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PURPOSE OF TREATISE 

This work is intended ~r1mari1y for the student of mathe

matics who may not neoessarily wish to delve into the oomp1ete 

theory of the problem. but who may wish to get a pioture of 

the work necessary to study and understand it. For a oomp1ete 

history of the problem until 1919, refer to Chapter XXVI of 

DickeonlS History of the Theory of Numbers, II. and for the 

work primarily connected with Irregular Cyclotomic Fields and 

Fermat1s Last Theorem through part of 1927, refer to Algebraic 

Numbers, II, National R.aearoh Council Bulletin, # 62. For a 

Short presentation of the prob~em refer to Mordell, Three 

Leoture. on Fermat1s Last Theorem. For a more detailed analysis 
=--=-~- -
of the methods used to work on this problem refer to Baohmann. 

Das Fermatproblem. 

The author of this treatise has attempted to cover oertain 

pointe. First, to give the nature of Fermat1s Last Theorem. 

Seoond, an introduotion. whioh will contain some historical 

faots of the Last Theorem, a referenoe to the mathematioal 

development which resulted from thiS ~rob1em. and its status 

at the present. Third. a detailed aocount of the method of 

infinite desoent. The oases n :::::. 3, 4. 5 are used to show this 
(1 ) 

method of attaok. For n = 5 the procedure is that of Dirioh1et. 

In order that a better understanding may be secured of various 

steps in his proof. all the theorems of his artiole are reuro

duoed without proof. Fourth. an introduotion to the theory of 

ideals. This is not an exhaustive study of ideals but an 

atte~t to aid the beginner to understand them. 
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Fifth, this treatise will also 3Ive 3 detailed accovnt of the 

work done on this problem from 1~19 to 1'138 presented in two 
( 2) 

parts: first, resumes of all papers publIshed during that 

time; and second, a list of books published in the sa~e period . 

. . . . . . . . . . . 

( 1) 
/ , 

Dirichlet, ~. L. : Memoire sur l'impossibtllte de 
/ / / que11ues equations injeter:ninees au clnquieme degre; 

Journal f~r Mathematik, 3, l82~, pp. 354-75. 

(2) 'rhe author was unable to give the results of two papers; 

the first by C}eorglkopulas, 1931, he was unable to 

secure, the second by Niewladomski, 1933, he ~as unable 

to transla-l:.e. 



CHAPTER I 

INTRODUCTION 
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Fermat, about 1637, stated that Itlt is impossible to separate 

a cube into two cubes, or a biquadrate into two biquadrates, or 

in general any power higher than the second into two powers of 

like degree; I have discovered a truly remarkable proof which 
(JJ 

this margin is too small to contain. 1t This theorem is known as 

Fermat's Last Theorem. This problem may be more simply stated by 
"..., noV ......... 

the equation x + y F Z , where x, y, z, and n are rational 

integers. 

Since Fermat made this statement concerning the problem which 

bears his name there have been published over 350 papers which 

have contributed toward the advancement of the solution of this 

problem." P. Wolfskehl, in 1908, bequeathed to the K. Gesellschaft 

der Wissenschaften zu Gottigen one-hundred-thousand marks to be 

offered as a prize for a complete proof of Fermat t s Last Theorem. 

It may be noted that Wolfskehl was the author of a paper on the 

related subject of the class number for complex numbers formed 

of eleventh and thirteenth roots of unity. Following the announce

ment of this prize over one-thousand false proofs were published, 

mostly as pamphlets. This retarded the work on the problem as 

eminent mathematicians were spending their time disproving the 

claims. The printers were the ones who benefited by these false 

proofs as the prize stipulated they must be published • 

The attempts to prove that the equation 
...,.." 'YI/ /J't.J 

X T Y = z has no 

solutions in positive rational integers, none zero, has probably 

contributed more to the development of the theory of algebraic 

numbers than any other one problem. tlFermat's Last Theorem is 

not o~ special importance in itself, and the publication of a 
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oomplete proof would de~rive it of ita ohief olaim to attention 

for its own sake. But the theorem haS acquired an important posi

tion in the history of mathematios on aooount of its having 

afforded the ins~iration whioh led Kummer to his invention of his 

ide.l numbers out of whioh grew the general theory of algebraic 

numbers, which is one of the most important branohes of modern 
(.l.) 

mathematios. " 

In attaoking Fermat's Last !heorem it is oonvenient tt break 

it up into two oases and treat eaoh separately. "If 

x~ + 11'+ .f'= 0 

is satisfied in rational integera x, y •• prime to the odd prime 

p. this will be referred to as Case I of Fermat's Last Theorem; 

and if one of these integers is divisible by p with x, y. z 

prime to eaoh other this will be r&ferred to as ~.se II of the 
\.; (3) 

theorem." This method of approaoh does not lose any generali-
. 4 <4- '* zation as x + y =- z has been disproved. and if n is a multi-

., '" q ple of 4 it is a speoial oase of x + Y = z • If n is oomposite 

it can be made to rest on the solution of its prime factors. Also 

there is no 10s8 of generality in assuming the symmetric equation 

x1 t- y1'+ zf=. 0 instead of x" -I- yf::: zl for p an odd prime. 

J\ (- z) will do as well as a (+ z) since it will be raised to an 

odd power. 

"Writing the equation (p an odd prime) 

x1' + y1 = z ~ 

in the form 
"2-

ex + y){x -t- J y){x +- f y) ••• 
;-1 1 

(x -r ! y) - z 

where f is a complex p-th root of unity, the attention of 
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mathematicians was drawn to the study of 

a + •••••• 

6 

expressions of the form 
1'- ( 

k j , 
where a, b, c, ••• are integers, and to inquire if the 

ordinary laws of arithmetic applied to such expressions. 

"Many of the most important developments of arithmetic depend 

upon the definition of a prime number and the so called factor 

theorem, namely that every number can be resolved into prime 

factors in one way only. It follows from this fact that if posi-

tive integers A, B, CJ ••• , K, L, of which no two have a com-

mon factor, satisfy the condttion 

ABC ••• K = L l' , 

then each of the numbers A, B, Ii •• , K must be a perfect p-th 

power. Should any of the quantities A, B, ••• have a common 

factor, this result must be slightly modified: for example A 

now will be a perfect p-th power multiplied by a constant de-

pending on the common factors mentioned above. Particular cases 

of this theorem have already been used. The question immediately 

suggests itself - Can this theorem be extended to apply to the 

equation xl' + y1' = z r, and can we deduce that the factors 
L 

(x + J y), (x + J y), ••• , are each p-th powers of the expression 

of the form 

a -t- + c r ••• 

or perhaps multiples of such p-th powers? If so, a proof of 
( 'I) 

Fermat's Last Theorem would be fairly easy." 
I 

"Lame essayed to prove Fermat's Last Theorem but assumed with-

out proof that integers in the field Il (~), where 0(. is a 

primitive n-th root of unity, n being an odd prime, decomposed 
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uniquely into prime factors in the field. This error was pOinted 
/ / 

out by Liouville in commenting on Lame's first article. Lame 

recognized this lacuna but showed that this theorem was true 

for the case n = 5, and affirmed that it was also true for n 

general. He proved that the equation 
5" !J !J 

A +B t-C-=O 

is impossible for integers A, B, C in the field .fl (eX:..), 
~ q (~ 

oC =1] eX:. =#= t. 

That the unique factorization law did not hold in all cases 

led Kummer to the development of the theory of ideals. This revo

lutionized the study of algebraic numbers. 1t In this connection 

it may be noted that although many contributions have been made 

to the first case of the theorem no paper has been published on 

the second case since Kummer's 1857 memoir which is proved to 
(b) 

represent an advance over his results of that paper." Kummer 
'l'V ,,-,.J ",v 

was interested in the solution of x + y -r z = 0 and would 

have given up the study of ideal theory if he could have found 

another means of solving the general problem. The theory of 

ideals as it is now known is not that of Kummer but of Dedekind 

who advanced Kummer's work to the more general form. Kummer also 

worked on the general law of reciprocity. 

Besides Kummer, the mathematicians usually connected with 

this problem are Sophie Germain, Wendt, Wieferich, Mirimanoff, 

Furtwangler, Pollaczeki Dickson, and Vandiver. 

At the pres en t Cas e I has been proved for p > Lt 1,000,000. 

Case II, by an intensive study of Bernoulli's numbers and their 

application to Fermat's Last Theorem by Vandiver, has been 
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extended to p < 617. At the present the study of Irregular 

Cyolotomio Fields and Bernoulli Numbers may lead to a possible 

solution of the general oase. That Oase I has not been proved 

is one of the most amazing facts in present-day mathematios. 

Everything indioates that it is true. As for Ca.e II. several 

speoialists in the theory of numbers think that it is quite 

possible that there exist odd prime integers ~ an~ integers 

%, Y. z prime to eaoh other, Ii :: 0, (mod • .1) suoh th~t 
i I .P x -1-y -rl =0. 

• • • • • • • • • • • • • • • 
(1) Dickson. L. E •• History ~ the Theorl of Numbers. 

vol. 2, p.731. 

vol. 2, 1>. xix. 

(3) National Researoh Counoil Bulletin, No. 62, p.28. 

(4) Morde1l. L. J. t Three Leotures ~ Fermat's Last Theorem. 

p. 10. 

(5) pational Researoh COUAoil Bulletin No. 62. ~. 29. 

(6) National Researoh Counc~l Bulletin, No. 62, p.28. 



CHAPTER II 

METHOD OF INFINITE D~SC~~ AND ITS 

APPLICATION WHEN n ~ 3, 4, 5. 
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Among the methods that have been used in working on Fermat's 

Last Theorem the simplest one is that of infinite descent. This 

method is only applicable to the smaller values of n, where n 

is the exponent of the equation 
nV /)'f/ nv 

X + Y =- z • This method is 

characterized by first assuming a smallest solution and then 

showing that there is a still smaller solution of t~e same form. 

This leads to an infinite set of decreasing integers, none zero, 

which is impossible. The easiest case to prove is for n equal to 

4. For this we develop the conditions for primitive solutions of 
:& #Iv ~ 

X T Y = z • Then we apply these results to n equal to 4. For 

the case n equal to 5 the proof is that of Dirichlet. The 

theorems he develops to give his proof will be found reproduced 

at the end of the case where.n equals 5. Dirichlet's proof of 

the case n equal to 5 is a special case of a more general fifth 

degree equation of the form 
5" :;- -nv /yV !7 

X -+- Y =- 2 5 Az when z is even, 
S- !I 'W s-

and 0 f x ± y :: 5 Az when z is odd • 

. . . . . . . . . . . . . . . . . .-... 
:L L tL 

X -t- Y =- z 

A solution in which x, y, z have no common factor is called 

a primitive solution. It will be sufficient to find all the 

primitive solutions, for every non-primitive solution can be 

deduced from some primitive solution by multiplying all its 

numbers by the proper factor. 

Our first step is to see what form x, y, and z will have in 

the primitive solutions. We will show that one of x and y will 

be even the other odd. For (a) if x and y were both even, z 

would also be even; the common factor, 2, would be present and 
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the solut1on would not be pr1m1t1ve. (b) If x and y were both 

odd (that 1s, of the fom 2n + 1), xii- and y:t- would both be of 

the form 4n + 1; and hence z 3... would be of the form 4n + 2. But 

this is impossible, s1nce the square of every even number 1s of 

the fom 4n, and that of every odd number is of the form 4n + 1. 

