
University of Louisville University of Louisville 

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository 

Electronic Theses and Dissertations 

12-2014 

The effect of a controlled frequency breath holding training The effect of a controlled frequency breath holding training 

program on running economy among elite college swimmers. program on running economy among elite college swimmers. 

Patrick Sims 1988- 
University of Louisville 

Follow this and additional works at: https://ir.library.louisville.edu/etd 

 Part of the Exercise Physiology Commons 

Recommended Citation Recommended Citation 
Sims, Patrick 1988-, "The effect of a controlled frequency breath holding training program on running 
economy among elite college swimmers." (2014). Electronic Theses and Dissertations. Paper 1764. 
https://doi.org/10.18297/etd/1764 

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's 
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized 
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of 
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu. 

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F1764&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/73?utm_source=ir.library.louisville.edu%2Fetd%2F1764&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/1764
mailto:thinkir@louisville.edu


 
 

 

THE EFFECT OF A CONTROLLED FREQUENCY BREATH HOLDING TRAINING 
PROGRAM ON RUNNING ECONOMY AMONG ELITE COLLEGE SWIMMERS 

 

 

By 

Patrick Sims 
B.S., University of Kentucky, 2011 

 

 

A Thesis  
Submitted to the Faculty of the  

College of Education and Human Development 
in Partial Fulfillment of the Requirements 

for the Degree of  
 

 

Master of Science 

 

Department of Exercise Physiology 
University of Louisville 

Louisville, Kentucky 

 

December 2014 

  



ii 
 

 



iii 
 

THE EFFECT OF A CONTROLLED FREQUENCY BREATH HOLDING TRAINING 
PROGRAM ON RUNNING ECONOMY AMONG ELITE COLLEGE SWIMMERS 

 

By 

Patrick Sims 
B.S., University of Kentucky, 2011 

 
 

A Thesis Approved on 
 
 
 

 
 

Date Approved 
 
 

by the following Thesis Committee: 
 
 
 
 

Thesis Director 
Dr. Gerald S. Zavorsky 

 
 
 

Dr. T. Brock Symons 
 
 
 
 

Dr. Craig A. Harms 
            

            

            
        

      

ii 

clkerr01
Typewritten Text

clkerr01
Typewritten Text

clkerr01
Typewritten Text
November 21, 2014

clkerr01
Typewritten Text

clkerr01
Typewritten Text

clkerr01
Typewritten Text



iv 
 

DEDICATION 
 

This thesis is dedicated to my parents 

Mr. Jeffrey Sims 

and 

Mrs. Heidi Sims 

who have always been my greatest champions.  

  

iii 



v 
 

ACKNOWLEDGEMENTS 

I would like to express great appreciation to my thesis chair and mentor, Dr. 

Gerald S. Zavorsky, for his patience and valuable insight.  This body of work would not 

exist without his support. 

I would like to thank my Thesis Committee for their dedication to reviewing and 

bettering the caliber of this document. I appreciate their willingness to further my 

educational experience through their fine acumen. Additionally, the faculty of the 

Exercise Physiology department at the University of Louisville has been invaluable in 

advising me as I have progressed. Thank you to Dr. Ann Swank, Dr. Daniela Terson de 

Paleville, Dr. Adrienne Bratcher, and Dr. Kathy Carter for caring deeply about my 

success, for providing me their advice, and for listening when I needed their ear. 

My fellow thesis partners Alex Burtch and Ben Ogle deserve more than a thank 

you. Without their selfless contribution of time and energy to our entire project, none of 

us would have accomplished what we have. I wish them the best of luck in their own 

Thesis journey and beyond. The future is bright for them both.  

Finally, my circle of colleagues, friends and family has been more patient and 

understanding than I deserve. Many thanks for your tolerance and compassion, your 

support and your love.  

iv 



 
 

ABSTRACT 

THE EFFECT OF A CONTROLLED FREQUENCY BREATH HOLDING TRAINING 
PROGRAM ON RUNNING ECONOMY AMONG ELITE COLLEGE SWIMMERS  

Patrick Sims 

December 4, 2014 

 

 Running economy (RE) is the amount of oxygen consumed while running at a 

submaximal intensity. Along with aerobic capacity (VO2max), RE is an important 

predictor of running performance. Little research has investigated changes in RE with 

restricted breathing training [i.e. controlled breath-holding (CFB)] during exercise.  RE 

may improve ~6% amongst a novice swimming cohort through CFB training, but this has 

not been established in elite swimmers. The purpose was to further establish that CFB 

training (16 sessions of 12 x 50-m with ~15 seconds rest between each 50-m, using only 

~2 breaths per 50-m) can improve RE in 25 elite college swimmers.  CFB training did not 

alter RE. The day-to-day variability in RE (mL/kg/km), energy cost (kcal/kg/km), and 

VO2max (L/min) was between 2.4 – 3.4%. There was no association between RE (range = 

182 to 224 mL/kg/min) and 200 yard freestyle swimming performance (range = 104 to 

129 seconds).  
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CHAPTER 1 

INTRODUCTION 

1.1 Statement of the Problem 

Swimming is a popular sport in collegiate athletics.  According to the 2012 United 

States Census, there were approximately 21,000 National Collegiate Athletic Association 

(NCAA) swimmers in 2009-2010.  In NCAA competition, competitive swimmers 

compete with one of four swimming strokes, each with its own unique rhythmicity, 

including butterfly, breast stroke, backstroke, and front crawl, sometimes known as, 

“freestyle” (Gupta & Goswami, 2001). This thesis focuses on 200 yard freestyle 

swimming performance in NCAA swimmers at the University of Louisville.   

Freestyle swimming uniquely limits access to ventilation as dictated either by 

stroke choice/frequency, athlete’s choice, or both, whereas terrestrial sports provide 

unfettered access to ventilation patterns of one’s choosing. In this way, swimming 

training as a primary discipline may cause substantial change to one’s respiratory 

performance (McKay, Braund, Chalmers, & Williams, 1983).  Oxygen consumption at 

any intensity (VO2), (and at maximal int®ensity, VO2max) represents a culmination of 

musculoskeletal, cardiovascular, and respiratory function. In the elite athlete, the 

respiratory system may be a limiting factor to endurance performance (Bye, Farkas, & 

Roussos, 1983; Lavin, Guenette, Smoliga, & Zavorsky, 2013). Swimming is an 
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interesting event to study the respiratory system since swimmers usually have very large 

lungs (Andrew, Becklake, Guleria, & Bates, 1972).  

Although an athlete’s aerobic capacity (VO2max) has traditionally been assessed 

via a graded exercise test to volitional exhaustion, running economy (RE) can also be 

measured this way.  Running economy is the submaximal VO2 at any given running 

speed and is usually expressed in terms of milliliters of oxygen consumed per kilogram of 

body weight per kilometer of distance traveled (mL/kg/km).   

Technically, the term, “economy” is most specific to the amount of oxygen 

consumed at submaximal intensity, while the term, “efficiency” refers to the amount of 

work done per unit of speed. Since running velocity is not a direct measure of work, 

efficiency is technically a different index. With that said, the terms economy and 

efficiency are frequently used interchangeably in the existing literature on running 

economy (Luhtanen, Rahkila, Rusko, & Viiasalo, 1990; Yoshida, Udo, Iwai, & 

Yamaguchi, 1993) and may be used interchangeably within this document, assuming 

both are queries into one’s oxygen consumption versus their running velocity.  

