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ABSTRACT 

LUNASIN REDUCES THE MELANOMA STEM CELL POPULATION IN 

VITRO AND INHIBITS TUMOR PROLIFERATION IN VIVO 

Christopher P. Shidal 

October 30, 2014 

Lunasin is a 44 amino acid peptide derived from the soybean seed that has been shown to 

have cancer chemopreventive and chemotherapeutic properties. In this study, we 

investigated the potential utility of lunasin as a chemotherapeutic in a melanoma model.  

Initial studies showed that lunasin has little activity against established melanoma cell 

lines in vitro using adherent culture methods; however, lunasin’s in vitro activity was 

significantly higher in non-adherent colony-forming assays in soft agar and oncosphere 

assays. These results led us to investigate whether lunasin selectively affects cancer 

initiating cells (CIC) that are known to be present in these melanoma cell lines. We found 

that lunasin treatment did selectively inhibit the proliferation of high-ALDH-expressing 

malignant melanoma initiating cells (MMIC) in vitro, and had the striking effect of 

preventing oncosphere formation under non-adherent culture conditions. These in vitro 

results were extended into mouse xenograft studies using both bulk melanoma cells and 

isolated CICs.  Lunasin significantly inhibited tumor growth in both cases, with the 

highest inhibition being observed in tumors initiated by MMICs.   Mechanistic studies 

suggested that lunasin inhibits CIC proliferation in vitro through interactions with 
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integrins and disruption of integrin signaling by inhibiting the activity of integrin binding 

partners such as integrin-linked kinase (ILK) and focal adhesion kinase (FAK).  These  

studies demonstrate for the first time that lunasin has activity against putative CICs and 

that lunasin may have utility as a therapeutic agent for the treatment of melanoma. 
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INTRODUCTION 

Lunasin as an Anticancer Agent 

Lunasin is a soy derived peptide that has demonstrated anticancer, anti-

inflammatory, antioxidant, and immunomodulatory activity [1-4].  Lunasin has been 

reported as a 43 amino acid fragment present in processed 2S albumin protein [5]; 

however, we recently identified a native 44 amino acid sequence of lunasin isolated from 

defatted soy flour consisting of the sequence: 

SKWQHQQDSCRKQLQGVNLTPCEKHIMEKIQGRGDDDDDDDDDN [6].  Lunasin 

has been proposed to have three distinct domains that are responsible for its therapeutic 

and chemopreventive activity: an RGD sequence involved in internalization of the 

peptide via integrin binding, a poly-aspartic acid tail that binds lysine residues present in 

H3 and H4 histone tails, and a hypothesized chromatin binding domain [7, 8].  Limited 

studies describe the direct chemotherapeutic effects of lunasin against cancer as it is 

generally defined as a chemopreventive agent based on earlier studies by de Lumen and 

coworkers [7, 9-12].  Thus, many questions remain about the number of cancer types 

sensitive to lunasin, the possible mechanisms of lunasin’s anticancer effects, and to what 

extent lunasin is involved with the tight correlation of soy consumption with a protective 

effect against certain cancer types [13-15]. 

Lunasin has been found to inhibit transformation induced by multiple carcinogens 

and viral oncogenes [7, 9, 16-18].  Moreover, studies in our lab indicate lunasin is able to 

inhibit transformation of mouse fibroblast cells induced by carcinogens present in 
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cigarette smoke including cadmium and nicotine-derived nitrosamine ketones (data not 

shown).  The most discussed mechanism of action of lunasin is the inhibition of histone 

acetyltransferases (HATs) and modulation of histone acetylation.   

The acetylation of core histones initiates the unwinding of tightly packed DNA 

from the nucleasome complex allowing for transcription of target genes (Figure 1).  HAT 

inhibition alters normal acetylation patterns leading to hypoacetylation of histone tails, 

repressing transcription and can account for global cellular effects including proliferation, 

cell cycling, and apoptosis [19-21].    Although some evidence supports HAT inhibition 

as lunasin’s primary mechanism of action, to date, there have been no functional studies 

to support this hypothesis.  Moreover, as new principal mechanisms of lunasin action are 

still being discovered, it is not clear in the different experimental systems that have been 

studied whether histone acetylation is involved in all cases.    

 Studies in our lab confirm a significant antiproliferative effect of lunasin on non-

small cell lung cancer (NSCLC), an effect which is mediated by disrupting cell cycle 

signaling (McConnell, 2014).  Previous studies have acknowledged that lunasin reduces 

cyclin-dependent kinase (CDK) levels, and may accommodate aspirin-induced apoptosis 

in breast cancer models [22, 23].  Additionally, lunasin was reported to induce apoptosis 

and alter expression of matrix adhesion proteins in metastatic colon cancer [24].  Lunasin 

was recently shown to suppress FAK/ERK/NF-κB signaling in human colon cancer as 

well as potentiate the antiproliferative and antimetastatic effects of oxaliplatin [25].  

 Sadly, many plant-derived compounds (e.g. curcumin) are quickly metabolized 

or excreted resulting in poor bioavailability, however, lunasin is active and bioavailable 

in humans consuming physiologically relevant amounts of soy [26].  In this study, 



3 
 

volunteers were orally dosed with lunasin (155.5 mg/day) in 50 grams (g) soy protein for 

5 consecutive days.  De Mejia et al. revealed lunasin is orally bioavailable; however, 

incomplete GI absorption resulted in a low concentration (71.0 ng/mL or 

approximately14 μM) lunasin in plasma samples [26].  

  Prior studies suggest that lunasin interacts with a specific subset of integrin 

subunits, as supported by a 2012 study by De Meija and coworkers [2].  Furthermore, 

recent studies suggest that internalization of lunasin is mediated by αvβ3 integrins via 

clathrin and caveolin-mediated endocytosis [27].  Proximity ligation assays (PLA) verify 

that the specific integrin subunits αv, α5, β1 and β3 network with the lunasin peptide 

(Inaba and Davis, unpublished data).  In normal cells, integrins mediate cell-cell and cell-

matrix adhesions by recognizing binding motifs (i.e. RGD) as well as cooperating with 

growth factor receptors to induce proliferative and survival signaling [28, 29].  The 

ubiquitous nature of integrin signaling provides an interesting target for cancer 

prevention and treatment because many of these pathways are deregulated in cancer and 

result in uncontrolled proliferation and metastasis.  More specifically, we are interested in 

elucidating the effects of lunasin treatment on downstream pathways associated with 

integrin signaling and how disrupting these pathways can therapeutically benefit 

melanoma patients. 
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Integrins as a targeted therapy in melanoma patients 

Integrins are vital to most cellular processes, and remain an important and 

underexplored target for cancer therapies.  Recent studies utilizing RGD peptides have 

shown targeting of integrins as a viable treatment alternative in melanoma therapy by 

inhibiting tumor angiogenesis, growth, and metastasis [30-32].  Integrins are 

heterodimeric membrane proteins primarily implicated in cell adhesion and migration 

[33, 34]; yet, integrins have also been reported to be intimately involved in cell growth, 

differentiation, and survival [35, 36].  Two families consisting of 18 α-subunits and 8 β-

subunits comprise the 24 heterodimeric proteins known in humans [37], combined with 

complex conformational states and overlapping ligand specificities, make integrin 

signaling flexible yet highly intricate [38].  Furthermore, integrin expression profiles are 

largely dependent upon two dimensional (i.e. adherent conditions) adhesion versus three 

dimensional (i.e. non-adherent) adhesion [39], and can result in recruitment of very 

different subsets of proteins.  Proteins attracted to different adhesion structures (e.g. 

paxillin) can produce diverse yet specific signaling cascades.   

