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ABSTRACT 

MATHEMATICAL MODELING FOR PARTIAL OBJECT DETECTION 

Ahmed R. EL-Barkouky 

December 18, 2014 

From a computer vision point of view, the image is a scene consisting of objects of 

interest and a background represented by everything else in the image. The relations and 

interactions among these objects are the key factors for scene understanding. In this 

dissertation, a mathematical model is designed for the detection of partially occluded faces 

captured in unconstrained real life conditions. The proposed model novelty comes from 

explicitly considering certain objects that are common to occlude faces and embedding 

them in the face model. This enables the detection of faces in difficult settings and provides 

more information to subsequent analysis in addition to the bounding box of the face. 

In the proposed Selective Part Models (SPM), the face is modelled as a collection of 

parts that can be selected from the visible regular facial parts and some of the occluding 

objects which commonly interact with faces such as sunglasses, caps, hands, shoulders, 

and other faces. With the face detection being the first step in the face recognition pipeline, 

the proposed model does not only detect partially occluded faces efficiently but it also 

suggests the occluded parts to be excluded from the subsequent recognition step. The 

model was tested on several recent face detection databases and benchmarks and achieved 

state of the art performance. In addition, detailed analysis for the performance with respect 
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to different types of occlusion were provided. Moreover, a new database was collected for 

evaluating face detectors focusing on the partial occlusion problem.  

This dissertation highlights the importance of explicitly handling the partial occlusion 

problem in face detection and shows its efficiency in enhancing both the face detection 

performance and the subsequent recognition performance of partially occluded faces. The 

broader impact of the proposed detector exceeds the common security applications by 

using it for human robot interaction. The humanoid robot Nao is used to help in teaching 

children with autism and the proposed detector is used to achieve natural interaction 

between the robot and the children by detecting their faces which can be used for 

recognition or more interestingly for adaptive interaction by analyzing their expressions. 
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CHAPTER 1 

INTRODUCTION 

 

From the computer vision point of view, the image is a scene consisting of objects of 

interest and a background which is everything else in the image. Object detection can be 

defined as the automatic process of isolating these objects of interest from the background. 

The input for an object detector is a digital image or several frames from a video which 

may have multiple objects of interest, a single one or even no objects of interest at all. The 

output of the detector is the location and extent of each object of interest in the image if 

any. Object detection is crucial for any further processing or analysis starting from object 

tracking and recognition to scene understanding. Hence, failing to detect the object will 

eliminate the whole process.  

The primary goal of this dissertation is focused on detecting partially occluded faces 

captured in unconstrained conditions. The face is modelled as a collection of parts that can 

be selected from the visible regular facial parts and some of the other objects that can 

possibly occlude faces such as sunglasses, caps, hands, shoulders and other faces. The 

proposed model can be seen from a scene understanding point of view in the sense that it 

is explicitly considering the relations and interactions between the face and its facial parts 

with other objects including facial accessories, other faces, and body parts that can occlude 

faces such as hands and shoulders which can be of great advantage to any further analysis 

of these faces.   
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1.1 Motivation 

Faces in the wild have recently captured the focus of researchers for all facial analysis 

problems in different applications. Partial occlusion is a major problem for analyzing faces 

captured in unconstrained real life conditions. Even detecting the faces in such conditions 

is a challenging problem that needs to be solved before any further analysis of such faces 

can be done. The resulting problem is called Partial Face Detection where one or more of 

the main facial features of the face namely the two eyes, the nose and the mouth might be 

occluded. To illustrate the importance of the problem, Figure 1.1 shows two celebrities: 

Daniel Radcliffe (Harry Potter) and Jake Gyllenhaal (from the “Source Code” movie). Both 

Google Picasa and facebook auto-tagging face detectors failed to detect these faces. 

Although the faces in both images are partially occluded in a way that makes it very 

difficult even for state of the art commercial face detectors to detect, most people can still 

not just detect the faces but maybe easily recognize the celebrities in the images. 

Figure 1.1: Examples of hard to detect partially occluded faces that can be detected by considering common 

face occlusions such as sunglasses, caps and hands.  
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 The Partial occlusion is always considered as a problem that lowers the probability of 

any face candidate to be classified correctly as a face. The proposed argument here is that 

there are some types of occlusion that are common to hide parts of the face in real life 

images. For example, hands are common to hide the mouth if someone is smoking, eating 

or yawning and can similarly hide also other parts of the face with different other activities. 

Beside hands, there are also caps and sunglasses which are common for people to wear and 

they may result in hiding part of the face as well. This dissertation proposes that detecting 

these objects while detecting faces, can transform these types of partial occlusion from a 

problem that lowers the score of a face candidate to an advantage that actually raises it.  

For the research of face recognition in the wild, most researchers either depend only on 

the output of typical face detectors as the starting point for face recognition which means 

that if the detector fails with such difficult faces then these face will not pass for recognition 

and hence the results are biased away from occlusion settings; or they crop these faces 

manually which results in systems that are not fully automated. Even if the face is detected, 

comparing the occluded part of the face with the un-occluded same part in the gallery will 

lead to problems in recognition. The proposed detector aims to supply the recognition 

module not only with a cropped face but also with information about the visible parts of 

this face which can be used in recognition. For example, if the eyes are hidden by 

sunglasses then the recognition module should not use signatures extracted from the eyes 

in recognition. 

To complete the discussion, Figure 1.2 shows a categorization of different types of 

partial occlusion that can affect face detection. They can be grouped into two main types 

according to the reason of partial occlusion:  
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1. Self-occlusion which can result from:  

 Pose: where part of the face is occluded due to profile poses.  

 Facial accessories: part of the face is occluded by sunglasses, caps and scarfs. 

 Other objects that belong to the same subject such as his hands.   

 Facial hair: including moustaches and beards.  

2. External occlusion which can result from:  

 Other objects between the face and the camera including other faces. 

 Limited field of view: part of the face is outside the camera’s field of view. 

 Extreme illumination which includes sensor saturation, darkness, or shadows. 

Figure 1.2: Categorization of partially occluded faces captured in the wild from FDDB and POF databases. 
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The proposed detector is designed with three applications in mind: 

1. Face Recognition at A Distance (FRAD) for security purposes: In this application, 

the proposed detector is used as the front end of a system used in security for 

recognizing people at large distances. At this large distances the subjects are not aware 

of the camera shooting them and hence all types of occlusion can happen in such non-

cooperative situations as shown in Figure 1.3.  

2. Human robot interaction: In this application, a humanoid robot will be used to help 

in teaching children with autism. To interact properly with different children, it needs 

to recognize them interactively while they are doing activities. During the different 

teaching activities, parts of the face might get occluded and the robot cameras will be 

moving so faces will get out of field of view and then back in which complicates the 

problem. The proposed detector will be the first module in the pipeline for successful 

recognition of the children to allow natural interaction as shown in Figure 1.3. 

3. Auto-tagging: A popular feature in social networking sites like Facebook and personal 

photo organizers like Picasa which enables users to add metadata about an image that 

include the names of the people in the image. To automatically do that, the first step is 

Face Recognition at a distance Human Robot Interaction 

Figure 1.3: Different applications for the proposed detector. 
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to detect the faces in an image. The proposed detector can enhance this automatic 

process in the cases of complicated images with occluded faces that current auto 

tagging systems may fail to detect as in Figure 1.1.  

1.2 Problem statement 

The problem of Partial Face Detection required for the aforementioned applications is 

illustrated in Fig 1.4 and can be defined as follows:  

Input:        -    A still image, several frames from a video or live stream from the  

            robot camera.   

Output:        -    The location and extent of each face in the image. 

-   The location and extent of each facial part if visible (the two eyes  

      the nose and the mouth). 

 -   The location and extent of some occluding objects such as caps,  

       hands and sunglasses. 

Assumptions: -    The input may have no faces at all, one face or multiple faces.  

Input 
  

  

  

Output 

  

  

  

Figure 1.4: Input/Output examples for partial face detection where in the output: faces and the visible facial 

parts are in yellow, sunglasses are in red, caps are in green and hands are in blue. 
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- Each face might not be completely visible in the input due to partial 

occlusion, but at least one of the four main facial features (the two 

eyes, the nose and the mouse) must be completely visible. 

1.3 Evaluation methods 

To evaluate the proposed face detector a database with ground truth annotations and a 

measure to compare the proposed method with other related work are needed. There are 

two types of error rates that define the performance of any object detector, false negative 

and false positive rates. The False Negative (FN) rate counts the number of objects in the 

image that was not detected and the False Positive (FP) rate counts the number of false 

detections in the image where the detector labeled a wrong region in the image as an object 

of interest. The number of correctly detected objects is called the True Positive (TP) rate. 

Usually False negative rates and true positive rates are normalized with respect to the total 

number of objects in all the images in the experiment and as a percentage they must add 

up to a 100% so false negative rate is implicitly included in the true positive rate. There is 

always a tradeoff between true positive and false positive rates; the score of each candidate 

is used with a threshold to change those two numbers resulting in what is called the 

Receiver Operating Characteristic (ROC) curve. The operating point of the detector can be 

selected from the ROC curve depending on the requirements of the system. Another curve 

that is also commonly used for evaluation is the precision recall curve, where precision is 

defined as Precision=TP/(TP+FP) and recall is defined as Recall=TP/(TP+FN) which is 

equivalent to TP rate definition. These terminologies are illustrated in Figure 1.5 and will 

be used to evaluate the efficiency of the detector. 
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1.4 Document organization 

The rest of this document is organized as follows: Chapter 2 gives a brief description 

of modeling faces for the task of face detection from an image, where different feature 

extraction methods and machine learning algorithms will be visited to explain how they 

are used to model the face and distinguish it from the background. Chapter 3 discusses the 

problem of partial face detection and the proposed method for solving it. Chapter 4 shows 

how the proposed detector can be accelerated which is important for any input but of 

particular interest in videos. Chapter 5 completes the discussion with experimental results 

and applications for the proposed methods. Finally Chapter 6 summarizes the conclusion 

of the work and discusses possible future directions. Intuitively, Chapter 2 is the related 

work of the problem while Chapter 3 and 4 are the proposed solution, and Chapter 5 is its 

justifications and applications.   
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Figure 1.5: Evaluation methods: True Positive (TP), False Positive (FP), and False Negative (FN) definitions 

along with examples of ROC and Precision Recall curves. 
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CHAPTER 2 

MODELING FACES FOR DETECTION 

 

Face detection is one of the most studied topics in computer vision because of its wide 

range of applications. It is also the first step for all facial analysis algorithms including face 

tracking, face alignment and face recognition, hence failing to detect the face will eliminate 

any following facial analysis step. The problem of face detection can be considered well 

solved for the constrained environments. Currently, any digital camera or cell phone can 

easily detect frontal faces and adjust its capture settings real time according to that. But 

despite of this maturity, the problem of face detection is still challenging in unconstrained 

environments which are currently tagged as “Faces in The Wild”. In such environments, 

factors like pose, illumination, expression and partial occlusion can combine to produce 

difficult settings that can make the state of the art face detectors fail to attain their task. 

This chapter introduce the details of feature extraction and learning algorithms required 

to model faces for the detection task. First a general categorization of the existing face 

detectors is provided from different perspectives. Then two major general frameworks are 

introduced from a machine learning point of view explaining how each framework 

represents faces for detection through feature extraction and learning algorithm. Then, a 

brief discussion for partial occlusion handling in face detection is provided. Finally, a post 

processing generic method is proposed for reducing the false positives of any face detector 

using complimentary features like skin color. 
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2.1 Categorization of existing face detectors 

Face detection has been extensively studied over the last two decades. A 

comprehensive survey of early approaches for face detection has been presented in Yang 

et al. [1] where single image face detection methods have been classified into four 

categories: knowledge based methods which use roles derived from human perception of 

a face; feature invariant methods which searches for properties of faces that are robust 

to pose and lighting variations; template matching methods which correlates the image 

with a standard face pattern; appearance based methods which learn face models from a 

set of training images. Due to the rapid advances in computational power and data storage, 

appearance based methods showed superior performance and have recently dominated the 

other categories in face detection as mentioned in the recent survey of Zhang et al. [2]. The 

general practice is to use a large set of positive and negative examples and then two key 

issues need to be chosen: the type of features extracted from the images and the learning 

algorithm used for training.  

From another perspective, Gopalan et al. [3] classified the face detection methods into 

two categories: sliding window based methods and local interest point based methods. 

For sliding windows, a model is trained using a set of positive and negative windows 

corresponding to faces and non-faces; then this model is used across windows at all 

locations in different scales of a test image. On the other hand, instead of directly analyzing 

all regions of an image, local interest points with useful invariant properties can be detected 

and then descriptors only around these points are used for locating the faces. Although 

detecting local interest points might look better computationally and for handling object 
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deformations, but it does not guarantee repeatability of interest points. In particular for 

faces, most current detection methods are based on sliding windows.         

Many face detection algorithms evolved as a special case of general object detection 

algorithms. From a machine learning point of view, Adaboost and Support Vector 

Machines (and their variants) are the most used learning algorithms for recent object 

detectors. The following two object detectors frameworks stand out as representatives for 

those two learning techniques because of the many recent detectors based on them for 

detecting faces in unconstrained environments:   

 Boosting based approaches leaded by the seminal work of Viola and Jones (VJ) [4] 

which is a milestone in object detection in general and in face detection in particular 

that inspired many of the recent advances in face detection to use similar boosting 

cascade framework [5].   

 Part based approaches have also received considerable attention in the last decade 

because of their flexibility for object detection. The Deformable Part Models (DPM) 

proposed by Falzenswalb et al. [6] can be considered the baseline framework for many 

of the recent face detectors using discriminatively trained maximum margin 

classifiers [7], [8], [9]. 

The following sections explain these two main frameworks, starting by a brief 

description of the learning framework in general then elaborate on the recent face detectors 

based on them and their corresponding features. The proposed face detector in this work 

belongs to the part based approaches but it will be evaluated relative to recent face detectors 

from both frameworks.   
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2.2 Boosting based approaches 

In this section, a quick explanation of the AdaBoost algorithm is first provided, 

followed by a review of the Viola Jones framework which can be considered the baseline 

for this direction. Finally, some of the recent boosting algorithms are highlighted. 

2.2.1 AdaBoost algorithm 

Boosting is a method for combining (boosting) the performance of many weak 

classifiers to produce one highly accurate strong classifier (committee). Adaboost 

(Adaptive Boosting) trains weak classifiers successively on weighted versions of the 

training data giving higher weights to cases that are currently misclassified then combines 

these weak classifiers to produce a powerful strong classifier.   

As explained in Freund et al. [10], the input to the Adaboost algorithm is a training set 

(𝑥1, 𝑦1), … , (𝑥𝑚, 𝑦𝑚) where 𝑥𝑖 ∈  𝒳 the space of feature vectors extracted from an image 

window,  𝑦𝑖 ∈ {−1, +1} the binary label set.  

Adaboost calls a given weak learning algorithm repeatedly in a series of rounds 𝑡 =

1, … , 𝑇 over a weighted version of the training set. The weight of the training element 𝑖 on 

round 𝑡 is denoted as 𝐷𝑡(𝑖). Initially, all weights are set equally as 𝐷1(𝑖) = 1/𝑚. Then for 

each iteration 𝑡, the weak learner is trained over the weighted training set to produce a weak 

hypothesis ℎ𝑡 ∶  𝒳 →  {−1, +1} appropriate for the distribution (weights) 𝐷𝑡. The 

goodness of a weak hypothesis is measured by its error 𝜖𝑡 = ∑ 𝐷𝑡(𝑖)𝑖:ℎ𝑡(𝑥𝑖)≠𝑦𝑖
 which sums 

all the weights of misclassified elements of the training set. Using this error value, the 

algorithm choses for this hypothesis ℎ𝑡 a coefficient 𝛼𝑡 =
1

2
ln (

1−𝜖𝑡

𝜖𝑡
) which is inversely 
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proportional with 𝜖𝑡, where 𝛼𝑡 ≥ 0 if 𝜖𝑡 ≤
1

2
 (which should always be the case for a weak 

hypothesis to be better than random guessing). Finally, the weights are updated using 

𝐷𝑡+1(𝑖) =  
𝐷𝑡(𝑖) exp(−𝛼𝑡𝑦𝑖ℎ𝑡(𝑥𝑖))

𝑍𝑡
 such that the weights of correctly classified elements are 

decreased while the weights of incorrectly classified elements are increased in a way that 

forces the next weak hypothesis to focus on the misclassified elements. A normalization 

factor 𝑍𝑡 is chosen such that 𝐷𝑡+1 will remain a distribution that sums up to 1.  

After 𝑇 rounds, the final hypothesis 𝐻(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑡ℎ𝑡(𝑥)𝑇
𝑡=1 ) is a majority vote of 

the T weak hypothesis with coefficients 𝛼𝑡. The algorithm is shown in Figure 2.1.        

Figure 2.1: The Adaboost algorithm of Freund et al. [10] 

 

 

 

  

Given:    (𝑥1, 𝑦1), … , (𝑥𝑚, 𝑦𝑚) where 𝑥𝑖 ∈  𝒳,  𝑦𝑖 ∈ {−1, +1}.  

Initialize 𝐷1(𝑖) = 1/𝑚. 

For 𝑡 = 1, … , 𝑇:   

1. Train weak learner using distribution 𝐷𝑡. 

 

2. Get a weak hypothesis ℎ𝑡 ∶  𝒳 →  {−1, +1} with error 𝜖𝑡 = ∑ 𝐷𝑡(𝑖)𝑖:ℎ𝑡(𝑥𝑖)≠𝑦𝑖
  

 

3. Choose 𝛼𝑡 =
1

2
ln (

1−𝜖𝑡

𝜖𝑡
)  

4. updated weights using 𝐷𝑡+1(𝑖) =  
𝐷𝑡(𝑖) exp(−𝛼𝑡𝑦𝑖ℎ𝑡(𝑥𝑖))

∑ 𝐷𝑡(𝑖) exp(−𝛼𝑡𝑦𝑖ℎ𝑡(𝑥𝑖))𝑚
𝑖=1

  

 

The final hypothesis 𝐻(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑡ℎ𝑡(𝑥)𝑇
𝑡=1 ) 
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2.2.2 The Viola Jones framework 

The work of Viola and Jones [11] can be considered one of the first robust real time 

face detectors that is still being used in practice. Three main ideas are behind the success 

of this detector: the integral image, the Adaboost and the attentional cascade structure. 

The integral image is an algorithm for a quick and efficient calculation for the sum of 

intensity values in a rectangular subset of an image. The integral image is defined as:  

𝑖𝑖(𝑥, 𝑦) = ∑ 𝑖(𝑥′, 𝑦′)
𝑥′≤𝑥
𝑦′≤𝑦

                                                 (2.1) 

where 𝑖(𝑥, 𝑦) is the intensity of the gray scale image at pixel (𝑥, 𝑦). Using the integral 

image as illustrated in Figure2.2, the sum of the intensity pixels of any rectangular area 

ABCD can be calculated with only four array references as:     

∑ 𝑖(𝑥, 𝑦)

(𝑥,𝑦)∈𝐴𝐵𝐶𝐷

= 𝑖𝑖(𝐷) + 𝑖𝑖(𝐴) − 𝑖𝑖(𝐵) − 𝑖𝑖(𝐶)                      (2.2) 

Viola and Jones used this concept for rapid computation of a huge number of Haar like 

features which are simply defined as the difference between the sum of the intensities in 

the dark and light shaded regions of simple rectangular patterns as shown in Fig 2.2 (e).  

Figure 2.2: Efficient calculation of Haar like features using integral image: (a) Original image (b) Integral 

image (c) illustration of 𝑖𝑖(𝐴) (d) Illustration of equation 2.2 (e) Examples of Haar like features (f) Example 

of a Haar feature overlapped with original image and illustration of equation 2.3 (g) Example of another Haar 

feature overlapped with original image.  
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For example, the feature shown in Fig 2.2 (f) can be calculated as: 

𝑓 = [𝑖𝑖(𝐷) + 𝑖𝑖(𝐴) − 𝑖𝑖(𝐵) − 𝑖𝑖(𝐶)] − [𝑖𝑖(𝐹) + 𝑖𝑖(𝐶) − 𝑖𝑖(𝐷) − 𝑖𝑖(𝐸)]       (2.3) 

This computational advantage enabled scaling the features for multi-scale detection at 

no additional cost because it requires the same number of operations despite of size. In 

contrast to the conventional image pyramid used in most face detectors to detect over multi-

scales by scanning a fixed scale detector over different scales of the image, Viola and Jones 

scaled the detector itself and saved the time of building the image pyramid. 

The Adaboost is used both to select features and to train the classifier. The weak 

learner is designed here to select the feature which best separates the weighted positive and 

negative training examples. A weak classifier ℎ(𝑥, 𝑓, 𝑝, 𝜃) is defined as: 

ℎ(𝑥, 𝑓, 𝑝, 𝜃) = {
1     𝑖𝑓 𝑝𝑓(𝑥) < 𝑝𝜃
0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

                                         (2.4) 

Where 𝑓 is a feature from the huge set spanning different sizes of the Haar like features 

shown in Figure 2.2 (e), 𝑝 is a polarity indicating the direction of the inequality, 𝜃 is a 

threshold and 𝑥 is a training sub window of size 24x24 pixel. Note that in training, all the 

training examples are 24x24 pixels. This weak classifiers that threshold single features can 

be viewed as single node decision trees which are usually called decision stups in the 

machine learning literature.  

The Adaboost algorithm of Viola and Jones is described in Fig 2.3 which has been 

modified to match the notation used in Fig 2.1. The convention used by Viola and Jones 

was to use 0 for labels of negative examples which is changed to -1 to match the 

terminology used here. One difference from the Adaboost algorithm explained earlier is 
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that the weights of correctly classified examples are not reduced while the weights of 

misclassified examples are still increased. Also the weights of the positive and negative 

examples are initialized according to their respective numbers.  

The attentional cascade of classifiers is used to combine increasingly more complex 

classifiers successively which allows background regions of the image to be quickly 

discarded while spending more computation on promising object-like regions. Simpler and 

therefore faster boosted classifiers (with low T) are used first to reject the majority of 

negative windows while passing almost all positive windows. Then more complex and 

therefore slower boosted classifiers (with high T) are used to reject the much fewer number 

of difficult negative windows. 

