

Power	
(W)	

Pulse	
(sec)	 (sccm)	 (sccm)	 (sccm)	 (sccm)	

silicon	
oxide	 350	 1000	 20	 ‐	 ‐	 ‐	 170	 ‐	 710	 ‐	

silicon	
nitride	 350	 550	 20	 30	 50	 2	 200	 50	 ‐	 200	
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PECVD	Deposition	of	SiO2/Si3N4/SiO2“	and	section	3.2	‐	”Wafer	Level	Thermally	

Assisted	Poling	of	Electret”	.		Four	of	the	eight	wafers	were	activated	at	the	applied	

potential	of	positive	300	V	and	the	four	remaining	wafers	were	activated	at	negative	

300	V	to	determine	the	effects	of	polarity	on	the	performance	of	the	electret.	 	Five	

samples	were	cleaved	from	each	of	these	wafers	to	perform	the	ITPD	experiments	

for	 each	 wafer	 at	 five	 different	 accelerated	 aging	 temperatures	 (325°C,	 300°C,	

275°C,	 250°C,	 and	 200°C)	 with	 the	 goal	 of	 extrapolating	 the	 room	 temperature	

lifetime	 coefficients	 and	 activation	 energy	 from	 the	 Arrhenius	 plots.	 	 In	 order	 to	

perform	an	analysis	of	variance	(ANOVA),	a	minimum	of	four	wafers	were	needed	to	

demonstrate	statistical	significance	for	the	temperatures	tested.		

3.5.2 Isothermal	Potential	Decay	Experiments	

To	perform	the	ITPD,	a	sample	electret	 from	each	respective	wafer	was	placed	

on	 the	 hot	 plate	 (Dataplate	 PMC	 720,	 Barnstead/Thermolyne,	 Dubuque,	 Iowa),	 at	

one	of	the	specified	accelerated	aging	temperatures	listed	above,	and	the	respective	

ESV	was	immediately	measured	by	the	electrostatic	voltmeter	with	a	distance	of	2	

mm	 between	 the	 probe	 and	 the	 center	 of	 the	 sample.	 	 Effective	 surface	 voltage	

measurements	 were	 continually	 acquired	 as	 the	 sample	 “aged”	 at	 the	 elevated	

temperature	 to	 produce	 decay	 plots.	 	 After	 all	 samples	 were	 tested,	 a	 nonlinear	

regression	was	performed	for	each	sample	treated	to	determine	the	“best	fit”	for	the	

data	to	an	exponential	decay	equation	in	the	form	of	
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	 ሻݐሺܸܵܧ ൌ ܵܧ ௢ܸ݁ି
௧ ఛൗ 	 Equation	30

This	 relationship	 yielded	 the	 lifetime	 coefficient,	 τ,	 a	 characteristic	 of	 each	

sample	that	was	determined	from	the	ESV	as	a	function	of	time.	 	Since	the	starting	

ESV	 value	 varied	 between	 electret	 samples,	 the	 ESV	was	 normalized	 to	 an	 initial	

value	of	one,	the	exponential	term	was	unaffected	by	this	normalization.		Plots	of	the	

exponential	 decay	 are	 presented	 in	 Figure	 67	 and	 Figure	 68	 in	 section	 4.2	 ‐	

“Characterization	and	Optimization	of	Electret	Formation	Process”.		

3.5.3 Evaluation	of	Isothermal	Potential	Decay	Trials	

	The	 exponential	 decay	 data	 for	 all	 samples	was	 utilized	 to	 generate	 a	 best‐fit	

Arrhenius	equation		

	
ߣ ൌ

1
߬
ൌ ି݁ܣ

ாೌ
௞்ൗ 	

Equation	31

where	A	represents	the	number	of	decay	interactions	possible	over	a	given	time;	the	

exponential	 function	represents	 the	probability	of	a	decay	 interaction	 taking	place	

as	 a	 function	 of	 temperature,	 T,	 and	 the	 activation	 energy,	 Ea,	 of	 the	 system	 and	

Boltzmann’s	constant,	k=8.617E‐05	eV/K.	This	equation	was	used	to	extrapolate	the	

decay	rates	of	 the	ESV	 for	 temperatures	 that	 lied	outside	 the	 range	of	accelerated	

aging	tests.	
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A	die	level	variation	of	the	electret	activation	was	performed	under	atmospheric	

conditions	for	one	hour	at	170°C	with	an	applied	voltage	of	magnitude	300	V	on	a	

hot	plate	(PMC	720).			The	top	contact	electrode	was	diced	to	13	mm	by	13	mm	from	

a	p‐type	(100)	silicon	wafer	with	a	1‐20	ohm*cm	resistivity.		Both	the	PECVD	coated	

die	and	the	top	contact	die	were	placed	on	a	hot	plate	at	200°C	in	atmosphere	for	1	

hour	 for	a	dehydration	bake	and	followed	up	with	a	HMDS	drop	and	nitrogen	gun	

dry.	 	 To	 activate	 the	 electret,	 the	 PECVD	 coated	 die	 was	 placed	 on	 an	 aluminum	

faced	 hot	 plate	 (Dataplate	 PMC	 720)	 set	 to	 40°C	 and	 the	 polished	 face	 of	 the	

electrode	 die	 was	 centered	 on	 top.	 	 A	 small	 piece	 of	 indium	 was	 placed	 on	 the	

electrode	die	to	improve	contact	between	the	die	and	the	activation	probe	and	small	

bare	 silicon	 pieces	 are	 pressed	 to	 the	 edge	 of	 the	 electret	 etch	 die	 to	 improve	

grounding	contact,	Figure	44.		A	power	source	meter	(#2410,	Keithley	Instruments,	

Inc.,	Cleveland,	OH)	was	used	to	apply	a	+/‐300	V	potential	between	the	aluminum	

face	of	the	hot	plate	and	the	electrode	die.		The	hot	plate	temperature	was	elevated	

to	170°C	at	a	ramp	rate	of	100°C/hr	and	allowed	to	dwell	for	1	hr.		Subsequently,	the	

hot	 plate	 was	 allowed	 to	 cool	 and	 the	 300	 V	 potential	 was	 removed	 when	 the	

temperature	 fell	 below	 100°C.	 	 The	 electrode	 die	 was	 pried	 from	 the	 electret	

substrate	in	order	to	measure	the	electret’s	ESV	with	the	electrostatic	voltmeter.	
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for	 electret‐semiconductor	 interface	 provided	 confirmation	 that	 the	 die	 for	 this	

anisotropic	etch	study	were	considered	viable	samples	with	an	ESV	in	excess	of	150	

V,	 ‐150	 V,	 or	 within	 +/‐	 10	 V	 for	 the	 0	 V	 control	 samples.	 	 An	 electret	 oxide	

semiconductor	(EOS)	band	diagram	looks	much	like	a	MOS	band	diagram,	Figure	42.		