By categorizing NSCLC lines based on integrin expression profiles, we associated 

explicit integrin subunits with lunasin sensitivity (McConnell and Davis, unpublished 

data).  Moreover, we showed lunasin exerts its anticancer effects in NSCLC by reducing 

activating phosphorylations of v-akt murine thymoma viral oncogene homolog 1 (AKT), 

Focal adhesion kinase (FAK), and interactions of β-subunits with integrin-linked kinase 
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(ILK), thereby altering signaling pathways downstream of integrin-ligand binding 

(unpublished data).   

In melanoma models, the integrin αvβ3 is currently the predominant target for 

therapeutic applications of integrin antagonists.  Integrin αvβ3 is expressed at low levels 

in non-transformed epithelial cells relative to melanoma cells [40], as αvβ3 expression 

has been related to metastatic potential and dissemination of melanoma neoplasms to a 

metastatic phenotype [41, 42].  Crosstalk between integrins and growth factor receptors 

has been well documented [43, 44].  Enhanced cancer cell survival has been attributed to 

a number of interactions between integrin signaling and other pathways including 

increased BCL-2 expression, PI3K-AKT activation, or NF-κB signaling [45-47].  We 

predict that lunasin binds αvβ3 integrins through its RGD domain and inhibits 

proproliferative and prosurvival signaling.   

Certain integrins have specific roles in melanoma;  for instance, it has been shown 

that α4β1, a homing molecule on leukocytes that binds VCAM-1, is absent on 

melanoctyes, yet present in melanoma cultures [48].  Consequently, α4β1 may help 

melanomas mimic hematopoietic cells by enabling melanoma migration into tissues that 

express sing VCAM-1 [49].  Other integrins implicated in melanoma are α3β1 and α5β1, 

which were elevated in metastatic melanoma tissue.  Furthermore, α1β1, α2β1 and α6β1 

integrin subunits were found to be reduced in metastatic versus primary melanoma [48]. 

Roles of integrins in CICs are somewhat ambiguous.  Recent studies show that 

integrin subunits may be a viable marker for CICs and are responsible for stem cell pool 

maintenance and differentiation mediated by FAK [50, 51].  CICs are proposed to be 

more tumorigenic based on properties such as chemoresistance, immune evasion, and 
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self-renewal capabilities [52, 53].  Cilengitide (Merck Co.), a cyclic RGD (cRGD) 

peptide, has been used to treat glioblastoma and is the first integrin inhibitor to be used in 

Phase III clinical trials [54].  By selectively targeting melanoma stem cells and altering 

integrin signaling, we may provide a novel treatment for malignant metastatic melanoma.  

Furthermore, targeting of integrin subunits explicitly expressed on cancer cells may 

represent a dynamic solution to reducing off-site, adverse side effects generally seen with 

traditional chemotherapy. 
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Melanoma and the presence of melanoma stem cells 

Skin cancers account for nearly half of all diagnosed cancer cases in the United 

States and have increased in frequency over the last thirty years [55].  Melanoma is 

estimated to account for 76,000 new cancer cases in 2014 [56].  Despite being less 

frequent than other skin cancers, nearly 75% of skin cancer deaths are attributed to 

melanoma [56].  Even more unnerving, NCI’s Surveillance, Epidemiology, and End 

Results (SEER) program estimates cases of melanoma have nearly tripled in the past 

thirty years increasing from 7.9 (per 100,000) in 1975 to 22.7 in 2011, while 5-year 

survival rates remain constant.  Early detection and diagnosis is paramount for overall 

survival with 5-year survival rates of 98%, 62%, and 16% for localized, regional, and 

distant diseases, respectively [56].  Continued research of melanoma has provided several 

“cracks in the armor” of metastatic melanoma leading to the development of several 

targeted therapies that aim to inhibit proliferation, metastasis, and angiogenesis of 

primary and secondary tumors.  One such targeted therapy is vemurafenib, which 

decreases melanoma cell viability and proliferation resulting in tumor regression and 

increasing overall mean survival time [57, 58]. 

Vemurafenib targets a mutated form of the B-Raf protein found in approximately 

60% of melanomas in which a V600E substitution leads to constitutive Raf signaling 

within the mitogen-activated protein kinase (MAPK) cascade [59].  In the majority of 

patients harboring this mutation, mean survival time has been improved with 

vemurafenib; however, after initial tumor regression, many patients experience 
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recurrence of tumors that are vemurafenib-resistant [60-62].   Conferred resistance to 

vemurafenib may occur through a number of mechanisms including, but not limited to, 

feedback activation of epithelial growth factor receptor (EGFR), upregulation of other 

Raf proteins, or upregulation of N-Ras [62-64].  Our present studies focus on developing 

lunasin as an adjuvant therapy to targeted therapies such as vemurafenib.  We found that 

lunasin interacts additively with vemurafenib to reduce the ability of melanoma cells to 

proliferate and form oncospheres in vitro, and may sensitize cell lines with acquired 

resistance to subsequent vemurafenib treatments via inhibition of PI3K/AKT signaling 

(data not shown). 

One explanation for the reformation of palpable tumors with chemoresistance is 

the presence of CICs within the bulk tumor population.  The presence of CICs and their 

origin have become a topic of debate [65-69].  According to the cancer stem cell (CSC) 

theory, a subset of cells within the tumor population have properties that resemble 

physiological stem cells including the ability to self-renew while also giving rise to 

daughter cells that differentiate to reform heterogeneous tumor populations [65].  In this 

study, we will show that CICs exist within bulk tumor populations at a relatively high 

rate, and that this subset of cells displays enhanced tumorigenicity.   

Discovery of melanoma cells with stem-like plasticity was initially found in 

patient tumors overexpressing CD20 and CD133 [70, 71].  CD20 is a membrane-

spanning surface molecule generally found on B lymphocytes; per se, it is the molecular 

target for monoclonal antibodies (e.g. rituximab) for treatment of select leukemias and 

lymphomas.  CD133 (also called prominin-1) is a novel, membrane-spanning protein of 

no known function that is classified as a marker for primitive hematopoietic and neural 
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stem cells.  These subsets of cells were found to have properties of stem cells as well as 

enhanced ability to form palpable tumors in immunodeficient mice.  Ensuing studies 

verify ATP-binding cassette sub-family B member 5 (ABCB5), a drug transporter 

playing a key role in chemoresistance, and Low-Affinity Nerve Growth Factor Receptor  

(LNGFR/CD271),  a member of the tumor necrosis factor (TNF) receptor family 

involved in survival and differentiation of neurons, as viable MMIC biomarkers [53, 72]. 

However, scientists are slow to embrace this concept for a number of valid reasons.  One 

concern remains the standardization of techniques for identifying and propagating cancer 

stem cells.  Serial dilution and transplantation of CICs into NOD/SCID mice has long 

been the gold standard for determining stem cell populations; however, spheroid assays 

in addition to genetic lineage tracing provide in vitro assays for CIC classification [66].   

To make matters more complicated, some evidence supports plasticity of 

differentiated cancer cells in a breast cancer model [73].  By reverting to a 

dedifferentiated phenotype, stem-like cells arise de novo in response to environmental 

cues [73].   These data support the theory of bidirectional movement between stem and 

non-stem compartments, and have serious implications on the plasticity of cells in cancer 

models as well as subsequent therapeutic strategies.   

Although populations of stem-like cells are recognized in melanoma cell lines, the 

frequency of these cells is highly variable, ranging from less than 1% up to nearly 25% 

[53, 74].  The incidence of cancer stem cells seems dependent upon the in vivo model, the 

biomarker used for identification, and the tumor microenvironment [49, 75].  Conflicting 

reports indicate that tumor samples enriched for MMIC markers have enhanced tumor 

forming capacity.  Quintana [74] showed tumorigenic cells are phenotypically 
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heterogeneous in melanomas, as significant in vivo tumor growth was marginal based on 

select CSC biomarkers.  Despite these findings, numerous studies report superior tumor 

forming capabilities of cells enriched for melanoma stem cell biomarkers including 

ABCB5 [76], CD133 [71], CD271 [72], and ALDH [77].   

