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ABSTRACT

COMPUTATIONAL METHODS TO PREDICT AND ENHANCE

DECISION-MAKING WITH BIOMEDICAL DATA

Behnaz Abdollahi

March 30, 2015

The proposed research applies machine learning techniques to healthcare

applications. The core ideas were using intelligent techniques to find automatic

methods to analyze healthcare applications. Different classification and feature

extraction techniques on various clinical datasets are applied. The datasets include:

brain MR images, breathing curves from vessels around tumor cells during in time,

breathing curves extracted from patients with successful or rejected lung

transplants, and lung cancer patients diagnosed in US from in 2004-2009 extracted

from SEER database. The novel idea on brain MR images segmentation is to

develop a multi-scale technique to segment blood vessel tissues from similar tissues

in the brain. By analyzing the vascularization of the cancer tissue during time and

the behavior of vessels (arteries and veins provided in time), a new feature

extraction technique developed and classification techniques was used to rank the

vascularization of each tumor type. Lung transplantation is a critical surgery for

which predicting the acceptance or rejection of the transplant would be very

important. A review of classification techniques on the SEER database was

developed to analyze the survival rates of lung cancer patients, and the best feature

vector that can be used to predict the most similar patients are analyzed.
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CHAPTER I

INTRODUCTION

The domain of the research is to design and implement machine leaning

models and automatic evaluation of biomedical data. Automatic classification and

decision making models are a big help in determining the best treatment and its

effect on patients before making the final decision. In this dissertation several

solutions are developed to health care applications using applied machine learning

and data analytical techniques. The input data were raw and unstructured, so they

needed at the first step to clean the data and convert them to structured data; the

second step was to extract the features and select the best feature vector; and the

third step was to choose the optimized classification technique. The nature of the

data leads to use a unique procedure for each dataset. The given datasets include:

database of lung cancer patients in US between 2004-2009 to analyze their survival

rate, perfusion curves generated from different types of breast cancer that were

growing in mice, with measurements of vessels around the tumor to define tumor

ranking; perfusion curves of patients to predict rejected or accepted renal

transplants; brain MRA images to detect and extract blood vessels. Machine

learning techniques are divided into three groups: classification techniques

(supervised), clustering techniques (unsupervised) and semi-supervised methods.

This research is focused on unsupervised and supervised learning. The labelled data

are needed in advance to apply the classification algorithms, so the mathematical

models are trained based on labelled data. The labelled data of lung cancer patients

was not given in advance, so the records were categorized and labelled based on

their survival time, and a novel labelling procedures was developed. Unsupervised

techniques do not need any labelled data in advance and they categorize similar
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instances in the same cluster. In this section, the techniques that have been

previously applied on similar datasets are reviewed. Previous works on vessel

segmentation image analysis, integration of mathematical modelling of cancer

growth and image analysis, perfusion curves analysis, and finally the machine

learning techniques that were applied on the SEER database are reviewed. Medical

image analysis is high demand research areas which can help clinicians find

abnormalities in a more accurate way. The quality, slice thickness, resolution, and

tissue location are different parameters that make it much harder finding a robust

solution to segment tissues. The research started with focus on reconstruction of

blood vessels. The parameters that make the extraction of blood vessels challenging

are anatomical variability of the vasculature, location of the blood vessel, image

contrast, resolution an also the imaging modality. Scale space smoothing is

developed, which smooths images at different scales by employing diffusion

equations. Peronal and Malik [134] proposed a new scale space edge detection

method based on diffusion equations. Weickert added orientation to the diffusion

filter to be able to enhance small vessels and coherence structure in images

[183, 182]. Subsequent methods replaced the diffusion scalar by diffusion tensor

employing the Hessian matrix configuration and analysing eigenvalues of the

Hessian matrix. Different geometric interpretation extracted from Hessian matrix

and its eigenvalues configurations [81, 104, 148, 46, 24]. For review of anisotropic

diffusion, please refer to [164, 181, 39]. Krissian [86] and Manniesing [113] proposed

anisotropic diffusion filters to segment vessels in 3D, based on a tensor structure

filter. Fischl proposed a new method to indicate the best kernel function that

matches the image [42]. For further review on vessel analysis read [97]. The

proposed technique uses the scalar diffusion function, and is mainly based on the

conventional Perona and Malik nonlinear diffusion filter and improves the efficiency

of the algorithm using EM technique, it is more simple and it needs less

computational calculation considering 3D vessel analysis[6]. One of the main issues

with the proposed technique on vessel segmentation was lack of robust knowledge

about the disease and also the tissue materials, so image analysis techniques cannot

2



be trusted as an accurate and personalized package for each patients on its own.

The developed technique needed to be able to capture the vessels around the tumor

to be able to predict the tumor growth. A new approach to solve this limitation

issue with medical image analysis would be a combination of mathematical cancer

modelling and image analysis which can personalize and predict the cancer growth

in patients. The mathematical cancer growing models use biological factors to

calculate the velocity of the tumor growth or the diffusion of the cancer cells in

particular tissues. Medical image analysis would be able to predict the tumor

growth based on biological information taken from the mathematical modelling and

also the location of the tumor given in the images. The new approach seems more

practical, however it assumes biological parameters to be the same for all the

patients. The next perfect solution would be using supervised learning and train the

classifier with a huge number of patients so the biological parameters are trained

based on realistic tumor growth and also a large number of images would be trained

with different parameters. This solution is one the most practical and personalized

solution to predict the growth of the disease in near future for each patient. The

idea did not get the chance to develop because enough number of data could not get

collected, so only a review was written of the techniques in a book chapter [5] was

published. The main advantage of this combination is personalization of tumor

evolution. Tumor growth factors are extracted for each patient based on the

location of the tumor and its surrounded tissues and also the tumor growth rate

might be different for each patient. Image series are one of the input information

that is given for each individual patient. As discussed one important aspect of the

tumor growth cancer is analyzing the blood vessels that are in the tissue. Perfusion

imaging is typically used as a method for determining prognosis in the clinic [163].

Imaging of perfusion through a tissue has been used to measure vascular geometry

and histological features of tumor angiogenesis, and also to estimate micro-vascular

flow through capillaries and venules [100]. The provided perfusion curves were

generated from intra-vital microscopy (IVM), which injects a fluorescent tracer to

measure the blood volume and tissue permeability. The fluorescence intensity of
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each vessel was measured over time to yield a heterogeneous set of arterial and

venous perfusion curves on a tumor-by-tumor basis. Two features were considered:

the time to arterial peak and the venous delay, which acted as inputs for a Fuzzy

C-Mean(FCM) clustering. FCM technique was chosen because it uses a membership

function for every instance and it calculates a number for each instance in each

cluster. The data was classified into three defined groups (poorly vascularized, well

vascularized, and in between vascularized), which were correlated to experimental

nanoparticle accumulation measurements. This approach enables an automated

ranking of tumor vascular perfusion in order to model the delivery of

nano-therapeutics. Using an independent validation set, demonstration of technique

shows that new samples can be mapped into the feature space to determine their

perfusion ranking and hence estimate their nanoparticle retention. The feature

using a mathematical technique was extracted, which is called gamma variate

function; this finds the best fit for each curve and extract the mathematical features

of the fitted curve as a feature vector. The same feature extraction algorithm was

used on another similar database which is a dynamic contrast-enhanced magnetic

resonance imaging (DCE-MRI) and is a non-invasive imaging technique that has

been explored in perfusion-related concerns in many clinical applications, e.g., in

evaluation of the kidney, brain and heart. The pioneering work of Larson, Tofts and

Brix enabled the modeling of tracer kinetics using DCE-MRI [94, 93]. Advances in

MRI technology in later years enabled models to estimate perfusion and capillary

permeability more accurately. Recent studies have focused on revealing physiological

characteristics of the tissues. The main idea is to extract a relation between the

perfusion and vascular functionality of the tissue, which enables measuring blood

volume and capillary permeability. Newer models have focused on extracting these

critical tissue features [106]. Machine learning approach was applied on the given

dataset and developed a prediction package. At short times (up to about two

minutes) after administration at DCE-MRI, parameters can be derived that reflect

the agent delivery to the tissue bed. A function-based model was used to

analytically classify the perfusion of renal transplant patients in order to determine
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their prognosis in terms of transplant acceptance or rejection. These curves quantify

the average intensity of renal perfusion for up to four minutes. The algorithm first

identifies a model function that can be consistently fitted to all of them, as

discussed before the algorithm extracts the mathematical parameters of the gamma

variate function. Then, the algorithm classifies the output of the model into two

groups, namely, non-rejection (successful) or rejection (unsuccessful) transplants.

After selecting the features of the function classes and training the data classifier,

this classifier was used to classify new (unknown transplant outcome) curves.

The final research was to apply machine learning on the SEER database. The

original database has more than 100 features with most of them having overlap

information, so those features was excluded and only considered those that have the

lowest overlap information. The features were measured directly from the patients

and showed the physical basic information of each patient. Different classification

techniques was applied and results are compared. The main goal was to categorize

the patients based on their survival rate, so analyzed the relation between the

survival time and the patients in the same class were analyzed. Clinicians typically

use a combination of features which include the tumor size, the distribution of

tumor in other organs, and being a primary or non-primary lesion to predict the

stage and finally the survival range of the patients; however the statistical analysis

distinguishes the best feature vectors that can predict the survival rate of the

patients in a more accurate way.
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CHAPTER II

OVERVIEW OF MEDICAL IMAGE SEGMENTATION

This chapter reviews most of the important papers in vessel segmentation

techniques and it will focus on novel idea on vessel segmentation using multi

enhancement technique and probabilistic information.

The shape of vessels is unique, therefore requiring application of special

image analysis techniques to extract its structure accurately. In diagnostic imaging,

magnetic resonance angiography (MRA) and X-ray Computed Tomography

Angiography (CTA) are two main 3D modalities that are primarily used to image

network of vasculatures. In both types of acquisition, typically the vessels are

brighter than other organs. However, the vessels are embedded in organs, making

their automated extraction a difficult task.

Numerous approaches have been proposed for vessel extraction in the past.

Previously published vessel segmentation methods are categorized into 5 classes: 1)

Multiscale, 2) Ridge-based, 3) Skeleton-based, 4) Region-Growing, and 5) Active

Contours (including both parametric active contours and level set technique.) In

each group, only a few of some of the previously published papers was discussed,

representing principal features of each group.

A Multi-Scale Approaches

Multiscale framework by itself is not utilized to segment the vessels. The

method can handle different vessel width, so this critical feature making it as a good

alternative to be combined with other approaches.

An image results from a physical measurement. Imaging devices fix the scale

of the outside world that is observed [193]; the captured images are only available in
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one scale. Scale space theory provides an appropriate framework for analyzing

images at different resolutions. Analyzing images in different scales is an

appropriate technique for bringing into focus only objects that have a specific size,

thereby increasing the accuracy of computations. Indeed, multi-scale analysis is

biologically inspired and is the way that human eye visualizes the outside world.

If vessels are considered in only one slice of a CTA or MRA dataset, it will be

found that a continuum of vessel sizes is present. Therefore segmentation needs to

be implemented in different scales. Large vessels need to be segmented in large

scales (low resolution) and small vessels should be analyzed in small scales (high

resolution). In the linear scale space approach [193] a Gaussian kernel at a range of

scales is convolved with the image.

The symmetrical two dimensional Gaussian kernel is:

G(x, y) =
1

2πσ2
e

(x2+y2)

2σ2 (1)

where x and y are the distance from the origin in the horizontal and vertical axis

and is the standard deviation of the Gaussian kernel. If the standard deviation in

both x and y axis are the same, the equation of the Gaussian function is symmetry,

its equation is the same as the above one. Figure 1 shows a two dimensional

symmetrical Gaussian function.

σ is the important parameter of the Gaussian function, if is chosen high then

the image will become blur, and if it is chosen as a very low value the image will

have higher resolution and less blurring is occurred. Selecting an appropriate scale

is a challenging problem. Here some techniques are considered which are as a

representative for multiscale vessel segmentation.

If larger scale are chosen (σ of the Gaussian) the blurrier (at a low resolution)

the image would be, however, the smaller scale would results in higher resolution

and less blurring.

Applying the multi scale approach might not be a good solution for

segmentation by itself; so the method is combined with other approaches.

Frangi [46] is a good representative for utilizing multiscale technique as a feature to

7



Figure 1. The symmetrical two dimension Gaussian function with mean(0,0) and
standard deviation 1.
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extract vessels.

Multiscale Hessian-based filters are commonly used for vessel enhancement

and segmentation. Hessian-based filters are designed by calculating the eigenvectors

and eigenvalues of the Hessian matrix in 2D or 3D. The filter discriminates between

the plane and tubular structure and in so doing quantify a measure of vesselness.