The	energy	bands,	conduction	and	valance,	for	a	given	semiconductor	and	dielectric	

will	 behave	 identically	 to	 bias	 generated	 by	 the	 net	 charges	 on	 a	metal	 of	 a	MOS	

structure	 or	 fixed	 “trapped”	 charges	 at	 the	 surface	 of	 the	 dielectric	 in	 an	 EOS	

structure.		The	maximum	depletion	width,	Wm,	can	be	used	as	a	first	approximation	

for	 the	 minimum	 etch	 stop,	 as	 it	 has	 been	 previously	 reported	 that	 anisotropic	

etching	stops	at	or	before	reaching	the	depletion	region	for	p‐n	junctions	and	MOS	

style	 etch	 stops	 [19,	 87].	 	 For	 example,	 143	 nm	 is	 calculated	 as	 the	 maximum	

depletion	width	for	a	p‐type	[100]	silicon	wafer	with	a	background	impurity,	NA,	of	

1.5(10)16	 atoms/cm3	 based	 on	 a	 resistivity,	 ρ,	 of	 10	 ohm‐cm	 is	 0.30	 µm	with	 the	

potential	between	Ei	and	EF,	given	as	F,	is	0.3578	V.	
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The	 minimum	 surface	 charge,	 Qd,	 required	 to	 drive	 the	 depletion	 width	 to	 the	

maximum	value	is	34	nC/cm2	given	by	

	 ܳௗ ൌ െݍ ௔ܰ ௠ܹ	.	
																Equation	34

The	 minimum	 ESV	 needed	 to	 provide	 the	 surface	 charge	 required	 for	 the	

maximum	depletion	width	was		

	 ܸܵܧ ൌ െொ೏
஼೔
൅ 2ி 	.	 																								Equation	35	

It	was	necessary	 to	 determine	 the	minimum	acceptable	 ESV	 to	 implement	 the	

condition	 of	 strong	 inversion	 and	 maximum	 depletion	 width;	 the	 conservative	

estimate	 was	 to	 consider	 the	 thickness	 of	 the	 capacitor	 dielectric,	 d,	 to	 be	 the	

complete	PECVD	film	stack	thickness,	which	in	the	case	of	this	study,	was	1928	nm.		

A	conservatively	low	permittivity	of	3.45(10)‐11	F/m	was	used	as	the	permittivity	of	

the	 film	 stack,	 i,	 based	 on	 the	 literature	 of	 permittivity	 for	 PECVD	 films.	 The	

insulator	capacitance,	Ci,	was	calculated	using	the	relationship:	

	 ௜ܥ ൌ
௜
݀
	

																										Equation	36	

In	this	case,	given	the	values	mentioned	above,	the	capacitance	was	calculated	to	be	

1.79	nF/cm2,	which	corresponds	to	a	required	minimum	ESV	for	a	state	of	maximum	

depletion	width	to	be	+19.8	V.	Therefore,	it	was	anticipated	that	a	strong	inversion	

state	was	achieved	since	the	targeted	150	V	ESV	was	over	seven	times	the	minimum	
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value	necessary	to	create	the	charge	required	for	producing	the	maximum	depletion	

width.	

3.6.3 	Electrochemical	Etch	Stop	Etch	Cells	and	Environmental	Control	

In	order	 to	carefully	control	 the	etch	stop	process,	a	custom	etch	cell	 chamber	

was	designed	and	fabricated	to	meet	the	following	criteria:	

‐ Maintain	 chemical	 and	 structural	 integrity	 at	 elevated	 temperatures	 of	

120°C;	

‐ Conduct	heat	from	the	hot	plate	evenly	to	the	etch	solution;		

‐ Limited	chemical	interaction	between	etch	cell	and	solution;	

‐ Capable	of	holding	20	ml	of	etching	solution;	

‐ Prevent	evaporation	of	the	solution	during	the	etch;	and,		

‐ Hold	a	20	mm	by	20	mm	silicon	die	with	thickness	ranging	from	350	nm	to	

550	nm.	

To	meet	the	requirements,	the	etch	cells	were	machined	from	virgin	PTFE	with	a	

matching	PTFE	cap.	The	O‐rings	provide	 the	 liquid	 seal	between	 the	etch	 cell	 and	

silicon	die.		The	base	of	the	etch	cell	was	machined	from	50	mm	OD	and	12	mm	ID,	

316	stainless	steel.		An	isometric	drawing	of	the	etch	cell	design	is	shown	in	Figure	

46.	
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interval	to	determine	if	there	is	any	statistical	difference	in	etch	rate	as	the	silicon	

etch	plane	approaches	the	back	side	charged	electret	film.	

The	 etching	 process	 consisted	 of	 loading	 the	 die	 in	 their	 respective	 etch	 cells,	

which	were	then	placed	in	the	etching	enclosure.	The	etching	enclosure	was	set	on	

top	of	the	hot	plate	that	was	operating	at	70°C.	 	Based	on	other	etch	stop	methods	

that	 took	 advantage	 of	 MOS	 inversions	 or	 p‐n	 junction	 biases,	 there	 was	 no	

anticipated	 effect	 of	 the	 electret	 on	 the	 etch	 rate	when	 the	 distance	 between	 the	

(100)	 etch	 face	 and	 the	 electret	 film	was	 greater	 than	 20	 µm.	 	 Subsequently,	 the	

silicon	die	were	each	etched	in	20	ml	of	25%	TMAH	etch	to	a	cavity	depth	of	300	µm	

for	a	single	etch	period	of	18	hours,	leaving	60	µm	to	80	µm	of	silicon	remaining	to	

investigate	the	effect	of	the	electret	charge	on	the	silicon	etch	rate	process.		After	the	

18	hr	etching	step,	the	depth	of	five	etch	cavities	in	each	die	was	recorded	with	the	

Zygo	 optical	 profilometer.	 	 The	 depth	 of	 the	 center	 etch	 cavity	 and	 the	 four	 edge	

cavities	 in	 the	3	by	3	 array	were	measured,	Figure	43.	Each	 cavity	was	measured	

from	each	of	its	four	edges,	Figure	48.		Thus,	a	total	of	20	etch	depth	measurements	

were	acquired	for	each	die.	
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determine	if	there	was	a	statistically	significant	variation	in	etch	rate	as	the	TMAH	

silicon	interface	approaches	the	depletion	region	or	enhanced	carrier	region	of	the	

silicon	caused	by	the	electret	charge.		