 Aldehyde dehydrogenase (ALDH) is a family of detoxifying enzymes responsible 

for metabolism of certain alkylating agents such as cyclophosphamide.  Enrichment for 

melanoma intiating cells by intracellular ALDH staining has come with mixed reviews; 

however, most evidence supports ALDH as a MMIC biomarker [77-80].  ALDH 

expression has also successfully been used to detect CICs in breast and colon cancer 

models [81, 82].   In this study, we implement a commercially available ALDH detection 

kit to identify and sort melanoma cells expressing elevated levels of ALDH from ALDH 

negative fractions.   

Unfortunately, current therapeutics heavily rely on efficacy against bulk tumor 

cells and the ability of the drug to reduce primary or secondary tumor size. We suggest 

that lunasin specifically targets MMICs and reduces this aggressive subpopulation of 

cells.  We are currently elucidating mechanisms for this effect, but believe lunasin 

treatment may induce terminal differentiation of cancer stem cells, inhibit self-renewal 

capacity, or alter integrin signaling leading to antiproliferative effects.  By reducing CIC 

populations, we hypothesize lunasin alters the ability of melanoma tumor cells to 

establish palpable tumors in vivo.  By selectively reducing the population of melanoma 

cells with the ability to form solid tumors and metastasize, lunasin has a potential 

therapeutic application. 
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METHODS 

Lunasin Isolation and Purification 

Lunasin was isolated from “white flake,” a product resulting from the flaking and 

defatting of soybeans via hexane extraction.  The extraction and purification was scaled 

and performed by Kentucky BioProcessing (KBP) as previously described [6].  Briefly, 

lunasin was extracted from defatted soy flour and purified using a combination of Q-

Sepharose FF chromatography, ultrafiltration utilizing a 30 kDa membrane, and. reverse-

phase chromatography.  Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

(SDS-PAGE) analysis indicate these lunasin preparations have >99% purity. 

Cell Culture and Reagents 

SKMEL-28 and A375 cell lines were obtained from American Type Culture 

Collection (ATCC, Rockville, MD, USA).  Cell lines were grown in Dulbeccos Modified 

Eagles Medium (DMEM) and supplemented with 10% fetal bovine serum (FBS), 100 

U/mL penicillin, and 100 μg/mL streptomycin.  Cells were incubated at 37˚C at 5% CO2 

and subcultivated every 72 hours.  Vemurafenib was obtained from Selleck Chemicals 

(Houston, TX).  DMEM media (Invitrogen) was reconstituted in 500mL ultrapure H2O 

and supplemented with 20% FBS, 200 U/mL penicillin, and 200 μg/mL streptomycin for 

use in soft agar assays. 

Proliferation Assays 

Manufacturer protocols were followed to determine effect of lunasin on 

melanoma cell proliferation (Promega Cell titer-96 Aqueous Reagent).  Initial seeding 
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densities were standardized at 7.5x 10
3
 cells/cm

2
 in 100 μL culture media.  Briefly, cells 

were plated and incubated at 37˚C, 5% CO2 for 4 hours.  Media were drained from each 

well and replaced with media containing varying concentrations of lunasin.  Treatment 

media were replaced every 24 hours during the 72 hour treatment period.  After 72 hours 

of treatment, wells were drained of expired media and refilled with fresh media.   20 μL 

[3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium (MTS) reagent was added to each well and the plate was incubated for 2-3 

hours.  Absorbance was read at 490 nm on a plate reader (Biotek Instruments, Winooski, 

VT).  Average absorbance of media containing no cells was subtracted from all 

absorbance values.  Absorbance values were then normalized to control and expressed as 

percent control. 

Soft Agar Colony Forming Assay 

In order to assess the ability of lunasin to suppress anchorage-independent growth 

of cancer cell lines, cells were suspended in soft agar.  Solutions of 1% and 0.7% w/v 

Bacto Agar were mixed with equal volumes (1:1) of 2x DMEM media containing 20% 

FBS and 2% Pen-Strep.  2 mL of 0.5% agar solution was used to coat the bottom of each 

well in a 6-well plate and allowed to solidify in a laminar flow hood.  1x 10
3 

cells were 

suspended in a 1 mL top layer containing 0.3% agar with and without lunasin present and 

placed on top of the bottom layer of agar.  Plates were allowed to fully solidify and were 

placed in the incubator.  Generally, colony formation occurred within 2-3 weeks.  

Colonies were stained with a 1 mg/mL iodonitrotetrazolium chloride (Sigma-Aldrich, St. 

Louis, MO ) solution and counted using a light microscope. Images from each well were 

analyzed using ImageJ software (National Institutes of Health, Bethesda, Maryland). 
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ALDEFLUOR Staining and Flow Cytometry 

The ALDEFLUOR kit (Stem Cell Technologies, Vancouver, BC) was used to 

identify cells with high ALDH activity. Briefly, cells were suspended in assay buffer 

containing a fluorescent ALDH substrate and incubated for 30 min at 37 °C. The ALDH 

substrate passively diffuses into live cells and is then converted by ALDH into a 

fluorescent product detectible by FL-1 (FITC) signal.  A specific ALDH inhibitor, 

diethylaminobenzaldehyde (DEAB) served as a negative control and allowed gating of 

ALDH-positive cells.  Becton, Dickinson, and Co. FACS Caliber (BD Biosciences San 

Jose, CA) was used for all flow cytometry experiments. 

Annexin V binding assays were conducted using FITC conjugated antibodies (BD 

Bioscience) and propidium iodide to measure rates of apoptosis/cell death.  Cells were 

harvested and resuspended in 1x binding buffer (0.1 M HEPES, pH 7.4; 1.4 M NaCl; 25 

mM CaCl2)  at a concentration of 1x10
6
 cells per mL.  Staining was conducted following 

manufacturer protocols.  Briefly, 1x10
5
 melanoma cells were incubated with 100 μM 

lunasin for 24, 48, and 72 hours.  Cells were suspended in 0.5 mL binding buffer and 

stained with 5 μL PI, 5 μL Annexin antibody, or both for 15 minutes at room 

temperature.  Gates were set based on controls (unstained, PI only, Annexin only).  1x10
4
 

events were collected per run. 

Cell cycle analysis was performed on synchronized melanoma cells; cells were 

serum starved for 72 hours and then released by addition of FBS during lunasin or 

vehicle treatment.  1x10
6
 cells were harvested and resuspended in 200 μL PBS.  Cells 

were slowly added to 4 mL ice cold 70% ethanol for overnight fixation at -20˚C.  After 

fixation, cells were spun down at 300g for 10 minutes and resuspended in 0.5 mL of PI 
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master mix (40 μg/mL PI, 100 μg/mL DNase in PBS) and incubated at 37˚C for 30 

minutes prior to flow anaylsis. 

Fluorescence-assisted Cell Sorting  

 A MoFlo cell sorter (Beckman Coulter, Brea, CA) was used for all 

fluorescence assisted cell sorting (FACS).  ALDH-positive and ALDH-negative fractions 

were isolated using FL1 signal and collected for subsequent in vitro and in vivo 

experiments.  Sorted cells were confirmed to be positively stained for ALDH by 

fluorescent microscopy under blue laser (illumination at 488 nm).   Because a relatively 

large population of melanoma cells expressed at least some basal level of ALDH, only 

ALDH-positive cells with high FL1 intensity were collected.  A representative histogram 

for FACS based on the ALDH biomarker is shown in Figure 3. 