The filters are applied in different scales; so vessels with different sizes are

segmented accurately. The best scale selection for each vessel size is defined by

computing the filter response in different scales and choosing the highest filter

response for each pixel. Frangi [46], Li [101], Shikata [149],[24] used the Hessian

filter to enhance and segment the vessel structures.

Frangi [46] reconstructs the vessel network using a multiscale Hessian based

filter. The response of the Hessian filter is calculated in different scales and the

maximum response is chosen as the best scale for extracting the vesselness.

Most papers apply their segmentation method in different scales and the final

result is a combination of the results. Alyward and Bullitt [15, 14] propose a ridge

based approach, taking advantage of multiscale. ter Haar Romany [164] in a tutorial

describes multi-scale methods for computer vision. He describes the difference

between the human visual system and digital image capture, and describes the

mathematical background of the multiscale methods. In [193], Sporring discusses

the mathematical background of Gaussian scale space theory and its usage in

medical image analysis.

Most of the scale-space segmentation methods apply linear scale space

techniques though nonlinear scale space has also been utilized for vessel

enhancement and segmentation. Nonlinear scale space filters are mostly employed

as a preprocessing step in order to reduce the noise and homogenize the vessel

regions. The idea being that preprocessing filters make the segmentation more

robust to noise.

The principal difference between the linear scale space (also known as linear

diffusion filter) and nonlinear scale space (also known as nonlinear diffusion filter) is

the diffusion kernel function. Linear Gaussian scale space can refine the image to

9



different scales but the same kernel function is applied all over the image

independent of the local image structure of the image. Nonlinear diffusion filter

which was first proposed by Peron and Malik [134] blur the image taking into

account local image structure in that important edge content is preserved. The

diffusion function is based on the gradient of the image and the anisotropic diffusion

function is defined as:

It = div(c(x, y, t)∇I) = c(x, y, t) ·∆I +∇c ·∆I (2)

where c is the diffusion coefficient, is gradient operator of the vector space, is the

laplacian operator, div is the divergence. Divergence of a continuously differentiate

vector field (F) is defined as divF = ∇F = δU
δx

+ δV
δy

+ δW
δz

and ∇ is the symbol of

divergence in mathematics and x, y and z are the Cartesian coordinates of a 3D

Euclidean space. F is the vector field where: F = Ui + V j + Wk where i, j and k

are the unit vectors in 3D Euclidean space. If c is a constant then the equation

reduces to It = c(x, y, t) ·∆I which it is an isotropic function. The non-linear

diffusion would be achieved if for instance c is set to 1 in the interior of regions and

0 on the boundaries then the blurring would be applied only in the regions and the

boundaries are not blurred. Krissian et al. defined a new anisotropic diffusion filter

for vessel segmentation which more accurately preserves small vessels. In their

approach the diffusion filter is weighted based on the gradient direction and the

maximal and the minimal principal curvatures [85]. Manniesing et al.applied a

combination of Hessian and nonlinear diffusion filters to improve the segmentation

of small vessel structure and the connectivity of vessels [113]. Weickert [183]

employed a tensor based technique which improved the connectivity of the

discontinuities in vessel structure [183]. Some scale space based papers are devoted

to noise reduction and enhancement. See [116] for an example.

B Ridge-Based Methods

Ridge based methods utilize the intensity of the gray scale image as the third

(or fourth) dimension, in addition to the two (or three) spatial dimensions. The
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intensity of a two dimensional image is viewed as a height map. The problem in

ridge-based approaches is cast as one of finding the ridges and valleys in the image

height map. Intensity ridges are assumed to be a path along the mountain peaks

and valleys. Some approaches use the scale space to extract the ridges [102].

Alyward and Bullit [15] used ridges as local maxima to extract the vessel

centerlines, exploiting the size and location of the tubular vessel structure. At the

first stage the image intensity is mapped to height to create intensity height surface.

Then a manually seed is selected on the ridge as the initial point. Then based on

the user-defined seed point a conjugate directions search with respect to Hessian

matrix is applied to find the ridge points. Finally, the local widths of the vessel

object is estimated using the points which are found on the ridges based on the

conjugate directions search. For extracting the vascular tree structure more than

one hundred mouse clicks is needed to get the seed points on the ridges. The clicks

are the auxiliary points that are needed to be defined in different section of the tree

structure.

Fridman et al. [47, 48] used Cores in order to extract the height map

skeleton. To reduce the noise the image is filtered and enhanced, then it is

segmented using marching technique utilizing the medial atoms and the medialness.

The medial atom is a structure of four parameters, its components are (x,r,F,θ),

where is the coordinate of the atom in 3D space, r is the radius of the object in the

location x, F defines the orientation of the atom, and theta is the object angle which

shows characteristics of an object such as its widening and narrowing. For a tube

shape each atom with its four parameters imply a set of concentric vectors, named

as spokes, that extends from the medial location x to the implied object boundary.

Medialness of a medial atom is a scalar value that measures the fit of the medial

atom to image data.

Spokes are concentric cores; each spoke is a vector and all the vectors have

the same origin and the same radius from the center of a circle. Spokes define the

boundary and segment the object correctly. The derivative of the Gaussian is

measured in the direction of each spoke and the weight of each spoke is computed
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and added resulting in the medialness value of the object [47, 48] . For contour

detecting the method uses Gaussian derivatives as the edge detector and the

constraints that as discussed on each medial atom is combined with it to find the

vessel wall. The spokes are all supposed to be the same length which it assumes

that the object is perfectly tubular. But the implementation results show that, the

method can segment objects that are not completely circular in cross section, but if

the cross section of the not a complete circle cross section is so long the method

cannot segment it correctly.

The first core is manually specified. To determine subsequent cores, the

marching algorithm in the tangent direction of the core or atom is applied.

Additionally, an optimization method is used to optimize the location of the next

core or atom. The location of the next core is found by further optimization over

the spatial plane normal to the core tangent and passing through the predefined

position of the core. The stopping criterion is either when the signal to noise ratio is

found to be low or when the object traversing the cores has explicitly ended.

C Skeleton-Based Methods

Skeleton-based methods extract the centerline of the blood vessels.

Subsequently, the centerlines are connected and the tree structure of the vessels is

explored. The resulting centerline structure is utilized for 3D reconstruction. Since

ridge based approaches that was discussed in the previous section detect skeleton of

the desired object, it can be thought of as a specialized skeleton based methods.

The main reason for the preference for this group over alternative techniques

is that computation is reduced to one dimension. The approach offers simplicity for

different clinical measurement like stenosis and aneurysm quantification. Giving a

brief description these methods apply thresholding and then object connectivity, or

thresholding followed by a thinning procedure, or extracting based on a graph

description. The extracted centerline is used for 3D reconstruction. Tracking based

approaches start with a seed point given by the user. Subsequently, the position of

the path is estimated and adjusted.
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Tyrrell et al. [172] implements a new method on optical slice data imaged in

vivo. The images have several artifacts like circulatory motion of the tissues, gaps

and static red blood vessels. So the proposed method overwhelm these artifacts.

The approach predicts the direction of the centerline utilizing the statistical

estimator. A superelliposoid geometric model was used to find the vessel boundaries.

A superellipsoid is a geometric model with three parameters and is defined as:

|x
a
|n + |y

b
|n = 1 (3)

where n, a, b are the parameters. In 3D the superellipsoid is defined as:

(
|x| 1

ε2 + |y| 2
ε2

) ε2
ε1

+ |z| 2
ε1 = 1 (4)

Frangi et al. [44] and Wink et al. [185] use Hessian based filter to estimate

the position of the centerline path. Fridman et al. [48, 47], Alyward et al. [14, 15],

and Wink et al. [186] calculate the centers of the cross section separately and utilize

the extracted information for changing and optimizing the vessel centerline model.

Wink et al. [186] used multiscale vessel tracking based on the Hessian matrix.

Most of the centerline based techniques need a point as the seed point to

start the extraction process or some of them need more points to be defined

manually on the skeleton. Lacoste et al. [89] extracts the coronary vessel network

imaged by X-ray angiography without defining any seed point. It is considered as a

multiscale technique; for segmenting thick branches, it uses a coarse scale, while for

smaller branches of the tree structure, it uses fine scale. And finally the

optimization process via simulated annealing is done. For modelling the centerline a

Markov object process is applied. Besides the points, lengths and orientations are

considered as the components of the object. This is the reason that why it is called

Markov object process. The Poisson distribution is assumed for modelling the data

object. The centerline is extracted by Markov object process specified by a uniform

Poisson process. The Markov segmentation process is based on some assumption:

the gray level between the network and the background is large, the local average

gray level inside the network is homogeneous. The centerline point is penalized or
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reward based on which the segments are connected or disconnected. For completing

the segmentation procedure, the segments that are defined by lines are connected

and the initialize tree structure is extracted. Then the edges are defined for each

segmented line which is the vessel wall. Then the optimization method completes

the procedure and the final tree network is defined.

Subsequently, the tree branches are extracted using the centerline of the

segmented regions where each segment has a center line. Instead of using piecewise

curves, Frangi et al. [45]used B-spline curves to extract a smooth centerline and

then the vessel walls were defined by cross section structures swept along the curve.

The method will be discussed in detail under Hessian based filters methods in

Active Contour section.

Another method was proposed by Wesarg et al. [184]. It can be categorized

as a method that uses 2D cross section in order to find the centerline. A point is

given in the vessel and the direction of the center is defined by cross section plane,

and the vessel wall is along a circle which p is its center. Wesarg used intensity

thresholding to select candidate contour points. Corkscrew method is utilized to

select the points on the contours. The search direction is along the x,y and z axis; if

the search finds a border; then this position is stored and the search continues along

the next axis. The start and the end point are given manually. The center of mass

of the search points measure the centerline. The border is extracted based on

thresholding and applying a morphological filter and then the median filter. A

polygan mesh using marching cubes is used to visualize the segmented vessel.

Some of the centerline methods use the path in 3D intensity images; the

boundaries are extracted using surface evolution method which will be described

later in this report in the level set approach section. The Euclidean distance

function is calculated from the boundaries so the desired path is centered in 3D.

The user needs to define some points or specify a particular path using auxiliary

points. For instance the first and the last point and some points on the path are

specified manually. Finally the propagation between the two start and end points is

implemented by the fast marching algorithm [131].
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Briefly, a 3D approximation of the skeleton is built and a weighted graph is

made which the weight assignment is a function of the Euclidean distance from a

user defined source and Euclidean distance from the boundary of the object. A

minimum path finder like Dijkstras algorithm is applied to the weighted graph to

find the centerline path [190].

Wink et al. [186] presented a technique to extract the centerline based on the

Frangi Hessian matrix features in order to find a measure of vesselness and the

centerline locations. A minimum path algorithm then connects user-selected points

to recover entire centerlines. The centerline generates the skeleton of the vessel

which is then combined with 3D visualization method in order to extract the vessel

surface.

D Region Growing Approach

The principal steps of techniques in this group are similar but the functions

utilizing for how to grow the region is varying. In the first step, a seed point is

manually selected in the region of interest; a function for vessel region definition is

specified and if the neighbours’ pixels satisfy the constraints of this function then

they are selected as vessels points and hence the region is expanded. The algorithm

iterates until there are no unlabelled pixels in the image. Every pixel is tested only

once. The test function is substantially based on the intensity similarity between

the seed point and its neighbours. Hence, both the spatial coordinates and intensity

values have a major role in making a decision about each pixel. Commonly the

methods use edge detection in order to find the region boundaries. Besides the need

for defining a manual seed point for the start point the algorithm could result in

holes in the region or could potentially over-segment the region. Region growing

approaches basically assume that that pixel that are close to each other and have

similar intensity value belongs to the same region. Vessel images suffer from noise or

artifacts like partial volume artifacts so region growing by itself cannot be a good

choice for segmenting; however they may be combined with other methods.

A method proposed by Yim et al. [190] is based on the ordered region
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growing (ORG) and represents the image as an acyclic graph. It used a gray-scale

skeletonization method for finding vessel tree structure and was applied to MRA

images. ORG produces a graph extracted from the image. Within this graph, the

path between each two points in the image is defined. The region extending is by

choosing any point on the boundary which has the highest intensity. So in 2D

images the eight neighbors are considered and in 3D the 26 vicinity voxels are tested

for finding the one with the highest intensity for iteratively extending the region.

After defining the graph the skeleton of the vessel is found. Two different

algorithms were proposed in the paper. Some auxiliary points are defined by the

user, so significant paths are extracted from the graph. Therefore, the skeleton of

the vessel is found based on the ORG graph, the seed point, as well as the end

points are also defined by the user.

Another skeleton technique is based on pruning small branches removed from

the main vessel. The pruning of the branches is based on the fact that no branch is

to be retained if the distance from the end to the nearest bifurcation is less than a

given minimum length.