3.6.5 Confirmation	of	Environmental	Etch	Conditions	

A	 uniform	 distribution	 of	 heat	 was	 confirmed	 via	 thermal	 imaging	 of	 the	

aluminum	lid	and	PTFE	 lids	removed.	 	To	capture	these	 images,	 the	samples	were	

allowed	 to	 reach	 steady	 state,	which	 took	 about	15	minutes,	 as	 the	 assembly	was	

heated	 to	 70°C	 on	 the	 hot	 plate.	 	 A	 partial	 immersion	 thermometer	 was	 used	 to	

confirm	 that	 the	 temperature	 of	 the	 solution	was	 uniform	 amongst	 the	 test	 cells.		

While	 the	 temperature	 set	 point	 for	 the	 hot	 plate	 was	 70°C,	 all	 of	 the	 sample	

solutions	measured	60°C	+/‐	1°C.	

3.6.6 Electret	Stability	During	Anisotropic	Etching	

Due	to	the	susceptibility	of	the	electret	charge	to	be	neutralized	when	exposed	to	

liquids,	it	was	important	to	monitor	the	ESV	during	the	anisotropic	etching	process.	

Therefore,	 the	 last	 set	 of	 etching	 experiments,	 done	 with	 the	 third	 wafer	 in	 the	

study,	were	performed	 in	 order	 to	measure	 the	ESV	 from	 the	 electret	 side	before	

and	after	the	silicon	etch	step.		Utilizing	the	opening	in	the	stainless	steel	base	of	the	

etch	cell,	the	ESV	measurements	were	collected	on	each	die	in	the	third	trial	before	

the	silicon	etch	proceeded.		This	ESV	measurement	was	considered	a	modified	ESV	

due	to	the	interference	in	the	electric	field	caused	by	the	surrounding	metal	of	the	
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peak	 values	 for	 each	 wafer	 was	 used	 to	 provide	 a	 meaningful	 value	 that	 is	

representative	 of	 an	 area	 significant	 to	 provide	 a	 yield	 of	 useful	 devices	 in	 a	

fabrication	 process.	 	 The	 results	 for	 the	 ANOVA	 of	 the	 23	 full	 factorial	 DOE	 are	

presented	 in	 Table	 4.	 	 The	 five	 peak	 negative	 ESV	 values	 measured	 in	 the	 ESV	

contour	mapping	of	the	each	surface	were	averaged	as	the	data	points	of	the	“cube”	

plot,	Figure	50;	“interaction	effects”	plot,	Figure	52;	and	“main	effects”	plot,	Figure	

51.	 	 Evaluation	 of	 the	 P‐values	 for	 the	 ANOVA	 on	 the	 23	 full	 factorial	 DOE	 for	

negative	ESVs	provide	the	following:	

1) curvature	(or	nonlinear)	effects	were	not	significant;	

2) the	time‐temperature	interactions	were	very	significant;	

3) the	temperature‐applied	voltage	interaction	was	marginally	significant;	

4) applied	voltage	main	effect	were	very	significant;	

5) time	main	effect	was	marginally	significant.	

A	maximum	effective	surface	voltage	of	‐236.2	V	was	achieved	at	the	maximum	

activation	temperature	of	190°C	with	the	maximum	applied	process	voltage	of	300	

V	and	the	maximum	process	time	of	five	hours	in	the	DOE.		From	this	result,	it	was	

concluded	 that	 increasing	 the	 ESV	 by	 extending	 these	 process	 parameters	 could	

provide	insight	to	the	processing	limits	for	electret	activation.	
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Table	4.	Factorial	Regression:	Peak	versus	time,	temperature,	voltage,	CenterPt 
Analysis of Variance 
Source               DF   Adj SS   Adj MS  F-Value  P-Value 
Model                 8  46839.6   5855.0     6.20    0.000 
  Linear              3  24533.1   8177.7     8.66    0.000 
  time                1   7344.1   7344.1     7.78    0.008 
  temperature         1    624.1    624.1     0.66    0.422 
  voltage             1  16564.9  16564.9    17.54    0.000 
2-Way Interactions    3  20261.1   6753.7     7.15    0.001 
  time*temp           1  17056.9  17056.9    18.06    0.000 
  time*voltage        1    348.1    348.1     0.37    0.548 
  temp*voltage        1   2856.1   2856.1     3.02    0.091 
  3-Way Interactions  1    828.1    828.1     0.88    0.355 
  time*temp*voltage   1    828.1    828.1     0.88    0.355 
  Curvature           1   1217.3   1217.3     1.29    0.264 
Error                36  33999.6    944.4 
 
 

  

Figure	50.	Negative	potential	ESV	“cube”	plot	of	 the	23	 full	 factorial	DOE	given	the	

effects	of	temperature	(°C),	time	(hrs),	and	applied	voltage	(V)	on	the	ESV	(V).		The	

averages	of	 the	 five	peak	ESV	values	 for	each	wafer	are	shown	at	 the	corners	and	

center	of	the	plot.	
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determine	 the	 optimal	 process	 parameters	 for	 the	 ESV	 of	 the	 electret.	 	 A	 single	

factor	 DOE	 was	 performed	 for	 the	 applied	 temperature	 and	 applied	 voltage	

parameters	 by	 running	 additional	 experiments	 extending	 the	 testing	 range	 of	 the	

applied	temperature	from	70°C	to	230°C	and	the	applied	voltage	from	60	V	to	540	V.		

Full	 wafers	 were	 processed	 in	 the	 SUSS	 bonder	 using	 the	 standard	 PECVD	

SiO2/Si3N4/SiO2	 (1650	nm/250	nm/28	nm)	on	 a	100	mm	p‐type	 silicon	 substrate	

used	 in	 the	 initial	 23	 full	 factorial	DOE.	 	 The	 top	 five	 negative	 ESV	measurements	

from	 the	 full	 contour	 plots	 are	 averaged	 resulting	 in	 a	 single	 data	 point	 for	 each	

wafer	 in	 the	 extended	 single	 factor	 DOEs	 The	 single	 factor	 DOE	 for	 applied	

temperature	showed	that	the	applied	temperature	linearly	increased	over	the	range	

of	 70°C	 to	 210°C	 (Figure	 53).	 	 However	 around	 190°C,	 the	 ESV	 did	 not	 display	 a	

linear	relationship	and	tended	to	deteriorate	as	the	process	temperature	increased	

further	 to	 230°C.	 	 This	 could	 be	 attributed	 to	 applied	 voltages	 approaching	 the	

breakdown	 voltage	 of	 the	 dielectric	 PECVD	 film	with	 applied	 voltages	 at	 elevated	

temperatures.	 	This	would	be	an	expected	limit	since	the	high	electric	fields	in	the	