Formation of Multicellular Oncospheres 

Stem-like cells isolated by FACS were cultured in low adherent T-25 flasks 

(Corning, Corning, NY) in DMEM culture media supplemented with 2% FBS at a 

density of 1x10
4
 cells/mL.  Cultures were grown for 28 days and treated every 48 hours 

during this time period with lunasin or vehicle in DMEM culture media.  Oncospheres 

began to form around 14 days and continued to grow until they were harvested, 

dissociated, and counted.  Visual counts of oncospheres were performed by light 

microscopy and analyzed using ImageJ software.  

In vivo Xenograft Model 

In vivo experiments using 6-8 week old, male athymic nude mice (Jackson labs 

Stock# 002019, Bar Harbor, Maine) illustrated the anticancer effects of lunasin in a 

xenograft model.  Briefly, mice were injected subcutaneously (s.c.) with 2.5x10
6
 A375 
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cells reconstituted in 100 μL phosphate buffered saline (PBS) on the right flank.  

Intraperitoneal (IP) injections of 30 mg/kg lunasin reconstituted in 50 mM phosphate 

buffer, pH 7.4 (PB) were administered starting immediately after s.c. injection of tumor 

cells and repeated every 24 hours.  Noticeable tumor formation was observed 

approximately 14 days post-injection and measured every other day thereafter.  

Experimental endpoint was set at tumor volumes exceeding 20 mm in diameter or 

ulceration of tumor tissues.  At endpoint, mice were sacrificed and organs were resected 

for slide preparations.   

For MMIC studies, 1x10
4
 ALDH

+
 cells were reconstituted in Hank’s Balanced 

Salt Solution (HBSS) +calcium +magnesium (Invitrogen) with an equal volume of 

Matrigel (BD Biosciences) and injected on the dorsal side of the mice at a total volume of 

100 μL.  Palpable tumor formation was observed at approximately 16 days post-injection 

and measured every other day as described above.  Again, organs were resected and 

blood was drawn via cardiac puncture upon sacrifice for future processing. 

SDS-PAGE and Immunoblot 

 Cultured cells were harvested by using enzyme free dissociation buffer to 

minimize protein degradation, spun down, and washed in ice-cold PBS.  After pelleting, 

cells were resuspended in appropriate amounts of RIPA buffer (250 mM Tris-HCl, pH 

7.5, 5 mM EDTA, 750 mM NaCl, 0.5% Lauryl sulfate, 2.5% Deoxycholic acid, 5% 

Igepal CA-630, Protease inhibitor cocktail containing 4-(2-aminoethyl) benzenesulfonyl 

fluoride (AEBSF), pepstatin A, bestatin, leupeptin, aprotinin and trans-epoxysuccinyl-L-

leucyl-amido(4-guanidino)-butane (E-64) (Sigma-Aldrich).  Protein concentrations of cell 

lysates were determined by a bicinchoninic acid (BCA) assay (Thermo Fisher Scientific, 
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Waltham, MA).  20 μg of protein were loaded into 10% polyacrilamide gels (BioRad, 

Hercules, CA) and run at 100 volts for 1 hour.  The protein was then transferred to a 

polyvinylidene difluoride (PVDF) membrane (BioRad) at 350 milliamps for 1 hour.  The 

PVDF membrane was blocked with 5% bovine serum albumin (BSA) or non-fat dry milk 

for 1 hour.  After several washing steps, primary antibodies were incubated with 

membrane at 4˚C overnight.  FAK (Cell Signaling, Danvers, Massachusetts), AKT (Cell 

Signaling), phospho-FAK (Cell Signaling), and phospho-AKT (Cell Signaling) 

monoclonal antibodies were diluted in Tris Buffered Saline with 0.1% Tween (TTBS) at 

1:1000 – 1:2000 v/v.  After three washes, secondary antibodies at 1:10,000 dilutions (Cell 

Signaling) were incubated with the membrane for 1 hour at room temp.  

Electrochemiluminescent (ECL) substrate/enhancer solutions (Thermo Fisher) were 

allowed to activate horseradish peroxidase (HRP) signal on membrane for 2-3 minutes; 

Chemiluminescence was developed on x-ray film and/or detected using a ChemiDoc 

station (BioRad). 

Non-steroidal anti-inflammatory drug (NSAID) Toxicological Panel and Complete Blood 

Count (CBC) 

 Whole blood was drawn from athymic nude mice by cardiac puncture 

immediately following CO2 asphyxiation and collected in serum separator tubes (BD 

Biosciences) or EDTA coated collection tubes (BD Biosciences).  25 μL of whole blood 

were collected in EDTA coated tubes and send to the RRC facility at the University of 

Louisville for CBC analysis.  After 1 hour post-collection, whole blood collected in 

serum separator tubes were centrifuged for 10 minutes at 10,000 g.  250 μL of serum was 

removed from each sample, collected in a 1.5 mL eppendorf tube, and send to the RRC 
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facility for NSAID toxicological analysis. Liver damage was assessed by levels of 

alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline 

phosphatase (ALKP).  Kidney damage was assessed by level of blood urea nitrogen 

(BUN) and creatinine (CREA). 

Statistical Analysis 

All data were analyzed in three independent experiments.  In vitro results were 

analyzed using GraphPad Prism (v 5.0) software and shown as mean ± standard deviation 

(SD).  Comparison of results from treated versus control cells was done using unpaired 

Student’s t test. A p-value of less than 0.05 was considered statistically significant.  In 

vivo experiments were statistically analyzed using GraphPad Prism ANOVA analysis tool 

(p<0.05), and shown as mean ± standard error (SEM).  Individual data points were 

compared by unpaired Student’s t test (p<0.05) to determine significance.  Interactions 

between lunasin and vemurafenib were determined to be antagonistic (< 1), additive (1), 

or synergistic (> 1) by calculating the Drewinko Index.  All samples were normalized to 

appropriate controls and applied to the formula DI = 
          

    in which SF
1
 is equal to 

the surviving fraction of drug
1
, effect

2
 is equal to the surviving fraction of drug

2
, and 

effect
3 

is equal to the surviving fraction of the combination of drug
1 

and drug
2
.  
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RESULTS 

Lunasin has modest antiproliferative effects on melanoma in adherent cell culture 

Proliferation assays remain an effective and high throughput method for screening 

drug efficacy.  We used a tetrazolium based proliferation assay to determine if lunasin 

displayed a significant antiproliferative effect on melanoma cell lines.  MTS results 

(Figure 4) indicate that lunasin marginally inhibits proliferation in adherent conditions 

and has an additive interaction with the B-Raf inhibitor vemurafenib as calculated by 

Drewinko Index assessment (DI = 1).  We replicated these experiments with cells isolated 

based on high expression of the ALDH biomarker using FACS.  ALDH positive cells 

showed no significant difference from the parental cell lines in terms of sensitivity to 

lunasin using this culture method.  Figure 4 illustrates that lunasin interacted additively 

with vemurafenib in both parental and ALDH
+ 

cells as assessed by DI. 

Lunasin reduced anchorage-independent growth of melanoma cells in soft agar 

Soft agar assays represent a robust system for screening cancer cells for drug 

sensitivity that is thought to be more representative of potential in vivo effects.  We 

observed a heightened sensitivity of melanoma cells to lunasin when plated in soft agar 

versus adherent culture conditions (Figure 5).  This is consistent with previous studies in 

our lab in which lunasin-insensitive NSCLC lines displayed lunasin sensitivity in a non-

adherent format (McConnell and Davis, unpublished data).  Lunasin showed a significant 

antiproliferative effect on A375 melanoma cells plated in soft agar.  30 μM lunasin 

reduced colony formation by approximately 25%, while 100 μM lunasin inhibited colony 
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formation by 38% (Figure 5A).  Along with decreased colony counts, a noticeable 

reduction in the size and change in phenotype accompanies lunasin treatment (Figure 5D) 

versus vehicle treated A375 cells (Figure 5E).  Cells treated with lunasin formed colonies 

that tended to be less dense and displayed a somewhat dissociated phenotype.   