Figure 2.3: The Adaboost algorithm used in Viola Jones detector [4] 

 

 

 

  

Given:(𝑥1, 𝑦1), … , (𝑥𝑚, 𝑦𝑚), 𝑥𝑖 ∈ 𝒳, 𝑦𝑖 ∈ {−1,1}  

Initialize 𝐷1(𝑖) =
1

2𝑛
 ,

1

2𝑙
  for 𝑦𝑖 = −1,1 respectively. 

For 𝑡 = 1, … , 𝑇:   

1. Normalize the  weights 𝐷𝑡(𝑖) =
𝐷𝑡(𝑖)

∑ 𝐷𝑡(𝑖)𝑚
𝑖=1

 

2. Select the best weak classifier w.r.t weighted error: 
 

                                𝜖𝑡 = min
𝑓,𝑝,𝜃

∑ 𝐷𝑡(𝑖)𝑖:ℎ(𝑥𝑖,𝑓,𝑝,𝜃)≠𝑦𝑖
  

 

3. Define  ℎ𝑡(𝑥) = ℎ(𝑥, 𝑓𝑡  , 𝑝𝑡 , 𝜃𝑡) ; 𝑓𝑡 , 𝑝𝑡 , 𝜃𝑡 = argmin
𝑓,𝑝,𝜃

∑ 𝐷𝑡(𝑖)𝑖:ℎ(𝑥𝑖,𝑓,𝑝,𝜃)≠𝑦𝑖
  

4. Choose 𝛼𝑡 = ln (
1−𝜖𝑡

𝜖𝑡
)  

5. Updated weights using 𝐷𝑡+1(𝑖) =  𝐷𝑡(𝑖) (
𝜖𝑡

1−𝜖𝑡
)

1−𝑒𝑖

  

where 𝑒𝑖 = 0 if example 𝑥𝑖 is classified correct and 𝑒𝑖 = 1 if misclassified. 

 

The final hypothesis 𝐻(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑡ℎ𝑡(𝑥)𝑇
𝑡=1 ) 
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2.2.3 Boosting based face detectors 

During the last decade, several face detectors have been designed based on the Viola 

Jones framework. The differences are mainly in the version of the Adaboost used and the 

feature extraction method ranging from variants of the Haar like features to LBP, LAB and 

SURF. The following are some of the face detectors designed in this direction. 

Lienhart et al. [12] generalized the Haar like features by introducing 45 degree rotation 

and center surround features that can still be computed efficiently using integral image but 

provided more flexibility leading to better results. The OpenCV implementation of the VJ 

detector adopted this modification as an option for the Haar like features they offer. The 

OpenCV implementation also had an option for using Local Binary Pattern (LBP) [13]. 

LBP has been very successful in face recognition tasks due to its robustness to illumination 

variations which encouraged Zhang et al. to adopt it under the boosting framework for face 

detection using a multi branch regression tree as its weak classifier and Gentle 

Adaboost [14].  

Recently, Li et al. [15], [5] proposed a face detector derived from the VJ boosting 

cascade framework but using the multi-dimensional SURF features instead of single 

dimensional Haar features to describe local patches which enabled them to reduce the 

number of used local patches from hundreds of thousands to several hundreds. They also 

adapted logistic regression as a weak classifier instead of decision trees and used it in 

building a face detector that can be trained very efficiently from billions of  

negative samples. 
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Zhang et al. [16] visited the problem of detector adaptation in which a generic classifier 

trained from extensive data is adapted to data coming from a different test environment to 

improve the performance on it. They presented a general formulation of the adaptation 

problem and demonstrated it on the boosting framework. Jain et al. [17] also presented an 

online approach for rapidly adapting a pre-trained cascade of classifiers to a new testing 

data set without retraining the classifier. They used the VJ framework as a base face 

detector on which they applied their domain adaptation to each of the classifiers in  

the cascade. 

2.3 Part based approaches 

Part based approaches models the face as a root filter that captures the global 

appearance of the face and several part filters that capture more detailed texture of the 

different facial parts. These models have received considerable attention in the last decade 

for object detection in general, while in the last couple of years it received special attention 

in solving the difficult challenges of face detection in the wild. This section starts with a 

brief overview of the maximum margin classifiers also known as the Support Vector 

Machines (SVM). Followed by an explanation of the Deformable Part Models (DPM) 

proposed in Felzenszwalb et al. [6] which can be considered as the baseline framework for 

many of the recent face detectors using discriminatively trained maximum margin 

classifiers [7], [8], [9]. Finally, a brief overview of these face detectors will be provided.  

2.3.1 Support Vector Machines 

A Support Vector Machine is a discriminative classifier that constructs a hyperplane to 

be used for separating examples from two different classes with maximum margin to the 
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closest training examples from each class which are called the support vectors. The 

discussion here starts with linear SVM using a training data that is linearly separable to 

illustrate the problem then adds soft margins to allow for outliers.     

A training set (𝑥1, 𝑦1), … , (𝑥𝑚, 𝑦𝑚) where 𝑥𝑖 ∈  𝑅𝑛,  𝑦𝑖 ∈ {−1, +1} is linearly 

separable if exists 𝜔 ∈  𝑅𝑛, 𝑏 ∈  𝑅, 𝜀 > 0 such that (𝜔. 𝑥𝑖) + 𝑏 ≥ 𝜀 for any training 

example with 𝑦𝑖 = 1 and  (𝜔. 𝑥𝑖) + 𝑏 ≤ −𝜀 for any training example with 𝑦𝑖 = −1. Figure 

2.4 shows a two dimensional example with 𝑥𝑖 = (x1𝑖
, x2𝑖

) ∈  𝑅2, and training examples 

with 𝑦𝑖 = 1 represented by “+” while training example with 𝑦𝑖 = −1 represented by “o”. 

Consider the separating line (�̅�. 𝑥) + �̅� = 0; which is the middle line between two support 

lines (�̅�. 𝑥) + �̅� = 𝑘, (�̅�. 𝑥) + �̅� = −𝑘 as shown in Figure 2.4 with the solid and dashed 

lines respectively. Using 𝜔 =
�̅�

𝑘
, 𝑏 =

�̅�

𝑘
 , the separating line becomes (𝜔. 𝑥) + 𝑏 = 0 and 

the two support lines become (𝜔. 𝑥) + 𝑏 = 1, (𝜔. 𝑥) + 𝑏 = −1. To find the normal 

distance between the two support lines, any point (x1, x2) on the first line is first found by 

using its equation 𝜔1x1 + 𝜔2x2 + 𝑏 = 1 and for example setting x2 = 0 which leads to  

Figure 2.4: Linearly separable SVM problem 

 

 

 

  

Given (𝑥1, 𝑦1), … , (𝑥𝑚, 𝑦𝑚)   

𝑥𝑖 ∈  𝑅𝑛,  𝑦𝑖 ∈ {−1, +1}  

 

find 𝜔⋆ , 𝑏⋆ that :  

min
𝜔,𝑏

 
1

2
‖𝜔‖2  

s.t. 𝑦𝑖((𝜔. 𝑥𝑖) + 𝑏) ≥ 1, 𝑖 = 1, … , 𝑚.  
 

The separating hyper plane  

(𝜔⋆. 𝑥) + 𝑏⋆ = 0  
 

The decision function is 

  𝑓(𝑥) = 𝑠𝑖𝑔𝑛((𝜔⋆. 𝑥) + 𝑏⋆)       
 

 

x1  

2

‖𝜔‖
 

𝜔 

x2  
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x1 =
1−𝑏

𝜔1
. The normal distance between the point (

1−𝑏

𝜔1
 , 0) and the second line 𝜔1x1 +

𝜔2x2 + 𝑏 = −1 is  
𝜔1

1−𝑏
𝜔1

+𝜔2(0)+𝑏+1

√𝜔1
2+𝜔2

2
=

2

‖𝜔‖
 . The idea of maximal margin is to maximize this 

margin (or minimize it reciprocal) while preserving the separation of all the samples in the 

two classes. The problem is illustrated in Figure 2.4 where ‖𝜔‖ is squared for mathematical 

convenience. 

To allow for outliers that might result from labelling errors or from the data not being 

perfectly linearly separable, a slack variable 𝜉 is introduced to measure the degree to which 

each constraint is violated and a cost is associated in the minimization for this violation. 

This results in the soft margin problem described in Figure 2.5. 

The aforementioned problem is called the primal problem of linear SVM and to solve 

it, the general practice is to construct a dual problem that is convex quadratic programming 

using Lagrange multipliers as explained in Deng et al. [18]. Several libraries are available 

Figure 2.5: The Support Vector Machine linear classification problem. 

 

 

 

  

Given a training set: (𝑥1, 𝑦1), … , (𝑥𝑚, 𝑦𝑚) where 𝑥𝑖 ∈  𝑅𝑛,  𝑦𝑖 ∈ {−1, +1}  

Find 𝜔⋆ , 𝑏⋆ that:  

min
𝜔,𝑏,𝜉

 
1

2
‖𝜔‖2 + 𝐶 ∑ 𝜉𝑖

𝑚
𝑖=1   

s.t.  𝑦𝑖((𝜔. 𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖,     𝑖 = 1, … , 𝑚   

𝜉𝑖 ≥ 0,    𝑖 = 1, … , 𝑚   

Where 𝜔 ∈  𝑅𝑛, 𝑏 ∈ 𝑅, 𝜉 = (𝜉1, … , 𝜉𝑚), 𝐶 > 0 (penalty parameter)  

The separating hyper plane is (𝜔⋆. 𝑥) + 𝑏⋆ = 0  

The decision function is 𝑓(𝑥) = 𝑠𝑖𝑔𝑛((𝜔⋆. 𝑥) + 𝑏⋆)   
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for solving the SVM such as LibSVM [19] and SVMlight [20]. Nonlinear SVM is achieved 

through the use of kernels to map the nonlinearly separable training data to another space 

that is linearly separable [18]. The problem in Figure 2.5 remains the same with just 

replacing 𝑥𝑖 with the map 𝜑(𝑥𝑖). This minimization problem can also be formulated as  

min
𝜔,𝑏,𝜉

 
1

2
‖𝜔‖2 + 𝐶 ∑ max (0,1 − 𝑦𝑖(𝜔. 𝜑(𝑥𝑖)))𝑚

𝑖=1  where the hinge loss ∑ max (0,1 −𝑚
𝑖=1

𝑦𝑖(𝜔. 𝜑(𝑥𝑖))) is minimized when the scoring function fits the examples well with a safety 

margin, while  
1

2
‖𝜔‖2 is interpreted as a regularization term that ensures a small variation 

of 𝜑(𝑥𝑖) does not change the score 𝜔. 𝜑(𝑥𝑖) too much.  

2.3.2 Deformable Part Models 

Deformable part models provide an elegant framework for modeling different object 

categories. The Deformable Part Models proposed in Felzenszwalb et al. [6] will be briefly 

described here as it can be considered the baseline framework for many of the recent face 

detectors. This star model is defined by a root filter that can capture coarse details such as 

the face boundary, combined with part filters that can capture smaller and more detailed 

parts of the face such as the eyes, nose and mouth at twice the spatial resolution.  

They defined the model for an object with 𝑛 parts as (𝐹0, 𝑃1, … , 𝑃𝑛, 𝑏) where 𝐹0 is the 

root filter, 𝑃𝑖 is the model for the 𝑖𝑡ℎ part and 𝑏 is a bias term. Each part model is defined 

as (𝐹𝑖, 𝑣𝑖, 𝑑𝑖) where 𝐹𝑖 is the 𝑖𝑡ℎ part filter, 𝑣𝑖 is the anchor position representing the default 

part position with respect to the root filter, and 𝑑𝑖 defines the deformation cost of the part 

relative to anchor position. An object candidate is determined by the location 𝑧 =

(𝑝0, 𝑝1, … , 𝑝𝑛) of each filter in the model in a feature pyramid 𝐻 where 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑙𝑖) 

with 𝑙0 being the level of the root filter in 𝐻 while the rest of 𝑙𝑖 being the level of the part 
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filters in 𝐻 this is referred to as 𝑙𝑖 = 𝑙0 − 𝜆 where 𝜆 is the number of levels separating two 

levels in the pyramid at twice the resolution. The score of this candidate is given by:  

𝑠𝑐𝑜𝑟𝑒(𝑝0, … , 𝑝𝑛) = 𝐹0 . 𝜑𝑎(𝐻, 𝑝0) + ∑ [𝐹𝑖  . 𝜑𝑎(𝐻, 𝑝𝑖) − 𝑑𝑖. 𝜑𝑑(𝑑𝑥𝑖 , 𝑑𝑦𝑖)]𝑛
𝑖=1 + 𝑏   (2.5) 

where 𝜑𝑎 is the appearance feature vector in a sub-window of 𝐻 defined by 𝑝𝑖, 

𝜑𝑑(𝑑𝑥𝑖 , 𝑑𝑦𝑖) is the deformation feature defined as (𝑑𝑥𝑖, 𝑑𝑦𝑖, 𝑑𝑥𝑖
2, 𝑑𝑦𝑖

2) where 

(𝑑𝑥𝑖, 𝑑𝑦𝑖) = (𝑥𝑖, 𝑦𝑖) − (2(𝑥0, 𝑦0) + 𝑣𝑖). This score can be expressed as a dot product 

between a vector of model parameters 𝜔 = (𝐹0, 𝐹1, … , 𝐹𝑛, 𝑑1, … , 𝑑𝑛, 𝑏) and a feature vector 

𝜓(𝐻, 𝑧) = (𝜑𝑎(𝐻, 𝑝0), 𝜑𝑎(𝐻, 𝑝1), … , 𝜑𝑎(𝐻, 𝑝𝑛), −𝜑𝑑(𝐻, 𝑝1), … , −𝜑𝑑(𝐻, 𝑝𝑛), 1): 

𝑠𝑐𝑜𝑟𝑒(𝑧) = 𝜔. 𝜓(𝐻, 𝑧)                                                     (2.6) 

For training, they used latent SVM which considers a classifier that scores each 

example 𝑥 with a function 𝑓𝜔(𝑥) = max
𝑧𝜖𝑍(𝑥)

𝜔 . 𝜓(𝐻, 𝑧) where the set 𝑍(𝑥) defines all 

possible latent values for an example 𝑥. A binary label for this example 𝑥 can be obtained 

by thresholding the score. The model parameters 𝜔 can be trained from labeled examples 

(𝑥1, 𝑦1), … , (𝑥𝑚, 𝑦𝑚) by minimizing the objective function:  

𝐿(𝜔) =
1

2
‖𝜔‖2 + 𝐶 ∑ max (0,1 − 𝑦𝑖𝑓𝜔(𝑥𝑖))𝑚

𝑖=1                             (2.7) 

The training data contains only bounding box of the object and hence the unknown part 

filter locations are considered latent variables. Note that if there is a single possible latent 

value for each example then 𝑓𝜔 is linear in 𝜔 and the latent SVM is simplified to the linear 

SVM explained in the previous subsection. 
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For detection, the response of the 𝑖𝑡ℎ filter 𝐹𝑖 in the 𝑙𝑡ℎ level of 𝐻 is calculated by 

𝑅𝑖,𝑙(𝑥, 𝑦) = 𝐹𝑖 . 𝜑𝑎(𝐻, (𝑥, 𝑦, 𝑙)) in a sub-window of 𝐻 with top left corner at (𝑥, 𝑦) and its 

size is defined by the size of the root filter. To find the optimum locations for the parts with 

respect to the root location they used the generalized distance transform proposed by 

Felzenszwalb et al. [21]. The updated response of the 𝑖𝑡ℎ part filter in this optimum location 

𝐷𝑖,𝑙 and the corresponding optimal displacement 𝑃𝑖,𝑙 are given respectively by:  

𝐷𝑖,𝑙(𝑥, 𝑦) = max
𝑑𝑥,𝑑𝑦

 [𝑅𝑖,𝑙(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦) − 𝑑𝑖 . 𝜑𝑑(𝑑𝑥, 𝑑𝑦 )]                (2.8) 

𝑃𝑖,𝑙(𝑥, 𝑦) = argmax
𝑑𝑥,𝑑𝑦

 [𝑅𝑖,𝑙(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦) − 𝑑𝑖  . 𝜑𝑑(𝑑𝑥, 𝑑𝑦 )]           (2.9) 

This transformation spreads high part scores to nearby locations according to a 

deformation cost. The overall score of this window is then calculated as:  

𝑠𝑐𝑜𝑟𝑒(𝑥, 𝑦, 𝑙) = 𝑅0,𝑙(𝑥, 𝑦)  + ∑ 𝐷𝑖,𝑙−𝜆(2(𝑥, 𝑦) + 𝑣𝑖)
𝑛
𝑖=1  +  𝑏                     (2.10)  

where part filters are taken at twice the resolution of root filter (𝑙 − 𝜆) using the shifted 

and subsampled transformed part filter responses 𝐷𝑖,𝑙−𝜆(2(𝑥, 𝑦) + 𝑣𝑖). The bias term is 

introduced to make the scores of multiple models comparable if combined in a mixture 

model for example to have separate models for frontal and profile views. After finding a 

window with high score that will be considered a detection, the corresponding part 

locations can be found as 𝑃𝑖,𝑙−𝜆(2(𝑥, 𝑦) + 𝑣𝑖). 

2.3.3 Part based face detectors 

Many of the state of the art face detectors in the last couple of years have turned to the 

use of part based models for the task of detecting faces in unconstrained conditions. Zhu et 
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al. [7] presented a unified model for face detection, pose estimation and landmark 

localization based on mixtures of trees with a shared pool of parts by modeling every facial 

landmark as a part and allowing different view mixtures to share part templates. Their tree 

structured model contains 13 different viewpoints and 5 expressions limited to frontal view 

point. They used up to 68 part filter per pose corresponding to the facial landmarks with a 

total of 99 parts across all viewpoints. Each part is represented as a 5x5 HOG cells of size 

4. They explored 4 levels of sharing parts between mixtures starting from share-99 which 

is fully shared that shares a single template for each of the 99 parts across all mixtures, then 

share-146 which shares templates only across similar topology viewpoints, then share-622 

that shares only across neighboring viewpoints and finally share-1050 which does not share 

any part templates.  

However in [8], Orozco et al. argued that these models presented in [7] were aimed to 

landmark localization and pose estimation but they are suboptimal when only face 

detection is required because it requires full landmark labelling which reduces the amount 

of data that can be used in training and it is slow for practical face detection applications. 

They presented an empirical analysis comparing the approach in [7] and a cascade DPM [6] 

for the task of face detection. They treated part locations as latent variables during training 

and used latent SVM to train a 4 pose model. They also used a cascade DPM which speeded 

up the performance without sacrificing the detection accuracy.  

Yan et al. [9] proposed using a hierarchical part based structure face model based on 

DPM but with allowing part subtypes to describe appearance variations in parts for 

example differentiating between closed eye and open eye. Similar to [7], they defined their 

parts around facial landmarks. For part subtypes they used K-means to cluster each part to 



25 

  

a fixed number of subtypes. They also used body context to enhance their results when 

faces are difficult to detect. In [22], Yan et al. also proposed a real time face detector based 

again on DPM by using pre-calculated lookup tables to efficiently calculate the Histogram 

of Oriented Gradient (HOG). Finally, Mathias et al. in the latest work of face detection [23] 

agrees with the previous categorization of recent best face detection methods as the 

children of two classic detection approaches Viola Jones with Adaboost and  DPM with 

HOG and SVM. They trained two detectors based on each of these methods and achieved 

comparable performance concluding that the DPM is the method of choice if only few 

training samples are available and at the same time high recall is of essence.  

2.4 Occlusion handling 

The problem of partial occlusion on face detection is not usually addressed explicitly 

in the literature, but instead it is considered implicitly. For example, in part based models 

the partial occlusion affects the occluded parts score but the face can still be weakly 

detected by the score of other parts depending on how severe is the occlusion. Goldmann 

et al. [24] used a component detection stage to detect facial parts individually then a 

topology verification stage that uses the spatial configuration of these parts to find possible 

faces even in the absence of some parts but with weak scores. To help in such situations, 

Yan et al. [9] used body context to raise the score of a partial face using its accompanied 

upper body. Another direction used by Lin et al. [25] was to train a separate detector similar 

to the VJ detector for faces with different parts occluded, they artificially simulated eight 

different types of occlusions by removing either one third of the face vertically or 

horizontally or by removing one fourth of the face diagonally. The disadvantage in 

artificially removing part of the face is it cannot model the real occlusions happening in 
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unconstrained environments rather it only models the remaining part of the face. The 

problem becomes difficult when more than one part of the face is occluded and most face 

detectors fail to detect these faces like the examples in Figure 1.1. In my work, Selective 

Part Models (SPM) is proposed which can be used to select between regular parts of the 

face (e.g. eyes, nose and mouth) and common types of occlusion (e.g. hands, sunglasses 

and caps). This enables explicitly modeling some occlusions and hence detecting faces in 

very difficult settings that cannot be detected even by state of the art commercial face 

detectors. The model also use overlap maps to raise the scores of faces occluded by other 

faces and shoulders. Although many of the recent work based on part models [7], [9] used 

large number of parts defined around the common face recognition landmarks; I used only 

four facial parts in SPM to allow more in-class variability. I believe that this large number 

of parts is more suitable when classification between different faces is needed as in face 

recognition but not when different faces need to be considered as one class as in face 

detection. In addition, the execution time is also affected by the large number of parts. 

2.5 Reducing the False Positives 

There are two types of errors that define the performance of any face detector: False 

negatives which are the faces in the image that were not detected by the detector and false 

positives which are non-faces regions in the images that were mistakenly detected as faces 

by the detector. The false negatives usually result from challenges like pose, illumination, 

expression and partial occlusion that could not be captured by the face model, while false 

positives usually results from the complex environment around the faces which may 

deceive the face model and be detected as faces because of their resemblance to the face 

shape and texture or because of the difficulty of selecting negative training examples to 
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train the model that can cover all the possible background environments. Examples of these 

challenges that can cause both types of errors for a face detector are shown in Figure 2.6.  