PECVD	 film	 have	 been	 shown	 to	 be	 responsible	 for	 the	 generation	 of	 charge	

trapping	 sites	 in	 the	 electret	 [102].	 	 The	 additional	 traps	 generated	 at	 elevated	

temperatures	decreases	the	resistivity	of	the	PECVD	film,	resulting	in	a	current	load	

beyond	the	capacity	of	 the	SUSS	bonder	power	supply	at	 the	applied	voltage.	 	The	

extended	single	factor	plot	of	ESV	due	to	applied	voltage	is	shown	in	Figure	54.		The	

single	factor	DOE	for	the	applied	process	voltage	illustrated	a	clear	trend,	where	an	

increase	in	the	applied	process	voltage	resulted	in	an	increase	in	ESV.		While	it	has	
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been	documented	that	electric	field	stressing	of	the	dielectric	is	responsible	for	trap	

generation	[66],	these	traps	may	not	be	filled	by	mobile	charges	unless	the	electret	

is	processed	at	higher	temperatures.		Additionally,	there	is	a	risk	that	a	high	electric	

field	 induces	 a	 breakdown	 in	 the	 PECVD	 film.	 	 Once	 a	 low	 resistivity	 path	 is	

produced	 in	 the	 thin	 film	 it	 is	 not	 possible	 to	maintain	 the	 high	 potential	 during	

activation	 and	 this	 limits	 both	 the	 yield	 and	 ESV	 produced.	 	 This	 occurred	 at	 the	

highest	 applied	 voltage	 of	 ‐540	 V.	 	 The	 first	 trial	 at	 this	 applied	 potential	 had	 an	

abrupt	drop	during	the	activation	process	and	the	maximum	current	supplied	by	the	

SUSS	bonder	was	insufficient	to	maintain	the	‐540	V.		The	resulting	ESV	of	this	first	

trial	was	‐112.2	V.	 	A	second	trial	was	run	successfully	producing	an	average	peak	

ESV	 of	 ‐226.8	 V,	 providing	 the	 highest	 mean	 ESV	 for	 all	 samples	 produced	

throughout	these	studies.	 	Based	on	the	assumptions	and	calculations	presented	in	

section	 2.6‐“Effective	 Surface	 Voltage	 Electret	Measurement”	 and	 Equation	 13,	 an	

effective	planar	charge	density	of	4.7	mC/m2	was	produced	for	this	ESV	of	‐226.8	V	

assuming	that	the	charge	resides	at	the	silicon	nitride‐silicon	oxide	(blocking	layer).		

A	trial	had	been	conducted	at	an	applied	potential	of	‐600	V,	data	not	shown,	but	the	

sample	 suffered	 a	 complete	 electrical	 breakdown.	 	 The	 SUSS	 bonder	 supplied	 the	

maximum	10	mA	current	but	the	resulting	applied	potential	was	0	V.		The	maximum	

effective	surface	voltage	‐226.8	V	was	produced	with	a	blocking	oxide	produced	by	

PECVD	 and	 1650	 nm	 thick.	 	 The	 maximum	 ESV	 was	 limited	 by	 this	 electrical	

breakdown	of	 the	blocking	oxide.	 	The	maximum	producible	ESV	can	be	 increased	
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by	increasing	the	thickness	of	the	PECVD	blocking	oxide	or	by	producing	a	blocking	

oxide	with	a	higher	breakdown	voltage.	

	

Figure	53:	Effective	surface	voltage	as	a	function	of	applied	process	temperature	for	

samples	activated	at	170°C	for	five	hours.samples	activated	at	180	V	for	one	hour.	

	

Figure	 54:	 Electret	 surface	 voltage	 as	 a	 function	 of	 applied	 process	 voltage	 for	

samples	activated	at	170°C	for	five	hours.	
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61).	 	The	average	of	the	five	maximum	ESV	values	for	the	sample	run	at	each	DOE	

process	parameter	 is	 represented	at	 the	 corners	and	center	of	 the	23	 full	 factorial	

DOE	cube.		In	examining	the	contour	maps,	it	can	be	seen	that	the	effective	surface	

voltage	matches	the	polarity	of	the	contact	wafer	when	the	contact	wafer	was	used	

as	the	cathode.		The	regions	of	the	contact	wafer	and	electret	film	on	the	substrate	

acted	 as	 a	 poor	 conductor,	 resulting	 in	 the	 ESV	 having	 the	 same	 polarity	 as	 the	

applied	potential.		In	addition,	regions	of	a	positive	ESV,	opposite	the	polarity	of	the	

cathode	polarity	were	also	seen;	however,	these	occurred	in	areas	that	were	not	in	

direct	contact	with	the	cathodic	contact	wafer.		The	regions	of	positive	ESV	were	due	

to	the	gap	between	the	upper	cathode	electrode	and	the	silicon	substrate	acting	as	a	

capacitor.	

As	a	 result,	 two	polarities,	positive	ESV	and	negative	ESV,	were	created	on	 the	

electret	 surface	 in	 a	 single	 process	 of	 applying	 a	 negative	 applied	 voltage	 during	

activation.	 	 This	 dual‐polarization	 was	 accomplished	 in	 regions	 of	 contact	 verses	

noncontact	 applied	 voltages	 provides	 a	 great	 opportunity	 for	 enabling	 the	

programming	of	electrostatic	fields	on	the	surface	of	the	electret.		For	example,	this	

process	may	be	used	to	pattern	(or	stamp)	a	specific	electric	field	on	a	device	for	a	

particular	 application,	 such	 as	 energy	 harvesters	 [15]	 and	 acoustic	 sensors	 [44].		

Additional	 studies	 are	 required	 to	 determine	 the	 limitations	 of	 this	 programming	

capability	to	take	into	account	the	effects	of	feature	size,	field	magnitude,	and	charge	

bleeding	on	the	surface	of	the	electret,	but	these	were	not	investigated	at	this	time.	
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Figure	 55.	 ESV	 contour	 plot	with	 electret	 activation	 at	 ‐300	 V,	 5	 hrs,	 190°C.	 	 The	

color	coded	legend	on	the	right	provides	the	scale	of	the	ESV	at	20	V	increments. 
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Figure	56.	 	ESV	 contour	plot	with	electret	 activation	at	 ‐300	V,	1	hrs,	 170°C.	 	The	
color	coded	legend	on	the	right	provides	the	scale	of	the	ESV	at	20	V	increments.		
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Figure	57.	 	ESV	 contour	plot	with	electret	 activation	at	 ‐300	V,	5	hrs,	 170°C.	 	The	

color	coded	legend	on	the	right	provides	the	scale	of	the	ESV	at	20	V	increments. 
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Figure	58.	 	ESV	 contour	plot	with	electret	 activation	at	 ‐180	V,	1	hrs,	 190°C.	 	The	

color	coded	legend	on	the	right	provides	the	scale	of	the	ESV	at	20	V	increments. 