Furthermore, we found that lunasin interacts additively with the specific B-Raf inhibitor 

vemurafenib.  A combination of 100 μM lunasin plus 300, 700, and 1000 nM 

vemurafenib yielded a significant decrease in colony formation, illustrating the potential 

application of lunasin as an adjuvant therapy in melanoma patients. 

Lunasin alone shows an antiproliferative effect on the SKMEL-28 melanoma cell 

line (Figure 5B).  Concentrations of 30 μM and 100 μM reduced colony formation of 

SKMEL-28 melanoma cells by 14% and 20%, respectively (Figure 5B).   The additive 

effect of lunasin was again measured with vemurafenib co-treatment; however, a 

statistically significant additive effect was not obtained at 700 nM vemurafenib.  

Anchorage independent growth is a hallmark of cancer; these data illustrate the utility of 

chemotherapeutics in disrupting proliferation of cancer cells in non-adherent conditions.  

From this, we concluded that concurrent treatment of lunasin and the B-Raf inhibitor 

vemurafenib could be a legitimate therapeutic strategy in malignant melanomas with the 

V600E mutation. 

Lunasin reduces the melanoma stem cell population in vitro 

We conducted initial experiments in which A375 and SKMEL-28cells were 

treated with 1 μM vemurafenib, 100 μM lunasin, and a combination of both agents.  

Melanoma stem cell markers (e.g. ALDH) in the cell population were analyzed by flow 

cytometry.  ALDH staining has been recognized as a technique to distinguish and isolate 
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melanoma stem cells from bulk tumor populations.  Our results indicated that both 

vemurafenib and lunasin are able to dramatically reduce the population of cells 

expressing measureable levels of ALDH (Figure 6).  This reduction in ALDH expression 

is time dependent.  An overall reduction in ALDH-positive cells was seen with lunasin 

treatment, vemurafenib treatment, and in combination treatment groups.   

Lunasin alone had a significant effect on ALDH expression in melanoma cells 

versus vehicle treatment (Figure 8).  ALDH positive populations were reduced by nearly 

50% in lunasin treated SKMEL-28 cells at 24 hours (Figure 8B).  This effect was seen at 

later time points, albeit, it was not significantly different from controls.  In A375 cells, 

ALDH positive populations were reduced by lunasin treatments; ALDH expressing cell 

populations were reduced 56%, 35%, 18%, and 22% for 24, 48, 72, and 96 hour time 

points, respectively (Figure 8A).  By effectively reducing the tumor initiating cells in 

culture, lunasin may inhibit primary tumor formation or alter metastatic growth by 

inducing terminal differentiation of cancer stem cells or by reducing CIC pools available 

to invade distant tissues. 

Cell cycling and apoptotic effects on melanoma 

Trypan blue exclusion tests were performed in concurrence with annexin binding 

assays to measure apoptotic rates within melanoma cell populations.  Initial experiments 

suggest that lunasin has little effect on cell viability; however, potentiates the apoptotic 

effects of vemurafenib in combination treatments (Figure 10).  At the later time points, it 

was clear that a number of cells in both A375 and SKMEL-28 treated samples were dead 

or dying; however, these observations were apparent in both control and lunasin treated 

samples.  Results from later annexin binding assays did not show a definitive increase in 
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early or late apoptotic populations within either cell line at 24, 48, or 72 hours in response 

to 100 μM lunasin (Figure 11).  Apoptotic and necrotic profiles for each treatment and 

time point were generated, but no significant difference was seen in either cell line; 

although, a clear trend in increasing early and late apoptotic cells was observed with 

lunasin treatment.  We therefore concluded that lunasin does not induce apoptosis or 

cause a necrotic response in the parental melanoma cell lines; however, we expect to 

isolate CICs based on the ALDH biomarker and determine if lunasin induces a selective 

apoptosis response in this subset of cells. 

Cell cycle analysis was performed using propidium iodide (PI) staining of DNA 

(Figure 9).  Briefly, cells were permeablized and fixed in 70% ethanol over night and 

resuspending in a PI master mix (PI 40 μg/mL, RNase 100 μg/mL in PBS).  Flow 

analysis commenced after a 30 minute incubation.  Interestingly, lunasin had little effect 

on cell cycling of either melanoma cell line before the 72 hour time point.  However, at 

72 hours, a decrease of cells in S-phase was seen.  These data may suggest lunasin has a 

delayed effect on cellular proliferation, and causes accumulation of cells in G0/G1 and 

G2 phases of the cell cycle.  Treatment with vemurafenib caused a decrease in S-phase 

throughout the time course, and an accumulation of cells in G0/G1 can be seen in both 

cell lines.  Combination treatment curves were similar to treatment with the B-Raf 

inhibitor, however, S-phase cycling was further reduced, and frequency of sub-G1/super-

G2 cells was modestly increased. 

Lunasin reduced phosphorylation of Akt and Fak in melanoma cells 

  Since lunasin was effective at inhibiting the growth of melanoma cells as colonies 

in soft agar, we studied whether it affects the signaling pathways associated with cell 
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growth and survival.  FAK and AKT are downstream mediators of integrin signaling.  

Figure 12 illustrates that total FAK (125 kDa) remains unchanged with lunasin treatment; 

however, tyrosine phosphorylation (Y397) is significantly impaired.  We next examined 

the serine phosphorylation (Ser473) of Akt (60 kDa), a downstream signal molecule of 

FAK.  As expected, the phosphorylation of Akt was observed in untreated cells and 

inhibited by treatment with lunasin.  These results confirm that downstream mediators of 

integrin signaling are severely affected by lunasin.  By effectively reducing active forms 

of Akt and Fak, signal transduction is interrupted, which may stimulate antiproliferative 

and antisurvival cell signaling.  Inhibiting these pathways may sensitize CICs with 

superior survival signaling and chemoresistance to traditional or targeted therapies (e.g. 

vemurafenib). 

In vitro effects of lunasin were potentiated in melanoma stem cells 

In order to determine whether or not lunasin has a selective apoptotic or 

antiproliferative effect on cancer stem cells, in vitro assays measuring proliferation and 

anchorage-dependent growth were performed, and the results from the ALDH-positive 

populations were compared to the parental lines.  Overall, lunasin had an increased effect 

in the ALDH
+
 sorted cells.  100 μM lunasin reduced colony forming ability in soft agar 

by approximately 40% and 75% in A375 and SKMEL-28 cell lines, respectively (Figure 

14A).  Interestingly, a reduction in colony size accompanied lunasin treatment in both 

cell lines versus vehicle treatment (Figure 14B-E) 

CICs have been reported to have enhanced ability to form oncospheres in low 

adherent conditions.  We assessed the ability of lunasin to disrupt formation of 

oncospheres derived from sorted samples based on the ALDH biomarker.  100 μM 
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lunasin almost completely inhibited spheroid formation in the A375 cell line versus 

control (Figure 13B and Figure 13C), while reducing spheroid counts and size in 

SKMEL-28 cells (Figure 13A).  When spheres were dissociated and counted, viability 

did not significantly change due to lunasin treatment; however, slightly reduced cell 

counts as determined by trypan blue exclusion assays were observed (data not shown).  

Furthermore, lunasin inhibited foci formation when A375 CICs were dissociated and 

replated at low density in adherent conditions (Figure 13D and Figure 13E).  ALDH 

positive cells quickly grew in tightly packed clusters of cells and formed foci within a 

matter of days.  Lunasin restores growth of these cells as a monolayer and inhibits foci 

formation in adherent culture.  These data suggest lunasin may convert the more 

tumorigenic ALDH expressing cells to the less aggressive phenotype of a terminally 

differentiated bulk tumor cell.  More research into possible mechanisms for this effect is 

warranted as little is known about the movement of melanoma cells in and out of the stem 

cell compartment.  Furthermore, a definitive link between cancer stem cells and integrin 

signaling has yet to be established in the roles of CSC differentiation, metastasis, and 

overall patient outcome. 