The measurement of RE has been shown to be a good predictor of endurance 

performance when runners of the same aerobic capacity are matched (Conley & 

Krahenbuhl, 1980; Conley, Krahenbuhl, Burkett, & Millar, 1981; J. T. Daniels, 1985; 

Morgan, Martin, & Krahenbuhl, 1989). Running economy is an expression of one’s 

overall physiological efficiency, while aerobic capacity is the measurement of one’s 

physiological “power”. In other words, the lower the amount of oxygen required to run a 

given distance (normalized to body mass), the more physiologically efficient one is.  
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Running economy could be equated to the fuel economy of a car, wherein less fuel per 

mile used represents a more economical vehicle. VO2max on the other hand would be 

represented in a vehicle’s horsepower; a measure of capacity to create maximal amounts 

of work irrespective of fuel cost.  Thus, a Toyota Prius may be a very efficient car with 

little horsepower, while a Ford Mustang is more powerful but not efficient.  

This balance of economy and capacity has led to much investigation of the 

intersections of RE and VO2max; the relationship is debated and appears to differ greatly 

based on the population and study in question. Some studies have found that there is a 

negative relationship between RE and VO2max, suggesting that as the amount of oxygen 

that is required to run a given distance decreases, VO2max is increased (Morgan et al., 

1995; Morgan & Daniels, 1994; Padilla, Bourdin, Barthelemy, & Lacour, 1992; Pate, 

Macera, Bailey, Bartoli, & Powell, 1992; Tartaruga et al., 2013).Other research has found 

that RE and VO2max in fact are not related (Anderson, 1996; Mooses et al., 2014; Reeves, 

Corbett, & Barwood, 2014; Santos-Concejero et al., 2014), and yet others have found that 

as RE gets worse (VO2 increases) VO2max is low between the two (Mooses et al., 2014)  

To complicate matters, research has even found that, while related, RE and VO2max can 

fail to predict running performance  (Grant, Craig, Wilson, & Aitchison, 1997). On the 

whole, the relationship between RE and VO2max is complicated in research and not fully 

agreed upon.  

A recent investigation found that RE could be improved by a particular swimming 

training, namely by restricting breathing during swimming training (Lavin et al., 2013). 

This is accomplished by inspiring air to total lung capacity (TLC) and then holding this 

air for several strokes before taking another breath. This technique, called controlled 
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frequency breath holding (CFB) may improve swimming performance by training the 

respiratory muscles to become fatigue resistant.  Lavin et al. demonstrated that limiting 

breathing frequency in swimming training resulted in faster swimming times and 

improved RE (Lavin et al., 2013).  They postulated that there was an improved muscular 

oxygen utilization since RE was improved (VO2 was lower) among recreational 

swimmers.  

Lavin et al. did not investigate what the mechanism of improvement was exactly, 

although they suggested that the improvement in RE was a result of a change in 

peripheral muscle. The rate of oxygen diffusion into the mitochondria has been 

established as one limiting factor of VO2max (di Prampero, 2003), so this is a potential site 

for improvement, although the mechanisms by which hypercapnia may affect oxygen 

diffusion at the cell is not well understood. Some research has looked at effects of 

hypercapnia on relationships between cerebral oxygen diffusion and the enzymes 

cytochrome C oxidase and nitric oxide synthase (Gjedde, 2005), but this cannot be 

assumed to apply likewise to skeletal muscle.    

No matter the mechanism of change in Lavin’s cohort, it has yet to be 

investigated whether the same results can be replicated among elite swimmers, who 

presumably already possess substantial respiratory muscle strength. Among a well-

trained cohort of triathletes that increased swimming and cycling volume by ~50%, their 

RE or VO2max were not altered compared to before the study began (Palazzetti, 

Margaritis, & Guezennec, 2005). Thus, sheer volume of exercise will not suffice. 

Therefore, it bears investigating just what cardiopulmonary training interventions may 

improve oxygen consumption in swimmers.  
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Running economy, being an expression of one’s oxygen consumption for a given 

running speed, is an important factor apart from one’s VO2max, which has been 

thoroughly investigated as a major indicator of aerobic potential (Barnes & Kilding, 

2014).  The body of research on factors affecting RE is substantially smaller than that of 

VO2max, and stands to be developed greatly in emerging literature. Running economy 

should be assumed to always represent the physiological efficiency of one’s movement 

while at submaximal intensity. The state of the literature currently shows several factors 

that may modestly affect RE, although only one up to this point has investigated RE 

among swimmers, and then with a recreationally fit subject pool.  Mechanisms 

established as affecting RE are many, including, but not limited to: training volume and 

longevity (Midgley, McNaughton, & Jones, 2007), biomechanical differences among 

athletes (Santos-Concejero et al., 2013), shoe design (Sobhani et al., 2014), minute 

ventilation (VE), altitude, hypoxia, core temperature, (Saunders, Pyne, Telford, & 

Hawley, 2004a) and more. Each of these influences will be examined in-depth below as 

potential informants on this intervention.  

1.2 Purpose of the Study 

This study aimed to assess whether a four week intervention of controlled 

frequency breath holding (CFB) training can improve either RE or VO2max among elite, 

collage-aged swimmers. The four week protocol was selected to accurately recreate the 

intervention used by Lavin et al. (2013).  

Utilizing the experimental procedures of Lavin et al. (2013), this study focuses on 

an elite swimming cohort, which is an interesting group to study due to their enhanced 
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conditioning.  The potential that a lifetime of swimming has positively influenced the 

respiratory development of these subjects is not ignored; childhood and adolescent 

vigorous swimming training has previously demonstrated augmentation of total lung 

capacity (Andrew et al., 1972; McKay et al., 1983; Sarro, Silvatti, & Barros, 2008; 

Zinman & Gaultier, 1987) . All subjects within this cohort were competitive swimmers 

since adolescence. 

1.3 Significance of the Study 

Demonstrating a relationship between RE and swimming performance may show 

that CFB training can improve changes at the muscular level, allowing locomotor 

muscles to perform the same amount of work with less oxygen.  If CFB training can 

indeed improve RE among an elite cohort of swimmers, the common crossover of 

swimming to multisport post-collegiate competition may bring with it important training 

methodology for improving terrestrial performance. Likewise, demonstration of 

improvement in RE or VO2max by CFB training would invite further scholarly research to 

see if CFB training can be used exclusively terrestrially to improve RE among non-

swimming athletes. 

1.4 Literature Review 

1.4.1  Running economy versus maximal oxygen consumption 

As mentioned above, the relationship between VO2max and RE is highly debated. 

Some research suggests VO2max may be positively related to RE (Mooses et al., 2014). 