The performance of the face detector can be measured by the ROC curve which reflects 

the tradeoff between these two types of errors: the false positive rate and the false negative 

rate implicitly represented in the true positive rate. The detector output can be seen as face 

candidates represented by the locations and extent in the image, and corresponding scores 

representing how confident the detector is about each face candidate. By thresholding these 

scores with different threshold values the ROC curve can be constructed. Typically, a high 

threshold value results in detecting only face candidates with high scores which can reduce 

the false positives significantly but with the price of also reducing the true positive rate (i.e. 

increasing the false negative rate). On the other hand, reducing the threshold value will 

recover more faces resulting in a high true positive rate (i.e. low false negative rate), but in 

the meanwhile it will also detect more false positives increasing their rates. 

Figure 2.6: The different challenges of face detection and the two types of errors resulting from them. 
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The proposed method in this section can be used with any generic face detector to 

reduce false positives by pushing the whole ROC curve to the left using other features that 

are different from the features used in the base detector so that it can attack the false 

positives from a different perspective with a minor effect on the true positives. For 

example, with a detector that depends on features extracted from the texture of the face 

(e.g. HOG or Haar) to detect face candidates, skin color can be used in a post processing 

step to reject false positives that resembled the texture of the face for the detector but 

hopefully not the skin color used in the post processing stage. The ROC curves in Figure 

2.7 explains this idea. 

From a different perspective, the method can also be seen as if it increases the true 

positive rate since if a maximum fixed false positive rate is required for the system (for 

example 100) then by looking to Fig 2.7 we can see that at this false positive rate there is 

an increase from 0.6 to 0.75 in the true positive rate. Although the method does not increase 

the true positive rate but it allows the detector to operate at another operating point with a 

higher true positive rate while maintaining the same false positive rate.   
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Figure 2.7: Reducing false positives result in pushing the whole ROC curve to the left and allow the use of 

a better operating point that can be seen at a fixed false positive rate as an increase in the true positive rate.  
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This work implements this idea with two different approaches that were both initially 

tested using the VJ face detector as the base detector which is used to find initial face 

candidates that are then augmented with different other information to reduce false positive 

or more intuitively to push the ROC curve to the left as shown in Figure 2.7 and then select 

the suitable operating point on the curve. The Robust Score Fusion based Face Detection 

(RSFFD) was proposed in the face detection competition described in Parris et al. [26] 

which was tested on a data set of low-light and long-distance images that possess most of 

the problems encountered by face detectors in a real-world setting. The performance of 

face detection algorithms from the academia and the industry were analyzed on this hard 

dataset and the initial version of the RSFFD was one of the best performers. Then in EL-

Barkouky et al. [27], I proposed a modified version of the RSFFD which used saliency and 

skin information and will be explained in the following section. Another solution along the 

same line was presented in our work [28] based on utilizing a probabilistic framework for 

facial feature extraction combined with a skin model. The advantage is that false positive 

reduction is achieved using a facial feature extraction process (which is essential for most 

facial analysis algorithms). It simply combines the first two blocks in any facial analysis 

pipeline and make use of that in rejecting false positives. 

2.6 Robust Score Fusion based Face Detection 

The RSFFD module explained in this section uses saliency maps which will be first 

explained. Although the method of extracting saliency maps illustrated here is adopted 

from Li et al. [29], the contribution in this part is in using it into the face detection 

framework. Especially for FRAD applications where the Narrow Field Of View (NFOV) 

lenses used for large distances had some blurring effect on the background that enables 
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saliency maps to perform very well in detecting the subject of interest (including his face) 

who is usually in focus from the complex background that can be slightly blurred because 

it is out of focus. 

2.6.1 Saliency Detection 

In psychology, one of the most severe problems of perception is information overload. 

Therefore, the human nervous system makes an effort to determine which part of the 

available information is to be selected for further processing and which component needs 

to be discarded [30]. Koch et al. [31] proposed that different visual features that contribute 

to attentive selection of stimulus (e.g., color, movement, orientation) are combined into a 

single topographically oriented map, also known as the saliency map, which measures the 

relevance of information in a scene. 

From a computational point of view, computer vision researchers are interested in 

visual saliency since it reduces computational cost in real-time object detection 

problems [32], [33]. Recently, Xingbao et al. [34] used saliency detection to segment 

pedestrians from an aerial video. In this work, it is used to help in rejecting false positives 

through the RSFFD framework. 

For this part, the work will be based on the saliency detection framework of Li et 

al. [29], which uses both frequency and spatial domain analysis. In the frequency domain 

analysis, instead of modeling salient regions, they model the non-salient regions and 

suppress them later. For the spatial domain analysis, they enhanced more informative 

regions using a center-surround mechanism similar to that of the visual cortex. The outputs 
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from these two analyses are combined to produce the final saliency map. The input and 

output of the process are illustrated in Fig 2.8. 

Given an image 𝑓(𝑥, 𝑦), it can be transformed to the frequency domain via the Fourier 

transform: 𝑓(𝑥, 𝑦) → 𝐹(𝑢, 𝑣). The amplitude, 𝐴(𝑢, 𝑣) and phase spectra 𝑃(𝑢, 𝑣), can be 

computed as: 𝐴(𝑢, 𝑣) = |𝐹(𝑢, 𝑣)| and 𝑃(𝑢, 𝑣) = 𝑎𝑛𝑔𝑙𝑒(𝐹(𝑢, 𝑣)).  

To suppress repeated patterns, which correspond to non-salient regions, using spectrum 

smoothing, a Gaussian kernel ℎ (with scale 𝜎) is employed to suppress spikes in the 

amplitude spectrum, i.e. 

𝐴𝑠(𝑢, 𝑣) = |𝐹(𝑢, 𝑣)| ∗ ℎ           (2.11) 

The resulting smoothed spectrum 𝐴𝑠(𝑢, 𝑣) and the original phase spectrum are 

combined via the inverse Fourier transform to produce the saliency map 𝐿 as: 

𝐿 = 𝐹−1(𝐴𝑠(𝑢, 𝑣)𝑒𝑖𝑃(𝑢,𝑣))            (2.12) 

Figure 2.8: The input and output of saliency detection which uses saliency maps that measure the relevance 

of information in a scene which is in this case the subject being captured. 
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The next step is to model salient pixels and regions locally, through spatial domain 

analysis. Li et al. [29] used Independent Component Analysis (ICA) filters to simulate the 

receptive fields of the visual cortex. Given the two saliency maps from the frequency and 

spatial domain analysis, Li et al. discussed in [29] an elaborate way to combine the two 

sources of information into a final saliency map which is beyond the focus of this 

dissertation. At the end, the saliency map is processed by several morphological operations 

to produce a mask that isolates the salient part in the image as shown in Figure 2.8. 

2.6.2 Skin Detection 

In this work, the skin detector is adopted from Conaire et al. [35] where skin pixels are 

detected using a Naïve Bayes classifier. They trained non-parametric histogram-based 

models using manually annotated skin and non-skin pixels. A total of 14,985,845 skin 

pixels and 304,844,751 non-skin pixels were used. Separate RGB histograms for "skin 

pixels" and "non-skin pixels" are created with bin size 8. Since each of the RGB channels 

takes values from 0 to 255, an RGB histogram that uses bins of size 8 results in an array of 

size 32x32x32 where the first dimension represents the 32 bins of the R channel, the second 

dimension represents the 32 bins of the G channel, and the third dimension represents the 

32 bins of the B channel.  

To construct the skin histogram SH(R,G,B), each entry of the 32x32x32 array 

represents a bin in the histogram and is simply filled with the normalized count of skin 

pixels having RGB values belonging to this bin. Similarly, the non-skin histogram 

NH(R,G,B) is calculated by counting the non-skin pixels. The skin model is a 32x32x32 

array that contains for each bin the log likelihood of it being skin represented by:  
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𝑆 = log (
𝑆𝐻(𝑅, 𝐺, 𝐵)

𝑁𝐻(𝑅, 𝐺, 𝐵)
) 

this results in a skin likelihood of 0 if SH=NH for certain RGB pixel values, positive value 

if SH>NH, and negative value if SH<NH. The values in the used model ranged from  

-15.7895 to 7.4944. For a new image, the log likelihood of each pixel in the image is 

computed and then a threshold of zero is applied on the result to decide skin or non-skin. 

The process is illustrated in Figure 2.9 using three different images, the skin log likelihood 

is shown using a color map image just for illustration and the skin output after applying a 

zero threshold is shown as a binary image.  

Figure 2.9: Examples of input images with their skin likelihood displayed as a color map image and skin 

mask displayed as a binary image. The first row shows a sample of good results and the second and third row 

show challenging images. 
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The skin detection in general produces good results as shown in the first row of Figure 

2.9 but not good enough to be used separately for face detection especially in unconstrained 

environments where illumination variations and complex background can be very 

challenging for the skin model as illustrated in the second and third rows of the same figure. 

In this work, a simple skin model was adopted to be very efficient computationally and it 

is only used for false positive reduction. It adds the valuable color information to the 

detector which compliments the other features used and enhances the performance.  

2.6.3 Method description 

The RSFFD method starts by identifying possible face candidates in the input image 

using Haar-like features over multiple scales using the OpenCV implementation of the 

Viola Jones [11] face detector (the same idea can be applied to any other detector). The 

overlapped rectangles from different scales are combined into a single rectangle. A first 

score that represents the number of combined rectangles is generated and assigned to each 

candidate. After detecting the facial region, the next step locates facial parts (two eyes and 

mouth) using the same VJ object detection approach but with a different cascade training 

for each facial part. The geometric structure of the face (i.e., expected facial feature 

locations) is taken into consideration to constrain the search space. Each candidate 

rectangle is given a second score that corresponds to the number of facial features detected 

inside it. Nose was not detected because of its low performance with the VJ framework. 

In addition to detecting facial features inside the facial region, the percentage of skin 

pixels is also taken into account. Skin pixels are detected using the skin detctor from 

Conaire et al. [35], which uses non-parametric histogram-based models trained on 
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manually annotated skin and non-skin pixels as illustrated in the previous subsection. The 

percentage of skin pixels in each candidate is transformed into the third score. In the same 

manner the saliency map discussed earlier is generated and again the percentage of saliency 

map pixels in each candidate is transformed into the fourth score as shown in Figure 2.10.  

The skin was combined with the saliency because the information they provide is 

usually complimentary in the complex background attached with the unconstrained face 

detection problem. For example, sometimes a false candidate is detected in the background 

and it might have color that is close to skin, so at this time the saliency is used to reject. On 

the other hand, sometimes a false candidate is detected on the body of the subject which is 

part of the saliency map, so here the skin can be used to reject it. Figure 2.6 shows such 

examples for false positive rejection. 

Figure 2.10: The input and output of salience detection which uses saliency maps that measure the relevance 

of information in a scene which is in this case the subject being captured. 
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Every candidate face detected initially by the base face detector is assigned four scores, 

representing the sum of the number of overlapped rectangles, the number of facial features 

detected, the skin pixels percentage and the saliency map pixels percentage which are 

combined into a single score. Candidates with scores above a certain threshold are 

considered as the final detected faces.  

2.7 Conclusion 

This chapter provided a detailed overview of the face detection problem in general. It 

started with a categorization of the existing face detectors from different perspectives. 

Then, it focused on the details of two major general frameworks explaining how each 

framework models the faces for the detection task and what are the recent methods based 

on the same framework. It also discussed briefly the few related works that visited the 

partial occlusion problem in face detection. Finally, it proposed a post processing generic 

method for reducing the false positives of any face detector.  

In this dissertation, the part based approach is adopted to build a model that explicitly 

handle occlusion which will result in a problem called Partial Face Detection [36] in 

analogy to the Partial Face Recognition problem recently defined in [37]. The partial face 

detection problem and its proposed solution “The Selective Part Models” are explained in 

the next chapter.  
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CHAPTER 3 

PARTIAL FACE DETECTION 

 

Faces in the wild can be considered the current target of research done in the face 

detection field. Partial occlusion is a major problem for analyzing these faces captured in 

unconstrained non-cooperative real life conditions. In this chapter, the problem of partial 

face detection is tackled with a novel detector that explicitly focus on partial occlusion. 

The model depends on modeling the face as a collection of parts that can be selected from 

the visible regular facial parts and possible other objects that are known to usually occlude 

faces such as sunglasses, caps and hands. The proposed algorithm is called Selective Part 

Models and it can be seen from a scene understanding point of view in the sense that it is 

not only detecting faces but it also suggests the visible parts of these faces and even some 

of the occluding objects which can help in any further analysis.  

3.1 Selective Part Models 

To represent faces in unconstrained settings and under partial occlusion, SPM is 

proposed which builds over the DPM proposed in [6]. The model consists of a root filter 

𝐹0 to capture the global appearance of the face and several part filters 𝐹𝑖 to capture more 

detailed texture at twice the spatial resolution. The SPM detector selects its parts from a 

pool of facial part subtypes and common occluding objects to allow for variability that can 

capture the reach possibilities of faces under unconstrained conditions. The selection 
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procedure is done over two levels, the first level uses different part filters for each facial 

part to model different subtypes for the appearance of this part for example the eyes can be 

opened, closed or with eyeglasses. The second level of selection uses overlap maps to select 

between facial parts and possible occluding objects such as sunglasses, caps, hands and 

other faces. To fully describe the model, the following sections discuss the feature 

extraction, the detection and the training used with SPM.  

3.2 Feature Extraction 

In the last couple of years, almost all of the part based face detectors have adopted the 

HOG features or one of its modifications to describe the appearance of faces in an image. 

For this work the same line is followed and the SPM is also illustrated using the HOG 

features although the model is generic and can be applied with other types of features as 

well. In this section, a brief description is given for the HOG features proposed by Dalal 

and Triggs in [38] and its modification that was proposed in [6] which will be used here. 

Then a discussion is provided for the different parts used in the proposed model illustrating 

examples of their HOG features.  

A feature map is an array with d-dimensional feature vectors as its entries. Each feature 

vector describes a local image patch called a cell. The image is first divided into non-

overlapping cells. Then for each cell, a one dimensional histogram of gradient orientations 

is calculated over its pixels. The gradient magnitude and orientation are calculated at each 

pixel using finite difference filters [-1,0,1] and its transpose. For color images, the color 

channel with the largest gradient magnitude is used. The gradient orientation at each pixel 

is quantized into one of nine undirected orientation bins with a voting strength that depends 
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on its gradient magnitude to collectively build up the histogram of oriented gradients in 

this cell as a vector of length 9. Finally, the histogram of each cell is normalized with 

respect to the four 2x2 blocks that contains the cell leading to four different vectors each 

of length 9 that when concatenated leads to a feature vector of dimension 36 per cell. The 

process is illustrated in Figure 3.1. 

These HOG features were modified in [6] to reduce the dimensionality from 36 to 13 

while maintaining the same performance by using the 9 orientation vector together with a 

4 dimensional vector that reflects the overall gradient energy in different cells around the 

cell. In practice, they combined the 9 undirected (contrast insensitive) gradient orientations 

with another 18 directed (contrast sensitive) gradient orientations ending up with the final 

feature map having 31 dimensional vectors. They found empirically that this combination 

enhances the performance for different objects. 

For training data, the positive and negative examples are resized to the desired 

minimum face size to be detected by the model for the root filter and also resized to twice 

of that size for part filters. In this illustration, a root window size of 40x40 is described, 

Figure 3.1: Extracting the HOG feature map from an image.   
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with varying part window sizes relative to a root window of 80x80 although the same 

concept can be used with any other sizes. For the feature map corresponding to root filters, 

each training example is resized to 40x40 pixels and then divided into non-overlapping 

cells of size 4x4 pixels resulting into 10x10 cells which are then used to calculate the 31 

dimensional modified HOG features. For the feature map corresponding to part filters, each 

training example is resized to 80x80 pixels which is also divided into 4x4 cells yielding to 

20x20 cells. The eyes part filters are 8x10 cells each anchored at the top left and right 

corners of the window corresponding to the root filter. The nose part filter is 8x8 cells 

anchored in the center of the window. The mouth part filter is 6x12 cells centered at the 

bottom of the window. Figure 3.2 shows an iconic representation of these different HOG 

feature maps. 

Each facial part is classified further into three subtypes to account for variability within 

this part different appearances. The eyes used in training are classified manually into 

opened, closed, or with eyeglasses. The nose is classified according to nostrils as nose with 

both, only one or none of the nostrils appearing in the image where one or both of the nose 

openings can be hidden due to the pose of the face. The mouth is classified into closed, 

opened slightly with only teeth appearing or opened extremely with more than teeth 

appearing from the inside of the mouth. The reason behind these classifications is twofold, 

first the different appearance of the parts in these categories is difficult to be captured with 

one filter; and second the meaning of each subtype can help in further analysis of the face 

such as in recognition. The particular selection of the nature of these different subtypes is 

a design issue that can be changed as desired. Examples of different subtypes for each part 

are shown in Figure 3.2 with their corresponding HOG features. 



41 

  

The proposed model does not only detect faces and their parts but it also detects some 

of the occluding objects that are common to occlude faces such as sunglasses, caps and 

hands. The model considers these objects as possible alternatives to occluded facial parts. 

To comply with the dimensions of the previous illustration, these objects are considered as 

parts which are related to the same window of 20x20 cells similar to the facial parts. The 

sunglasses are of size 6x16, the caps are 16x20 and the hands are 10x10. Examples for 

these objects and their corresponding features are also illustrated in Figure 3.2.  

The aspect ratio of each part was selected using statistics from the training data, while 

the exact dimensions can be adjusted based on the minimum face size required to be 

detected for different applications. For faster processing, the cell size can be increased from 

Figure 3.2: Images and feature maps for examples of the whole face in the first row and the remaining rows 

are the facial parts with their different subtypes along with some of the common occluding objects. The parts 

are at twice the resolution of the whole face and relative sizes are maintained in the figure.   
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4x4 to 8x8 which will reduce the number of cells processed per root or part by one fourth 

resulting in faster overall processing with a slight degradation in the performance. 

3.3 Detection 

For the detection, the sliding window approach is used to test image windows over 

different locations and scales. The process starts by building the feature pyramid 𝐻 from 

the input image which enables the detection of faces over multi-scales using filters of fixed 

size. The response of the 𝑖𝑡ℎ filter 𝐹𝑖 in the 𝑙𝑡ℎ level of the feature pyramid is calculated by 

𝑅𝑖,𝑙(𝑥, 𝑦) = 𝐹𝑖 . 𝜑𝑎(𝐻, (𝑥, 𝑦, 𝑙))    (3.1) 

where 𝜑𝑎 is the appearance HOG feature vector in a window of 𝐻 with top left corner at 

(𝑥, 𝑦) and its size is defined by the size of the filter. To capture the deformable variations 

in the parts of different faces or different occluding objects, we use the generalized distance 

transform proposed in Felzenszwalb et al. [21] to find the optimum locations for the parts 

with respect to the root location. The updated response of the 𝑖𝑡ℎ part filter in this optimum 

location is given by  

𝐷𝑖,𝑙(𝑥, 𝑦) = max
𝑑𝑥,𝑑𝑦

 [𝑅𝑖,𝑙(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦) − 𝑑𝑖 . 𝜑𝑑(𝑑𝑥, 𝑑𝑦 )]      (3.2) 

where 𝜑𝑑 = (𝑑𝑥, 𝑑𝑦, 𝑑𝑥2, 𝑑𝑦2) is the deformation feature and 𝑑𝑖 is a four dimensional 

vector specifying its coefficients. This transformation spreads high part scores to nearby 

locations according to a deformation cost.  

The main contribution in the SPM is to allow selecting the model parts from a pool of 

parts that includes different subtypes of each of the main facial parts namely the two eyes, 
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nose and mouth and common occluding objects that can hide these parts like caps, 

sunglasses and hands. The overall score of any window is calculated by adding the root 

score on this window to the sum of the selected part scores using 

𝑆𝑡(𝑥, 𝑦, 𝑙) = 𝑆𝑟(𝑥, 𝑦, 𝑙) + ∑ 𝑆𝑃𝑖
(𝑥, 𝑦, 𝑙) 𝑃𝑖∈𝑆                (3.3) 

𝑆𝑟(𝑥, 𝑦, 𝑙) = 𝑅0,𝑙(𝑥, 𝑦)                  (3.4) 

𝑆𝑃𝑖
(𝑥, 𝑦, 𝑙) = 𝐷𝑖,𝑙−𝜆(2(𝑥, 𝑦) + 𝑣𝑖) + 𝑏𝑖                           (3.5) 

 The root filter is at level 𝑙  of the pyramid and the part filters are at level 𝑙 − 𝜆 which 

is twice the resolution of 𝑙, 𝑣𝑖 is the anchor position for part 𝑖 relative to the root position, 

𝑏𝑖 is a bias term to make the scores of different parts comparable for selection and using 

the same threshold. The summation is over the parts belonging to a set 𝑆 containing the 

selected parts for this window.  

Figure 3.3 explains how the set S in equation (3.3) is found from the possible pool of 

facial parts 𝑃1 to 𝑃4 including their subtypes and the occluding objects 𝑃5 to 𝑃7. The upper 

part of the figure shows the overlap maps of these parts and their anchor points with respect 

to the root window, while the second row shows some possible scenarios clarifying how 

the selection is made using the overlap maps and their corresponding scores 𝑆𝑃𝑖
. The 

algorithm selects the parts in S as follows:  

1. Initialize 𝑆 with 𝑃1 to 𝑃4 despite of their scores by comparing the different subtypes 

of each part and selecting the largest score.  
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2. Add to 𝑆 each of the objects 𝑃5 to 𝑃7 only if their respective scores are higher than 

a threshold. 

3. Check the overlap of each added occluding object with the corresponding facial 

parts according to the overlap maps and compare the scores of overlapped parts to 

keep from them only the parts with the highest score and remove the others from 𝑆. 

For example, in the right lower image of Figure 3.3 the set 𝑆 starts as {𝑃1, 𝑃2, 𝑃3, 𝑃4} 

then by checking the scores of 𝑃5 to 𝑃7 for this window the set 𝑆 

Figure 3.3: Selective Part Models: The upper part shows the overlap maps of different parts and their anchor 

points with respect to the root window. The lower part shows two examples of the selection process using 

overlap maps and the final parts in the set S (below the face). 