Lunasin had significant antimelanoma effects in vivo: 

Our results indicate lunasin substantially inhibits tumor formation and growth in 

an athymic nude mouse xenograft model.  30 mg/kg injections of lunasin reduced tumor 

volume by 35% and 55% with intravenous (Figure 15) and intraperitoneal (Figure 16) 

injections, respectively.  IV injections were administered every other day; IP every day.  

Tumor mass was also significantly decreased by lunasin treatments.  Upon necroscopy, 

whole tumors were resected and a wet tumor weigh was measured.  IP and IV lunasin 
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treatments resulted in a 46% and 34% decrease in wet tumor weights upon endpoint of 

the experiment.  These data delineate lunasin’s bioavailability and anticancer effects in an 

in vivo model.   

Non-steroidal Anti-inflammatory Drug (NSAID) toxicological panels showed 

lunasin treatments did not alter circulating plasma levels of liver enzymes ALKP, ALT, 

or AST.  These data suggest lunasin does not induce a toxicological response in mice and 

is safe for future therapeutic applications.  Furthermore, renal function was not impaired 

as measured by BUN and CREA.  Complete blood count (CBC) analysis revealed lunasin 

does not significantly alter levels of leukocytes, erythrocytes, or thrombocytes compared 

to control. 

Lunasin selectively inhibits MSC proliferation in vivo 

Male athymic nude mice (6-8 weeks old) were transplanted with 1x10
4
 cells that 

had previously been sorted using the ALDEFLUOR staining kit in an equal volume of 

HBSS (with calcium and magnesium) and Matrigel.  Tumor formation was established at 

16 days after injection and measured every other day thereafter.  Control vehicle and 30 

mg/kg lunasin were injected IP every 24 hours for the duration of the experiment.  Our 

results demonstrate the selective effect of lunasin on melanoma stem cells expressing the 

ALDH biomarker.  These cells are generally accepted to have enhanced tumorigenic 

capacity versus non-sorted bulk tumor cells.  Compared to our previous study in which 

we injected 2.5x 10
6
 bulk A375 cells, MSCs displayed superior tumor forming ability. 

MMICs established palpable tumors in a similar amount of time compared to 

parental tumor cells, however, this experiment utilized Matrigel in order to keep MMICs 

localized to subcutaneous tumor growth.  Matrigel contains growth factors which may 
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boost cell proliferation; therefore, we concede that our MMIC and parental models are 

not comparable in terms of tumor growth rates.  Lunasin did not decrease the number of 

tumors formed, but reduced tumor burden by 74%, a nearly 50% increased effect versus 

parental A375 cells.  Onset of tumor formation was delayed in lunasin treated mice; 

tumors also displayed linear growth versus the exponential growth seen in control mice.  

Wet tumor weights for lunasin treated mice were reduced by 66%, thus illustrating the 

potential for lunasin to specifically target and inhibit growth of tumors derived from 

CICs. 
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DISCUSSION 

Lunasin has previously been shown to have chemotherapeutic effects in a number 

of cancer models [3, 23, 25, 83-85].  To our knowledge, this is the first study identifying 

the anticancer effects of lunasin in a melanoma model.  Therapies for treating patients 

with malignant melanoma remain largely ineffective, despite novel targeted therapies that 

show clinical improvements over traditional alkylating agents.  Here we show that 

lunasin has potential clinical utility as both an adjuvant therapy as well as a standalone 

chemotherapeutic against malignant metastatic melanoma.  Our data suggest that lunasin 

interacts with subsets of integrin subunits and interrupts internal signaling cascades 

induced by integrin activity. 

Although HAT inhibition is generally regarded as the prime mechanism for 

lunasin’s chemotherapeutic and chemopreventive attributes, we suggest the interactions 

between the RGD-peptide and integrin dimers found on the cell surface to be essential 

mechanisms in the in vitro and in vivo effects found in this study.  Utilizing proximity 

ligation assays, we have shown that lunasin interacts with specific integrins (Ianaba and 

Davis, unpublished data), evidence supported by recent studies on integrin mediated 

endocytosis [27].   

We do not postulate that the described effects are due to the epigenetic effects 

stimulated by lunasin treatment; though, we have found that lunasin does indeed affect 

patterns of histone acetylation in melanoma cells in vitro (data not shown).  Because 

integrins are explicitly involved in cell adhesion and division, we concluded that 
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reductions in clonogenic capacity in soft agar and formation of multicellular oncospheres 

in low adherent culture are attributed to the disruption of adhesive signaling mediated by 

integrins.  We agree that HAT inhibition does have global cellular effects; however, we 

believe that lunasin binding of integrins through its RGD domain is responsible for 

lunasin’s anticancer activity in our melanoma models.  However, in vivo effects may 

stem from a variety of cellular effects induced by lunasin including integrin antagonism, 

epigenetic modifications, and immunomodulatory functions. 

Integrin signaling can regulate the stem cell processes of self-renewal, 

differentiation, and proliferation [86].  We have shown that lunasin treatment altered 

these processes and diminished intracellular interactions with Akt and Fak in vitro and 

resulted in decreased tumor burden in vivo.  Though lunasin decreased tumor burden in 

mice injected with parental A375 melanoma cells, these effects were exacerbated in 

MMIC populations in our xenograft models.  Furthermore, we confirmed that lunasin 

depleted the stem cell pool by reducing ALDH signal in established melanoma cell lines.  

These effects may be associated with the ability of lunasin to induce terminal 

differentiation of CICs or by altering downstream mediators of integrin signaling.  The 

enhanced effects seen in MMIC populations suggests that cancer stem cells may rely on 

integrin signaling for proliferation and differentiation, more so than bulk tumor 

populations.  These finding are consistent with recent studies that suggest FAK as well as 

β1 integrin subunits regulate stem cell pools in breast cancer [87]. 

Fak normally functions as a scaffolding protein to mediate signal transduction, 

however, Fak also serves as a non-receptor tyrosine kinase mediating signal transduction 

from external stimuli.  Several studies correlate Fak overexpression or amplification with 
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advanced disease resulting in poor prognosis [88, 89], consequently, targeting of FAK 

may provide a novel therapeutic strategy for inhibiting metastatic disease progression.  

FAK has been shown to arbitrate stem cell maintenance and differentiation in cancer 

models [50, 51].  FAK association and activation of PI3K leads to increased production 

of phospholipids, which can in turn activate Akt kinase [90, 91].  Again, these finding are 

consistent with the results in our melanoma model as lunasin decreased phosphorylation 

of Akt.  Therefore, integrin signaling through FAK may play an essential role in 

melanomagenesis or disease progression and metastasis; a pathway targeted by the 

lunasin peptide. 

Crosstalk between PI3K/Akt and NOTCH signaling pathways in melanoma has 

been well documented [92, 93].  NOTCH signaling has been implicated in stem cell 

processes such as self-renewal, differentiation, survival, and proliferation [94, 95].  It is 

plausible that the decreased Akt phosphorylation seen in melanoma cells is mediated 

through NOTCH signaling.  Further studies are necessary to clarify whether or not 

lunasin induces changes in the PI3K/Akt pathway through NOTCH family receptors. 

Another aspect of melanoma development is the theory of direct phenotype 

switching [96, 97].  To summarize, three distinct compartments exist in cancers; a highly 

proliferative cell with low invasive capability, a differentiated phenotype derived from 

daughter cells of divided stem-like cells, and an invasive, stem-like, quiescent phenotype 

that regenerates stem cell pools.  Switching between these subsets may rely on certain 

genes such as microphthalmia-associated transcription factor (Mitf) and NOTCH.  

