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ABSTRACT

DEVELOPMENT OF A POWER MONITORING AND CONTROL SYSTEM TO

PROVIDE DEMAND SIDE MANAGEMENT OF ELECTRIC VEHICLE

CHARGING ACTIVITY

Nicholas Francis Jewell

December 4, 2014

Due to the recent inflow of Electric Vehicles (EVs) to the automobile market, new con-

cerns have risen with respect to the additional electrical load and the resultant effects

on an overloaded electric grid. Either for convenience purposes or possibly necessity

due to limited electric range on EVs, some EV owners may desire to charge their

EV while at work in addition to charging at home. These forward-thinking daytime

charging providers are typically Commercial and Industrial (C&I) electric ratepay-

ers, or other large electric consumers which constitute the majority of businesses,

shopping centers, academic campuses and manufacturing facilities. Increased elec-

tricity consumption due to EV charging activity results in higher electricity costs due

to differences in the billing structures between residential and C&I electric ratepay-

ers. Therefore, it is beneficial to the EVSE charging provider to minimize charging

activity around peak demand periods which would result in lower electrical costs

overall. A solution is developed that can provide this control without creating a

vi



nuisance to electric vehicle owners since EV charging demand is somewhat inelastic

due to range anxiety. The primary objective of the research detailed in this disserta-

tion is to develop a novel demand side management system for monitoring the peak

demand of commercial time-of-day electric ratepayers that cost effectively predicts

and controls electric vehicle charging during peak demand periods. This objective

is achieved, therefore confirming the hypothesis that such a system can provide cost

and demand benefits to forward-thinking commercial electric ratepayers that provide

daytime charging capabilities.

This work proposes and evaluates a novel Power Monitoring and Control Sys-

tem (PMCS) that can be implemented at C&I EV charging locations to minimize

or eliminate the negative impacts of charging electric vehicles at the workplace in

C&I environments. Operation of the PMCS begins by forecasting electrical demand

in advance of every 15 minute demand interval throughout the day. The forecast

is generated using an artificial neural network and a number of input data streams.

Electrical demand has been shown to correlate well with weather data such as tem-

perature and dew point. Therefore, using those measurements along with a date and

time stamp, and historical electrical demand measurements, a highly accurate fore-

cast for the following 15-minute demand interval was achieved. From that forecast,

the number of EV charging stations that may be active, without the chance of cre-

ating new electrical demand peaks, is calculated. Finally, the forecast is then used

to properly schedule EV charging activity so that electrical demand peaks can be

avoided but charging activity is maximized. The avoidance of charging activity at or

near peaks in electrical demand results in lower total electric costs associated with

vii



the charging process. The final design was implemented in an EV charging testbed

at the University of Louisville and data was collected to verify the operation and

performance of the PMCS.

With a properly designed scheduling and prioritization control algorithm, in-

creases in electrical demand and associated costs are limited to the error in the fore-

casting algorithm used for predicting electrical demand levels. The final design of

the forecasting algorithm results in a mean absolute percent error of 0.02% to 0.08%

in the electrical demand forecast. This corresponds to approximately 3 to 10 kVA

of error in electrical demand. Taking this error into account, total cost of charging

several EVs is reduced by nearly 90%. Furthermore, for scenarios where there are

several more electric vehicles requiring charge than there are charging stations avail-

able, several scheduling algorithms are presented in an attempt to minimize the total

processing time required for completing all charging transactions.
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CHAPTER I

INTRODUCTION

This dissertation is based on the design and development of a novel Power

Monitoring and Control System (PMCS) for Plug-In Hybrid Electric Vehicle (PHEV)

and Battery Electric Vehicle (BEV) charging applications. The system described

within provides demand management of PHEV charging loads for commercial and

industrial time of day electricity ratepayers. Commercial and industrial time of day

ratepayers include shopping centers, schools, businesses, and factories that typically

consume very large electrical loads of between 250 kVA and 50000 kVA [1].

Typically, demand response programs are implemented at the utility level and

require significant communications infrastructure between the utility and the elec-

tric consumer. These programs either directly control loads through remotely con-

trolled switches or offer financial incentives to the electric consumer to change power

consumption patterns. The PMCS described here is a special case of demand man-

agement since the commercial ratepayer (The University of Louisville) acts as an

intermediate entity between the utility and the electric vehicle owner as shown in

Figure 1. Demand management provided by the PMCS occurs between the electric

consumer and the auxiliary PHEV charging load. In Figure 1 blue arrows repre-

sent traditional implementation of demand side management, red arrows represent

demand management provided by PMCS. The PMCS provides benefits of demand

1



reductions for both the electric utility and the commercial ratepayer. Additionally,

the commercial ratepayer benefits from significant cost reductions for electricity con-

sumed. The figure represents the relationship between the utility, the commercial

electric consumer, and the EV owner.

FIGURE 1: Supply and demand structure between utility, commercial entity and

auxiliary load.

As PHEVs grow in popularity, the installation of charging infrastructure at

the workplace becomes an inevitable requirement to avoid range anxiety [2], which

is commonly associated with electric vehicles. Studies have shown that concentrated

PHEV loads on the US power grid can have large impacts on the load profile in that

region [3]. The increased power system load can potentially impact the reliability of

the power system when the grid operates near its maximum capability for extended

periods [4]. However, intelligent PHEV charging systems that predict these adverse

grid conditions can prevent these negative impacts by scheduling and dispatching

charging activity accordingly.

The following novel power monitoring and control system is proposed. The

PMCS shown in Figure 2 provides a central communication and control system for

2



the PHEV charging infrastructure, PHEV loads, and utility metering devices. It

provides an interface to the smart grid so that intelligent decisions can be reached

regarding the control of charging activity. The PMCS allows PHEV charging loads to

be intelligently scheduled so that charging activity during the peak demand periods

is reduced or eliminated when possible to minimize the electricity costs from a large

scale deployment of PHEVs.

FIGURE 2: Proposed network topology of PMCS for controlling charging activity.

A peak electrical demand prediction algorithm is included within the PMCS

design that will be used to determine the number of PHEVs that can charge during

the subsequent demand interval without the possibility of driving the demand level to

3



a new peak. Real-time data collection from the utility meters, PHEV battery systems,

charging stations, and other smart grid enabled devices will allow the system to make

intelligent decisions regarding how to manage charging loads. The overall design of

the PMCS can be subdivided into a number of elementary modules as shown in Figure

3.

FIGURE 3: 3 primary modules that form the PMCS.

The first module of the PMCS is responsible for real-time data collection from

a variety of sources. This module communicates with the customers utility meter

to collect energy and power data that is used by the forecasting algorithm. It also

communicates with the charging stations to determine energy usage and charging

status. Finally, it also communicates with the electric vehicles to determine State

Of Charge (SOC) and State Of Health (SOH) of the vehicles battery systems. Data

storage is provided by the data collection module for historical data trending that

is used to further refine the operation and performance of the PMCS throughout its

lifetime.
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One primary obstacle that must be overcome for this system to work properly

is the unpredictability of the consumers energy load profile and the associated demand

peaks. Electrical loads on a large micro-grid tend to be unpredictable and non-linear.

The second module of the PMCS provides peak prediction and forecasting which is

utilized to determine the number of EVs that are allowed to charge during the next 15

minute demand interval. The forecasting algorithm predicts these electrical demand

peaks in advance by processing historical data and current demand trending.

The third major module of the PMCS provides charging prioritization and

control. In the event that the forecasted number of vehicles allowed to charge in

the subsequent demand window is less than the number of vehicles connected, a

charging priority is determined and specific charging stations are temporarily disabled

or charging is slowed until the forecast allows for more vehicles to charge. Charging

priority is given to EVs with lower SOC over vehicles with higher SOC in an attempt

to create a fair and impartial charging environment. Figure 4 provides a summary

of the process flow followed by the PMCS. The charge scheduling and prioritization

module is shown on the right-hand side of the decision diagram and is enabled in

events where charger availability is less than the total number of electric vehicles

requiring charge.
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FIGURE 4: Decision diagram of PHEV demand management system.

Intelligent control of PHEV charging loads not only provides benefits to util-

ities due to reduced demand load but it also provides significant cost reductions to

the commercial or industrial electric consumer where the PHEV infrastructure is in-

stalled [1]. Currently, only a handful of states allow for the resale of electricity once it

has been sold by the electric utility to an electric consumer. This creates a problem

in many states, including the state of Kentucky, since the owner of PHEV charging

infrastructure in the state cannot bill users for electricity consumed during the charg-

ing process. The PMCS described here will significantly decrease electricity charges

by scheduling charging activity therefore limiting the disincentive to the adoption of

PHEV charging infrastructure. A detailed explanation of commercial and industrial

time of day billing structures will be presented in the background information section

of this dissertation to provide evidence as to the cost savings that are possible with

such a system.
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A. Dissertation Structure

This dissertation will begin by providing a detailed problem statement. After

discussing the purpose and importance of the study, a list of specific objectives will

be presented. These objectives will define the scope of the study and will provide the

outline of the work described within this dissertation. Following the presentation of

the project objectives, an in-depth review of prior art will be offered. The literature

review will present germane publications that address both studies that are directly

and indirectly related to the topics proposed here.

Next a detailed background of the problems associated with large deployments

PHEV charging infrastructure in commercial and industrial environments will be

presented. The background will better inform the reader about the issues at hand

and will establish the need for a solution. Further, background information will be

provided to enlighten the reader about PHEV charging stations, electricity demand,

demand response programs, and commercial time of day billing structures. Following

the background information, the research methods required to complete the objectives

listed will then be presented.

Finally the design and operating principles of the PMCS and associated hard-

ware will be documented and detailed thoroughly. This includes a study of various

control methods and algorithms considered, options regarding network topology, and

hardware developments required throughout the implementation process. The dis-

sertation will conclude by presenting data collected from the control system and will

provide evidence of cost savings and demand benefits achieved by the proposed design.
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B. Problem Statement

Electric vehicle charging for commercial or industrial electric ratepayers is not

scalable due to resultant increases in electricity demand peaks and associated commu-

nication costs, which will significantly increase the total cost of charging. Charging

activity coincident with demand peaks can result in even a small number of charging

stations impacting the monthly electrical demand peak therefore resulting in signifi-

cant increases in electrical costs. The increase in electric costs due to electric vehicle

charging activity in C&I environments results in a substantial disincentive to EV

adoption on a large scale.

Electric vehicle charging capabilities at the workplace, or in commercial or

industrial environments, is detrimental to the adoption of electric vehicles due to new

electrical demand peaks in the load profile and higher electric costs resulting from the

charging process. Increased demand peaks result in additional electrical costs which

directly affects fuel costs associated with ownership of an electric vehicle. A solution

is required to prevent this disincentive.

Table 1 demonstrates the costs associated with uncontrolled PHEV charging

for C&I time of day electric ratepayers. Equations used to calculate the charges listed

in the table are outlined in the background information section of this dissertation.

Table 1 suggests a vastly different impact on electric customers under residential

and C&I rate structures. In particular, C&I ratepayers could pay up to four or five

times the cost of charging at typical residential rates for an equivalent amount of

energy. These costs were calculated for both residential and C&I electric ratepayers
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TABLE 1

Calculated cost of uncontrolled charging activity based on 2014 LG&E electric rate struc-
tures [1].

Number of C&I Energy C&I Demand C&I Total Residential

EVs Cost Increase Cost Increase Cost Increase Cost Increase

1 $5.49 $50.14 $55.14 $12.38

10 $54.91 $501.35 $556.26 $123.78

100 $549.12 $5,013.50 $5,562.62 $1,237.85

1000 $5,491.20 $50,135.00 $55,626.20 $12,378.50

[1], although regulations against high energy consumption for residential ratepayers

normally prohibit such activity. The energy and peak demand cost increases were

calculated for various numbers of EVs introduced using a worst case scenario, where

EV charging is uncontrolled and the resultant increase in demand from EVs occurs

during the peak demand window. This figure is an estimate only and will vary for

specific communities with different rates and rate structures. However, it proves the

significant impact EV charging can have on C&I consumers. Approximately 90%

of the total electricity cost is due to the peak demand cost which creates a great

disincentive for large scale EV adoption [5][6]. A number of assumptions are made

when calculating the values represented in Table 1. These include that EVs require

average of 8kWh of charge per day and are charged during 21 working days per month.

In order to show the maximum impact, charging activity is coincident with peak in

demand profile.
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In addition to the extra cost of charging PHEVs due to time of day rate

structures, the added load during peak demand periods creates reliability issues for

the electric utility. Figure 5 shows the effects caused by the charging activity required

for 100 electric vehicles added to the University of Louisville electrical demand profile.

Resultant increases in demand are detrimental to the utility and the electric ratepayer.

The solution presented in this dissertation only addresses demand response for EV

charging to reduce peak demand charges and limit strain on the utility during peak

demand periods, but could also address grid instability as a beneficial indirect result.

FIGURE 5: Electrical demand profile measured at University of Louisville with 100

EV charging load added.

C. Research Scope and Objectives

The primary goal of this research and project is to demonstrate a novel power

monitoring and control system that provides demand response capabilities for elec-
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tric vehicle charging infrastructure in commercial time-of-day electricity markets. The

proposed system will benefit the electric utility and the electricity consumer by con-

trolling charging activity and eliminating the possibility of demand peak increases

that could result. This system will provide modular communication and control ca-

pability between the vehicles, the charging stations (EVSE), the utility meter, and

other upstream control systems or energy management systems including the “smart

grid”.

The underlying infrastructure provided by the proposed power monitoring and

control system will provide the base working platform needed for future technologies

such as Vehicle-to-Grid (V2G) charge sharing, grid storage, and peak load leveling.

This assumes the required technologies are developed and integrated into the electric

vehicles of the future. Considerations will be made in the design to account for the

integration of renewable sources to the system. A unique internet user interface will

be developed for web enabled smart phones or computers that will allow users to

customize charging options, view consumption data, and analyze driving patterns.

As part of this research, existing EVSE control systems and current demand

response programs will be examined and studied to determine the optimal control

strategy for the commercial time of day ratepayer, the EV owner, and the utility. A

detailed list of desired objectives is provided here.

� Develop a novel demand side management system for monitoring the peak de-

mand of commercial time-of-day electric ratepayers that cost effectively predicts

and controls electric vehicle charging during peak demand periods.
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� Establish optimal forecasting and control strategies to manage inelasticity of

EV charging while still providing least electric cost and best demand benefits.

Minimize forecasting error to prevent potential errors from driving electric costs.

� Formulate a prioritization algorithm by using vehicle state of charge for scenar-

ios where charging activity must be disabled.

� Propose an optimal scheduling algorithm for cases where the ratio of EVs re-

quiring charge to EVSE availability is greater than 1.0 (i.e. more vehicles than

charging infrastructure available).

� Minimize IT installation and operating costs associated with communications

and networking.

� Study and implement cyber security measures to protect the control system and

user information.

� Implement the designed power monitoring and control system developed in the

first objective at the University of Louisville.

� Collect and analyze energy consumption and electric cost savings data to eval-

uate performance of the system.

� Provide a user interface to provide supervisory power monitoring and control

of the PMCS and EVSE infrastructure.

� Deliver EVSE availability and location information to EV owners through the

user interface.
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� Provide system summary including utilization, costs, energy consumption and

charging behaviors to electric ratepayer (UofL).

� Alert users and system administrators when peak demand events occur and

charging is disabled.

The approach for achieving these objectives and PMCS design details are pro-

vided in chapters III through VI of this dissertation.

A hypothesis can now be formed regarding the expected behavior of the con-

trol system proposed. An accurate forecast of electrical demand with minimal (i.e.

less than 1%) error, along with an adequate scheduling algorithm, will allow for EV

charging activity to commence without driving electrical demand peaks and keeping

additional electric costs at a minimum. This results in acceptable electrical costs

therefore limiting the disincentive to EV adoption that is currently present for charg-

ing activity under commercial and industrial electric rate structures. This hypothesis

will be confirmed through proper design of the forecasting and control algorithms

required along with simulation and practical testing of the overall solution.

D. Purpose and Importance of Study

Concerns over Greenhouse Gas (GHG) emissions have slowly risen over the

past years as increasing numbers of vehicles are driven on roadways throughout the

world. Figure 6 shows a nearly 33% increase in GHG emissions for automobiles over

a 16 year span from 1990 to 2006. Auto makers have turned to alternatively fuelled

vehicles in an attempt to help appease these concerns regarding GHG emissions. The
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fastest growing market for alternatively fuelled vehicles is for plug-in hybrid electric

vehicles as these minimize tailpipe emissions and move the burden of GHG emissions

away from the automobile and towards electric generation facilities.

FIGURE 6: Greenhouse gas emissions by sector (1990 - 2006) [7].

Due to this recent inflow of plug-in electric vehicles to the US automobile mar-

ket, the need for public EV charging infrastructure has risen as well. The limited

electric range of PHEVs results in the need to charge the EV batteries away from

home. Researchers have recognized the problems associated with the additional elec-

tric load due to EV charging. The majority of these researchers focus on the global

aspects though and look at the impacts on the power grid as a whole. This work

focusses on a more localized problem that may be a limiting factor to the widespread

adoption of EVs. The cost of charging electric vehicles varies greatly depending on

where and when the charging activity takes place. This cost, and the overall effects

on the power grid, can be minimized by implementing an intelligent charging control

system.

This study aims at the successful development of a power monitoring and con-
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trol system that provides demand management of PHEV charging loads for commer-

cial and industrial time of day ratepayers. The United States Government has been

working to reduce greenhouse gas (GHG) emissions for the last 40 years. The most

recent goals aim at reducing these emissions by 60% to 80% of levels measured in 2005

by the end of 2050. The transportation sector has been the fastest growing source

of GHG emissions and accounts for nearly 27% of the total GHG emissions in the

United States [8]. The reduction of GHG emissions can only be realized if alternative

fueled vehicles become widely accepted. Figure 7 shows that for the transportation

sector alone, light duty vehicles account for nearly 63% of the total GHG emissions.

FIGURE 7: U.S. Transportation Greenhouse Gas Emissions by Source, 2006 [7].

Much to the delight of government policymakers, electric vehicles and hybrid

variants have gained popularity in the past years as acceptable options for limiting

GHG emissions. In a recent report by the US Department of Energy, workplace

charging capabilities have provided over 6.7 million kWh of electricity annually, which

saves more than 800,000 gallons of gasoline and 5.5 million pounds of GHG emissions

per year [9]. However, as the popularity of these vehicles continues to rise as shown in
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Figure 8, problems arise for electric utilities as the increased electric demand strains

an already overloaded US power grid. Intelligent management of charging activity

for these electric vehicles is required to prevent this negative impact.

FIGURE 8: Electrified vehicles sales by segment, world markets 2012-2020 [10].

Additionally, as the number of electric vehicles on the road increases, the need

for public charging infrastructure becomes a necessity in addition to residential EV

charging infrastructure already installed at the home. Installation of EVSE at the

workplace is necessary to overcome range anxiety and other range issues associated

with electrified vehicles. The cost of electricity can vary greatly due to demand charges

faced by commercial time of day ratepayers; therefore a control system to intelligently

schedule PHEV charging is needed to minimize costs. A properly designed control

system can also provide benefits to the electric utility by reducing peak demand and

minimizing the potential for grid overload emergencies.
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E. Design Method

The Power Monitoring and Control System (PMCS) described within operates

as an integrated system designed to provide demand management of electric vehicle

charging infrastructure for commercial time-of-day electric consumers. This system

prevents PHEV charging activity from driving the demand level for a given consumer

to a higher peak level. Using quantities that are easily measurable such as time of day,

present electrical demand, outside temperature, etc, an accurate demand forecast can

be developed from which control decisions can be based. Individual vehicle charging is

disabled or slowed when demand peaks are encountered. By restraining the charging

load, electricity demand from the utility is reduced and therefore cost of charging is

minimized for PHEV owners or EVSE providers.

Wireless communication bridges will be used to provide communication be-

tween the various system components including the vehicles, the charging infrastruc-

ture, the utility meter and other energy management systems including the smart

grid. ZigBee is the preferred wireless communication protocol due to its acceptance

in the smart grid industry for communication applications and low power consump-

tion. However, other communication protocols will be considered throughout the

design.

17



F. Review of Prior Art

The increasing popularity of electrified vehicles as alternatives to traditional

internal combustion engine powered vehicles has presented numerous issues across the

electric grid. Studies show that the grid can support a large number of these vehicles;

however, charging activity must take place at night or during off-peak hours to prevent

grid overloading issues [3]. Range anxiety is a true limiting factor to the widespread

roll out of PHEVs into the US vehicle fleet. Current battery technologies and vehicle

designs allow for limited range on a full charge. Drivers with longer daily commutes

may not have adequate range to complete all of their daily driving requirements

without charging throughout the day or during peak demand periods. Therefore, a

solution is required to intelligently control charging activity near and during peak

demand periods throughout the day. Such a system would provide benefits to both

the electric utility through reduced peak loads and to the electricity consumer by

reducing electric rates paid for a given quantity of energy consumption.

Existing control systems have been designed to limit a vehicles charging until

off-peak hours, however these systems assume charging activity occurs at the home

only [16]. Charging at the workplace or in the middle of a trip is sometimes inevitable

due to the driving range required. This poses a problem in that most businesses, fac-

tories, schools, and shopping centers are considered commercial electricity consumers

due to the quantity of their electric demand and therefore are billed for electricity

consumption on a time-of-day rate schedule. This variable cost of electricity creates

a non-scalable model for PHEV charging.
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This section reviews important and novel research and development that has

contributed to the field of demand management and electric vehicle charging. Rel-

evant literature was found from the following databases: IEEE Xplore, ISI Web of

Knowledge, Google Scholar, and Minerva Journal Finder. Search terms included per-

mutations and combinations of the following: electric vehicle (EV), PHEV, charge

control, demand, demand management, EVSE, charging station, demand forecast.

Additional literature was located by cross-reference. The prior art presented here

is split between studies that are directly and indirectly related to the topic of this

dissertation.

1. Studies Directly Related

There are a number of publications available in scholarly journals pertaining

to the control of electric vehicle charging to reduce demand on the electric grid that

are directly related to the work outlined in this research. All of these publications are

based on the fact that uncontrolled charging activity can lead to immense problems

with the electric power grid without proper supervisory control. The majority of

publications found focus strictly on time-of-day charging or dynamic pricing in de-

regulated energy markets while others focus on charging control based on renewable

energy availability. This section will detail studies that are directly related to the

research and design proposed in this dissertation. Directly related works of art are

subdivided into: time-of-day charge control, charge control based on variable energy

pricing, charge control to provide ancillary services, and algorithms and demand
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forecasting algorithms. The first three relate to this work as a whole and the latter

relates to a subsection of this work.

Time Shift or Time-of-Day

Table 2 provides a summary of prior art discovered that relates to simple

time shift or time-of-day charge control strategies. The earliest example of PHEV

charging control was presented by G.T. Heydt in 1983 [11]. Heydt recognized that by

shifting charging loads from peak times to off-peak times, the load factor of the power

grid is greatly improved. This control was based on a simple time of day strategy

that disabled charging during specific time periods. Analyses were performed on the

subsequent cost of energy and the potential health benefits provided to transformers.

The study concluded that with load management and the shifting of loads to off-peak

periods, the load factor can be improved and additions to grid infrastructure are not

needed. This is a valuable work in that it shows the importance of demand side

management of electric vehicle charging activity in order to reduce cost of electricity

per-unit and minimize potential effects on load factor and how that can affect the

distribution grid.

There is a long break in prior art from Heydt’s research to more recent research

that is most likely due to the lack of electrified vehicles in the automobile market dur-

ing that period. However with emerging concerns regarding greenhouse gas emissions,

air quality, and improved vehicle mileage, auto manufacturers have begun developing

new electric drive or plug in hybrid electric drive vehicles. With recent developments

such as the Chevrolet Volt [12], Nissan Leaf [13], Tesla [14], Toyota Prius [15] and
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others, more emphasis has been focused on the potential negative grid impacts that

EV charging demand can create. Other research has built upon Heydt’s studies by

further developing time shift strategies for PHEV charging [16], [17], [18], [19], [20].