Thus, the more oxygen that is required to cover a given distance, the higher the RE.  The 

homogenous group in question, elite Kenyan distance runners, who had worse RE than a 
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European comparison group, still demonstrated superior VO2max values and were 

extremely successful athletes despite worse RE, suggesting that, a high VO2max can more  

than compensate for poorer RE in terms of total athletic potential. What seems to be 

highly variable is the RE even among their elite cohort. Mooses et al. stated that the 

differences in RE among the subjects was mostly mechanically related. These findings 

are supported by Santos-Concejero et al. who found that a similar pool of North African 

runners demonstrated inferior RE to a comparable European subject pool as well as 

longer ground contact time in stride, but are still more athletically successful (Santos-

Concejero et al., 2013). In disagreement with this, Weston et al. found that African 

runners were 8% more economical than Caucasian 10km runners, but had a 13% lower 

VO2peak (Weston, Mbambo, & Myburgh, 2000).  Some researchers have gone so far as to 

speculate that neither of these factors predict running performance (Grant et al., 1997).  

However, a large body of research suggests that RE and VO2max are indeed 

negatively related (Morgan et al., 1995; Morgan & Daniels, 1994; Pate et al., 1992). That 

is, the less oxygen that is needed to cover a given distance, the higher the subject’s 

VO2max.  Among those who found a negative relationship between RE and VO2max, it was 

asserted that RE is identical across sexes. (Padilla et al., 1992).   Pate et al. demonstrated 

a positive association between RE and VO2max among a heterogeneous group of 

recreational runners, while Morgan et al. showed this negative  relationship to hold true 

across a breadth of running skill level from novice to elite (Morgan et al., 1995). They 

claimed that previous research failing to associate RE and VO2max among elite levels is 

attributable to the amount of years at elite training status. They asserted that increases in 

training years appear to improve association of RE and VO2max. 
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A disparity exists in the effects of VO2max and performance between running and 

swimming; running performance is significantly correlated a runner’s relative, but not 

their absolute, VO2max, whereas a swimmer’s performance is correlated with their 

absolute, but not relative, VO2max  (Butts, Henry, & McLean, 1991). This suggests that 

there is an incongruent interaction of maximal aerobic capacity in running and 

swimming, such that the latter is simply a matter of, “the size of the engine,” while the 

former is contingent on body size interaction with VO2max.  

Among swimmers, who presumably spend little to no time running, there can be 

assumed to be little influence of time-at-training specific to running biomechanics, which 

helps narrow the confounders of RE such that the results of this study might truthfully 

demonstrate any effects of CFB training.  

1.4.2 Running Biomechanics and Running Economy 

 Several pieces of literature have substantiated a major influence of biomechanics 

on RE. Since this piece of research seeks to examine whether manipulation of the myriad 

factors surrounding pulmonary function can augment RE, it could prove a novel 

intervention for improving RE beyond the current state of the literature which has 

demonstrated mainly the influences of biomechanics.  

 The metabolic cost of running is significantly increased by wearing shoes versus 

barefoot running (Reeves et al., 2014). Additionally, the particular shoe worn changes RE 

(Sobhani et al., 2014). Logically, the addition of mass at the bottom of the foot increases 

the amount of torque required to complete each running stride and therefore would 

augment RE. Mooses et al. demonstrated a positive association between RE and Achilles 
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tendon moment arm, as well as upper leg length (Mooses et al., 2014), which stands to 

support that the increase in leg mass is equitable to a worsening in RE.  

  To that effect, RE appears to be best in those with the smallest leg masses (Kong 

& de Heer, 2008) among elite runners. More widely, the effect of body mass has been 

shown to affect RE but not percent body fat (Pate et al., 1992). With that said, the groups 

will be randomized to help eliminate influences in body mass.  

 RE is not significantly correlated with the kinetic factors of contact time or step 

frequency, suggesting that personal biomechanical characteristics of running stride does 

not explain differences in RE; instead, it has been shown that the horizontal force in the 

braking phase (eccentric loading phase of ground contact in the foot strike) of the running 

stride is the main factor explaining oxygen consumption. The amount of vertical and 

mediolateral forces created during ground contact account for a great percentage of the 

variance in RE; higher mediolateral forces are associated with athlete with less efficient 

(higher) RE values (Kyrolainen, Belli, & Komi, 2001). In support of these findings, 

instructional interventions to modify running stride which succeed at decreasing stride 

length and increasing stride rate also fail to change RE, heart rate (HR), or ratings of 

perceived exertion (RPE) (Craighead, Lehecka, & King, 2014).  This is important for this 

investigation, as it challenges any assertion that “learning” of running would improve RE. 

 RE has been also shown to me related to the mechanical factors of muscle. The 

less flexible a runner as demonstrated in seated sit-and-reach test, the better their RE, 

presumably due to increased elastic recoil of the muscle stretch-shorten cycle (Trehearn 

& Buresh, 2009). These findings were supported by the work of Hunter et al. who found 
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that decreased lower limb flexibility and increased lower limb tendon length were 

associated with better RE (Hunter et al., 2011).This information is important for building 

a context that RE is strongly related to anatomical characteristics of the subject, which 

may complicate training interventions which aim to affect RE. 

1.4.3 Heart Rate and Running Economy 

The positive, linear association between heart rate (HR) and VO2 is well 

documented (Dalleck & Kravitz, 2006; Strath et al., 2000; Swain, Leutholtz, King, Haas, 

& Branch, 1998). However, training can affect maximal heart rate (HRmax) with higher 

values associated with de-training (being out of shape) and lower values associated with 

increased fitness (Zavorsky, 2000). As discussed above, the relationship between VO2max 

and RE is highly contested, which complicates the relationship of RE to HR. Binnie et al. 

did find that improvements in HR at submaximal effort and like factors such as blood 

lactate concentrations (BLa) occurred simultaneously with worsening (increase in VO2) 

in RE. (Binnie et al., 2014). In conflict with this, Pate et al. found that improvements in 

RE coincide with lower HR (Pate et al., 1992). 

1.4.4 Respiratory Muscle Fatigue, Hypoxia, Altitude and RE 

 With a design on reducing respiratory muscle fatigue in swimmers, this study 

relies heavily on existing literature to dictate to what extent respiratory muscle fatigue, 

and the training to reduce respiratory muscle fatigue may affect terrestrial exercise 

economy and capacity. Much research in RE has been conducted implementing 

environmental hypoxia (low partial pressure of oxygen in inspired air due to high 

altitude). Exposure to altitude, which can readily be considered an environmental 
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stimulus for hypoxia, has been shown to worsen RE (+7%) for those previously living at 

sea level, even after 46 weeks of acclimatization to moderate altitude (2,210-m).  

(Brothers et al., 2010). Brothers et al.’s findings call into question whether short-term, 

acute exercise interventions to induce hypercapnia may generate enough stimuli for 

change, if nearly a year of ambient hypoxia via moderate altitude cannot.  This study is 

unlike the altitude studies in that the participants will have very limited exposure to 

hypercapnia, versus intermittent environmental exposure to hypoxia via altitude.  