E Active Contours

The original paper which proposed the use of active contours (also known as

snakes) in image analysis was Kass et al.s [73]. An active contour is an elastic spline

curve which in response to external forces derived from the image and internal

smoothness forces derived from the curve geometry deforms. Fundamentally,

external forces are designed to push the snake towards image features and the

internal forces are designed to keep the snake smooth. The process is governed by

iterative numerical optimization of an energy function which is a linear combination

of the internal and external energies. The literature on active contour models may

be classified into two groups: those employing parametric active contours (or

snakes) and those employing implicit active contours (or more commonly referred to

as the level set technique).
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1 Parametric Active Contours

Eigensnakes is method proposed by Toldeo [169] for vessel segmentation. It is

an automated segmentation method which learns the shape structure based on a

statistical feature vector and the target shape structure is found by a likelihood

criteria in the feature space. The eigensnake describes the optimal object structure.

Vessel description is defined by filtering the image with a Gaussian filter in different

scales with the maximum filter response being chosen. To avoid the large size of the

data the algorithm uses principle component analysis to reduce the feature space

measurement. The measure can be regarded as a likelihood function giving the

probabilities of each pixel belonging to a vessel. The likelihood map is specified in

the statistical feature space and incorporated within an energy minimization

framework. A Mahalanobis distance map is account as a measure based on the

distance between the clustered training dataset and the new object.

The feature space shows the vessels so if the Mahalanobis distance between

the training and test data vector in the feature space is small it shows that the new

data belongs to vessel. Because if the distance between the training data set and the

test data set in the feature space is zero then the two vectors shows the same

feature vector of the object and it resemble that the objects are the same. The

intrinsic probabilistic nature of the eigensnake makes it possible to obtain the whole

tree structure using a likelihood probabilistic map. The direction of the vessels are

calculated based on the principle component analysis of the intensity distribution of

the image.

Previously, Yim et al.s algorithm [190] was cited and noted that his approach

was in the skeleton- based class of techniques. In fact, that algorithm belongs to the

class of tubular deformable models - based on the centerline the surface mesh is

extracted.

Frangi [43] proposed a tensor-product-based B-spline modeling scheme where

the control points were optimized. This is one of the most well-known vessel

segmentation methods. Earlier, the methods was discussed in the context of
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multiscale-based methods (see corresponding section). Frangis method can be

considered as a snake and/or deformable model in three-dimensions and is based on

the Hessian matrix. The model extracts the central vessel axis and smoothes the

center axis using a B-spline representation. The curvature of the central curve of

the vessel is extracted by computing the Hessian matrix of each voxel. The

eigenvalue of the Hessian matrix is calculated in different scales so the method can

be classified as the multiscale method vessel segmentation too. The vesselness in

different scales is calculated based on the eigen values of the Hessian matrix. The

cross section circles are swept around the B-spline curve and the optimization

method deforms the central vessel to the vessel wall.

Mille et al. [122] proposed a new parametric deformable model by extracting

the centerline of a curve with varying radii. The method is a region-growing energy

based method. An overview of the algorithm is that the user initializes two or more

points on the surface then the minimum path or the geodesic path is deformed until

the central B-spline curve with its control points is extracted then a circular cross

sections are swept along the axis which is used as the initialization of the wall model

and the vessel wall is optimized using an optimization method to fit the vessel wall.

The image features for optimization are based on the Hessian matrix.

2 Level Set Approach

Level set technique is an evolution method which was introduced by Osher

and Sethian in 1988 [128]. The level set evolution describes the movement of the

surface by mapping it to a zero level set of a higher dimensional function. One

important advantage is that it is easy to build accurate numerical schemes to

approximate the equations of motion of the curve.

Level set method is a numerically useful technique for general image

segmentation and has found numerous applications to vascular image analysis.

Parameterization of complex curves and surfaces is in general not possible - the level

set helps to do the computation of the curves and surfaces on a Cartesian grid and

provides the capability for the topology to change. It is also a great tool for
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modelling time-varying objects.

The level set function which refer to as has a zero level set corresponds to the

boundary of the shapes in the upper row. Furthermore,φ takes on positive values in

the interior of the shapes and negative values in the exterior of the shapes. The

middle shape in the upper row shows when the topology of the shape is changing;

i.e., the two parts are splitting. If looking at the second row, one can see that it is

quite easy to track the shape with the level set function. Γ is the close curve and φ

is the auxiliary function which is called the level set function. In order to represent

the bounded curve with a level set function, it needs to have:

Γ = (x, y)|ϕ(x, y) = 0 (5)

Γ is the zero level-set of ϕ; ϕ is assumed to be positive inside the Γ region and

negative outside of it. If the curve Γ moves in the normal direction with speed F

then the level set function ϕ satisfies the level set equation: δϕ
δt

= F |∇ϕ| where t

represents time. There are several numerical solutions for propagating the zero-level

set front, most important of which is an upwind difference scheme with a

narrow-band implementation to speed up computations.

This section studies some papers that focus on segmenting vessels utilizing

the level set technique. Reference [105] defines a level set vascular segmentation

method for finding vessel boundaries in CTA images. Due to presence of iodinated

contrast, in CTA images, vessels are brighter than the background. An estimate of

background and vessel intensity distributions is made utilizing the intensity

histogram which is used to lead the level set to the vessel boundaries. The point of

minimum classification error represents the boundary between the vessel and the

background. For a certain intensity value the function gb and gv describe the

intensity values whether belongs to the background or the vessel. A speed function

is needed in order to have a smooth movement on the boundary.

The speed function is defined as:

Fim =
gv − gb

gv + gb

withgv(x) =
1

σv

√
2π

e−
1
2
(x−µv

σv
)2 , andgb(x) =
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σb

√
2π

e
− 1

2
(
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σb

)2
(6)
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gb and gv are the distribution of the vessel and the background which both are

assumed to be Gaussian. Minimum classification error is exactly where the

histogram distribution of the two classes intersect, which the speed function is

defined to be zero. The final level-set partial differential equation which has to be

solved is: ϕt + F |∇ϕ| = 0, F = Fext(c−), Fext is an external term based on image

feature, c is the constant which is chosen 1 in this paper, for vessel structures it is

preferred smoothness along the longitudinal direction which the curvature term is

minimal, therefore k is chosen kmin, k = kmin. After substitution the final partial

differential equation is:

ϕt + Fim(1− εkmin)|∇ϕ| = 0 (7)

εkmin is the weighted curvature which is responsible for keeping the surface smooth

during evolution. The speed function has zero value at the optimal threshold and

takes on positive values within the vessel and negative values within the background.

The CURVES technique [105] proposed by Lorigo et al. is a curve evolution

approach which uses level sets to segment vessels. The method models the object

boundary as a manifold and the curve evolution is achieved through energy

minimization. Basically, the method is capable of evolving the 1D curve on 3D

domain. A new energy term is defined which specifies the lowest curvature of the

surface which is the assumed to be the principal vessel direction. The method is an

extension of geodesic active contour which is mainly based on [77] reference. In

CURVES the dimension of the manifold is one and its codimension is two (the

codimension of a manifold is the difference between the dimension of the evolving

space and dimension of the manifold). A manifold is a mathematical space that on

a small enough scale resembles the Euclidean space of the same dimension, which is

called the dimension of the manifold. For instance, any point on a two dimensional

surface of a sphere is surrounded by a circular region which can be changed to a

circular plane. Circle is the simplest example of a manifold which on a small scale is

homomorphic to a line; both a circle and the line are one-dimensional manifolds.

Deformable models are applied to 3D vascular segmentation too. In such

methods, the initial boundary is deformed iteratively and the energy function
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depends both on image information and surface smoothness. Such an algorithm is

called minimal surface. For evolving the curve in 3D the traditional level set

equations does not hold. If the curve is in the plane and surface is

three-dimensional; so the surface has co-dimension one and the curves in three

dimension has co-dimension two. To extend the method to higher dimesions, the

CURVES algorithm defines an auxiliary function which maps the 1D curve to 3D.

Instead of finding the closest point on the zero level set; it is defined as the

nearest point on the zero level set. The difference between the previous methods

and CURVES and the steps involved in the curve evolution is stated.

Rochery [142] proposes a new quadratic energy function which works even if

there is occlusion in the network. Hence, if one part of the vessel image is occluded

with other tissues, creating a gap between an elongated line or vessel, the specified

energy function can connects the gap. The energy minimization uses the level set

technique to evolve the curve for higher order active contour energy. Traditional

energies are expressed as a single integral over the contour, the higher order active

contour energy utilized multiple integrals, so the interaction is between different sets

of contour points. For likelihood term they describe multi point interactions

between the contour and the data. The forces derived are non local.

The force definition penalizes local gaps that are found between the contours

and links them.

Some methods are recently proposed which are focused on variational

formulation of flux maximization instead of the curve or surface [95, 96]. The flux

maximization aims at aligning the surface normal to the gradient vector field. All

these methods mainly based on vectorial information and it is proved to be able to

detect the even low contrast and narrow vessels.

F Conclusions

Vascular segmentation is a very challenging research area. The method that

is utilizing for vessel segmentation depends on the dataset. Accuracy, level of

automation and computational efficiency are different parameters that should be
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considered when a segmentation method is chosen. The combination of methods is

the best solution for vessel segmentation. The dataset and its features and the

information that are needed to extract should be considered to make the best

decision of what type of methods should be chosen. In order to get a more accurate

output different algorithms can be combine in a sequential order. A preprocessing

can be used to enhance the image and improve the quality of the image.

Most of the vessel segmentation approaches substantially depend on

initialization. The techniques like the region growing, ridge based and skeleton

based techniques needs a start and end point or some auxiliary points on the path

defining manually. In addition, the active contour methods need an initialization

contour in a right place and near the desired contour. The method might find the

local minimal and cannot converge correctly. Therefore, a pre-segmentation process

can be utilized in order to have a better segmentation result. The purpose of the

vessel segmentation is very critical in order to choose the best combination of

methods. The automation and accuracy are two main features considered in vessel

segmentation.
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CHAPTER III

CLASSIFICATION TECHNIQUE: A MULTI-SCALE

NON-LINEAR VESSEL ENHANCEMENT TECHNIQUE

A new adaptive segmentation technique is developed on brain MR images and

the technique is coupled statistical clustering technique with the non-linear diffusion

filter. The method is published in [6]. An enhancement method is represented which

is based on nonlinear diffusion filter and statistical intensity approaches for

smoothing and extracting 3D vascular system from Magnetic Resonance

Angiography (MRA) data. The method distinguishes and enhances the vessels from

the other embedded tissues. The Expectation Maximization (EM) technique is

employed with non-linear diffusion in order to find the optimal contrast for

enhancing vessels; therefore, smoothing while dimming the embedded tissues around

the vessels and brightening the vessels. The non-linear diffusion filter smooths the

homogeneous regions while preserving edges. The EM technique finds the optimal

statistical parameters based on the probability distribution of the classes to

discriminate the tissues in the image. The proposed enhancement technique has

been applied to four 3D MRA-TOF datasets consisting of around 300 images and

has been compared to the regularized Perona and Malik filter. The experimental

results show that the proposed method enhances the image, keeping only the vessels

while eliminating the signal from other tissues. In comparison, the conventional

non-linear diffusion filter keeps unwanted tissues in addition to the vessels [6].

A Introduction

Vascular diseases are among the most significant causes of death in the world.

An enhanced three dimensional visualization of blood vessels could help in
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diagnosing the disease and choosing appropriate treatment. The parameters that

make extraction of blood vessels challenging include anatomical variability of the

vasculature, surrounding tissues, image contrast, resolution, and noise. In many

approaches to analysis, the preprocessing step enhances the vessels and improves its

visualization; assisting the task of segmentation and centerline extraction. Scale

space theory can be utilized for smoothing and enhancing medical images. In scale

space theory a set of smooth images are generated by employing the diffusion

equation; the original image is the initial condition of the function. The diffusion

function is specified either as scalar or tensor based. The original idea of image

diffusion for image filtering was proposed by Perona and Malik and was based on a

scalar function; it was proposed as a solution to edge detection [134]. Weickert

added orientation to enhance small vessels and coherence structure [183, 182].