 

 

 



45 

  

becomes {𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑃6}. From the overlap maps, a possible overlap of 𝑃5 (the cap) 

should be checked with 𝑃1 and 𝑃2. In this example, they do not overlap significantly so the 

set 𝑆 is kept as it is and the algorithm moves to 𝑃6 (the sunglasses) which should be checked 

for possible overlap also with 𝑃1 and 𝑃2. Since in this example they do overlap significantly 

and the score of 𝑃6 is higher than 𝑃1 and 𝑃2, then 𝑃1 and 𝑃2 are removed from S and the 

final set 𝑆 becomes {𝑃3, 𝑃4, 𝑃5, 𝑃6}. 

Another example is in the left lower image of Figure 3.3 where the set 𝑆 starts as 

{𝑃1, 𝑃2, 𝑃3, 𝑃4} then by checking the scores of 𝑃5 to 𝑃7 for this window the set 𝑆 

becomes {𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑃7}. From the overlap maps, a possible overlap of 𝑃5 (the cap) 

should be checked with 𝑃1 and 𝑃2. In this example, 𝑃5 does not overlap significantly with 

𝑃1 but it does overlap with 𝑃2 so the algorithm keeps 𝑃1 as it was in 𝑆 and compare the 

score of 𝑃2 and 𝑃5 to conclude removing 𝑃2 from 𝑆 since it has a smaller score and the set 

𝑆 becomes {𝑃1, 𝑃3, 𝑃4, 𝑃5, 𝑃7}. Then the algorithm moves on to 𝑃7 (the hand) which should 

be checked for possible overlap with all parts. Since in this example 𝑃7 only overlaps 

significantly with 𝑃4 and the score of 𝑃7 is higher than that of 𝑃4, then 𝑃4 is removed from 

S and the final set 𝑆 becomes {𝑃1, 𝑃3, 𝑃5, 𝑃7}.   

Equation (3.3) can then be used to calculate the total score of this window from these 

selected parts. If regular DPM was used with this face it could have resulted in either an 

undetected face or a weakly detected face with a low score because of the low scores of the 

occluded parts but the advantage of our model is that it detects these faces with high scores 

and hence allows the use of a higher threshold that can reduce false positives. Besides that, 

it provides more information to the following facial analysis steps about the visible parts 
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of the face. For example, knowing that the eyes are covered by sunglasses suggests 

excluding them from the recognition signature. 

To solve the problem of faces occluded by other faces, two thresholds are used for the 

score of each window; an initial low threshold 𝑇𝑙 that passes all the possible face candidates 

including false positives and possible weakly scored faces because part of it is occluded by 

other faces. These faces have two properties that distinguish them from false positives: first 

the scores of the visible parts are high while the scores of the occluded parts are low causing 

the total score to be low, and second these occluded parts overlap with other strong faces. 

We use these two properties to verify that this is a face partially occluded by another face 

and increase its score above the final high threshold 𝑇ℎ that is used to reject other false 

positives that do not share these two properties. The process is illustrated in Figure 3.4 

where four face candidates have scores higher than 𝑇𝑙, with only two of them higher than 

𝑇ℎ shown in green while the other two lower than 𝑇ℎ shown in red (dashed). The occluded 

face satisfy the overlap condition with one of the strong faces and two of its part scores are 

visible reflecting high part scores while the other two are occluded causing its final low 

Figure 3.4: Increasing the low score of faces occluded by other faces if it overlaps with a high score face 

and at least two of its part scores are high. Face candidates with high scores are shown in green, face 

candidates with low scores are shown in red (dashed) and only parts with high scores are displayed for 

illustration. 
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score. In this case, the score of this weak face is increased to pass 𝑇ℎ while the false positive 

remains low to be rejected by 𝑇ℎ.    

Finally, the execution time of face detectors is a very important factor because face 

detection is usually the first step in other facial analysis applications. The advantage in this 

system is that it does not only detect the faces but it also provides the subsequent analysis 

with more information about the part locations, their subtypes and some occluding objects. 

The system also can be used with three levels of accuracy where it can only use root and 

facial parts for the fastest execution time, or it can add to that checking for occluding 

objects as additional optional parts, or it can also add subtypes for each facial part. This 

means that the number of part filters evaluated ranges from 4 for only facial parts, or 7 for 

adding occluding objects up-till 15 for adding also subtypes. The appropriate method 

should be selected depending on the challenges in the testing database. Detailed discussions 

about the detection time and a more elegant solution are provided in the next chapter. 

3.4 Training 

The SPM root and facial parts are trained using a fully supervised dataset with a 

complete annotation for the location of the face and its 4 parts. The model uses three 

components, one captures the frontal and near frontal faces (faces in which all facial parts 

are visible) and the other two capture the profile and near profile faces (faces with one eye 

not visible). The profile faces needed two components to be able to detect both the faces 

looking to the right and the faces looking to the left. The rest of the poses are recovered by 

the deformation embedded in the model for part locations as illustrated in Figure 3.5 

through different training samples from each component. The upper part of the figure 
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shows the anchor positions selected for each part with respect to a 10x10 cell mesh that 

represents the whole face. This corresponds to a root face of size 5x5, but shown over a 

10x10 mesh because parts are computed at twice the resolution of the root. The lower part 

of the figure shows several training samples to illustrate how different poses are recovered 

through these three components. It can be seen from the figure that the parts of the frontal 

component are the two eyes, the nose and the mouth, while the parts of the profile 

components are the visible eye, the nose, the mouth and the visible ear.  

Face pose in general is defined by three angles: Yaw, Roll and Pitch as illustrated in 

Fig 3.6. The three components of the SPM are mainly to handle the yaw angle variations, 

Figure 3.5: The face model is trained using three components: The frontal component is shown in the middle 

with different training samples that illustrates how near frontal faces can be captured by this component 

through parts deformations. The right profile and left profile components are shown in the right and left 

respectively with different training samples to illustrate the variations captured by parts deformation.    
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where yaw angles roughly from -45o to 45o can be detected by the frontal component, yaw 

angles roughly from 45o to 90o can be detected by the left profile component, and yaw 

angles roughly from -45o to -90o can be detected by the right profile component. Small roll 

and pitch variations are handled by the deformation. Large roll angles that exceeds 30o will 

need several separate components to be detected, but it is not of interest to this work 

because it is not common to have such high in-plane rotation in face images. If these rotated 

faces are of interest they can be trained in separate components easily by rotating the 

training data. Similarly large pitch angles result in huge change in the facial parts 

appearance and cannot be detected without additional components. The right part of Figure 

3.6 shows different simulated variations of the three angles where the ellipse encloses all 

the poses that can be detected by the SPM three components and their deformations.  

3.4.1 Automatic Part Annotation 

To train a robust face detector that can handle faces in unconstrained conditions, a large 

dataset of faces captured in real life images is needed. In addition, this large number of 

Figure 3.6: Illustration of all possible face poses using Yaw, Pitch and Roll angles. The range of extreme 

face poses in Roll and Pitch is not detectable by the three components of the SPM.  
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training faces must be annotated. The annotation for a fully supervised training of the SPM 

requires the bounding boxes for the face and its four parts which is not available in any 

public face database. However, there exists several databases which are annotated with 

facial landmark points such as the Helen database [39], the LFPW database [40], and the 

AFLW database [41]. In this section, an automatic algorithm is proposed to transform the 

annotation of these facial landmark points to the bounding boxes of the face and its four 

parts which match the requirements for training the SPM. In this way, the manual 

annotation of thousands of images can be avoided. First, a brief description of these “in-

the-wild” public datasets is provided: 

Helen dataset: The Helen dataset consists of 2,330 faces in 2,330 high resolution 

images collected from Flickr with a broad range of appearance variations but with no 

profile views. The faces are annotated with detailed 194 landmark points using Amazon 

Mechanical Turk (Mturk) as shown in Figure 3.7. Each image is cropped to include the 

annotated face and a proportional amount of the background which may include other 

unannotated faces.  

Figure 3.7: Examples of training images from Helen, LFPW and AFLW datasets. 

 

Helen Dataset 
  

LFPW Dataset 
  

AFLW Dataset 
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LFPW dataset: The Labeled Face Parts in-the-wild (LFPW) dataset consists of 1432 

faces in 1,287 images downloaded from google.com, fickr.com, and yahoo.com. The 

images contain large variations including pose, expression, illumination and occlusion but 

again with no profile views. The faces are annotated with 35 landmark points using Mturk 

as shown in Figure 3.7. 

AFLW dataset: The Annotated Facial Landmarks in the Wild (AFLW) contains 

25,993 faces in 21,997 images downloaded from Flickr. The images contain a wide range 

of natural face poses and occlusions including profile faces. The faces are annotated with 

21 landmark points that are marked only if the corresponding point is visible as illustrated 

in Figure 3.7. The dataset provides a SQLite database to allow retrieving faces with specific 

poses or specific sets of visible landmarks among many other useful queries.  

For the training of near frontal component, around 7000 faces were retrieved from 

Helen, LFPW and AFLW datasets. In Helen and LFPW, I used the re-annotation of the two 

datasets through the 300 Faces in-the-wild Challenge [42] which provides a common 

annotation scheme of 68 points per face as illustrated in the first row of Figure 3.8. Those 

68 points are distributed over the parts as 11 point for each eye, 9 points for the nose, 20 

points for the mouth and 17 points for the face boundary. Figure 3.8 explains the details of 

the algorithm for automatic annotation of the bounding boxes for the face and its four parts 

from the landmark points of images from Helen and LFPW datasets. 

The inputs for the algorithm are the training images 𝐼𝑖 and the 68 landmark points 𝑃𝑖 

where  𝑖 ∈ {1, 2, … , 𝑚} and 𝑚 is the total number of positive training images. The outputs 

from the algorithm are the Face Bounding Box 𝐹𝐵𝐵𝑖 and the Parts bonding Boxes 𝐵𝐵𝑖𝑘 of 
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each training image 𝐼𝑖 for 𝑖 ∈ {1, 2, … , 𝑚} and 𝑘 ∈ {1,2,3,4}. The face and parts bounding 

boxes are aligned over a common mesh of 10x10 cells for all the training data such that 

each part has the same size in cells for all the data, also the deformations of parts are only 

allowed in steps of complete cells. The parameter 𝑝𝑝𝑐𝑖 accounts for the number of pixels 

per cell for each image 𝐼𝑖 which absorbs the differences in sizes of the training images and 

unify all of them on the same mesh of 10x10 cells. 

The algorithm applies five main steps for each image. The first step is to find initial 

bounding boxes for each part such that it tightly contains all of its points. The bounding 

box in general is defined by four parameters: X and Y representing the coordinates of the 

upper left corner point of the box together with W and H representing the width and height 

of the box respectively. These initial part boxes will differ in size and aspect ratio from one 

image to the other as shown in the two examples of Figure 3.8. The second step is to find 

the initial face bounding box such that it tightly contains all the parts points. This box is 

adjusted in the third step to be a square and an exact multiple of 10 cells which define the 

parameter 𝑝𝑝𝑐 that measures the differences in size between different training images.  

In the fourth step, each part is expanded to match its preset dimension in cells which in 

this case is 4x4 cells for the two eyes and the nose; and 3x6 cells for the mouth. Each part 

is expanded around the center of its initial bounding box. After that the initial point of the 

part is shifted to match the starting point of the closest cell so that the parts are exactly 

aligned over the face mesh of cells as shown in Figure 3.8. The final step accounts for 

rounding errors by comparing the final box of each part with its landmark points and with 

the whole face bounding box. For example in Fig 3.8, by comparing the eyes locations in 

the first image beside step 4 with the face bounding box, it  is  clear  that  they  are shifted 
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Figure 3.8: The automatic algorithm for annotating the bounding box of the face and the bounding boxes of 

its four parts from the landmark points using training images from Helen and LFPW datasets.  

 

Input: (𝐼𝑖, 𝑃𝑖), 𝑖 ∈ {1, 2, … , 𝑚} where:  

𝐼𝑖: training images,  𝑚: number of positive training images, 

𝑃𝑖 = (𝑥𝑖𝑗 , 𝑦𝑖𝑗), 𝑗 ∈ {1, 2, … , 68}: landmark points of 𝐼𝑖 

For 𝑖 = 1 ∶  𝑚 

1. Find initial Bounding Boxes for each part 𝐵𝐵𝑖𝑘:  

𝐵𝐵𝑖𝑘 = (𝑋𝑖𝑘, 𝑌𝑖𝑘 , 𝑊𝑖𝑘, 𝐻𝑖𝑘), 𝑘 ∈ {1,2,3,4} such that 

𝑋𝑖𝑘 = min(𝑥𝑖𝑗) , 𝑌𝑖𝑘 = min(𝑦𝑖𝑗)  ∀ 𝑗 ∈ 𝑃𝑎𝑟𝑡𝑘  

𝑊𝑖𝑘 = max(𝑥𝑖𝑗) − 𝑋𝑖𝑘, 𝐻𝑖𝑘 = max(𝑦𝑖𝑗) − 𝑌𝑖𝑘 ∀ 𝑗 ∈ 𝑃𝑎𝑟𝑡𝑘   

2. Find initial Face Bounding Box 𝐹𝐵𝐵𝑖: 

𝐹𝐵𝐵𝑖 = (𝑋𝑖, 𝑌𝑖 , 𝑊𝑖, 𝐻𝑖), where 

𝑋𝑖 = min(𝑋𝑖𝑘) , 𝑌𝑖 = min(𝑌𝑖𝑘) , 𝑊𝑖 = max(𝑋𝑖𝑘) − 𝑋𝑖,  

𝐻𝑖 = max(𝑌𝑖𝑘) − 𝑌𝑖, 𝑘 ∈ {1,2,3,4} 

3. Adjust FBB to be square and exact multiple of 10 cells: 

𝑊𝑖 = 10 ∗ 𝑐𝑒𝑖𝑙(𝑊𝑖/10) ,  𝐻𝑖 = 10 ∗ 𝑐𝑒𝑖𝑙(𝐻𝑖/10) 

  𝑖𝑓 𝑊𝑖 > 𝐻𝑖: 𝑌𝑖 = 𝑌𝑖 − (𝑊𝑖 − 𝐻𝑖)/2   ;  𝐻𝑖 = 𝑊𝑖 

  𝑒𝑙𝑠𝑒:            𝑋𝑖 = 𝑋𝑖 − (𝐻𝑖 − 𝑊𝑖)/2  ;  𝑊𝑖 = 𝐻𝑖  

Pixels per cell: 𝑝𝑝𝑐𝑖 = 𝑊𝑖/10 

4. Expand each part to match its dimension in cells: 

Center of 𝐵𝐵𝑖𝑘: 𝑋𝑖𝑘𝐶
= 𝑋𝑖𝑘 + 𝑊𝑖𝑘/2, 𝑌𝑖𝑘𝐶

= 𝑌𝑖𝑘 + 𝐻𝑖𝑘/2 

𝑊𝑖𝑘 = 4 × 𝑝𝑝𝑐𝑖, 𝐻𝑖𝑘 = 4 × 𝑝𝑝𝑐𝑖  for , 𝑘 = 1, 2, 3 

𝑊𝑖𝑘 = 6 × 𝑝𝑝𝑐𝑖, 𝐻𝑖𝑘 = 3 × 𝑝𝑝𝑐𝑖  for , 𝑘 = 4 

𝑋𝑖𝑘 = 𝑋𝑖𝑘𝐶
− 𝑊𝑖𝑘/2, 𝑋𝑖𝑘 = 𝑌𝑖𝑘𝐶

− 𝐻𝑖𝑘/2  

𝑋𝑖𝑘 = 𝑋𝑖 + 𝑟𝑜𝑢𝑛𝑑((𝑋𝑖𝑘 − 𝑋𝑖𝑘)/𝑝𝑝𝑐𝑖) × 𝑝𝑝𝑐𝑖,  

𝑌𝑖𝑘 = 𝑌𝑖 + 𝑟𝑜𝑢𝑛𝑑((𝑌𝑖𝑘 − 𝑌𝑖𝑘)/𝑝𝑝𝑐𝑖) × 𝑝𝑝𝑐𝑖,  

 

5. Adjust 𝐵𝐵𝑖𝑘 according to several heuristics to account for 

rounding error problems by comparing the final box of each 

part with its landmark points and with 𝐹𝐵𝐵𝑖 . If needed add 

or subtract 𝑝𝑝𝑐𝑖 to 𝑋𝑖𝑘 or 𝑌𝑖𝑘 to move the part one cell.     

Output: (𝐼𝑖, 𝐹𝐵𝐵𝑖, 𝐵𝐵𝑖𝑘, 𝑝𝑝𝑐𝑖), 𝑖 ∈ {1, 2, … , 𝑚} where:  

𝐼𝑖: training images,  𝑚: number of training images, 

𝐹𝐵𝐵𝑖: Face Bounding Box, 𝐵𝐵𝑖𝑘: Parts Bounding Boxes of 𝐼𝑖 

Where 𝑘 ∈ {1,2,3,4} , 𝑝𝑝𝑐𝑖: number of pixels per cell for 𝐼𝑖 
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unnecessarily outside the face while they can stay inside it and still contain all its points so 

they are shifted one cell down. Similarly in the second image, the mouth is shifted one cell 

to the right to better match its points. This algorithm is important because it allows for 

extracting the appearance features and the deformation features required for the training of 

SPM in a fully supervised setting where the locations of parts are annotated over all the 

images on the same mesh of cells.  

In the AFLW dataset, the faces with absolute yaw angle less than 45o, absolute roll 

angle less than 25o and absolute pitch angle less than 40o were retrieved, then only faces 

with all 19 facial points visible (all 21 points except the 2 ear points) are kept. Those 19 

points are distributed over the parts as 6 points for each eye, 3 points for the nose, 3 points 

for the mouth and 1 point for the chin. The algorithm in Figure 3.8 does not depend on the 

number of points per part so it was used with slight modifications to find the bounding 

boxes of the face and its four parts from these 19 points of the AFLW dataset. 

For the profile components, around 2500 faces are retrieved from AFLW dataset by 

searching for faces with yaw angles between 45o and 90o or -45o and -90o, absolute roll 

angle less than 25o and absolute pitch angle less than 40o. Only faces with at least one 

visible point per each of the visible eye brow, the visible eye, the nose, the mouth and the 

visible ear are used. Right looking faces are horizontally flipped so that the final profile 

dataset are all looking to the left to train the left profile component. On the other hand, the 

right profile component is trained by horizontally flipping all the faces to look right.  

The algorithm of Figure3.8 was modified to find the bounding boxes of the face and its 

four parts. The four parts in the profile case are the visible eye, the nose, the mouth and the 
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visible ear. The number of points per each part is small and not consistent based on the 

exact pose because in this database if a point is not visible, it is not annotated. The visible 

eye contains 4 to 6 points, the nose and the mouth each contains 2 points, and the chin and 

the visible ear each contains 1 point. Due to that small number of points in the nose and 

the mouth, the algorithm used the points of the eye and the mouth together with the points 

of the nose to initialize the bounding box of the nose. Similarly, it used the points of the 

nose and the chin together with the points of the mouth to initialize the bounding box of 

the mouth. For the ear, the single point provided in the annotation was considered the lower 

right corner of the ear bounding box for the right profile faces and the lower left corner for 

the left profile faces. The same mesh of cells was aligned to the face and its parts to provide 

the final bounding boxes of the face and its four parts as shown in Figure 3.5. It is worth 

mentioning, that in the profile case the eye, nose and mouth were set to a size of 3x3 cells 

while the ear was set to a size of 4x3 cells. These sizes were decided empirically from the 

data using the average sizes of each part and by trying different sizes and visually 

inspecting the results. 

The occluding objects training images were collected from the web with 500 images 

per each category namely the sunglasses, caps and hands. The algorithm to annotate these 

objects is based on manually selecting two points that represent the upper left corner and 

the lower right corner of the bounding box, then automatically adjust the bounding box to 

satisfy the required size in cells that matches the face mesh of 10x10 cells. The sunglasses 

size was selected as 4x10 cells, the cap size was selected as 6x10 cells, and the hand size 

was selected as 5x5 cells. Figure 3.9 shows examples of the manual selection of the two 

points and the final bounding box which is slightly modified to match the preset aspect 
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ratio and the corresponding size in cells. The left column shows the manual selection of 

the first point in each case, while the middle column shows the selection of the second 

point. The right column shows the final bounding box with the mesh of cells overlaid on 

top of it for clarification. The output of this manual annotation algorithm is the bounding 

box of each object and the parameter ppc representing the number of pixels per cell. These 

objects are trained separately using only appearance features. The deformation feature 

would require more complicated annotation that is unpractical in this case. 

In addition, one more part was added which represents the upper part of the body 

including the head and the shoulders. The annotation for this part used 1000 images 

obtained from the frontal data by selecting the images that has the upper part of the body 

completely visible. The size of the part was designed to be 8x8 cells which is applied in a 

Figure 3.9: Examples of training images for sunglasses, caps and hands illustrating the manual annotation 

of each object using two points. 
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resolution corresponding to half the resolution of the root. This means that in the resolution 

of the root it will be 16x16 and in the resolution of the parts it will be 32x32 cells. This is 

clear on the mesh overlaid on the center image of Figure 3.10 where the root filter appears 

in green corresponding to 10x10 cells and the upper body part corresponding to 32x32 cells 

all of them are shown relative to the parts resolution. In the detection the upper body will 

be used in one level and the corresponding root will be in double this resolution while the 

corresponding facial parts will be in double the root’s resolution. 

The annotation shown in Figure3.10 was made in a semi-automatic way by considering 

the root bounding box as 10x10 cells and annotate the upper body bounding box around it 

with a size of 32x32 cells such that there is 11 cells to the right and left of the root and 6 

cells up with 16 cells bellow the root as illustrated in the figure. Many images were then 

eliminated automatically because the upper body bounding box went outside the image, 

Figure 3.10: Examples of the training data for the upper body part which is selected from the frontal face 

data.  
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the rest were inspected manually to make sure that they include a reasonable part of the 

shoulders and that the general silhouette of the head and shoulders is captured. Due to the 

nature of the shoulders being wider than the head, the blue shaded region of Figure 3.10 

was replaced by zeros in the training so that it does not affect the model since it is always 

just part of the background. In the detection the corresponding regions of the model 

coefficients are also zeros to reduce the effect of the variations in the background over the 

detection of the upper body part.   