 Saunders et al. found that 20 days of simulated altitude  residence (simulated 

2000-3100-m. altitude, 9-12 hours per night while sleeping) with low-altitude training 

(known as, “live high, train low”) can elicit a ~3% improvement in RE versus both 

moderate-altitude residence and training, or low-altitude residence and training 

(Saunders, Telford, et al., 2004). Subjects did not demonstrate a decrease in minute 

ventilation. They confirmed their findings by exposing a subsequent group (Saunders, 

Telford, Pyne, Hahn, & Gore, 2009) of runners to ~50 days of simulated altitude 

residence with low-altitude training and found a 3% decrease in oxygen consumption 

(3% improvement in RE). Their increase in time exposure to live-high, train-low hypoxia 

for runners elicited the same improvement in RE as their shorter intervention length, 

suggesting that time-at-exposure to hypoxia is not the only factor at play in improving 

RE. Their findings are complicated by the fact that hemoglobin mass only very slightly, 

but significantly, improved (+5%, p = 0.01), while no improvement in VO2max, further 

suggesting that RE and VO2max are physiologic variables with a complicated relationship.  
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1.4.5 Controlled Frequency Breath Holding and RE 

While breath-holding during swimming may be thought to elicit hypoxemia, it does not if 

one hold his/her breath at TLC (Woorons, Gamelin, Lamberto, Pichon, & Richalet, 

2014). Instead hypercapnia (partial pressure of arterial carbon dioxide > 45 mmHg) 

ensues. (Woorons et al., 2014).  However, holding one’s breath for a period of time after 

complete exhalation (residual volume, RV) does result in exercise-induced hypoxemia, 

simulating hypoxia (Woorons et al., 2014).   

Until now, only one study used CFB training (at TLC) to elicit hypercapnia in 

swimmers (Lavin et al., 2013). They showed that CFB training improved RE by 6% and 

150 yard swimming performance by 8%. However, these swimmers were recreational 

swimmers and it may have been quite easy to improve swimming performance and RE in 

novice swimmers with relatively slow swim times (150 yards short course swim time was 

initially 157 ± 27 s).  This research caveat is known as the “floor effect” in which 

subjects who are near the bottom in terms of performance have no other direction to go 

but upward.  Thus, any intervention in these subjects may elicit improvements in 

performance. For this reason, our investigation remains novel and important; if regular 

hypercapnic training via CFB proves to be a proponent of improved RE in an elite cohort, 

it may help direct further research in respiratory interventions for improving exercise 

economy.  

It is well-established that the prior training status of a subject will affect RE, and 

that trained subjects demonstrate superior RE to untrained subjects (J. Daniels, Oldridge, 

Nagle, & White, 1978; J. T. Daniels, 1985). For the purposes of comparing the results of 
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this investigation to those of Lavin, it is prudent to consider this current subject pool as, 

“elite,” although not as runners, which logically tends to be the population investigated 

most often in RE research.  

To this point, association of RE and swimming performance has not been 

established. The Lavin et al. paper did not publish statistical association between 

recreational athlete’s RE and swimming performance, although they later mentioned to 

me that there was none (r = 0.32, p = 0.23, Personal Communication, 2014) . This 

investigation will seek to establish determine if there is an association between RE and 

200 yard swimming performance in elite NCAA swimmers.  

1.4.6 Allometric Scaling of RE  

 It is common practice to express the RE value in the form of VO2 per kg of body 

mass per unit distance traveled (i.e. mL/kg/km). However, this body mass (BM) specific 

scaling has been questioned as valid for comparison because increases in VO2 are not 

proportional to increases in BM (Bergh, Sjodin, Forsberg, & Svedenhag, 1991). It has 

been substantiated that RE has statistical association with RE at the BM-.066 or BM-0.75 

values rather than just for BM-1 (Saunders, Pyne, et al., 2004a).  
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1.4.7 Operational Definitions for literature review 

Term Abbr. Term Abbr. 

Controlled Frequency 

Breathing (intervention group) 

(2 breaths per 50-m length) 

CFB 200 yard Swim Performance Time 

(seconds) 

SPT 

Running Economy 

(ml/kg/km; kcal/km/km) 

RE Aerobic Capacity 

(L/min; mL/kg/min) 

 

VO2max 

Stroke-Matched Breathing 

(control group) 

(10 breaths per 50-m length) 

SM Heart Rate 

(beats/min) 

HR 

 Global, whole body, oxygen 

Consumption  

(L/min, mL/kg/min) 

VO2 Rating of Perceived Exertion 

(6 to 20 scale) 

RPE 

 

1.5 Research Questions & Hypotheses 

1. Does a four-week training program of CFB training improve RE and VO2max in elite 

NCAA swimmers? 

Specific Aim: To investigate response of oxygen utilization at submaximal and maximal 

efforts while running after CFB intervention. 

Hypothesis 1.1: Running Economy will significantly improve by 15ml/kg/km after CFB 

training and remain unchanged in SM control group as seen in the results of Lavin et al. 

(2013). 

Hypothesis 1.2:  VO2max will remain unchanged in either CFB or SM control groups 
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2.   Does a relationship exist between RE and swimming performance? 

Specific Aim: Establish association of RE as expressed in VO2 (mL/kg/km) with 

swimming performance in a 200 yard freestyle swimming time trial.  

Hypothesis 2: There will be a significant relationship between RE and 200-yd freestyle 

swim performance.  

1.6 Assumptions 

Certain assumptions have been made throughout our study. We assumed that all 

participants were healthy and well-conditioned. It was not investigated as to how many of 

our subjects were also recreational runners. We also assumed that these subjects were 

able to give a best effort for all their testing sessions. To limit error here, the subjects had 

to meet three established criteria for attaining VO2max in their testing battery according to 

ACSM guidelines (ACSM, 2013).  Finally, we assumed that these subjects were able to 

complete all training sessions as necessary.  
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CHAPTER 2  

METHODS 

2.1 Subject Selection 

A convenience sample of NCAA Division I swimmers from the University of 

Louisville were recruited to participate in this research. Subjects were not chosen 

randomly. This research has designated all subjects as, “elite,” which is requisite of their 

position on a Division I swim team ranked within the top 10% for Division I eligible 

programs. Subjects were an equal, mixed-sex sample. Elite swimmers were desired for 

this investigation to evaluate whether the results of Lavin et al. (2013) were reproducible 

in an elite cohort of non-terrestrial athletes.  

Whether subjects were more traditionally sprint or endurance swimmers was not 

of particular interest to investigators, as we desired to acquire as diverse a sample of elite 

college swimmers as possible.  

To be eligible for this study, subjects must have competed for the University of 

Louisville at some point during the 2013-2014 collegiate swim season.  No performance-

based metrics such as time-per-distance swum were set for inclusion. The age of subjects 

was limited to those in agreement with NCAA competition eligibility criteria.  Twenty-

four subjects were needed for this study.    
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2.2 Settings 

All study intervention and testing was conducted on the University of Louisville 

campus. Intervention procedures were executed within the Ralph Wright Natatorium. 

Running economy and VO2max testing were conducted in the Exercise Physiology lab of 

Crawford Gym. 

2.3 Procedures  

2.3.1 Pre and Post-Testing   

All subjects attended a pre-participation information session led by study 

investigators where subjects were asked to read and sign an informed consent document 

which detailed their responsibilities and risks of study participation.  

Pre-testing of athletes consisted of two testing batteries of RE and VO2max. The 

first was a full familiarization session of the entire running battery procedure (explained 

below), and then within one week, participated in baseline data battery for RE and 

VO2max. Familiarization and baseline data were compared post-hoc to determine day-to-

day variability and reproducibility.  All tests were conducted on the Woodway ELG 

treadmill (Woodway USA, Waukesha, WI). Metabolic testing was conducted using the 

PARVO Medics TrueOne 2400 metabolic cart (PARVO Medics, Sandy, UT).  