Since supposit1ons (a) and (b) are both incorrect one of the 

numbers x and y must be even, the other odd. Let x denote the 

even one. Then y and z are odd. 
:u :tJ :u ;L .k ;u 

Put x + y :: Z in the form x = z y - (z -+-y)(z -y). 

Since z and y B.re both odd we may put 

z + y -= 2k 

z Y = 21 
:lJ 

X ::: 4kl. 

Since x, y, z are relatively prime, k and 1 must also be 

relatively prime; for, from the equations 

z =- k + 1 and y = k - li 

it is clear that if k and 1 had a common factor y B.nd z would 

have that factor in common also. 

Since 4kl is a square, it follows that k and 1 must be 

squares. We therefore put: 
L 

k - m 
~ 

1 = q (m,q relatively prime). 
:L ~ IV 

Consequently, 1n any primitive solution of x + y =- z 

x, y, z must be of the following form: 

X ::. 2mq 
2.- :l.-

Y = m q 

, 

2.. q,l., Z .::: m ..... from the above values of x, y, z • 
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4 " 1-x + y = z 
'I 1- ~ 

To disprove this consider the equation x + y = z in the 

form. (x.t).t. + (y.t)2. = z.:l.. In this form x~-= 2mq, y-L -= m..2. _ q~, 
:L :z-

z :::. m + q ,where II!. , q are prime to each other and hot both 
3.J ,.. ~ :J, 

odd. From y = m - q we see that q must be even since y is 
:L :L,.. 

odd, and if m is even m - q would be of the form 4K +3 which 
.:z. :lJ 2, 

is impossible. In y + q =: m q is even, m is odd and prime to 

q. Also, y, q, and m are relatively prime. !Jence 
:lJ 3J 

Y -= a b 

q -= 2a'Q where a and b are prime to 
l.J 

m = a +- each other and both not odd. 

From ~ 
X -::. 2mq 

l.J ~ ~ ~ ~ 
X :: 2(a + b )(2ab) -:. 4ab(a + b ). 

Since a and b are relatively prime both are relatively prime 

to (a~+ b~) 1 and hence a 1 three must be perfect squares. Put 

then a 

from which 

:L 
r , b :: 

L 
S , 

4- " :v r -I-S =t. 

L ;lJ 

a + b 
:L 

== t 

Now the values of x, y, z in terms of r, s, t are given by 
'-I J./ ~ 3J "-I:L £It/. 

Y :: r s, X ::. rst , z = m +- q ::: (r + s) + 4( r s ) 

z = r f + 2r" s '"' + S f + 4r" s i./- = r 8 + 6r 'I s 1- + S 8 

'" of :J.., of-so that z > (r + s) > t or t <. v.. 
X '-l+ y4 Given then one solution of -= 

:z. z for which x, y, z are 

not zero then another solution (r, s, t) can be found such that 

none are zero and t z ~ . This process can be continued, so 

that an infini ta number of posi tiva integers t, t I , t 2.' ••• , 

can be found such that t l « ~, t~~ ~ , which is clearly 

absurd. 
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x+y.=.z 

Our first step in attacking this problem is to determine 

the form of x, y, z. If x, y, and z are all even then the 

factor of a power of 2 can be factored out. Two of the un-

knowns x, y, z must be odd and as any of the unknowns may 
a a S 

be negative if- we put the equation in the form x + y + z -= 0 

there is no loss of generality in assuming z even and x and 

y odd. The numbers x, y, z can take the form 3k, 3k ± 1. 
3 3;l" 3 

When cubed (3k + 1) ::. 27k + 27k + 9k + 1, and (3k) = 

27k
3

• These numbers will then be congruent to -tl, -1, 0 

(mod 9). From this we will show that solutions of Case I are 

impossible. That is, when (x, y, z) = 1, (xyz, p) = 1. This 

symbol means that 1 is the greatest common divisor of the 

numbers in the parenthesis. The p in the second parenthesis 

is the prime exponent of x~ + y1' = I . The proof of the 

impossibility of solutions of Case I is easy. Assume that 

none of the numbers x, y, z is divisible by 3. Then their 

residues -t- 1 + 1 :=. 0 or ::: + 2 (mod 9) which is impossible. 

Since we are letting x and y be odd numbers then 

x -t- Y = 2p x == p + q 

x y = 2q y = p q • 

If we substitute the values of x and y in the original equation 

we will find that 2P(P~+3q.:l..) - z3. p and q are prime and 

cannot both be odd for then x and y would not be prime to each 

other. p must be even and q odd otherwise z would be divisible 
:J., ~ 

by 2 but not by 8. Then (p + 3q ) is odd. As p and q are prime 

to each other 
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2p and 
fL 3J 

P + 3q 

are either relatively prime or have a common factor of 3. In 

the first case p and z are prime to 3; in the latter case 

both are divisible by 3. 
:L :u 

First case: As 2p and (p + 3q ) are prime to each other, 

each must be a perfect cube. We can write 
~ tk ;, 

(p + 3q) -= r 

Values of p, q, r can be found by taking 

* ( r 
~ 3J 

:::; m + 3n ) 

where m and n are integers and writing 

+ q{:0 (m + nM) 
~ 

p • 
l. IL 3 

q ~ -3 ) (p - qf:3) p + 3q = r = (p + 
- (m + n (:3 )~ (m - n" -3 ).3 -

By equating real and imaginary 

(m + n~-3 )3 
3 ;b 

P = m - 9mn 

parts of p + 

:J., 

q =. 3m n 

q {-3 , 

a 
3n 

• 

and if ill and n are prime to each other and not both odd, and 

m is not divisible by 3, then p and q are prime to each other 

and p is not divisible by 3. This method gives suitable 
h .L 3 

values of p, q, r, satisfying (p + 3q ) = r 

Since 2p is a cube, m and n must be such that 

2m(m +- 3n)(m 3n) is a perfect cube. 

Since q :::; 3n(m + n)(m - n), n is odd and m is even. 

Since m is prime to 3, no two of 2m, m -t- 3n, m - 3n can 

have a common factor; each must be a perfect cube 
a 3 3 

m ;- 3n = a , m - 3n ::: b 2m::: c 
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and adding the above we get 
~ 3 

a + b 
.3 

- c .. 
S 3 3 

This equation has the same form as x + y ::. Z with the same 

conditions as x, y. z. We will show that the values of a, b, c 

are less than x, y, z. Also we will have here another application 

of case I where we can continue this process and find integers 

less than a, b, c which will satisfy the same equation. 

Continuing the above we find 
3 3,;l, 333 ~ 2.~ 

Z =. 2p(p + 3q) ::: a-b- c oem +- 3n ) 
:l,:t, . I". 3'& 

or z = abc( m + 3n) ::. 1/3abc( a + a b + 

and as a and b cannot both be unity, z is numerically greater 

than c. Then as for n ~ 4 we get a set of numerically decreasing 

integers, none zero, which is impossible. 
:L :z.. 

Second case: As 2p and (p + 3q) have a factor of 3 
~ 

p :=. 3p, = 3 P:L. 

Since 2p( p:L + 3q ~ = z a it can be put in the form 
<, :L:L ~ 3 

2 0 3 P.z.(3 P, + 3q ) = z 

b 3
9 

or, y taking out 
:t. ~ 

2p :t. ( q t- 3 p , ) ::. Z I • 

From here the proof is that of the first case. 

• • • • • • • • • • • • • • • • • • • • • 
:L. Jt, 

~ Every odd divisor of x + 3y (x and y relatively prime) 

is of that form. (Dickson, L. E., Introduction to 1ru! Theory 

of Numbers, page 96, problem 4). 
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x, y and z aan have one of the following forms: 5k, (5k + 1), 

(5k + 2). Raising these forms to the fifth power x, y, 1 would 
:L-be aongruent to 0, ± 1, or .:t. 79 modulus 5 • Henee we get the 

followlag possibilit ies: 

+ 1 1- 1 :::::. 0, + 2 

+ 1 .± 7 = :t6, ± 8 

:t 7 ± 7 = ± 14, o • 
Since these possibilities must conform to o.ne of the residues 

when added, the only possibilities are: 

+1 1 =0 

-1 +1 =-0 

+ 7 - 7 = 0 

-'1+7 =0 • 
From this we find that one of the numbers x, y, z must be of 

~he form 5k, i. e •• div1sible by 5. Therefore Case I of the 

theorem, x.l. I, p being relatively prime in pairs, is impos

sible. There will be no loss of generality in assuming 1 

divisible by 5. This 11111 lead to' two oases, f1rst. when 1 1s 

even; seaond, when z is odd. 

Case I. 

Case II. 

Case I. 

x odd, Y odd, z even and divisible by 5. 

x odd, y even. z odd and d1visible by 5. 

x -I-y = 2p. x = P -t- q 

x - y - 2p, Y :: P q 

where p and Q. are relatively prime integers, one even, the other 

odd. This can be seen from the above values of x and y, for if 

p an4 q .ere both odd x and y would both be even. 

Subst1tut1ng for x and y we get 
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(p + q) i- (p - q) 

!7-

z 

which gives after multiplying out and collecting terms 

" :1. :l., "" S-2p( P + lOp q + 5q) = Z • 
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Although we know that p and q are relatively prime one even, 

the other odd, we can show that p is even and q is odd. Let us 

first suppose p odd and q even and see what results. Then we 

will suppose p even and q odd. By this method we will be able 

to determine the nature of p and q. If p is odd and q is even 
4- :(,:l., 4-

we would have (p + lOp q +5q) odd and 2p two times an odd 
~-

number. But since Z is even z would be divisible by at least 

2 5"" , our hypothesis above is incorrect and p must be even and 

q odd. 

Our next problem is to determine whether p is divisible by 

5. We will now show that it is. If p is not divisible by 5 
l{. :l.. 2, " then (p + lOp q + 5q) is not divisible by 5. But since z 

5""" .r 
is divisible by 5, z must be divisible by 5 and this can only 

hold if we have p divisible by 5. Hence p has the form such that 
~ 5"~/,;, s--l~ s-

2p - 2' 2 . 5 . 5 . oC 

where k, and k~ may both be zero. We can also write 
..,. :L:t. 4- -

p + lOp q -r 5q - ~ ~ • 

Hence 
5""" 5"" 5"i, s- l1i-z.. ~- S- b- S Fa, -t-I) s-M .. 1" I) 

Z = 2 . 2 . 5 . 5 . 0(. j3 or 
4- 2.:L 4- s-

P + lOp q -t- 5q :::. 5 ~ 

x-t-y=2 5 ZI • 

In let p = 5PI • 

From this we get 
4- sf .3;z.. 2., '-I- S-

5 . P, -t- 2· 5 • P, . q + 5q - ~ 
3 4 :t,;J., L 4- 5"" 

5 . P, 1- 2· 5 . P, q + q = r or 

which can be written as 
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l- ~:L:b 

(q -t- 5·p ) -
I 

4- 1/ 3 4-
5·p, + 5·p, = r 

3 4- S-
5· 4 ·P, -~ 
~ ~;t, 

P ::. q + 5·p, 

• or 

If we set 

and Q = 2'5-p 
I 

then we will get P~ - 5Q:I..:= r.r 
where P and Q. are relatively prime. • 

From Theorem I of Dirichlet's proof we can set 
.:0 ;v ~ 1- L.2..:L 3 'I 

P = q + 5·p t(t + 2-5 t s + 5·s ) , 
:t- 4- :t.. :lJ 5s if) and Q, ::. lOp, = 5s(t + lOt s + 

where a and tare relatively prime, the first even the second 

odd and not divisible by S~ Since P, is divisible by 5 then s 

must be divisible by 5. 
L S-(ir.,T ~ 

I f in 2 -5 P, = 2 we square both sides we 

will have 
""4z- !7 

2·5·p, =A ::. ., 4 L:l., 1-
2 -5 s( t + lOt s + 5s ) 

in which 
<I 

2-5's and 
.., :z.L .,. 