Subsequent methods to conventional diffusion filtering replaced the diffusion

tensor by the Hessian. Multi-scale vessel enhancing methods based on eigenvalues of

the Hessian matrix typically determine the vesselness of a pixel. Different geometric

interpretation extracted by the eigenvalue system of the Hessian matrix is used to

measure the vesselness [81, 104, 148, 46, 24]. For review of anisotropic diffusion,

please refer to [164, 181, 39]. For implementation review of tensor based diffusion

filters in ITK refer to [38]. Catte [22] and Yu and Accton [191] applied a new filter

as an edge detection method on Ultrasound images, only considering speckle noise

in the image. Frangi [46] proposed the multi-scale enhancing method based on

Hessian and tensor structure. Weickert [182] defined the coherence-enhancing

diffusion which improves the tensor based diffusion to find divided regions and to

connect them. Krissian [86] and Manniesing [113] proposed anisotropic diffusion

filters to segment vessels in 3D, based on a tensor structure filter. Fischl proposed a

new method to indicate the best kernel function that matches the image [42]. For

further review on vessel analysis the reader is referred to [97]. The proposed method

uses the scalar diffusion function, and is mainly based on the conventional Perona

and Malik nonlinear diffusion filter. Vessels constitute a small area within each slice.

They are surrounded by other tissues and are thin and small. Nonlinear diffusion
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filtering enhances the regions while preserving the edges, but it cannot distinguish

the homogenous vessel region from other tissues. A new method is proposed to

enhance the vessel structure which employs the conventional Perona and Malik

non-linear diffusion filter while making use of the Expectation Maximization (EM)

algorithm [32]. EM is an optimization method estimating statistical parameters.

It is an iterative method and discriminates the classes which are defined based

on their probability density function (PDF). Vessel class is discriminated further in

each iteration, and the difference between the contrast of the vessel and the other

tissues is increased in every iteration of the smoothing process. The smoothing

changes are adaptive because the contrast of the image is changed adaptively. The

experimental results demonstrate that the proposed method improves vessel

enhancement when compared to the conventional non-linear diffusion filter. In

addition, the proposed method is a new technique that finds the constant gradient

threshold of the diffusion function adaptively. In next sections the Perona and

Malik diffusion filter and the EM algorithm are introduced. Then the proposed

method is described and shows experimental results. Finally, conclusions are given.

B Non-Linear Diffusion Filter

Foremost, Perona and Malik [134] proposed the idea of the non-linear

diffusion filter. Their proposed diffusion functions are mainly based on the gradient

operator to limit smoothing across edges and regions. The generic definition of the

diffusion function is indicated as:

δI

δt
= div [c (|∇I|) · ∇I] (8)

I is the image, ∇I is the Gradient of the image, c (|∇I| is the diffusion function

which controls the smoothness of homogeneous regions and preserves the edges of

the regions. c is one in the interior of the regions and zero on the boundaries. c · ∇I

is called the flow function, the greatest flow happens when the gradient magnitude
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is close to the threshold. Two diffusion equations were proposed in [134]:

c (|∇I|) =
1

1 + ( |∇I|
k

)2
(9)

c (|∇I|) = exp

[
−

( |∇I|
k2

)]
(10)

If |∇I| À k then c(|∇I|) = 0, if |∇I| ¿ k then c(|∇I|) = 1. The parameter k

is a constant and is a threshold for choosing the smoothing value. If k is chosen to

be a large number then the homogeneous regions are smoothed to a greater extent.

There is still no automatic solution to finding the k, on the other hand choosing an

appropriate k is critical to implementation results. The effect of different k ′s is

shown on one slice of the MRA images in Figure 2.

As shown in Figure 2 the chosen should not be very small or very large in

given dataset, when the k is chosen 10; the regions are smoothed and the edges are

kept; however, Figure 2 shows a noisy image which is the result for k=30.

Therefore, the gradient threshold is vital to implementation results; in the proposed

approach, it is substituted with the best threshold that is calculated from the EM

algorithm. It is not needed to test different thresholds on a dataset in order to find

the best setting.

C Probabilistic Model for MRA-TOF

Statistical approaches play an important role in extracting regions of the

image. Three classes are defined: vessels, the background and the other tissues. The

total probability distribution of the Gaussian mixture model is:

p = w1 · P (q|vessel) + w2 · P (q|background) + w3 · P (q|othertissue) (11)

where q is the given data or intensity level and P (q|anyclass) is the

probability density function for each class. Figure 4 and Figure 5 show the Gaussian

mixture model for the classes. ws are the proportion of each class in the image and

their summation should be one.
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Figure 2. The results of Perona and Malik non-linear diffusion filter after 10 iterations
from left to right a) Original Image b) k =10 c) k=30 [6].
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EM is an optimization method for estimating parameters. The probabilistic

model of the incomplete data is available. In the given domain the observed data is

the intensity of the image. Labels, indicating whether the pixels belong to the vessel

or the background, are unobserved information. Mean and variance of the Gaussian

distribution are the statistical parameters EM estimates. The EM algorithm

definition is as follows: Let X be the incomplete data, Y the complete data, and the

parameter vector. At the initialization stage, it is assumed to have a value not very

far from the final answer; the algorithm updates vector until changes are very small;

argmaxQ can be any mathematical method that finds the maximum of Q. In the

paper the maximum likelihood is utilized to maximize the parameters. The

Expectation and Maximization steps make the changes and update the feature

vector.

Expectation− Step : Q(θ/θ(k)) = E[lnP ((Y/θ)/Y, θ(k)] (12)

Maximization− Step : θ(k + 1) = argmaxQ(θ/θ(k)) (13)

θ(k) is the parameter vector in k-th iteration. P (Y/θ) is the probability

density function of classes. The chosen parameter vector is the mean and variance

of each class in the image. The proposed application has three classes, so the

mixture model was used and wit the assumption that all the classes are independent

variables. θ(k) is the parameter vector in k-th iteration. P (Y/θ) is the probability

density function of classes. The chosen parameter vector is the mean and variance

of each class in the image. The application has three classes, so the mixture model

is used with the assumption that all the classes are independent variables.

D Proposed Method-Combination of Non-Linear Diffusion Filter and

EM Algorithm

Vessels are thin, have weak edges, and are surrounded by the other tissues.

Conventional non-linear diffusion filter smooths different regions; however cannot

enhance vessels from other organs. Hence, a combination of the non-linear diffusion
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Figure 3. The probability distribution of two classes, ErrorI and ErrorII are the error
regions between two classes[6].
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filter and the EM algorithm is utilized. Three classes for the given dataset are

defined: vessel, background, and other tissues. The iterative framework smooths

every image slice while EM pulls out the optimized separated distribution of the

three classes. The error area from the overlapping regions of the vessel class and the

other classes is found.

The inverse of this value is the adaptive contrast, which is added to the vessel

regions and subtracted from other regions, to intensify vessels in the background in

each iteration. The risk function between the vessel class and the other two classes

is calculated in order to find the adaptive contrast. Figure4 shows the risk area

between two different classes. The area of ErrorI and ErrorII is the overlap error

area between the two classes. An adaptive contrast based on risk function is

indicated:

τ =
1

error1 + error2

(14)

error1 and error2 are the error areas between the vessels and the other

classes distribution in 3D dataset. tau is the adaptive contrast which is extracted

based on the risk function, and it is utilized to enhance the images. The adaptive

contrast is extracted from all the slices of the dataset; and the nonlinear diffusion

filter is applied on each slice individually while using the 3D neighborhood

information to smooth the regions. The non-linear diffusion filter and image

enhancement are applied simultaneously on each slice. After each iteration, the

intensity level of all the images are changed. In the next iteration, the EM has to

find the optimized threshold for updated images.

Figure 4 shows the probability distribution function of the three classes in the

first iteration for one 3D MRA-TOF dataset. The right most marginal Gaussian

distribution belongs to the vessel class whose intensity level is high and it

constitutes only a small part of the whole image. Adding a threshold to the vessels

in each iteration causes increased contrast and further difference between the vessels

and the other tissues. The distribution and its parameters are computed in 3D so

only one figure for all the slices is generated. The initialization is based on manual
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Figure 4. The initial Probability Density Function of the three classes (Background,
Vessel and Other Tissues) [6].

sampling of each class. The background is so dark and the vessels are the most

bright regions in each slice and other tissues have the intensity between the two

above classes. The initial probability for each class is chosen equal at the

initialization step. Figures 4, 5 shows the distribution of the classes after applying

the proposed technique; the intensity level of the surrounded tissues is decreased.

Consequently, the whole image is darkens while the vessels are distinguished and

enlightened in the background.

The diffusion function is calculated for each pixel utilizing the 3D neighbors.
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Figure 5. The final Probability Density Function of the three classes, vessels are
brightened while the mean of the other two tissues in the left are darkened [6].

32



Figure 6. The 3D neighbourhood of each pixel has 26 pixels which are shown for one
pixel.[6]

Hence, a cubic grid for the pixels neighbours is defined. 3D weighted neighbourhood

pixels intensity in utilized in the non-linear diffusion function. The new intensity

level for each pixel is indicated as:

The implementation process has the following steps:

1. 3D filtering utilizing the non-linear diffusion filter.

2. Applying the EM classifier and computing three dimensional Probability

Density Function.
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3. Finding the adaptive contrast threshold.

4. The result of step 3 is added to the vessels regions and subtracted from other

regions in all the slices [5].

5. If the changes between the updated image and the previous image is smaller

than a threshold then stops, else repeat the process from step 1.

E Experimental Results

The proposed method is applied on 4-datasets consisting of around 300

MRA-TOF image slices. The classifier uses all the slices and computes the adaptive

contrast threshold based on all the image slices. The smoothness and intensity of

the entire dataset affects each slice. The results are compared with conventional

non-linear diffusion filter. Figure 7 shows the results of the proposed method and

conventional non-linear diffusion function. The zoom and scaled version of only one

slice of the image which contains vessel shows that the proposed method

successfully excludes the vessel from its neighbors region. Figure 8 shows the output

of the proposed method and the non-linear diffusion filter and the binary image of

ground truth on one slice. The manual segmentation for all the slices is also

available to us. Comparing to the binarized image of the ground truth, it is clear

that the final enhanced image for the proposed is very similar to the ground truth;

the non-linear diffusion filter however keeps more tissues and the vessels are not

enhanced and segmented clearly. Figure 9 shows the implementation results on 3

slices from a dataset with 93 slices. The first row contains three slices of one of the

datasets before applying the proposed method which the vessels are embedded in

surrounded tissues. The second row shows the enhanced images, so the proposed

method preserves the vessels and darkens other tissues.
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Figure 7. Scaled image of one part of the vessels in one slice, comparison of conven-
tional non-linear diffusion filter and the proposed method. The method completely
enhances the vessel with respect to the surrounding tissues. a) Original image, shows
the vessel in a green circle. b) Scaled image, conventional non-linear diffusion filter
result. c) Scaled image, the proposed methods result [5].
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Figure 8. The final result of vessel regions on one slice. a) Original Image b) Non-
linear diffusion filter c) The proposed method d) Binary ground truth [6].
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Figure 9. Original and enhanced images of a dataset containing 93 slices. First row
shows images before applying the proposed method. Second row shows enhanced
images based on the proposed method. From left to right are: slice 22, slice 44 and
slice 90.[6].
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TABLE 1. Evaluation criterion [6]
Measure Nonlinear Diffusion Filter Proposed Method

τ 0.4432 0.7217

F Evaluation Metric

The metric that is used for evaluation is a criterion defined in [24]:

τ = (VGround ∩ Vourmethod)
2 = (VGround × Vourmethod) (15)

VGround is the volume of the vessel from the ground truth and Vourmethod is the

volume of vessel obtained with the proposed method. τ is between zero and one. A

τ of one indicates perfect segmentation. Table 1 shows the that is calculated for the

proposed method and conventional non-linear diffusion filter. τ for the proposed

method is higher than the for the conventional non-linear diffusion filter. Finally,

each slice of the image is binarized and then the final result of all the slices in 3D is

visualized. Figure 10 shows the final result of 3D visualization of the method.

Figure10a is the 3D visualization of non-linear diffusion filter segmentation output;

and it detects other objects as vessel. Figure 10b is the 3D segmentation of the

method and it shows that the proposed technique distinguishes the vessels and

extracts them from the surrounded tissues.
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Figure 10. The 3D final result of nonlinear diffusion filter, the proposed method and
ground truth. a) 3D visualization of Nonlinear-diffusion filter b)3D visualization of
the proposed method c) is the ground truth 3D result [6].
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CHAPTER IV

COUPLING TUMOR MODELLING WITH IMAGE

ANALYSIS

In this section the goal was to use machine learning techniques in order to

find a way to use multi-modal information such as medical images and

mathematical tumor growing models and using machine learning to predict the

parameters of the mathematical tumor growing models. Finding a large number of

training set was not possible, so the idea is published as a survey in the book

chapter [5]. It is difficult to extract values for the tumor model parameters from the

sparse data available for any particular patient. Medical image analysis can measure

the shape, size, volume and placement of tumors from MR and CT images for

individual patients, yet these techniques are limited. For instance, the threshold for

cell detection is a density of 8000 cells/mm3 in MRI, which may miss a significant

number of active tumor cells and thus potentially lead to inaccurate

prognoses [117, 61]. A set of methods by Konukoglu et al. [61, 83] is reviewed which

integrates mathematical modelling of tumor growth with patient-specific medical

images, with the goal to offer disease development modelling.