Two pre-intervention testing sessions were administered, the first for test 

procedure familiarization and then within one week for baseline. At familiarization, 

subjects were measured for age in years, anthropometrics including height (m), weight 

(kg), and body composition via hydrostatic weighing. Body composition was calculated 

according to the Siri and Brozek equations for hydrostatic weighing, with results being 
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recorded as the average of the two equations (Brozek, Grande, Anderson, & Keys, 1963; 

Siri, 1993).   Body composition was measured to allow comparison of anthropometrics of 

our subjects to other investigations both past and future. Participants were allowed to 

change clothes to prepare for the running portion of familiarization. All running trials 

followed the same procedure; running speeds were pre-determined by investigators 

respective to sex.  

 Three, 5-minute submaximal running stages were performed. Running at all 

speeds was conducted on 0% incline. Submaximal stage one was conducted at 6 mph and 

5.5 mph for male and female subjects, respectively. Submaximal stage two was 

conducted at 7mph and 6.5mph for male and female subjects, respectively.  The third 

submaximal stage was conducted at 8mph male subjects, 7.5mph for female subjects. 

Between the first two submaximal stages, and between the second and third submaximal 

stage, a passive rest period of five to seven minutes was permitted, with all subjects 

beginning the next stage in no fewer than five, and no more than 6.5 minutes. Participants 

did not perform any active recovery or physical activity during these inter-stage recovery 

periods. 

At the end of the third submaximal stage, subjects did not participate in a passive 

recovery period, but rather proceeded on a graded exercise protocol up to maximum 

volitional fatigue. After the five minutes at the third submaximal stage, the graded 

exercise progressed every two minutes with a 1.0 mph increase until maximal fatigue was 

achieved. Indices measured at all running speeds included HR, VO2, and RPE. Data 

recorded at maximal intensity included HRmax, VO2max, minute ventilation at maximal 
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exercise [VEmax (L/min)], respiratory exchange ratio (RERmax), and maximum oxygen 

pulse (O2Pulsemax).  

Economy was calculated as VO2 in mL/kg/km for the final three minutes of each 

submaximal speed, and then averaged at all speeds to create one value reported as the 

overall RE. Units for RE was also reported in kcal/kg/km.     

Post-intervention testing was conducted exactly according to the protocol for both 

familiarization and baseline sessions. Hydrostatic weighing was recorded only at the 

familiarization session. Values recorded at familiarization were retained in order to assess 

day-to-day variability in RE without training effect to inform on necessary magnitudes 

for meaningful change. Subjects also completed a 200m freestyle swim time trial at 

maximal volitional effort at BASE and POST in order to investigate correlation between 

RE and swimming performance as well as to investigate performance improvements.  

2.3.2 Training Intervention 

Subjects, who were divided into two groups, intervention and controls, 

participated in sixteen (±2) study sessions within a four-week period (±5 days). Each 

study session was approximately thirty-five minutes in duration. All subject began with a 

standardized 1000-m warm up of easy, mixed-stroke swimming.  

All subjects participated in the same training intervention workout profile, 

consisting of 12 repetitions of a 50-m swim completed within a one-minute interval for 

the first week of the study. Weeks two and three decreased the interval by five seconds, 

to 55 seconds per rep. An additional five second decrease occurred during the final week 
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of training set the intervals at 50 seconds per rep (see Table 3 for the complete training 

regimen).   

The CFB training (intervention) group was instructed self-limit their breathing to 

two breaths per repetition, resulting in about 24 breaths per workout (only breaths taken 

during repetitions were counted for workout totals), while controls were allowed to 

breathe on a stroke-matched basis, breathing every 2-3 strokes accumulating 10-12 

breaths per lap. At the end of each workout, all subjects self-reported their number of 

breaths taken during the workout, as well as reporting their RPE using the 6-20 Borg 

scale (Borg, 1982). All study training sessions were supervised by at least one member of 

the University of Louisville swimming coaching staff.  

2.3.3 Research Design 

The research design implemented for this study was a pre-post test design with 

control group. This was a quasi-experimental design in which a convenient sample of 

elite college swimmers was used.  To examine changes in RE and VO2max, a 2 x 3 

repeated measures analysis of variance was used. The independent variable was the 

training program [Experimental Group = CFB training group; Control group = stroke 

matched (SM) group] and the number of measurements per variable (three measurements 

per variable: familiarization session, baseline, and post-testing). The Lee notation was 

represented as: S12∙(G2)∙T3 in which subjects were nested within group (2 groups, CFB, 

SM) and crossed with time (familiarization, baseline, post-testing).  
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2.3.4 Statistical Analysis 

Sample size calculation was estimated from the mean overall changes for RE with 

and between groups from Lavin et al. (2013).  Using online statistical software (G*Power 

Version 3.1.7, Universität Kiel, Germany), the following was calculated for the within-

between interaction for repeated measures ANOVA: statistical power was set at 80%, 

type I error rate at 5% (α = 0.05), correlation among repeated measures = 0.90, and effect 

size ƒ = 0.0135.  A total of 24 subjects was estimated.  Twenty six subjects matriculated 

into the study to allow for an approximate 10% attrition rate.  

The data was analyzed with the SPSS statistical software package (SPSS Version 

21.0, IBM SPSS Statistics Inc., Chicago, IL). Statistical significance was be declared 

when p < 0.05 unless otherwise noted. 

To compare groups at baseline, independent t-tests were performed. For the 

variables that were not normally distributed, a Mann-Whitney U Test was used to 

compare groups. To compare cardiopulmonary variables from the graded exercise test 

between familiarization and baseline sessions, paired t-tests were used. If the variables 

were not normally distributed, a Wilcoxon Signed Rank test was used.  

The repeated measures analyses of variances were used to assess statistical 

significance of results post-intervention versus baseline with a Bonferroni correction. 

Pearson product moment correlations were performed for establishing relationships of 

swimming performance time to RE.  

Indices of responsiveness to CFB training was calculated according to previous 

methods (Kim, Mayo, Carli, Montgomery, & Zavorsky, 2009; Salbach et al., 2001). 
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Effect size (ES) was defined as the mean change of the variable between baseline and 

post-training divided by the SD of the variable at baseline.  An effect size of 0.0 to 0.2 

was considered trivial, 0.2 to 0.5 was small, 0.5 to 0.8 was moderate, and 0.8 and above 

was strong. The standardized response mean (SRM) was calculated as the average change 

divided by the SD of the change. The t-statistic was defined as the mean change of the 

variable between base-line and post training divided by the standard error (which is the 

SD divided by the square root of the sample size).    