3.4.2 The Training algorithm 

The face detector is a classifier that classifies each window coming from the sliding 

window approach over an image pyramid as a face or a non-face. The training of any 

classifier requires a training set (𝑉1, 𝑙1), … , (𝑉𝑀, 𝑙𝑀) where 𝑉𝑖 ∈  𝑅𝑛, 𝑙𝑖 ∈ {−1, +1} and 𝑀 

is the total number of training samples. In this case +1 represents the label of the face class 

and -1 represents the label of the non-face class. The feature vector 𝑉𝑖 has a size n and it is 

extracted from the positive samples and the negative samples to represent the image 

information. In the SPM model, this vector is composed of a concatenation of the features 

extracted from the root and the facial parts while the occlusion parts are trained separately.  

For example, a positive sample in the training set consists of an image containing a 

face, the face bounding box, the parts bounding boxes and the number of pixels per cell 

(𝐼𝑖, 𝐹𝐵𝐵𝑖, 𝐵𝐵𝑖𝑘, 𝑝𝑝𝑐𝑖) as was illustrated in the output of the annotation algorithm of Figure 

3.8. The image is first cropped with the face bounding box, and resized to make the number 

of pixels per cell equals 8. Which makes a face of size 5x5 cells contains 40x40 pixels. 

From each cell, a HOG feature of size 31 is calculated and concatenated for all cells leading 
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to a root vector of size 5x5x31=775. Similar cropping and resizing is done for each part 

leading to a vector of size 4x4x31=496 for each of the two eyes and the nose; and a vector 

of size 3x6x31=558 for the mouth. Besides the HOG appearance feature, there is a 

deformation feature vector of size 4 for each part. In addition, a 1 is added to the vector to 

correspond to the bias term of the model to result in a total vector of size (775)𝑟𝑜𝑜𝑡 +

(496 + 4)𝐿𝐸𝑦𝑒 + (496 + 4)𝑅𝐸𝑦𝑒 + (496 + 4)𝑁𝑜𝑠𝑒 + (558 + 4)𝑀𝑜𝑢𝑡ℎ + (1)𝑏𝑖𝑎𝑠  =2838.  

The deformation feature captures the movement of that part from its anchor position. 

It is defined as 𝜑𝑑(𝑑𝑋𝑖𝑘, 𝑑𝑌𝑖𝑘) = (𝑑𝑋𝑖𝑘
2 , 𝑑𝑋𝑖𝑘, 𝑑𝑌𝑖𝑘

2 , 𝑑𝑌𝑖𝑘) where 𝑘 ∈ {1,2,3,4} represents 

the four parts, 𝑖 ∈ {1,2, … , 𝑚} with 𝑚 representing the total number of positive training 

images [6]. In this equation, (𝑑𝑋𝑖𝑘, 𝑑𝑌𝑖𝑘) = 𝐴𝑘 − ((𝑋𝑖𝑘, 𝑌𝑖𝑘) − (𝑋𝑖, 𝑌𝑖))/𝑝𝑝𝑐𝑖 where 

(𝑋𝑖, 𝑌𝑖) is the upper left corner of the face bounding box in the image 𝐼𝑖, (𝑋𝑖𝑘 , 𝑌𝑖𝑘) is the 

upper left corner of part 𝑘 bounding box in image 𝐼𝑖, 𝑝𝑝𝑐𝑖 is the number of pixels per cell 

in Image 𝐼𝑖,  and 𝐴𝑘 is the anchor position of part 𝑘 measured in cells with reference to the 

root mesh. The term ((𝑋𝑖𝑘, 𝑌𝑖𝑘) − (𝑋𝑖, 𝑌𝑖))/𝑝𝑝𝑐𝑖 gives the position of part 𝑘 measured in 

cells with reference to the root mesh which when subtracted from 𝐴𝑘 gives the difference 

in cells between the actual position of the part and its anchor position.  

Figure 3.11: Examples for the calculation of the deformation features 𝜑𝑑 = (𝑑𝑋𝑘
2, 𝑑𝑋𝑘 , 𝑑𝑌𝑘

2, 𝑑𝑌𝑘) for each part.  
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Figure 3.11 illustrates these deformation features with several examples where the 

yellow shading indicate the anchor position of each part and the red box indicate the 

annotation bounding box of the part. The red arrow indicate the deformation of each part 

from its anchor position. It is clear from the figure that one cell shifting to the left results 

in a deformation feature vector of (1,1,0,0), while one cell shifting to the right corresponds 

to (1,-1,0,0). Also, one cell shifting up results in a deformation feature vector of (0,0,1,1), 

while one cell shifting down corresponds to (0,0,1,-1). It is also clear that the quadratic 

term is always positive to ensure the deformation penalty and exhibit a quadratic growth 

that lead to very large penalties for large deformations.         

The scoring function for each training sample can be written as: 

𝑆𝑖 = 𝐹0 .  𝜑𝑎(𝑋𝑖, 𝑌𝑖) + ∑ [𝐹𝑘 .  𝜑𝑎(𝑋𝑖𝑘, 𝑌𝑖𝑘) − 𝑑𝑘. 𝜑𝑑(𝑑𝑋𝑖𝑘, 𝑑𝑌𝑖𝑘)]4
𝑘=1 + 𝑏,       (3.6) 

where 𝐹0 is the root filter which is of size 5x5x31 to match 𝜑𝑎(𝑋𝑖, 𝑌𝑖) the appearance 

feature (HOG) of the root. 𝐹𝑘 for 𝑘 ∈ {1,2,3,4} are the part filters which are of sizes 4x4x31 

for each of the two eyes and the nose, and of size 3x6x31 for the mouth again to match 

𝜑𝑎(𝑋𝑖𝑘, 𝑌𝑖𝑘) the appearance features (HOG) of the parts. 𝑑𝑘 for 𝑘 ∈ {1,2,3,4} are vectors 

of size 4 that define the deformation cost of each part relative to the corresponding 

deformation feature vector 𝜑𝑑(𝑑𝑌𝑖𝑘, 𝑑𝑌𝑖𝑘). Finally, b is a bias term used to shift the scores 

such that most of the positive training samples lead to a positive score and most of the 

negative samples lead to a negative score.  

Equation (3.6) can be written in a vector form as: 

𝑆𝑖 =  𝜔. 𝑉𝑖,                                                        (3.7) 

where 𝜔 is the model parameters defined as: 

𝜔 = (𝐹0, 𝐹1, … , 𝐹4, 𝑑1, … , 𝑑4, 𝑏),                                    (3.8) 
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and 𝑉𝑖 is the concatenated feature vector that represents each training sample by combining 

the appearance and deformation features extracted from it which can be defined as: 

𝑉𝑖 = (𝜑𝑎(𝑋𝑖, 𝑌𝑖), 𝜑𝑎(𝑋𝑖1, 𝑌𝑖1), … , 𝜑𝑎(𝑋𝑖4, 𝑌𝑖4), 𝜑𝑑(𝑑𝑋𝑖1, 𝑑𝑌𝑖1), … , 𝜑𝑑(𝑑𝑋𝑖4, 𝑑𝑌𝑖4), 1)(3.9) 

The target of the training process is to obtain the optimum value of the vector 𝜔 that 

would lead to a scoring function capable of discriminating between the positive and the 

negative training samples with a maximum margin. This problem is solved using the 

support vector machines that was explained in details in Chapter 2. 

The positive samples used in the training were explained in details, now the negative 

samples on the other hand were extracted from 2000 images collected from the internet 

that do not contain any faces. A naive way would be to just take random windows from 

these images. A better way is to use these random windows just for training an initial model 

that is then used to obtain more hard negatives by running it as a detector over the negative 

images and obtain only the samples that pass a very low threshold. These samples can now 

be used to train a better model.  

3.4.3 Adjusting the bias 

An important post training step for the SPM is to adjust the bias term of the model for 

the total score, the root score, and each of the different part scores such that each of them 

tends to produce a positive score for the positive training samples and a negative score for 

the negative samples. This is important because it will allow focusing on the partial 

occlusion problem which should result in negative scores for the occluded parts. These bias 

terms facilitate the selection procedure of the model by providing common basis for 
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comparing part subtypes and for comparing facial parts with common occluding objects 

such as sunglasses, caps and hands.  

The following algorithm is used to find the optimum bias term for the total score, the 

root score and each of the four parts scores. Recall that the model is trained using equation 

3.6 which calculates the total score for each training sample using a single bias term. A 

different bias term for each part of the score could not be used at the training stage because 

all the terms are added up in one equation. After all the model parameters are calculated 

through the training, the algorithm of finding a separate bias term for the different parts of 

the score starts with recalculating the different parts of the total score for each training 

sample separately as follows:   

𝑆𝑟𝑖
= 𝐹0 .  𝜑𝑎(𝑋𝑖 , 𝑌𝑖)                                                  (3.10) 

𝑆𝑃𝑖𝑘
= 𝐹𝑘 .  𝜑𝑎(𝑋𝑖𝑘, 𝑌𝑖𝑘) − 𝑑𝑘. 𝜑𝑑(𝑑𝑋𝑖𝑘, 𝑑𝑌𝑖𝑘)                          (3.11) 

𝑆𝑡𝑖
= 𝑆𝑟𝑖

+ ∑ 𝑆𝑃𝑖𝑘

4
𝑘=1                                                 (3.12) 

where 𝑆𝑟𝑖
 is the root score for each training sample 𝑖 ∈ {1,2, … , 𝑀}. 𝑆𝑃𝑖𝑘

 are the part scores 

with 𝑘 ∈ {1,2,3,4} for each training sample 𝑖. 𝑆𝑡𝑖
 is the total score without the bias term for 

each training sample 𝑖.  

After that, the histogram for the different scores of the positive samples and the 

negative samples are calculated separately. Figure 3.12 shows the distribution for the 

scores of the positive training samples in red and the scores of the negative training samples 

in green for the total score 𝑆𝑡𝑖
, the root score 𝑆𝑟𝑖

 and the four facial parts scores 𝑆𝑃𝑖𝑘
 where 

𝑘 ∈ {1,2,3,4} and 𝑖 ∈ {1,2, … , 𝑀𝑃} for the positive training samples and 𝑖 ∈ {1,2, … , 𝑀𝑁} 

for the negative training samples. The vertical red line shows the mean of the positive 
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training samples scores while the green line shows the mean of the negative training 

samples scores. The black line represents the optimum bias term that should be subtracted 

from each score to make most of the positive training samples have positive scores and 

most of the negative training samples have negative scores.  
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Figure 3.12: The probabilistic distribution for the scores of the positive and negative training samples used 

to determine the bias term (represented by the vertical black line) that will be subtracted from each score. 

The red curve represents the positive samples distributions while the green curves represent the negative 

samples distributions. These curves are for the frontal component of the model.   
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Recall from Baye’s theorem that the posterior probability of a training sample to be of 

class 𝑙 = 1 (positive sample) given its score S=s can be written as: 

𝑃(𝑙 = 1 | 𝑆 = 𝑠) =
𝑃(𝑆 = 𝑠 | 𝑙 = 1). 𝑃(𝑙 = 1) 

𝑃(𝑆 = 𝑠)
, 

where 𝑃(𝑆 = 𝑠 | 𝑙 = 1) is the likelihood probability of a training sample to have a score 

S=s given it is a positive sample. This is calculated using the normalized histogram of the 

positive samples scores by simply dividing the range between the minimum score and the 

maximum score of all the training samples (both negative and positive) into 100 bins, then 

counting the number of positive training samples at each score bin divided by the width of 

the bin and the total number of positive samples. The prior probability 𝑃(𝑙 = 1) of the 

positive class was set to 0.6 to give more importance to the positive class. Similarly, the 

posterior probability of a training sample to be of class 𝑙 = −1 (negative sample) given its 

score S=s can be written as: 

𝑃(𝑙 = −1 | 𝑆 = 𝑠) =
𝑃(𝑆 = 𝑠 | 𝑙 = −1). 𝑃(𝑙 = −1) 

𝑃(𝑆 = 𝑠)
, 

In both equations, the score S is replaced by the total score 𝑆𝑡, the root score 𝑆𝑟 and the 

four facial parts scores 𝑆𝑃𝑘
 with 𝑘 ∈ {1,2,3,4} to produce the 6 graphs in Figure 3.12. The 

bias term to be subtracted from each score is selected at the intersection point of the two 

posterior distributions to match the threshold of a Baye’s classifier to zero. This gives an 

insight on “the visibility of a part” based on its score, because if a part is occluded it should 

now produce a negative score. The equations 3.10 to 3.12 can now be rewritten as 

  𝑆𝑟𝑖
= 𝐹0 .  𝜑𝑎(𝑋𝑖, 𝑌𝑖) − 𝑏𝑟                                                  (3.15) 

𝑆𝑃𝑖𝑘
= 𝐹𝑘 .  𝜑𝑎(𝑋𝑖𝑘, 𝑌𝑖𝑘) − 𝑑𝑘. 𝜑𝑑(𝑑𝑋𝑖𝑘, 𝑑𝑌𝑖𝑘) − 𝑏𝑃𝑘

                          (3.16) 

𝑆𝑡𝑖
= 𝑆𝑟𝑖

+ ∑ 𝑆𝑃𝑖𝑘

4
𝑘=1 + (−𝑏𝑡 + 𝑏𝑟 + ∑ 𝑏𝑃𝑘

4
𝑘=1 )                             (3.17) 
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where 𝑏𝑟 is the root bias, 𝑏𝑃𝑘
 are the facial parts biases with 𝑘 ∈ {1,2,3,4}, and 𝑏𝑡 is the 

total bias. Note that in equation 3.17, 𝑏𝑡 is subtracted while all the other biases are added 

to remove their embedded effects in 𝑆𝑟𝑖
 and 𝑆𝑃𝑖𝑘

 hence leaving only the effect of the total 

bias such that the total score can also be thresholded at zero. This is important because 

different components of the model are all operated with the same total threshold and need 

all to be biased correctly. In other words, the total score is the only remaining bias but the 

other biases are only added locally to add a meaning to their individual scores when 

occlusion is considered.  

It is clear from Fig 3.12 that the best separation of the positive and negative training 

samples is obtained in the total score because that is the score that was optimized for 

maximum separation in the SVM training. Also because it has the longest feature vector 

and hence larger discrimination ability. It can also be seen that the root has better separation 

than the parts and that the two eyes have better separation than the nose and the mouth. 

This can be due to the large variability in the appearance of the mouth with different 

expressions which is difficult to capture with the same model. For the nose, it can be due 

to the fact that the nose has the lowest amount of details among all the four facial parts 

because of its simple structure.  

Similar analysis is conducted for the profile component of the model. Figure 3.13 

shows the distribution for the scores of the positive training samples in red and the scores 

of the  negative training samples in green for the total score 𝑆𝑡𝑖
, the root score 𝑆𝑟𝑖

 and the 

four facial parts scores 𝑆𝑃𝑖𝑘
 where 𝑘 ∈ {1,2,3,4} and 𝑖 ∈ {1,2, … , 𝑀𝑃} for the positive 

training samples and 𝑖 ∈ {1,2, … , 𝑀𝑁} for the negative training samples. Recall that the 

parts here are the visible eye, the nose, the mouth and the ear. The separation in the parts 
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of the profile component is not as good as the frontal component due to the larger variability 

in the appearance of profile parts and due to smaller part sizes leading to smaller feature 

vectors sizes and hence less discriminative ability.  
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Figure 3.13: The probabilistic distribution for the scores of the positive and negative training samples used 

to determine the bias term (represented by the vertical black line) that will be subtracted from each score. 

The red curve represents the positive samples distributions while the green curves represent the negative 

samples distributions. These curves are for the profile component of the model.   
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 The occlusion parts on the other hand are trained separately with only appearance 

features as stated earlier. This leads to the following much simpler scoring function: 

𝑆𝑃𝑖𝑘
= 𝐹𝑘 .  𝜑𝑎(𝑋𝑖𝑘, 𝑌𝑖𝑘)−𝑏𝑃𝑘

,                                              (3.18)  

where 𝑘 ∈ {5,6,7} represents the sunglasses, the caps and the hands respectively. The bias 

𝑏𝑃𝑘
 in each case is obtained in the same way. Figure 3.14 shows the distribution for the 

scores of the positive training samples in red and the scores of the negative training samples 

in green for the parts representing the occluding objects 𝑆𝑃𝑖𝑘
. 

In the detection, the deformation penalty is added to equation 3.18 to allow for changes 

in the locations of these occluding objects as follows  

𝑆𝑃𝑖𝑘
= 𝐹𝑘 .  𝜑𝑎(𝑋𝑖𝑘, 𝑌𝑖𝑘) − 𝑑𝑘. 𝜑𝑑(𝑑𝑋𝑖𝑘, 𝑑𝑌𝑖𝑘)−𝑏𝑃𝑘

                          (3.19) 

where 𝑑5 = (0.1, 0, 0.1, 0) was selected empirically as the deformation coefficients of the 

sunglasses. Recalling that the deformation feature is defined as 𝜑𝑑(𝑑𝑋𝑖𝑘, 𝑑𝑌𝑖𝑘) =

(𝑑𝑋𝑖𝑘
2 , 𝑑𝑋𝑖𝑘, 𝑑𝑌𝑖𝑘

2 , 𝑑𝑌𝑖𝑘). The intuition of the 𝑑𝑘  values is that a penalty of 0.1 times the 

square of the deformation of the object from its anchor position in 𝑋 or 𝑌 direction is 

subtracted from the score. For example, a shift of 3 cells from the anchor position would 

result in a 0.9 reduction in the score.  

Similar reasoning was used to use 𝑑6 = (0.04, 0, 0.004, −0.05) for the cap to give it 

more freedom to move around its anchor position since it is not attached to a specific place 

like the sunglasses. Note also that movements in the 𝑌 direction are less penalized and 

moving up is even less by the use of −0.05 as a coefficient for 𝑑𝑌𝑖𝑘 which is positive if the 

part moved up as can be seen from the right image of Figure 3.11.  
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For the hands, 𝑑7 = (0.001, 0, 0.001, 0) to allow moving around the anchor which is 

selected at the center of the face. Due to the nature of the hand it can be in front of any part 

in the face.  
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Figure 3.14: The probabilistic distribution for the scores of the positive and negative training samples used 

to determine the bias term (represented by the vertical black line) that will be subtracted from each score. 

The red curve represents the positive samples distributions while the green curves represent the negative 

samples distributions. These curves are for the parts representing the occluding objects.   
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Finally, the upper body part is also trained separately similar to the occlusion parts and 

it is added to the total score as an optional part to reinforce the total score if its score is 

high. Because some faces may appear in the image without the shoulders being visible 

either because they are outside the field of view, or because they are occluded in crowd 

scenes or even because the face is just a picture in the image with no body. This means that 

a face should not be penalized if the upper body part score is negative but it should be 

reinforced if it is positive. The upper body adds to its own face a context information that 

can help a lot if the face is heavily occluded. It also helps in detecting faces that are partially 

occluded by the shoulders of another person in a manner similar to faces occluded by other 

faces explained in Figure 3.4. 

3.5 Post Processing 

This chapter is concluded with two important post processing steps needed after 

completing the detection step to produce good results, namely the Non-Maximum 
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Figure 3.15: The probabilistic distribution for the scores of the positive and negative training samples used 

to determine the bias term (represented by the vertical black line) that will be subtracted from each score. 

The red curve represents the positive samples distributions while the green curves represent the negative 

samples distributions. This curve is for the upper body part.   
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Suppression (NMS) and the false positive reduction using skin. In general, the detection 

using the sliding window approach results in the same face being detected several times 

over adjacent windows in the same scale and also over windows on different adjacent 

scales as will be illustrated in more details in the next chapter. The NMS is usually used to 

keep from these repeated overlapping detections the one that corresponds to the maximum 

score and literally suppress the candidates with non-maximum scores.  

The algorithm is simple, it just arranges all the detections produced by the detector 

according to their scores in descending order and then loops through them from the higher 

score candidates checking its overlap with all the lower candidates, if that overlap exceeds 

a predefined threshold then the candidate with the small score is suppressed. This operation 

does not affect non-overlapping candidates, it only affects highly overlapping candidates 

leaving only the one with the highest score. This process is critical in the crowded scenes 

where different faces can be overlapping as shown in Figure 3.4. The threshold of the 

overlap should be selected carefully so as not to remove these different faces.      

Another important post processing step is reducing the false positives using the skin 

information as in the RSFFD method [27] explained at the end of the previous chapter. The 

idea simply is that the HOG features used in the SPM is based on the edge information, the 

skin on the other hand is based on the color which carries complimentary information to 

the HOG. Many false positives that resemble the edges of the face and its facial parts will 

easily be removed because simply they are completely different in color from the skin. The 

problem is some images are gray scale and carry no color information, and some images 

are colored but have grey scale picture of a face inside it, also some faces have a skin color 
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that is not captured by the skin model. To avoid these problems the skin color is only 

checked if:  

1. The image has 3 channels meaning it is not gray scale with single channel and no 

color information.  

2. The image’s 3 channels are not identical meaning that it is not a gray scale image 

that was just saved using 3 equal channels but still has no color information. 

3. The total score is less than 1.5 meaning that if the score is very high it is most 

probably a face and the color does not need to be checked to avoid the removal of 

obvious faces just because their color is not captured by the skin model. 

For the candidates that satisfy all of these conditions the skin model explained at the 

end of the previous chapter is used by counting the skin pixels inside the candidate to decide 

whether it is a face or not.   