Typically, reaction-diffusion equations model tumor growth at the tissue-scale

contain terms that describe the change in cells in space and time, and their

collective proliferation rate. The local diffusion of the cells is defined as a tensor in

the calculations. A typical differential equation may take the form [61]:

δu

δt
= ∇ · (D(x)∇u) + ρu(1− u), whereD∇u · nδΩ (16)

where u is the tumor cell density, D is the local diffusion tensor, ρ is the proliferation

rate, and Ω is the boundary of the domain tissue, which in most models that have

incorporated imaging data has been the brain. The diffusion term of the tumor cells
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is ∇ · (D(x)u) and the reaction term is ρu(1− u) [61]. The tumor cell density

observed clinically is linked to the reaction-diffusion model by defining a density

function based on the image intensity of the lesion [160]. Although the parameter

estimation has focused mainly at brain tissue because of image availability and

easier tumor identification, the modelling concepts apply generally to solid tumors.

The main challenge of integrating this type of reaction-diffusion model with

imaging data is that the model describes the evolution of tumor cell densities in

time, while in the image sequences only the shape of the tumor in space is observed

The diffusion tensor and the reaction parameters are estimated from the

medical images, meaning that the evolution of the tumor equation can be specified

for each individual patient. To illustrate this process, the case of tumors in the

brain is considered in more detail, for which extensive modelling work has been

done (e.g., Hogea et al. [61], and Swanson and coworkers [160, 161]). These methods

usually assume that the velocity of tumor growth differs in different types of tissue

(e.g., white and grey matter), so different diffusion tensors are defined based on the

location of the tumor. The diffusion tensor for brain tissue is defined as:

D(x) = dgI,x ∈ graymatter (17)

D(x) = dwDwater,x ∈ whitematter (18)

whereas tumor cells are modelled to diffuse isotropically in the gray matter, the

diffusion in the white matter is proportional to the diffusion tensor of water. Tumor

cells diffuse isotropically in grey matter with rate dg, dw is the diffusion rate in white

matter, and Dwater is the diffusion tensor of water molecules [69].Medical images

provide data to estimate the tumor growth parameters for individual patients: the

velocity of the tumor growth (v), the diffusion of the tumor (D), and proliferation

rate (ρ). Here, different mathematical relation between these three parameters are

summarized. The calculated parameters are based on an assumption that the tumor

margin evolves linearly in time [111]. One possible linear relation is defined as:

v2/4ρ , which uses Fishers Thr. The diffusion coefficients in white and gray matters

are, respectively, Dg = v2
g/4ρ and Dw = v2

w/4ρ [60]. The tumor margin in image

41



sequences approximates the velocity rate.

Another mathematical estimation is stated as v = 2
√

ρD [83, 162]. The

tumor margin advances as a travelling wave, which expands radially and linearly,

and the diffusion coefficient changes centrifugally. If T1 and T2 weighted images are

available, then the gradient between these two can be defined as the ratio of

diffusion over proliferation [162], where the tumor margin is detected from T1

weighted mages and the edema is detected from T2 weighted images [162]. The

gradient has also been defined as v = 4
√

Dρ [111, 162] delineates the kinetics of the

tumor growth; simulations have shown that D/ρ can indicate the spatial extent of

nonvisible tumor tissue [111, 162]. The results show that utilizing
√

D/ρ instead of

Dρ may reflect the tumor growth rate more accurately [111, 162].

Another method defines a bio-physical reaction diffusion function while

adding a mechanical advection term [88]. For individual patients the parameters of

the tumor growth are estimated from available image sequences. The mechanical

advection term translates the elasticity of the tissue through which the tumor cells

diffuse. This model employs different velocities depending on the tumor location;

however, the unavailability of serial scans of the lesion precludes the measurement of

precise parameter values. The model constraints can be defined in such a way that

the problem becomes an optimization exercise with new parameters. The very first

scan where the tumor is observed is defined at t = 0, and the diffusivity and elastic

material coefficients are the new model parameters.

Parameters (e.g., diffusion, velocity and tumor proliferation) extracted from

images through these techniques have been used in modelling the tumor evolution in

time and space (spatial-time models). Jbadi et al. [69] modeled the diffusion of

tumor cells in anisotropic tissue. They proposed a new definition rate for the

diffusion tensor in water, based on calculating the highest eigenvalue of the tensor of

water molecules at each point. Another method considers a probabilistic approach

[160]. The tumor growth evolution (ρ (u(t)|θx, θt, θp)) is a conditional probability

where tumor growth parameters describing time, location, diffusion and

proliferation rate are approximated. θx is the tumor location parameter, θt is the
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parameter change in time and θp is the personalized parameter: diffusivity and

proliferation rate. These parameters are defined based on image sequences.

Some of the modeling work focuses on matching the spatial-time evolution

predicted by the model with the known tumor cell density from series of scans that

have been prepared independently. The object is to minimize the difference between

the estimated tumor cell density calculated from the model with the given tumor

cell density from a particular subject [161]. A recent method proposes a modified

anisotropic model which models the tumor delineation considering the curved front

and the effect of time in its speed [61].

Spatial-time tumor growth models have mainly considered avascularized

tumors whereas it is vascularized tumors that are the most dangerous. Further, the

extent of tumor vascularization may affect the chosen treatment. Yet informing the

model parameters from vascular imaging information is challenging due to the

problem of vessel segmentation. Vessels can be visible in MR and CT images; they

usually appear brighter in CTA (Computed Tomography Angiography) and MRA

(Magnetic Resonance Angiography) images taken with contrast agents. In general,

automatic segmentation vessel trees entail two main steps: extracting features from

image slices, and then reconstructing the 3D model of the vessels. Even if the

appearance of vessel features is accurately extracted from the images, the 3D

reconstruction of curvature is complex: number of vessel branches, curvature shape

of the vessel, and numerous other factors affect the accuracy of the segmentation in

3D [6]. Vessels connect to tumors with infinite possibilities: the appearance of vessel

branches is different for each individual patient, so one cannot define a predefined

model to be able to quantify this information.
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CHAPTER V

FEATURE EXTRACTION TECHNIQUE-ANALYZING

PERFUSION CURVES FOR AUTOMATIC DETECTION

OF TUMOR VASCULARIZATION AND LUNG

TRANSPLANT PREDICTION

In this chapter a new feature extraction technique is developed and the

technique is published in [175, 75]. Perfusion imaging measures blood volume in

tissues; a relation between volume and histological features may be assumed.

Perfusion imaging is typically used as a method for determining prognosis in the

clinic [100]. In research, imaging of perfusion through a tissue has been used to

measure vascular geometry and histological features of tumor angiogenesis, and also

to estimate micro-vascular flow through capillaries and venules [93]. Measurements

of perfusion flow can provide intravascular blood volume (reflecting the MVD) and

mean transit time of blood through the tissue. Some studies show a potential

correlation between perfusion imaging and MVD [163, 74, 135, 175], but others did

not observe such a correlation [159]. In a clinical study of lung carcinoma

angiogenesis using contrast-enhanced dynamic CT images, VEGF and MVD were

correlated with maximum values of time attenuation curves instead of perfusion

images [135].

Heterogeneities in the perfusion of solid tumors prevent optimal delivery of

nano-therapeutics. Clinical imaging protocols to obtain patient-specific data have

proven difficult to implement. It is challenging to determine which perfusion

features hold greater prognostic value and to relate measurements to vessel

structure and function.

Tumor vasculature is characterized by structural abnormalities that produce
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spatial and temporal heterogeneities in blood flow. The vasculature lacks a regular

hierarchical network of large proximal vessels feeding into successively smaller

vessels; instead, vessel interconnections are irregular in size and spacing [159, 66].

Endothelial cells lining these vessels have altered morphology, pericytes (cells that

support endothelial cells) are poorly attached or absent, and the basement

membrane is often abnormal. The resultant vessels are dilated, tortuous, vascular,

and vulnerable to collapse [66, 174]. The presence of fenestrations [65, 141, 54]

combined with incomplete vascular walls [54], can yield localized regions of blood

plasma leakage that alter macromolecule transport [114, 110], and increase

interstitial pressure [40]. Collectively, these vascular abnormalities lead to regions of

tumor tissue that are perfused poorly, intermittently, or not at all[68, 137].

Tumor perfusion is still poorly understood, particularly with respect to what

conditions lead to effective or poor treatment. Attempts to characterize tumor

perfusion using static data, such as the measurement of microvessel density from

patient biopsies, have shown mixed prognostic capacity[59, 34]. Clinical imaging

modalities capable of monitoring perfusion dynamically, such as MRI [51], CT[176],

PET [132] and Doppler sonography [120], have been used to produce time-series

images that enable pixel-by-pixel analysis of contrast kinetics within tumors.

Parameters measured from the resultant time-signal curves are placed into

pharmacokinetic (PK) models in order to extrapolate information regarding

vascular anatomy and physiology. Principal features derived using PK models

include the blood flow velocity, blood volume, and mean transit time. Numerous

methods have been proposed to extract these features in human tissues

[173, 58, 152, 64, 90, 28, 41, 79, 171]. While the prognostic capacity of such an

approach remains to be determined, MRI [121], CT [82], and PET [87] have

demonstrated that tumor transport plays a role in treatment response, and that

persistence of unfavorable perfusion characteristics (high blood volume fraction,

rapid transit time, focal hyperpermeability, and/or high FDG metabolism) following

chemotherapy correlates with a poor treatment response. Due to the difficulties of

relating clinical perfusion imaging with underlying tumor structure and function,
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intravital microscopy (IVM) studies in live animals are becoming increasingly

popular [57, 78]. Using video-rate laser-scanning microscopy, blood flow velocity,

flux, and hematocrit can be measured by tracking trajectories of fluorescent red

blood cells (RBCs) [140]. Concomitant injection of a fluorescent tracer allows

measurement of shear rate [71], blood volume fraction [147], and tissue permeability

[147, 35, 170, 67, 71]. These physiological parameters can be related to local

variations in gene expression, enzyme activity, pH, metabolites, and other

parameters of interest (reviewed in [78]) by simultaneously imaging multiple

fluorescent reporters. A major advantage of IVM is that tumor perfusion can be

characterized on a vessel-by-vessel basis, potentially leading to insights into how

local variations in perfusion can affect nanotherapeutics delivery and treatment

response [76].

In the current research, a theoretical framework for automated evaluation of

IVM perfusion curves is described in order to model the delivery of

nanotherapeutics. The hypothesis is that tumor-specific perfusion features may be

used to model nanotherapeutics accumulation; thus, this framework aims to

transcend the challenges posed by the typically abnormal tumor vasculature.

Primary tumor fragments, collected from triple-negative breast cancer patients and

grown as xenografts in mice, were injected with a bolus of 40kDa FITC-dextran

tracer and monitored at 30 fps using IVM. The fluorescence intensity of each vessel

was measured over time to yield a heterogeneous set of arterial and venous perfusion

curves on a tumor-by-tumor basis. Two features were considered: the time to

arterial peak and the venous delay, which acted as inputs for a Fuzzy C-Mean

(FCM) classifier. The data was classified into three defined groups (poorly

vascularized, well vascularized, and in between vascularized), which were correlated

to experimental nanoparticle accumulation measurements. This approach enables

an automated ranking of tumor vascular perfusion in order to model the delivery of

nanotherapeutics. Using an independent validation set, it is demonstrated that new

samples can be mapped into the feature space to determine their perfusion ranking

and hence estimate their nanoparticle retention. A major strength of this approach
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is that it enables the ranking of tumors and evaluation of their behavior in an

automated manner without requiring PK models.

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a

non-invasive imaging technique that has been explored in perfusion-related concerns

in many clinical applications, e.g., in evaluation of the kidney, brain and heart. At

short times (up to about 2 minutes) after administration at DCE-MRI, parameters

can be derived that reflect the agent delivery to the tissue bed. In this study a novel

and automated comprehensive framework for the non-invasive classification from 2D

DCE-MRI of non-rejection and acute rejection transplants is evaluated. Recently, a

method is proposed for the automatic classification of normal and acute rejection

transplants from 2D DCE-MRI, consisting of four steps: kidney segmentation,

non-rigid registration to align the object, cortex segmentation, and classification of

normal and acute rejection transplants by evaluation of perfusion curves [19].