For the dependent variables that were not altered between familiarization and 

baseline sessions, the day-to-day coefficient of variation was calculated as the mean of 

the two trials divided by the standard deviation of the two trials x 100.  Measurement 

error (otherwise known as the typical error or the within subject standard deviation) was 

calculated as the square root of the within-subjects error variance (i.e., the within-subject 

standard deviation) derived from a repeated measures ANOVA. Reproducibility was 

defined as 2.77 × the measurement error (Bland & Altman, 1996).  That is, the difference 

between two measurements obtained on different days for the same subject is expected to 

be less than 2.77 times the within-subject standard deviation for 95% of pairs of 

observations (Bland & Altman, 1996). Since the calculation of reproducibility may be 

considered too stringent, the smallest meaningful change was reported as half of the 

reproducibility (Hopkins, 2000). 

2.3.5 Data Management and Storage 

All data for RE was recorded digitally within the hard drive associated with the 

PARVO metabolic cart, and redundantly printed after each stage for all subjects. RPE 
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values and between-stage recovery time values were recorded manually by investigators 

during the test. All data pertaining to the study was kept within a locked room in a locked 

filing cabinet with access granted only to the investigators managing the study.  
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CHAPTER 3 

RESULTS 

Twenty-five swimmers from the University of Louisville completed the 

familiarization and baseline sessions. Table 1 depicts the subject characteristics. No 

statistically significant difference existed between groups or between sexes. The 200 yard 

freestyle swimming times at the baseline session (short course) for all 25 subjects was 

115 (SD 7) seconds (range 104 to 129 seconds).  There was a mean day-to-day 

coefficient of variation of 1.4% (SD 1.6%) in swim times between the familiarization and 

baseline sessions. This equates to a day-to-day typical error of 1.6 seconds for the 200 

yard race (day-to-day reproducibility =   4.5 seconds; smallest meaningful change = 2.2 

seconds).   

Table 2 depicts the cardiopulmonary data obtained from treadmill testing of all 

subjects between familiarization and baseline sessions.  The only dependent variables that 

showed a difference between these two sessions was running economy (mL/kg/km, 

p=0.01), energy cost (kcal/kg/km, p = 0.02) and HRmax (beats/min, p= 0.03), although all 

were small changes and likely not meaningful due to all having trivial effect sizes.  

Table 3 depicts training results of each group. Four of the 25 subjects failed to 

complete all of their follow-up testing.  One left town and was not able to return to 

testing, while the other three decided that it was no longer worth their time to participate 
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in the study.  There were no significant changes in any dependent variable, suggesting 

that neither groups experienced any measurable physiological changes. 

Since there were no meaningful differences between most dependent variables 

between familiarization and baseline sessions (Table 2), we were then interested in the 

day-to-day variability and other similar indices for implementation in future studies. 

These indices of reproducibility are presented in Table 4.  

 There was no significant association between RE and 200-yd swimming times  

(n = 25, r = –0.25, p = 0.23) at baseline. However, 69% of the variance in aerobic 

capacity was accounted for by difference in swimming times (Equation 1).  

Equation 1: 200-yd swim time (s) =  – 6.87∙(VO2max in L/min) +142.8, SEE 3.8, p < 0.01 
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CHAPTER 4  

DISCUSSION 

4.1 Discussion Overview 

 The purpose of this study was to assess whether CFB training can improve either 

RE or VO2max among elite, college-aged swimmers.  This investigation did not find any 

improvements in RE or VO2max in either group. 

This is the first study that evaluated the effects of CFB training on RE in an elite 

cohort of swimmers. The previous investigation of this kind was limited to recreational 

multi-sport athletes (Lavin et al. 2013). Our failure to find any significant change in RE 

from the CFB intervention conflicts with the findings of Lavin et al. who found an 

improvement (that is to say, lower VO2 at a given sub-maximal running velocity) in RE 

of ~15ml/kg/km, or ~6%.  As Lavin’s authors noted, their demonstration of change to 

performance was presumed to be a not-yet understood improvement in peripheral, 

vascular physiology. Just what precipitated the results in the Lavin cohort but not this one 

is likely due to the difficulty of eliciting change in the elite athlete, for whom the 

threshold for improvement is extremely high, with the potential for improvement very 

small.   

 With that said, the failure to achieve significant improvement in RE is consistent 

with some previous research that indicates that RE is not easily improved, nor perturbed, 
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by factors of training stimulus alone. An overload of training volume of up to 50% 

among well-trained triathletes cannot significantly affect RE (Palazzetti et al., 2005). 

Palazzetti et al. utilized an intervention lasting three weeks, which is of similar duration 

to this investigation; it is possible that our intervention was not of great enough duration, 

despite significant results in a novice cohort as demonstrated elsewhere (Lavin et al., 

2013).  

  Brothers and coworkers demonstrated that nearly a year spent at 6,000-ft of 

altitude demonstrated a worsening (that is to say, higher VO2 at a given sub-maximal 

running velocity) in RE, suggesting that physiological improvements in RE are slow to 

change due to environmental factors (Brothers et al., 2010).  

4.2 Normal values for RE 

Later, Morgan and colleagues determined that in runners who competed in the 

1984 U.S. Olympic trials had a mean RE of 182 (SD 9) mL/kg/km with a range of 162 to 

196 mL/kg/km (Morgan et al., 1995). In contrast, this study used swimmers, and their RE 

ranged from 182 to 224 mL/kg/km with mean of 203 (SD 11) mL/kg/km. Our elite cohort 

of swimmers demonstrated inferior RE to an elite running cohort.  In fact, the mean RE in 

this swimming cohort was similar to the RE of physical education majors [202 (SD 12)  

mL/kg/km] not accustomed to run training (Morgan et al., 1995).  Our subjects did 

demonstrate a much narrower range among their RE values than in the elite runners of 

Morgan et al., suggesting they were a very physiologically similar group. Additionally, 

the “poor” RE determined my Mooses and colleagues (Mooses et al., 2014) found that 
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the average RE of elite Kenyan runners was 229 (SD 13), which supports the assertion 

that RE is only one variable of many that predict running performance. 

Our research found that the reproducibility in RE was 11.8 mL/kg/km. That is, the 

difference between two measurements obtained on different days for the same subject is 

expected to be less than 2.77 times the within-subject standard deviation (Bland & 

Altman, 1996). The within subject standard deviation is otherwise known as the typical 

error. Thus, with an observed difference in RE between day 1 and day 2 differs by more 

than ± 11.8 mL/kg/km, there is a 97.5% probability that the change is indeed real (39 to 1 

odds), and only a 2.5% probability that it is not a true change. According to Will 

Hopkins, this degree of certainty about a true change unrealistic (Hopkins, 2000). He 

suggests that half the limit of agreement seems a more reasonable threshold; when an 

observed change in RE differs by more than ± 5.9 mL/kg/min in our cohort of swimmers, 

there is an 84% probability that the change is indeed real (5 to 1 odds), and only a 16% 

probability that it is not a true change.  This is approximately 1.5x the typical error (i.e. 

1.5x the measurement error) which is a more realistic threshold according to Hopkins. 

Thus, the smallest meaningful day-to-day change in RE converted to a percentage would 

be about 3%, which is similar its day-to-day coefficient of variation  of 2.4% (Table 5).  