3.6 Conclusion 

This chapter introduced the core of this dissertation through the Selective Part Model 

that explicitly focus on the partial occlusion problem in face detection. It models the face 

as a collection of parts that takes into account the regular facial parts and optional facial 

accessories and body parts that might occlude the face in real life settings. The SPM has a 

lot of potential for partial face detection. The execution time is an important factor of the 

detector performance especially when the input is a video. The next chapter discusses in 

details the detection time analysis and suggests how it can be accelerated for real time 

performance.   
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CHAPTER 4 

VIDEO FACE DETECTION 

 

This chapter completes the discussion of the previous chapter with special focus on the 

time aspect of the detector. Generally speaking, the detection time of any face detector is a 

very important factor because face detection is usually just the first step in another facial 

analysis pipeline, so it needs to be fast even if the input is a single image. Particularly in 

videos, the detection time is crucial because in addition to the previous reason, the 

performance needs to be optimized to detect at least one frame per second to maintain the 

real time response for video face detection. To achieve that, part of the discussion will be 

valid for fast face detection in general whether from single images or frames of a video, 

and another part will be only suitable for videos because it utilizes the temporal component 

of the video. 

The chapter starts with a discussion of the face detection problem versus the face 

tracking problem in videos. Then, a detailed analysis of the SPM detection time 

performance is provided to give an intuition about the time bottlenecks and how it can be 

attacked. This is followed by a discussion about the different types of redundancy in the 

calculations performed in the SPM detector being a sliding window and part based face 

detector. Then several factors are investigated to achieve real time performance. Finally, a 

brief analysis for occlusion in videos is provided.   
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4.1 Detection vs. Tracking 

The video face detection problem is closely related to the face tacking problem. A 

simple settings face tracking problem can be defined as: given a detected single face or 

several faces in one frame of a video the target is to track these faces in the following 

frames of the same video. Several factors are important to define the challenges of the 

tracking problem including, whether the camera is moving or not, whether the same face 

is going outside the field of view then back in, whether the face is going to be occluded by 

other objects in the scene including other faces, and even whether all the video is captured 

using the same camera or using several cameras such as in movie or TV series settings.  

For faces in the wild, simply there is no control on the settings which includes all the 

previous challenges and much more. These challenges makes it difficult for the tracking to 

just start from a single detection and take it from there. In addition, well performing object 

detectors in general and face detectors in particular have led to association based tracking 

approaches, which detect the objects over all frames and then associate corresponding 

detections of the same object over short sequences of frames into what is called “object 

tracklets”. These object tracklets are then linked into longer tracks to produce the tracking 

results of the whole video.  

For example, Roth et al. [43] proposed an approach for multi pose face tracking by first 

detecting the faces over all frames and then linking these detections over two stages using 

multiple cues. The low level stage produces short tracklets from separate faces detected in 

consecutive frames based on similarities in location, size, and pose. For two faces detected 

in consecutive frames to be connected, the similarity in their location, size, and pose need 
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to exceed a first threshold and also need to exceed the similarities with other detections in 

the frame by a second threshold. This two threshold strategy results in a set of reliable short 

tracklets. Then, the high level stage is used to link these tracklets based on three different 

cues. The face ID cue which compares facial features of the most frontal face views in the 

tracklets, the appearance cue that uses color features from the face and cloth beneath the 

face to build an online discriminative classifier, and the constraint cue which encourages 

natural association in terms of motion and pose compatibility between tracklets. 

These linking strategies need to be initialized with face detection over the video frames. 

For this task they used the modified census transform face detector of [44] trained over 11 

yaw angles from -90o to 90o with a step of 15o and 5 roll angle from -45o to 45o with a step 

of 22.5o. The different combinations of yaw and roll angles resulted in 47 components of 

the detector. They used a separate eye detector to localize the eyes inside the face to use it 

in alignment for the face id cue. Their reported average detection time per frame of size 

1024x576 was 1.84 seconds. On the other hand the low level association and high level 

association combined took an average of 25.2 milliseconds. Thus, the detector they used 

took as much as 98.6% of the total computation time.  

Another closely related problem is the face clustering in videos which also takes as an 

input the detected faces from all the video frames and partition them in disjoint clusters 

which is similar to face recognition but in unsupervised settings [45]. This problem focuses 

on linking short tracklets over the whole video where face detections of the same person 

should be in the same cluster whether they are in consecutive frames or not. The clustering 

and linking of short tracklets were addressed simultaneously in [46] to link face detections 

of the same person over long videos. They used the Viola Jones face detector to obtain the 
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detections in all frames and reported in their conclusion that the performance of face 

clustering and tracklet linking can benefit from using more sophisticated face detection 

methods. In this work, the focus is only on producing a robust face detector that can be 

applied to all the frames of a video, then using the more sophisticated output of the SPM 

that include information about the parts and their possible occlusions other methods such 

as [43] and [46] can be used to link the different detections or cluster them.     

4.2 Detection Time Analysis    

In this section, the performance of the basic SPM with only four facial parts and three 

pose components is analyzed over a standard image to give an intuition about the 

bottlenecks of face detection and how it can be attacked. The detection in an image starts 

with constructing an image pyramid to allow for detecting faces of different sizes using the 

same model designed to detect faces with fixed size. For example in the SPM, The root 

filter size of the model determines the face size that can be detected. If a root filter of size 

5x5 cells is used with cell size of 8x8 pixels, then the model can only detect faces of sizes 

around 40x40 pixels. This determines the minimum size of faces that can be detected with 

the model. However to detect larger faces, the image is down sized over different scales to 

construct an image pyramid as shown in Fig 4.1. A face of size larger than 40x40 will be 

reduced when the image is down scaled until in one level of the pyramid it will be close to 

40x40 and that is where it will be detected.  

In Fig 4.1, the image is of size 480x640 and has two faces one of them is around 

150x150 and the other is around 50x50 pixels. The image is scaled with 5 levels per octave. 

This means that the number of levels of the pyramid between any scale and half of the same 
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scale is 5. For example, in Fig 4.1 the original image is of scale 1 and lies in the base of the 

pyramid or the first level which is of size 480x640. The sixth level of the pyramid will have 

half the size namely 240x320 and then the eleventh level will be halved again to 120x160 

and so on. Table 4.1 shows a detailed analysis of that pyramid in Figure 4.1. The first 

column is the level index where level 1 is the bottom of the pyramid and level 18 is the top. 

The second column shows the down scaling factor used in this level starting from 1 to 

0.0947. This leads to image sizes from the original image of size 480x640 to the top of the 

pyramid of size 46x61 as shown in the third column. From each image in the pyramid a 

Figure 4.1: Example of a test image with 2 faces of different sizes and their image pyramid of 18 levels 

where the first level in each octave is high-lighted with a red frame.  
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HOG feature map is extracted where for example in level 1 it is of size 58x78x31. The 58 

cells height correspond to 58x8=464 pixels height which is reduced from the original image 

by at most 1 cell from each side. Similarly the 78 cells width corresponds to 78x8=624 

pixels and the 31 is the HOG feature extracted from each cell. These feature maps are 

padded by 4 cells from each side to allow for detecting objects partially outside the field 

of view of the camera. Reflective padding was used so that if half the face is in the border 

of the image, the padding will complete the rest with symmetry which worked well for 

frontal faces because of symmetry. The root filter with size 5x5x31 is convolved over the 

Table 4.1. Image pyramid analysis 
 

Level Scale Image Size Feature Map Size Score Matrix Face Size 

1 1.0000 480x640 58x78x31 62x82 40.0000 

  2 0.8706 418x558 50x68x31 54x72 45.9479 

3 0.7579 364x486 44x59x31 48x63 52.7803 

4 0.6598 317x423 38x51x31 42x55 60.6287 

5 0.5743 276x368 33x44x31 37x48 69.6440 

6 0.5000 240x320 28x38x31 32x42 80.0000 

7 0.4353 209x279 24x33x31 28x37 91.8959 

8 0.3789 182x243 21x28x31 25x32 105.5606 

9 0.3299 159x212 18x25x31 22x29 121.2573 

10 0.2872 138x184 15x21x31 19x25 139.2881 

11 0.2500 120x160 13x18x31 17x22 160.0000 

12 0.2176 105x140 11x16x31 15x20 183.7917 

13 0.1895 91x122 9x13x31 13x17 211.1213 

14 0.1649 80x106 8x11x31 12x15 242.5147 

15 0.1436 69x92 7x10x31 11x14 278.5762 

16 0.1250 60x80 6x8x31 10x12 320.0000 

17 0.1088 53x70 5x7x31 9x11 367.5835 

18 0.0947 46x61 4x6x31 8x10 422.2425 
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feature map moving one cell at a time to produce one number of the score matrix at each 

location of the feature map. This leads to a score matrix of size 62x82 for the first level.  

The part filters on the other hand are evaluated at double the scale of the root filter 

leading to a score matrix of double the size which is then down sampled to exactly match 

the root score matrix. The interpretation of 62x82 score matrix is very important because 

it reflects the sliding window approach used for detection. Each entry in the score matrix 

corresponds to one window in the sliding window approach. This means that in the first 

level of the pyramid which is of size 480x640 pixels there is a sliding window of size 40x40 

pixels and a step 8 pixels which results in 62x82=5084 different windows to be checked if 

it contains a face or not based on its score. This means 21,903 windows over the whole 

pyramid. For each window, the score equation is evaluated as explained in the previous 

chapter in equations 3.1 to 3.5. 

Finally, the last column explains a very interesting property of the idea of using an 

image pyramid with fixed model size. The face size that can be detected in the first level 

is of size around 40x40 which is the smallest size that can be detected. The second level 

scale the image down by a factor of 0.8706 to produce an image of size 418x558. The faces 

detected on this level are also of size 40x40 because the model size is fixed but these 

detection boxes are then returned to the original image size by dividing 40 over 0.8706 

resulting in 45.9479 which corresponds to faces in the original image that are around 46x46 

pixels. The last column of the table shows the actual face size in the original image that 

will be of size 40x40 in this level of the image. This means that for the faces in Figure4.1, 

the 50x50 face can be detected between the second and third levels while the 150x150 face 

can be detected between the tenth and eleventh levels of the pyramid. It is worth mentioning  
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Figure 4.2: Detections over the image pyramid levels. The image size is 480x640 and the image pyramid 

has 18 levels by resizing the image with scale factors from 1 to 0.095. From the 18 levels only 8 produced 

detections. The detections in each of these 8 levels are each shown in a separate row and arranged according 

to score. From the 25 candidates, the NMS will keep only 3 non-overlapping candidates over all scores. The 

score of these three candidates are highlighted in red.  
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that these sizes are approximate because it can change based on how tight the detector will 

be detecting the face as illustrated in Fig 4.2.  

Figure 4.2 takes the extra mile of showing the details of the face candidates detected in 

each level of the pyramid. Only 8 levels of the pyramid produced candidates that exceeded 

the threshold of the total score. Each of these levels is shown in a separate row with each 

face candidate shown over a separate image and arranged according to score. The levels of 

the pyramid that did not produce any detections are omitted. It can be seen that there are 

three main candidates, the first one is in the second row from the top corresponding to the 

small face, the second one corresponds to the large face and is detected over 6 different 

consecutive levels of the pyramid, and the third one corresponds to a false positive (in the 

hand of iron man). By investigating the detections of the large face, where the green 

rectangle is the face bounding box and the red rectangles are the facial parts bounding 

boxes, it can be seen that the same face can be detected several times with different 

bounding box sizes over different levels of the pyramid and it also can be detected several 

times within the same level in horizontally and vertically adjacent windows.  

In this example the large face was detected 20 times with different scores ranging from 

0.0026 up to 1.6. This illustrates two types of redundancy, the first one corresponds to 

detecting the same face several times in the same level of the pyramid because the face can 

appear in adjacent windows in the sliding window approach. The second redundancy 

corresponds to detecting the same face several times over different scales because the face 

can be considered of different sizes based on how tight the bounding box is used. This 

suggests that the search space can be reduced effectively by removing these redundancies. 

For example by starting the detection from the top of the pyramid, then for a specific face 
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location if its score exceeded a high threshold say 1 in this case which happens in the 

second row from the bottom then this location is excluded from the calculations of the 

lower levels of the pyramid. This will save the unnecessary calculations that detected the 

same face 15 extra times. More details about these redundancies will be revisited in the 

next section.   

The remaining question is how to find the number of levels to use in each image to 

construct the pyramid. The process starts by deciding 𝜆 that corresponds to how many 

levels per octave to be used (this is a design parameter that is typically taken in the literature 

to be from 5 to 10). Then finding out how many times the minimum size of the image can 

be divided by two and still remains greater than the root filter size. This number and the 

divisions by two correspond to the number of octaves that can be used before the image 

become too small to be compared with the root filter. For example, in an image of size 

480x640 with root filter of size 40x40 pixel the question becomes what is 𝑝 such that 

480/2𝑝 = 40, rearranging this means 𝑝 = 𝑙𝑜𝑔2(480/40) = 3.58 octaves. Considering 5 

levels per octave this means 3.58 ×  5 ≈ 18. In general, the number of levels in the 

pyramid can be found using the following equation: 

  𝐿 = 𝑐𝑒𝑖𝑙 (
ln(min 𝐼𝑚𝑎𝑔𝑒 𝑠𝑖𝑧𝑒/𝑟𝑜𝑜𝑡 𝑓𝑖𝑙𝑡𝑒𝑟 𝑠𝑖𝑧𝑒

ln 21/𝜆 )                          (3.20) 

where 𝑙𝑜𝑔2𝑥 is just replaced by 𝑙𝑛𝑥/𝑙𝑛2 and then 𝜆 is raised to the power of 2 inside the 

ln function. This factor  21/𝜆 is the scaling factor that relates each level with its adjacent 

level. In this example 1/21/5 = 0.8705 which is clear in Table 4.1 where each scale is 

obtained from the above scale by multiplying it by 0.8705. 
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Also, it is worth mentioning that the parts are detected at double of the resolution of 

the root filter to reflect more details. The first 5 levels in the pyramid have no levels 

corresponding to double the resolution so either the image is scaled to twice the resolution 

or as suggested in [6], the first five levels are used to construct feature maps first at 8pixels 

per cell and then at 4 pixels per cell which results in double the resolution. This 

approximation leads to faster feature extraction performance and is adopted in this work. 

  Finally, the detection algorithm can be divided into six parts with respect to time 

analysis. The feature extraction of the whole pyramid which takes 0.26 seconds. The 

convolution of all the root and facial parts filters over all the levels of the pyramid which 

takes 0.3 seconds. The generalized distance transform that accounts for picking the 

maximum part score over all possible deformations which takes 0.2 seconds. The selection 

of the windows with scores exceeding the threshold and finding their respective bounding 

boxes with respect to the original image which takes 0.01 seconds. The post processing 

steps of the Non-Maximum Suppression (NMS) to combine the overlapping candidates 

into single detections which takes negligible time of 0.0001 seconds and the post 

processing of rejecting false positives using skin which takes 0.01 seconds. The total time 

is 0.78 seconds for detecting the two faces in the 480x640 image of Figure 4.1 with 5 levels 

per octave and using only the three pose components with only four facial parts per 

component. These times are measured on a machine with a 3.2 GHz Intel Xeon processor. 

The effect of the image size can be seen if the image is doubled in size and became 

960x1280 which is similar to concatenating 4 images of size 480x640, then the total 

detection time becomes 2.7 seconds. Now, the image pyramid contains 23 levels and 

83,615 window instead of 18 levels and 21,903 windows. The feature pyramid takes 1 
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second to construct, the score of all the windows including both the convolution and the 

deformation takes 1.7 seconds. The NMS takes 0.0002 and the skin takes 0.06 seconds 

where the detector produces 36 candidates corresponding to 4 different candidates of which 

two false positives are rejected using skin. 

Similarly, the effect of using 10 levels per octave instead of 5 can be seen in raising 

the total detection time to 1.46 seconds over the image of size 480x640. Here, the image 

pyramid contains 36 levels and 41,114 window instead of 18 levels and 21,903 windows. 

The feature pyramid takes 0.49 second to construct, the score of all the windows including 

both the convolution and the deformation takes 0.97 seconds. The NMS takes 0.0002 and 

the skin takes 0.02 seconds where the detector produces 43 candidates.  

Adding more parts to the model increases the time of calculating the score of all 

windows. For example, adding the Sunglasses which is of size 4x10 cells adds 0.1 seconds 

for the additional convolution and deformations over all the windows. On the other hand, 

adding the cap which has a larger size of 6x10 cells adds 0.13 seconds. Similarly adding 

the hands, or part subtypes will similarly add up to the time of calculating the score of all 

windows which is redundant for the easy negative windows as will be discussed in the next 

section. Finally, adding all the previous factors (image size, number of levels per octave, 

and number of parts) together can significantly increase the detection time.    

4.3 Computational redundancy 

The target of this section is to explore how face detection can be accelerated by 

reducing the redundancy in its computations. There are several types of redundancy in the 

face detection computations resulting from several factors including: the sliding window 
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approach over an image pyramid, the part based approach within each window, and even 

the calculations of the feature map pyramid itself.  

The sliding window over different scales in an image pyramid brute forces through all 

the possible scale, spatial, and temporal locations of faces resulting in the following three 

layers of redundancy. The first one is over adjacent windows in different scales of the 

image pyramid, where the same region of the image is analyzed several times over adjacent 

scales searching for faces with different sizes. The second layer is in spatially adjacent 

windows over the same scale, where the common part of these windows is analyzed several 

times searching for faces in different spatial locations. The previous two types where 

illustrated in the previous section and are valid whether the input is a single image or 

several frames from a video, on the other hand if the input is a video there is a third layer 

of redundancy in the calculations of adjacent windows over the temporal component.  

From a different perspective, in part based detectors there is another type of redundancy 

in the calculations within each window due to the structure of the model as root and several 

parts. For each window several scores of root and parts are calculated to decide whether it 

is a face or not. While this is important in the windows containing faces and face-like 

objects, in many other windows containing completely face-unlike objects only the root 

score can be enough for a clear negative decision. This means that there is redundancy in 

the number of scores from root and parts used to take that negative decision. This factor is 

very important due to the unbalanced nature of the number of negative and positive 

windows in an image where the positive windows are usually very few in number 

compared to the negative windows.  
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Figure 4.3 pictorially illustrates these different types of computational redundancies 

found in any sliding window detector that is based on parts. The scale redundancy shows 

how the same face is detected over three adjacent scales where the bounding box is very 

tight at lower levels and larger at higher levels. The spatial redundancy on the other hands 

shows over the same scale that adjacent windows can still contain the same face where the 

bounding box location with respect to the face is slightly shifted horizontally or vertically. 

The part scores redundancy shows two examples of negative windows that have very large 

negative scores for the root filter which is enough to decide they are negative windows and 

adding the rest of the parts scores just add unnecessary additional computations. Finally, 

the temporal redundancy is only if the input is video and shows that in many consecutive 

frames the positive and negative windows may not change much, note how the actor just 

Figure 4.3: Different types of computational redundancy in part based models that uses sliding windows 

over an image pyramid. The temporal redundancy is only added if the input is a video.   
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changed his pose slightly while he is speaking but his location in consecutive frames 

remains close unless the camera is switched to a different view.  

In addition, there are also some hidden redundancies in calculating the feature map 

pyramid itself. For the HOG features as explained in the previous chapter, the gradient of 

each pixel is discretized into different orientation partitions. The gradient magnitude of 

each pixel is then added to the corresponding orientation bins in four cells around it with 

bilinear interpolation weight. The gradient itself is a simple difference operation in the x 

and y direction, the bottleneck is in finding the magnitude and orientation corresponding 

to this gradient.  

Yan et al. [47] suggested the use of a Look Up Table (LUT) to generate exactly the 

same HOG features. This can be analyzed as a method for tackling the redundancy of the 

HOG calculations by pre-calculating all possible values needed in HOG and storing them 

in arrays replacing runtime computations with simpler and more efficient array indexing 

operations. Since pixel values are in the range of 0 to 255, the gradient in x and y directions 

can only take values from -255 to 255. All the possible combinations of differences can be 

stored in a table of size 511x511 with their corresponding magnitude and orientation 

partitions. Matrix index operations can replace the much harder magnitude and orientation 

calculations needed in HOG.   

Felzenszwalb et al. [48] suggested the use of cascades of models of ascending 

complexities similar to the idea utilized in the Viola Jones framework explained in Chapter 

2 to accelerate the DPM object detection. For a model with n+1 part (including the root) 

they obtained a sequence of n+1 models where the first model starts only with the root and 
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then each model adds 1 part to the previous model in the sequence. This means that 

windows that are clearly negative would be classified only by the first and the simplest 

model that contains only the root. On the other hand, harder windows which are fewer in 

numbers will keep evaluating more parts until a good decision is made.  

4.4 The Multi-Layer SPM  

The cascade idea is a natural match to the selective part models explained in the 

previous chapter. Because the cascade can be seen as a consecutive selection procedure 

that computes only the necessary response from the root and parts filters to achieve fast 

negative decisions for easy negative windows. The complete computations of all parts are 

executed only for the confusing windows. This means that using a large pool of parts (facial 

parts subtypes, sunglasses, caps, hands, and upper body) to select from in the selection 

procedure of the SPM can still be efficient because it needs only to be computed at a small 

number of windows and not over the whole pyramid. 

In this section, the Multi-Layer SPM (ML-SPM) is introduced as a way of augmenting 

the cascade idea into the SPM framework by doing the part selection of the SPM over 

several layers. The first layer starts with only the root filter with a very low threshold that 

passes all positive windows and hard negative windows but successfully classify the easy 

negative windows as negatives before evaluating any parts. This reduces the number of 

windows the parts will be calculated on enormously. The second layer applies only the 

basic four facial features on the remaining windows with a low threshold that again tries to 

pass all the positive windows and few number of very hard negatives. The third layer 

applies the Selective Part Model as was explained in the previous chapter but only on the 
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few remaining windows which mean that the optional parts whether for occluding objects 

or for part subtypes are only applied on a small number of windows.  

This adds a new dimension to the power of the selection idea of the SPM. In addition 

to the selection between part subtypes and between facial parts and possible occlusion 

objects, it also selects what parts needed to be evaluated in each window. This attacks the 

part scores redundancy explained in Figure 4.3 by focusing mainly on the redundancy in 

the calculations of the negative windows through the use of low thresholds that classify 

different negative windows with only the minimum needed operations.  