(t + lOt s + 5s) are relatively 

prime since t is not divisible by 5. Hence 
'I L ~ 4- \ r 

t + lOt s + 5s :=. /\, 

which can be written as 
:L ,z:1" ~L \a 

( t + 5s) - 5( 2s) = A, . 

~ :l, 

From Theorem I of Dirichlet's proof, (t + 5s) can be written 
2, :J., ,,4 2,:z. 4-

as t + 5s = t (t + lOt' s' + 5s / ) 
2., " ?. '- if 2s :::. 5s' (t' + lOt's' + 5a' ) 

4 
or 2s.r.. '7 5s~5s I or s / <.. y2s:L/25 hence s ' <. s. 

Here if t f and Sf are relatively prime we can set 
4 :J., ~ " s-

(t' + lOt' s I + 5s I ) = A 2. 

which can be written in the same form as above with numbers 
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t 
/I II 

and s • This can be shown in the following manner: 

Let ~ ;L"- ., \,3 
t + lot s + 5s = /\ 

4 ..... "&. t/ \ ... b 
t' + lOti s' + 5s' = /\ etc. 

Then 
( 5"~ /\5""~ \ s-

(t '\) - 5(5s Il ... J == /\( 
~ .... 2.. 3"l- \ iJ ( A z- ) • ( t ( - 5· s ') =- /\ , 

.... ~ !J 
t' - 5(5s') =- A3 • 

From this we get a series of decreasing integers t, t , t 
II , 

/ 1/ ••• , and s, s , s , ••• , such that the preceding one is 

greater than the succeeding one and as zero is not included in 

this series it is impossible. 

• • • • • • • • • • • 
Case II. x odd, y even, z odd and divisible by 5. 

Let us consider the equation 

( 1) 
s- s- 3hV () 

X + y =- 5 z 

and place x + y = p, 2x == p + q 

x y -= q, 2y =- p q 

where pand q are relatively prime, both odd. Substituting for 

x and y in (1) we get 

+ 
which gives 

4- a.~ '"' 4£rv~ p( P + lOp q + 5q) ::; 2· 5 . z • 

We can show that p is divisible by 5, hence p -= 5r, or 
;/.J 4 :l..,~~!.f 4s;..,{) 

5·r(q + 2·5·q r + 5·r) - 2·5·z 

which gives 
4- :J.,:J.z-. ,4 

r( q + 2·5· q r +- 5· r ) 
4 !Jnr,,-~ b 

2'5 z • 
Since p and q are relatively prime we can readily see that r is 
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diviaible by 5. Thia make a 
4- ~.z.,L 3 'I 

rand (q + 2·5·q r -+- 5 r) relatively prime. 
4- 1L:u:/v 34- 4-

Hence (q + 2·5·q.r + 5·r) ia equal to 2 timea a fifth 

power, and aa a conaequence of Theorem VII, can be aet 1nto 

(

q..t. +2 5:r :U).l :& 
5(5r~) 

.., ::t, :2... 

q"" + 5 r :::l., 

where and 5r are relat1vely pr1me, both odd, 
2 

and the latter is diviaible by 5. Hence 
:L ~ .:l.. 1./.:2. ~.:z. .3 4) 

q + 5·r t(t +- 2·5·t s + 5·a . 

2 21 

:t, 

5r 
5a( t 4- + 10tLaL + 5a 4 ) 

where t and a are relat1vely prime, both odd, and t ia not 

diviaible by 5. Since r is divisible by 5, a must alao be. 
~ S'..-yV 4- :z, IO,.,v '0. 

Above we f1nd that 5 r -= 5 • Hence 5 r = 5 z. or 
I-

4- q :L:l, 1-
4- l., 5 a ( t + lOt s + 5s ) IO.-rv 10 

5·r = 24 = 5 z. 
..( 

which can be put in the form 
4 :z... :t, 4- /O'"'-~ 10 

~ 5a ( t + lOt a + 5a ) 
5r -

24 - 5 z· - .( 

which givea 
4- ~ ~ 4 

a( t + lOt a +- 5a ) • 
Since t and a are relatively prime, both odd, and t not divisible 

by 5, we can set 
'-I %.. .:t, 'I . 

(t + lOt a + 5a ) 
4 r 

2 z· 
J 

-
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where z· 
J 

is not divisible by 5. The above equation can be 

placed in the following form 

c~: 5~·~T 
:L ;u ~ 

t + 5·s 

:I..., 
5 ( s!l.) 

:v 
where and 58 are relatively prime, both odd, 

2 

and the latter divisible by 5. Hence 
-I .t. 'Z-:t. 3" 

t' (t/ + 2·5 ·t/ . S' + 5- s' ) 
~ /fIJ:J,. 

t + 5·s -
21--

2 
4- 2-:L 1-

5s / ( t I + lOt' . 8 I + 5s I ) :Jv -8 -
2'1 

where t I and s I are relatively prime, both odd, and t / not 

divisible by 5. As s is divisible by 5 and t I is not then 8 I 

mU8t be divisible by 5. 

S ol- > / We see that 25 16 S 
S" 

/ and that s is much larger than 
/ 

• From the fact that we get a series of trinomial factor8 8 

I ~ I U 

of the same form. in which t > t ) t etc., and s"7 s )- 8 

etc., and that zero is excluded from this set we can say that 

the theorem for n ::::. 5 is impossible. 
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Theorem I. 

Given 1. , an odd prime, which is not a factor of a, and suppose 

that we have the equation 

( 1) 

which satisfies 

( 2) 
~ ..t.. __ pnv 

d - ae --t 

the numbers d and e being given by the expression 

( 3) ( 6 + f Va )~ =- d + e ra 
and 
( 3a) {& - cra)1TV = d era 

L (d' + e/Va) 

then if we equate the rational parts and the coefficient Of~, 

then the numbers d and e thus obtained are relatively prime. 

Theorem II. 

Let J? be an odd prime and not a divisor of a, and suppose that 

( 4) 

( 5) 

d;{, - ae :L ==- .1''7 
d

' '2. _ ,2., f)"1V 
ae = -i , 

/ , 
the numbers d and e, d and e being relatively prime, then 

there exists two numbers t and u which satisfy the equation 

(6) 
.:l ~ 

t - au = 1 

which can be put in the following form 

(7) (d' -t e'fa )(t -t- u{;) ::. d ;- eVa 
the signs being conveniently chosen and the rational parts and 

the coefficients of ~ equated separately. 

Theorem III. 

cnven! , an odd prime, not dividing a, and k an odd number 

relatively prime to a, which satisfy the following equations 
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~ ~ 1Jh'V 

D - aE =.-{, k, 
~ tl" /J ,,-v 

d - ae ::.-{. , 

Where D and E, d and e are relatively prime, then there eXists 

two numbers'O' and E' ,relatively prime, which will satisfy 

the equation 
:t. L 

0' - 5E ::. k 

and also 

the si,gIls being suitably chosen and the rational parts and the 

coefficients of Ya equated separately. 

Theorem IV. 

If P and Q a~e relatively prime numbers, the one even, the other 

odd, and if the last one is divisible by 5, then in order to set 
:z, ~ 

P - 5Q equal to a fifth power in the most general manner, it 

will be sufficient to set 

P + Q,{5 
where the indeterminants f and ~ are relatively prime, the one 

even, the other odd, and the first moreover not divisible by 5. 

Theorem V. 

If the numbers m and n are positive, n being different from 2, 

and the number A not divisible by 2 or 5, nor by any prime of 

the form 10k + 1, then 1 t will be impossible to find two rela-
s- r......v nV 3" 

tively prime numbers x' and y, such that x + y = 2 5 Az • 
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Theorem VI. 

If the nnabers m and A are subjected to the same restrictions 
.,.-yyV 

given in Theorem V. and if the number 2 A, when divided by 25, 

gives one of the following eight residues, 3, 4, 9. 12, 13, 16, 

21, 22, it will be impossible to find two relatively prime 
b 5" ~ s-

numbers x and y, such that x + y = 2 As • 

Theorem VII. 

If the numbers P and Q are relatively prime, both odd, the last 
:L :0 

divisible by 5, then in order to equate the binomial P - 5Q 

to the quadruple of a fifth power in the most general form, it 

will be sufficient to eet: 

(f +- 'fro) 
if 

2 

where the 1a4etermltlant numbers tf and r are relatively 

prime, both odd, and the first moreover, not divisible by 5. 

Theorem VIII. 

If n deeignates a postive number other than 0 and 2, and if the 

number A is neither divisible by 2 nor 5, neither by any prime 

of the form 10k ~ 1, then it will be impossible of finding two 

numbers x and y which are relatively prime, such that 
.s- 5" ".., 5"" 

% + Y == 6 AI • 

Theorem IX. 

If A is sub~ected to the same restrictions given in Theorem VIII. 

and is divided by 25 and gives the following eight reSidues, 3,4, 
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9, 12, 13, 16, 21, 22, then it will be impossible to find two 

.s- b" 5"" 
relatively prime numbers x and y suoh that x + y = AI • 



~~APTER III 

AN INTRODUCTION TO THE NATURE OF IDEALS 



27 

In Chapter I we stated that Kummer lnvented the ldeal 

theory and that Dedeklnd advanced thls theory to a more 

general form. In thls chapter lt ls lntended to glve an 

lntroductlon to the nature of ldeals. It w1ll be shown why 

1deals must be introduced 1n order to extend unlque factor

izatlon to all number flelds of flnlte order. For the study 

of ideals as applled to the field K(/-5) and the quadratlc 
(1) 

flelds refer to Reid , for the general theory refer to 
( 2) 

Hancock • and for the need of ldeals and 1ts theory as 
(3) 

applled to Fermat's Last Theorem refer to Dlckson , and 
( 4) 

to Bachmann • The above books develop all the necessary 

theory of ldeals wh1ch the reader will need. Thls chapter 

w1ll attempt to help the beglnner understand the makeup of 

an ldeal and the notat1on used. 

We wlll begln our discusslon by statlng that in the ra

t10nal 1ntegral number system any number can be represented 

as a product of prlmes ln one and only one way. Thls ls 

called unlque factorlzatlon. The theorem whlch substantlates 

thls property 1s called the Unique Factorlzatlon Theorem. 