This is in contrast to Saunders et al. who state that among elite runners, changes 

in RE greater than 2.4% should be considered meaningful (Saunders, Pyne, Telford, & 

Hawley, 2004b; Saunders et al., 2009).  Shaw et al. demonstrated that the within subject 

standard deviation  (i.e. the typical error) for both RE (mL/kg/km) and energy cost 

(kcal/kg/km) was also ∼3-4% (Shaw, Ingham, Fudge, & Folland, 2013) in their cohort. 
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4.3 RE and Swimming Performance 

This study found no association between RE and 200 yard swimming 

performance, which agrees with Lavin’s study on novice swimmers (Lavin et al., 2013). 

In light of this, we conclude that RE is not a valid measure of swimming performance in 

swimmers. Thereby, it behooves further research to seek other surrogate markers for 

swimming performance among swimmers. Failure to demonstrate association between 

RE and swimming performance in a large sample size of relatively homogenous 

swimmers (n = 25), however, should warrant the cessation of RE investigations among 

swimmers, as its relevance could be poor.  

Ideally, economy while swimming would have been assessed instead of running 

economy; our laboratory is at this time unequipped to perform cardiopulmonary testing 

underwater.  For this reason, RE was the most accessible, similar testing method. RE, 

however, still bears importance on the emerging population of crossover athletes, 

particularly in the multi-sport arena such as triathlon, for whom running is a regular 

portion of their training, but still includes swimming. 

A strong negative relationship was demonstrated between VO2max (L/min) and 

200 yard swimming performance indicating that as VO2max (L/min) increases, the time to 

complete a 200 yard swim decreases (r= -0.84, p < 0.05). This is in agreement with the 

findings that swimmer’s absolute VO2max (L/min) is an important predictor of swimming 

performance (Butts et al., 1991). As well, this provides for insight on whether a 

swimmer’s time trial performance should be regarded as comparable, superior, or inferior 

to that of their maximal aerobic capacity. 
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4.4 Familiarization trials for RE testing 

Our investigation will inform future research on particular necessity of 

familiarization for investigating VO2max and RE in elite swimmers. No statistically 

significant differences were found between familiarization and baseline sessions (see 

Table 3), which is strongly suggestive that swimmers, although not a population who 

regularly runs, do not require familiarization to a treadmill or metabolic cart. nvestigators 

in the future can forego familiarization and begin with baseline testing.  

4.5 Day-to-day variability in RE 

In light of finding no significant improvement from a CFB intervention, our 

investigation expanded its aims to assess the day-to-day variation in several 

cardiopulmonary parameters. The day-to-day coefficient of variation of 2.4% in RE 

(ml/kg/km) demonstrates that RE is a stable measure, even in swimmers, who are 

unaccustomed to running.  

Other research in day-to-day variability of RE conflict with our findings, as well 

as with one another. Zavorsky and colleagues found that the mean day-to-day variability 

of RE in an elite, homogeneous male running cohort (mostly college runners) was 2.5% 

[mean = 196 (SD 13), range = 166 to 232 mL/kg/km]  (Zavorsky, Montgomery, & 

Pearsall, 1998). These findings are similar to other research by Morgan et al., who found 

the variation of RE is about 1.3% (range = 0.3 to 4.4%) in well trained runners (Morgan, 

Martin, Krahenbuhl, & Baldini, 1991). Pereira et al. investigated the day-to-day 

variability (the day-to-day coefficient of variation) in RE among highly-trained and 

moderately-trained male runners, found to be 1.8% and 2% respectively and not 
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statistically different (p > 0.05) (Pereira & Freedson, 1997).  These conflicting findings 

suggests that the variability of RE may differ greatly in research despite a homogenous 

pool of subjects. Morgan et al. explicitly states their strict control of some testing 

procedures that may have contributed to their more narrow variation; these differences 

will be discussed more thoroughly in limitations below. Still, further research is needed 

to explain the differences uncovered here.  

4.6 Limitations 

Authors of this study recognize it has some limitations. While the results of this 

study bear important information on athletic testing and coaching at large, we recognize 

that CFB training among elite swimmers is only immediately relevant to like populations.  

Subjects of this study were elite swimmers all retained by the NCAA Division I 

swimming team of the University of Louisville, and thus are not a randomly obtained 

sample.  Subjects identified as Caucasian/White, and only one identified as 

Hispanic/Latino; race of subjects was a known delimitation among our convenience 

sample. Research suggests that race may substantially influence VO2max (Ceaser, 

Fitzhugh, Thompson, & Bassett, 2013). Ceaser et al. found that VO2max was significantly 

higher for Mexican Americans than for non-Hispanic Whites, with race explaining a 

significant component of the variance (19%, p < 0.01) in VO2max. This piece of literature 

observed that the intersection of race with physical activity and degree of exercise 

intensity cumulatively accounted for a lot of difference in VO2max.  In light of this, our 

investigation cannot be considered an ethnically diverse nor representative sample of the 

population.  
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As is true of most research conducted on athletes whose training volume 

vacillates seasonally, the subjects of this study underwent research at the very beginning 

of their pre-season training. Therefore, we tracked training volume of athletes during the 

study in order to account for the possibility that increase in training volume in general, 

not from this intervention specifically, may have affected VO2max or RE. In spite of this, 

previous research has demonstrated that volume overload in and of itself does not affect 

RE (Palazzetti et al., 2005). Even still, a control group was retained in order to 

comparatively indicate augmentation in either VO2max or RE due to training alone. While 

internal validity may have benefitted from an experimental design wherein subjects only 

underwent CFBH or SM intervention, it is unrealistic to the nature of an elite swimmer’s 

training and should be considered supportive of the external validity of this research.  

Findings may be limited by the periodical timing of the study. This intervention 

was implemented during the subjects’ offseason and into the beginning weeks of 

preseason. Aerobic performance of swimmers has been shown to vary throughout a 

swimmer’s training season (Perini et al., 2006). This phase of training limits relevance of 

results to the period of training of other swimmers.  

Our failure to reproduce Lavin‘s findings of improvement in RE may be explained by 

the physiological differences in our cohort. However, the intensity of the exercise may not 

have been sufficient to elicit performance results in an elite swimming population (Mujika et 

al., 1996).  Future investigations of a similar sort may consider a longer intervention, 

although previous research does  not guarantee that increased volume will improve 

swimming performance (Costill et al., 1991), and therefore may also fail to affect RE. 
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 This study incurred a limitation in procedure. Investigators did not control for shoe 

selection of subjects between trials. Shoe style immediately and significantly alters RE 

(Reeves et al., 2014; Sobhani et al., 2014). Insignificant results may be confounded by the 

failure to control for shoe selection. Replication of this investigation should control for shoe 

model in subjects between all trials. To this point, subjects frequently reported experience of 

shin splints while running. This qualitative observation, while beyond the analysis of 

statistical significance, should be considered as a contextual problem.   