On the other hand, the detection of the same positive face many times over adjacent 

positive windows results in redundancy in the positive windows. This can be attacked by 

starting from the top of the pyramid and the use of a high threshold that if reached the 

window is classified as a strong positive and then all the adjacent windows spatially or over 

the remaining scales which basically defines the same location are not evaluated any more. 

In Figure 4.2, this means that instead of detecting the same face 21 times it will only be 

detected few times until it reaches the high threshold and then the same location will not 

be evaluated any more. 

The question now, is how to find these low and high thresholds that can be used to 

reduce the computational redundancy of the SPM. The answer comes from deeper analysis 

to the scores of the root and the different parts over the positive and negative windows of 

a validation dataset that is used to gain deeper understanding for the distribution of these 

scores. This seems similar to the analysis that was conducted on the training data to 

distribute the bias in Figure 3.12-3.15. However the difference is: the previous analysis 
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was only done on the training data which has no redundancy, each sample represents a new 

positive or negative data, while here it will be conducted over all the windows of test 

images which contain a lot of redundancy.  

Table 4.1 explained how an image of size 480x640 was tested over a pyramid of 18 

levels each level resulted in a score matrix that reflects the number of root windows 

evaluated in this level. The target now is to find the root score of all the positive windows 

(corresponding to faces) separated from all the negative windows (corresponding to 

background). Any window that when transformed to the original image has a 50% (overlap 

over union ratio) with one of the ground truth faces is considered a positive window and 

the rest are considered negative windows. For example, the image of Figure 4.1 has 21,903 

windows over all scales as explained earlier, with three root filters (corresponding to the 

frontal, right profile, and left profile) applied to each window, this leads to a total of 65,709 

window. These windows are found to be 65,571 (99.79%) negative windows and 138 

(0.21%) positive windows. 66 of the 138 positive windows correspond to the large face 

and 72 correspond to the small face. Again, these are the windows over different scales and 

spatial locations that when transformed to the original image match the 50% overlap over 

union area with one of the two ground truth bounding boxes. 

The left image of Figure 4.4 shows all the 138 positive windows (transformed to the 

original image size) as green boxes. It also highlights from them the two windows with the 

highest root scores for each face as blue boxes. These two windows correspond to a root 

score of 0.5 and 0.8 for the large face and 0.3 and 0.4 for the small face. The ground truth 

of the two faces are shown as red boxes. On the other hand, the right curve of the figure 

shows the distribution of the root scores for all the 65,571 negative windows. The negative 
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windows root scores lie between -3 and 0.5 with a mean of -1.2. To clarify the point, there 

are 61,876 negative windows corresponding to a root score that is less than -0.5; that is 

94.4% of all the negative windows can be classified as negative if only the root filter is 

used with a -0.5 threshold. It is worth mentioning that 91 windows from the 138 positive 

windows also have a root score that is less than -0.5 and will also be classified as negative 

windows which is good because it will reduce the redundancy in detecting the same face 

many times. 

This example gives deep insight about the benefits of this idea, but one image with two 

faces is not enough to decide the value of the low threshold applied on the root score. To 

find a good value for that threshold, the detector is evaluated over a validation set of 2000 

annotated images and then the root scores of the windows that matched the ground truth 

face locations are recorded for both the frontal and profile components (both profile left 

and right components were grouped together). Figure 4.5 shows the distribution of the root 

scores for these positive windows. The low threshold applied for the root filter is selected 

such that it will pass all of the faces with a safety margin to account for unseen conditions.   

Figure 4.4: The left image shows all the positive windows over all scales in green, the ground truth annotation 

in red, and the two positive windows with the highest root score for each face in blue. The right curve shows 

the distribution of the root score for all the 65,571 negative windows over all scales.     

Distribution of the root score 

For all the negative windows 
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This suggests that a threshold value of -0.5 for the root filter score will be safe enough 

to pass all the positive windows and reject many false negative windows. To get a feeling 

of how that will be used, Figure 4.6 shows the binary masks resulting from the image of 

Figure4.4 after applying a threshold of -0.5 over the root filter score. Each scale in the 

pyramid will have three masks corresponding to the frontal and two profile components. 

Only the frontal masks are shown in this figure. All the black cells correspond to windows 

that were classified as negative using only the root score. The remaining white cells 

correspond to windows that still need to be classified. Each window is represented by its 

center cell which makes these windows overlapping with step one cell. 

These masks correspond to the root filter resolution which is half the resolution used 

for the part filters. This means that these masks need to be resized to be used in deciding 

where the part filter should be computed. It is also important to realize the effect of the 

deformation property for the parts. This means that any location still need to be classified 

in the root resolution correspond to 4 locations in part resolution and then a 3x3 cells 

padding is also added around it to account for possible deformation.  Only the four main 

facial parts are evaluated in the second layer, and the same procedure used with the root in 
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Figure 4.5: The distribution of the root score for the successful detections of the frontal and profile 

components.  

Distribution of the root score 

for the profile component 
Distribution of the root score 

for the frontal component 
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the first layer is followed to reject more negative windows. The remaining windows in third 

layer are finally subject to all the available parts including the sunglasses, caps, hands, 

upper body and the optional part subtypes as explained in the previous chapter.   

For videos, similar binary masks can be used to limit the search space based on 

constraints from the spatial location and scale of consecutive frames. A full detection over 

the whole frame should be conducted every T frames to account for new faces entering the 

scene. The parameter T is decided based on the video settings. For example in a video that 

is captured by a single camera, T can be chosen to correspond for several seconds. While 

in movie like videos that can be captured by more than one camera T should not exceed 

Figure 4.6: The binary masks at each scale resulting from classifying easy negative windows using only the 

root score (corresponding only to the frontal component of the model).  
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the number of frames corresponding to one second because the whole scene can be 

changing if the camera changed. In general, tracking techniques should be utilized to work 

hand in hand with the detection when videos are considered. The task of the detection aims 

to provide fast separate detections over the frames and the tracking task is to connect them.        

4.5 Analyzing occlusion in videos  

This work focuses on the partial occlusion problem of detecting faces in unconstrained 

conditions. Recalling that the detection is usually the first step in another facial analysis 

pipeline such as face recognition. The primary target of this work is to provide the rest of 

the pipeline with the bounding box of the faces even if they are hard to detect because of 

partial occlusion. The secondary target is to provide additional information about the 

visible parts of the face. For example, in face recognition it is useful to know that the eyes 

are not visible because of sunglasses to remove them from the recognition and avoid errors 

resulting from trying to compare sunglasses with eyes of different subjects in the database. 

The videos have the advantage that some of the facial parts can be occluded in part of the 

video and then become visible. The purpose of this section is just to give some insights 

regarding how the SPM additional information about facial parts visibility can be used to 

analyze the facial parts of the same face that are detected many times over the video frames 

to provide the recognition with better information. 

Current video face recognition techniques avoid the best frame approach because it 

does not utilize all the information provided in the video and only selects a best frame to 

use it in recognition. On the other hand, a straight forward recognition from all the frames 

is prohibitively expensive [49]. The SPM detection can provide the video face recognition 
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with visibility analysis of the different facial parts over the video frames to allow it to 

utilize more information from the video.  

For example, Figure 4.7 shows 10 frames taken every 20 frames from a 7 seconds video 

with 30 frames per second. The video shows a person wearing sunglasses in frontal view, 

Figure 4.7: Analysis of video frames showing ten video frames taken every 20 frames  
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then takes it off while moving forward, and finally moves to his right giving a left profile 

with respect to the camera. The SPM detector provides three degrees information about the 

pose (Frontal, left profile, or right profile) where a frontal view was detected in the first 

seven frames and a left profile was detected in the last three frames. It also provides 

information about the visibility of the facial parts through their scores. For the eyes, if 

sunglasses are detected and the eyes scores are negative this means the eyes should not be 

used in recognition from these frames because they are not visible. On the other hand, if 

sunglasses are detected but the eyes scores are positive this indicates either eyeglasses, or 

dark eyes which can result from illumination effects. The eyes from such frame can still be 

used if needed. In general, a part with negative score indicates that the visibility of this part 

is poor and the lower the score for a part the less it should be depended on for recognition.  

4.6 Conclusion  

Video face detection is closely related to the face tacking problem. For faces in the 

wild, detection is first performed over the video frames using a powerful and fast face 

detector then these detections are linked into face tracks using tracking techniques. This 

chapter provided a detailed analysis for the detection time of the SPM detector proposed 

in the previous chapter, then illustrated different sources for computational redundancies 

in its performance. The ML-SPM was then proposed to reduce these redundancies and 

accelerate the detector performance. This is beneficial to applying the detector in both 

images and videos. The chapter was concluded by illustrating the advantages of the 

additional parts visibility information that the detector provides when the same face is 

detected many times in a video. This allows the subsequent recognition analysis to make 

the best use of the data available in the video.  
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CHAPTER 5 

EXPERIMENTAL RESULTS AND APPLICATIONS  

 

This chapter completes the discussion of the previous chapters by providing supporting 

experimental results and applications that show the importance of the proposed methods. 

Four challenging databases are used for testing the proposed detector. First the SPM is 

tested on the Face Detection Database and Benchmark (FDDB) which is a very recent 

benchmark for face detection in unconstrained environments. A main contribution of this 

work from the experimental point of view is a new thorough analysis of the FDDB from 

the occlusion perspective. Further testing is provided on the Partially Occluded Faces 

(POF) database which is a new database introduced in this work to bring more attention to 

the partial face detection problem. Comparisons of the SPM with state of the art face 

detectors on both the FDDB and the POF databases are provided in the form of ROC curves 

and tables analyzing the performance on different types of partial occlusion. In addition, 

the SPM is tested on the latest and largest face detection in the wild benchmark that is only 

released this year: “The Fine-grained Evaluation on Face detection in the wild”. 

This chapter also discusses two applications for the proposed detector, the first is in 

security for Face Recognition at A Distance (FRAD) in which the BOSS database is used. 

The second application is in Human Robot Interaction (HRI) which illustrates the diversity 

of applications that can benefit from the proposed detector. In this application, a humanoid 
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robot is used to help in teaching children with autism. The detector is a first block in 

recognizing the children for a natural human robot interaction. The discussion is completed 

by proposing an application where the robot help in teaching the children how to draw 

simple shapes.     

5.1 Testing on the FDDB Database 

The FDDB was introduced in 2010 by Jain et al. [50] to serve as a benchmark for face 

detection in unconstrained environments. It contains 5171 faces in 2845 images with a wide 

range of challenges including partial occlusion, difficult poses, low resolution and out of 

focus (blurred) faces. The annotations of the faces are ellipses, which alluded us to report 

the results also as ellipses so that the overlap used in the evaluation leads to better results. 

Although the root filters that defines the face candidates are rectangular, the fact that the 

four facial parts are also detected enables deriving an ellipse from these information that 

matched the annotation very well in most of the images.  

The evaluation schemes proposed in the benchmark ere followed, which uses two types 

for scoring the detections in an image. The discrete score uses the ratio of the intersection 

area to the union area of detection and annotation. If this ratio is greater than 0.5 then this 

detection is considered a true positive, otherwise it is considered a false positive. The 

continuous score on the other hand uses this ratio itself as a score for the detected 

region [50]. Figure 5.1 shows a comparison of both discrete and continuous ROC curves 

for the SPM method with different other methods using the evaluation code provided with 

the benchmark which was published in the IEEE International Conference on Image 

Processing (ICIP), and presented in Paris in October 2014 [36]. 
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Figure 5.1: A comparison of ROC curves for different methods applied on the FDDB database. 
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In addition, a new thorough analysis of the 5171 faces of the FDDB is made by 

manually grouping these faces into 3 main categories according to occlusion then each 

occlusion category is further divided into sub-categories as was described in Chapter 1. 

Another important category that is not related to partial occlusion but it is worth mentioning 

to understand the FDDB results further is the blurred faces category which represents 8% 

of the total number of faces with more than 70% of them completely out of focus which 

makes them useless for any further analysis and not of interest to most applications. 

Examples of these faces are shown in the last row of Figure 5.2 for illustration.   

I believe that with the current maturity of the face detection problem, more focus needs 

to be devoted for evaluating how good is an algorithm in solving certain challenges besides 

the overall performance that can be biased by a large number  of  easy  near  frontal  faces  

Table 5.1. Categorization of faces in the FDDB database 
 

Face categories Number of faces 
FN 

(SPM) 
FN 

(Zhu et al.) 

No Occlusion 3647 124 (3.5%) 653(17%) 

Self-Occlusion 655 84(12.8%) 345(52.7%) 

 Profile 

 Caps 

 Sunglasses 

 Hands 

298 

251 

55 

51 

54 (18.1%) 

14 (5.5%) 

5 (9%) 

11 (21.5%) 

229(77%) 

59(24%) 

22(40%) 

35(69%) 

External Occlusion 430 225(52.3%) 350(81.3%) 

 Faces occluded 

by other people 

 Faces occluded 

by other objects 

 Out of field of view 

 

209 

 

179 

 

42 

123 (59%) 

 

86 (48%) 

 

16 (38%) 

166(80%) 

 

144(81%) 

 

40(95%) 

Blurred faces 440 313 (71%) 426(97%) 
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Figure 5.2: Examples of FDDB results showing detections as green ellipses and annotation as red dashed ellipses. The 

last row shows examples of the completely blurred faces annotated in this database. 
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hiding deficiencies in certain challenges. Table 5.1 shows these categories and the False 

Negative (FN) count of each category from the proposed method (SPM) compared with 

the detector of Zhu et al. [7] which is selected because it is publically available and showed 

great performance on the FDDB database as seen in the ROC curves. 

From the table, it can be seen that 70% of the FDDB faces have no occlusion at all (still 

3.5% of them are not detected due to other challenges like very small size and extreme 

poses or expressions). The FDDB contains 21% of the total number of faces (1085 face) 

that are occluded with at least one part of the eyes, nose and mouth being not visible in the 

image. Faces were grouped into two main types: self-occlusion which can result from pose 

or other objects that belong to the same subject such as sunglasses, caps and hands; 

external occlusion which can result from other objects in front of the face including other 

faces and objects, or being partially outside the field of view of the camera. For self-

occlusion, there is a total of 655 faces and we successfully detect 88% of them. It can also 

be seen from the table that caps and sunglasses showed a performance better than hands 

due to the large possible variations in the appearance of the hand that could not be captured 

easily by the model. Figure 5.2 shows some results with detections in green, and annotation 

in dashed red.  

5.2 Testing on the POF Database 

In this work, a new database for face detection in the wild focusing on the problem of 

partial occlusion is introduced. The images in the POF database are collected from the 

internet with each image containing at least one face with partial occlusion. It still contains 

some faces with no occlusion which are also important so that the database is not biased 
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toward occlusion only settings. The POF database consists of 500 images with 777 faces 

including different types of occlusion. Many of the images include celebrities to show that 

despite the severe occlusion in some images, these images are still useful for recognition 

because people can still recognize the celebrities in these images. The images are selected 

carefully so that it contains no ambiguity in the annotation for deciding whether a face 

should be annotated or not. The occluded faces must contain at least one part that is 

completely visible. The POF database contains no faces that are completely out of focus 

like many faces in the FDDB, although some slight blurring is still accepted to keep all the 

challenges in the database as long as the faces can still be useful for recognition or other 

further analysis. Both image dimensions are less than 1000 pixels with the faces annotated 

as rectangles with both sides at least 40 pixels. Because the annotation of the POF is in the 

form of rectangles not ellipses, we followed the same concept we did in FDDB and reported 

our results in the same form of the annotation.  
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Figure 5.3: A comparison of ROC curves for different methods applied on the POF database. 
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To evaluate the performance of the SPM on the POF database, its results are compared 

to the detector of Zhu et al. [7] and the VJ face detector [4] which is considered as a 

baseline. The ROC curves are shown in Figure 5.3 comparing the three methods using the 

discrete score described in the FDDB. The advantage in the POF over the FDDB for 

evaluating partial face detection is that the ROC curves are not biased by a large number 

of faces that contain no occlusion as in the FDDB and hence the curves can reflect the 

performance of each method in handling occlusion problems in unconstrained settings with 

non-cooperative subjects.  

To better analyze the performance, Table 5.2 shows a categorization of the 777 faces 

in the database into three main categories. Faces with no occlusion which are 15% only of 

the total number of faces compared to 70% in the FDDB. Faces with self-occlusion 

representing 60% of the database with 40% of them having more than one type of self-  

Table 5.2. Categorization of faces in the POF database 
 

Face categories Number of faces 
FN 

(SPM) 
FN 

(Zhu et al.) 

No Occlusion 117 16 (14%) 27(23%) 

Self-Occlusion 470 106(23%) 147(31%) 

 Profile only 

 Caps only 

 Sunglasses only 

 Hands only 

 Mix 

38 

95 

63 

85 

189 

14 (37%) 

22 (23%) 

6 (9%) 

21 (25%) 

43 (23%) 

20(53%) 

28(29%) 

12(19%) 

25(29%) 

62 (33%) 

External Occlusion 190 67(35%) 76(40%) 

 Faces occluded 

by other people 

 Faces occluded 

by other objects 

40 

150 

18 (45%) 

49 (33%) 

18(45%) 

58(39%) 
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Figure 5.4: Examples of POF results showing the detections as green rectangles and the annotation as red dashed 

rectangles.   
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occlusion, for example caps hiding eyes, with hands hiding mouth which leaves the nose 

as the only visible parts of the face (referred to in the table as ‘Mix’).  External occlusion 

on the other hand represents the remaining 25% of the faces with most of them occluded 

by other object which can still be weekly detected using the visible parts. Figure 5.4 shows 

examples of the images in the POF database with detections as green rectangles and 

annotation as red dashed rectangles.  

5.3 The Fine-grained Evaluation on Face Detection in the Wild  

This fine-grained evaluation and benchmark was introduced by Yan et al. [56] in 2014 

as a part of the evaluation in the upcoming IEEE International conference on Automatic 

Face and Gesture Recognition (FG 2015). The benchmark was completed in September 

2014 to be the largest face detection benchmark containing 11,931 faces in 5250 images. 

The SPM was one of the methods participating in that evaluation which had the submission 

deadline on October 31st, 2014.  

This benchmark provides annotations that include a square bounding box of the faces 

and several additional attributes to make the fine-grained analysis of face detection results 

possible. The additional attributes include pose level of yaw, pitch and roll as small, 

medium, or large. It also includes an ignore flag for faces which are smaller than 20x20 or 

extremely difficult to recognize which are 838 faces, this is important because these faces 

are not counted as false negatives if not detected but they are also not counted as false 

positives if detected because a good detector capable of detecting them should not be 

penalized. In addition other Boolean attributes are also included in the annotation 

including: gender, isBaby, isWearingGlasses, isOccluded, and isExaggeratedExpression. 
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Their annotation strategy followed the following guidelines: the bounding box style is 

similar to the AFLW dataset [41] which tries to contain the eyebrow, the chin and the 

cheek, while keeping the nose located approximately at the center. In order to keep their 

annotation style consistent, the bounding box was annotated by two persons and examined 

by one, and the ignore flag was annotated by one person. Finally, the gender attribute of 

babies was discarded due to the ambiguity.      

In this benchmark, besides measuring the overall performance, the evaluation is fine-

grained because it also reports the specific performance with regard to occlusion, gender, 

glasses, expression, resolution and pose. In this way, one can clearly observe the 

advantages and disadvantages of different face detection algorithms from various aspects. 

The evaluation in different aspects can be generated by only taking the faces under each 

specific circumstance into consideration. This matches the previously mentioned 

contribution in the FDDB and POF databases, in which the faces were classified with 

respect to occlusion types to evaluate the performance according to them [36]. It is the 

same idea of not just reporting face detection over all the faces together where frontal easy 

faces usually exceed in numbers the challenging faces and hence it is difficult to know if a 

detector is good with respect to a specific challenge. 

   During the evaluation, only the images without annotations were released. Only 250 

images were released with annotations to serve as examples for refining the bounding box 

and were not used for evaluation. The results are compared against several methods from 

the academia and the industry. From the academia, Viola Jones as implemented in OpenCV 

using two views frontal and profile [4], weighted sampling based boosting of Kalal et 

al.[57], SURF frontal of Li et al. [5], and tree structured model of Zhu et al. [7]. Three of 
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these methods were used in the FDDB analysis and two of them were used in the POF 

analysis. From the industry, Google Picasa and Face++ were used.  

The evaluation produced 19 ROC curves comparing the SPM (tagged as CVIP-Run1) 

with the previously mentioned methods, the overall response over the whole data is shown 

in Figure 5.5 while the fine grained analysis are shown in Figure 5.6 to 5.11. The curves 

show good performance for the SPM method in the overall performance as well as the in 

the other attributes. Four methods are evaluated as single points because their source code 

is not available while the other methods are shown as ROC curves where each point 

corresponds to different threshold. Only the commercial Google Picasa exceeded the SPM 

and it is worth mentioning that this is an auto-tagging software that performs the whole 

recognition pipeline so produces very low false positives.  

Figure 5.5: overall performance over all the data in the latest benchmark of face detection in the wild. 
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Figure 5.6: Fine-grained evaluation with respect to Occlusion, Glasses, and Expression. 
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Figure 5.7: Fine-grained evaluation with respect to Gender: Men, Women, and Babies. 



110 

  

  

Figure 5.8: Fine-grained evaluation with respect to face size: <60, (60,90), and >90. 
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Figure 5.9: Fine-grained evaluation with respect to pose: Yaw angle. 
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Figure 5.10: Fine-grained evaluation with respect to Pose: Roll angle. 



113 

  

  

Figure 5.11: Fine-grained evaluation with respect to Pose: Pitch angle. 
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5.4 Application I: Face Recognition at A Distance  

This section describes the experimental results of the RSFFD explained in chapter 2 

which is the face detector used in the Biometric Optical Surveillance System (BOSS) 

project conducted by the CVIP laboratory and funded by the Department of Homeland 

Security for building a face recognition at a distance system (October 2010 to October 

2012). The BOSS database will first be described explaining how it was collected then the 

results of the RSFFD approach will be compared to previous state-of-the-art algorithms to 

determine its efficiency. A discussion of results will follow to study its advantages and 

limitations. The RSFFD is a generic framework that can be used with any face detector, so 

its skin part was used with the SPM detector as a post processing step to further enhance 

its performance as was explained in Chapter 3. 