Our next step then ls to see whether or not thls property 

ls true of complex numbers of the form a + bl. Followlng 

thls the next step ls to determine whether or not thls 

property is appllcable to algebralc numbers ln general. 

Before we glve thls we must deflne an algebralc number and 

a number fleld. 

An a1gebralc number ls a number that satlsfles an alge

bralc equation wlth ratlonal coefficlents. An a1gebralc 
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integex: is a number which satisfies an algebraic equation 

with integral coeff1cients, the coeff1cients of the highest 

power of x being unity • 

. A. number-field' can be defined as follows: itA set of com-

plex numbers is called a field, or, more specifically, a 

number-field, if the set contains at least two distinct 

numbers, and the sum, difference, product, and quotient of 

any two numbers' of the set is in the set, division by 0 

being always excluded. The numbers of the field are called 

its elements. 

Example 1. The rational numbers form a field: for the sum, 

difference, product, and quotient of any.two rational num

bers is a rational number. 

The totality of all al,gebraic numbers form a field. 'Every 

subfield of this field is therefore called an algebraic 

field. We will now introduce a definition of linear dependence 

and linear independence of algebraic numbers. The algebraic 

numbers oC I , 0(7.-, ••• , oCnv are said to be linearly 

indepe~dent if a linear combination of them with rational 

coefficients vanishes only if all coefficients are zero. 

They are linearly dependent if there exists a linear com

bination of them with rational coefficients which vanishes 
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without all the coefficients being zero. An algebraic field 

is called a finite algebraic field if there exists a positive 

rational integer k so that more than k numbers of the field 

are linearly dependent. The smallest value of k is called the 

degree of the number field. The field generated by the roots 
~ of an algebraic equation of the form x + a = 0 where a is a 

poaitive or negative integer, not a perfect square, is called 

a quadratic field. For this field the value of k is 2. The 

simplest case of a quadratic field is when a = 1. 

When a = 1 we have the field K(~) • The integers in 

this field are of the form u + ti. For other values of a, 

say 3 or 5, we would write a number in these fields as 

x + y/-3 , or x + y/-5 • We would like now to define a prime 

in these fields. Before we do this we must define a unit, a 

norm, a.nd an associate. The norm of a +bi is found by 

~ultiplying it by its conjugate a -bi. The units in the 

quadratic fields where the number in the radical defining 

the field is negative are those integers in that field whose 

norms are 1. Two integers in a field are associated when 

they differ by only a unit factor. 

We are now ready to define a prime number of K(i). An 

integer of K(i) that is not a unit and that has no divisors 

other than its associates and the units, is called a prime 

number of K(i). The definition of a prime in each of the 

other fields is similar to that of K{i). We also find that 

in the fields K(i), K{~), K(!=3), a number may be rep-

resented as a product of primes in one and only one way. 
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Th1s means that the Un1que Factorizat1on Theorem 1s va11d 

in these f1elds. But th1s 1s not true in K(!=S). Th1s is 

the simplest case where the Unique Factorization Theorem 

does not hold. We find here that 

6 = 2'3 =- (1 + 1=5)( 1 - /-5) 

21 = 3·7 = ( 1 -+ 2/=5) (1 - 2/=5) 
= (4 -t- /=5)( 4 - /=5) 

2., 

9 :: 3 ~ ( 2 -t- ;:5)( 2 - 1=5) 

49 .:: 7'- = (2 + 3/=5) (2 - 3/=5) 

the factors 1n the above products can easily be proved primes 

of K(~). This means that the above numbers can be factored 

into primes 1n more than one way. By this breakdown of 

un1que factor1zation we are faced with a new problem. This 

problem is to determine whether or not we can by any new 

ideas or concepts reintroduce unique factorization. 

In our attack on this problem we want to def1ne a set. 

A set is a totality of things of any kind which are con

sidered as a unit. The things of the set are the elements 

of the set. The set may be finite or infin1te accord1ng as 

the number of the elements of the set is finite or infinite. 

In the latter case the definit10n of the set cannot be 

given unless we give a law by which we can decide whether 

or not any given th1ng is an element of the set. The fol

lowing are examples of sets. 

Example 1. 

Example 2. 

Example 3. 

A set consist1ng of integers from 1 to 100. 

The even numbers. 

The odd numbers. 
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Example 4. Numbers of the form 4n + 1 where n = 1, 2, 3, ••• 

The first set is finite, the other three are infinite. We are 

going to use the notion of a set to define ideals. 

If in Example 4 we let the numbers 4n + 1 form a set, 

we find that the product of any two numbers in the set 

is a number in the set. That is, (4p 1" 1) (4q + 1) = 

(4m + 1) where p, q, m, are integers. We may also want to 

find the primes in this set. They can be defined as those 

numbers which can only be expressed as the product of them

selves and unity. In this set, 1, 2, 2, 13, !I, 21, 2~, 

£2, 22, 21, 41, 45, i2, 22, 21, 21, 65, ••• , we find that 

all the numbers which are prime in the rational number field 

are prime in this set, and in addition, some numbers which 

a~e composite in the field of rational numbers are prime here. 

The underlined are the primes. If we take the number 10857 

of this set we find that it can be factored in primes in 

two different ways in this set. That is, 

10857 :::: 141-77 0= 21' 517. 

We also find another exa.'!lple of this type, as follows 

693 = 9 -77 = 21- 33 • 

We find above that we do not have unique factorization, but 

if we extend our set to include all positive integers we 

would find that this difficulty would be overcome. This 

principle is employed in the study of ideals. That is, we 

extend the field of factorization. The numbers above would 

be factored in the (ideal) field as follows: 

10857 = 3-7-11"47 
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693 3·3'7·11. 

An ideal is defined as follows: An ideal of a number 

field (e. g. K(j=5) is a set of integers cC, , oC.a.., ••• , oC......., 

of the field infinite in number and such that every linear 

combination 

A, , ;\~ , 
of them, where 

are any integers of the field, 

is an integer of the set. It would be sufficient to say that 

a finite number of numbers could represent an ideal, as the 

linear combination of these finite number will give the 

infinite set. The integers of the infinite set which sonsti

tute:: the ideal are called the numbers of the ideal. The 

ideals of the rat10nal integral number ~ield are the primes. 

Every number in this field can be represented as a linear 

combination of the primes. The ideals in any number field 

where the Unique ~actorization Theorem holds are the primes 

in that field. 

We shall now state some properties of ideals without proofs. 

r. Equali ty of Ideals. Two ideals /IJ1., """ (0.., ) oCt.) "') cG/J'I'U) 

are equal when the two infinite 

systems of integers that constitutes these ideals are the same. 

II. Multiplication of Idea.ls. By the product of two ideals 

/lJt. = (0(., ).~.) .. , ,os......,) ~- If,::: 0, >/,. } ,.' J /"'3hv ) } 

we understand the ideal defined by all possible products of 

a number defining /7Jt 1'y a number defining ~ ; that is, 

/]}t t == (C<;0' ) cCf3L) ... I cCf3n&J) , . '} ~~J } , •• ) oCrrrv~.,v). 
III. Divisibility of Ideals. An ideal) ~ , is said to be 

diVisible by an ideal, ~ , when there exists an ideal, ./Y", 
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such that 

---f, and /f/' are then sai d to be d i vi S ors or fa ctor s of aJt.,. 

It can now be po1nted out that by means of ideals unique 

factorization can be restored to all algebraic number f1elds. 

The work of Kummer in trying to solve Fermat's Last Theorem 

led to the development of Ideals and opened a whole field 

of mathematics. Most of the work done recently on this 

theorem contains the theory of ideals or an extension of 

that theory. 

• • • • • • • • • • • 

(1) Reid, L. W. • lhe Elements of th~ Theor~ of ~lgebr~ 

Numbers. Chapter VIII, Chapter XI. 

(2) Hancock, Harris. Foundations of ~pe ~heory ~f Algebr~ic 

Numbers. 

( 3) Di ckson J L. E •• .Qn Fermat'~ 1&Jil Theorem., Annal s Q! 

Mathematics, 18, page 161. 

(4) Bachmann, P •• Das Fermatproblem. 

(5) Weisner, L •• Introduction 1~ the Theory of Equations. 

page 20. 
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The following is a chronological list of articles published 

from 1919 to 1938 concerning Fermat's Last Theorem. 

(For articles prior to 1919 refer to Dickson: Histo!! of the 

Theor~ of Numbers, II, Chapter 26.) 

Vandiver, H. S. ( English) 

A Property of Cyclotomic Integers and its Relation to Fermat's 

Last Theorem. 

Ann. of Math., II, 21, 1919-20, p. 73. 

the 

and 

The author takes the criterion of Furtwangler 
tl'- I 

r 
q( r) o (mod p), 

p 

criterion of Kummer 

rf-'~ log{x + eryj v B i-:Lnv 0 (mod 
i'l'\.I dV =- 0 

the criterion of Mirimanoff 

p) , 

1-3 o (mod p) (n = 1, 2, 3, ••• , :(" ) , 

and derives these results by methods a bit different from those 

employed by the above mentione4. He shows that the criteria of 

Kummer and Furtwangler may be derived from one relation. He also 

derives some other criteria in reference to x~ + y1' +- z if' = O • 

••••••••••• 

Vandiver, H. S. (English) 

On Kummer's Memoir of 1857 Concerning Fermat's Last Theorem 

Proc. 'Nat. Acad. Sci., 6, 1920, p. 266. (First Paper) 
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In an article in the Mathematische Abhandlungen of the Berlin 

Academy for the year 1857, pages 41-74, Kummer essayed to prove 

that the relation 

( 1) 

could not be satisfied in integers, when p is an odd prime not 

satisfying three given conditions. Based on this result, the 

conclusion that (1) is impossible for all p's less than 100 was 

derived by him. In the present paper it is pointed out that 

Kummer made several errors in his argument, which vitiate his 

results. 

• •••••••••• 

Vandiver, H. S. (Engl~sh) 

On the Class Number of the Field n. (e j.~ ) 
Case of Fermat's Last Theorem. 

Proc. Nat. Acad. Scl., 6, 1920, p. 416. 

and the Second 

In the present paper an analogous expression for the residue 

of the first factor of the class number of f2 ( e. j,~~) modulo p, 

was obtained and the result used to show that certain results 

due to Bernstein on Fermat's ~Theorem do not have the generality 

stated by him. The author shows that the criterion given by 

Bernstein in the GOttigen Nachrichten, in 1910 (507-16) con-

stitutes no extension over the one given by Kummer • 

• • • • • • • • • • • 

Vandiver. H. S. ( English) 

Bachmann on Fermat's Last Theorem. 

Bull. Am. Math. Soc. , 27, May 1921, p. 373. 
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This paper analyzes Bachmann's book DAS FERMATPROBLEM. He 

states that this book will constitute a valuable aid to anyone 

attempting a serious study of Fermat's Last Theorem. He pOints 

out, however, that a numbe~ of references to articles bearing 

directly on some of the work given in the text have been omit-

ted. He notes some results given which are not found elsewhere 

except in the original ,articles. He also notes some omissions 

in proof by both Kummer and Bachmann, and that the works of 

Frobenius are not treated in the correct perspective • 

• ••• • •••••• 

Nagel, T. (Norwegian) 

Fermats Problem. En Oversigt. 