NOTCH activity is frequently elevated in melanomas; it also maintains melanoctye stem 

cell populations [98].  As discussed previously, NOTCH can mediate PI3K/Akt 
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signaling; overexpression of AKT by NOTCH1 provides a key step in promoting an 

invasive phenotype [99].  It has been shown that NOTCH1 is able to hyperactivate 

PI3K/Akt signaling through NF-ĸB [93], a pathway previously revealed to be inhibited in 

human macrophages by lunasin treatment [2]. 

Mitf has been established as a differentiation marker in melanocytes; however, 

Mitf has also been reported to mediate proliferation, differentiation, and plasticity of 

melanoma cells [100].  Insightful studies have addressed that melanomas with a negative 

Mitf phenotype are generally quiescent, yet highly invasive [101].  Inversely, melanoma 

cells highly expressing MITF proliferate rapidly, but do not seem to metastasize.  In 

support of these findings, inhibition of MITF increased expression of stem cell markers 

Nanog and Oct4 resulting in enhanced tumor growth in C57/B6 mice [102].  Again, 

culture conditions played a major role in expression of differentiation and stem markers 

[100, 103].   Hoek and Goding summarize: “If the combination favours the proliferative 

phenotype over the invasive, a tumour may grow rapidly, but for a given size, it will seed 

fewer metastases than a tumour whose cells are not subject to a proliferative phenotype 

bias.” [97]  This hypothesis highlights the potential of selectively targeting cancer stem 

cells instead of relying on drugs targeting rapidly dividing cell populations to increase the 

overall efficacy of treatment in metastatic melanomas. 

Clearly, these signaling pathways are implicated in both physiological and cancer 

stem cell processes.  Our results show an apparent decline in cancer stem cell pools that 

may be influenced by these pathways; however, the potentiated effect in ALDH positive 

MSCs cannot be fully explained until further research elucidates lunasin’s effects on 

certain genes and gene products responsible for maintenance, proliferation, and 



30 
 

differentiation of stem-like cancer cells.  Our data hints that lunasin may alter stem pool 

maintenance and proliferation, and therefore, has clinical utility in cases of late stage 

melanoma in which traditional therapies have failed.  Future studies in our lab will focus 

on exploring the alterations induced by lunasin on cancer stem cell populations in 

established melanoma lines. 

 

 

 



31 
 

SUMMARY AND CONCLUSIONS 

The soy-derived peptide lunasin has significant activity as a chemopreventive [7]; 

however, lunasin also serves as an anticancer agent in established cancer models [24, 83].  

Lunasin treatment reduces the capacity of melanoma cells to form oncospheres in low 

adherent culture as well as inhibits clonal growth in soft agar.  We believe these results 

stem from an interaction between lunasin and integrins on the ECM through its RGD 

domain, and results in decreased phosphorylation of intracellular signaling proteins such 

as Fak and Akt.  In vivo studies show lunasin significantly decreased tumor growth in 

athymic nude mice injected subcutaneously with A375 melanoma cells.  Tumor volume 

and weight were reduced by 55% and 46%, respectively.  These data illustrate the 

potential clinical utility of lunasin against malignant melanoma. 

Furthermore, we present a unique study showing the enhanced effects of lunasin 

against stem-like melanoma cells which display superior tumor forming capability 

compared to bulk tumor cells.  Using ALDH, a recognized MMIC biomarker [77], we 

isolated cells expressing distinctively higher levels of the enzyme and subjected them to 

further in vitro testing.  We found that MMIC response to lunasin treatment was 

potentiated versus the parental cell lines both in vitro and in vivo.  30 mg/kg lunasin 

treatment reduced tumor burden in our melanoma xenograft model by approximately 

75%.  Despite using appreciably fewer cells to initiate tumor formation, ALDH 

expressing cells formed palpable tumors within a comparable amount of time versus bulk 

tumor populations.   
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The functional assays in this study illustrate the prospective use of lunasin as a 

chemotherapeutic against melanomas in which traditional therapy has failed.  

Additionally, we showed that extended lunasin treatment displayed no toxicological 

effects versus control in our animal model.  However, we have only begun to elucidate 

mechanisms in which lunasin acts as an anticancer agent.  While epigenetic effects 

undoubtedly play a major role in tumorigenesis, we feel that lunasin has several critical 

effects on integrin signaling and further, CIC maintenance and proliferation resulting in 

the augmented effects seen in MMICs. 

It must be taken into consideration that several theories exist in which cells are 

able to move between stem and differentiated cell compartments; theories in which 

melanoma serves as a prime example.  If this is the case, more research is warranted to 

determine if A) lunasin is inducing terminal differentiation of melanoma cells, B) 

confirm ALDH as a viable biomarkers for MMIC populations by utilizing alternative 

markers, and C) analyze the alterations in gene expression patterns induced by lunasin 

treatment to further advance our understanding of the peptides anticancer effects. 
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Figure 1: Lunasin represses transcription of target genes by inhibiting HAT binding to histone 

tails.  It is proposed that lunasin binding causes hypoacetylation of chromatin leading to cell 

cycle arrest and apoptosis 
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Adapted from Kuphal

et al. Integrin

signaling in 

malignant melanoma.

2005.

Figure 2: Integrin signaling mediated by FAK and ILK can lead to abundant cellular effects including 

proliferation, cell survival, migration, and differentiation.   
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 Figure 3: FACS based on the ALDH biomarker resulted in ~20% of the 

A375 melanoma cell population staining positive.  DEAB served as a 

negative control by inhibiting ALDH cleavage of the fluorescent 

substrate.  Untreated cells were sorted based on our positive (untreated) 

control. 
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Figure 4: Tetrazolium-based proliferation assays (i.e. MTT) showed A375 and SKMEL-28 

melanoma cell lines are relatively insensitive to lunasin (100 μM) treatment in adherent conditions.  

ALDH-positive cells showed little sensitivity in this format as well, however, lunasin still interacted 

additively with the B-Raf inhibitor vemurafenib as calculated by Drewinko Index (DI). 
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Figure 5: Lunasin and vemurafenib combination treatments show the potential of lunasin as an 

adjuvant treatment of (A) A375 and (B) SKMEL-28 melanoma cells by reducing colony forming 

ability in soft agar. (C) 100 μM lunasin (bottom well) reduced colony formation by approximately 

40% and 20% in A375 and SKMEL-28 melanoma cell, respectively.  (D)  Control A375 colonies 

formed tight, well defined colonies in soft agar that were larger than (E) lunasin treated colonies. 

Significance denoted by asterisk as assessed by unpaired Student’s T test (p < 0.05). 
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Lunasin (100 M)

BRAF (1 M) BRAF + Lunasin 

Cell Line A375 SKMEL-28

ALDH Intracellular staining for CIC's

Control 34.50% 32.80%

24HRS 100uM Lunasin 20.60% 17.80%

1uM Vemurafenib 6.61% 16.30%

Lunasin + Vemurafenib 4.60% 9.02%

Control 53.50% 55.00%

48HRS 100uM Lunasin 41.40% 48.60%

1uM Vemurafenib 5.20% 41.20%

Lunasin + Vemurafenib 3.19% 47.50%

Control 40.40% 49.80%

72HRS 100uM Lunasin 31.00% 27.80%

1uM Vemurafenib 18.50% 0.10%

Lunasin + Vemurafenib 8.35% 0.05%

ALDH ControlDEAB

 

Figure 6: Lunasin and vemurafenib treatment decreased the number of ALDH
high

 cell populations  in 

A375 and SKMEL-28 melanoma cells.  Combination treatment further reduced ALDH expression in 

both cell lines, however, this effect was less pronounced at later time points.  (n = 1) 



39 
 

 
D

EA
B

A
LD

H
Lu

na
si

n

39.3% ± 7.8

16.9% ± 3.4

1% >

A

B

C

 

Figure 7: ALDH represents a unique biomarker to identify and isolate melanoma stem cells.  