5.4.1 The BOSS Database 

The BOSS database is collected outdoor using two NFOV cameras with 800 mm lenses 

at distances ranging from 30-meters to 150-meters. The database consists of 1191 image 

with 2076 faces. The number of subjects in each image varies from 1 to 12 as shown in 

Figure 5.13. The database has 120 different subjects including different ages, skin colors 

and genders. The lighting follow unconstrained day light conditions that varies from sunny 

to cloudy with also some shadow problems. The pose goes up to  ±45𝑜 in the yaw angle 

and ±10𝑜 in the pitch and roll angles. The expressions are unconstrained including smiling, 

laughing, sadness and anger. The backgrounds are unconstrained complex outdoor 

environments with a wide variety of objects. The ground truth of the images is annotated 

manually as rectangles. 
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5.4.2 Results and Discussion 

The database described above was used to test the RSFFD algorithm with the VJ face 

detector as its base detector. For comparison, the VJ detector is used with two versions of 

the RSFFD where version 1 proposed in the competition held by Parris et al. [26] did not 

use the skin and saliency scores explained in Chapter 2 which were developed later on for 

version 2 that was proposed in EL-Barkouky et al. [27]. Figure 5.12 shows the ROC curves 

obtained from applying the three methods (VJ and VJ with RSFFD version1 and 2) with 

different threshold values. The threshold of 7 was selected according to that curve for a 

balanced performance in the tradeoff between true positive rate and false positives. A 

zoomed version of the three curves illustrates the difference between the three approaches 

near the acceptable range of false positives. With almost 2000 faces in the database 200 

was considered as the maximum allowed false positive. The operating point on the 

approach was selected at a true positive rate of 0.87 and a false positive count of 79. The 

Figure 5.12: A comparison of ROC curves for the VJ face detector with the RSFFD version 1 and 2 that also use the VJ 

face detector as its base detector. The curves support the effectiveness of the method in reducing the false positives 

allowing the detector to operate on a better operating point.  
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VJ was used in these results just as a proof of concept which can be replaced by the SPM 

detector or any other detector.   

Figure 5.13 shows some of the results obtained by the RSFFD approach on images that 

are captured at distances ranging from 30 to 150 meters. The green solid rectangles are the 

candidates that passed a threshold of 7 in their final score. The red dotted rectangles are 

the candidates that were rejected because their scores were lower than the threshold. The 

images show the large number of false positives obtained due to the outdoor complex setup 

and illustrates the efficiency of the proposed approach to reject these false positives. It also 

one true face that was mistakenly rejected because it had a score of 6 in the left lower 

image. The threshold is obtained from the ROC for the best performance over all images. 

Figure 5.13: Examples of outdoor images at different distances from 30 to 150 meters with different challenges. The 

candidates that pass a threshold of score of 7 are considered faces and displayed in solid green. The candidates that were 

rejected because they have score less than 7 are shown as dotted red rectangles just for illustration. 
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5.5 Application II: Human Robot Interaction 

In this application, the face detection is used in a completely different setting away 

from its common security applications that first hits the mind when face recognition in 

general is considered. With the current advancement in technology, most machines became 

smart in the sense that it contains a processor that enables them to analyze the data 

perceived from the environment. One of the key aspects to be analyzed by the machine is 

the human face which allows it to interact naturally with humans. This suggests tailoring 

the facial analysis development for the human machine interaction in general and for the 

human robot interaction which is of particular interest in this work.   

In this context, an educational robotic system is proposed as a helping tool for teaching 

children with autism using a humanoid robot. According to the Centers for Disease Control 

and prevention, it is estimated that in the Unites States 1 in 88 children is diagnosed with 

Autism [58]. Children with autism suffer from problems in social interactions and 

communication. A robot can provide social interactions in a much simpler way because of 

its predictability and fewer external stimuli which often attract those children. For the robot 

to be able to interact with the children, two main tasks are required. First, the robot needs 

to be able to perceive the environment and in this aspect the focus is on doing this using 

cameras and face detection which is needed for natural interaction with the children. This 

will enable the robot to detect the child’s face and facial parts and some of the occluding 

objects that are common in a typical class room settings and use them in the SPM 

framework proposed earlier. Besides detecting the children’s faces for recognizing them, 

the robot should perform actions to interact with these children and help in teaching them. 



118 

  

Some of these actions will be talking, moving, dancing, and of special interest in this work: 

enabling the robot to write and draw simple shapes.  

Although the main focus of this dissertation is on using the face detection in natural 

interaction of the robot with the children, this needed to be put into an application that 

supports their educational needs where the face detection and recognition can be used to 

enhance the interaction. The selected application was enabling the robot to write and draw 

simple shapes. These shapes can be coming from analyzing images either captured by its 

cameras or stored in its hard drive. In this context, a novel mapping from the image domain 

to the robot space is also proposed which will be explained in this section to complete the 

discussion of this application. 

5.5.1 The drawing mapping  

In this section, the robot’s target is to draw a simple shape or an alphabetical letter from 

an image that is either captured by its cameras or stored in its hard drive. The required 

shape should be segmented and its contours are then extracted. Here, the focus is on how 

the points of the lines and curves that the robot is supposed to draw can be transformed 

from the image domain to the robot’s joints angles so that the robot can produce the proper 

movement of its arm to draw the same lines and curves on a piece of paper as illustrated in 

Figure 5.14.  This transformation is done over two stages: the first stage is to transform 

each point from the image domain to the paper domain and then the second one is to 

transform each point in the paper domain to the corresponding robot’s joints angles that 

will move the robot arm, and hence the pen, to  this point on the paper. 
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5.5.1.1 From image domain to paper domain 

A linear transformation is used to relate the image domain to the paper domain using 

the following equations: 

𝑥𝑝 = 𝑥𝑝𝑚𝑖𝑛 +
𝑥𝑝𝑚𝑎𝑥−𝑥𝑝𝑚𝑖𝑛

𝑦𝑖𝑚𝑎𝑥−𝑦𝑖𝑚𝑖𝑛
(𝑦𝑖𝑚𝑎𝑥−𝑦𝑖)            (5.1) 

            𝑦𝑝 = 𝑦𝑝𝑚𝑖𝑛 +
𝑦𝑝𝑎𝑟−𝑦𝑝𝑚𝑖𝑛

𝑥𝑖𝑚𝑎𝑥−𝑥𝑖𝑚𝑖𝑛
(𝑥𝑖𝑚𝑎𝑥−𝑥𝑖)         (5.2) 

Where (𝑥𝑖 , 𝑦𝑖) is any point in the image domain and (𝑥𝑝, 𝑦𝑝) is the corresponding point 

in the paper domain. The values 𝑥𝑖𝑚𝑖𝑛, 𝑥𝑖𝑚𝑎𝑥, 𝑦𝑖𝑚𝑖𝑛 and 𝑦𝑖𝑚𝑎𝑥 are the minimum and 

maximum values of 𝑥𝑖 and 𝑦𝑖 for all the points of the lines and curves the robot is supposed 

to draw in this image and hence they will change from one image to another. 𝑥𝑝𝑚𝑖𝑛, 𝑥𝑝𝑚𝑎𝑥, 

𝑦𝑝𝑚𝑖𝑛 and 𝑦𝑝𝑚𝑎𝑥 are the boundaries of the selected region in the paper for the robot to draw 

in as shown in Figure 5.14. To maintain the aspect ratio of the shape that the robot is 

drawing 𝑦𝑝𝑚𝑎𝑥 is replaced in the transformation by 𝑦𝑝𝑎𝑟 which is chosen such that:   

𝑦𝑖𝑚𝑎𝑥−𝑦𝑖𝑚𝑖𝑛

𝑥𝑖𝑚𝑎𝑥−𝑥𝑖𝑚𝑖𝑛
=

𝑥𝑝𝑚𝑎𝑥−𝑥𝑝𝑚𝑖𝑛

𝑦𝑝𝑎𝑟−𝑦𝑝𝑚𝑖𝑛
     (5.3) 

Then finally Solve for 𝑦𝑝𝑎𝑟:  

Figure 5.14: The transformation from the image domain to the paper domain. 
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𝑦𝑝𝑎𝑟 = 𝑦𝑝𝑚𝑖𝑛 +
𝑥𝑖𝑚𝑎𝑥−𝑥𝑖𝑚𝑖𝑛

𝑦𝑖𝑚𝑎𝑥−𝑦𝑖𝑚𝑖𝑛
(𝑥𝑝𝑚𝑎𝑥−𝑥𝑝𝑚𝑖𝑛)    (5.4) 

5.5.1.2 From paper domain to robot’s joints angles 

The right arm of the humanoid robot NAO has 6 degrees of freedom (DOF) as shown 

in Figure 5.15. One DOF is in the hand, the robot asks for the pen while its hand is open. 

Then when the user gives the pen to the robot, he should activate the touch sensor on its 

hand which is programmed to let the robot close its hand holding the pen. The other five 

DOF are used to let the robot raise its right arm parallel to the paper. The shoulder roll and 

elbow roll angles are used to enable reaching the different points on the paper required for 

drawing. The shoulder pitch angle is set to zero for the robot to draw and to a negative 

value for the robot to raise his hand slightly causing the pen not to touch the paper which 

is used to move between different contours. The elbow and wrist yaw angles are set to 0 

and 90 degrees respectively to let the pen be perpendicular to the table. The length of the 

upper arm is referred to as “𝑎 = 10.5 𝑐𝑚”, the sum of the lower arm and hand offset as 

“b=11.37cm” and the elbow offset as “d=1.5cm” which are shown in Figure 5.15 and 5.16.  

Figure 5.15: NAO’s right arm joints and dimensions. 
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The point (𝑥𝑝, 𝑦𝑝) in the paper domain should be transformed to the angles S and E 

which represent the right arm shoulder roll and elbow roll angles respectively as shown in 

Figure 5.16. Starting from the inverse transformation namely from S and E to(𝑥𝑝, 𝑦𝑝) :  

𝑥𝑝 = 𝑎 cos(𝑆 − 𝛿) + 𝑏 𝑐𝑜𝑠(𝑆 − 𝛿 + 𝐸 + 𝜃)    (5.5) 

𝑦𝑝 = 𝑎 sin(𝑆 − 𝛿) + 𝑏 𝑠𝑖𝑛(𝑆 − 𝛿 + 𝐸 + 𝜃)    (5.6) 

where “a” and “b” are the lengths of the upper arm and forearm respectively while “𝛿” and 

“𝜃” are the angles resulting from the offset “d” between the shoulder joint and the elbow  

joint in the y direction as shown in Figure 5.16. The angles “𝛿” and “𝜃” can be calculated 

as 8.21 and 15.79 degrees respectively from the geometry of the arm using: 

𝛿 = 𝑠𝑖𝑛−1(𝑑

𝑎
) , 𝜃 = 𝜋 − 𝑐𝑜𝑠−1(𝑑

𝑏
) − (𝜋

2
− 𝛿)     (5.7) 

To find the reverse transform, equations (5.5) and (5.6) are squared then added  

leading to:  

 

Figure 5.16: The transformation from the paper domain to the robot joints angles. 
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𝑥𝑝
2 + 𝑦𝑝

2 = 𝑎2 + 𝑏2 + 2𝑎𝑏𝑐𝑜𝑠(𝐸 + 𝜃)        (5.8) 

Then by solving for E:  

𝐸 = −𝜃 + 𝑐𝑜𝑠−1 (
𝑥𝑝

2+𝑦𝑝
2−𝑎2−𝑏2

2𝑎𝑏
)     (5.9) 

To get S we expand the cosine and sine functions in equations (5.5) and (5.6) in terms 

of (𝑆 − 𝛿) and (𝐸 + 𝜃):  

𝑥𝑝 = (𝑎 + 𝑏 cos(𝐸 + 𝜃)) cos(𝑆 − 𝛿) − 𝑏𝑠𝑖𝑛(𝐸 + 𝜃)sin (𝑆 − 𝛿)          (5.10) 

𝑦𝑝 = (𝑎 + 𝑏 cos(𝐸 + 𝜃)) sin(𝑆 − 𝛿) + 𝑏𝑠𝑖𝑛(𝐸 + 𝜃)cos (𝑆 − 𝛿)  (5.11) 

Solving equations (5.10), (5.11) for 𝑐𝑜𝑠(𝑆 − 𝛿) and 𝑠𝑖𝑛(𝑆 − 𝛿) by multiplying 

equation (5.10) by (𝑎 + 𝑏𝑐𝑜𝑠(𝐸 + 𝜃)) and equation (5.11) by 𝑏𝑠𝑖𝑛(𝐸 + 𝜃) then adding 

and subtracting we get:  

cos(𝑆 − 𝛿) =
𝑥𝑝(𝑎+𝑏𝑐𝑜𝑠(𝐸+𝜃))+𝑦𝑝𝑏𝑠𝑖𝑛(𝐸+𝜃)

𝑎2+𝑏2+2𝑎𝑏𝑐𝑜𝑠(𝐸+𝜃)
         (5.12) 

sin(𝑆 − 𝛿) =
𝑦𝑝(𝑎+𝑏𝑐𝑜𝑠(𝐸+𝜃))−𝑥𝑝𝑏𝑠𝑖𝑛(𝐸+𝜃)

𝑎2+𝑏2+2𝑎𝑏𝑐𝑜𝑠(𝐸+𝜃)
         (5.13) 

Dividing equation (5.13) by equation (5.12) and solving for S we get:  

S = 𝛿 + 𝑡𝑎𝑛−1 𝑦𝑝(𝑎+𝑏𝑐𝑜𝑠(𝐸+𝜃))−𝑥𝑝𝑏𝑠𝑖𝑛(𝐸+𝜃)

𝑥𝑝(𝑎+𝑏𝑐𝑜𝑠(𝐸+𝜃))+𝑦𝑝𝑏𝑠𝑖𝑛(𝐸+𝜃)
       (5.14) 

Equations (5.9) and (5.14) will be used to transform any point on the paper plane 

(𝑥𝑝, 𝑦𝑝) to the angles S and E that will move the pen to this point.  
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The region of drawing in the paper is shown in blue in Figure 5.17 along with some 

examples of Nao drawings. The rectangle shown in red was selected within that region to 

be the limits of the drawing area with 𝑥𝑝𝑚𝑖𝑛, 𝑥𝑝𝑚𝑎𝑥 , 𝑦𝑝𝑚𝑖𝑛 and 𝑦𝑝𝑚𝑎𝑥 equal to 15.5, 20.5, 

-6 and 6 respectively. These values controlled the region of the paper that Nao can draw in 

without walking. Of course, Nao can walk a step to the left, right or back to move that 

rectangle in case he needs to draw several images.   

5.5.2 Face detection with Nao 

The humanoid robot Nao has 25 degrees of freedom, 2 of them are in his head allowing 

it to rotate in the yaw 119.5o to the right or left, and in the pitch 29.5o looking down or  

-38.5o looking up. The robot’s head is equipped with two identical video cameras one of 

them located in the forehead and the other located in the mouth. They provide up to 

1280x960 resolution at 30 frames per second if used on the local processor, and if 

transferred to a laptop the frame rate is based on the network and the resolution used. These 

technical specifications for Nao’s head movement and for its cameras including the 

camera’s field of view and locations are illustrated in Fig 5.18.   

 

Figure 5.17: The drawing region for Nao and some examples of Nao drawings. 
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 The processing of video frames captured by Nao’s camera can either be done on the 

local processor inside the robot or though the WiFi network on a laptop. The laptop method 

was adopted in which the frames captured by Nao’s camera are sent over the WiFi and then 

the processing of the frames are done on the laptop just like applying the SPM to any other 

image or video. The frame resolution used is 480x640 (VGA) at a rate of 1 frame per 

second. The target is to keep the robot aware with the kids around it.  

For example, one scenario can be that Nao and the kids are sitting around a table for 

the drawing application. In this case, a yaw head movement gradually from -45o to 45o is 

used to span the whole space around the table and locating how many kids are sitting and 

their locations. Then if the robot wants to look to one of them, it can move its head until 

the detected face is in the middle of the frame. For a more natural interaction, the face 

detection should be the first step in a recognition module that also recognize the kids’ faces. 

Another scenario for the robot’s interaction with the kids is that Nao is dancing in front of 

the kids and the kids are mimicking his movements. In this settings the head movement is 

not necessary because the distance between the robot and the kids makes the camera’s field 

of view large enough to capture all the kids.  

 

Figure 5.18: Nao’s head movement and cameras. 
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Figure 5.19: SPM tested on images captured at the Bluegrass center for autism. 
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Figure 5.19 shows some of the results of the SPM detector on frames captured at the 

Bluegrass center for autism. The frames show a success for the SPM face detector on 

frontal and profile poses with different expressions. It also shows successful detections for 

faces partially occluded by hands for the kid on the left sequence. It also shows successful 

detections for the teacher’s face partially occluded by child head on the right sequence.  

This is part of the autism robotics project in the CVIP lab in collaboration with the 

Bluegrass Center for Autism. It was awarded first place in the graduate research 

symposium at the University of Louisville in 2013 and the Diebold research award from 

the Speed School of Engineering at the University of Louisville in 2014. It was published 

in the ICIP 2013 and presented at the conference in Australia [59]. In 2014, it was also 

recognized in the WHAS 11 TV channel and the University of Louisville alumni magazine 

as part of the research work in the CVIP lab as shown in Figure 5.20.  

  

 

Figure 5.20: The autism robotics project at the CVIP lab recognized in the WHAS 11 TV channel and the University of 

Louisville alumni magazine. 

 



127 

  

 

 

CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

Faces in the wild impose difficult challenges even on the state of the art face detectors. 

The wide variability in the unconstrained real life environments complicates the process of 

building a face model that can detect faces with different poses, expressions and lighting 

conditions from a complex background. The partial occlusion of these faces adds further 

complications that can prevent even commercial face detectors from detecting these partial 

faces. In this work, the problem of partial face detection in uncontrolled environments is 

tackled from a scene understanding point of view by modeling some of the common objects 

that can occlude faces in a selective part model framework that can be used not only to 

detect the faces but also to provide information about the visible parts of these faces which 

can be used in any further facial analysis step. 

6.1 Conclusion 

A detailed overview of the face detection problem was first provided focusing on two 

major general frameworks: the Adaboost framework leaded by the Viola Jones approach 

and the part based framework leaded by the DPM approach. Those two frameworks can be 

considered the basis of most current face detectors. The SPM proposed in this work belongs 

to the part based framework and is distinguished from other methods by its explicit focus 

on the partial occlusion problem. The idea was demonstrated on self-occlusion resulting 
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from sunglasses, caps and hands and on external occlusion resulting from other people’s 

faces and shoulders. The SPM has a lot of potential for partial face detection. A detailed 

analysis of the detection time and computational redundancies of the SPM was provided 

leading to the ML-SPM as a modification that reduces these computational redundancies 

and accelerates the detector performance. 

The SPM was tested on the FDDB which is a recent benchmark for face detection in 

unconstrained conditions. It showed good performance on both its discrete and continuous 

scores. Since SPM is designed for partial face detection, further analysis was conducted 

through a categorization of the faces in the database according to partial occlusion and 

evaluating the performance in these categories. The current version handles self-occlusion 

well with the hands having the lowest performance due to the wide variability in its 

appearance. For external occlusion, the SPM handles occlusion by other faces and by the 

upper part of the body which also acts as a context for its own face besides enforcing the 

faces occluded by shoulders in crowd scenes. The occlusion by other objects can also be 

modelled in some special applications like for example in sports where the ball is a 

common object to occlude the players’ faces. 

A new database was also introduced in this work to bring more attention to the partial 

face detection problem where all the images in this new POF database have at least one 

face that is partially occluded. Many of the images include celebrities to show that despite 

the severe occlusion in some images, these images are still useful for recognition because 

people can still recognize the celebrities in these images. The SPM was also tested on this 

new database and the same categorization of partial occlusion types was used to evaluate 

the method according to its performance in these different categories.  
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The fine grained evaluation on face detection in the wild is the latest and largest face 

detection dataset and benchmark. It provides fine grained analysis of the performance with 

respect to gender, occlusion, glasses, face size, face pose and expression. Detailed analysis 

about the SPM performance was provided with respect to all of these factors compared to 

several methods from the academia and the industry.    

The face recognition at a distance is the first application visited in the work and the 

RSFFD method was proposed as a generic post processing step to enhance the performance 

of any face detector. Experiments were conducted using the VJ face detector as a baseline 

to test the framework. The BOSS database was used to test the idea by comparing the base 

face detector performance with and without the score fusion of the RSFFD to illustrate its 

effect on reducing the false positive. Based on that, the complimentary information of the 

skin was combined with the SPM framework to enhance its performance.  

The human robot interaction is the second application examined in this work where the 

humanoid robot Nao is used to help in teaching children with autism. The face detection is 

used to achieve a better natural interaction for the robot with the children. A drawing 

application was designed as a framework of interaction with the children that supports their 

educational needs where the face detection and recognition are intended to be used to 

enhance this interaction.     

6.2 Future work 

This work tackled the problem of face detection in the wild from a scene understanding 

point of view by explicitly considering other objects in the face model. The new advances 

of object detection and scene understanding should be explored to be incorporated further 



130 

  

in the face detection framework. With the current maturity of the face detection algorithms 

the remaining challenges to be solved in this area are very hard and should be considered 

from the broader perspective of scene understanding. This work touched this direction and 

more research need to be conducted along the same lines. 

Another good direction for research is how to combine the additional information about 

the visibility of parts resulting from the SPM into the face recognition framework. This 

dissertation illustrated that if sunglasses are detected hiding the face then the eyes should 

not be used for the recognition which is a good point but the remaining question is how to 

handle such a face in the recognition step. The deeper question is if the detector is providing 

information about the different part scores and about the pose of the face, how to utilize 

these information in the recognition. Also in the more general case of a video how to 

combine these information for the same face detected over different frames to enhance the 

recognition results. 

The human machine interaction in general and the human robot interaction in particular 

is another important direction that should be investigated. The question is how to utilize 

the results of a detector like the SPM to combine the previous two points of scene 

understanding and face recognition to reach better and more natural human robot 

interaction or human machine interaction.         
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