	

Figure	59.	 	ESV	 contour	plot	with	electret	 activation	at	 ‐180	V,	5	hrs,	 170°C.	 	The	

color	coded	legend	on	the	right	provides	the	scale	of	the	ESV	at	20	V	increments. 

	

Figure	60.		ESV	contour	plot	with	electret	activation	at	‐300	V,	1	hr,	190°C.		The	color	

coded	legend	on	the	right	provides	the	scale	of	the	ESV	at	20	V	increments. 
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Figure	61.		ESV	contour	plot	with	electret	activation	at	‐180	V,	1	hr,	170°C.		The	color	

coded	legend	on	the	right	provides	the	scale	of	the	ESV	at	20	V	increments.  
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Figure	62.	 	ESV	 contour	plot	with	electret	 activation	at	 ‐225	V,	3	hrs,	 180°C.	 	The	

color	coded	legend	on	the	right	provides	the	scale	of	the	ESV	at	20	V	increments. 
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Figure	63.	 	ESV	 contour	plot	with	electret	 activation	at	 ‐180	V,	5	hrs,	 190°C.	 	The	

color	coded	legend	on	the	right	provides	the	scale	of	the	ESV	at	20	V	increments. 
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The	23	full	factorial	DOE	was	originally	designed	to	investigate	the	dependencies	

of	 process	 temperature,	 time,	 and	 negative	 applied	 voltage	 on	 the	 negative	 ESV	

produced	during	electret	activation.	 	Review	of	the	ESV	contour	maps	showed	that	

not	 only	 were	 there	 negative	 ESVs	 produced	 as	 expected,	 but	 there	 were	 also	

regions	 of	 positive	 ESV	 produced	 in	 regions	 of	 the	 wafer	 that	 were	 not	 in	 direct	

contact	 with	 the	 cathode	 used	 to	 bias	 the	 PECVD	 film.	 	 The	 data	 from	 these	

experiments	was	repurposed	to	investigate	how	these	process	parameters	affect	the	

performance	 of	 producing	 a	 positive	 ESV	 with	 a	 negative	 applied	 voltage.	 	 The	

results	for	the	ANOVA	of	the	23	full	factorial	DOE	are	presented	in	Table	5.		The	five	

peak	positive	ESV	values	measured	in	the	ESV	contour	mapping	of	the	each	surface	

were	averaged	as	the	data	points	of	the	“cube”	plot,	Figure	64;	“interaction	effects”	

plot,	Figure	65;	and	“main	effects”	plot,	Figure	66.	Evaluation	of	the	P‐values	for	the	

ANOVA	on	the	23	full	factorial	DOE	for	positive	ESVs	provide	the	following:	

1) applied	voltage	provided	a	marginally	significant	effect;	

2) the	time,	temperature,	and	applied	voltage	produced	a	3‐way	interaction	that	

was	significant.	
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Table	5.	Factorial	Regression:	Peak	positive	ESV	versus	time,	temperature,	voltage	

Analysis of Variance 
Source               DF  Adj SS   Adj MS  F-Value  P-Value 
Mod                   8  100875  12609.4     3.94    0.002 
Linear                3   14933   4977.7     1.56    0.217 
  time                1      17     16.9     0.01    0.942 
  temperature         1    5244   5244.1     1.64    0.208 
  voltage             1    9672   9672.1     3.03    0.091 
2-Way Interactions    3    8004   2667.9     0.83    0.484 
  time*temp           1    6052   6051.6     1.89    0.177 
  time*voltage        1     314    313.6     0.10    0.756 
  temp*voltage        1    1638   1638.4     0.51    0.479 
3-Way Interactions    1   14364  14364.1     4.49    0.041 
  time*temp*voltage   1   14364  14364.1     4.49    0.041 
Curvature             1   63574  63574.0    19.89    0.000 
Error                36  115086   3196.8 
Tota                 44  215961 

	

Figure	64.	 	Positive	potential	ESV	“cube”	plot	of	 the	23	 full	 factorial	DOE	given	the	

effects	of	temperature	(°C),	time	(hrs),	and	negative	applied	voltage	(V)	on	the	ESV	

(V).		The	average	of	the	five	peak	ESV	values	for	each	wafer	are	shown	at	the	corners	

and	center	of	the	plot.	
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the	measured	ESV	values	to	the	best	fit	exponential	decay	equation	as	presented	in	

Chapter	III.		The	τ	values	for	each	sample	of	the	eight	wafers	are	presented	in	Table	

6	for	positive	ESV	samples	and	Table	7	for	negative	ESV	samples.		The	decay	rates	of	

wafer	 3	 and	wafer	 4	 of	 the	 positive	 ESV	 ITPD	 can	 be	 seen	 to	 have	 a	 significantly	

lower	 decay	 rate	 than	 wafer	 1	 and	 wafer	 2	 in	 the	 positive	 ESV	 study	 and	

significantly	 lower	 than	all	of	 the	wafers	 in	 the	negative	ESV	study.	 	 It	 is	not	clear	

why	the	rage	of	decay	rates	for	the	positive	ESV	wafers	is	so	broad.		Figure	69	and	

Figure	70	provide	plots	of	 the	exponential	decay	 rate,	 τ,	 as	 an	 inverse	 function	of	

temperature	 on	 a	 semi‐log	 plot	 for	 positively	 charged	 and	 negatively	 charged	

electrets	respectively.		

	

Figure	67.		The	ITPD	plot	for	a	sample	from	wafer	3	shows	the	ESV	as	a	function	of	

time,	aged	at	300°C.	The	sample	was	activated	at	300	V	 for	1	hour	at	170°C.	 	The	

best	 fit	 regression	 to	 the	 exponential	 decay	 is	 provided	with	 the	 95%	 confidence	

interval	and	95%	prediction	interval.	

543210

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Time (hrs)

No
rm

al
iz

ed
 E

SV
 (

V
/V

o) Regression
95% CI
95% PI

Normalized Thermally Stimulated Discharge at 300 C Wafer 3

Normailized ESV = 1.01876 * exp(-time * 1.20544) 



107	

	

	

Figure	68.		The	ITPD	plot	for	a	sample	from	wafer	3	shows	the	ESV	as	a	function	of	

time,	aged	at	325°C.	The	sample	was	activated	at	300	V	 for	1	hour	at	170°C.	 	The	

best	 fit	 regression	 to	 the	 exponential	 decay	 is	 provided	with	 the	 95%	 confidence	

interval	and	95%	prediction	interval.	