In conclusion, RE in swimmers has not been found to be a significant predictor of 

swimming performance time, nor is it changed significantly with a four week intervention of 

CFB training in elite swimmers. The day-to-day variability in RE (mL/kg/km), energy cost 

(kcal/kg/km), and VO2max (L/min) was found to be between 2.4 and 3.4%.  Further research 

of CFB training in elite swimmers to improve RE is likely not warranted, although further 

directions should continue to investigate RE in multisport athletes who participate both in 

swimming and in running.  
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6.1  TABLE 1  Participant Characteristics 

 Stroke-

matched group 

(n = 13, 7 men) 

Controlled 

Frequency 

Breathing 

group 

(n = 12, 7 men) 

p -value Combined 

Mean 

(n = 25) 

Variables    
Age (yrs) 19.5 (1.3) 

[18 to 22] 
20.1 (1.1) 
[19 to 22] 

0.13 19.8  (1.2) 
[18 to 22] 

 
Weight (kg) 78 (10) 

[63 to 94] 
77 (11) 

[57 to 90] 
0.71 78  (10) 

[57 to 94] 
 

Height (cm) 176 (8) 
[162 to 189] 

178 (11) 
[156 to 191] 

 

0.64 177 (9) 
[156 to 191] 

 
BMI (kg/m²) 25.2 (2.0) 

[22.6 to 29.0] 
24.2 (1.7) 

[21.7 to 27.4] 
0.19 24.7  (1.9) 

[21.7 to 29.0] 
 

Body fat 

percentage 

17 (6) 
[9 to 26] 

15 (3) 
[10 to 22] 

0.50 16 (5) 
[9 to 26] 

Wing span (cm) 183 (11) 
[165 to 199] 

184 (13) 
[158 to 199] 

0.88 183 (12) 
[158 to 199] 

 

Wing span 

divided by 

height 

 
1.04 (.02) 

[0.98 to 1.06] 
 

 
1.03 (0.02) 

[1.00 to 1.08] 

 
0.39 

 
1.03 (0.02) 

[0.98 to 1.08] 

Swimming 

performance 

time 

115.2 (7.3) 
[105.0 to 126.5] 

113.7 (6.6) 
[104.5 to 128.9] 

0.61 114.5 (6.9) 
[104.5 to 128.9] 

Mean (SD), [range].  Non-parametric t-tests were used for non-normally-distributed data [age, 
wing span/height]. Independent t-tests were used for all other comparisons.  
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6.2 TABLE 2 Experimental design; intervention progression 

There were 4 sessions per week. 

 Intervention Stroke-Matched 

(control) 

Controlled Frequency 

Breathing (CFB) 

Week 1 12 x 50m front crawl 
on 1:00 min interval 

 

 
May breathe every 2-3 

strokes (stroke-
matched), 

total of 110-120 
breaths per workout 

 
May only breathe 2-3 
breaths per 50m lap 

(controlled frequency), 
total of 24-30 breaths 

per workout 

Week 2 & 3 12 x 50m front crawl 
on 0:55 sec interval 

 
Week 4 12 x 50m front crawl 

on 0:50 sec interval 
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6.3 TABLE 3 Cardiopulmonary data obtained from the graded exercise test to 
volitional exhaustion as well as running economy data   

 Familiarization Trial 

(n = 25) 

 

Baseline Trial 

(n = 25)  

 

p -value 

Variables   

VO2max (L/min) 
4.13 (0.77) 

[2.93 to 5.16] 
 

4.12 (0.84) 
[2.77 to 5.39] 0.79 

VO2max 
(mL/kg/min) 
 

52.9 (5.1) 
[43.2 to 60.6] 

52.5 (5.5) 
[39.4 to 63.1] 0.39 

VEmax (L/min) 
117 (21) 

[75 to 148] 
115 (24) 

[63 to 149] 
 

0.18 

RERmax 
1.13 (0.03) 

[1.08 to 1.19] 
1.12 (0.05) 

[1.01 to 1.18] 0.17 

HRmax (beats/min) 
 

195 (9) 
[174 to 209] 

 
192 (10) 

[177 to 210] 
0.03*  

Oxygen pulse at 
max (mL/beat) 

 
21.9 (4.5) 
[16 to 32] 

 

 
22.1 (4.6) 
[15 to 28] 0.66 

Running economy 
(mL/kg/km) 
 

204 (12) 
[182 to 224] 

201 (10) 
[183 to 217] 0.01* 

Energy cost 
(kcal/kg/km) 

1.01 (0.06) 
[0.91 to 1.13] 

1.0 (0.05) 
[0.90 to 1.09] 0.02* 

Mean (SD), [range]. Running economy and energy cost was averaged over the three running 
speeds (6.0., 7.0, 8.0 mph for men, and 5.5, 6.5, 7.5 mph for women).  *denotes statistical 
significance (P < 0.05). While maximal heart rate, running economy, and energy cost were 
statistically significant between trials, the effect sizes were small and not meaningful.  
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6.4 TABLE 4 Cardiopulmonary data for selected variables between groups  

 Mean change (SD) 

[95% CI] 

Effect 

size 

SRM t-

statistic 

p-value 

Stroke matched  (control group) (n = 13, 7 men) 

VO2max (L/min) -0.1 (0.2) 
[-0.2 to 0.1] 

-0.07 -0.34 -0.98 0.35 

VO2max (mL/kg/min) -1.2 (3.1) 
[-3.2 to 0.9] 

-0.24 -0.37  -1.23 0.25 

Running economy 
(mL/kg/km) 

-3.3 (8.5) 
[-8.8 to 2.1] 

-0.33 -0.39 -1.35 0.2 

Energy cost 
(kcal/kg/km) 

-0.02 (.04) 
[-0.04 to 0.01] 

-0.30 -0.38 -1.32 0.21 

200 yd. swimming 
performance time (sec) 

+1.8 (4.6) 
[-1.5 to 5.1] 

0.28 0.38 1.22 0.26 

Controlled frequency breathing (n =12, 7 men) 

VO2max (L/min) +0.1 (0.3) 
[-0.1 to 0.3] 

0.10 0.25 0.76 0.47 

VO2max (mL/kg/min) +1.1 (3.2) 
[-1.4 to 3.5] 

0.25 0.19 0.56 0.59 

Running economy 
(mL/kg/km) 

+1.8 (9.5) 
[-5.5 to 9] 

0.17 0.19 .056 0.59 

Energy cost 
(kcal/kg/km) 

+0.01 (.05) 
[-0.03 to 0.05] 

0.16 0.19 0.58 0.58 

200 yd. swimming 
performance time (sec) 

-0.1 (1.5) 
[-1.2 to 1.1] 

-0.01 -0.05 -0.16 0.88 

  Mean (SD), [95% CI]. The mean change is post-test minus pre-test values.  CI, confidence 
interval; SRM, standardized response mean.  
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TABLE 5 Reproducibility in cardiopulmonary variables from the graded exercise 
test 

 Day-to-Day 

Variation (%) 

Measurement 

Error 
Reproducibility 

Smallest 

meaningful 

change 

VO2max (L/min) 3.4% 0.14 0.39 0.20 

VO2max 

(mL/kg/min) 
3.2% 1.8 4.7 2.3 

VEmax (L/min) 4.6% 5.3 14.6 7.3 

RERmax 3.0% 0.03 0.09 .04 

HRmax 2.1% 3 9 5 

Oxygen pulse at 
max mL/beat 

7.0% 1.6 4.3 2.2 

Running economy 
(mL/kg/km) 

2.4% 4.3 11.8 5.9 

Energy cost 
(kcal/kg/km) 

2.5% 0.03 0.09 0.04 

Data were pooled from both groups, n = 25. The results from familiarization trial and 
baseline trial. Some values were rounded to the nearest whole number. 
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