FIGURE 9: Summer demand for Colorado utility with and without control [16].
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FIGURE 10: Winter demand for Colorado utility with and without control [16].

In a report by the National Renewable Energy Laboratory (NREL) [16], it is

noted that extra generation capacity is not required if all charging activity is shifted to

off-peak periods as shown in Figures 9 and 10. These plots show the resultant demand

for uncontrolled, delayed, and off-peak charging scenarios. Parks et al. (NREL)

examined the effects of EV charging activity on the electric utility, specifically a local

Colorado utility. The study concluded that the addition of uncontrolled EV charging

activity would result in the need for additional generation capacity, however controlled

charging would eliminate that need. EV charging activity would also affect emissions

from electricity generation due to the generation mix utilized at various periods of the

day. Finally, the cost of charging was examined based on the time-shift implemented.

Moving charging to off-peak periods resulted in cheaper generation costs due to the
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generation mix utilized by the utility at that time.

In another study by N. Saker et al. [17], the author realizes that most charging

activity occurs in three primary distributions. These are modeled as uniform distri-

butions in the morning, afternoon and evening. When added to the existing demand

profile of the electric grid, early evening charging creates a new demand peak. As a

solution, two different options are studied. The first is a simple time shift in charging

is enacted that simply shifts the charging load a fixed time period. This solution

lessens the impact on the peak grid demand but also has the possibility of creating

new local peaks in the demand profile. The second option proposed is to divide the

vehicles in each of the three distributions (morning, afternoon, and evening) into

three equal subgroups each. This “three steps charging” method shifts a portion of

each charging distribution by +/- a standard deviation to help smooth the additional

load profile. Figure 11 shows the results of the time shift and three steps charging

control methods studied.

FIGURE 11: Simulation results showing time shift and three steps charging control

methods [17].
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T. Lyon et al. [18] point out that significant reductions in electrical costs can

be realized though time shifting EV charging activity as well. These costs are only

a small percentage of total electric costs though, which vary from market to market.

The implementation of time-of-use pricing is also studied. However, the savings

are outweighed by the cost of the smart grid infrastructure required for controlling

charging activity and providing the information required to implement time-of-use

rates.

In residential cases, it is easy to shift EV charging demand since the vehicle

is parked the majority of the time and is often plugged in throughout the entire off-

peak period. The majority of studies enacting a time-shift control method for EV

charging assume the residential scenario where the vehicle is parked at the charger for

extended periods of time. Figure 12 shows another example of the possible benefits of

using a time-shift for scheduling PHEV charging activity. From the multiple studies

discovered, time shifting is the simplest and most inexpensive demand response solu-

tion. Benefits of such a control scheme include better utilization of energy generation

and the reduction in need for additional peak capacity at generation plants. Grid

disturbances, such as voltage sags or frequency deviations, can also be minimized

by enacting time-based charging controllers [20]. In residential scenarios where all

charging occurs at the home and daily driving patterns can be completed without

the need to recharge during the day, time shifting is an acceptable control method to

minimize grid impacts. However, there are disadvantages to such a simple solution.

Time shifting of charging activity to off-peak periods is not always a viable option due

to electric vehicle range and charging throughout the day is inevitable. Additionally,
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shifting charging activity can also affect greenhouse gas emissions due to differing

generation mixes at various periods during the day.

FIGURE 12: Example of time shifting PHEV charging loads to off-peak hours [19].
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Variable Pricing in De-regulated Markets

In an attempt to solve the problems associated with simple time shifting con-

trol of PHEV charging, more recent studies have used dynamic energy pricing to

optimize charging patterns [21], [22], [23], [24], [25], [26], [27], [28]. Table 3 provides

a summary of prior art discovered relating to EV charge control strategies based on

variable pricing signals. In de-regulated energy markets, dynamic pricing can be used

to account for fluctuations in electrical demand and generation capacity. These fluctu-

ations include: peaks when generation capacity is near exhaustion, lack of generation

capacity, and excess generation during low demand periods. Typically, pricing signals

are used either in real-time to make control decisions on the spot, or pricing signals

are used to predict future energy costs to help with scheduling charging activity and

energy consumption. Figure 13 shows how price-based and incentive-based demand

response fit in for various time scales utilized by forecasting and control systems.
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FIGURE 13: Commitment and dispatch timescales and the role of PHEVs for DR

[23].

In most works published in this area, pricing signals are used directly in real-

time to affect charging behavior. M. Galus, et al. proposes a multi-agent based

approach to controlling EV charging [21]. Dynamic pricing structures are incorpo-

rated to reduce EV charging demand during peak periods. Pricing signals are sent

to the energy hub and made available to the EV owner. A personal value factor

is utilized to allow the EV owner to specify how much they are willing to pay for

electricity. Similarly, in work performed by Z. Fan, et al., variable pricing techniques

are adapted from congestion pricing in internet traffic control [28]. Figure 14 shows

the variable pricing structure used. The more energy that is consumed, the higher
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the rate or total energy cost that is paid, which is similar to internet congestion

pricing. This research assumes that each EV owner generates a willingness to pay

(WTP) parameter. This value represents the max rate the user is willing to pay for

electricity consumption. Charging time slots are then scheduled and charging rates

are modified based on dynamic pricing signals and the WTP parameter specified by

the EV owner. The system operates by allowing those that are willing to pay more

to consume more energy. In effect, the work by Z. Fan is attempting to move the

burden of load leveling and shaping away from the utility and towards the energy

consumer. A corollary exists between the WTP parameter proposed by Z. Fan and

the PMCS outlined in this work. Instead of the EV owner providing a WTP param-

eter and allowing the charging process to proceed until electric costs reach the WTP

value, the PMCS strives to lower the cost of electricity at all times so that a WTP

parameter is not required. In effect, the PMCS attempts to keep its operating point

near the origin of the plot show in Figure 14.
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FIGURE 14: Variable pricing structure utilized by Z. Fan, et al [28].

Other research has used dynamic pricing signals as a direct input into a control

system. This input signal is utilized in optimization routines to minimize cost and

maximize charge activity. By taking the human factor out of the control system, the

power grid benefits from reduced peak demand and the electricity consumer benefits

from cheaper energy costs. In works by M. Rastegar, et al. [25] and P. Sanchez-

Martin, et al. [27], the variable pricing signals are utilized in this manner. In both

cases, primary cost savings are obtained from shifting charging activity from peak

to valley price periods. This is similar to time-of-day shifting but the control and

optimization algorithms rely on cost rather than time since they may not always be

related.

In works by P. Finn, et al. [26] and N. Rotering, et al. [22], dynamic pricing

signals are used in forecasting algorithms to provide spot market or day ahead pricing

for electricity consumption. These works are beneficial in that future charging can
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be dispatched accordingly to the forecast provided. P. Finn utilizes an optimization

algorithm similar to Rastegar and Sanchez-Martin. The results of this study can be

seen in Figure 15.

FIGURE 15: EV load profile pre and post price optimization [26].

Some research has used simple dynamic pricing signals to try to alter EV

owner behavior for charging directly to achieve beneficial load shaping [24]. In these

scenarios, the EV owner is prompted with a given cost prior to beginning a charge. It

is then up to the customer to decide if it is economically worthwhile to charge at that

time. Again, this scenario is useful for residential charging, but not for commercial

charging locations where overall demand is important. By simply displaying the

instantaneous cost at the start of the charge, fluctuations in price can create large

costs in the middle of a charge cycle, especially if the charging activity takes place

during the workday which coincides with peak demand periods. Also, there is no

benefit to the demand level as some EV owners may choose to charge at any time.
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FIGURE 16: Communication infrastructure required between utility and EV owner

[21].

FIGURE 17: Home Energy Managers (HEM) utilized in residential cases to receive

pricing information [28].

34



The results of variable pricing based control methods are very promising; how-

ever, there are still some disadvantages to such a strategy. One primary disadvantage

is the cost required to implement real-time pricing signals from the utility to the

consumer. Implementation would require mass installations of Advanced Metering

Infrastructure (AMI) and large communications networks. This cost is not feasible

when compared to the cost savings to the utility and consumer. Figures 16 & 17

show the type of infrastructure required. Figure 16 pertains more to a commercial

charging location in a city. Since charging stations are typically distributed over a

wide geographical area and do not tend to concentrate in one location within a city,

it is easy to see how the cost of implementing this infrastructure could grow exponen-

tially. On the other hand, Figure 17 shows the infrastructure required in a residential

scenario. The Home Energy Manager (HEM) is used to send demand signals to the

utility and receive dynamic pricing signals to base control decisions on. One example

of this type of technology is General Electric’s Nucleus. Nucleus gathers energy use

information from appliances and meters located throughout the home and provides

the information needed to help reduce energy consumption or encourage the consumer

to change their behaviors [29].

Ancillary Services

In addition to control algorithms and strategies to reduce demand and costs

related with PHEV charging, there are control strategies that have been developed to

provide ancillary services to the grid. A summary of prior art discovered relating to

EV charge control for providing ancillary services is listed in Table 4. These include
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demand profile smoothing or balancing [30], [31], [20], frequency and voltage control

of the grid [32], and integration of renewable energy sources [33]. These control strate-

gies focus only on the behavior of the utility grid and any cost benefits or drawbacks

are secondary. Grid frequency and voltage levels are highly dependent on the relation

between generation capacity and energy demand. Excess generation or low demand

levels can cause both frequency and voltage levels to increase. Conversely, high de-

mand or low generation capacity create voltage sags and low frequency situations

[34]. Figure 18 represents this relationship.

FIGURE 18: Relationship between supply, demand, and grid frequency [34].

Due to the size of PHEV charging loads, these loads can be dispatched to help

with the control process of managing frequency and voltage levels. By limiting or

increasing PHEV energy demand, frequency and voltage levels in specific grid regions

can be more accurately controlled [32]. Figure 19 represents the simulation results

from a demonstration where a single PHEV battery load was used to control voltage
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and frequency on a subsection of a power grid. There was a high level of control

demonstrated; however this control method may not be preferable due to driving

patterns of some PHEVs.

FIGURE 19: Simulation results showing frequency and voltage regulation by control-

ling PHEV charging [32].

Since renewable sources of electricity are often intermittent and depend on

weather patterns, PHEV loads can be utilized to better utilize the renewable gen-

eration capacity [33]. The battery storage provided by PHEVs is a large capital

investment and since PHEVs are parked the majority of the time, it is beneficial for

the grid to use these as energy storage for renewable sources. Control strategies such

as these for PHEV charging only benefit the utility and are not beneficial for com-

mercial PHEV charging systems. In addition, current plug-in hybrid electric vehicles

do not support this technology.
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Other sources note that by incorporating Direct Load Control (DLC) at the

EV charging level, the residual electrical demand profile can be smoothed or leveled.

In Figure 20, A. Nebel shows that EV charging and discharging activity can be

incorporated into the utility grid to help smooth the demand profile [31]. Again, this

control strategy assumes that technologies enabling vehicle to grid and energy storage

are available in plug-in hybrid electric vehicles. Similarly in Figure 21, K. Mets shows

the smoothing effect that controlling EV charging can have for a case where there is

30% EV penetration.

FIGURE 20: Simulation results showing demand profile smoothing by controlling

PHEV charging and utilizing vehicle to grid capability [31].
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FIGURE 21: Demand profile smoothing for 30% EV penetration [30].

In summary, there are many control strategies introduced in the literature re-

viewed here. The majority of control scenarios focus on simple time of day charge

scheduling or more advanced real time pricing strategies. Others focus on ancillary

services such as load leveling or smoothing, frequency and voltage control, or renew-

able energy source integration. Each strategy has its own benefits and disadvantages.

The work in this dissertation looks to combine the benefits of several of the works

listed here to provide demand side management of EV charging activity for Commer-

cial & Industrial electric ratepayers.
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Demand Forecasting Algorithms

The PMCS described and designed within this work relies heavily on the fore-

casting of electricity demand profiles for scheduling PHEV charging activity. There-

fore, a literature review was also performed on various forecasting algorithms currently

utilized for forecasting electrical demand. Utilities use such algorithms for dispatch-

ing generation capacity due to the time it takes for some generation sources to come

on-line. Bulk generation of electricity typically utilizes coal fired or nuclear steam

turbines which produce cheaper electricity but take longer to start up and shut down.

Peaking plants are utilized by electric utilities to account for transient fluctuations in

electrical demand. Peaking plants are typically natural gas fired and can be started

or shut down much quicker but do cost more to operate. Since the cost of electricity

varies with generation mix and demand, accurate forecasts are extremely important

due to the size of PHEV charging loads and the potential impact they can have during

peak demand periods. Demand forecasting is a fairly mature field in that there are

several companies and utilities that use or sell this information to dispatch generation

capabilities.

Most demand forecasting algorithms fall into one of two categories: statistical

methods and artificial intelligence based methods. Both categories could be used for

predicting demand levels and profiles as required by this research. Statistical methods

forecast current or peak loads by using previous load values in combination with a

variety of exogenous variables such as weather, holidays, or other variables. Exam-

ples include similar-day, regression and time series methods. Artificial Intelligence
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(AI) based forecasting techniques classify input data and associate it with respective

forecasts and do not make use of the specific relations utilized in statistical methods.

Examples of AI forecasting methods include neural networks and fuzzy logic. This

study will examine the results of both statistical and artificial intelligence forecasting

techniques.

Traditional statistical models such as auto regressive, moving average, auto re-

gressive moving average, auto regressive integrated moving average, linear regression

and regression tree analysis have been proven to result in accurate forecasts. How-

ever there are a number of newer statistical models that have been developed and

refined over the past few decades. These include adaptive grey-based approaches [35],

and exponential smoothing approaches [36]. Mean Absolute Percent Error (MAPE)

values of between 0.5% and 8% can be achieved depending on the forecasting algo-

rithm chosen. In [36] Taylor demonstrated that exponential smoothing algorithms

can achieve excellent MAPE values of less that 1% for short term demand forecasts

which can be seen in Figure 22.
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FIGURE 22: MAPE of various forecasting algorithms simulated [36].

Artificial Neural Networks (ANNs) are another popular method of forecast-

ing linear time series such as energy demand profiles [37], [38], [39]. ANNs produce

excellent results with minimal MAPE and can use a number of various input quanti-

ties. Due to strong correlations between temperature, dew point and electric demand,

ANNs commonly use easily measurable quantities such as temperature to predict de-

mand. Neural network prediction models can achieve great MAPE values in the range

of 0.5% to 1%. However, a big disadvantage of ANNs is the need for large databases of

training data for developing the network. Additionally, the time required for training

neural networks can become significantly long in order to achieve lower MAPE.
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Linear time series forecasting algorithms are of great importance in this study.

There are numerous works in scholarly journals detailing specific forecasting algo-

rithms, and the few listed in this review are only representative of the many available.

Several algorithms will be studied to determine the best algorithm to use in this work.

2. Studies Indirectly Related

In addition to the works regarding PHEV charge control and demand forecast-

ing algorithms, there are other studies that are of great importance to this research.

Demand response programs have been developed and used throughout the United

States recently to control peak demand and prevent the need for new generation

facilities. This section will detail demand side management programs and will high-

light their importance as related to this research. The PHEV control system designed

and developed through this research should provide capability for integration with

demand response programs from the local utility.

Demand Side Management (DSM) or Demand Response (DR) is the process of

promoting energy consumers to use less energy during peak demand periods through

education programs and financial incentives. Overall reduction of energy consumption

is possible but is not usually the case for DSM programs. Instead, DSM and DR

programs often promote consumers to shift demand to off-peak periods. DSM and DR

programs have numerous benefits to both the energy consumer and the utility. Various

forms of DR are detailed in Figure 23(a) while Figure 23(b) details the numerous

benefits of incorporating such programs.
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FIGURE 23: (a) Various types of demand response programs. (b) Benefits of DR

programs [40].

Through research by the Central Research Institute of Electric Power Industry

in Japan [41], the market potential of DR programs is studied. This study uses a DR

program developed by Tokyo Electric Power Company that controls lighting and air

conditioning loads for selected office buildings during peak demand periods. The DR

program did produce favorable results by limiting commercial electric consumption

by 4.7%. However, through surveys with the electric consumers included in the DR

program, workers comfort and their subjective working efficiency were affected. This

study proves that DR programs must be properly designed, so that peak demand

savings for the utility remain beneficial without creating significant negative effects

for the DR participants.
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The primary benefit from most DR programs is derived from the peak clipping

of demand profiles provided during peak demand periods. Other benefits include

economic benefits to the utility and the electric consumer, and reliability / stability of

the utility grid [42]. A DR program enacted by Louisville Gas and Electric Company

(LG&E) [52] has proven all of these benefits. This program uses direct load control

switches installed on air conditioning systems, pool pumps, and water heaters to

manage demand during summer months. With approximately 25% of all LG&E

customers participating in this program, peak savings of 169MW were obtained in

July 2011. In addition to the demand benefits provided, economic and environmental

benefits are also realized through the prevention of constructing new generation assets

that otherwise would be required.

DR programs are extremely beneficial for the electric utility. An ideal PHEV

charging control system will integrate DR capability to prevent negative effects from

EV charging activity. Numerous scholarly studies are available concerning the success

of DR programs; however the consensus between the studies is that DR programs are

extremely beneficial and cost effective as long as they are properly managed.

G. Justification of Novelty

The potential for peak electrical demand issues arises for electric utilities due to

the growing market for PHEVs. Compounding the issue is the fact that the majority

of PHEVs in the vehicle market today have limited all-electric range which often

requires charging during the day at places other than at home. Charging demand
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not only affects utilities due to the extra generation required during peak demand

periods, but it also affects the electric ratepayer with increased electric costs that

vary with time-of-use. Demand response programs aim to limit electricity demand

during peak demand windows therefore preventing those negative effects.

The majority of demand response programs are aimed at residential demand.

However with commercial billing structures that include peak demand charges or

time-of-day electric rates, demand response programs can be of great benefit to com-

mercial electric consumers as well. Additionally, demand response programs are com-

monly controlled by the utility and require additional communication infrastructure

between the customer and the utility. The PHEV charge control system developed

here provides the benefits of demand response to both the utility and the electric con-

sumer without the need of additional communication infrastructure. An autonomous

control system can make intelligent decisions regarding when to charge PHEVs by

predicting when demand peaks will occur.

As PHEVs become more popular due to the potential for greenhouse gas emis-

sion reductions and fuel savings, scholarly articles have proposed several control al-

gorithms for limiting the negative impacts that increased electricity demand could

induce. These control schemes primarily focus on time-of-day charge control where

PHEV loads are simply shifted to off-peak periods or on variable energy pricing in

de-regulated energy markets that are used to optimize charge times. Time-of-day

charging is simple; however it creates problems for EV owners that require charg-

ing during the day due to limited electric range. Dynamic pricing schemes require

additional communication infrastructure and capital costs of implementation usually
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outweigh the potential savings. Another issue with dynamic pricing is that pricing

structures are normally determined in a day-ahead fashion. Therefore, the potential

exists for pricing not to match generation capacity and demand. No control algo-

rithms discussed in the literature reviewed considered directly monitoring electricity

demand and controlling charging based on short term demand forecasts as proposed

by the work included here. This has the potential to provide the best benefits for

both the utility and the electric consumer.

The number of PHEVs allowed to charge at any instant can be determined with

accurate demand forecasts so that charging activity will not drive peak demand higher

or create new peaks. Additionally, by adding communication between the control

system and the vehicle, state of charge can be utilized as a determining factor when

some charging must be halted or prioritized. Battery system health can be optimized

by intelligently scheduling charging based on departure times and battery state of

charge. Local (end user) demand management systems can provide accurate control

of PHEV charging while still providing benefits to both the utility and the electric

consumer. Local demand management will not require large financial investments in

communication infrastructure or remotely managed direct load control switches.
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CHAPTER II

BACKGROUND INFORMATION

The popularity of alternative fueled vehicles will rise as prices continue to

increase for petroleum based gasoline. Electric Vehicles (EVs) such as the Nissan

Leaf [13] or Plug-In Hybrid Vehicles (PHEVs) such as the Chevrolet Volt [12] have

become an acceptable alternative to traditional Internal Combustion Engine (ICE)

based vehicles. The popularity of these electric drivetrain vehicles can be attributed

to the significant cost savings in fuel over traditional ICE powered vehicles. Instead

of obtaining energy from the combustion of gasoline, EVs and PHEVs obtain their

motive force from chemical energy stored in a battery. The energy required by these

battery systems during the re-charging process is commonly obtained from the utility

power grid therefore creating a new list of potential issues. The extra electrical

demand due to EV charging adds to an already overloaded grid. However, added

load is not necessarily detrimental to the growing adoption rate of PHEVs. This

additional electrical demand can be detrimental if this load coincides with peaks

in the demand profile which may or may not be the case depending on where and

when the charging activity takes place. Additionally, significant electric cost increases

can be incurred due to the rate structure commonly followed by commercial entities

such as schools, shopping centers, and businesses that provide daytime EV charging

capabilities. This section will provide valuable background information regarding
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the types of EV charging infrastructure, electrical demand and energy consumption,

typical demand response programs, and electric billing structures that may be affected

by EV charging activity.

A. Electric Vehicle Charging Infrastructure

Charging infrastructure was developed alongside the development of PHEVs

to create a user friendly and safe method of re-charging vehicles. Charging stations,

or Electric Vehicle Service Equipment (EVSE) as they are commonly called, come in

numerous types and can be obtained relatively easy. Figure 24 shows a few of the

various types of EVSE that are available today.

FIGURE 24: Representation of various charging stations available today [43].

Charging stations can be classified into one of three major types. Level I

chargers are the most common and also the most inexpensive. These commonly run

off of single phase 120 VAC supply and charge at rates of 1.2kW to 2kW which will

provide a full charge to a depleted vehicle in 10-20 hours, dependent on the size

of the vehicle’s battery. Level I capable vehicles do not always require dedicated
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EVSE, some charge through a NEMA 5-15R outlet and can do so using a standard

electrical extension cord. Level 1 EVSE are typically portable and used in the case

of an emergency when faster charging capability is not available. Level II and III

capable vehicles require dedicated EVSE per the national electric code for safety.

Some manufacturers offer level II charging stations for residential use [44], however

most level II stations are found at public charging locations. Many locations such

as malls, public parking garages, and shopping centers install level II stations for

customer use [45]. Level II stations are typically supplied by 208-240 VAC and obtain

charge rates of 2kW to 15kW. A depleted EV can be charged in approximately 4 to

8 hours depending on battery size. Level II EVSE units and some Level I units use

the SAE j1772 connector standard instead of the NEMA 5-15R connector for safety

[46]. In both Level I and Level II EVSE, the AC voltage is passed directly to the

vehicle’s on-board battery charger which then converts the voltage to DC. Level III

charging stations are much less common and are still under development. These

EVSE use greater amounts of power and current to bypass the vehicles on-board

charger with a fast and reliable DC charge in minutes instead of hours. Level III

DC charging is ideal for public charging infrastructure. Typical applications include

charging large vehicles with big batteries such as buses and commercial or service

fleets with very little recharging downtime. Level III chargers commonly provide 400

to 600 VDC charging levels and use a different connector standard than level I and

II chargers [47]. Figure 25 shows the relationship between EV charger levels/types,

typical locations, charge times and relative cost. Additionally, Table 5 provides a

summary of charging station types.
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FIGURE 25: Charging pyramid showing relationship of EV charger levels.