Norsk matem. Tidsskrift, 3, 1921, P. 7-21. 

A summary of the most important results of the theory of 

Fermat's Last Theorem. 

• •••••••••• 

Fueter, R. ( French) 
, / \ 

Le critere de Kummer relatif au dernier theoreme de Fermat. 

Ens. Math., 22, 1922, p. 62. 
/ A resume of the transformation necessary to put Fermat's 

equation in terms of cyclotomic numbers • 

••••••••••• 

Fueter, R. ( German) 

Kummer's Kriterium zum letzten Theorem von Fermat. 

Math. Ann., 85, 1922, p. 11-20. 

the author, using methods and symbolism due to Hilbert, 

develops a relation by means of which he proves the theorems 
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of Furtwangler. He also obtains a transformation of an equation 

of Vandiver which he uses to deduce the Kummer criteria 

f. (t) = 0 (mod p) 
.t 

f 
f- , 

(t) - 0 (mod p) 

i =- 3, 5, ••• , p - 2; -t = x/y, y/x, x/z, z/x, y/z, z/y. 

• • • • • • • • • • • 
Vandiver, H. S. ( English) 

Note on Some Results Concerning Fermat's Last Theorem. 

Bull. Am. Math. Soc., 28, 1922, p. 258. 

This article is confined to statements of new results obtained 

by the writer for both cases of the problem. The proofs are not 

given. Among other indicated results, Vandiver, by the use of 

new developments in the theory of cyclotomic fields derives the 

following for Case I: 

Vandiver, H. S. 

BS ::: 0 

hp + 1 
S =. 

2 
, 

( P~) mod 

h =:: p - 4, p - 6, p - 8, p - 10. 

••••••••••• 

( English) 

On Kummer's Memoir of 1857 Concerning Fermat's Last Theorem. 

Bull. Am. Math. Soc., 28, 1922, p. 400-407. (Second Paper) 

"l. Introduction. In a previous paper under the same title 

(Proc. Nat. Acad. 1920), the writer considered an article by 

Kummer, (Math. Abhand. Berlin Acad. 1857), and pOinted out that 

the argument there used for proving certain results regarding 
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the equation x + y + Z = 0, where x, y, z are integers 

and A is an odd prime, is deficient and incorrect in several , 

respects. Kummer attempts to prove four theorems which in my 

first paper were numbered I to IV. I polnted out that the proofs 

of Theorems I and IV are incomplete, and that the proofs of II 

and III are lnaccurate. In the present paper additions to and 

modifications of Kummer's arguments will be given, by means of 

whlch the demonstrations Theorems I and IV wl11 be completed. I' 

/ Pomey, Leon. 

............ 
( French) 

/ , 
Sur 1e dernler theoreme de Fermat. 

c. r. Acad. Sci. Parls, 177, 1923, p. 1187-1190. 

An abstract of an article in Journ. de Math., 1925, p. 1-22 • 

••••••••••• 

Vandiver, H. S. ( English) 

A New Type of Criteria for the First Case of Fermat's Last 

Theorem. 

Ann. of Math., II, 26, 1924-1925, p. 88. 

By transforming the criteria of Kummer, the author shows 

that lf x l' -r ylf + z I' - 0 is satisfied ln integers x, y, 

and z, not zero, and prime to the odd prime p, then 

1 1 1 
1 -t---;:-r---;. + +- = 0 (mod p) ••• l-

2 3 u 

where u ls the greatest lnteger ln p!3. 

• • • • • • • • • • • 
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Vandiver', H. S. ( English) 

A Property of Cyclotomic Integers and its Relation to Fermat's 

Last Theorem. 

Ann. of Math., II, 26, 1924-25, p. 217. (Second Paper) 

In this paper extensions of the Ku~er criteria are obtained 

by the use of --G.-I [?-J [1:.11.] ~ -2-{t! (~) 

J!. lJ, (X ~ DC '1) = 
-x. ~ 't ~t 

oC . w 

and the conditions .t. (mod p), • ~ (-I~+ '), 
~ = p - 4~ p - 6, p - 8, p - 10, derived therefrom. For the 

modulus p, these congruences reduce to the relations of M1r1-
t "I if manoff. (i. e., If x + y + Z ::: 0 1s satisfied 1n integers 

xyz + 0 (mod p), then ~-I = ~-.L = ~-3 =- ~_~ =- 0 

:::: (~). (mod p)" ~ ~ 

••••••••••• 

Vandiver, H. S. ( English) 

Note on Trinomial Congruences and the First Case of Fermat's 

Last Theorem. 

Ann. of Math., II, 27, 1925-26, p. 54. 

This note contains the proofs of some theorems concerning 

the relation 

( 1) 
--, If 1 

x -ry +z.:::o 

x, y, and z being integers prime to the odd prime p, that 

depends on the possib1l1ty of f1nding prime 1ntegers q such 

that 
r t JU" ("2) 

5 
+'( + 0 (mod q) 
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has no solutions in integers f ' 7 ' f prime to q. In parti

cular the following result is obtained: If (2) has no solutions 

under the conditions above mentioned, :'l = 1 + :np, ~nd m «l'Op, 

then (1) has no solutions in integers prtme to p • 

. . . . . . . . . . . 
Vandiver, H. S. ( English) 

Transformations of the KUM~er Crit~ria in Connection with 

wermat's ~ast Theorem. 

Ann. of Math., II, 27, 1')25-26, p. 1'71. (First Paper) 

In this paper transformations of 8,.,.vf;_ ~t) :::. 0, 

f i-I (t) - 0 (mod p) are obtained which are useful in 

deri vlng cr1 teria for the sOlution of u r + v ~ + w F - 0, 

where u, v, and w arc rational integers prime to p of the type 
(/7 - I .t.... 

m ~ 1 (mod p). 

- , Pomey, ~eon ( French) 

/ " Sur Ie dernier theoreme de ~ermat. 

Journal de Ma thematiques, 90, I I, 4, 1)25, p. 1-22. 

Using elementary methods he proyed Fermat's Last -rheorern in 

Case I for eleven prime exponents between 1048 and 10000, as 

well as for twenty-four other exponents between 5,000,000 

and 5,0:>3,250. 

. . . . . . . . . . . 
Ore, O. ( Norwegian) 

Fermata Theorem. 

Norsk Mat. Tldsskrift, 7, 1925, p. 1-10. 

A summary of t~e progress made in the theory of Fermat's 
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Last Theorem up to the year 1924. 

• • • • • • • • • • • 
Vandiver, H. S. ( English) 

Laws of Reciprocity and the First Case of Fermat's Last Theorem. 

Proc. Nat. Acad. Sci., 11, 1925, p. 292. 

This paper contains the proof of the following theorem: 

Suppose x? + y't -t- zit ==- 0 is satisfied in integers, none 

zero, and all prime to the odd prime p, also, let the primcipal 

ideal (UJ(oC.» be tpe p-th power of any ideal in the field 

defined by oC. -
~ 

e r which is prime to (z) and (p) ; then 

f (t) E d ""log :< e -'"')j 
0 (mod p) ; 

'd'-nv dv v .= 0 

f~' -&-/ s 
f JI... (t) = L s t t == -x/y (mod p); 

-/r. S" I 

n = 1, 2, ••• , p - 2, and e is the Naperian base. A number 

of corollaries are obtained to this theorem, including the 

cri teria 

f(f _~ t) fnv (1 - t) - 0 (mod p), 

n = 1, 2, ••• , P - 1 • 

• • • • • • • • • • • 

Vandiver, H. S. ( English) 

Summary of Results and Proofs Concerning Fermat's Last Theorem. 

Proc. Nat. Acad. Sci., 12, 1926, p. 106. (First Paper) 

This paper contains several results regarding Fermat's Last 

Theorem obtained by the aathor within the last ten years and 

not hitherto published. The Proofs are indicated. 

• • • • • • • • • • • • 



;;1 ,?,~ 

43 

Vandiver, H. S. ( English) 

Application of the Theory of Relative Cyc11c Fields to Both 

Cases of Fermat's Last Theorem. 

Trans. Am. Math. Soc., 28, 1926, p. 554. 

In this paper the author attacks the Last Theorem by a new 

method based on the theory of power characters in the field 

.il ( ff), where 8- 1s a primitive (p -l)_th root of unity, k 

prime to the odd prime p. The following result among others 'is 

obtained: If xl + yl' -t- zif= 0 is satisfied in integers 

none zero and all prime to the odd prime p, v is any number in 

the set t, 1 - t, l/t, 1/(1 - t), t/(t - 1), (t - 1)/1, and 
;,1T': ~."..; 

-x/y ::: t, then if d:; :::: e -r ) ~ =- e;Y;;=-; 

q(n) 1) - q(n» o (mod p), 

where r = (~- r, rv), r is a primitive root of n, 

0.... (N( q) - 1)_ " 
(~ .. 1) :=. oC (mod r ) , -

P "f- I 

Q.. (n - 1) 
i = ind{oC/, .. 1) , q(n) - , 

p 

n is any prime * 0 or 1 (mod p), and N( r ) is the norm of 

• • • • • • • • • • • 

Vandiver, H. S. ( English) 

Summary of Results and Proofs Concerning Fermat's Last Theorem. 

Froc. Nat. Acad. SCi., 12, 1926, p. 767., (Second Paper) 

In" this note, among other results, the author indicates the 

proofs of the following theorems: If p is an odd prime, and 

u f + v l' + w -r = 0 is satisfied in non-zero integers in the 

f· 
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n -I f 

field -1 L( ~ + oC ), cL' = e , then the class number of 

the field D( oC) is divisible by p.:z., • Under the assumptions 

( 1) none of the Bernoulli Numbers B -l ' k = (sp -r 1) /2, 

B, ::::. 1/6, B:I,. = 1/30, etc., (s -= 1,3, ••• , P - 4) are divisi

ble by p ~, for p an odd prime and (2) the second factor of 

the class number of the field n ( oC) is prime to p, the 

equation x" + y" + z t:::. 0 is not solvable in rational 

integers, none zero. 

• • • • • • • • • • • 

CiuropaJlowicz, Thomas (Interlingua) 

Duo Demonstrationes de Magno Theorema de Fermat. 

Boll. di Mat., II, 5, 1926, p. 123-125. 

The author here uses the substitutions y = x + a, z = x + b, 
ntJ 

b - a :: Z - Y :: c, and treats the equation ck + bh = z • He 

develops certain inequalities between x, y, z, a, b, and n. In 
""" ""'"....."..., ,yv ""'" n'V 

C k + bh ;;:: z , X .= Z - Y =- (z - y) k :=. c k, Y :; z - X :: 

(z - x)h = bh. 

• •••••••••• 

Vandiver, H. s. ( English) 

Transformations of the Kummer Criteria in Connection with 

Fermat's Last Theorem. 

Ann. of Math., II, 28, 1926-27, p. 451. 