A function-based model is used to analytically classify the perfusion or TICs

of renal transplant patients in order to determine their prognosis in terms of

transplant acceptance or rejection. These curves quantify the average intensity of

renal perfusion for up to four minutes. First identifying a model function that can

be consistently fitted to all the TICs. Then, the output of the model is classified

into two groups, namely, non-rejection (successful) or rejection (unsuccessful)

transplants. After selecting the features of the function classes and training the data

classifier, this classifier is used to classify new (unknown transplant outcome)

curves. The pioneering work of Larson, Tofts and Brix enabled the modeling of

tracer kinetics using DCE-MRI [93, 93, 106, 92, 167, 155]. Advances in MRI

technology in later years enabled models to estimate perfusion and capillary

permeability more accurately. Recent studies have focused on revealing

physiological characteristics of the tissues. The main idea is to extract a relation

between the perfusion and vascular functionality of the tissue, which enables

measuring blood volume and capillary permeability. Newer models have focused on

extracting these critical tissue features [106].

Mathematical tumor modeling describing the evolution of tumor mass in time
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(recent reviews [49, 21, 13, 53, 11, 31, 179, 150] and are coupled with biological data

to represent tumor growth and treatment responses. Tumor vascularization is an

important stage in tumor evolution. Tumor vascularization, metastasis and

mathematical modelling developed to simulate these processes are reviewed in the

published chapter. Here the research is mainly based on weakness and strength of

mathematical tumor modelling and medical image analysis and how to combine

these two groups.

Discrete models are useful for studying cell-cell and cell-microenvironment

interactions, natural selection carcinogenesis, and genetic instability. Continuum

models simulates as a collection of tissues, employing principles from continuum

mechanics to describe cancer-related variables as continuous fields using partial

differential and integro-differential equations [49]. In contrast to discrete and

continuum models, hybrid approaches utilize both the continuum and discrete

representations of tumor cells and microenvironment components. Discrete models

are representing tumor evolution in cell-scale while continuum models illustrate the

evolution in tissue-scale, the hybrid model upscale the cell-scale to inform the

phenomenological parameters of models at the tissue scale. Recent reviews on

mathematical tumor modelling include [49, 13, 53, 11, 31, 179, 150, 144, 129].

Besides the avascular growth, models have focused on tumor-induced angiogenesis

[192, 107, 139], metastasis [126], intra-cellular pathway, intra-cellular pathways

[119], stem cells [37] and treatment [98, 177].

Medical image analysis is mostly used as a tool for patient screening. Cancer

screening has the potential to allow for early detection. Medical image contain lots

of information that radiologist need to consider many parameters to extract the

disease information and also making the treatment decision [12, 136]. Spatial

reconstruction of a specific lesion depends on many factors, including image

resolution, contrast level of tissue, appearance of very small cells in images, the

thickness and available number of slices, the accuracy of the applied method for

lesion reconstruction [38]. These factors prevent defining a uniform and robust

technique for lesion extraction. Imaging techniques cannot accurately localize tumor
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cells, underestimation or overestimation is another problem even if the image

analysis technique is chosen correctly and it is based on the ground.

The weakness and strength of mathematical tumor growth models and

medical image analysis, one of the ideal idea is to combine these two methods. The

biological parameters like the diffusion term or velocity of the tumor growth could

be defined based on image series. The main advantage of this combination is

personalization of tumor evolution. Tumor growth factors are extracted for each

patient based on the location of the tumor and its surrounded tissues and also the

tumor growth rate might be different for each patient. Image series are one the

input information that is given for each individual patient.

The organ under consideration in medical images has a critical role in

choosing the method to analysis medical images.

Medical image analysis is useful in providing observable clinical information

for all organs in the body. The research was focused on reconstruction of blood

vessels. The parameters that make the extraction of blood vessels challenging are

anatomical variability of the vasculature, location of the blood vessel, image

contrast, resolution an also the imaging modality. Scale space smoothing is

employed, which smooth images in different scale by employing diffusion equation.

Peronal and Malik [134] proposed a new scale space edge detection method based on

diffusion equation. Weickert added orientation to the diffusion filter to be able to

enhance small vessels and coherence structure in images [183, 182]. Subsequent

methods replaced the diffusion scalar by diffusion tensor employing the Hessian

matrix configuration and analyzing eigen values of the Hessian matrix. Different

geometric interpretation extracted from Hessian matrix and its eigen values

configurations [81, 104, 148, 46, 24, 98]. For review of anisotropic diffusion, please

refer to [181, 39, 86]. Krissian [86] and Manniesing [113] proposed anisotropic

diffusion filters to segment vessels in 3D, based on a tensor structure filter. Fischl

proposed a new method to indicate the best kernel function that matches the image

[42]. For further review on vessel analysis the reader is referred to [97]. The

proposed method uses the scalar diffusion function, and is mainly based on the
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conventional Perona and Malik nonlinear diffusion filter. The reason is its more

simplicity and it needs less computational calculation considering 3D vessel analysis.

The main idea of the research is providing and utilizing prediction and

classification techniques on biomedical dataset.

A Analysis of Tumor Perfusion

Four samples of breast cancer cells are injected to mice and the perfusion

curves of arteries and veins near the tumor cells are given as an input. Figure 4-1

highlights sample arterial and venous curves generated by 2147 and 4195 tumors

implanted into mice. Several key features can be observed: The arterial curves (red)

are generally characterized by a rapid increase in fluorescence intensity which

plateaus within the first minute, drops off, and levels out. The venous curves (blue)

demonstrate a more gradual increase in fluorescence intensity, resulting in a delayed

plateau. A large number of such curves ( 30-60 ) were generated for each implant,

allowing characterization of intratumoral heterogeneity. Differences were observed in

peak intensity, time to arterial peak, and venous delay within each tumor, suggesting

that vascularization can be heterogeneous within a given tumor. Independent

stability analysis was performed for each video to confirm that ROI placement had

no significant impact on the rate of tracer influx and that variations in signal

intensity at any given time-point fell within the overall signal noise. Data was

considered robust and included for classification when these conditions were met.

B Identification of Tissue

Heterogeneities in intratumoral perfusion make it difficult to apply standard

curve-fitting models for perfusion classification. The first-pass perfusion signal in

tumor arteries, for example, does not necessarily rise very quickly to a maximum as

would be expected in normal tissue. This was particularly evident for the 4195 and

3887 biopsy implants, in which a slow rise in arterial fluorescence was followed by

little or no drop, indicative that the tracer was already fully mixed in the blood by
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Figure 11. Quantification of tumor first-pass perfusion following injection of a 40kDa
FITC dextran tracer. (a) Representative regions-of-interest (ROIs) selected for time
measurements of fluorescence intensity. Circular ROIs were randomly defined inside
arterioles, venules, and capillaries, between branching points, yielding approximately
30-60 ROIs per video. (b) Representative arterial (red) and venous (blue) perfusion-
time curves of individual vessels, measured for single 2147 and 4195 tumors. Varia-
tions in time to arterial peak and venous delay are observed within each tumor. The
videos from which data was derived may be found in the Supplementary Information
[175]
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the time of arrival. In contrast, 2147 and 2665 tumors behaved more like normal

arteries in that their fluorescence intensity rapidly peaked and then declined

immediately after the peak.

These observations suggest that the time it takes for arterial flow to reach its

peak is a critical feature of tumor perfusion. Accordingly, a distribution density

function is generated in which the highest peak has the highest probability of signal,

and the time to reach the peak following tracer entry was defined as the time to

arterial peak. The perfusion of the tumor venous system showed distinct

abnormalities as well. In normal tissue, the difference from the time blood enters an

artery until it reaches the corresponding vein is a few seconds. In the tumors in this

study, however, this process varied from a few seconds to over a minute. The 2147

tumor in Figure11, for example, showed a delay of 30-90 seconds between when the

tracer appeared in the arteries and appeared in the veins, whereas the 4195 showed

a venous delay of 10-30 seconds. Thus, it is postulated that venous delay is also an

important feature of tumor perfusion. Accordingly, statistical rules are applied to

measure the probability of this delay. The time to arterial peak and venous delay

was calculated for each biopsy implant and mapped to a single point within a

two-dimensional feature space. The final value of a given feature is the expectation

of all the probabilities of the vessels imaged over a 10 mm2 field-of-view. Table 2

shows the results of the two features calculated for each implant. When plotted in a

two-dimensional feature space, the complexity of the data becomes apparent (Figure

12). The scattering of these points reflects both intra- and inter-tumoral

heterogeneities. If no intra-tumoral heterogeneities were present, for example, it is

expected to see four tight clusters of data, one for each set of tumor replicates.

Since the data does not fall in a single line, it cannot be linearly classified.

The data was separated into three different classes based on the pattern of

scatter: the first includes cases that are poorly vascularized (i.e. short time to peak

and short venous delay), the second includes cases that are well-vascularized (i.e.

long time to peak and long venous delay), and the third class is neither poorly nor

well-vascularized (in between vascularized). These in between cases can represent
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TABLE 2. The calculated expectation of individual tumor features [175]
Tumor type Feature 1: Venous delay Feature 2: Arterial peak

1 2147 0.0415 0.0342
2 2147 0.1608 0.1307
3 2147 0.1468 0.1381
4 2665 0.0300 0.0270
5 3887 0.0187 0.0952
6 3887 0.0961 0.2361
7 3887 0.2766 0.2896
8 3887 0.0540 0.0912
9 4195 0.0830 0.0609
10 4195 0.1822 0.1047
11 4195 0.1334 0.0751
12 4195 0.3526 0.2309

tumors of homogeneous vasculature with intermediate perfusion properties or

tumors of heterogeneous vasculature with regions with differing perfusion

properties. No restrictions were placed on the classification of very well or very

poorly vascularized cases. Figure12 shows the data set in the two-dimensional

feature space after applying the FCM classifier.

The data was ranked by taking into account both the distance of each data

point to the center of its cluster and a weighted term for each of the measured

features:

rank(p) = W1 × feature1(venousdelay) + W2 × feature2(arterialpeak) (19)

where p is the tumor replicate in each class and w1 and w2 are the weighted terms

for the venous delay and arterial peak, respectively. There exist numerous

optimization algorithms to determine such weighted terms [163, 135, 194, 195]. Here,

the values for w1 and w2 were chosen by separately calculating the first moment of

each feature in each class. Since each feature is described as a separate distribution

function, w1 and w2 were selected so that w1 + w2 = 1. The other constraint, which

is based on the observation that normal vasculature is usually associated with a

higher probability of venous delay than rapidly perfused tumors, assigns a higher

weight to w1. The ratio r of the mean of the two features in each class thus defines

the second constraint as w1/w2 = r. Using the experimental data, w1 = 0.6 and

w2 = 0.4 are calculated. Note that the Euclidean distance is not chosen from the

samples to the center of the classes as the ranking criteria since the accuracy of such

53



Figure 12. Application of the FCM classifier partitions the data set into 3 distinct
categories. The numbers denote the individual tumor replicates as listed in Table2.
Three classes are marked and the samples are shown with the same color as the center
of the class. The red crosses represent poorly vascularized cases, the blue triangles
belong to the well-vascularized class, and the green circles denote the in between cases
[175].

54



Figure 13. Automated ranking of the implants based on weighted feature probabili-
ties.

an approach is proportional to the sample number. Figure 13 shows the automated

tumor ranking from poorly vascularized tumors (left) to well-vascularized tumors

(right). Despite the small sample size, it can be observed that there is a large

dynamic range ( 9.5 fold) in the measured values. Interestingly, replicates from the

same patient (1-3 (2147), 5-8 (3887), and 9-12 (4195)) do not group together, which

reflects intra-tumoral heterogeneities in growth and vascularization.

Particle accumulation was measured for all tumor replicates evaluated here.

Table3 shows a comparison between tumor classification, automated ranking, and
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TABLE 3. Comparison between classification, automated ranking, and experimen-
tally derived nanoparticle accumulation measurements. Average values for each tu-
mor type are followed by the individual measurements. Averages are presented as
1 standard deviation. Tumor vascularity is indicated by (poorly vascularized), +/-
(in-between), or + (well-vascularized).[175]

Patient Vascularity classification Automated rank value Particle accumulation (/mm3)
1 2147 - (0.0397) (28,690)
2 2147 +/- (0.1534) (25,880)
3 2147 +/- (0.1550) (27,930)
4 2665 - (0.0293) (30,620)
5 3887 - (0.0493) (8,080)
6 3887 +/- (0.1560) (18,800)
7 3887 + (0.2959) (9,410)
8 3887 - (0.0722) (6,960)
9 4195 +/- (0.0768) (3,410)
10 4195 +/- (0.1617) (3,620)
11 4195 - (0.1103) (2,920)
12 4195 + (0.3369) (3,850)

particle accumulation on a tumor-by-tumor basis. Since the classification and

ranking schemes do not show a consistent ranking, they cannot get compared

directly with the experimental results. Therefore the average value of these features

for each patient is calculated. Comparison of the averaged patient ranking with the

averaged experimental measurement suggests that tumors classified as poorly

vascularized would uptake the highest number of circulating particles, whereas

tumors classified as well vascularized would uptake the lowest number of particles.