As shown in Table 5, there are three basic types of charging stations. A

problem arises with charging infrastructure in that there are few standards set in place

to regulate the design and operation of these critical pieces of equipment. Individual

manufacturers often offer proprietary control systems and software for monitoring

usage, but due to the lack of standards none of these systems communicate with each

other or the smart grid as a whole. This creates difficulty in developing a control

system that can be implemented to monitor and regulate charging activity.
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TABLE 5

Summary of EVSE charging levels [47].

Charging Power Connector Information

Level Delivered (kW) Standard

1 (I) 1.2 to 2.0 NEMA 5-15R

or SAE j1772

Requires 10 to 20 hours to charge ve-

hicle depending on vehicle and bat-

tery type. No special electric infras-

tructure required.

2 (II) 2.8 to 15 SAE j1772 Charges vehicle in 4 to 8 hours based

on battery type and capacity. Re-

quires special EVSE to provide iso-

lation, protection and safety.

3 (III) >15 CHAdeMO &

others under

development

Provides up to 80% charge in 30

minutes. Requires 3 phase 480 VAC

service and charges at DC voltages

rather than AC.
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B. Electricity Demand and Energy Consumption

In order to understand the effects that EVSE have on the utility grid, it is

first necessary to understand the basics of electricity demand. For simplicity, this de-

scription will assume that the voltages and currents measured are balanced between

3 phases. Power can be classified into one of three types: real or true power (P)

measured in Watts, reactive power (Q) measured in VARs and complex or apparent

power (S) measured in VA. The impedance phase angle (θp) between the voltage and

current waveforms determines the magnitude of the three types of power. Capaci-

tive loads are represented by negative impedance phase angles and negative reactive

power; whereas inductive loads are represented with positive phase angles and positive

reactive power values. Figure 26 represents the relation between the three measures

of power through the power triangle.

FIGURE 26: The power triangle relates true, apparent, and reactive power [48].
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P = 3|Vp||Ip| cos(θp) (1)

Power factor is a common measurement used to determine the value of the

total impedance angle for a given load. The power factor is a value between 0 and 1

and is calculated by evaluating the cosine of the impedance phase angle. Power factors

approaching or equivalent to 1 are preferred, representing equivalent apparent power

and true power. Apparent and reactive power can be easily determined from true

power through simple trigonometric functions. True power is commonly measured

for balanced three phase systems using Equation (1).

In power systems, there are two common measurements used to determine how

much energy is consumed. Energy consumption is commonly measured in kilowatt-

hours (kWh) and represents total energy consumed over a given time period. Sim-

ilarly, energy demand is commonly measured in kW (real power) or kVA (apparent

power) and represents the instantaneous energy consumed at any 1 point in time.

For example, a 1kW electric motor with a power factor of 0.85 consumes 1kW or

1.176 kVA of instantaneous demand. If this motor runs for 2 hours, the total energy

consumption is equivalent to 2 kWh (1 kW * 2 hours = 2 kWh) [49].

Electricity demand varies throughout the day for most utility loads. This

variance is primarily due to heating or cooling energy consumption and lifestyles of

electricity consumers. The variance of electricity demand poses a serious problem

for utilities since generation capacity must closely follow demand levels to prevent

detrimental variations in voltage levels and frequency on the grid. Ideally utilities
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would prefer system loads to be flat with minor changes, however since it is not,

utilities must dispatch reserve generation capacity to account for the difference. These

peaking generation facilities can be online within a few minutes where the base load

generation takes hours to shut down and start up. High demand peaks and low

demand valleys determine the size of peaking plants required. Figure 27 represents

the daily demand for the University of Louisville Belknap Campus. The demand

profile shown is for a typical Sunday and Monday in August where average demand

is higher due to cooling loads. Energy consumption (in kWh) could be calculated

by integrating the area beneath the demand curve in Figure 27 while also taking the

power factor into account.

FIGURE 27: University of Louisville Belknap Campus kVA demand measured in

August 2010 by Louisville Gas & Electric [50].
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C. Demand Response

Understanding electric demand is important when related to PHEVs because

of the size of the added load of charging activity. PHEV charging activity during

the day (late morning to early afternoon) directly coincides with the demand peaks

of existing loads as shown in Figure 27. This increase in load results in generation

capacity problems for utilities that must be overcome to keep the grid operating at

nominal voltages and frequencies. Due to the inelasticity of electricity demand, elec-

tric consumers will not willingly change usage patterns based on supply and demand

only. If financial incentives are provided for less energy usage, consumers are more

likely to change electricity usage habits.

FIGURE 28: Exponential behavior of electricity prices [51].

As electricity demand increases, large increases in cost result. Figure 28 shows

that a slight reduction in electrical demand can result in significant cost savings by

the consumer [51]. Demand response is a method of reducing energy demand by pro-
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viding financial incentives to the consumer with the purpose of promoting less energy

consumption. Demand response programs are commonly implemented by utilities

when wholesale market prices are high for electricity or during times when high de-

mand levels jeopardize electric system reliability [40]. There are numerous benefits to

demand response programs with the most important benefit being improved resource

efficiency of electricity generation. Other benefits include: financial benefits for the

program participant (or electricity consumer), market-wide financial benefits such as

lower wholesale market prices, and reliability benefits such as outage reductions and

increased operational security of the utility grid [51].

Implementation of demand response programs in the United States is lim-

ited due to capital costs associated with the installation and management of such

systems. Despite the costs, Louisville Gas and Electric (LG&E) Company has imple-

mented a demand response program in Louisville, Kentucky. This program provides

demand response through direct-load control switches installed on air conditioners,

water heaters and swimming pool pumps. These switches can be remotely operated

by the utility during peak demand periods to reduce peak demand. Approximately

25% of LG&E customers currently participate in this program resulting in peak re-

ductions of up to 169MW. By participating, customers receive fixed bill credits during

the months of June to September when demand is the highest [52].

The control system described in this dissertation provides demand response

capabilities by limiting increased demand due to PHEV charging activity. This is

achieved by intelligently scheduling charging activity so that this activity does not

correspond with peak demand periods. Instead of direct financial incentives such as
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bill credits or reduced electric rates, this control system will reduce peak demand

charges incurred by the owner of the EVSE. Forward-thinking college campuses,

shopping centers, malls, and other commercial electricity consumers with multiple

charging stations could achieve great financial benefits from such a system.

D. Electric Rates and Billing Structures

Due to differing amounts of electric power consumed, billing structures com-

monly differ between residential or basic electric service consumers and commercial

or industrial consumers. Since commercial and industrial consumers utilize approx-

imately 61% of the energy produced according to Figure 29, utilities commonly bill

for both energy usage and electric demand.

FIGURE 29: Electricity usage by major consuming sectors (2010) [53].

In view of the rapidly growing market for EVs, some municipalities and electric

utilities in the US have developed distinct billing structures for EV infrastructure and

associated electrical demand [54], [55]. However some state, city, or local regulatory

commissions do not allow these special rate structures. This raises concern because
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the charging infrastructure location, i.e. business or residential, factors heavily into

the electrical cost per unit of energy consumed due to excessive differences in electrical

rate structures when compared to traditional EV charging models.

FIGURE 30: Typical summer demand rate structure and windows [1].

In the US, residential electricity ratepayers commonly pay for electricity based

on energy consumption only through an energy charge per kilowatt-hour of energy

consumed ($/kWh). This rate normally is fixed and does not vary throughout the

day. For example, in regions of the United States where coal is the primary source of

electrical generation such as Kentucky, these residential rates average around $0.07

to $0.10 per kWh consumed [1]. On the other hand, the emergence of smart grid

technologies have stimulated the development of adaptive rate structures [56], [57].

In contrast, Commercial and Industrial (C&I) electric ratepayers, or other

large electric consumers which constitute the majority of businesses, shopping cen-

ters, academic campuses and manufacturing facilities, generally pay for electricity
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consumption based not only on total energy consumed, but also on peak electric

demand measurements. C&I rate structures typically consist of an energy charge

component that is similar to the residential charge, but much lower. For example, in

Kentucky, C&I rates for energy consumption range between $0.03 and $0.04 per kWh.

However the additional demand charge which is based on the peak electrical demand

measured for given intervals throughout the day is quite significant. In Kentucky,

these demand rates for C&I electric ratepayers range between $11.00 and $14.00 per

kVA of instantaneous demand [1]. Typically the total monthly demand charge and

total energy charge each account for approximately 50% of the total electricity bill

for large energy consumers. Equations (2) & (3) represent the monthly electric rate

structures for residential and C&I ratepayers, respectively, in Kentucky. Constants

C0 and C1 represent energy cost coefficients and CP , CM , and CB represent demand

cost coefficients for peak, intermediate, and base periods as illustrated in Figure 30

[4]. Further, CP is typically higher than CM and much higher than CB. For example,

in parts of Kentucky these rates are CP=$5.70, CM=$4.00, and CB=$3.85 [1]. xt and

yt represent total energy consumption (in kWh) and total electrical demand (in kW

or kVA), respectively.

Residential Cost = C0

31∑
t=1

xt (2)

C&I Cost = C1

31∑
t=1

xt + CP ∗ max
1≤t≤31

{yPeak
t }

+ CM ∗ max
1≤t≤31

{yMid
t }+ CB ∗ max

1≤t≤31
{yBase

t }

(3)
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In addition, due to the high electric consumption rates of C&I electric ratepay-

ers, there is typically a clause in the billing structure that imposes a minimum de-

mand charge based on a percentage of the highest electric demand for the previous

11 months. This billing clause is included in most billing structures to prohibit or

discourage customers that have high energy consumption for a short period of time

during the year, and low energy consumption the rest of the time. An example of this

type of electric consumer could be a football stadium that only consumes electricity

during the football season but is dormant the rest of the year. In the case where

the minimum charge is encountered, the availability of EV chargers would be higher

than forecasted since additional load would not drive the demand cost for the electric

ratepayer. In order to account for this, the power monitoring and control system

outlined in this dissertation assumes a worst-case scenario where this minimum is

never hit.

Billing structures for commercial and industrial time of day ratepayers create

a disincentive towards the use of electricity during peak demand periods by increasing

the total cost (energy + demand) of electricity during those periods. Most electric

loads, such as heating and cooling or lighting loads, are inelastic and will not change

due to the increased cost. However, commodity loads that may not be necessary can

be changed or re-scheduled so that they do not coincide with peak demand windows.

PHEV charging may not be considered a commodity load since electric vehicles

require electric charge in order for the driver to safely make it to their destination.

On the other hand, with newer and faster charging technologies such as level II or

III EVSE, charge times are greatly reduced for PHEVs. These charge cycles can be
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postponed or re-scheduled so that the resultant load is not coincident with the peak

demand for the day.

63



CHAPTER III

RESEARCH METHODS

The current charging station model accepted today for residential electricity

consumers is not scalable for commercial time of day electricity ratepayers that pay

a peak demand fee as part of their electricity costs. The increase in electric costs

due to electric vehicle charging activity in C&I environments results in a significant

disincentive to EV adoption for these facilities. Additionally, the potential peak

demand introduced by PHEV charging can create significant issues affecting grid

stability including lack of generation capacity and frequency or voltage deviations.

A solution is required that provides demand response for EV charging to reduce

peak demand charges. This solution must take into account that charging activity is

inelastic and most EV owners are unwilling to change charging activity.

A modular PHEV charge control system will be developed to provide demand

management of PHEV charging loads and that will decrease costs incurred by the

commercial electric ratepayer. This system will be implemented at the charging sta-

tion location to prevent expensive communications infrastructure between the EVSE

and the utility.

Several linear time series forecasting algorithms will be studied to determine

the optimum for predicting the demand profile of the end user. The selected fore-

casting algorithm will be implemented into the control strategy and will be analyzed
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based on performance and peak demand savings. The analysis of cost savings will

be utilized to determine the feasibility and payback of implementing such a control

system.

Educating the EV owner about performance of the control system is extremely

important. A user interface will be developed to provide a summary of system perfor-

mance to EVSE users and charging providers. Due to the potential for security risks

when user interfaces are created, the entire system will be analyzed for cyber security

risks. Appropriate security protocols will be implemented to avoid any possible risks.

A. Instrumentation and Equipment Utilized for Study

The University of Louisville has 6 GE DuraStation Level 2 charging stations

installed that will be utilized for this study [44]. The proposed control system will

be implemented using these stations and wireless communication bridges will be de-

veloped for communication between nodes. The charging infrastructure is shown in

figure 31. In addition to the GE charging stations, an interface for the utility meters

on campus shown in Figure 32 will be developed for monitoring demand and energy

consumption. Finally, the Siemens energy management system currently installed

on the Belknap campus will be incorporated into the design to allow for monitoring

and supervisory control of charging activity. Instrumentation located in the wire-

less design lab will be utilized when necessary for testing purposes. No other special

instrumentation will be required.
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FIGURE 31: GE DuraStation level 2 EVSE installed on UofL Belknap campus [58].

FIGURE 32: Louisville Gas and Electric utility meters installed on UofL Belknap

campus.
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B. Data Analysis

Data collected throughout the study will be used to determine the feasibil-

ity and payback of an automated demand response system for PHEV charging in

commercial environments. The data collected includes, but is not limited to, power

and energy consumption for individual vehicles, weather data, campus-wide energy

consumption, and cost of energy consumed during charging. Other data including

the forecasted electrical demand and EVSE availability will be recorded for every

demand interval. A database will be used to keep consumption and usage statistics

for further development of prediction algorithms. This database will contain approx-

imately 3 months of historical data for analysis, training of forecasting algorithms,

and historical trending.

Analysis of data collected will be performed to verify the proper operation of

the power monitoring and control system. Forecasted values for electrical demand

and EVSE availability will be examined and compared to actual measured values.

This will provide an accurate representation of the error of the power monitoring and

control system as a single unit. This can be utilized to predict the resultant electrical

cost increases due to the error. Additionally, the performance of the scheduling

and prioritization algorithms will be analyzed to ensure that total processing times

are minimized, therefore creating a fair charging environment. Data will also be

analyzed to ensure that the power monitoring and control system adheres to the

design objectives and hypothesis formulated in chapter I.
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C. Design Limitations

There are a number of challenges associated with the development and imple-

mentation of an automated demand response system for PHEV charging. The most

significant challenge will be to develop a balance between system demand savings

and charging performance. PHEV charging is highly inelastic due to limited electric

range and EV owners’ unwillingness to change charging habits if it affects their driv-

ing needs. This is a delicate balance that must be determined once data collection

begins.

The second most important design challenge is to prevent peak demand in-

creases so that the commercial time-of-day ratepayer, The University of Louisville in

this instance, is not faced with high demand charges. This will require the develop-

ment of a highly accurate demand forecasting algorithm to minimize control errors.

If the system lacks precision and accuracy, proper control decisions cannot be made.

Other design challenges and limitations include real time data collection and

analysis, providing on-time charging, and modular communication between nodes.

Due to the differing types and manufacturers of electric vehicles available on the

market, data collection and communication with each vehicle becomes difficult. A

strategy will be developed to manage this issue. Additionally, various vehicles have

different size battery systems. This is another factor that must be managed so that

full charges can be obtained within adequate time. There are other limitations to

such a design, but the few listed here are the most important issues that must be

managed.
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CHAPTER IV

DESIGN AND DEVELOPMENT OF POWER MONITORING AND CONTROL
SYSTEM

Numerous case studies have been published in technical literature regarding the

simulation of EV loads and the resultant effect on electric demand profiles and electric

utilities [59], [60], [61], [62], [63]. These publications tend to focus on overarching

effects of EV charging activity on large scale electric utility distribution systems and

generation capabilities. The consensus from these articles is that without proper

electrical infrastructure in place, the electric utility will face numerous problems as

EVs grow in popularity. However, another problem exists on a smaller scale which

is a direct consequence of the added electrical load from EV charging as shown in

the problem statement of this dissertation. Whether EV charging activity takes place

under residential or C&I rate structures affects the potential price of electricity that is

consumed per charging transaction. Further, when EV charging takes place at work

under C&I rate structures, the electricity cost can be significantly higher than under

the residential rates due to the demand charge incurred by C&I ratepayers.

As a response to peak demand, Demand Side Management (DSM) has been

shown to be an effective method of curtailing electric consumption during periods of

peak electrical demand to improve power quality and reliability while preserving a

specified level of service and comfort. The idea of DSM was first proposed by the
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Electric Power Research Institute (EPRI) in the 1980s [64] and has slowly gained

acceptance over time. However, with the recent inflow of EVs into the automobile

market, EV charging loads have provided researchers and electric grid operators with

a new tool when it comes to DSM. In fact, management of EV charging has become

an entirely new subset of DSM as a whole. This dissertation proposes a novel and

intelligent EV charging control framework that can be implemented in C&I locations

to curtail the current disincentive for large scale EV adoption. More particularly,

the restricted mileage range, or range anxiety, of EVs due to battery size is a com-

mon limiting factor in the decision to purchase such a vehicle as a primary mode

of transportation. Many commercial electric ratepayers such as shopping centers,

restaurants, schools, and businesses are installing EV charging infrastructure for pa-

trons, customers, and employees to utilize in an effort to curtail the issue regarding

range anxiety [65].

The design and development of an intelligent power monitoring and control sys-

tem is paramount to the success of EV adoption in C&I environments. The overall

goal of the Power Monitoring and Control System (PMCS) is to reduce EV charging

load during peak demand periods. Therefore, reducing electric cost per-unit to the

electric ratepayer. This section will detail the design and development of such a con-

trol system that can be implemented specifically for C&I electric ratepayers. First, an

overview of the major system components will be presented. Next, a detailed descrip-

tion of data collection and management will be provided including the types of data

collected, the frequency of data analysis and how this is implemented in the overall

design. Following will be an in-depth description of the major subcomponents of the
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design: the data collection and management module, the demand forecasting module,

the charging activity scheduling module, and the charging control component. De-

tails about each major subcomponent will be presented along with the various options

studied for each. Finally, a discussion will be provided regarding the design of the

user interface for monitoring and control.

A. Overview of Major System Components

The PMCS discussed here is composed of a few major components. Each

component is designed to perform a specific task, which when combined with the

other components, forms a much more advanced and complete control system. In this

dissertation, the primary sub-components of the design are referred to as modules.

These modules are as follows:

� Data collection and data management module

� Demand forecasting module

� EV charge scheduling and prioritization module

� Charging activity control module

Figure 33 shows the relationship between each of these modules and how each com-

ponent fits into the overall power monitoring and control system design. Electrical

demand is commonly measured in kilovolt-amps (kVA) and the readings are typically

registered by the electric utility every 15 minutes. This time period is of great im-

portance because the power monitoring and control system proposed and designed
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in this dissertation must accurately send control signals to on-line charging stations

within that 15 minute period to prevent creating new demand peaks. Therefore, the

modules depicted in Figure 33 operate in a cyclic fashion every 15 minutes.

FIGURE 33: Relationship of PMCS modules to each other and to overall control

system architecture.

Module #1 of the PMCS is responsible for real-time data collection from a

variety of sources. This module communicates with the customers utility meter to

collect energy and power data, the charging stations to determine energy usage and

charging status. This module is also responsible for collecting weather data such

as outside temperature and dew point which is utilized by the forecasting module

to predict demand patterns. Finally, the data collection module also monitors the
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performance of the power monitoring and control system as a whole to verify control

decisions and keep track of decision errors. Data storage is provided by the data col-

lection module for historical data trending that is used to further refine the operation

and performance of the PMCS throughout its lifetime.

Module #2, the demand forecasting module, then analyzes the data collected

by module #1 and provides an accurate forecast of the expected electrical demand

for the following 15 minute demand interval and also provides the expected number

of charging stations that can be active without the possibility of driving a new de-

mand peak. A number of forecasting methods were studied and a neural network

forecasting model was chosen due to its high accuracy and train-ability. This also

allowed the system to account for changes in demand due to weekends, holidays, and

extreme events due to weather, as all of these affect the electrical demand of a typical

commercial or industrial electric ratepayer [6].

Module #3 of the PMCS utilizes the data collected from vehicles, including

state of charge (SOC) and time of arrival, and data provided by the demand fore-

casting module to schedule charging activity. By scheduling charging jobs, the total

time it takes to charge all vehicles can be minimized in the event that there are more

vehicles to charge than there are charging stations available. This can be the case if

there is limited EVSE charging infrastructure installed at the point of charging, or if

chargers must be shut off or disabled during peak demand periods [65]. Scheduling

charging activity also provides a fair charging experience for all PHEV owners in that

cars with higher SOC can be disabled or delayed if there is another vehicle plugged

in that has a lower SOC. Scheduling can also account for cases where a charge cycle
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must be completed by a specified deadline.

Module #4 of the PMCS is responsible for using the forecasted data and the

schedule provided to control the charging activity. This module communicates with

the EVSE to enable / disable or even slow the charging rates on specific chargers.

EVSE control is somewhat trivial due to its simplicity. The primary function of an

EVSE is to switch an electrical contact, that can open or close, to control the flow

of electrical power from the source to the vehicle. No power conversion takes place

in the EVSE. Normally, the control circuitry in most EVSEs can accept a serial or

ethernet data input to control the operation of the switch or contact inside. In the

event that this control circuitry is not provided, a simple electrical contact could be

added in series between the power source and the EVSE and controlled directly from

the PMCS.

The following sections in this chapter will provide details for each of these

modules that make up the PMCS. For each module, several algorithms were studied

and examined. Data will be presented to justify the algorithms chosen.

B. Data Collection and Management

The primary module of the power monitoring and control system outlined in

this dissertation is module #1, the data collection and data management module.

This module communicates with a number of devices to collect the data required

to provide accurate forecasts and charging schedules resulting in optimal control of

PHEV charging activity. In total, 9000 data entries are kept in the historical database
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at any one point in time, which is equivalent to 93.75 days or approximately 3 months

of data. Each data entry contains the following: date stamp (month, day), time stamp

(hours, minutes), day of the week (1-7), outside temperature (deg. F), outside dew

point (deg. F), total electrical demand reading from utility meter (kW), previous

meter reading (kW), and previous 2 hour average electrical demand (kW). Through

experimentation, it was found that this data was sufficient for providing an accurate

forecast of electrical demand. In addition, the output of the forecasting module is also

stored in the database. These values include forecasted electrical demand for next 15

minute interval (kW), and forecasted number of chargers available. These values are

used to verify the operation and accuracy of the forecasting algorithm and to keep

track of events when charging must be disabled or shut off. Further information will

be provided in the section detailing the forecasting module about these values.

Tables 6 and 7 represent a sampling of the data collected. Table 6 represents

a cold Fall day in November where energy consumption is relatively low, therefore

resulting in forecasted charger availability well over 100 chargers. Table 7, on the

other hand, shows data collected during a hot Summer day in August. In this data,

the energy consumption was high resulting in periods where some stations needed to

be disabled and other periods where all charging had to be shut off to prevent driving

new electrical demand peaks with the EVSE charging infrastructure.

Data is collected in a number of ways from the various sources. The date and

time stamps are automatically generated from the data collection module for each

data entry. Weather data and electrical demand values are gathered for this study

from a Siemens energy management system located on the Belknap Campus at the
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University of Louisville. The Siemens energy management software suite gathers data

from a collection of sensors and transmitters located on the campus. The Siemens

system also provides communication with the electric utility meters to retrieve energy

consumption and electrical demand readings [66]. A screenshot of the University of

Louisville Belknap Campus meter readings page from the Siemens Energy Manage-

ment System is show in Figure 34.

FIGURE 34: Siemens energy management system campus energy meter readings [66].

Due to the amount of data that is handled by the PMCS, Matlab r2012b [67] is

utilized for implementation of the PMCS. Matlab is designed for handling matrices of

data and also provides a great basis for implementing the data analysis, forecasting,

and control algorithms. There are several useful tools available in the Matlab r2012b

software suite including the web interfacing functions, neural network toolbox, con-
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trol system toolbox, and general database management tools. Finally, Matlab also

provides the capability to create stand-alone programs and custom user interfaces

using m-files. The m-files created for the PMCS can be found in the Appendices of

this dissertation.