This paper contains other transformations of the same type 

as was considered in a previous paper by the same title (Ann. 

of Math., 1925-26). There are also developed here methods for 

extending the known criteria for u -, + v"f + wP = 0, of the 

type 
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B -B -B -B -0 (d) /-1 = /--~ =- ~-3 = ~-'I = mo p 

Where~ = (p - 1) /2 and the B' s are Bernoulli numbers. 

/ 
Pomey, Leon 

• • • • • • • • • • • 

( French) 
/ ..... 

Sur Ie dernier theoreme de Fermat. 

c. r. du l'Ass. fran., 1926, p. 67-68. 

A proof of a proposition stated previously by Pomey. (c. r. 

Acad. Sci., 1923, P. 1187) • 

••••••••••• 

Vandiver, H., S. ( English) 

Application of the Theory of Relative Cyclic F1elds to Both 

Cases of Fermat's Last Theorem. 

Trans. Am. Math. Soc., 29, 1927, p. 154. (Second Paper) 

In this paper several theorems are obtained, including the 

following: If x'" + y1 -r z l' - 0 is satisfied in integers 

none zero and each prime to the odd prime p, then 

(1-' ) (r, ) 
(n p - 1) Da = (n .. 1) 

0, B S+I Ds = 0 . p -r (mod 
d- a..-

S - 1, 3, ••• , p - 4. I(O<:: r ) is defined by -

[;1 = c£ 
7(9) 

a... tL 
8- - d(. r , } 

is a prime ideal divisor of the ideal ( n), n being a. f 
rational odd integer *- 0 or 1 

;L7T; 
e 

3,t~ 
(mod, p); oC 

p), 

, 
hi. -/ 

/"3:=. e ; a is some integer in the set 1, 2, ••• J 

n - 2, other than «n - 1)/2); the B's are the numbers of Ber-

[*J noulli, BI = 1/6, B.;L =- 1/30, etc, and r is defined as 



" 

the power of c£ such that 

being the norm of f . 
• •••••••••• 

Morishima, Taro ( German) 

Ueber die Fermatsche Vermytung I. 

Proc. Imp. Acad. Jap., 4, 1928, p. 590-592. 

The following theorem is given: If xl + 
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(mod p), N( f ) 

y"if + -r 
z 0 

(x, y, z) 1, p -;L xyz, p >- ff- I 
1 (mod 

.z 
- 5, then 5 -=- p ). 

The author gives a simple proof of this theo~em in a case where 

2
0r 

I $- 1 (mod p 4) • 

• •••••••••• 
/ 

Perez-Cacho, L. ( Spanish) 

Sobre el ultimo teorema de Fermat. 

Revista Mat. hisp-amer., (2) 3, 1928, p. 147-153. 

The author makes a study of a work of W. Meissner (Sltzungber. 

der Konigl. Pruess. Akad. der Wiss., 1913) • 

• • • • • • • • • • • 

St een , S. w. P. ( English) 

On Fermat's Last Theorem. 

Proc. London Math. Soc., 29, 1928, p. 331. 

"The object of this paper is to give formulae for 

summed over the solutions of a =. y-- ~ where a is a fixed 

integer and y and~ are positive integers. In the course 

of the paper it soon becomes apparent that there is considerable 

simplification if n 2, B,nd that there is a difference be-

tween n even and n odd. The final formulae are given for n odd 

and greater than one. 
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I-The method employed cons1sts 1n form1ng the fun,ction 

) 

and find1ng a second expression for 1t by the Euler sum formula. 

The function 

::: 

is then formed. It 

••••••••••• 

Vandiver, H.' S. ( English) 

On the F1rst Case of Fermat's Last Theorem. 

Ann. of Math., II, 30, 1928-29, p. 552. 
.,I L 

In th1s paper the author examines the equat10n x + y + z = 0, 

where x, y, and z are rat10nal integers pr1me to the odd prime 

1 and none zero. The special case x := y (mod L) is dis

cussed, and among other results the following theorem is ob

ta1ned: If the above equation is satisfied under the conditions 

ment1oned, and x -=. y (mod,f), then there exists no prime 

integers in the set (1 + 21), (1 +4 f), ••• , 1 -+ ( L - l)L 

••••••••••• 

Vandiver, H. S. (English) 

An Algorit~~ for Transforming the Kummer Criteria in Connection 

with Fermat's Last Theorem. 

Ann. of Math., II, 30, 1928-29, p. 559. 

In this paper the author applies the theo~ of power charac
.t1T; 

e T, -t an odd prime, to ters in the field k( f ), f = 
1 ~ I the equation x + y + z = 0, where x, y, and z are rational 

• 
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integers prime to ~ and none zero. By means of this method 

various combinations of the well known Kummer criteria for the 

solut~on of this equation are obtained, including new derivations 

of the congruences 
1-/ 

2 -

Vandiver, H. S. 

./-1 
3 =- 1 

• • • • • • • • • • • 

z.. 

(mod .f ). 

( English) 

On Fermat's Last Theorem •. 

Trans. Am. Math. Soc., 31, 1929, p.6l3. 

In various papers published during the last fifteen years 

the writer has obtained a number of results concerning Fermat's 

Last Theorem. In the present paper all these results are obtained 

from two general methods of appr&aching the problem. Some new 

criteria are also derived by the use of these methods. When 

applied to special exponents they yield the result that if n / 2, 
n'V ffV ;"J'V 

X + Y + z - 0 is impossible in rational integers x, y, 

and z, none zero, for every n less than 211 • 

• • • • •• • • ••• 

Vandiver, H. S. ( English) 

Summary of Results and Proofs Concerning Fermat's Last Theorem. 

Prec. Nat. Acad. Sci., 15, 1929, p. 43. (Third Paper) 

In this paper, among other results, a proof is indicated for 

the following theorem: Under the assumption (1) none of the 

Bernoulli numbers By, (y =-1,2,3, "., (p - 3)/2) is 

divisible by p; and ( 2) the second factor of the class num-
2.77'; 

ber of the field k(oC), 

follows ·tha t x? + y (f + 

oC == e Ii , is prime to p, it 

z ~ =- 0 is not satisfied in rational 
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inte3ers x, y, and z, pr1me to each other, none zero, if 

xyz := () (mod p), and p is an odd ?rime. 

· ......... . 
Vandiver, H. S. ( English) 

Summary of Results and Proofs Concerning 3"ermat's L~,st 1'heorem. 

Proc. Nat. ~cad. Scl., 15, 1929, p. 108. (Fourth Paper) 

A summary of a paper the details of which appear in 1'rans. 

Am. Math. Soc., 31, 1929. 

· ......... . 
Morishima, Taro. ( German) 

Ueber die Fermatsche Vermutung, II. 

Proc. Imp. Acad., 5, 1!)29, p. 183-185. 

The author proves the theorem: 
f f t "Let x + y + z = :) (x, y, z) = l, xyz -==1=:) (mod p) 

then 
~ her-I t. ~ 

t 0 ( mod p ) 
..,.. ... I 

P .t.) where -t - y/x, x/y, y/z, z/y, z/x, x/z (mod and 

moreover when p '/ 3 we have 

;-' . 
• 

t 

Z =0 ( mod pl " . 
1 

i ': J 

· ......... . 
Morlshima, Taro ( ·1erman) 

Ueber die Fermatsche Vermutung, III. 

Proc. Imp. Acad., 5, 1929, p. 263-264. 
/,-1 t; 
~ . 

{ 
o (mod p~) holds 1'he author proves that 

i:, 

where t ~ -x/y, etc., for the fir~t case of Fermat's Last 
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Theorem where p > 3. 

• • • • • • • • • • • 

McDonnell J John (English) 

Note on Fermat's Last Theorem. 

Bull. Am. Math. Soc., 35, 1929, p. 769. 

The author proves that if x1 + yf + zd' = 0, then (1) 

if yz -t- zx + xy -$ 0 (mod 
~ 1- 1 _ 

- Y ,then r = 1 ( mod 

p), and r be any factor of 
:z.. p ), and (2) if 

x( x .;.. z) (XL + y~) $: 0 (mod p) and r be any factor of 
~ ~f ~ 

X + yz, then r = 1 (mod p ). The proof resembles a 

proof of Furtwangler for a similar result • 

• 0 ••••••••• 

Turner, J. S. ( English) 

Some Identities Connected with Fermat's Last Theorem. 

Bull. Am. Math. Soc., 36, 1930, p. 204. 
n'V nv rrv 

In this paper, the equation a + b - c (a, b, c, n 

positive integers, n /> 2) is transformed by various trigono

metrical formulas. Attempts are made to find the highest powers 

of 2 and n contained in the non-zero members of the resulting 

equat1ons. In this way many 1nterest1ng 1dent1ties are discovered • 

• • • • •• • • • • • 

McDonnell, John ( English) 

New Cr1ter1a Associated w1th Fermat's Last Theorem. 

Bull. Am. Math. Soc., 36, 1930, (August) 

tlFurtwangler has obta1ned by means of Eisenstein's law of 

rec1proc1ty for res1dues of p-th powers, p an odd prime, certa1n 

criteria 1n connection with the solution of the equation 
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l' r tP x + y + Z - 0 where x, y, z are relatively prime ratio-

nal integers, and these criteria involve the rational factors 

of x, y, z, y - z, z - x, x - y. 

!tIt is the ob.1 ect of the present article to employ the same 
.:l... 

method to derive similar criteria for the factors of x - yz, 
fl, J... /L 2.,:l., :0 

Y - zx, z - xy, x + y ,y + zx, z + xy." 

• • • • • • • • • • • 

Vandiver, H. S. ( English) 

Summary of Results and Proofs on Fermat's Last Theorem. 

Pro c. Nat. Acad. Sc1., 16, 1930', p. 298. (Fifth Paper) 

In this article Vandiver gives a number of s1delights and 

comments on the contents of his article in Trans. Am. Math. 

Soc., 31, 1929, and also extends some of the theorems therein. 

• •••••••••• 

Morish1ma, Taro ( German) 

Ueber die Fermatsche Vermutung, IV. 

Proc. Imp_ Acad., 6,1930, p. 243-2~4. 

The author gets two kinds of equations of the Fermat type 

which have no integral solution with respect to the particular 

field. Th1s results from the following theorem wh1ch he proves. 
L L ~ # 

For n 2: 3t + 2, x + y + z == 0, (x, y) = 1, ,,(; / z , 

where ho is the class number of k 0 , k 0 is the 

real subfield of degree 
.2..rr~ 

field of fei - . e It 

( f - 1)/2 
jJt: 

, and --l 

contained 1n the class number of k. 

• • • • • • • • • • • 

of k, k is the cyclotomic 

is the highest power 



Morishima, Taro ( German) 

Ueber die Fermatsche Vermutung, V. 

Proc. Imp. Acad., 6, 1930, p. 303-305. 

The 

( 1) 

has no 

author proves 
-f .f 

oC +~ 

the following theorem: 
.,l'1'V 

- e a ) 

solutions in integers of ko where 
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:/ For n = Q-r t 

(oC~1 01 .L ) 
Co is a uni t of 

this field. u = (1. - 3)/2, L ? 31 .• If ..t c:::. 31 he can 

also prove that (1) has no solution in k 0 when n .::: 1 • 

~ Massoutie, L. 