Here we use the specific ALDH inhibitor DEAB as a negative control (A) to determine 

parameters for ALDH-positive (B) cells.  We show that 100 μM lunasin (C) treatments for 24 

hours reduced ALDH expressing populations in melanoma cell lines, while concurrently 

decreasing mean fluorescent intensity (MFI) of ALDH-positive cells.  
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Figure 8: ALDH expression was significantly reduced by 100 μM lunasin 

treatments (A) lunasin reduced ALDH expressing cell populations by 56%, 35%, 

18%, and 22% for 24, 48, 72, and 96 hour timepoints, respectively.  (B) ALDH 

expressing cell populations were significantly reduced at 24 hours in SKMEL28 

melanoma cells, but only marginally at later time points. Statistical significance 

was determined by Student’s T test with p values set at 0.05. 
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Control 

Lunasin (100 M)

BRAF (1 M)

BRAF + Lunasin 

Figure 9: Cell cycle analysis by PI stain.  Lunasin had little effect on cell cycling at early time points, 

but caused a significant drop in cells in S-phase after 72 hours for the A375 cell line.  Vemurafenib 

inhibited cell cycling throughout the experiment; this effect was enhanced with lunasin co-treatment. 

(n=1) 

A375 SKMEL-28

G1 S G2 Sub-G1 Super-G2 G1 S G2 Sub-G1 Super-G2

Control 20.06 36.71 25.79 2.86 8.97 52.5 36.85 8.18 0 0

100uM Lunasin 22.03 35.39 24.99 2.25 8.84 41.24 35.61 9.49 1.58 3.95

1uM Vemurafenib 28.26 22.86 29.22 2.79 13.88 64.99 15.18 4.75 8.84 6.24

Lunasin + Vemurafenib 25.43 21.04 29 3.21 17.23 44.83 15.6 39.44 8.52 24.83

Control 40.8 32.6 29.6 1.31 3.19 53.7 26.2 8.1 0.74 0.73

100uM Lunasin 38.5 32.8 20.1 2.16 3.09 51.9 25.6 11.9 1.56 0.36

1uM Vemurafenib 77.4 14.2 3.6 2.22 0.04 72.7 15.7 2.8 4.79 1.27

Lunasin + Vemurafenib 70.3 13.1 9.6 2.62 3.73 63.7 18.2 4.6 6.64 3.04

Control 42.2 36.5 14.3 4.81 2.2 45 21.8 6.1 4.71 0.06

100uM Lunasin 37.3 8.1 22.7 4.27 24.2 36.6 18.9 8.7 2.34 4.24

1uM Vemurafenib 38 6.6 20.8 9.99 22.23 69.2 7.4 0.5 13.73 0.03

Lunasin + Vemurafenib 18.4 6.6 10.9 23.5 32.97 55.5 11.4 1 14.69 0.38
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Control Lunasin (100 M)

BRAF + Lunasin BRAF (1 M)

A375 SKMEL-28

QI QII QIII QIV QI QII QIII QIV

Annexin V Binding

Control 3.24 2.33 94.1 0.284 8.82 7.42 80.5 3.22

100uM Lunasin 4.53 3.82 91.1 0.565 7.89 6.78 81.6 3.77

1uM Vemurafenib 5.69 3.87 89.7 0.729 6.11 6.2 81.3 6.39

Lunasin + Vemurafenib 7.71 3.86 87.9 0.571 9.21 4.79 80.1 5.89

Control 6.19 6.71 86 1.11 22.8 11.5 64.2 1.59

100uM Lunasin 3.14 9.22 84.2 3.43 25.2 11.1 62.3 1.32

1uM Vemurafenib 6.13 11.5 75.9 6.48 30.5 8.15 60.3 1.08

Lunasin + Vemurafenib 6.97 13.9 72.2 6.92 40.1 8.39 49.8 1.66

Control 8.39 11.2 79.5 0.861 16.7 9.96 72.7 0.678

100uM Lunasin 14.4 6.41 78.8 0.353 19.5 16.7 63.4 0.396

1uM Vemurafenib 15.1 12.4 72.3 0.273 24.5 16.9 57.8 0.804

Lunasin + Vemurafenib 18.2 13 68.5 0.223 35 12.9 51.6 0.619

 

Figure 10: Annexin V binding assays were used to assess apoptotic profiles for A375 and SKMEL-28 

melanoma cell lines in response to vemurafenib and lunasin treatments.  Lunasin again potentiated the 

effects of vemurafenib in both cell lines resulting in decreased viability and a concomitant increase in 

late apoptotic cells. 
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Figure 11: Apoptotic profiles were generated using the Annexin V binding assay.  A375 cells treated 

with 100 μM lunasin did not have a significant number of apoptotic cells versus vehicle treated cells 

until 72 hours.  Although significance was not evident, a trend of decreased viability due to lunasin 

treatment was observed. Significance (p < 0.05) was determined by unpaired Student’s T test. 
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 Figure 12: Immunoblot analysis of 20ug total protein from A375 

cell lysates.  Lunasin treatment decreased phosphorylation of (B) 

Fak and (D) Akt.  Unphosphorylated protein content of (A) Fak and 

(C) Akt remain stable in all samples.  (E) Actin was used as a 

reference protein to ensure equal protein was loaded in all lanes. 
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Figure 13: 100 μM lunasin reduced formation of oncospheres in A375 and 

SKMEL28 cell lines. (A) lunasin inhibited melanoma stem cells from forming 

oncospheres in low adherent culture.  (B) Control wells contained A375 spheroids 

cultured for 28 days  (C) lunasin treatment inhibited A375 oncosphere formation in 

low adherent culture  (D) A375 ALDH+ MSCs were replated into adherent T-25 

flasks and allowed to form foci on the plate  (E) lunasin treatment completely 

inhibited foci formation. Significance is denoted by asterisk as assessed by Student’s 

T test (p < 0.05). 
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Figure 14: Colony formation in soft agar was significantly reduced with 

100 μM lunasin treatment. (A) Colony formation in soft agar was 

significantly reduced in both A375 and SKMEL-28 cell lines.  Cell 

proliferation was reduced as been by the smaller colony size in lunasin 

treated A375 (B) and SKMEL-28 (D) cell lines versus phosphate buffer 

controls (C,E). Significance is denoted by an asterisk and assessed by 

Student’s T test (p < 0.05). 
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Figure 15: A375 cells formed subcutaneous tumors in nude mice. IV injection of 

30 mg/kg lunasin in athymic nude mice resulted in a 34% decrease in tumor 

volume (A) and 35% decrease in tumor weight versus (B) phosphate buffer treated 

control mice. Statistical significance was determined by ANOVA (p < 0.05) using 

GraphPad software analysis. 
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Figure 16: In-vivo xenograft models utilizing athymic nude mice illustrate the potential 

therapeutic advantage to the soy-derived peptide lunasin. (A) Wet tumor weight from resect 

tumor tissues.  30 mg/kg lunasin treatment reduced tumor weights by 46%. (B) Tumor volume 

was reduced by 55% and represented a significant difference from phosphate buffer control as 

determined by one-way ANOVA (p < 0.05) 
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Figure 17: Lunasin showed no apparent liver (A) or kidney (B) damage as assessed by NSAID 

toxicological panels.  Complete blood counts (C,D,E) also illustrate the safety of continual 

lunasin treatment. No significance was determined by Student’s T test (p < 0.05) between 

treatment groups. 
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Figure 18: Melanoma stem cell xenograft model (A) 30 mg/kg lunasin treatment reduced tumor 

weight by 64% compared to phosphate buffer control. (B) Tumor volume was also significantly 

reduced 74% versus control vehicle. Statistical significance was determined by ANOVA (p < 

0.05) using GraphPad software analysis. 
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