In addition to the built-in functions pre-defined in Matlab, several functions

were written to perform given tasks. The majority of data collected by the PMCS is

gathered from the Siemens energy management system over a web interface. Typi-

cally, Matlab has a built-in function called urlread that can be used to pull HTML

data from a given website. However, there are several shortfalls with urlread. The

primary shortcoming is that urlread cannot access information on websites that are

password protected. This is important to the PMCS because information on the

Siemens energy management system is password protected. In order to resolve this is-

sue, a new function urlread auth was written combining code from the built-in Matlab

urlread function and a more advanced urlread function written online [68] in response

to some of the shortcomings of Matlab’s built-in variant. Matlab’s urlread function

has a “params” argument, but these are CGI-style parameters that get encoded in

the URL. Authentication is done with lower-level HTTP Request parameters. urlread

doesn’t support these, but you can code directly against the Java URL class to use

them. The modified urlread auth function can be found in Appendix I.
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C. Demand Forecasting

Typically, the demand profile for a given electric ratepayer is highly unpre-

dictable. This varies for every electricity consumer, as some industrial ratepayers

may have a flat demand profile, whereas commercial and residential ratepayers may

have a more common load profile that has peaks and valleys throughout each day.

The varying demand curve is normally due to human behavior. For example on a

college campus, as people arrive, lights get turned on, air conditioning or heating

loads come on to maintain building temperatures, computers boot up, etc... Due to

the unpredictability and variability of the demand profile, an accurate forecast of this

demand is paramount for the proper operation of a control system such as the one

described here.

Module #2 of the PMCS provides peak prediction and load forecasting which is

utilized to determine two primary values. These are the electrical demand forecasted

for the subsequent 15 minute demand interval, and the number of electric vehicles

that are allowed to charge during the subsequent 15 minute demand interval without

driving the peak demand level higher for the current utility billing period. This allows

for the scheduling and control modules of the PMCS to properly schedule charging

activity so that demand peaks are avoided and charger availability is maximized.

Accurate forecasting of electrical demand has been a subject of much research

due to its importance to electric utilities and how they schedule or dispatch gen-

eration capabilities. Forecasting methods can be broadly divided into two method

types: statistical methods and artificial intelligence-based methods. In the case of
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the PMCS, both could be used to predict the electrical demand and resulting EV

charger availability for each 15 minute demand interval. Statistical methods forecast

current/peak loads by using previous load values in combination with a variety of

exogenous variables such as weather, holidays, or other variables. Examples include

similar-day, regression and time series methods [69]. Artificial Intelligence (AI) based

forecasting techniques classify input data and associate it with respective forecasts

and do not make use of the specific relations utilized in statistical methods. Exam-

ples of AI forecasting methods include neural networks and fuzzy logic [70]. This

section will examine the behavior of both statistical and artificial intelligence fore-

casting techniques as they relate to the electrical demand forecasting problem. The

Matlab software suite [67] is used to examine the training and output performance of

the various forecasting methods studied. Figure 35 shows a typical flow diagram for

analyzing a forecasting algorithm using Matlab.

FIGURE 35: Typical flow diagram for analyzing forecasting methods using Matlab

[71].
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1. Development of Data Set for Forecasting Analyses

A major requirement for testing various forecasting algorithms is an extensive

data set that can be used as inputs to a forecasting algorithm and also have sufficient

data to verify the forecasted values. The initial data set used for this analysis was

obtained from a number of sources including the University of Louisville Belknap

campus, through the data collection module described previously, the local electric

utility, and the National Oceanic and Atmospheric Administration (NOAA) Louisville

weather station located near the University. The initial data set includes extensive

data collected for a five month period ranging from July 12, 2010 to December 9,

2010. This time period was chosen because it contains the normal yearly demand

peak for the University of Louisville. It also contains abnormalities in demand levels

caused by extreme events such as weather (i.e. flooding, drought, extreme high/low

temperatures, etc...) which may affect the performance of the forecasting algorithm.

This data set was compiled by acquiring 15 minute demand data from the local

electricity provider for 5 consecutive billing periods [50]. Data for kW demand, kVA

demand and power factor were included in the database.
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FIGURE 36: Plot showing electrical demand and temperature correlation [6].

Large commercial loads often correlate with weather patterns as shown in Fig-

ure 36. For example, peak electrical load in the summer occurs in the early afternoon

when daily temperatures reach their peak. This is due to the electrical consumption of

running air conditioners, refrigeration compressors and cooling towers. On the other

hand, peak electrical demand during winter months occurs in the morning hours as

people arrive to work, turn on lights and heat buildings. Figure 36 shows a plot of

electrical demand (kW) and corresponding temperature measurements showing heavy

correlation for one week in September 2010.

Although all of the data collected was not utilized in the final forecasting

model, extensive weather data was accumulated to correspond with the 15 minute de-

mand data collected from the utility due to this dramatic correlation between weather

and electricity demand. The weather data was collected from the Louisville Inter-

national Airport NOAA [72] weather station due to its proximity to the University

of Louisville campus. The weather data collected included dry bulb temperature,
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dew point and wind speed with corresponding direction. In addition to the raw data

collected from the aforementioned sources, a few additional auxiliary data fields were

included in the database. These fields include a date and time stamp, day of the

week, a holiday or weekend indicator, and a few data fields relating to the electrical

demand measurements gathered from the utility. The supplemental demand data

included: demand reading from the same 15 minute period from the previous day

(24 hour delay), the rolling average demand from the previous 6 hours, and the prior

15 minute demand measurement. These additional data fields are used to refine the

operation of the forecasting algorithms described and studied here. The overall data

set was divided in half for training and testing of the various forecasting algorithms

resulting in 7200 data points for training and 7200 data points for testing purposes.

In the trials described here the input data set was kept the same to minimize vari-

ation and provide a good means to judge which forecasting algorithm provided the

best results. Long term forecasts were calculated using the input data set and er-

rors were calculated accordingly. The long-term forecasting technique was only used

during initial analysis because analyses could be performed much faster. The actual

implementation of the forecasting algorithm into the PMCS provides a short-term

forecast every 15 minutes which results in much lower percentage errors.

After analysis of the forecasting methods, a new data set was formed through

the data collection and management module of the PMCS. This data set only in-

cludes data necessary for successful operation of the forecasting algorithm chosen for

implementation. Values such as wind speed and direction were discarded due to the

negligible relation they share with electrical demand. This initial data set used during
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the primary study of various forecasting techniques is no longer utilized.

2. Review of Forecasting Techniques Studied

In previous research at the University of Louisville, researchers studied various

forecasting algorithms including a simple extrapolation model, a previous week ex-

trapolation model, and a regression forecasting model [73]. Each model was simulated

using historical energy data from the University of Louisville. These three algorithms

provided proof of concept and provided a basis for the work described here. Each

algorithm studied had specific benefits, but no single forecasting algorithm provided

optimal results. The work by Halbleib, et al. determined that the regression analysis

forecasting model provided the best performance. However, the regression algorithm

was also computationally intensive and still produced a significant forecasting error.

A better solution was required for the PMCS. Several forecasting algorithms were

considered throughout this study.

Building upon the work completed by Halbleib [73], the first forecasting al-

gorithm studied was a multiple linear regression model. This model was found to

provide the best performance of the algorithms tested by Halbleib. The linear regres-

sion model algorithm was studied here due to its simplicity and ease of calculation

and tuning. Also there was room for improvement in performance due to the new

data set used in this study, and linear regression forecasting models are commonly

utilized for forecasting time series data sets. In the energy industry, linear regression

models are commonly used to forecast electrical demand for generation dispatching
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[74]. A least squares approach was used to find the corresponding coefficients for each

of the input variables. After fine tuning, the linear regression model resulted in a R2

value of 82.42%. This value is an improvement on the value found in the work by

Halbleib, but that is due to the differing data set used as the input. Equation 4 shows

the resultant linear regression model. This model provided a Mean Absolute Percent

Error (MAPE) of 6.44% and a Mean Absolute Error (MAE) of 445.29 kW. However,

the regression model could be calculated in approximately 1.19 seconds which is much

faster compared to other algorithms tested.

kWforecast = −108.3 ∗ (x1) + 270.3 ∗ (x2)− 12.4 ∗ (x3) + 0.757 ∗ (x4)

−24.7 ∗ (x5) + 16.8 ∗ (x6) + 0.452 ∗ (x7) + 0.683 ∗ (x8)

(4)

� x1: Day of Week (1 through 7)

� x2: Weekend / Holiday Indicator (0 or 1)

� x3: Hour (0 through 23)

� x4: Minute (0, 15, 30, 45)

� x5: Temperature (deg. F)

� x6: Dew Point (deg. F)

� x7: Previous day same interval demand (kW)

� x8: Previous 6 hours average demand (kW)
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Figure 37 shows the relation between the actual kW demand test values and

the forecasted kW demand using the linear forecasting model. The model provided

a good approximation of the kW demand for Tuesday through Friday, however there

were significant errors on weekends and Mondays due to the extreme changes in

demand for such days. This is also the case for holidays, however no holidays are

shown in Figure 37. Possible improvements could be implemented in the input data

set to provide a more accurate result in future trials such as providing a larger training

data set or adding other input variables. However for simplicity, it was decided to

keep the same input set for testing each forecasting algorithm.

FIGURE 37: Performance of linear regression forecast algorithm for typical week [6].

The second forecasting method examined is a regression tree forecast. Regres-

sion trees are similar to decision trees, but instead of predicting a straightforward

response from a finite set of values, the regression tree can output a continuous value,

such as kW demand in the case of this application. Regression trees are calculated
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in a similar fashion to the linear regression model described previously. A regression

tree is another common way of forecasting demand that builds a classification tree,

when possible, based on the input variables such as temperature, dew point, time of

day, day of week, etc This method provides a forecast by first building a regression

tree with training data and then traversing through the tree and comparing input pa-

rameters until a leaf of the tree is reached. The value associated with the leaf is used

to provide a forecasted value. The larger the tree or the more leaves included in the

tree design result in more accurate outputs. Regression tree analyses are commonly

used for long term approximation and forecasting, but can also be used for short term

forecasts as well [75]. In this analysis, several regression trees were formed and then

combined and used to forecast kW demand levels using the test data set with Matlab

software [67]. Mixed results were achieved in this analysis and can be seen in Figure

38. The largest errors in the predicted values occurred on weekends, however signif-

icant errors were encountered during weekdays as well. The regression tree method

provided a MAPE of 19.22% and a MAE of 1184.33 kW while using 20 bagged trees

and the input data set defined previously. Most of the error shown in Figure 38 is

a result of overtraining the regression tree model. This could be avoided, however

for testing purposes, the same input data set was used in each forecasting analysis.

Electrical demand is not typically constant over the long term, i.e. months or a year,

due to variations in the seasons. Large variations in demand cause the regression

tree analysis to produce erroneous forecasts, which is the case for the test data set

used in the analysis of this algorithm. This method took approximately 23.5 seconds

to train, which is slightly longer than the linear regression method. Changing the
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number of trees did not affect the MAPE or MAE as these values stayed somewhat

constant. Better performance could be achieved by adjusting the data set, which is

also the case for the linear regression model.

FIGURE 38: Performance of regression tree forecast algorithm for typical week [6].

The data and predictors supplied in these forecasting trials are highly non-

linear as seen in the results found with the linear regression and regression tree ap-

proaches. Electrical demand not only varies throughout the course of a day but also

changes drastically over the course of a year. For example, the data collected in Ta-

bles 6 and 7 show how the demand varies from a hot summer month and a cooler

winter month. Demand varied in those tables from 13MW to 7MW between seasons.

Therefore, traditional statistical linear models may not be adequate for providing

an accurate forecast of demand. Due to the difficulty of determining an adequate

characteristic equation for a non-linear model such as an electricity demand curve, an

artificial intelligence forecasting technique was examined. L. Wang [76] and Ghan-
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bari, et al [77]. have shown through research that optimal forecasting models can

be achieved using neural network approaches. The neural network developed in this

study was simulated with a varying number of hidden nodes. Matlabs neural net-

work toolbox [67] was used to quickly train and test the performance of the neural

networks.

Preliminary tests of the neural network design were simulated using: date,

day of week, holiday/weekend indication, temperature, and dew point data to predict

the corresponding load. These tests provided promising results, but there was con-

siderable room for improvement. Preliminary tests provided MAPEs ranging from

6% to 8% depending on the number of hidden nodes used. Additionally, the neural

network models only took approximately 30 to 45 seconds to train which would still

be acceptable for the PMCS.

In an attempt to further improve the performance of the neural network time

series prediction, the input data fields were changed. Subsequent tests based the

demand forecast on the following input data fields: day of week, holiday/weekend

indicator, hour, minute, temperature, dew point, previous 6 hour average load, and

previous day same demand interval load. These were the same 8 data fields used for

the linear regression and regression tree analyses. The updated data fields provided

much better performance. The best performance of the neural network model was

achieved by using 30 hidden nodes resulting in a MAPE of only 1.77% and a MAE of

145.4 kW. Calculation time was approximately 57 seconds. These results are much

more favorable for use with the PMCS. The forecasted demand closely follows the

actual demand measured, but minor errors occur at the peaks for each day as shown
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in Figure 39. This could be corrected by increasing the number of hidden nodes or

adding input data to the system.

Finally, in an attempt to minimize peak prediction errors associated with the

neural network model without modifying input data, an averaging function was added.

This function takes the forecasted demand and averages that value with the actual

kW demand from the previous measured interval. The addition of this algorithm

minimizes peak overshoot and peak undershoot of the forecasted demand with respect

to the actual measured demand. The smoothing action of the averaging function

resulted in an adjusted MAPE of 1.26% and a MAE of 86.01kW. The results of the

averaging function can also be seen in Figure 39. The improvement in forecasting

error is visible when compared to the actual demand value measured. Although

1.26% MAPE is very good when compared to the other forecasting methods, it still

shows room for improvement. In the event that PHEV charging demand is less than

the accuracy of the forecasting method, some errors can occur resulting in increased

demand peaks or higher electrical cost per unit for the C&I electric ratepayer.
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FIGURE 39: Performance of neural network forecast algorithm for typical week [6].

3. Selection and Implementation of Neural Network Forecasting

If an accurate non-linear model can be developed, then the calculation time

and error may be greatly reduced by using a non-linear regression analysis technique.

The varying nature of electrical demand limits the accuracy that is possible by a linear

regression model. However, since the PMCS only requires a forecast to be generated

every 15 minutes for the ensuing demand interval, calculation time becomes a non-

factor in the design choice. Through analysis, disregarding calculation and training

time, the best solution has been determined to be the neural network option due to

its accuracy and forecasting performance. The calculation and training time is much

longer for the neural network model, but overall performance is much better than

other algorithms studied.
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FIGURE 40: Forecasting algorithm performance.

Figure 40 represents a compilation of the three types of forecasting algorithms

analyzed in this study. The neural network forecast model with an averaging function

added provides the best approximation of the actual kW measured demand for the

same period. Table 8 summarizes the characteristics of the forecasting models tested.

The simulations run in this study provided a long-term prediction for a 2.5 month

period, however when integrated into the PMCS the forecast algorithm provides a

short-term forecast for every 15 minute demand period. By re-training the forecasting

algorithm every 15 minutes, more accurate results are achieved. Errors represented

by the MAE and MAPE in Table 8 will be further reduced by forecasting the short

term 15 minute demand as compared to the 2.5 month long term period forecasted

in these trials.

Each forecasting algorithm developed and simulated in this study was also

tested for performance after implementation into the PMCS. Forecasting models were
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TABLE 8

Performance of Forecasting Algorithms.

Forecast Model MAE (kW) MAPE (%) Train Time (sec)

Linear Regression 445.29 6.44 1.19

Regression Tree (20 trees) 1184.33 19.22 23.5

Regression Tree (50 trees) 1233.02 19.94 58.19

Neural Network (30 Hidden Nodes) 145.40 1.77 57

Neural Network (w/ Averaging) 86.01 1.26 57

compared on two primary performance factors including demand cost increase (in US

dollars) and charging downtime (hours per day). The optimum system should have

minimal cost increases while also minimizing time throughout the day when charging

must be completely disabled. The increase in cost was calculated by taking the

MAE of each forecasting model and finding the resultant increase in cost if this error

occurred during the peak demand period. Total time that charging activity is halted

was calculated based on the assumption that the control system halts charging when

a new demand peak is forecasted for the billing period. The total time in which

charging was disabled temporarily was accumulated for each billing period of test

data. An average was then calculated for each forecasting algorithm modeled. The

results for the three forecasting algorithms tested in this study along with three other

methods studied are depicted in Figure 41. The most favorable forecast method will
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be located in the bottom left corner of the plot. This plot also includes forecasting

algorithms studied in research by Halbleib, et al [73].

FIGURE 41: Forecasting algorithm performance as tested after implementation in

PMCS.

From Figure 41, it can be seen that the neural network forecasting method

provided the optimal performance for a worst case scenario. Therefore, the neural

network forecasting method was chosen for the PMCS. Further experimentation and

fine tuning were performed on the neural network forecasting algorithm. The in-

put data set used for training the neural network forecasting algorithm was slightly

changed. The algorithm still uses date and time stamps, temperature, dew point, and

present electrical demand, however the auxiliary inputs were modified slightly due to

the change from a long-term to short-term forecast. The forecasting algorithm now

uses the previous 15 minute electrical demand reading, and a running 2 hour average
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electrical demand calculation as shown in Tables 6 and 7.

Using the data collected and managed by the data collection and management

module of the PMCS, more accurate electrical demand forecasts can be achieved.

The neural network is now re-trained every 15 minutes using the 9000 data points

stored in the historical database. Using the neural network model, a forecast for

the ensuing 15 minute demand interval is calculated. MAPE is greatly improved by

switching from the long-term forecast to the short-term forecast. New MAPE values of

approximately 0.02% have been achieved using the new forecasting model. Figure 42

shows the improvement in MAPE for approximately 1600 data points recorded during

testing of the forecasting algorithm. The improved performance of the new neural

network forecasting algorithm result in better performance than the best algorithms

shown in Table 8 and Figure 41.

FIGURE 42: Forecasting algorithm percentage error for short-term forecast.
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In addition to providing an accurate forecast for the electrical demand ex-

pected for the following 15 minute demand interval, the PMCS forecasting module

also provides a forecast of the number of EVSEs that can be active during the next

demand interval without the possibility of creating a new demand peak. This is cal-

culated by keeping track of the peak demand for the billing period and comparing

it to the forecasted electrical demand value. Since level II EV chargers consume a

constant 3.3kW of electrical demand when charging, the number of EVSEs that can

be active is calculated by dividing the difference between maximum and forecasted

electrical demand by 3.3. Keeping track of the peak demand for the billing period

has proven to be a difficult task. In most electrical billing structures [1] a minimum

demand charge can be encountered. This is typically 50% to 75% of the maximum

demand over the previous 11 months of billing data. In order to account for this, the

PMCS forecasting module keeps track of the maximum demand for the present billing

period. At the start of a new billing period, the PMCS sets the maximum electrical

demand value to 75% of the maximum value measured in the previous billing period.

Matlab code written to implement the neural network forecasting method can be

found in Appendix II.

D. Charge Scheduling and Prioritization

The control system discussed here may limit the number of EV chargers avail-

able for a given period of time in order to deal with the demand charge faced by

C&I ratepayers. When charging activity is limited, a number of charging stations are
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disabled. This gives rise to situations where there are more vehicles requiring a charge

than there are EV charging stations available. Consequently, this results in the need

to prioritize the EV charging process and the necessity of intelligent scheduling to op-

timize the charging experience for all EVs. In scenarios where there is limited charger

availability, the total processing time for all charging jobs rises. This section describes

the third module of the power monitoring and control framework which is comprised

of a machine scheduling algorithm. The flowchart shown in Figure 43 represents how

the scheduling component fits within the overarching PMCS framework.

This section formally introduces the EV scheduling problem with charger avail-

ability constraints. First, a simple prioritization algorithm is developed that deter-

mines which charging stations are disabled when charging activity is limited, but not

completely disabled. Next, for the possible scenario where there are many more EVs

requiring charge than there are charging stations available, a scheduling algorithm is

developed that can be implemented to minimize the total processing time required

for all jobs. Four heuristic methods for solving the EV charge scheduling problem are

proposed and evaluated for implementation into the PMCS. The optimal solution for

the scheduling problem is proposed and considerations are made concerning how it is

implemented into the PMCS design.
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FIGURE 43: PMCS flowchart highlighting the scheduling and prioritization module.

1. Prioritization of Charging Jobs

In most cases, the need for a scheduling algorithm does not exist. Instead, a

simple prioritization model can be formulated to assign charging priority to vehicles

that are currently connected and charging. The lack of need for a scheduling algorithm

is due to the fact that most commercial charging providers will have available charging

infrastructure to accommodate all EV owners wishing to charge their vehicles. When

charging capacities are limited due to an approaching electrical demand peak, but

not fully disabled, a priority must be assigned to existing vehicles to determine which

charging jobs to temporarily disable.
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The prioritization algorithm utilized by the PMCS communicates with each

vehicle connected through its OBDII diagnostic port to determine vehicle state of

charge. Once the state of charge has been determined for every vehicle connected

and charging, a priority list can be formed. Higher charging priority is given to

vehicles with lower state of charge. Consequently, lower priority is given to EVs with

a higher state of charge. If a subset of chargers must be disabled, charging is disabled

for vehicles with lower charging priority first. The result of this algorithm provides

a fair charging experience for all vehicles connected as it allows vehicles with longer

processing times to remain connected when possible. If vehicles have similar states

of charge, charging priority is given to the vehicle that arrived first. Figure 44 shows

an example of three vehicles with varying states of charge. The priority assigned to

each vehicle is shown.

FIGURE 44: Prioritization of EV charging jobs based on vehicle state of charge.

2. Review of Machine Scheduling

The case rarely exists where the number of EVs exceeds the number of EVSE

available by a margin large enough to call for a scheduling algorithm. One exam-

ple of such a scenario would be a rental car company that rents EVs to customers
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but only has a limited number of charging stations available for returned vehicles.

Assuming the rental company has 80 electric vehicles and only 20 charging stations

installed, a scheduling algorithm can be formulated to minimize the total processing

time to complete a charge cycle on all vehicles. A scheduling solution was presented

in [65] that can be implemented to minimize the total processing time required. The

following is a summary of the findings [65].

The problem of scheduling the EV charging process is a centralized optimiza-

tion problem and can be formulated as a parallel machine scheduling problem. In this

problem, charging stations represent similar parallel “machines” and the EVs requir-

ing charge represent “jobs.” The objective of the optimization process is to minimize

the total processing time, or makespan, to complete all charging jobs. To facilitate

the machine scheduling formulation of the EV charging problem in this section, m

represents the number of charging stations available and n represents the number

of jobs. Four scheduling algorithms were developed with the intent to optimize the

charging schedule to minimize total makespan. A mixed integer programming (MIP)

model was developed as well to verify the various scheduling algorithms developed.

3. Scheduling Methods Studied

Four scheduling algorithms were developed and simulated, each being used in

one of two variants: preemptive and non-preemptive scheduling. In non-preemptive

scheduling algorithms, a forecast is developed for the number of machines available

and various machines are marked as disabled for given demand periods. Jobs are then
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scheduled to the machines’ available time slots ensuring that the jobs do not overlap

the disabled periods. Further, jobs that would overlap are scheduled at the end of the

down time or on the next available machine. Preemptive scheduling algorithms are

similar, however jobs can be scheduled if they overlap with demand intervals. When

an overlap occurs on the schedule, the overlapping job is paused for the duration of

the interval and then resumes when the demand interval has passed.