This trend is shown in Figure 14 where the automated ranking appears inversely

proportional to particle accumulation. Data was fit to a 2nd order polynomial based

on the observation that 1000400nm plateloid particle accumulation is constrained by

tumor-specific physiological transport phenomena (manuscript submitted). The

2665 tumor, though a single replicate, had relatively little impact on the

classification scheme and was therefore considered robust and included in the fit.

Thus relationship between tumor rank and particle accumulation appears to be

non-linear, with small changes in the upper ranks yielding large changes in particle

accumulation.

Triple-negative MDA-MB-231 xenografts were generated for model

validation. Grown simultaneously in littermates for 30 days under identical

conditions, these tumors nevertheless demonstrated significant differences in tumor
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Figure 14. Comparison of tumor rank to experimentally observed particle accumula-
tion. (a) Average tumor rank, grouped by patient number. Note that sample 2665
is a single replicate. (b) Average particle accumulation, grouped by patient. Particle
accumulation is observed to be inversely proportional to tumor rank. (c) Plot of non-
linear relationship between the average particle accumulation and the average tumor
rank. [175].
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TABLE 4. Automated classification and ranking of MDA-MB-231 tumors. [175]
Tumor vascularity is indicated by (poorly vascularized), +/- (in-between), or +
(well-vascularized)

Vascularity classification Automated rank value Particle accumulation (/mm3)
Predicted Measured

1 - 0.3779 0 1,070
2 - 0.0977 28,940 28,310
3 - 0.0920 29,960 34,300
4 - 0.0352 31,610 26,070
5 +/- 0.2245 0 1,900

vascularization, particle accumulation, and ranking. Figure 15a highlights the

morphological differences observed under bright field illumination and following

FITC-dextran injection n. Cumulative particle accumulation, as measured by IVM,

was found to vary by as much as 30-fold across the 5 tumors studied (Figure 15b).

These tumors were individually classified and ranked in a blinded manner (Table 4).

The calculated tumor ranks were found to range from 0.035 (tumor 4, poorly

vascularized) to 0.378 (tumor 1, well vascularized). Figure 15c shows the predicted

and measured particle accumulation values, plotted by tumor rank. The three

tumors predicted to show high particle accumulation (greater than 20,000

particles/mm3) correlated in a statistically significant manner (two-tailed test with

=0.05) with the model prediction (R=0.99 as measured by Pearson Product

Moment Correlation), while those with relatively high ranks (greater than 0.18)

showed low particle accumulation as expected.

C Classification of DCE-MRI perfusion curves in renal transplant

patients

An accurate classifier is obtained using the gamma variate function; this

function is commonly used to model the first cycle (i.e., the first-pass transient

phase) of the transit of contrast agents, where peak time is the time that the agent

circulating in the blood takes to reach its highest level during this cycle [75].

A sample renal agent kinetic curve is shown in Figure 16. To fit this type of

data the kinetic curves is divided into two sections in time, namely the wash-in

(transient) and wash-out (tissue distribution) phases. The transient (wash-in) phase
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Figure 15. Vascularization, particle accumulation, and ranking of MDA-MB-231
xenografts. (a) Brightfield and fluorescence microscopy images of 5 individual tu-
mors grown under identical conditions (Top-bottom: No. 1-5). Significant differences
in vascular morphology were observed, as well as local differences in vessel perme-
ability resulting in tracer extravasation. Scale bar = 200m. (b) Cumulative particle
accumulation, as measured by IVM, ranged widely from 1,000 34,000 particles/mm3.
(c) Predicted (—) and measured () particle accumulation values, plotted by tumor
rank. The degree of particle accumulation was categorized by position along the pre-
dicted accumulation curve. High accumulation: >20,000 particles/mm3; Moderate
accumulation: 5,000-20,000; Low accumulation: <5,000 particles/mm3.[175].
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of the agent delivery is characterized by the time that it takes to reach the first

peak, this transient phase is modelled with the gamma variate function. The agent

delivery is also characterized during the more slowly varying phase (tissue

distribution, or plateau phase) by its average signal change starting from the first

peak until the endpoint of the curve. The plateau is considered of critical

importance in clinical evaluation of renal transplant patients because it incorporates

a large number of data points over the signal intensity time series to characterize

perfusion; therefore it is less dependent on temporal sampling. The general form of

the gamma variate function is given by:

y(t) = A(t− t0)
αexp

(
−t− t0

β

)
(20)

where A,α, and β are the free parameters; t is the time and t0 is the initial time,

which is considered to be 0. Here, a simplified gamma variate function is employed,

as proposed by Madsen [109], using a least-square linear algorithm to fit the data

points. This changes the original formulation in Eq.20 to a linear equation, with

only one unknown parameter (see the appendix in [23] for a mathematical proof).

The linearized equation is defined as:

ln (y (t′)) = ln (ymax) + α (1 + ln(t′)− t′) (21)

This equation has the form y = C + αx, where ln (y (t′)) and

x = ln (ymax) + α (1 + ln(t′)− t′). The parameters A and β are derived from α [23]:

A = ymaxt
−α
maxexp(α) (22)

β = tmax/α (23)

where tmax and ymax are the time and the intensity value, respectively, of the

first peak in the perfusion curve [23]. This formulation i used to calculate the

function parameters for both non-rejection and acute rejection transplant cases.

Although earlier work proposed by Madsen et al. [109] and Chan et al. [23]

using the simplified gamma variate function is not renal-specific, the mathematical

proofs and the methods presented therein to obtain the signal intensity using
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Figure 16. One sample of the given data and the fitted curve[75].

imaging techniques are tissue-independent; thus, the first cycle of the perfusion

curves can usually be fitted to the gamma variate function (e.g., see recent review

by Sourborn and Buckley [155]). Please note that the high accuracy obtained with

the classifier results obviates the need to use the nonlinear version.

The ultimate goal of the overall framework is to provide a reproducible,

non-invasive, diagnostic tool for the reliable detection of renal transplant rejection.

Thus, to characterize the transplanted kidney, the final step of the proposed

framework is to construct TICs of all subjects and to fit these TICs with the gamma

variate function.
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Following the perfusion modelling using the gamma variate function, five

features were chosen for the classification of kidney status. Three features are

derived from the functional model (parameter ”α” estimated from Eq.21, parameter

”β” defined by Eq.23 and coefficient ”A” defined by Eq.22) and two features from

the perfusion data (the time of the first peak and the tissue phase signal change

index or average plateau (AP), see Figure11). These selected features map the data

from the original data space to the feature space. These five features are calculated

for all successful and unsuccessful transplants and are used for the classification of

the kidney status.

D K-Nearest Neighbor (KNN) Classifier

To distinguish between non-rejection and rejection cases, a KNN classifier (K

= 5) is used to learn statistical characteristics from the extracted features of

training sets comprising both non-rejection and rejection groups. The perfusion

data sets contain 23 cases of acute rejection and 27 cases of non-rejection

transplant. 36% is used(10 non-rejection and 8 acute rejection cases) for training

and the other 64% (17 non-rejection and 15 acute rejection cases) for testing. All

five features were normalized by the maximum value of the respective feature of the

training data. After this training step, the KNN classifier is used to classify the

cases to be tested using only one of the normalized features at a time. Table5

presents the KNN diagnostic accuracy for each of the five features [75].

Then, the classifier was augmented by combining all normalized features:

ω1 × α + ω2 ×
(

1
β

)
+ ω3 ×A + ω4 ×

(
1
T

)
+ ω5 × (AP ) with appropriate weights (1.50,

0.48, 0.54, 0.69, and 1.7 for the parameters α, β, A, T, and AP , respectively)

estimated by the genetic optimization using the training data sets. The weights

were estimated by maximizing the Euclidean distance between the

weighted-combined features of non-rejection and acute rejection groups in order to

better classify the training data, based on the biopsy ground truth. For both testing

and training data sets the proposed approach classifies all cases correctly (100%).

Moreover, to identify kidney status a Bayes classifier is employed based on using the
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Parazen window with the Gaussian kernel as density estimator, and based on using

a Bayes classifier with the Gaussian distribution as density model to estimate the

density distributions for each of the five features. The classification results for each

feature are summarized in Table 5(b and c). For the augmented features the

accuracy was 100% (18 out of 18) and 93.8% (30 out of 32) for the training and

testing data sets, respectively, using the Parazen window; and 94.4% (17 out of 18)

and 96.9% (31 out of 32) using the Gaussian distribution as density model [75].

Finally, to demonstrate the superiority of the perfusion analysis, the

diagnostic accuracy is compared to the current clinical approach used by

radiologists. Using clinical software, radiologists manually define multiple ROIs

inside the kidney cortex. Then, these ROIs are used as a mask applied to all images

without any segmentation or motion correction. Finally, the perfusion curve is

obtained from the average intensity of these ROIs over all the time series images

and three features, namely wash-in slope, time-to-peak, and wash-out slope, are

extracted for the classification of the kidney status. The diagnostic accuracy of this

method is reduced to 61.1% (11 out of 18) and 62.5% (20 out of 32) for the training

and testing data sets, respectively. The reduced accuracy is due to the high

frame-to-frame signal intensity variability related primarily to uncorrected motion

effects, which eventually lead to noisy estimated parameters. These results highlight

the advantage of the CAD system for perfusion analysis using the entire cortical

area after correction of the global and local kidney motions compared to clinical

software currently available [75].

E Performance Analysis of Selected Features

In order to evaluate the performance of the diagnostic system using the

selected features for the classification of transplanted kidney status, two methods

are used. First, the discriminatory ability of the selected features obtained from the

perfusion curves is compared, averaged over the cortex using the well-established

95% confidence interval (CI) statistics. Based on the 95 CI separations of the

groups, it is concluded that the parameters ”α” and ”AP” are the superior
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TABLE 5. Diagnostic results using each of the selected features using the KNN
(a), and a Bayes classifier based on the Parazen window with the Gaussian kernel
as density estimator (b), and based on using a Bayes classifiers and the Gaussian
distribution as density model (c). Note that α, β and A are the Gamma variate
model parameters, T is the time-to-peak and AP is the average of the plateau phase
of the perfusion curves [75]

KNN Classifier Bayes Classifier with Parzen Window Bayes Classifier with Gaussian distribution
Selected Feature Training Accuracy Testing Accuracy Training Accuracy Testing Accuracy Training Accuracy Testing Accuracy

α 17/18 31/32 17/18 31/32 12/18 20/32
β 10/18 20/32 13/18 19/32 11/18 17/32
A 12/18 23/32 12/18 25/32 14/18 22/32
T 11/18 19/32 8/18 15/32 11/18 17/32

AP 17/18 31/32 17/18 31/32 17/18 31/32
(a) (b) (c)

discriminators compared to other features.

Second, the receiver operating characteristic (ROC) is calculated as an

additional metric to test the performance of the proposed diagnostic system [118].

The ROC curve tests the sensitivity of the proposed CAD system against the

selection of the operating point (i.e., classification threshold) by showing the

relationship between the TP rate (sensitivity) and FP rates at different operating

points. Figure 17 shows the ROC curves for individual KNN classifiers of each of

the normalized features and the weighted-combined classifier. For optimum

performance, the area under the curve (Az) approaches unity. Visual inspection of

the ROC curves in Figure17 shows that classification using the parameter ”beta”

has the worst performance, while the full combination of the features has essentially

the best performance, as evidenced by Az = 1.0.

The bootstrapping method [153] computes the 95% CI for each Az. To carry

out the bootstrapping method, randomly a sample is drew (n = 50) with

replacement from the original data sets, and then performed the KNN-classification

based on individual features as well as the augmented features using this

bootstrapping sample. The procedure was repeated 1,000 times and the Az was

computed each time. Next, calculated the 95% CI is calculated, defined as the 2.5%

percentile to the 97.5% percentile, for the 1,000 bootstrapped AZ values for each

feature. The 95% CIs were [0.965, 1.000], [0.421, 0.953], [0.423, 0.926], [0.224, 0.928],

[0.911, 1.000], and [0.987, 1.000] for individual classifiers corresponding to alpha,
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Figure 17. ROC curve for different features[75].
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beta, A, T, AP, and for the combined classifier, respectively. Based on the

bootstrapping objective of 95% CIs, it does appear that parameter ”beta” has the

worst observable performance.