Table	 6.	 	 Decay	 rates	 for	 positively	 charged	 electrets	 on	 four	 wafers	 at	 varying	

temperatures	to	predict	the	mean	lifetime	of	the	electrets.	

Temperature		 Wafer	1	 Wafer	2	 Wafer	3	 Wafer	4	 Average	 Std	dev	
(°C)	 τ	(hrs)	 τ	(hrs)	 τ	(hrs)	 τ	(hrs)	 τ	(hrs)	 τ	(hrs)	

200	 1036.80	 943.40	 392.20	 518.10	 722.63	 273.16	

250	 30.81	 47.38	 36.06	 24.15	 34.60	 8.50	

275	 6.27	 10.70	 7.03	 5.11	 7.28	 2.09	

300	 1.79	 2.67	 0.83	 3.32	 2.15	 0.94	

325	 0.35	 0.30	 0.52	 0.98	 0.54	 0.27	
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Table	 7.	 	 Decay	 rates	 for	 negatively	 charged	 electrets	 on	 four	 wafers	 at	 varying	

temperatures	to	predict	the	mean	lifetime	of	the	electrets.	

Temperature	 Wafer	1	 Wafer	2	 Wafer	3	 Wafer	4	 Average	 Std	dev	
(°C)	 τ	(hrs)	 τ	(hrs)	 τ	(hrs)	 τ	(hrs)	 τ	(hrs)	 τ	(hrs)	

200	 968.45	 369.64	 976.86	 529.20	 711.04	 267.65	

250	 57.77	 88.81	 75.94	 84.45	 76.74	 11.89	

275	 30.13	 13.28	 7.37	 11.82	 15.65	 8.64	

300	 16.43	 5.26	 4.66	 3.64	 7.50	 5.19	

325	 1.14	 1.16	 1.58	 1.03	 1.23	 0.21	
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values	are	based	on	calculations	of	 the	activation	energy	 for	positive	and	negative	

ESV	 samples	 within	 the	 range	 of	 the	 accelerated	 aging	 temperature	 range.	 	 The	

calculated	activation	energy	also	provides	insight	and	confirmation	to	the	cause	and	

location	of	the	charge	traps	in	the	electret	in	conjunction	with	published	values	from	

other	groups	[55].	The	best	 fit	of	 the	exponential	decay	constant	 for	the	positively	

charged	electret	is	

	 ሺܶሻߣ ൌ 1.2869ሺ10ሻଵଶ݁
షభ.రబలళ

ೖ೅ 	.	 Equation	37

The	 activation	 energy	 of	 the	 positive	 electret	 is	 1.41	 eV.	 	 The	 coefficient	 of	

determination	(R‐sq)	for	the	exponential	decay	rate	of	the	positive	electret	is	97.3%.			

The	best	fit	of	the	exponential	decay	constant	for	the	negatively	charged	electret	is		

	 ሺܶሻߣ ൌ 8.356ሺ10ሻଽ݁
షభ.మబయళ

ೖ೅ .	 Equation	38

The	 activation	 energy	 of	 the	 negative	 electret	 is	 1.20	 eV.	 	 The	 coefficient	 of	

determination	for	the	exponential	decay	rate	of	the	negative	electret	is	94.8%.		The	

isothermal	potential	decay	of	the	electret	is	extrapolated	by	evaluating	Equation	37	

and	 Equation	 38	 at	 a	 temperature	 of	 125°C.	 	 The	 positive	 electret	 has	 a	 mean	

lifetime	value	of	57.7	years,	while	 the	mean	 lifetime	value	of	 the	negative	electret	

was	23.9	years	if	maintained	in	an	environment	at	125°C.			The	rate	of	decay	for	this	

multilayer	electret	is	5	times	slower	than	the	elevated	temperature	rate	of	decay	for	

PECVD	electret	layers	produced	by	other	groups	[2,	51].	
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Overview”	is	presented	in	Figure	72	with	the	data	provided	in	Table	8,	Table	9,	and	

Table	10.		The	mean	final	silicon	etch	rate	of	the	positive	electret	samples	was	11.9	

μm/hr	 while	 the	 mean	 final	 silicon	 etch	 rate	 for	 neutral	 and	 negative	 electret	

samples	 were	 8.6	 μm/hr	 and	 8.8	 μm/hr	 respectively.	 	 The	 initial	 ESV	 of	 each	

respective	sample	is	present	at	the	bottom	of	the	table.	 	Additional	qualitative	ESV	

measurements	were	taken	of	the	samples	in	trial	3	with	the	samples	loaded	into	the	

etch	cells.		During	the	etch	stop	experiments	for	trial	1	and	2,	one	question	that	was	

raised	 was	 the	 integrity	 of	 the	 electret	 during	 the	 etching	 process.	 	 Specifically,	

preliminary	studies	indicated	that	when	the	electret	came	into	contact	with	a	fluid,	

the	electret	is	neutralized.	 	Thus,	in	trial	3,	the	experimental	protocol	was	changed	

to	include	the	measurement	of	the	electret	while	mounted	in	the	etch	cell	to	confirm	

that	 the	 electret	was	maintained	 throughout	 the	 etching	 process.	 	 The	 qualitative	

measurements	 were	 made	 before	 etching	 and	 once	 the	 etching	 process	 was	

completed	with	the	intention	of	confirming	that	the	integrity	of	the	electret	charge	

was	 maintained	 throughout	 the	 etching	 process.	 	 The	 results	 of	 the	 these	

measurements,	 Table	 11,	 show	 that	 67%	 of	 the	 samples	maintained	 a	 significant	

portion	of	their	ESV	even	once	the	etchant	had	etched	through	the	silicon	to	PECVD	

multilayer	 film	 in	 the	 cavity	 regions	 of	 the	 substrate.	 	 This	 is	 an	 acceptable	 yield	

considering	the	large	removal	of	material	and	the	masking	of	charge	possible	due	to	

etch	solution	in	direct	contact	with	the	back	side	of	electret.	
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Figure	 72.	 	 A	 linear	 best	 fit	 for	 etch	 depth	 samples	 as	 a	 function	 of	 the	 time	

remaining	to	the	end	of	the	silicon	etch	are	grouped	by	electret	potentials;	positive,	

negative,	and	neutral.	
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Table	8.	Trial	1	etch	depth	vs	time	for	neutral,	negative,	and	positive	electrets.	