The preemptive and non-preemptive variants of the 4 scheduling algorithms

were coded using Matlab software [67] for simulation purposes. The MIP model

used for algorithm verification was developed in CPLEX [78]. CPLEX is an iterative

program commonly used in optimization problems that can determine the optimum

solution for small data sets. CPLEX is not optimal for scheduling EV charging activ-

ity with large data sets since computation times increase exponentially as the number

of vehicles or charging stations rises. The four scheduling algorithms considered are

listed here:

� The First Available Scheduling Algorithm (FAS)

� The Random and First Available Scheduling Algorithm (RFAS)

� Greedy Local Search Algorithm with Pairwise Exchange (GLS)

� Simulated Annealing Algorithm with Pairwise Exchange (SA)
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The First Available Scheduling Algorithm (FAS)

FIGURE 45: First available scheduling (FAS) algorithm diagram.

The First Available Scheduling (FAS) algorithm determines the charging sched-

ule by simulating a typical EV owner’s behavior of searching for the next available

machine, as illustrated in Figure 45. In this algorithm jobs are sorted first by pro-

cessing time required pi (longest to shortest) and then by job arrival time ri (earliest

first). This sorting process gives priority to jobs with longer processing times pi > pj

when jobs have equal release times, and gives priority to jobs with earlier release

times ri < rj otherwise. After sorting jobs, jobs are scheduled to the next available

machine based upon the total processing time pi remaining on each EVSE. All jobs

are scheduled in this fashion until no jobs remain to be scheduled. The pseudo code

for the FAS algorithm is described in 4 simple steps:
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Step 1) Sort all jobs by processing time required pi and then by release time ri.

Step 2) Calculate completion time ci = ri + pi for each machine.

Step 3) Schedule next job ji on priority list to machine with earliest completion time

ci.

Step 4) Repeat steps 2 and 3 until all jobs are scheduled.

The Random and First Available Scheduling Algorithm (RFAS)

FIGURE 46: Random and first available scheduling (RFAS) algorithm diagram.

The Random and First Available Scheduling (RFAS) algorithm attempts to

improve upon the performance of the FAS algorithm by adding in a randomization

factor. This algorithm takes advantage of the fact that not all charging jobs are simi-

lar. By scheduling randomly selected jobs on a random machine rather than the next

available, reductions in total processing time are possible. Figure 46 represents how
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the RFAS algorithm is similar to the FAS algorithm, but a random process is imple-

mented to potentially minimize total makespan. In the RFAS algorithm, Rmax = 100

schedules are generated and the schedule with the best makespan is selected as the

heuristic solution. The following 6 steps define the basic operation of the RFAS al-

gorithm:

Step 1) Sort all jobs by processing time required pi and then by release time ri.

Step 2) Calculate completion time ci = ri + pi for each machine.

Step 3) If a Bernoulli random variable = 1, schedule job to random machine mi,

otherwise schedule next job on priority list to machine with earliest completion time

ci.

Step 4) Repeat steps 2 and 3 until all jobs are scheduled.

Step 5) Repeat steps 1 through 4 to generate Rmax random schedules.

Step 6) Compare schedules and select the schedule with smallest total makespan.

Greedy Local Search Algorithm with Pairwise Exchange (GLS)

The third scheduling algorithm developed is the Greedy Local Search (GLS)

algorithm. It starts with the optimum schedule obtained from the RFAS algorithm

then performs a pairwise exchange optimization sequence. The pairwise exchange

process begins by randomly picking two jobs (Ji and Jj) from two random machines

(Mk and Ml) and checks to see if an exchange is feasible. Assuming the job exchange

is feasible, the exchange is made temporarily and the total makespan is calculated.

If the makespan decreases, then the exchange is kept. However if the total makespan
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increases, the exchange is reverted and discarded. The pairwise exchange process

is repeated for Gmax=10000 iterations. The GLS algorithm can be described in the

following pseudo code:

Step 1) Begin with best schedule from the RFAS algorithm.

Step 2) Pick two random jobs (Ji and Jj) from two random machines (Mk and Ml)

Step 3) Check feasibility of exchange ri < sj and rj < si.

Step 4) If exchange results in reduced makespan, keep exchange. Otherwise discard.

Step 5) Repeat Steps 2 through 4 Gmax times.

Simulated Annealing Algorithm with Pairwise Exchange (SA)

Finally, the last scheduling algorithm developed is the Simulated Annealing

(SA) metaheuristic. This has been studied extensively [79],[80] and shown to be

efficient in finding the global optimum of highly non-linear problems and/or many

classes of combinatorial optimization problems. Through several trials, the other

three algorithms studied often located local minima instead of the global optimal

solution. The SA algorithm operates by developing an exponential cooling schedule

to determine the probability of accepting an exchange, even when the exchange may

not result in a reduction of the total makespan. The probability of accepting a bad

move at temperature Ti is determined by Equation (5) where mkspn′ is the new

calculated makespan and mkspn is the current makespan prior to the job swap.
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P (mkspn,mkspn
′
, Ti) =


1 if mkspn

′
< mkspn

e

−(mkspn
′ −mkspn)

Ti if otherwise

(5)

The exponential cooling schedule represented by Equation (6) is chosen to

allow unintended exchanges with higher probability at the start of the algorithm,

but this probability decreases as the simulated annealing process progresses. For the

EV scheduling problem, an exponential cooling schedule was chosen with a starting

temperature T0 of 15, which is slightly higher than the average makespan of all test

runs from the other three algorithms. The temperature at iteration i is updated

using Equation (6) for each iteration i=1..N of the SA metaheuristic. An exponential

reduction coefficient of A=0.36 was chosen using Equation (7) as a guideline resulting

in α=0.7 for the problem. The number of iterations in simulation results presented for

the SA algorithm was chosen to be Smax=10000 based on performance and required

CPU time.

Ti = T0 ∗ e(−A∗i) (6)

A =
1

N
∗ ln

T0
TN

(7)

The pseudo code of the SA algorithm is as follows:

Step 1) Begin with best schedule from the RFAS algorithm.

Step 2) Pick two random jobs (Ji and Jj) from two random machines (Mk and Ml)

Step 3) Check feasibility of exchange ri < sj and rj < si.

Step 4) Update simulated annealing temperature Ti.

Step 5) If mkspn′ < mkspn, keep change, else if P (mkspn,mkspn′, Ti) < rand(n)
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keep change, otherwise discard.

Step 6) Repeat steps 2 through 5 Smax times.

4. Selection of Off-line Simulated Annealing Method

Performance of the 4 scheduling algorithms was judged based on a test data

set developed to mimic real-life arrival and departure patterns of vehicles on a college

campus. Normal distributions of job release times (vehicle arrival time) and process-

ing times (state of charge required) were generated for all test cases. These normal

distributions were centered on 11:00am and 45% state of charge respectively, and were

based on vehicle arrival patterns and average commuter distances at the University

of Louisville. The Chevrolet Volt [12] was used as the model vehicle in the test data.

Test data was generated for the cases shown in Table 9, where the number of vehicles

and charging stations range from 10 to 80, and from 3 to 20, respectively. Charging

station availability was determined from the neural network forecasting algorithm de-

veloped for the forecasting module of the PMCS. Due to excessive processing times,

the MIP model developed to be solved in CPLEX was only solved for case numbers

1 and 2 as shown in Table 9.

A summary showing the average makespans and CPU times for the simulations

can be seen in Tables 10 & 11. Table 10 reports average makespans of ten data sets

for each case shown in Table 9. Comparing non-preemptive to preemptive models,

reductions in the total makespan are visible due to the elimination of idle time on

machines when jobs overlap with peak demand intervals. SA algorithms tend to
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TABLE 9

Description of test data sets generated for simulation.

Case # Vehicles # Charging Stations # Data Sets

# (Jobs) (Machines) Available

1 10 3 10

2 10 5 10

3 15 3 10

4 15 5 10

5 20 6 10

6 80 20 10

provide better performance for cases where the vehicle to charging station ratios

are higher, however cases with lower vehicle to charging station ratios tend to see

better performance from the GLS algorithms. Table 11 presents averages of CPU

times for ten data sets for each of the six scenarios simulated. As the algorithm

complexity increases, the resultant CPU time required also increases proportionally.

Also, it is observed that the preemptive algorithms require approximately double

the CPU time required for similar non-preemptive algorithms. This is due to the

computational complexity of the preemptive algorithms since these must continually

adjust processing times for all affected jobs when a pairwise exchange is made.
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TABLE 10

Summary of average makespan objective (in hours) for all algorithms.

Heuristic Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

(NP=non-preemptive n=10 n=10 n=15 n=15 n=20 n=80

P=preemptive) m=3 m=5 m=3 m=5 m=6 m=20

FAS (NP) 11.090 10.476 14.981 12.092 11.616 14.083

RFAS (NP) 10.228 8.993 13.802 11.349 10.906 13.848

GLS (NP) 10.393 8.942 13.731 11.411 10.654 12.281

SA (NP) 10.387 9.022 13.707 11.212 10.761 12.947

FAS (P) 10.119 9.009 13.526 11.117 10.309 12.597

RFAS (P) 10.119 9.009 13.526 11.117 10.180 12.597

GLS (P) 9.406 8.254 12.871 10.389 9.931 11.848

SA (P) 9.501 8.400 12.852 10.379 9.895 11.801
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TABLE 11

Summary of average CPU time (in seconds) for all algorithms.

Heuristic Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

(NP=non-preemptive n=10 n=10 n=15 n=15 n=20 n=80

P=preemptive) m=3 m=5 m=3 m=5 m=6 m=20

FAS (NP) 0.0011 0.0005 0.0006 0.0007 0.0009 0.0043

RFAS (NP) 0.0461 0.0426 0.0574 0.0611 0.0809 0.4490

GLS (NP) 0.7934 0.6459 1.1393 0.7797 1.0405 6.2788

SA (NP) 1.5405 1.3268 2.3709 1.6087 2.2009 12.1459

FAS (P) 0.0023 0.0014 0.0013 0.0018 0.0012 0.0101

RFAS (P) 0.0937 0.1251 0.1172 0.1604 0.1041 0.9499

GLS (P) 1.3276 1.1175 2.4538 1.7933 1.1995 16.7991

SA (P) 2.7548 2.7818 5.0949 3.8514 2.3212 33.6078
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5. Implementation of Scheduling Technique

Effects on the demand profile were examined by simulating the preemptive

and non-preemptive SA algorithms for the case of 80 EVs and 20 charging stations.

Electrical demand data and charger availability from the University of Louisville

was utilized. The performance of these algorithms are compared to the base case

of uncontrolled charging activity. Figure 47 shows the results of applying the SA

scheduling algorithms. As a peak is reached in the demand profile of the base load,

charging stations are disabled to prevent EV charging loads from further driving the

peak higher resulting in lower electrical demand costs. The differing behaviors of

the preemptive and non-preemptive algorithms can be seen in Figure 47 as well. The

non-preemptive variant does not schedule charging jobs if they overlap with scheduled

down times. Therefore, the added demand from EV charging activity trails off as the

peak nears. Conversely, the preemptive algorithm continues charging activity until

charging stations must be disabled. This results in a sharp drop in electrical demand

for the following 15 minute demand interval. As expected, the makespans of both

algorithms are longer than the base case without control. Additionally, since the

preemptive scheduling algorithm allows charging activity to continue until stations

must be disabled, its total makespan is slightly less than the non-preemptive variant.

Finally, Figure 47 also indicates the number of machines, among a total of 20, that

are allowed to operate by the PMCS at each time interval. There are some periods

where all charging activity is halted and others where this activity is limited.
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FIGURE 47: Simulation results for 80 electric vehicles on University of Louisville

campus.

Table 12 summarizes the impact of the PMCS and scheduling algorithms on

the added cost of charging activity and the total makespan of the charging process.

Electrical cost increases were calculated using the rate structures outlined in section

II.D. There is a clear tradeoff between added electrical cost and total makespan when

controlling EV charging activity. Both scheduling algorithms simulated resulted in

no demand charge increase over the base electrical load, however the total makespan

for each case was slightly longer than the base case. Table 12 assumes no error in the
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TABLE 12

Comparison of charging cost increases and total makespan for SA algorithms.

80 Electric Vehicles C&I Energy C&I Demand C&I Total Makespan

20 Charging Stations Cost Increase Cost Increase Cost Increase (Hours)

Uncontrolled Charging $439.30 $4,010.80 $4,450.10 8.999

Preemptive SA Sched. $439.30 $0.00 $439.30 11.801

Non-preemptive SA Sched. $439.30 $0.00 $439.30 12.947

electrical demand forecast provided.

The forecasting algorithms described in this section are off-line algorithms.

They assume that the arrival times and processing times of all jobs are known before

the schedule is formulated. This is not the case for the PMCS though since EVs may

arrive at varying times each day and also may have varying states of charge from day-

to-day depending on driver behaviors and driving patterns. The off-line scheduling

approach is beneficial for applications where the schedule is required for the entire

day and is only calculated once. However when implemented into the PMCS, the

schedule is re-formulated every 15 minutes. The Matlab m-files for the preemptive

and non-preemptive SA scheduling algorithms can be found in Appendices III and IV.

The combined control m-file in Appendix II includes a placeholder for the preemptive

SA scheduling algorithm which was chosen for implementation into the PMCS due

to its shorter makespan. Other scheduling algorithms including the FAS, RFAS, and

GLS algorithms are not included in the Appendices.

114



E. Control of EV Charging Activity

The final module of the PMCS, module #4, provides control of charging ac-

tivity through direct communication links between the control system and the EVSE.

This module takes the output of the forecasting and scheduling modules and imple-

ments the control strategy among the EVSE installed. A number of control strategies

were studied including centralized and distributed control. Centralized control uti-

lizes a central controller unit that communicates with each system component directly.

Typically, nodes in a centralized control system are “dumb” and do not provide any

control themselves. Instead, they require the central controller to make all decisions.

A distributed control system does not use a centralized controller. In this type of

control system, each node makes control decisions while communicating with nearby

neighbors to make the system aware of its behavior.

Centralized and distributed control systems each have a number of benefits and

disadvantages. For example, centralized controllers are much more simple to imple-

ment, however they require higher processing power at the central node. Distributed

controllers create network topologies that can be changed without the need to take

large portions of the control system down. Figure 48 shows the relation between

centralized, de-centralized, and distributed control strategies.
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FIGURE 48: Types of control strategies / topologies.

Control topologies should not be confused with communication topologies.

Control systems can use a multitude of communication network topologies but still

operate as a centralized or distributed controller. More information regarding the

communication topology and strategies is provided in the following chapter. The

PMCS uses a centralized approach for control. Due to the relatively small size of the

PMCS network and the computational complexity of the forecasting and scheduling

algorithms, the centralized control system provided a better approach. A hybrid

approach was considered, where the forecasting and scheduling would occur on a

central node, but each EVSE node would provide its own control of charging activity.

This would require additional computing power at each EVSE node, since a typical

EVSE functions as an electrical switch and has little processing capability. In order
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to avoid the added cost of adding the required computing power, the decision was

made to implement the entire control system at the central node.

The control module of the PMCS operates by keeping track of how many

vehicles are connected and charging at any one point in time. When the forecast

or schedule is produced from the other modules of the PMCS, the control module

then determines which stations to turn off or on for the next 15 minute demand

interval. Serial commands are then sent out to each of the EVSE affected by the

control decision. Future capabilities could be added to enable security measures if

deemed necessary. The control module has the capability to keep track of users and

authenticate who is allowed to use the EVSE during certain times throughout the

day. Currently, the EVSE are configured to allow any user at any time given that

they have a charging identification badge/card. The EVSE requires the user to wave

their identification card near the RFID scanner installed on each charging station

before a charging process can commence. This provides adequate security to prevent

unauthorized use, but as the size of the system expands or new EVSE locations are

installed, the PMCS provides the capability to control users and access to charging

capability.

The GE DuraStation EVSE [44] installed on the University of Louisville’s

Belknap campus provide the capability to be connected to a centralized control sys-

tem. Typically this feature is disabled because it was developed by the manufacturer

(General Electric) for future expansion of new product lines. General Electric, who is

aware of the ongoing research involving their EVSE, graciously provided the proper

firmware to enable this capability. With the installation of the new firmware, each
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EVSE can be individually addressed and controlled via a series of serial commands.

These commands can be used to gather information such as charging status, power

consumption, and other health related information from each charging station. Ad-

ditionally, the serial commands allow the user to specify charging rates, enable and

disable charging, and authorize or de-authorize a charging station user. The structure

of the serial commands can be found in Figure 49. Additionally, Table 13 provides a

list of the various commands enabled with the new firmware. In Table 13, XX repre-

sents the serial address of each EVSE. These addresses are specified in the following

chapter in the discussion regarding the network topology.

FIGURE 49: Message packet structure for GE DuraStation EVSE [81].

The centralized control module of the PMCS works directly with the GE

DuraStation to control charging activity. The EVSE itself does not make any control

decisions regarding charging. A program was written in Matlab [67] to interface with

the new firmware on the EVSE. This program can be found in Appendix V. The

program included in Appendix V assumes a fixed EVSE serial address and simply

lists the various serial commands available. The control module uses these commands

along with the proper address of the EVSE to send out the correct command to satisfy

the PMCS forecast and schedule.
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TABLE 13

Summary of serial commands utilized by GE EVSE [81].

Command

Type

Serial String (Hex) Command /

Request

Heartbeat 02 XX 08 00 15 XX 1D 13 Request

Get Status 02 XX 08 00 31 XX 39 13 Request

Measure Power 02 XX 08 00 38 XX 40 13 Request

Charge Enable 02 XX 08 00 10 XX 18 13 Command

Charge Auth. 02 XX 08 00 57 XX 5F 13 Command

Charge Disable 02 XX 08 00 11 XX 19 13 Command

F. User Interface for System Monitoring and Control

One of the research objectives is to develop a user interface for monitoring

and supervisory control of the PMCS. The primary function of the user interface is to

provide a summary of the PMCS performance. It also provides information regarding

EVSE availability, and notes when a number of EVSE must be disabled due to an

approaching electrical demand peak. Additionally, the user interface provides a sum-

mary of total energy consumed by EV charging activity. Finally, the last goal of the

user interface is to provide supervisory control of the charging process. System ad-

ministrators can use the interface to temporarily disable charging or override charging

outages in cases where electrical demand and cost is not a factor. The user interface
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that has been developed for the PMCS was developed using Matlab software since

the majority of the algorithms and control strategies were also implemented using

Matlab. The database containing the data collected and forecasted by the PMCS is

also managed by Matlab.

FIGURE 50: User interface developed in Matlab for PMCS.

The user interface shown in Figure 50 continually updates to show the most

current readings. The plots show a sliding window of the previous 48 hours of electrical

demand. The top plot shows the actual and forecasted electrical demand for the entire

campus. These values are utilized in determining the total number of chargers that

can be active for the ensuing 15 minute demand interval. The bottom plot shows

the aggregate EV load measured by the charging stations. Controls are provided to

override charging outages and force chargers to remain active or to disable charging if
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desired. Finally, a link is provided to the historical database that stores approximately

3 months of data. Future revisions of the user interface shown in Figure 50 should

include data collected from the EV interface including state of charge for connected

vehicles.
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CHAPTER V

NETWORK TOPOLOGY AND COMMUNICATION STRATEGY

Network topology, or the structure through which individual network nodes

communicate with one another, is an important aspect to the design of a control

system. In the case of the PMCS described in this dissertation, the network topology

is determined by the location of the EVSE in relation to the location of the PMCS

controller unit. Network topologies can also vary based on the technology or medium

chosen to implement the communication infrastructure. Wired communication tech-

nologies tend to be configured in star or tree-based topologies. Wireless communica-

tion technologies, on the other hand, allow for additional topologies such as mesh or

grid type networks. This section will describe the various networking topologies and

transmission mediums or technologies considered for implementation of the PMCS.

The communication technology and topology chosen will be described and details will

be provided to define how the network is configured for the EV charging testbed on

the University of Louisville Belknap campus.

A. Discussion of Network Topologies

Network topologies can be divided into two main subcategories, physical and

logical network topologies. Physical network topologies are determined by the medium

and network equipment used to interconnect nodes. Physical network topologies is
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the most common category. Logical network topologies, on the other hand, utilize

higher level transmission protocols to emulate a given network topology regardless of

the physical interconnection between network nodes. Logical network topologies tend

to operate slower, depending on the logical topology implemented, due to the pro-

tocol overhead required to deliver data packets. Therefore, several physical network

topologies were considered for implementation of the PMCS. Figure 51 represents the

most common network topologies implemented in computer networks. The earliest

computer networks utilized either bus or ring-based architectures. In these topolo-

gies, only a single node could communicate at a time in order to prevent collisions

of data packets. This led to the development of tree and star-based network archi-

tectures. These topologies greatly improved network throughput but also limited the

size of the network to the lengths of wiring required to interconnect nodes to a central

location. Newer sensor-based networks utilize mesh and fully-connected grid based

topologies. These provide multiple paths between any two selected nodes. Network

throughput can be improved, and the addition or removal of nodes is much easier.

Partially connected mesh networks make it possible to take advantage of some of the

redundancy that is provided by a physical fully connected mesh topology without the

expense and complexity required for a connection between every node in the network.
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FIGURE 51: Various physical network topologies possible for interconnecting network

nodes [82].

When implementing the PMCS into the EV charging testbed at the University

of Louisville, a hybrid approach to connecting devices was taken due to the location

and distance between nodes within the PMCS network. Ideally, a star-based approach

would be the most beneficial to improve throughput and network performance, but

this can become costly due to the distances between charging stations. Instead a hy-

brid combination of a star and mesh-based network topology was chosen. Logically,

the PMCS controller communicates directly to a given node therefore simulating a

star-based topology. Physically, the communication infrastructure consists of a va-
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riety of directly wired and wireless connections. EVSE nearby the PMCS controller

are either directly wired back to the PMCS, or form a direct point-to-point wireless

network connection. Other EVSE are connected through a mesh network and data

packets traverse a few nodes before reaching the PMCS controller. EVSE and vehicles

are interconnected to other network nodes through a mesh-based topology, but each

node is individually addressed to assist in the communication process. More informa-

tion regarding addressing is provided in a later section of this chapter. The following

sections will outline the wired and wireless networking technologies considered and

utilized for implementation of the PMCS.

B. Wired Networking Technologies

The simplest form and most secure method of communicating between two

devices is over a wired connection. Hard wired network connections provide greater

security that wireless links because outside intruders must physically break or attach

to the wired connection to gain access to the data transmitted. These connections are

an integral part of the PMCS design. The majority of computer networks in service

today utilize wired ethernet connections between network nodes. Wired ethernet was

originally considered for connecting each of the EVSE installed for the University of

Louisville testbed. However after quick research, it was decided that wired ethernet

would not be acceptable for a number of reasons. The primary reason is that there

are added costs to connecting each EVSE via ethernet to the University’s production

network. The increased cost is due to the remote locations of the chargers and the
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need to install new network infrastructure to support such devices on the network.

The University, along with numerous other commercial networks, typically

charge a monthly service fee for each network drop as well which would add to the

operating costs of the charging infrastructure. The main goal of the PMCS is to

minimize the energy and communication cost impact of the EVSE, so a large scale

deployment becomes economically feasible. Additionally, the University faces a new

network security risk as intruders now have a somewhat un-secure method of attaching

to the production network. Finally, control of the GE DuraStation charging stations

installed as part of the EV charging pilot project cannot be achieved through the

ethernet port on each EVSE. This is a limitation of the design and engineers at

General Electric, the EVSE manufacturer, have noted that other EVSE manufacturers

do not allow control of charging infrastructure through the ethernet port. Due to these

reasons, wired ethernet was not considered as an option for the PMCS networking

technology.

The primary wired networking technology utilized in the PMCS design is RS-

232 serial communications. It is very common for EVSE to have a RS-232 serial

port installed for allowing simple communication with the controller located inside

the charging station. The PMCS does not require extremely fast data throughput,

therefore simple serial communications are the easiest to implement. Logical point-to-

point serial communication links are formed between the network nodes of the PMCS.