• • • • • • • • • • • 

(French) 

/ " Sur le dernier theoreme de Fermat. 

c. r. Acad. Sci. Paris, 193, 1931, p. 502-504. 

If p is a prime of the form 6n - 1, then it is necessary 

that one of the unknowns of the equation x t + yf + zif = 0 

be divisible by 3. The proof is by means of the theory of 

rational numbers. 

/ Pomey, Leon 

• •••••••••• 

( French) 
/ \ 

Nouvelles remarques relatives au dernier theoreme de Fermat. 

c. r. Acad. Sci. Paris, 193, 1931, p. 563-564. 
/ 

Another and shorter proof of the theorems of Massoutie • 

• • • • • • • • • • • 

Morishima, Taro ( German) 

Ueber den Fermatschen Quotienten. 

Japanese Journal of Mathematics, 8, 1931, p. 159-173. 

1 

An extension of some results of Wieferich, Mirlmanoff, Van

diver, Frobenius, and Pollaczek. This is, that for a solution of 



d' tf tP 
( 1) x + Y t- z -= 0 

in integers, not divisible by p, it is necessary thet 
f 

'Yl - l!l 
( 2) q(m) = o (mod p) 

P 
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1s fulfilled for m = 2, 3, 5, 11, 17 and if p = 6k + 5 it 

must be fulfilled for 7, 13, 19, and except for a finite number 

of primes p the congrl'enca will hold for all prIme numbers 

~ ~ 31. The author generalizes this result for other pos-

sibillties of p and m. 

· ......... . 
G·eorgi kopulos, Const. Ch. 

Zum letzen ~ermatschen Satz. 

Delt. Hellen. math. Retail', 12, 1931, p. 109-122. 

· ......... . 
Netanjahu Ml1eikowsky, E. ( iJerman) 

Elementorer Beitrag zur Fermatschen Ver"lutung. 

J. Reine agnew. Math., 166, 1~3l, p. 116-117. 

The author ~~lves elementary proofs of the following: If 

X <It.. Y <:.. z are three relatively prime positive integers 
nov 'YV nV 

and n "> 2, and x + y = z then z 1s not a power of 

a prime. If n is not prime, then x and yare not powers of 

primes. 

· ......... . 
V8.ndiver, H. S. ( English) 

Summary of Results and Proofs on Fermat's Last ~heorem. 

Proc. Nat. Acad. Sci., 17, 1931, p. 661-673. (Sixth Paper) 
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Th1s art1cle 1s an extens10n of the f1fth paper of the same 

t1tle. Bes1des th1s he s1mp11f1es Theorem IV of Trans. Am. Math. 

Soc., 31, 1929. 

• • • • • • • • • • • 

Bussi, Carlo (Italian) 

Sull'ult1mo teorema d1 Fermat. 

Boll. Un. Mat. Ital., 11, 1932, p. 267-269. 

The author concludes that 
f(-~) f{~) Lf(~) 

a + b ::: c 1s 1mposs1ble 

if a, b, c are all relat1vely pr1me to k, and some s1mple con

sequences of this fact. 

• • • • • • • • • • • 

Mor1sh1ma, Taro ( German) 

Ueber d1e Fermatsche Vermutung, VII. 

Proc. Imp. Acad., 8, 1932, P. 63-66. 

The author extends some results g1ven by Vand1ver and Kummer 
L ~ ~ d 

for the equat10n x + y + z == 0 where (x, y, z, .£ ) :: 1. 

• •••••••••• 

Mor1shlma, Taro ( German) 

Ueber d1e Fermatsche Vermutung, VIII. 

Proc. Imp. Acad., 8, 1932, p. 67-69. 

The author proves the theorem: If 1s 

sat1sf1ed 1n Case I, then the s1x ratios -t = x/y, etc. must 

satisfy .1(~- j;) 4-' 

d loge 1 - e (1 .... t» 
b . f ,,~·(t) .2; 6.1_ dv l. ce - :I..c) 

"Z-

=: 0 (modi>. 

."v::; 0 
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Morishima, Taro ( German) 

Ueber die Eermatsche Vermutung, IX. 

Proc. Phys. Math. Soc. Jap., III, 14, 1932, p. 451-464. 

t The author extends a result given by Kummer for the equation 
-l 1. 

x + Y + z ::: 0 having the integral solutions x, y, z not 

divisible by L and relatively prime • 

. . . . . . . . . . . 
Vandiver, H. S. ( English) 

On the Method of Infinite Descent in Connection with ~ermat's 

Last Theorem for Regular Prime Exponents. 

Comment. Math helv., 4, 1932, p. l-S. 

In this paper regular primes are defined together with a 

list of all those less than 307. Ku~mer in Crelle's Journal 

1850, proved that 

c£l 
is impossible if d.. are non-zerp integers in the 

*= e .(, field k( J ) prime to each other; S 
odd prime greater than 3 such that B, , B ~ 

and is an 

, ... , 

have numerators which are Bernoulli numbers, expressed in theor 

lowest terms. The prime 3 is defined as regular. The proof of 

Kummer was divided into two distinct parts. Vandiver gives a 

somewhat similar method of descent to cover both cases of 

Fermat's Last Theorem. 

• • • • • • • • • • • 



Lehmer, D. H. ( English) 

A Note on Fermat's Last Theorem. 

Bull. Am. Math. Soc., ~8, 1932, p. 723-724. 

The author extends Morishima's improvement on a theorem by 

Vandiver and ends with the lemma given as Theorem 4; If 

xt + y1 + z?f = 0 has a solution for which xyz and p a.re 

coprime, then the first factor of the class number of the 
q;--- IL 

cyclotomic field K(e U ) is divisible by p • 

• •••••••••• 

Moriya, M. ( German) 

Uber die Fermatsche Vermutung. 

J. reine angnew. Math., 169, 1933, p. 92-97. 

The author attacks the same problem as Maillet (Ass. fran. 

pour l'avan. Scl., st. Etienne, 1897; Fortschritte d. Math., 

29, l898) by a dlfferent ~ethod, one used by Landau (Vorlesungen 

uber Zah1entheorie). 

• • • • • • • • • • • 
c::.. 

Matousek, J. ( Czeckish) 
/ \ 4 e Une prlluve 1e la theoreme de M. Fermat pour la puissance. 

<:: 
Rozhl. mat. prlrod., 13, 1933, p. 4-7. 

This periodical compares to the "The Mathematics Teacher tt 

and is an expos1tion of Fermat's Last Theorem for the case n = 4. 

· ......... . 
Kapferer, H. 

" Uber die diophantischen 3-leichungen 

( German) 
3 

Z 
~ 

- y 
8 A 

= 3 . 2 

und deren Abhangigkei t von der Ferluatschen Vermutung. 

s. B. Heidel~erg Akad. Wiss. Abh., 2, 1933, p. 32-37. 
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For an application of these equations to Fermat's Last 

Theorem, see Lubelski, Frace mat-flz., 1935. 

. . . . . . . . . . . 
Morishima, Taro ( German) 

Ueber die Fermatsche Vermutung, X. 

Proc. Imp. Acad., q, 1933, p. 577-579. 

The following theorem is proved. Let t and to be the 

orders of t~e groups of q-th powers of the classes of the 

Cyclotom:,c field R( f ), respectively, of the real subfield 

R( f + f ) of R( J ) where R represents the field of the 
-l. L L 

rational numbers. If t, <. to <. 6 then x + y -+ z = 0 

(x, y, z, )! ) = 1 has no integer solutions. 

/ 
i}rave, D. 

. . . . . . . . . . . 
(Ukrainian) 

Les methods de la lutte contre les difficulties du grand pro-

bleme de Fermat. 

J. Cycle math. Acad. Sci., Ukraine 1, Fasc. 4, 1934, p. 33-44. 

Several well known methods are reviewed by means of which 

Fermat's Last Theorem is attacked. It has to be stressed that 
nV nv hV .-yV 

(x + y + z) - X - Y - z 

n(x + y)(y -;- z)(z + x) 

has been computed not by P. Bachmann, but by E. Catalan (Mein. 
,-

Soc. Sc. Liege (2) (12) 1885, p. 179-185, 403) • 

. . . . . . . . . . . 
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Vandiver, q. s. ( English) 

~ermat's Last Theorem and the Second Factor in the Cyclotomic 

Class Number. 

Bull. Am. Math. Soc., 40, 1934, p. 11,9. 

The author gives a sketch of a proof of a theorem which 

appears to him to be the principal result he has found so far 

concerning the first case of ~ermat's Last Theorem. The work 

of this paper deals with this theorem given as Theorem 1, and 

with another given as Theorem 2, which extends some previous 

results. These theorems are: 
L L .t 

Theorem 1. If x + y + z ::= ° is possible in Case I, then 

the second factor of the class number of the cyclotomic field 
~ defined by f is divisible by L = e • 

x.l+ .l t Theorem 2. If Y + z - 0 is satisfied in Case I, 

then, if 7f is a unit in k( J ) 
t 

E ::: 

If ( j = 0, 1, 2, 3, 4, 5) 
1,-i-

, 

( i 1, 2, 3, 4, 5, 6) 
(mod L2) 

-
and BS - 0 

{ S :::. n. (1, + 1) - 1), 
.(. 

where the n's each range independently over all positive inte-

gral values. 

The author adds, "It may happen that Ci'ermat's Last Theorem 

is true for rational integers, but for integers in the field 
-/ 

k( J +- f ) it is not true • Possibly the method of infinite 

descent properly belongs to the treatment of this generalization." 

........... 
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James, Glenn ( English) 

On Fermat's Last Theorem. 

Am. Math. Monthly, 41, 1934, p. 419-424. 
nv nv nv 

This paper considers the Fermat equation x -t y :: Z 

Z > y "> x > 0, for the so called first case and proves that 

z - y > c'I'V n",-v where c is a certain function of x, y, and z 

whose lower limit is2. This work provides a si!1lple, '3.nd what 

seems to be a new proof for the case n :::. 3, and suggests a 

pOint of attack on the general. problem. 

· . . . . . . . . . . 
Krasner, Marc ( French) 

/ \ 
Sur le premier cas du theoreme de Fermat. 

c. r. Acad. SCi. Paris, 199, 1934, p. 256-258. 

This paper ties up various results given by different 

authors on Kummer's criteria for the first case. 

I 
Pomey, Leon 

· .....•..... 
( French) 

/ , 
Sur Ie dernier theoreme de Fermat (Divisibilite par 3 et par 5). 

c. r. Acad. Sci. Paris, 199, 1934, p. 1562-1564) 

A study of the case where n = 6h + 1. He conclude s 

1. "v .", '"' that x, -t x~ -+ X 3 = 0 is impossible if one 

of x I , xa... , x, is not divisible by 3. 
n'V nv ,,-v 

2. that x, T x.'l. + xa = 0 is impossible if one 

of XI , x2.,' x3 1s not divisible by 5. 

· ......... . 
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" Grun, Otto ( German) 

Zur Fermatschen Vermutung. 