Trial 1 

Neutral  Negative  Positive 

Die 1  Die 2*  Die 3  Die 1  Die 2  Die 3  Die 1  Die 2  Die 3 

Time (hr)  Etch Depth (microns) 

0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

18  300.3  330.7  284.7  239.9  289.3  335.4  293.2  264.8  318.4 

19  310.5    292.8  250.3  298.0  350.4  304.5  276.0  331.4 

20  318.0    297.9  257.1  303.2  357.0  312.4  282.4  338.2 

21  332.7    307.1  267.3  311.0  365.8  324.7  290.9  350.8 

22  342.6    314.9  273.2  320.2  368.6  333.5  301.0  359.6 

23  358.1    327.2  281.1  330.1    346.0  313.6  372.0 

24  368.0    334.7  288.6  338.5    358.2  323.7   

25      342.0  295.9  348.3    370.2  337.1   

26      352.5  302.8  357.8      349.0   

27      360.3  313.7  369.6      365.9   

28      366.0  323.1           

29        336.2           

30        346.2           

31        355.1           

32        368.7           

ESV (V)  0  0  0  ‐150  ‐250  ‐150  150  150  250 

*	Die	2	of	the	neutral	die	set	fractured	in	the	etch	cell.	
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Table	9.		Trial	2	etch	depth	vs	time	for	neutral,	negative,	and	positive	electrets.	

Trial 2 

Neutral  Negative  Positive 

Die 1  Die 2  Die 3*  Die 1  Die 2  Die 3  Die 1  Die 2  Die 3 

Time (hr)  Etch Depth (microns) 

0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

18  274.2  284.7  288.9  206.8  208.9  217.0  289.3  264.7  271.6 

19  279.1  293.0              299.5  277.8  280.6 

20  286.9  300.0        306.0  285.2  288.7 

21  296.1  309.6              316.9  298.5  299.7 

22  308.5  326.2  323.5        328.3  314.2  309.8 

23  317.4  329.6  328.2           338.7  324.4  318.9 

24  326.8  338.2  336.0        349.4  337.5  329.8 

25  335.3  348.6  344.0           360.5  346.1  339.6 

26  345.0  358.6  352.9        359.6  350.3 

27  353.6  367.8  361.4                 361.5 

28  364.5          

ESV (V)  0  0  0  ‐150  ‐225  ‐150  175  150  250 

*	Die	3	of	the	neutral	die	set	fractured	in	the	etch	cell	and	was	replaced	with	a	
neutral	die	from	an	extra	wafer.	
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Table	10.		Trial	3	etch	depth	vs	time	for	neutral,	negative,	and	positive	electrets.	

Trial 3 

Neutral  Negative  Positive 

Die 1*  Die 2  Die 3  Die 1  Die 2  Die 3  Die 1  Die 2  Die 3 

Time (hr)  Etch Depth (µm) 

0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

18  223.9  312.5  295.7  282.8  298.9  288.4  288.5  299.5  285.7 

19    319.4  303.3  290.2  310.9  297.9  298.4  310.3  294.3 

20    327.6  309.6  297.9  318.8  302.7  306.6  319.1  302.8 

21    334.7  318.4  305.7  327.4  308.7  316.7  329.9  313.0 

22    344.9  326.3  316.9  338.7  320.4  326.7  340.2  321.4 

23    351.4  333.9  323.1  345.6  328.5  333.3  348.8  330.0 

24    361.4  344.7  329.9  358.7  335.0  345.9  360.9  340.7 

25      355.5  337.3  369.6  342.4  354.3    350.5 

26      361.8  346.5    351.0      360.7 

27        355.4    358.7       

28        361.6    366.4       

ESV (V)  0  0  0  ‐150  ‐160  ‐150  160  170  150 

*	Die	1	of	the	neutral	die	set	fractured	in	the	etch	cell.	
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Table	11.		ESV	measurements	for	etch	test	die	in	trial	3.	

		
Die	 Die	in	Etch	Cell	

	ESV	(V)	 Initial	ESV	(V) Final	ESV	(V)

Neutral	
Die	1 0	 0	 0	
Die	2 0	 0	 0	
Die	3 0	 0	 0	

Negative	
Die	1 ‐150	 ‐65	 ‐20	
Die	2 ‐160	 ‐110	 ‐80	
Die	3 ‐150	 ‐92	 0	

Positive	
Die	1 160	 133	 100	
Die	2 170	 123	 98	
Die	3 150	 47	 0	

A	one‐way	ANOVA	was	performed	 to	determine	 if	 there	a	 significant	difference	 in	

the	etch	rate	between	the	electret,	positive,	neutral,	and	negative	ESV	groups	in	the	

last	 stages	 of	 etching	 before	 reaching	 the	 electret.	 	 The	 final	 etch	 rate	 was	

determined	by	taking	the	difference	between	the	final	etch	depth	measurement	and	

the	 prior	 etch	 depth	measurement.	 	 The	mean	 value	 of	 the	 final	 etch	 rate	 for	 the	

positive	ESV	electret	is	11.9	μm/hr	verses	the	mean	value	of	the	final	etch	rate	for	

neutral	and	negative	ESV	electrets	of	8.6	μm/hr	and	8.8	μm/hr	respectively,	Table	

12.	 	The	“Null	Hypothesis”	 is	 that	 there	 is	no	statistical	difference	 in	 the	 final	etch	

rate	between	samples	grouped	by	electret	potential.	 	The	null	hypothesis	 is	 tested	

by	evaluating	the	P‐Values	of	the	final	etch	rates	grouped	by	charge	with	3	separate	

2	 sample	T‐test	using	MINITAB.	 	The	P‐value,	which	 represents	 the	probability	of	

obtaining	 repeated	 differences	 between	 groups	 of	 data,	 is	 presented	 for	 the	 final	

etch	 rate	 between	 positive‐neutral,	 negative‐neutral,	 and	 negative‐positive	 ESV	

groups,	 Table	 13.	 	 By	 “null	 hypothesis”,	 no	 significant	 difference	 in	 etch	 rate	was	
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identified	between	the	negatively	charged	electret	and	neutral	samples;	the	P‐value	

of	 the	ANOVA	between	 the	 two	sample	groups	was	over	0.90.	 	However,	 the	 final	

etch	 rate	of	 silicon	 for	 the	positive	 electret	was	 found	 to	be	 significantly	different	

than	both	the	neutral	and	negative	electrets.	 	The	P‐value	 for	 the	ANOVA	between	

the	 positive	 electret	 and	 neutral	 samples	 was	 less	 than	 0.01	 and	 the	 P‐value	

between	the	positive	electret	and	neutral	electret	was	0.07.		As	a	final	analysis	of	the	

null	hypothesis,	all	three	of	the	charge	groups	were	compared	simultaneously	using	

an	ANOVA	with	a	resulting	P‐value	of	0.042	and	a	resulting	strong	significance	to	the	

rejection	of	the	null	hypothesis.	