RS-232 typically has a range limit of 30 to 50 feet due to capacitance and impedance

losses in the signal wires. Therefore, wired RS-232 is only utilized within the EVSE

between the controller and the wireless ZigBee translational bridge. Figure 52 shows
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the controller board installed in the GE DuraStation. The serial communication port

is a DB9 DTE connector. It is represented by J6 in Figure 52.

FIGURE 52: EVSE controller board installed in GE DuraStation [44].

C. Wireless Networking Technologies

Due to the remote locations of the EV charging infrastructure in typical in-

stallations, and the distance between EV chargers, wired network connections are

not always the most cost effective method of communications. Therefore, a wireless

communication infrastructure is preferred. Several options were considered including

wireless ethernet, Bluetooth, and ZigBee. There are a number of advantages and

disadvantages to each of these options. This section will compare and contrast each

of the wireless technologies considered and will provide evidence supporting the tech-

nology chosen. Figure 53 provides a summary of the various wireless technologies
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considered. Note that this summary also includes Ultra-WideBand (UWB) commu-

nications, however this technology was not considered because of its similarities to

the much more common Bluetooth and ZigBee technologies.

FIGURE 53: Comparison of wireless networking technologies [83].

1. Bluetooth

Bluetooth, also known as IEEE 802.15.1, is a short range, low power wire-

replacement communication technology. Depending on the class of the Bluetooth

transceiver, the transmission range can vary from 1 meter to 100 meters. Bluetooth
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is typically considered a Personal Area Network (PAN) due to its short range commu-

nication capabilities. A collection of Bluetooth devices within wireless transmission

range of the master controller is considered a piconet. A collection of overlapping

piconets can be interconnected to form a larger scatternet. Figure 54 demonstrates

the relationship between master / slave nodes, piconets, and scatternets.

FIGURE 54: Scatternet of Bluetooth devices [84].

Bluetooth provides an enticing option for the networking requirements of the

PMCS. Bluetooth is a common networking technology and there are several trans-

lational bridges available that are compatible with RS-232 serial communications.

Bluetooth can use both point to point and mesh networking topologies. Bluetooth is

an older technology that was originally introduced by Ericsson in 1994. The technol-

ogy standard has undergone several revisions, including the latest 4.0 standard that

introduces a low energy variant of the technology. Bluetooth Low Energy (Bluetooth

LE) improves on the traditional Bluetooth technology by providing similar range

with a fraction of the power consumption. The one downside to most Bluetooth and
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Bluetooth LE devices is that the antenna is typically on-chip or ceramic based since

most Bluetooth networks do not have extended ranges. Unfortunately, it is desirable

to locate the wireless communication bridge inside the EVSE enclosure for security

purposes. Most EVSE enclosures are metallic which poses a problem with wire-

less communications. Even though Bluetooth would provide a great communication

medium due to its built-in security features such as a stream cipher for encryption

and a shared secret password for authentication, other wireless infrastructures were

considered.

2. ZigBee

ZigBee, or IEEE 802.15.4, is a low-cost, low-power wireless mesh based com-

munication technology developed specifically for sensor and control networks that do

not require high data rates. ZigBee is a common communication technology utilized

in smart grid applications for that reason. Most smart grid applications utilize ZigBee

because of its simplicity and ease of use. Unlike Bluetooth which operates strictly in

the 2.4 GHz band, ZigBee can operate in 3 different bands including 2.4 GHz, 900

MHz, and 868 MHz [85]. The lower frequency variants have increased range between

nodes. Additionally, ZigBee can support up to 65,000 nodes per network as opposed

to Bluetooth that can only support up to 8 nodes per piconet due to its 3-bit address-

ing. Comparatively, ZigBee has a lower power consumption than Bluetooth as well.

However this is not a factor with the introduction of Bluetooth LE as these devices

use a similar amount of power as ZigBee devices [83].
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FIGURE 55: ZigBee mesh network [86].

Figure 55 represents a typical ZigBee mesh network. ZigBee nodes can be

one of two types: a Coordinator or a Router. Every ZigBee network must have 1

coordinator device that can manage addressing and control the addition or removal

of network nodes. Any node can send or receive data or act as a router and route data

packets through the node. Any node can be added or removed from the network at

any point as long as the coordinator is powered on and active. If the coordinator node

is removed or powered down, the network will still function as normal, however nodes

cannot be added or removed. Each node can be configured with a static PAN ID,

or network identifier, or it can be set to automatically attach to the nearest ZigBee

network. In addition to the 16-bit PAN ID, each node must be configured with its

own 16-bit address.

ZigBee also has several benefits related to data and network security. Nodes

can be configured so that PAN identification is kept hidden. This will help prevent
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unauthorized nodes from joining. Additionally, ZigBee provides a block cipher for

encryption of transmitted data and utilizes a CBC-MAC (cipher block chaining mes-

sage authentication code) for authentication of messages. These security measures

are similar to wireless ethernet protocols.

3. Wi-Fi (Wireless Ethernet)

Finally, wireless Ethernet is also an option for the communication infrastruc-

ture of the PMCS. Wireless Ethernet networks are prolific and translational bridges

are plentiful as well. Wireless Ethernet, or Wi-Fi, typically operates on the 2.4 and

5 GHz spectrums. There are several variants of Wi-Fi including: 802.11a, 802.11b,

802.11g, 802.11n, and 802.11ac just to name a few. These provide faster communi-

cation speeds that range from 10 Mbps up to over 100 Mbps. Wi-Fi networks tend

to operate over larger areas as well. Whereas Bluetooth and ZigBee networks were

typically limited to shorter transmission ranges, such as 10 to 50 meters, Wi-Fi can

extend beyond 100 meters.

FIGURE 56: Typical Wi-Fi network showing relationship between BSS and ESS [87].

The basic building block of a Wi-Fi network is the Basic Service Set (BSS).
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This encompasses a single access point and several nodes that connect to that access

point. Similar to Bluetooth, a BSS can be connected to another BSS through a

router to form an Extender Service Set (ESS). This relationship is depicted in Figure

56. With an ESS, nodes can traverse from one BSS to another without dropping

connection or requiring a node to re-join the network.

As stated previously, Wi-Fi is prolific and almost all portable devices today

are Wi-Fi compatible. This poses a problem in that it is desired for the PMCS to

be a stand-alone network for security purposes. With Wi-Fi networks at commercial

locations such as college campuses and shopping centers, Wi-Fi would give the option

to add EVSE and vehicle nodes directly to a production network. However most

network administrators frown on this for fears of security risks that are added to

the production network. Also, adding Wi-Fi capabilities in remote locations such as

parking garages and parking lots may not be feasible for some.

4. Discussion of Wireless Technology Chosen

Cost is an extremely important factor when choosing a wireless technology for

practical implementation of the PMCS. As previously stated, wired ethernet typi-

cally has a monthly service fee associated with it for large commercial networks. For

example, at the University of Louisville an ethernet drop has an initial cost of approx-

imately $100 and also has a recurring monthly service charge of $10. This cost is not

scalable for large deployments of EV charging infrastructure. Comparatively Wi-Fi

has an initial cost of around $50 with no recurring monthly service charge. ZigBee
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has an initial cost of $25 per node and Bluetooth has an initial cost of $20 to $30 per

node. Neither ZigBee nor Bluetooth have recurring monthly service charges. Of the

various wireless technologies listed here, ZigBee has the lowest relative cost, especially

when wireless range is considered. ZigBee is the only networking technology of the

four considered that has a range longer than 300ft. The ZigBee modules utilized for

implementation have an effective range of 1600 meters with direct line-of-sight.

The PMCS outlined in this dissertation utilizes a number of networking tech-

nologies to interconnect nodes to the controller while attempting to minimize net-

working costs. Wi-Fi is utilized as the primary connection to the master controller

unit from the production network. The master controller uses this connection for

communication with internet connected sensors and databases which are accessed by

the data collection module of the PMCS. The Wi-Fi link also provides a gateway for

the user interface that is responsible for monitoring and management of the PMCS.

For security purposes, the PMCS does not utilize Wi-Fi for connecting EVSE nodes

of vehicle nodes to the PMCS.
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FIGURE 57: DTK RS-232 to ZigBee translational bridge [86].

Instead, the PMCS communicates to EVSE and vehicle nodes through a wire-

less serial interface. DB-9 RS-232 wired interfaces are utilized within each EVSE to

communicate with the EVSE controller board which provides access to power moni-

toring, and control of the electrical contactor. Due to the physical limitations of the

RS-232 protocol and hardware, wireless ZigBee translational bridges are used at each

EVSE to convert the RS-232 connection to a wireless ZigBee connection. ZigBee was

chosen due to its low cost and because it is commonly used in smart grid applications.

The ZigBee bridges shown in Figure 57 act as nodes on a mesh network that

is formed between the various devices connected. Since each EVSE has its own serial

address, a broadcast command sent from the PMCS controller will traverse the entire

ZigBee network to every node, but only the node with the corresponding address will

respond with the desired information. Additionally, vehicle nodes are connected to

the ZigBee mesh network through ZigBee to OBDII adapters. Figure 58 shows the
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ZigBee to OBDII adapters utilized with the PMCS. These OBDII adapters allow the

PMCS to collect state of charge data from connected EVs for use in the prioritization

algorithm. Also shown in Figure 58 is a USB node that can be used to connect

directly to the vehicle though a laptop PC if the EV owner prefers to monitor data

without the use of the PMCS.

FIGURE 58: OBDII to ZigBee adapter for vehicle nodes.

Due to the multitude of communication technologies used in the PMCS, ad-

dressing is a very important aspect of the design to ensure reliable delivery of data

and control of charging. By default, the PAN ID for the ZigBee wireless network is

set to 0x199B on the ZigBee to RS-232 bridge devices. This was changed to 0x1000

to help deter the possibility of someone connecting to the PMCS network inadver-

tently. 16 bit ZigBee addresses are assigned at random by the coordinator as these

appear transparent to the overall function of the wireless network. The 16 bit ZigBee

addresses are only used by the routers and coordinator to pass data throughout the

mesh network. 8 bit serial addresses are configured on every EVSE controller board
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as shown in Figure 59. When commands are sent from the PMCS controller, these

serial addresses are used to send commands to a given network node. The command

is flooded across the mesh network, but only the station with the designates serial

address will respond to the command. When the EVSE responds, the data is sent

directly to the PMCS controller master node.

FIGURE 59: ZigBee network showing serial addressing.
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D. Discussion of Cyber Security Risks

With any network, there are a number of cyber security risks that must be

addressed. This section will address the security risks associated with the PMCS and

will describe how these risks are avoided or prevented. In the case of the PMCS it is

important to not only protect the data collected, but also the user experience of the

control system. It is also important to ensure that security breaches to commercial

and industrial networks are not facilitated by the PMCS since it does connect to

these networks for data collection purposes. The PMCS collects valuable data such

as energy usage profiles, and vehicle arrival patterns. Protecting this data from

intruders is important to ensure the safety and security of patrons utilizing the EVSE

infrastructure and the electric ratepayer. Furthermore, since the PMCS provides

control of EV charging activity, it is possible for an attacker to take control and

disable or enable charging activity during periods that would result in incomplete

charge levels for EVs or increases in peak electrical demand. Therefore preventing

such attacks and security breaches is important for the PMCS and must be considered.

The communication technologies utilized by the PMCS were chosen in an at-

tempt to limit the possibility of a cyber security attack. Default protection levels

provided by the communication technologies themselves were considered adequate for

the PMCS. WPA2 enterprise Wi-Fi security for communication with the production

network is utilized to prevent security breaches between the PMCS and the wireless
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Ethernet production network. Counter mode AES block ciphers are used to encrypt

data transmitted over the ZigBee mesh network, along with CBC-MAC authenti-

cation protocols, and a 16-bit Cyclic Redundancy Check (CRC) for data integrity.

Wired communication technologies used are located within the EVSE enclosure to

prevent unauthorized access. No additional cyber security measures were taken due

to the robustness of the existing measures within the communication technologies and

mediums utilized.
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CHAPTER VI

RESULTS, CONCLUSIONS AND FUTURE WORK

At the start of this research, a problem statement was formulated noting that

EV charging is not scalable due to resultant increases in electricity demand peaks

and associated communication costs, which will significantly increase the total cost of

charging for commercial or industrial time-of-day electric ratepayers. The hypothesis

drafted states that an accurate forecast of electricity demand with minimal error,

along with a prioritization algorithm and control system, will significantly minimize

the total cost of EV charging. This hypothesis has held true for the PMCS detailed

in this work.

The novel power monitoring and control system developed in Chapter IV has

been simulated and demonstrated with positive results. Significant reductions in

electrical cost can be realized by intelligently scheduling charging activity around

demand peaks. In addition to the significant simulation results, the power monitoring

and control system has also been implemented in an electric vehicle charging testbed

at the University of Louisville for further testing. Through implementation of this

system, meaningful data has been collected to supplement proof of the benefits of

such a system for EV charging hubs. Simulation data cannot predict abnormalities

that may happen in a real life scenario, so the installation of the system is critical for

testing purposes. All objectives outlined in chapter I have been achieved.
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This chapter will outline the testing and simulation results as well as display

results that have been collected after implementing the power monitoring and con-

trol system into the EV charging testbed. Conclusions will be drawn regarding the

operation of the control system and suggestions will be made for future studies to

be conducted. Significant benefits to the electric utility, the C&I electric ratepayer,

and the EV owner are achieved by taking advantage of the relatively short charge

cycles of typical PHEVs. Charging availability is maximized throughout the day and

is only disabled when demand peaks occur for the billing period. Consequently, by

avoiding charging when peaks occur in electrical demand, the cost of electricity per

unit is significantly reduced.

A. Key Accomplishments

The following list is a summary of the key accomplishments achieved through-

out the design, simulation and testing, and implementation of the power monitoring

and control system.

� Increases in electrical demand due to EV charging activity are limited to the

error in the forecasting algorithm.

� The total cost of EV charging activity in C&I environments was reduced by

nearly 90%.

� An accurate forecasting algorithm was developed limiting mean absolute percent

error to +/- 0.02% in a best-case scenario. This results in a mean absolute error

of 3 to 10 kVA.
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� A prioritization algorithm was implemented to create a fair charging experience

for all electric vehicles connected and charging.

� A simulated annealing scheduling algorithm was developed that minimizes total

processing time to an optimal result for cases where number of EVs is much

greater that total EVSE availability. The optimal result was determined by

solving a mixed integer programming model.

� The final power monitoring and control system design was implemented into

EV charging testbed at the University of Louisville.

� A database was formed containing several months of test data.

� Operation of the PMCS was verified to limit demand peaks and minimize ad-

ditional cost of charging activity.

� Communication / IT costs minimized by avoiding wired and wireless ethernet.

� Adequate cyber security measures were implemented to protect data and pre-

vent tampering with the control system.

� Over 5000 lines of code were written in Matlab software in order to simulate

and implement various algorithms required by PMCS.

B. Results of Study

The power monitoring and control system for EV charging activity has pro-

vided optimistic and promising results from both simulations ran, and practical im-
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plementation of the system in the University of Louisville EV charging testbed. This

section will discuss these results and aims to prove the value of such a control system.

Simulations and implementable versions of the various algorithms were written in the

Matlab software suite [67].

The PMCS was implemented at the University of Louisville utilizing a collec-

tion of 6 level II GE DuraStation [44] EV chargers and test results were collected

over the course of this research work. A new EVSE firmware was developed by GE

engineers to allow communication with and addressing of each charging station. Ad-

ditionally, one of the GE DuraStation charging stations was modified by the addition

of a PC to run the PMCS algorithms. The PC runs the forecasting and scheduling

algorithms every 15 minutes and sends control signals to the 6 charging stations as

required. Figure 60 shows the modifications made to the GE DuraStation to allow

implementation of the PMCS algorithms. The PC was mounted inside the enclosure

and Wi-Fi antennas were added to provide access to the internet. If Figure 60, the PC

can be seen on the right behind a protective plastic shield, and is circled for clarity.
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FIGURE 60: Modifications made to the GE DuraStation to allow implementation of

the PMCS.

The resulting reduction in electric cost is dependent on a highly accurate elec-

trical demand forecast. A number of forecasting algorithms were studied and com-

pared to determine the best performance. Table 8 in Chapter IV shows a quantitative

comparison of the performance of the forecasting algorithms studied. Results shown

in that table were computed using a large test data set of approximately five months

of data. Half of the data set was used for training, a quarter was used for verification,

and the remainder was used for testing performance. The neural network with added

averaging function provided the smallest mean absolute percent error of 1.26%. When

implemented into the PMCS, the forecasting algorithm was converted to a short term
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forecast that is re-trained every 15 minutes and an accurate forecast is provided. By

re-training the artificial neural network, significant reductions in forecast error were

achieved.

Figure 61 shows the results of the forecasting algorithm for a one week time

span in September 2014. The top plot represents the forecasted electrical demand and

the corresponding actual demand as measured during the following 15 minute demand

interval. The bottom plot summarizes the EVSE availability forecast. The testbed

in which the algorithms were implemented contains six level II charging stations, so

the horizontal line in the bottom plot of Figure 61 is set at six stations. Any time

the forecast dips below this line, the forecast is marked with a red star. Negative

forecasts represent a new demand peak and zero EVSE availability.

FIGURE 61: Forecasting results collected from PMCS after implementation at Uni-

versity of Louisville.
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It can be seen that there are 3 days where the peak was experienced. During

those days, there was a total of 21 15-minute intervals where charging was completely

disabled. These periods are noted by a red star. This was equivalent to a total of 5.25

hours over the course of those three days where charging was disabled. The following

week, which is not shown in Figure 61, was cooler and total electrical demand was

less resulting in 0 demand intervals where charging was disabled.

The forecasting algorithm output shown in the top plot of Figure availforecast

has an error associated with it as can be seen by the minor differences between the two

data sets shown. The total error is calculated by finding the mean absolute percent

difference between the forecasted electrical demand and the actual electrical demand

as measured in the following 15 minute demand interval. Figure 62 represents the

error calculated for the data set shown in Figure 61.

FIGURE 62: Forecasting algorithm percentage error for short-term forecast.
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Due to the sinusoidal nature of electrical demand for the majority of com-

mercial and industrial electric ratepayers, the demand peak falls within the typical

demand windows set fourth by utility billing structures. Therefore, if EV charging

activity occurs outside of the demand peak, no increases will be experienced in the

demand charge as this is affected by the base electrical load only and not the EV

infrastructure. However, forecasting error presents a possibility for EV charging ac-

tivity to affect the electrical demand charge, however this is minimal compared to the

uncontrolled charging scenario detailed in Table 1 of Chapter I. Through examination

of the data collected after implementation of the PMCS, it was found that October

2014 provided the worst error of all months in the data set. The increase in error

for October 2014 is due to the fact that September 2014 was unseasonably warm and

humid and October was drastically different with unseasonably cool temperatures.

This major drop off in temperature resulted in rare abnormalities in the electrical

demand for October. Figure 63 shows the mean absolute percent error for all data

points collected throughout the month of October 2014.
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FIGURE 63: Mean absolute percent error for electrical demand forecast in October

2014.

The worst case MAPE in October 2014 of 0.0604% was then used to calculate

the resultant electrical demand increase and associated costs. This error would be

the only contributing factor for EV charging to affect the demand cost and resulting

electrical costs, unless the control algorithm is overridden by a system administrator.

Using the mean electrical demand for October 2014 of 7329 kVA, the mean absolute

error due to the forecast is calculated to be 4.426 kVA. Assuming this error occurred

during a peak demand event, and using the electrical rate structure for the University

of Louisville, the resultant increase in electrical demand costs would be $61.71. Using

this demand cost and associated electrical energy costs due to EV charging, the total

cost of charging can be calculated. This is shown in Tables 14 through 16. Table 14

shows the effects uncontrolled charging can have on the electrical demand costs. Table

15 represents those same costs after the PMCS is implemented. Increases in electrical

148



TABLE 14

Calculated cost of uncontrolled charging activity.

Number of C&I Energy C&I Demand C&I Total

EVs Cost Cost Cost

1 $6.34 $51.58 $57.92

10 $63.40 $515.78 $579.18

100 $633.98 $5,157.80 $5,791.78

1000 $6,339.84 $51,578.00 $57,917.84

demand costs shown in this table are due to the forecasting error as calculated. Finally

Table 16 compares the two total costs for uncontrolled and controlled EV charging.

Significant reductions of nearly 90% are achieved as the penetration of EVs continues

to grow.

Charge scheduling and prioritization is another primary piece of the PMCS.

The charge prioritization module has no significant direct impact on the charging

process other than the possibility to extend some charge times by 15 minutes to

an hour depending on the size of possible electrical demand peaks that can occur.

Therefore, no data was collected regarding the prioritization process during the im-

plementation phase. Additionally, the scheduling algorithms presented in Chapter

IV were not implemented at the University of Louisville due to lack of need for such

an algorithm. Results for the scheduling and prioritization module are limited to

simulations presented in Chapter IV.
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TABLE 15

Calculated cost of controlled charging activity with forecast error considered.

Number of C&I Energy C&I Demand C&I Total

EVs Cost Cost Cost

1 $6.34 $61.71 $68.05

10 $63.40 $61.71 $125.11

100 $633.98 $61.71 $695.69

1000 $6,339.84 $61.71 $6,401.55

TABLE 16

Comparison of total cost of charging.

Number of Uncontrolled Controlled Percent

EVs Cost Increase Cost Increase Difference

1 $57.92 $68.05 -17.49%

10 $579.18 $125.11 78.40%

100 $5,791.78 $695.69 87.99%

1000 $57,917.84 $6,401.55 88.95%
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As the wireless ZigBee communication infrastructure is added to other charg-

ing stations, the capabilities of the PMCS can be expanded to their intended state.

Nonetheless, implementing the power monitoring and control system into the EV

charging testbed at the University of Louisville has provided valuable data to ver-

ify the simulations run throughout the development of the PMCS. The PMCS has

proven to be a novel and intelligent control system that limits electrical demand

increases therefore resulting in lower electrical costs to the commercial or industrial

electric ratepayer. EVSE availability is maximized without increasing cost of daytime

charging at the workplace.

C. Suggestions for Future Work

There are several directions possible for future research related to the power

monitoring and control system for EV charging activity. One such direction is to study

other possible control methods such as model predictive control. The approach taken

in this work was to subdivide the PMCS into a number of components, including:

data collection, forecasting, scheduling, and control, and then find the best solution

for each component individually. Other control system approaches such as model

predictive control may provide similar or better results with a strategy that is much

less complex.

The final forecasting model could be tuned to provide better performance.

Resultant increases in electrical demand costs are a direct consequence of forecasting

error. Figure 62 shows that the mean absolute percent error is quite small. However,

151



the standard distribution of this error is still quite large. If the electrical demand

forecast can be more accurate, the PMCS would benefit from lower operational costs.

Furthermore, the EVSE availability is a calculated value that is based on the electrical

demand forecast, therefore magnifying any error that is encountered. If this value

can be a direct output of the forecasting algorithm, rather than a calculated result,

improvements in error of EVSE availability can also be achieved.

Another area for future work is to develop a better user interface that can be

installed on smart internet-enabled phones or accessed through the internet. This user

interface could provide scheduling so EV owners could reserve a time slot throughout

the day at a given EVSE. It could also inform EV owners of EVSE availability, and

keep track of driving habits and statistics. A better user interface could also notify

EV owners when a charge cycle is complete or notify them when peak demand events

occur that may temporarily disable charging capability. EV owners could generate

a user profile that specifies state of charge required by the end of the charging cycle

in the event that 100% battery capacity is not required. Additionally, the profile

could specify times when the EV charge cycle must be complete. The profile could

be beneficial to the scheduling and prioritization module of the PMCS.

Expanding the capabilities of the PMCS to handle EV charging facilities in

multiple locations that may be separated by distances too far for traditional ZigBee

wireless networking to reach is another future direction that should be studied. This

could be completed by adding an internet or cellular interface to the EVSE nodes.