J. reine angew. Math., 170, 1934, p. 231-234. 

3-i ven 1 an irregular prime t f a primi ti ve .1 -th root 

of unity, k = k( f ), k 0 the greatest real field contained 

in k. Using this he develops the following: The equation 
I, .l I. 

x + y + Z = 0 is impossible in rational integers x, y, 

z with xyz :; 0 (mod -l) and xyz =1= 0 for L "?' 3, if the 

class number of ko 

numbers B.;l ::: 0 

is prime to ~ and none of the Bernoulli 

(mod I, J) for i = 2, 4, ..., t. - 3. 

There can be an infinite number of Bernoulli numbers B -

( mod 1. ) for i :. 2, 4, · .. , 
· ......... . 

Morishima, Taro ( German) 

Uber die Fermatsche Vermutung, XI. 

Jap. Jour. of Math., 11, 1934, p. 241-252. 

An extension of Morishima (Jap. Jour. Math., 8, 1931) and 

Vandiver (Bull. Amer. Math. Soc., 1934, p. 118-126). 

· ......... . 
Morishima, Taro ( German) 

Ueber d.ie Fermatsche Vermutung, XII. 

Froc. Imp. Acad. Jap., 11, 1935, p. 307-309. 

An extension of Theorem 5 of a previous work (Jap. Jour. 

Math, 11, 1934, p. 241-252). 

· ......... . 

o 
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Niewiadomski, R. ( German) 

Zur Fermatschen Vermutung. 

Prace mat-fiz., 42, 1935, p. 1-10. 

This article contains an ei~t page table of all p-th power 

residues ~odulO p for each prime less than 200. The object 

of the table is to furnish, at least for p = 6n - 1, an ele

mentary test for the 80lvabili ty of x"l + yr == z? where p 

is prime to xyz. In fact, it is easily seen that a sufficient 

condition for the non-existence of (x, y, z) is the non-exis

tence of two p-th power residues which differ by unity. This 

simple test fails for all primes p of the form 6n 1r 1 and 

also for p = 53, 83, and 179 • 

. . . . . . . . . . . 
Lubelski, s. ( German) 

studien uber den grossen Fermatschen Satz. 

Frace mat-fizo, 42, 1935, p. 11-44. 

The results of novelty in this paper concern the generali

zation of the criteria of Purtwangler, Kummer, and Kapferer 

to the case of the equation (1) x 1 -t- Y ~ = czit . For 

example the author proves that in case (1) has a solution for 

which cxyz id prime to the odd prime p and if c is either a 
~ 

p-th power residue modulo p or such a non-residue that c/2 

is itself a residue and finally if c is divisible by no prime 

of the form pn + 1, then 2"f _ 2 is divisible by p .:0 

As an analogue of Kapferer's theorem we have: If c is a 

prime or a power of a prime the equation (l) with p ~erely odd 
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has solutions not zero if and only if the equation 
3 ~ a:LlL:lJ 

u -v = 3'2'c-w,p is solvable • 

. . . . . . . . . . . 
Lehmer, Emma ( English) 

On a Resultant Connected with ~ermat's Last Theorem. 

Bull. Am. Math. Soc., 41, 1935, p. 864-867. 

This is an extension of Bachmann, DAS F'"9BMATPROSLEM, page 

59, and some of the results of Lubelski (Prace mat-fiz. 1935) • 

. . . . . . . . . . . 
Vandiver, H. S. ( English) 

On Trinomial Diophantine Equations Connected with the Fermat 

Relation. 

Mh. Math. Phy., 43, 1936, p. 317. 
i f g 

In this paper the author considers the equation x + y = cz 

where c is a given rational integer and ~ 1s a given prime 

greater than 3 which is regular. The discussion is divided 

into three cases: (1) xyz prime to -f; (2) xy =- 0 

(mod ~); (3) z =- 0 (mod,g). Combining the results for 

the three cases the author gets the following theorem: 

The equation 
.1 L L-

x + y - cz 

where c is a given integer prime to the regular prime .t '/ 3 

and containing only prime factors belonging to even exponents, 

modulo ~ , is impossible 

provided 

and 

in non-zero integers, x, y, 
.l. -/ 

c $= 
i-I 

2 * 
1 

.£-/ 
c 

........... 

(mod .,t ~) 

(mod ..-l Z- ) • 

and z, 
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Yamada, Kaneo ( English) 

On the Necessary Condition for the Fermat's Last Theorem. 

Proc. Imp. Acad. Japan., 12, 1936, p. 313-317. 

Vandiver (Ann. of Math., 1924) proved that if 

x t + y t + z f = 0, p ~ xy z , 

then the following condition 

1 1 
~+-;,+ · . . o (mod p), 
1 2 

is necessary. 

In the present paper the author gives a proof of H. Schwandt's 

condition (Jahresber. 1934) 

( I) 1 1 1 
- + - + 
~ ~ ... + 

1 2 

and then shows that two analogous condltions 

( II) 1 
-t 

1 

and 

1 
+ 

( III) 

1 

are necessary. 

/ 
Thebault, V. 

1 

2 

1 

2 

1 
+ · .. + 

[fJ 
1 

+ • •• + [t] 

. . . . . . . . . . . 
( French) 

a (mod p) 

o (mod p) 

o (mod p) 

/ , 
Sur une application du dernier theoreme de Fermat. 

Enseignement Math., 36, 1937, p. 222-228. 

An interesting study of trian31es which, incidentally, the 

author says, may be a new proof of the case where n = 4 • 

. . . . . . . . . . . 
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James, Glenn ( English) 

On the First Case of ~ermat's Last Theorem. 

Bull. Am. Math. Soc., 43, 1937, p. 774. 

In a previous paper limits were established for the para-
nN n"V qV 

meters x, y, z of the Fermat equation x + y =- z , 

beneath which this equation can have no solution.lihen n .= 3 
+-

the limit was 21, 147 and when n - 14,000 the limit was 

10 
112, ,00 -+-

(14,000 is the limit for n beneath which the 

equation is known to have no solution). In the present paper 
+these limits are raised to 26,855 and (10/7)10 

~ 

raised from n( 2n + 1) 

1/2,300 

to 

times that limit. 

. . . . . . . . . . . 
Vandiver, H. S. ( English) 

On Bernoulli Numbers and Fermat's Last Theorem. 

Duke Math. Jour., 3, 1937, p. 569-584. 

, 

This paper summarizes some of the results that have been 

found regarding Bernoulli numbers and simplifies and generalizes 

some previous results of congruences with Bernoulli numbers. 

Among other results it extends the results of Fermat's Last 

Theorem for speCial exponents particularly with a study of 

primes ~ ,re gular and irregular, 306 <.. .l < 617 • 

• • • • • • • • • • • • 
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Gottschalk, Eugen ( German) 

Zum "9'ermatschen Problem. 

Math. Ann., 115, 1938, p. 157-158. 

The author develops the following: If the prime p or a 
~ 

multiple mp which is not divisible by p is resolved into 

mp = a ±. b so that 

(I) a and b have no other prime factors than 2, 3, 5, 

11, 17: 

a.nd 

(II) if p =- 5 (mod 6), a and b have no greater prime 

factor than 19, 

then the Fermat problem has no solutions • 

• • • • • • • • • • • 

Niewiadomski, R. . (Polish) 

Sur la grandeur absolue et relation mitelle des nombres 

entiers qui peuvent resomdre l' equation xl' + y1::;- z If . 
Wiadom. mat., 54, 1938, p. 113-127. 

. . . . . . . . . . . 
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The following books have been published during the period 1919 

to 1938 pertaining to Fermat'a Last Theorem. 

Algebraic Numbers - II, Bulletin 62. National Research Council. 

1928. 

Bachmann, Paul; Das Fermatproblem in seiner bisherigen Entwicklung. 

1919. 

" Bruns, H. W. ; Uber den Ursprung der Tatsache, die dam grossen 

Fermatschen Theorem ~grunde liagt. 1933. 

Cashmore, M. ; Fermet's Last Theorem: Three Proofa by Elementary 

Algebra. aevi.ed edition 1919, third edition 1921. 

Chincin, A. J. ; Der grosse Fermatsche Satz. 

Christof, P. ; Das Fermat' sohe Problem und seine Losung. - Le 

problema de Fermat et sa solution. 

Dickson, L. E. ; History of The Theory of Numbers. Volume II, 

Chapter 26. 1919. 

I'YV .yv ;yV 

Franz, W. E. ; Fermat, x + y 5; z • 

Heil, J. ; Das letzte Farmatsche Theorem und seine LOsung. 
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Hennig, P. ; Meine Losung des Fermat-Problems. 1926. 

Junker. F. ; Der grosse Fermatsche Satz. Vo11standlger Bewels 

des Satzes auf elementar-mathematlscher Grund1age. 1921. 

Keller, Ernst; Dle Losung des Erob1ems von Fermata. 1929. 

Lindemann, Ferdlnand; liachtrag IU melner Shrlft uber den 

Fermatsohen Satz. 1928. 

Lindemann, Ferdlnand; Untersuchungen uber den Fermatsohen Satz. 

1928. 

Kordel1, L. J. ; Three Leotures on Fermat's Last Theorem. 1921. 

Kulka,!. ; Das Fermatsche Theorem. 1926. 

Kulka ,I. Daa Fermatsohe Theorem. 1927. 

Mulka,I. " " Theoreme de Fermat. Fourth edltlon. 1924. 

Nlkalajew, B. ; Bedlngu.ngen der Mogllchke,lt der Glelohungen 
,,-v I)'V hi-' 

X + Y == I ln ganlen zah1en. 1924. 

Bogues, R. 
/ , 

; Theoreme de Fermat. Son hlstolre. 1932. 
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Romert. J. ; Der elementare Bewels des Fermatsohen latzea 
~ t- , 2"1 t-I Jl""-1" , 

X + Y = z auf Grund der Zerlegung 1n Faktoren w1d der 

Regeln der Potenzlebre. 1920. 

Ru~elka. Z. ; Did.1os10s P. Fermat'o teoremes 1rodynlas. 1934. 

Thelss. F. ; Zahlenbels~lele zum grossen Fermat'sohen Bats. 193b. 

I'N n-V nV 

V1llani. N. ; L' equaslone di Fermat x + Y = z ,oon 

dlmostrazione generale. 

Walsh. O. K. ; An Attempted Proof of Fermat's Last Theorem by 

A Bew Method. 1932 • 

.tYLI /IN ~ 

Weigel. H. W. ; x + y = s ? D1e elementare Losung des Fermat-

'Probleme. 1933. 

• 
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The following books will offer the beginner a very good 

approach to the problems concerning and incidental to 

Fermat's Last Theorem. 

'11 

Algebraic Numbers - I - National Research Council. 1923. 

Algebraic Numbers - II - National Research Council. 1928. 

Bachmann, Paul. ~as Fermat2~oblem in seiner bisherigen 

Entwicklung. 1919. 

Carmichael, R. D. Diophantine Analysi~. Chapter 5. 

Dickson, L. E •• Fermat's Last Theorem. Annals of Mathematl£!. 

18, 1917, page 161. 
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Dickson, L. E •• Introduction !Q the Theory 2£ Numbers. 1929. 

Hancock, Harris. Foundations of th~ TheC?rx of Algebrai,2 

Numbers, Volume I, 1931. 
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Reid, L. W •• The Elemen1!! of the TheorI of Algebraic 

Numbers. 1910. 
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