Table	 12.	 Final	 silicon	 etch	 rate	 grouped	 by	 neutral,	 negative,	 and	 positive	 ESV	

electret.	

Final Etch Rate (μm/hr) 

Mean Standard Deviation 

Neutral  8.6  1.9 

Negative 8.8  3.9 

Positive  11.9  2.3 

Table	13.		Null	Hypothesis	P	Values	for	the	Final	Etch	Rate	with	3	separate	2	sample	

T‐test	using	MINITAB	

P Value  Neutral  Positive 

Positive  0.009  ‐ 

Negative 0.903  0.073 

As	indicated	in	the	raw	data,	and	confirmed	by	“null	hypothesis”	tests,	a	surge	in	

etch	 rate	 occurred	 at	 the	 end	 of	 the	 etching	 process	 for	 the	 positively	 charged	

electrets.		One	possible	explanation	for	this	behavior	is	that	there	was	an	increase	in	
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electrons	 available	 in	 the	 silicon	 at	 the	 silicon‐electret	 interface	due	 to	 the	 strong	

inversion	 of	 the	 gate	 bias.	 	 This	 abundance	 of	 electrons	 in	 the	 p‐type	 silicon	

provided	 a	 “stock”	 of	 electrons	 available	 to	 the	 electrolyte	 interface	 as	 the	 silicon	

layer	 thins;	 thereby,	adjusting	 the	Fermi	 level	 in	accordance	 to	 the	changing	open	

circuit	 potential	 OCP.	 	 The	 extra	 supply	 of	 electrons	 diffused	 to	 the	 silicon‐

electrolyte	 interface	 as	 a	 minority	 carrier	 and	 was	 injected	 into	 the	 electrolyte	

producing	a	 short	 term	 increase	 in	OH‐	groups	and	silicon	etching	 [19].	 	This	 is	 a	

behavior	similar	to	the	etch	rate	one	would	see	in	a	cathodically	biased	silicon	etch	

in	a	base	solution	[104].	

It	 is	 customary	 to	 run	 an	 electrochemical	 etch	 stop	with	 a	 controlled	 positive	

potential	 applied	 between	 the	 silicon	 substrate	 and	 the	 electrolyte.	 	 With	 this	

positive	bias,	 electrons	 are	drawn	 to	 the	 silicon‐gate	 interface	 and	away	 from	 the	

electrolyte,	breaking	the	etch	cycle	which	requires	a	continuous	supply	of	hydroxyl	

ions	for	silicon	to	etch	[19].		Without	this	bias	between	the	substrate	and	electrolyte,	

Figure	71,	the	free	electrons	that	are	generated	during	the	etch	process	return	to	the	

analyte	and	reduce	the	water	producing	additional	hydroxyl	ions	for	silicon	etching	

and	hydrogen	gas	as	a	byproduct.		At	most,	with	no	applied	bias	between	the	silicon	

and	electrolyte,	 a	 transient	etch	 rate	 response	 can	be	expected	due	 to	 the	electric	

field	produced	by	the	electret.		 	It	is	reasonable	that	the	positively	charged	electret	

elicits	a	 faster	etch	rate	 than	the	neutral	and	negative	electret	 in	 the	 final	stage	of	

the	silicon	etching.	 	A	sole	positive	bias	of	the	gate	in	the	MIS	etch	stop	provides	a	
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rich	 source	 of	 electrons	 as	 the	 silicon	 at	 the	 interface	 of	 the	 gate	 is	 in	 strong	

inversion	and	past	the	threshold	voltage,	Vth	.	[19].		
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5 CONCLUSIONS	

The	electret	activation	process	for	a	thin	multilayer	SiO2/Si3N4/SiO2	PECVD	film	

has	 been	 optimized	 using	 a	 silicon	 wafer	 as	 the	 contact	 electrode	 in	 a	 thermally	

assisted	 poling	 process.	 	 Effective	 surface	 voltages	 in	 excess	 of	 ‐225	 V	 were	

produced	 with	 cathodic	 contact	 	 using	 processes	 and	 equipment	 standard	 to	

microfabrication	 facilities.	 	The	optimum	process	 for	maximizing	 the	negative	ESV	

was	determined	to	be	five	hours	at	170°C	with	an	applied	voltage	of	‐540	V	with	the	

SUSS	SB‐6e.	 	The	maximum	five	point	averaged	ESV	produced	for	positive	electret	

samples	was	195.2	V,	while	the	maximum	five	point	averaged	ESV	produced	for	the	

negative	electret	samples	was	‐194.2	V.		The	act	of	single	polarity	charging	produced	

regions	 of	 positively	 and	 negatively	 charged	 electret	 where	 the	 regions	 in	 direct	

contact	with	 the	 silicon	 contact	 electrode	during	 the	 activation	 step	developed	 an	

ESV	complementary	to	the	polarization	of	the	electrode.		On	the	other	hand,	regions	

not	 in	 direct	 contact	 developed	 a	 charged	ESV	 opposite	 to	 the	 polarization	 of	 the	

electrode	 during	 activation.	 	 Longer	 activation	 periods	 resulted	 in	 larger	

complementing	and	opposing	ESV	values.	

Characterization	 of	 the	 films	 by	 isothermal	 potential	 decay	 show	 that	 the	

inorganic	 positive	 electret	 has	 an	 extrapolated	mean	 lifetime	 value	 of	 57.7	 years;	

while	the	extrapolated	mean	lifetime	value	of	the	negative	electret	was	23.9	years	at	



123	

	

a	continuous	temperature	of	125°C.		Thermal	neutralization	of	the	electret	through	

isothermal	potential	decay	studies	demonstrated	an	activation	energy	of	1.4	eV	and	

1.2	eV	for	the	positive	electrets	and	negative	electrets,	respectively.			

When	using	 the	electret	as	a	MOS	biased	etch	stop,	 the	data	demonstrated	 the	

positively	charged	electret	produced	a	statistically	significant	increase	in	etch	rate,	

when	 compared	 to	 the	neutral	 and	negatively	 charged	 electrets.	However,	 overall	

the	MOS	bias	caused	by	 the	electret	did	not	produce	a	definitive	etch	stop	 for	 the	

configuration	presented	in	this	study.	 	These	results	suggest	that,	to	act	as	an	etch	

stop,	 a	 positive	 bias	must	 be	maintained	 on	 the	 silicon	wafer	with	 respect	 to	 the	

etchant.	
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