This would allow for EV charging stations to me managed from any location. For

example, a large metropolitan college with several campuses located in a city may
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choose to have EVSE available on each campus, but may wish to have a single mas-

ter controller that can monitor and control all stations simultaneously. Or another

example could be a restaurant chain that has locations throughout the United States

but wants to make EV charging available to their patrons. Patrons could use the web

interface to check for availability and schedule charging windows at any location.

A fourth area for future work would be to expand the capabilities of the PMCS

to work with EVSE from various manufacturers. Currently, the PMCS is designed to

work with the General Electric EVSE, however a universal node may be designed that

can work with any EVSE, regardless of the manufacturer. This could be a universal

wireless or cellular device that simply attaches to any charging station and controls

the power flow to the vehicle through an electrical contact. For the PMCS to be a

marketable solution, a universal node would be required.

Research could be completed to search for other applications that may benefit

from such a technology. For example, large industrial businesses that have significant

electric forklift fleets may benefit from a system similar to the PMCS. For example,

at the end of a shift, all electric forklifts are parked and plugged in to charge. This

surge in electrical demand can create new demand peaks which result in significant

increases in electricity prices per unit. A system such as the PMCS could control and

schedule charging to minimize the effects caused by plugging in all forklifts at once.

Finally, one last area that would be of value to the PMCS is to implement

Vehicle-to-Grid (V2G) and Vehicle-to-Vehicle (V2V) charge sharing technologies.

Currently, the power electronics installed in plug-in hybrid electric vehicles only al-

low for one way flow of electrical power from the grid to the battery system. If these
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power electronics could be modified to allow two way power flow, PHEVs could be

utilized for large scale grid energy storage. This would be beneficial to help minimize

demand peaks and shift electrical loads to level electrical demand profiles. V2V would

be beneficial to the PMCS because vehicles requiring charge during peak demand pe-

riods could receive power from other vehicles that are already fully charged or may

not require a full charge until later.

Each of these future directions could be extremely valuable to the future de-

velopment of the PMCS. There are numerous possibilities for the PMCS as it lays

the foundation required for several other possible smart grid technologies.
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APPENDICES I

Matlab urlread auth m-file

1 function [s,info] = urlread auth(url, user, password)

2 %URLREAD AUTH Like URLREAD, with basic authentication

3 %

4 % [s,info] = urlread auth(url, user, password)

5 %

6 % Returns bytes. Convert to char if you're retrieving text.

7 %

8 % Examples:

9 % sampleUrl = 'http://browserspy.dk/password-ok.php';

10 % [s,info] = urlread auth(sampleUrl, 'test', 'test');

11 % txt = char(s)

12

13 % Matlab's urlread() doesn't do HTTP Request params, so work

14 % directly with Java

15 jUrl = java.net.URL(url);

16 conn = jUrl.openConnection();

17 conn.setRequestProperty('Authorization',...

18 ['Basic ' base64encode([user ':' password])]);

19 conn.connect();

20 info.status = conn.getResponseCode();
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21 info.errMsg = char(readstream(conn.getErrorStream()));

22 s = readstream(conn.getInputStream());

23

24 function out = base64encode(str)

25 % Uses Sun-specific class, but we know that is the JVM Matlab uses

26 encoder = sun.misc.BASE64Encoder();

27 out = char(encoder.encode(java.lang.String(str).getBytes()));

28

29 %%

30 function out = readstream(inStream)

31 %READSTREAM Read all bytes from stream to uint8

32 try

33 import com.mathworks.mlwidgets.io.InterruptibleStreamCopier;

34 byteStream = java.io.ByteArrayOutputStream();

35 isc = InterruptibleStreamCopier.getInterruptibleStreamCopier();

36 isc.copyStream(inStream, byteStream);

37 inStream.close();

38 byteStream.close();

39 out = typecast(byteStream.toByteArray', 'uint8'); %'

40 catch err

41 out = []; %HACK: quash

42 end

163



APPENDICES II

Combined Matlab m-file Including Data Collection and Forecasting Modules

1 clc

2 clear all

3 load('TestData.mat')

4 %%

5 % Gather Information and update database

6

7 % Steam Plant Power (in VA)

8 Url = 'http://136.165.235.192/text/query/props?/BelknapES/...

9 Steam Cw Plant/CBank Plant/Data/Apparent Power.presentValue';

10 [s] = urlread auth(Url, 'speed', 'speed');

11 readstring = char(s);

12 SteamCW VA Demand=str2num(readstring(1:length(readstring)-4));

13

14 % Campus Power (in VA)

15 Url = 'http://136.165.235.192/text/query/props?/BelknapES/...

16 Steam Cw Plant/CBank Campus/Data/Apparent Power.presentValue';

17 [s] = urlread auth(Url, 'speed', 'speed');

18 readstring = char(s);

19 Campus VA Demand=str2num(readstring(1:length(readstring)-4));

20
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21 Total Power=SteamCW VA Demand+Campus VA Demand;

22

23 % read in time and date

24 date time=clock;

25 D=[num2str(date time(1)) '-' num2str(date time(2)) '-' ...

26 num2str(date time(3))];

27 dayofweek=weekday(D);

28

29 % Read in temperature

30 Url = 'http://136.165.235.192/text/query/props?/BelknapES/...

31 Natatorium Graphics/HtgClg Systems/CHWS/Data/OaT.presentValue';

32 [s] = urlread auth(Url, 'speed', 'speed');

33 readstring = char(s);

34 temp=str2num(readstring(1:length(readstring)-3)); %#ok<ST2NM>

35

36 % Read in dewpoint

37 Url = 'http://136.165.235.192/text/query/props?/BelknapES/...

38 Natatorium Graphics/HtgClg Systems/CHWS/Data/OaRh.presentValue';

39 [s] = urlread auth(Url, 'speed', 'speed');

40 readstring = char(s);

41 relhum=str2num(readstring(1:length(readstring)-3)); %#ok<ST2NM>

42 % calculate dewpoint from relative humidity

43 dewpoint=243.04*(log(relhum/100)+((17.625*temp)/(243.04+temp)))...

44 /(17.625-log(relhum/100)-((17.625*temp)/(243.04+temp)));

45

46 %Get last power and 2 hour average power readings from database

47 Last Power=data(end,8);
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48 Power Avg=mean(data(end-7:end,8));

49

50 % Generate vector of present readings

51 present readings=[date time(2:5),dayofweek,temp,dewpoint,...

52 Total Power,Last Power,Power Avg];

53

54 % Manipulate database of 9001 elements (approx 3 months)

55 data(1:9000,:)=data(2:9001,:); %shift elements

56 data(9001,1:10)=present readings; %add new readings

57

58 datatarget(1:9000,1)=datatarget(2:9001,1); %shift training targets

59 datatarget(9000,1)=Total Power; %Add last power reading for target

60 datatarget(9001,1)=0; %Next power reading will be taken at next int.

61

62 %calculate max power for this billing period

63 clear data subset;

64 clear data index;

65 if date time(3)==1 %if first day of month

66 % max demand is 85% of max demand from previous month

67 if date time(2)-1==0

68 month=12;

69 else

70 month=date time(2)-1;

71 end

72 data index=(data(:,1)==month);

73 data subset=data(data index,:);

74 max demand=0.85*max(data subset(:,8));
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75 else

76 % calculate max demand for current month

77 data index=(data(:,1)==date time(2));

78 data subset=data(data index,:);

79 max demand=max(data subset(:,8));

80 end

81

82 %%

83 % Generate forecast of short term electric demand

84

85 % This script assumes these variables are defined:

86 % data - input data.

87 % datatarget - target data.

88

89 inputs = data(1:9000,:)';

90 targets = datatarget(1:9000,1)';

91

92 % Create a Fitting Network

93 hiddenLayerSize = 30;

94 net = fitnet(hiddenLayerSize);

95

96 % Choose Input and Output Pre/Post-Processing Functions

97 % For a list of all processing functions type: help nnprocess

98 net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'};

99 net.outputs{2}.processFcns = {'removeconstantrows','mapminmax'};

100

101
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102 % Setup Division of Data for Training, Validation, Testing

103 % For a list of all data division functions type: help nndivide

104 net.divideFcn = 'dividerand'; % Divide data randomly

105 net.divideMode = 'sample'; % Divide up every sample

106 net.divideParam.trainRatio = 70/100;

107 net.divideParam.valRatio = 15/100;

108 net.divideParam.testRatio = 15/100;

109

110 % For help on training function 'trainlm' type: help trainlm

111 % For a list of all training functions type: help nntrain

112 net.trainFcn = 'trainlm'; % Levenberg-Marquardt

113

114 % Choose a Performance Function

115 % For a list of all performance functions type: help nnperformance

116 net.performFcn = 'mse'; % Mean squared error

117

118 % Choose Plot Functions

119 % For a list of all plot functions type: help nnplot

120 net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ...

121 'plotregression', 'plotfit'};

122

123

124 % Train the Network

125 net.trainParam.showWindow = false; % comment to see the NN train. perf.

126 [net,tr] = train(net,inputs,targets);

127

128 % Test the Network

168



129 outputs = net(inputs);

130 errors = gsubtract(targets,outputs);

131 performance = perform(net,targets,outputs);

132

133 % Recalculate Training, Validation and Test Performance

134 trainTargets = targets .* tr.trainMask{1};

135 valTargets = targets .* tr.valMask{1};

136 testTargets = targets .* tr.testMask{1};

137 trainPerformance = perform(net,trainTargets,outputs); %uncomment

138 valPerformance = perform(net,valTargets,outputs); %uncomment

139 testPerformance = perform(net,testTargets,outputs); %uncomment

140

141 % View the Network

142 %view(net); %uncomment

143

144 % Plots

145 % Uncomment these lines to enable various plots.

146 %figure, plotperform(tr)

147 %figure, plottrainstate(tr)

148 %figure, plotfit(net,inputs,targets)

149 %figure, plotregression(targets,outputs)

150 %figure, ploterrhist(errors)

151

152 % [n,x]=hist(errors,128);

153 % plot(x,n)

154 % err = targets-outputs;

155 % errpct = abs(err)./targets*100;
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156 % MAE = mean(abs(err))

157 % MAPE = mean(errpct(~isinf(errpct)))

158 % figure;

159 % hold on;

160 % plot(nntargetnew, 'b')

161 % plot(outputs, 'r')

162

163

164 %%

165 % Determine number of charging stations allowed to be active

166

167 next demand value=net(data(9001,:)')

168 num stations=(max demand-next demand value)/3.3

169 data(9001,11)=next demand value;

170 data(9001,12)=num stations;

171

172 %%

173 % Run Scheduling Algorithm if #vehicles > #stations

174

175 % *** Scheduling Algorithm here *** %

176

177 %%

178 % Send control signals to stations

179

180 % *** Serial Communication Algorithm here *** %

181

182 clearvars -except data datatarget max demand ChargerDemand

170



183 save('TestData')
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APPENDICES III

Non-Preemptive SA Scheduling Algorithm m-file

1 % EV Scheduling Non-Preemptive SA

2

3 %%

4 clearvars -EXCEPT Results ResultsTest time timetest;

5 %close all;

6 clc;

7

8 load('TestData.mat');

9

10 for setupi=1:6

11 %set up number of vehicles

12 numvehicles=setup(1,setupi); % can also use 80 here

13 nummachines=setup(2,setupi);

14 offset=setup(3,setupi);

15 index1=setup(4,setupi);

16 index2=setup(5,setupi);

17 if nummachines==3

18 machinesavail=machines3;

19 elseif nummachines==5

20 machinesavail=machines5;
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21 elseif nummachines==6

22 machinesavail=machines6;

23 else

24 machinesavail=machines20;

25 end

26

27 % Create machine available matrix

28 machines=zeros(nummachines,2);

29 for i=1:96

30 if machinesavail(i)<nummachines

31 numberdown=nummachines-machinesavail(i);

32 for j=1:numberdown

33 if machines(j,1)==0

34 machines(j,1)=i*0.25;

35 else

36 machines(j,1)=machines(j,1);

37 end

38 machines(j,2)=(i+1)*0.25;

39 end

40 end

41 end

42

43 %%

44

45 vehicle=struct('ArrivalTime',{},'SOCReq',{},'ProcessingTime',{},...

46 'ScheduledStart',{},'ScheduledMachine',{},'JobNumber',{},...

47 'DesiredCompletion',{},'DemandDelays',{});
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48

49

50 % Main loop to loop through 10 sets of test data

51 %%

52 for index=index1:index2

53 tic;

54 vehicles=TestData{index};

55

56 numkeep=0;

57

58 % Set up vehicle objects using data structure above

59 for i=1:numvehicles

60 vehicle(i).ArrivalTime=vehicles(i,1);

61 vehicle(i).SOCReq=vehicles(i,2);

62 vehicle(i).ProcessingTime=vehicles(i,4);

63 vehicle(i).ScheduledStart=vehicles(i,3);

64 vehicle(i).DesiredCompletion=vehicles(i,5);

65 vehicle(i).DemandDelays=0;

66 end

67

68

69 mastervehicle=vehicle;

70

71 %%

72 %%

73 % Determine best starting point (multistart)

74 swap=randi([0 10],1,1);
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75 num=100; %Number of entries to create in neighborhood function

76 x=1;

77 neighborhood=cell(num+1,4);

78 for count=1:num

79 vehicle=mastervehicle; %reset vehicle matrix

80 Schedule=zeros(nummachines,3); % 2nd col = total proc. time,

81 % 3rd col is # jobs

82 % 1st column of schedule matrix is machine number:

83 for i=1:nummachines

84 Schedule(i,1)=i;

85 end

86

87 for i=1:numvehicles

88 swap=randi([0 10],1,1);

89 k=5;

90 if swap>=k

91 %generate random machine

92 randmachine=randi([1 nummachines],1,1);

93 starttime=Schedule(randmachine,2);

94

95 % Schedule next job to random machine

96 %update sched start time

97 vehicle(i).ScheduledStart=...

98 max(vehicle(i).ScheduledStart,starttime);

99 %update total proc. time

100 Schedule(randmachine,2)=vehicle(i).ScheduledStart+...

101 vehicle(i).ProcessingTime;
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102 %add 1 job to machine

103 Schedule(randmachine,3)=Schedule(randmachine,3)+1;

104 %define which machine the job is sched at.

105 vehicle(i).ScheduledMachine=randmachine;

106 vehicle(i).JobNumber=Schedule(randmachine,3);

107

108 else

109 % Find machine with least processing time remaining

110 nextavail=min(Schedule(:,2));

111 for j=1:nummachines

112 if Schedule(j,2)==nextavail

113 nextmachine=Schedule(j,1);

114 end

115 end

116

117 % Schedule next job to mach. with least proc. time rem.

118 %update sched start time

119 vehicle(i).ScheduledStart=...

120 max(vehicle(i).ScheduledStart,nextavail);

121 %update total proc. time

122 Schedule(nextmachine,2)=vehicle(i).ScheduledStart+...

123 vehicle(i).ProcessingTime;

124 %add 1 job to machine

125 Schedule(nextmachine,3)=Schedule(nextmachine,3)+1;

126 %define which machine the job is sched at.

127 vehicle(i).ScheduledMachine=nextmachine;

128 vehicle(i).JobNumber=Schedule(nextmachine,3);
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129 end

130 % repeat until all jobs scheduled

131 end

132 %Adjust sched. to account for machines down due to demand charge

133

134 %For each demand interval i, check to see how many machines are avail.

135 % There are 96 demand intervals in 1 day

136

137 vehicleNoDemand=vehicle;

138 TotalIntervalsDelayed=0;

139 for i=1:nummachines

140 intstart=machines(i,1);

141 intend=machines(i,2);

142 for j=1:numvehicles

143 if vehicle(j).ScheduledMachine==i && ...

144 vehicle(j).ScheduledStart<intend && ...

145 vehicle(j).ScheduledStart+...

146 vehicle(j).ProcessingTime>intstart %if job overlaps

147 totaldelay=intend-vehicle(j).ScheduledStart;

148 vehicle(j).ScheduledStart=intend;

149 TotalIntervalsDelayed=TotalIntervalsDelayed+...

150 floor(totaldelay/0.25);

151 % adjust jobs scheduled after job j

152 for k=1:numvehicles

153 if vehicle(k).ScheduledMachine==...

154 vehicle(j).ScheduledMachine && ...

155 vehicle(k).JobNumber>vehicle(j).JobNumber
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156 vehicle(k).ScheduledStart=...

157 vehicle(k).ScheduledStart+totaldelay;

158 end

159 end

160 end

161 end

162 end

163 % Check to see # jobs are not complete due to due date and proc.

164 % time mismatch:

165 ChargeNotComp=0;

166 for i=1:numvehicles

167 if vehicle(i).ScheduledStart+vehicle(i).ProcessingTime>...

168 vehicle(i).DesiredCompletion

169 ChargeNotComp=ChargeNotComp+1;

170 end

171 end

172 LatestChargeStopped=max([vehicle.ScheduledStart]+...

173 [vehicle.ProcessingTime]);

174

175 neighborhood{x,1}=vehicle;

176 neighborhood{x,2}=Schedule;

177 neighborhood{x,3}=ChargeNotComp;

178 neighborhood{x,4}=LatestChargeStopped;

179 neighborhood{x,5}=vehicleNoDemand;

180 x=x+1;

181 end

182 Schedule=zeros(nummachines,3); % 2nd col = total proc. time,
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183 % 3rd col is # jobs

184 % 1st column of schedule matrix is machine number:

185 for i=1:nummachines

186 Schedule(i,1)=i;

187 end

188 vehicle=mastervehicle;

189 for i=1:numvehicles

190 % Find machine with least processing time remaining

191 nextavail=min(Schedule(:,2));

192 for j=1:nummachines

193 if Schedule(j,2)==nextavail

194 nextmachine=Schedule(j,1);

195 end

196 end

197

198 % Schedule next job to machine with least proc. time remaining

199 %update sched start time

200 vehicle(i).ScheduledStart=max(vehicle(i).ScheduledStart,...

201 nextavail);

202 %update total proc. time

203 Schedule(nextmachine,2)=vehicle(i).ScheduledStart+...

204 vehicle(i).ProcessingTime;

205 %add 1 job to machine

206 Schedule(nextmachine,3)=Schedule(nextmachine,3)+1;

207 %define which machine the job is sched at.

208 vehicle(i).ScheduledMachine=nextmachine;

209 vehicle(i).JobNumber=Schedule(nextmachine,3);
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210 end

211 %Adjust sched. for machines that are down due to dem. charge

212

213 %For each demand interval i, check to see # machines are avail.

214 % There are 96 demand intervals in 1 day

215

216 vehicleNoDemand=vehicle;

217 TotalIntervalsDelayed=0;

218 for i=1:nummachines

219 intstart=machines(i,1);

220 intend=machines(i,2);

221 for j=1:numvehicles

222 if vehicle(j).ScheduledMachine==i && ...

223 vehicle(j).ScheduledStart<intend && ...

224 vehicle(j).ScheduledStart+...

225 vehicle(j).ProcessingTime>intstart %if job overlaps

226 totaldelay=intend-vehicle(j).ScheduledStart;

227 vehicle(j).ScheduledStart=intend;

228 TotalIntervalsDelayed=TotalIntervalsDelayed+...

229 floor(totaldelay/0.25);

230 % adjust jobs scheduled after job j

231 for k=1:numvehicles

232 if vehicle(k).ScheduledMachine==...

233 vehicle(j).ScheduledMachine && ...

234 vehicle(k).JobNumber>vehicle(j).JobNumber

235 vehicle(k).ScheduledStart=...

236 vehicle(k).ScheduledStart+totaldelay;
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237 end

238 end

239 end

240 end

241 end

242

243 % Check to see # jobs are not complete due to due date and processing

244 % time mismatch:

245 ChargeNotComp=0;

246 for i=1:numvehicles

247 if vehicle(i).ScheduledStart+vehicle(i).ProcessingTime>...

248 vehicle(i).DesiredCompletion

249 ChargeNotComp=ChargeNotComp+1;

250 end

251 end

252 LatestChargeStopped=max([vehicle.ScheduledStart]+...

253 [vehicle.ProcessingTime]);

254

255 neighborhood{num+1,1}=vehicle;

256 neighborhood{num+1,2}=Schedule;

257 neighborhood{num+1,3}=ChargeNotComp;

258 neighborhood{num+1,4}=LatestChargeStopped;

259 neighborhood{num+1,5}=vehicleNoDemand;

260

261 %%

262 %Sort multiple starting schedules to determine fastest with least

263 %ammount of unfinished jobs
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264 neighborhood=sortrows(neighborhood,3);

265 neighborhood=sortrows(neighborhood,4);

266

267 %Assign best schedule to vehicle matrix.

268 clear vehicle;

269 clear vehicleNoDemand;

270 clear vehiclebackupdemand;

271 vehicle=neighborhood{1,1};

272 vehiclebackupdemand=vehicle;

273 vehicleNoDemand=neighborhood{1,5};

274

275

276 %%

277 %Perform job swapping to try to optimize the solution

278

279 LatestChargeStopped=max([vehicle.ScheduledStart]+...

280 [vehicle.ProcessingTime]);

281

282 vehicle=vehicleNoDemand;

283

284 %Loop through this process n times

285 numswaps=0;

286 n=0;

287 iterations=20000;

288 N=iterations;

289 %Tn=0.61;

290 T0=15;
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291 alpha=-.36;

292 error=100;

293 ebest=LatestChargeStopped;

294 while n<iterations %&& error>0.0001

295 vehiclebackup=vehicle;

296 % make backup of schedule if change is not accepted

297 clear rj1;

298 clear rj2;

299 % Pick random job number 1

300 rj1=randi([1 numvehicles],1,1);

301 rj2=rj1;

302 % Pick random job number 2

303 while rj2==rj1

304 rj2=randi([1 numvehicles],1,1);

305 %verifies that 2nd job is different from first

306 end

307 % Check feasibility of swap

308 if vehicle(rj1).ArrivalTime<=vehicle(rj2).ScheduledStart && ...

309 vehicle(rj2).ArrivalTime<=vehicle(rj1).ScheduledStart

310 % Make swap

311 job1=vehicle(rj1);

312 % temporarily store job info to make swap easier

313 job2=vehicle(rj2);

314 vehicle(rj1).ScheduledMachine=job2.ScheduledMachine;

315 vehicle(rj1).JobNumber=job2.JobNumber;

316 vehicle(rj2).ScheduledMachine=job1.ScheduledMachine;

317 vehicle(rj2).JobNumber=job1.JobNumber;
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318 vehicle(rj1).ScheduledStart=job2.ScheduledStart;

319 vehicle(rj2).ScheduledStart=job1.ScheduledStart;

320

321 % Adjust affected jobs

322 for k=1:numvehicles

323 if vehicle(k).ScheduledMachine==...

324 vehicle(rj1).ScheduledMachine && ...

325 vehicle(k).JobNumber>vehicle(rj1).JobNumber

326 % Find jobs on machine after swapped job

327 vehicle(k).ScheduledStart=...

328 max(vehicle(k).ArrivalTime, ...

329 vehicle(k).ScheduledStart-...

330 (vehicle(rj2).ProcessingTime-...

331 vehicle(rj1).ProcessingTime));

332 end

333 end

334 for k=1:numvehicles

335 if vehicle(k).ScheduledMachine==...

336 vehicle(rj2).ScheduledMachine && ...

337 vehicle(k).JobNumber>vehicle(rj2).JobNumber

338 % Find jobs on machine after swapped job

339 vehicle(k).ScheduledStart=...

340 max(vehicle(k).ArrivalTime, ...

341 vehicle(k).ScheduledStart-...

342 (vehicle(rj1).ProcessingTime-...

343 vehicle(rj2).ProcessingTime));

344 end
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345 end

346

347 vehicleNoDemand=vehicle;

348

349 % Add demand interval delays back in

350 for i=1:nummachines

351 intstart=machines(i,1);

352 intend=machines(i,2);

353 for j=1:numvehicles

354 if vehicle(j).ScheduledMachine==i && ...

355 vehicle(j).ScheduledStart<intend && ...

356 vehicle(j).ScheduledStart+...

357 vehicle(j).ProcessingTime>intstart %if job overlaps

358 totaldelay=intend-vehicle(j).ScheduledStart;

359 vehicle(j).ScheduledStart=intend;

360 % adjust jobs scheduled after job j

361 for k=1:numvehicles

362 if vehicle(k).ScheduledMachine==...

363 vehicle(j).ScheduledMachine && ...

364 vehicle(k).JobNumber>...

365 vehicle(j).JobNumber

366 vehicle(k).ScheduledStart=...

367 vehicle(k).ScheduledStart+totaldelay;

368 end

369 end

370 end

371 end
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372 end

373

374 % Determine whether or not to keep the change

375 % Calculate T

376 T=T0*exp(alpha*n);

377 %T=(T0/Tn)ˆ(n/iterations);

378

379 LatestChargeStoppedNew=max([vehicle.ScheduledStart]+...

380 [vehicle.ProcessingTime]);

381 if LatestChargeStoppedNew<=LatestChargeStopped

382 %Keep Change

383 numswaps=numswaps+1;

384 LatestChargeStopped=LatestChargeStoppedNew;

385 ebest=LatestChargeStopped;

386 vehiclefinal=vehicle;

387 vehicle=vehicleNoDemand;

388 elseif exp(-(LatestChargeStoppedNew-LatestChargeStopped)/T)...

389 >rand(1)

390 % Keep Change

391 numswaps=numswaps+1;

392 LatestChargeStopped=LatestChargeStoppedNew;

393 ebest=LatestChargeStopped;

394 vehiclefinal=vehicle;

395 vehicle=vehicleNoDemand;

396 numkeep=numkeep+1;

397 else

398 % Discard changes

186



399 vehicle=vehiclebackup;

400 clear vehicleNoDemand;

401 end

402

403 end

404 n=n+1;

405 end

406 %vehiclefinal=vehicle;

407 %disp(['The total number of job swaps: ', num2str(numswaps)])

408 ChargeNotComp=0;

409 for i=1:numvehicles

410 if vehicle(i).ScheduledStart+vehicle(i).ProcessingTime>...

411 vehicle(i).DesiredCompletion

412 ChargeNotComp=ChargeNotComp+1;

413 end

414 end

415

416 vehicle=vehiclefinal;

417

418 if numkeep==0

419 clear vehicle;

420 vehicle=vehiclebackupdemand;

421 ebest=max([vehicle.ScheduledStart]+[vehicle.ProcessingTime])

422 disp(['Case: ', num2str((setupi-1)*10+index)])

423 end

424

425 Results{8,index+offset}=ebest-vehicle(1).ArrivalTime; %makespan
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426 Results{9,index+offset}=vehicle;

427 time(4,index+offset)=toc;

428 end

429 end
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APPENDICES IV

Preemptive SA Scheduling Algorithm m-file

1 % EV Scheduling Preemptive SA (jobs can be paused)

2

3 %%

4 clearvars -EXCEPT Results ResultsTest time timetest;

5 %close all;

6 clc;

7

8 load('TestData.mat');

9

10 for setupi=1:6

11 %set up number of vehicles

12 numvehicles=setup(1,setupi); % can also use 80 here

13 nummachines=setup(2,setupi);

14 offset=setup(3,setupi);

15 index1=setup(4,setupi);

16 index2=setup(5,setupi);

17 if nummachines==3

18 machinesavail=machines3;

19 elseif nummachines==5

20 machinesavail=machines5;
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21 elseif nummachines==6

22 machinesavail=machines6;

23 else

24 machinesavail=machines20;

25 end

26

27 %%

28

29 vehicle=struct('ArrivalTime',{},'SOCReq',{},'ProcessingTime',{},...

30 'ScheduledStart',{},'ScheduledMachine',{},'JobNumber',{},...

31 'DesiredCompletion',{},'DemandDelays',{});

32

33

34 % Main loop to loop through 10 sets of test data

35 %%

36 for index=index1:index2

37 tic;

38 vehicles=TestData{index};

39

40 numkeep=0;

41

42 % Set up vehicle objects using data structure above

43 for i=1:numvehicles

44 vehicle(i).ArrivalTime=vehicles(i,1);

45 vehicle(i).SOCReq=vehicles(i,2);

46 vehicle(i).ProcessingTime=vehicles(i,4);

47 vehicle(i).ScheduledStart=vehicles(i,3);
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48 vehicle(i).DesiredCompletion=vehicles(i,5);

49 vehicle(i).DemandDelays=0;

50 end

51

52

53 mastervehicle=vehicle;

54

55 %%

56 %%

57 % Determine best starting point (multistart)

58 swap=randi([0 10],1,1);

59 num=100; %Number of entries to create in neighborhood function

60 x=1;

61 neighborhood=cell(num+1,5);

62 for count=1:num

63 vehicle=mastervehicle; %reset vehicle matrix

64 Schedule=zeros(nummachines,3); % 2nd col = total proc. time,

65 % 3rd col is # jobs

66 % 1st column of schedule matrix is machine number:

67 for i=1:nummachines

68 Schedule(i,1)=i;

69 end

70

71 for i=1:numvehicles

72 swap=randi([0 10],1,1);

73 k=5;

74 if swap>=k
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75 %generate random machine

76 randmachine=randi([1 nummachines],1,1);

77 starttime=Schedule(randmachine,2);

78

79 % Schedule next job to random machine

80 %update sched start time

81 vehicle(i).ScheduledStart=...

82 max(vehicle(i).ScheduledStart,starttime);

83 %update total proc. time

84 Schedule(randmachine,2)=vehicle(i).ScheduledStart+...

85 vehicle(i).ProcessingTime;

86 %add 1 job to machine

87 Schedule(randmachine,3)=Schedule(randmachine,3)+1;

88 %define which machine the job is sched at.

89 vehicle(i).ScheduledMachine=randmachine;

90 vehicle(i).JobNumber=Schedule(randmachine,3);

91

92 else

93 % Find machine with least processing time remaining

94 nextavail=min(Schedule(:,2));

95 for j=1:nummachines

96 if Schedule(j,2)==nextavail

97 nextmachine=Schedule(j,1);

98 end

99 end

100

101 % Schedule next job to machine with least proc. time rem.
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102 %update sched start time

103 vehicle(i).ScheduledStart=...

104 max(vehicle(i).ScheduledStart,nextavail);

105 %update total proc. time

106 Schedule(nextmachine,2)=vehicle(i).ScheduledStart+...

107 vehicle(i).ProcessingTime;

108 %add 1 job to machine

109 Schedule(nextmachine,3)=Schedule(nextmachine,3)+1;

110 %define which machine the job is sched at.

111 vehicle(i).ScheduledMachine=nextmachine;

112 vehicle(i).JobNumber=Schedule(nextmachine,3);

113 end

114 % repeat until all jobs scheduled

115 end

116 %Adjust schedule to account for machines down due to demand charge

117

118 %For each demand interval i, check to see how many machines are avail.

119 % There are 96 demand intervals in 1 day

120

121 vehicleNoDemand=vehicle;

122 TotalIntervalsDelayed=0;

123 for i=1:96

124 if machinesavail(i)~=nummachines

125 numberdown=nummachines-machinesavail(i);

126 % Pick numberdown machines to pause charging

127 % for 1 demand interval (15 minutes)

128 % Look at which jobs currently scheduled during that
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129 % demand interval and see which will be completed first

130 % and add 15 minutes to it.

131 for j=1:numberdown

132 mintimerem=24;

133 for k=1:numvehicles

134 % check to see if job falls in window

135 if vehicle(k).ScheduledStart<=(i/4) && ...

136 vehicle(k).ScheduledStart+...

137 vehicle(k).ProcessingTime>=(i/4)

138 %Find job with least time remaining

139 if vehicle(k).ScheduledStart+...

140 vehicle(k).ProcessingTime-(i/4)<=mintimerem

141 mintimerem=vehicle(k).ScheduledStart+...

142 vehicle(k).ProcessingTime-(i/4);

143 %keep track of job with least time remaining

144 vehicletodelay=k;

145 end

146 end

147 end

148

149 %Update proc. times and properties on affected vehicle

150 vehicle(vehicletodelay).ProcessingTime=...

151 vehicle(vehicletodelay).ProcessingTime+0.25;

152 vehicle(vehicletodelay).DemandDelays=...

153 vehicle(vehicletodelay).DemandDelays+1;

154 TotalIntervalsDelayed=TotalIntervalsDelayed+1;

155 machinenum=vehicle(vehicletodelay).ScheduledMachine;
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156 jobnum=vehicle(vehicletodelay).JobNumber;

157

158 %Delay scheduled start for later jobs on affected machine

159 for k=1:numvehicles

160 if vehicle(k).ScheduledMachine==machinenum && ...

161 vehicle(k).JobNumber>jobnum

162 vehicle(k).ScheduledStart=...

163 vehicle(k).ScheduledStart+.25;

164 end

165 end

166 end

167 end

168 end

169

170 % Check to see # jobs are not complete due to due date and proc.

171 % time mismatch:

172 ChargeNotComp=0;

173 for i=1:numvehicles

174 if vehicle(i).ScheduledStart+vehicle(i).ProcessingTime>...

175 vehicle(i).DesiredCompletion

176 ChargeNotComp=ChargeNotComp+1;

177 end

178 end

179 LatestChargeStopped=max([vehicle.ScheduledStart]+...

180 [vehicle.ProcessingTime]);

181

182 neighborhood{x,1}=vehicle;
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183 neighborhood{x,2}=Schedule;

184 neighborhood{x,3}=ChargeNotComp;

185 neighborhood{x,4}=LatestChargeStopped;

186 neighborhood{x,5}=vehicleNoDemand;

187 x=x+1;

188 end

189 vehicle=mastervehicle;

190 Schedule=zeros(nummachines,3); % 2nd col = total proc. time,

191 % 3rd col is # jobs

192 % 1st column of schedule matrix is machine number:

193 for i=1:nummachines

194 Schedule(i,1)=i;

195 end

196 for i=1:numvehicles

197 % Find machine with least processing time remaining

198 nextavail=min(Schedule(:,2));

199 for j=1:nummachines

200 if Schedule(j,2)==nextavail

201 nextmachine=Schedule(j,1);

202 end

203 end

204

205 % Schedule next job to machine with least proc. time remaining

206 %update sched start time

207 vehicle(i).ScheduledStart=max(vehicle(i).ScheduledStart,nextavail);

208 %update total proc. time

209 Schedule(nextmachine,2)=vehicle(i).ScheduledStart+...
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210 vehicle(i).ProcessingTime;

211 %add 1 job to machine

212 Schedule(nextmachine,3)=Schedule(nextmachine,3)+1;

213 %define which machine the job is sched at.

214 vehicle(i).ScheduledMachine=nextmachine;

215 vehicle(i).JobNumber=Schedule(nextmachine,3);

216 end

217

218

219

220

221 %%

222 %Adjust sched. to account for machines down due to demand charge

223

224 %For each demand interval i, check to see how many machines are avail.

225 % There are 96 demand intervals in 1 day

226

227 vehicleNoDemand=vehicle;

228 TotalIntervalsDelayed=0;

229 for i=1:96

230 if machinesavail(i)~=nummachines

231 numberdown=nummachines-machinesavail(i);

232 % Pick numberdown machines to pause charging

233 % for 1 demand interval (15 minutes)

234 % Look at which jobs currently scheduled during that

235 % demand interval and see which will be completed first

236 % and add 15 minutes to it.
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237 for j=1:numberdown

238 mintimerem=24;

239 for k=1:numvehicles

240 % check to see if job falls in window

241 if vehicle(k).ScheduledStart<=(i/4) && ...

242 vehicle(k).ScheduledStart+...

243 vehicle(k).ProcessingTime>=(i/4)

244 if vehicle(k).ScheduledStart+...

245 vehicle(k).ProcessingTime-(i/4)<=...

246 mintimerem %Find job with least time rem.

247 mintimerem=vehicle(k).ScheduledStart+...

248 vehicle(k).ProcessingTime-(i/4);

249 %keep track of job with least time remaining

250 vehicletodelay=k;

251 end

252 end

253 end

254

255 %Update proc. times and properties on affected vehicle

256 vehicle(vehicletodelay).ProcessingTime=...

257 vehicle(vehicletodelay).ProcessingTime+0.25;

258 vehicle(vehicletodelay).DemandDelays=...

259 vehicle(vehicletodelay).DemandDelays+1;

260 TotalIntervalsDelayed=TotalIntervalsDelayed+1;

261 machinenum=vehicle(vehicletodelay).ScheduledMachine;

262 jobnum=vehicle(vehicletodelay).JobNumber;

263
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264 %Delay scheduled start for later jobs on affected machine

265 for k=1:numvehicles

266 if vehicle(k).ScheduledMachine==machinenum && ...

267 vehicle(k).JobNumber>jobnum

268 vehicle(k).ScheduledStart=...

269 vehicle(k).ScheduledStart+.25;

270 end

271 end

272 end

273 end

274 end

275

276 % Check to see # jobs are not complete due to due date and processing

277 % time mismatch:

278 ChargeNotComp=0;

279 for i=1:numvehicles

280 if vehicle(i).ScheduledStart+vehicle(i).ProcessingTime>...

281 vehicle(i).DesiredCompletion

282 ChargeNotComp=ChargeNotComp+1;

283 end

284 end

285 LatestChargeStopped=max([vehicle.ScheduledStart]+...

286 [vehicle.ProcessingTime]);

287

288

289 neighborhood{num+1,1}=vehicle;

290 neighborhood{num+1,2}=Schedule;
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291 neighborhood{num+1,3}=ChargeNotComp;

292 neighborhood{num+1,4}=LatestChargeStopped;

293 neighborhood{num+1,5}=vehicleNoDemand;

294 %%

295 %Sort multiple starting schedules to determine fastest with least

296 %ammount of unfinished jobs

297 neighborhood=sortrows(neighborhood,3);

298 neighborhood=sortrows(neighborhood,4);

299

300 %Assign best schedule to vehicle matrix.

301 clear vehicle;

302 clear vehicleNoDemand;

303 clear vehiclebackupdemand;

304 vehicle=neighborhood{1,1};

305 vehiclebackupdemand=vehicle;

306 vehicleNoDemand=neighborhood{1,5};

307

308 %%

309 %Perform job swapping to try to optimize the solution

310

311 LatestChargeStopped=max([vehicle.ScheduledStart]+...

312 [vehicle.ProcessingTime]);

313

314 vehicle=vehicleNoDemand;

315

316 %Loop through this process n times

317 numswaps=0;
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318 n=0;

319 iterations=20000;

320 N=iterations;

321 %Tn=0.61;

322 T0=15;

323 alpha=-.36;

324 error=100;

325 ebest=LatestChargeStopped;

326 while n<iterations %&& error>0.0001

327 % make backup of schedule if change is not accepted

328 vehiclebackup=vehicle;

329 clear rj1;

330 clear rj2;

331 % Pick random job number 1

332 rj1=randi([1 numvehicles],1,1);

333 rj2=rj1;

334 % Pick random job number 2

335 while rj2==rj1

336 %verifies that 2nd job is different from first

337 rj2=randi([1 numvehicles],1,1);

338 end

339 % Check feasibility of swap

340 if vehicle(rj1).ArrivalTime<=vehicle(rj2).ScheduledStart && ...

341 vehicle(rj2).ArrivalTime<=vehicle(rj1).ScheduledStart

342 % Make swap

343 job1=vehicle(rj1);% temp. store job info to make swap easier

344 job2=vehicle(rj2);
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345 vehicle(rj1).ScheduledMachine=job2.ScheduledMachine;

346 vehicle(rj1).JobNumber=job2.JobNumber;

347 vehicle(rj2).ScheduledMachine=job1.ScheduledMachine;

348 vehicle(rj2).JobNumber=job1.JobNumber;

349 vehicle(rj1).ScheduledStart=job2.ScheduledStart;

350 vehicle(rj2).ScheduledStart=job1.ScheduledStart;

351

352 % Adjust affected jobs

353 for k=1:numvehicles

354 % Find jobs on machine after swapped job

355 if vehicle(k).ScheduledMachine==...

356 vehicle(rj1).ScheduledMachine && ...

357 vehicle(k).JobNumber>vehicle(rj1).JobNumber

358 vehicle(k).ScheduledStart=...

359 max(vehicle(k).ArrivalTime, ...

360 vehicle(k).ScheduledStart-...

361 (vehicle(rj2).ProcessingTime-...

362 vehicle(rj1).ProcessingTime));

363 end

364 end

365 for k=1:numvehicles

366 % Find jobs on machine after swapped job

367 if vehicle(k).ScheduledMachine==...

368 vehicle(rj2).ScheduledMachine && ...

369 vehicle(k).JobNumber>vehicle(rj2).JobNumber

370 vehicle(k).ScheduledStart=...

371 max(vehicle(k).ArrivalTime, ...
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372 vehicle(k).ScheduledStart-...

373 (vehicle(rj1).ProcessingTime-...

374 vehicle(rj2).ProcessingTime));

375 end

376 end

377

378 vehicleNoDemand=vehicle;

379

380 % Add demand interval delays back in

381 for i=1:96

382 if machinesavail(i)~=nummachines

383 numberdown=nummachines-machinesavail(i);

384 % Pick numberdown machines to pause charging

385 % for 1 demand interval (15 minutes)

386 % Look at which jobs currently scheduled during that

387 % demand interval and see which will be completed

388 % first and add 15 minutes to it.

389 for j=1:numberdown

390 mintimerem=24;

391 for k=1:numvehicles

392 if vehicle(k).ScheduledStart<=(i/4) && ...

393 vehicle(k).ScheduledStart+...

394 vehicle(k).ProcessingTime>=(i/4)

395 % check to see if job falls in window

396 if vehicle(k).ScheduledStart+...

397 vehicle(k).ProcessingTime-...

398 (i/4)<=mintimerem
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399 %Find job with least time remaining

400 mintimerem=...

401 vehicle(k).ScheduledStart+...

402 vehicle(k).ProcessingTime-(i/4);

403 vehicletodelay=k;

404 %keep track of job with least time rem.

405 end

406 end

407 end

408

409 %Update proc. times and props. on affected vehicle

410 vehicle(vehicletodelay).ProcessingTime=...

411 vehicle(vehicletodelay).ProcessingTime+0.25;

412 vehicle(vehicletodelay).DemandDelays=...

413 vehicle(vehicletodelay).DemandDelays+1;

414 TotalIntervalsDelayed=TotalIntervalsDelayed+1;

415 machinenum=vehicle(vehicletodelay).ScheduledMachine;

416 jobnum=vehicle(vehicletodelay).JobNumber;

417

418 %Delay sched. start for later jobs on affected machine

419 for k=1:numvehicles

420 if vehicle(k).ScheduledMachine==...

421 machinenum && vehicle(k).JobNumber>...

422 jobnum

423 vehicle(k).ScheduledStart=...

424 vehicle(k).ScheduledStart+.25;

425 end
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426 end

427 end

428 end

429 end

430

431 % Determine whether or not to keep the change

432

433 % Calculate T

434 T=T0*exp(alpha*n);

435 %T=(T0/Tn)ˆ(n/instances);

436

437 LatestChargeStoppedNew=max([vehicle.ScheduledStart]+...

438 [vehicle.ProcessingTime]);

439 if LatestChargeStoppedNew<=LatestChargeStopped

440 %Keep Change

441 numswaps=numswaps+1;

442 LatestChargeStopped=LatestChargeStoppedNew;

443 ebest=LatestChargeStopped;

444 vehiclefinal=vehicle;

445 vehicle=vehicleNoDemand;

446 elseif exp(-(LatestChargeStoppedNew-...

447 LatestChargeStopped)/T)>rand(1)

448 % Keep Change

449 numswaps=numswaps+1;

450 LatestChargeStopped=LatestChargeStoppedNew;

451 ebest=LatestChargeStopped;

452 vehiclefinal=vehicle;

205



453 vehicle=vehicleNoDemand;

454 numkeep=numkeep+1;

455 else

456 % Discard changes

457 vehicle=vehiclebackup;

458 clear vehicleNoDemand;

459 end

460

461 end

462 n=n+1;

463 end

464 %vehiclefinal=vehicle;

465 %disp(['The total number of job swaps: ', num2str(numswaps)])

466 ChargeNotComp=0;

467 for i=1:numvehicles

468 if vehicle(i).ScheduledStart+vehicle(i).ProcessingTime>...

469 vehicle(i).DesiredCompletion

470 ChargeNotComp=ChargeNotComp+1;

471 end

472 end

473

474 vehicle=vehiclefinal;

475

476 if numkeep==0

477 ebest=max([vehicle.ScheduledStart]+[vehicle.ProcessingTime]);

478 end

479
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480 %ebest=max([vehicle.ScheduledStart]+[vehicle.ProcessingTime]);

481 %disp(['The total makespan is: ', num2str(ebest-vehicle(1).ArrivalTime)])

482

483 Results{16,index+offset}=ebest-vehicle(1).ArrivalTime; %makespan

484 Results{17,index+offset}=vehicle;

485 time(8,index+offset)=toc;

486 end

487 end
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APPENDICES V

Serial Communication with Matlab m-file

1 %The following commands print a hex command to the serial port

2

3 %Assumed Station address of C9 in this example

4 getstat = hex2dec({'02','C9','08','00','31','C9','39','13'});

5 getpower = hex2dec({'02','C9','08','00','38','C9','40','13'});

6 heartbeat = hex2dec({'02','C9','08','00','15','C9','1D','13'});

7 chargeenable = hex2dec({'02','C9','08','00','10','C9','18','13'});

8 chargeauth = hex2dec({'02','C9','08','00','57','C9','5F','13'});

9 chargedisable = hex2dec({'02','C9','08','00','11','C9','19','13'});

10

11 if exist ('s') % variable 's' used to define serial port

12 fclose (s)

13 delete (s)

14 clear s

15 end

16

17 % Get Status or heartbeat request

18 s = serial ('COM7');

19 set(s,'BaudRate',9600);

20 set(s,'InputBufferSize',10);
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21 fopen (s)

22 s.RecordMode = 'index';

23 s.RecordDetail = 'verbose';

24 s.RecordName = 'serialLog.txt';

25 s.Timeout=1;

26 record(s)

27 % replace 'getstat' in following line with 'heartbeat' to request heartbeat

28 fwrite(s,getstat);

29 status = dec2hex(fread(s));

30 fclose(s)

31

32 % Get Power Reading request

33 s = serial ('COM7');

34 set(s,'BaudRate',9600);

35 set(s,'InputBufferSize',12);

36 fopen (s)

37 s.RecordMode = 'index';

38 s.RecordDetail = 'verbose';

39 s.RecordName = 'serialLog.txt';

40 s.Timeout=1;

41 record(s)

42 fwrite(s,getpower);

43 data = dec2hex(fread(s));

44 power=typecast(uint32(hex2dec([data(9,:),data(8,:),data(7,:),...

45 data(6,:)])),'single'); %Conversion

46 fclose(s)

47
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48 % Charge Enable / Disable / Authorize Command

49 s = serial ('COM7');

50 set(s,'BaudRate',9600);

51 set(s,'InputBufferSize',10);

52 fopen (s)

53 s.RecordMode = 'index';

54 s.RecordDetail = 'verbose';

55 s.RecordName = 'serialLog.txt';

56 s.Timeout=1;

57 record(s)

58 % replace 'chargedisable' in following line with 'chargeenable' or

59 % 'chargeauth' to send other commands.

60 fwrite(s,chargedisable);

61 fclose(s)
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