In conclusion, one have presented an automated framework that incorporates

deformable model segmentation, non-rigid registration, cortex segmentation,

function-based modeling of contrast agent kinetics, and KNN classification of the

kidney status based on functional parameters extracted from function models. The

framework has the documented ability to reliably distinguish rejection from

non-rejection, in a biopsy-proven preliminary cohort of 50 total participants. The

preliminary results presented in this study demonstrate that the proposed

framework holds promise as a reliable non-invasive tool for early diagnosis and

determination of appropriate therapy for detected rejection. Although the proposed

framework has been tested on 2D DCE-MRI time series data, it is believed that, in

principle, the method could be extended to 3D data once technological progress in

rapid MR acquisition sequences allows for sufficient spatial and temporal resolution.
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CHAPTER VI

OVERVIEW OF CLASSIFICATION AND FEATURE

ANALYSIS-ANALYSIS OF SEER DATABASE ON LUNG

CANCER PATIENTS

In this chapter a new analysis on selecting the best feature vector is

developed and two papers are under preparation. Lung cancer ranks as the second

most common cancer and is usually classified as either Small Cell Lung Cancer

(SCLC) or Non-Small Cell Lung Cancer (NSCLC). The diagnosis depends on

cellular physical appearance evaluated via visible microscopy [146]. Available lung

cancer data are analyzed from the Surveillance, Epidemiology, and End Results

(SEER) program [146, 147, 164] from the National Cancer Institute (NCI) at the

National Institutes of Health (NIH). The SEER Program is an authoritative

repository of cancer statistics in the United States [8]. It is a population-based

cancer registry which covers approximately 26% of the US population across several

geographic regions and is the largest publicly available domestic cancer dataset [8].

The SEER data attributes can be broadly classified as demographic (e.g., age,

gender, location), diagnosis (e.g., surgical procedure, radiation therapy), and

outcome (e.g., survival time, cause of death), which makes the SEER data ideal for

performing outcome analysis [8]. Lung cancer survival rate is a measure of patients

who live longer than 5 years.

Machine learning techniques are commonly used in different domains and

applications such as advertisement, insurance, finance, social media, fraud detection,

etc. Healthcare datasets with several measured factors are not readily available, so

of cancer outcomes using large datasets is a challenge. Most of published work

considers small groups of patients with a few measured factors and applying
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statistical analysis, which can lead to biased results due to the small number of

samples.

Previous results have analyzed the SEER database via statistical techniques

[138, 130, 16, 55, 165, 50, 187, 180], as well as classification techniques

[8, 154, 9, 7, 72]. Survival time analysis in medical applications is very important

because sometimes the patients are not following up their treatment and the survival

time is missed in future so Kaplen-Meier estimate using the previous probabilities of

patients in time and multiply them to find the missed survival time information[52].

Several survival function has been defined and measured based on a Kaplan-Meier

estimator by which is mostly used for survival rate analysis [52]. The aim is to

evaluate several standard classification methods to help determine patient survival

based on a set of features extracted from the SEER database. The survival function

is defined and measured based on a Kaplan-Meier estimator, which is often used for

survival rate analysis [52]. Lung cancer data available from the SEER database [146,

147] are analyzed using machine learning techniques with the aim of developing

accurate survival time and finding an optimal feature vector that discriminate

patients based on the survival time. Some of the most common attributes are used

and different classifiers and clustering techniques are applied to compare the results.

The research considers reviewing the accuracy of different classification techniques

using Weka and R. Several classification techniques should be applied on the data

along with various machine learning techniques in order to determine an optimal

classification. Tumor grade, tumor size, gender, age, stage, histology, number of

primaries, lung cancer as the primary one, histology code, primary site are the

analyzed features, which there are around 25 features available. The results show

that SVM has the highest accuracy for classification of the patients.

Next goal is to develop an automatic technique to find the most similar

patients because physicians cannot accurately reassure the patients about the

survival time using the common clinical features. The analysis extracts the

optimized feature vector that can be used to improve clustering the SEER database

patients.
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The papers that utilized machine learning techniques in analyzing SEER

database are reviewed.

Recent work by Kai et al. [189] employs the idea of agglomerative clustering

to generate groups of patients. Their technique has two steps: first, patients are

divided into groups that do not have the same survival and the p-value for each is

calculated; then the groups are merged so that groups with smaller p-value are

combined and the closest groups are merged with smaller p-value groups. In the

next step they compare the survival function of generated groups from the first step.

If these groups do not have the same survival experience, then they merge the

closest pairs; this forms a new group of patients. Both previous steps are repeated

until in the kth iteration each pair of groups shows different survival experience.

The method is applied on breast cancer data in the SEER dataset with selected

attributes: tumor size, tumor extension and lymph node status. Numeric attributes

are changed to categorical attributes with arbitrary levels. Tumor size is considered

as seven levels, tumor extension as five levels and factor lymph node as two levels. If

one only considers the stage attributes, patients are assigned into six stages. More

than 95% of instances belong to three stages: I, IIA and IIB. The authors show that

stage only cannot be a good categorization method to predict survival. If the

patients are categorized into 12 groups, then their survival rates are similar to each

other in each group and this yields an accurate method for categorizing patients

based on survival rate [189]. The threshold for parameters to merge the groups,

however, can be a challenge to determine, and changing the threshold values will

affect the results.

Agrawal et al. [8] applied association rule mining techniques to generate

several rules for lung cancer, some of which are redundant and are manually

removed based on domain knowledge. Association rule mining techniques finds

interesting association or correlation relationship among a large set of items,

different techniques are proposed to extract the rules and there are several standard

criteria which show how to choose the best rules and keep the optimized ones based

on the given dataset [10]. The study implemented an automated technique to make
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the tree of rules. The Hotspot algorithm implemented in Weka is used for

implementation [8]. Three factors are considered for the algorithm: the maximum

branching factors, adding a new branch, and the factor to be used when adding a

new branch. The study considers both numeric and nominal attributes. Numeric

attributes are those that the value of the feature vector are numbers and nominal

attributes are those that the value of the features are categorical.

Agrawal 2011 [8] proposed a tree-based algorithm which uses the entire

dataset at the very beginning, and descends into the data in a depth-first fashion

using a greedy approach. Each node of the tree represents a segment and hence and

association rule. The attributes used include: age birth place, cancer grade,

diagnostic confirmation, farthest extension of tumor, lymph node involvement, type

of surgery performed, reason for no surgery, order of surgery and radiation, scope of

regional lymph node surgery, cancer stage, number of malignant tumor, total

regional lymph nodes examined.

Measuring the efficiency of treatments and surgery is a desired analysis on

the SEER dataset. Although the dataset lacks the information of chemotherapy,

Yan Wu et al.in [187] considered the effectiveness of radiation and surgery. The

study answered the question whether lung cancer patients survive longer with

surgery or radiation, or both. The paper uses a Propensity Score which is a

conditional probability that a unit will receive a treatment given a set of observed

covariates. Two methods are applied for estimating the Propensity Score: logistic

regression and classification tree. The results show that patients who have not

received radiation with or without surgery have the longest survival time [187].

A SEER database attributes

Patients diagnosed with lung cancer from 2004-2009 are chosen. In the US,

Tumor-Node-Metastasis (TNM) staging was introduced in 1959 by the American

Joint Committee for Cancer Staging and End Results Reporting, now the American

Joint committee on Cancer (AJCC). Stage grouping based on TNM is as follows:

Stage I (T1,N0,M0), Stage II (T2, N0, M0), Stage IIIA (T3, N0, M0), Stage IIIB
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(T4, N0, M0), and Stage IV(Any T, Any N, M1).

The lung cancer outcome calculator uses several patient attributes. The

dataset has more than 9000 instances. Different classifiers that use two types of

features include are applied: numeric and nominal.

The staging system of cancer patients has the same definition after 2002, so

for consistency patients with lung cancer from 2003-2009 are chosen. The survival

time ranges between 0 and 71 months for lung cancer patients in the SEER

database. The data show that patients sharing the same clinical features exhibit a

heterogeneous variety of survival times. Finding an optimal feature vector is

therefore a challenge, since the aim is to show that patients with similar feature

vectors also have similar survival rates, and vice versa.

B A Review on the Dataset Attributes for Lung Cancer Patients

Patients diagnosed with lung cancer from 2004-2009 are chosen. The dataset

indicates minimum and maximum survival (in the range of 0 to 71 months). The

selected lung cancer features extracted from the original dataset are summarized in

Table 6.

Information gain measures the level of impurity (heterogeneity) in a group of

samples. Samples are instances grouped by similar feature vectors. A common way

to measure impurity is through entropy, with higher entropy indicating higher

information content [18]. Entropy can be calculated as follows (where pi is the

probability that a group of instances has the same attributes and i ranges over the

number of instances in the group) [29, 145, 123, 124]:

Entropy =
∑−pi ∗ log2 pi (24)

The aim is to determine which attribute in a given set of feature vectors is

most useful for discriminating between the two classes. Information gain enables

determining the importance of a feature in each attribute of the feature vector. The

order of the attributes given by information gain is utilized to set the nodes of the
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TABLE 6. Lung cancer dataset attributes, first column is the names of the attributes
and the second column is a brief description of the attribute and the third column is
the attribute type: numeric or nominal.

Feature name Description Type
Age Age of the patient at time of diagnosis Numeric
Grade A descriptor of how the cancer cells growth Nominal
Radiation Whether patient received radiation Nominal
Radiation sequence with surgery The order of surgery and radiation therapy Nominal
Number of primaries Number of malignant tumors Numeric
T AJCC component describing tumor size. Nominal
N AJCC component indicating lymph node involvement. Nominal
M AJCC component describing tumor dissemination to other or-

gans.
Nominal

Primary Site Location of tumor within the lungs. Nominal
Stage Stage of tumor based on T, N and M. Nominal
First Primary First malignant primary indicator. Nominal
Sequence Number Order of lung cancer occurrence with respect to other cancers. Numeric
Histologyrecode-boadgroupings The microscopic composition of cells/tissues Nominal
RXSummScopeRegLNSur(2003+) procedure of removal, biopsy, or aspiration of regional lymph

nodes.
Nominal

RXSummSurgPrimSite(1998+) Surgical procedure to remove or destroy tissue of the primary
site.

Nominal

CSlymphnodes The number of lymph nodes involved. Nominal
DerivedSS1977 Derived SEER Summary Stage 1977 , effective with 2004+

diagnosis.
Nominal

Survival time Number of months that patient is alive from the date of diag-
nosis.

Numeric

Survival time class The survival time attribute is changed into six classes. Nominal

decision tree. The information gain can simply be defined as:

Informationgain = Entropy(parent)− AverageEntropy(Children)

(25)

An alternative definition of information gain is:

Informationgain(S,A) = Entropy(S)− [Σv∈V alue{A}
|Sv|
|S| Entropy(Sv)] (26)

where S is the total number of samples from all the classes in a specific node of the

tree, and Sv is the number of samples of each class in that node of the tree.

Gain ratio is a modified version of information gain based on the ratio of the

information gain and a term called intrinsic information [29, 145, 30]. Intrinsic

information is the entropy of distribution of instances into branches, i.e., it states

how much information is needed to rank an attribute in order to determine which

instance belongs to which branch. The advantage of using the gain ratio technique
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TABLE 7. Ranking of attributes calculated based on gain ratio. Column 1 is the
attribute number, Column 2 is the ranking, and Column 3 is the value of the calculated
gain ratio.

Attribute Number Rank Gain Ratio
M 1 0.1510082

Stage 2 0.0639196
Surg Prim Site 3 0.46587

Sequence Number 4 0.041907
Derived SS 5 0.0416574

Scope Reg LN Sur 6 0.028007
T 7 0.0275921

CSLymph Nodes 8 0.0224748
N 9 0.0188275

Number of Primaries 10 0.0154234
Primary Site-Labeled 11 0.0123318

Histology Code 12 0.0080805
Grade 13 0.0075374
Age 14 0.0061738

First Malignant Indicator 15 0.0000343

instead of information gain is that gain ratio reduces the bias of the ranking

[29, 145, 30, 62].Information gain mostly finds the most relevant attributes so they

can be put near the root of the tree. Some attributes have high information gain

but they are for example unique for each sample and cant be used in future for

unknown samples so in this case it is preferred to use gain ratio .

IntrinsicInformation(S, A) =

[
Σv∈V alue{A}

|Sv|
|S| Entropy(Sv) ∗ log2

|Sv|
|S| Entropy(Sv)

]

(27)

Gainratio =
InformationGain

IntrinsicInformation
(28)

Note that the value of the attributes decreases as the intrinsic information increases.

Table7 lists the ranking and the name of the features in the dataset determined

using gain ratio. The lowest gain ratio is based on age, tumor grade, and whether

the lung tumor is the first primary or not. Age and grade were found previously to

not be good predictors of survival [25]. Features with the highest gain ratios are

metastatic grade, stage, whether the primary site was surgically resected, sequence

number, and derived SS (refer to Table7).

The attributes with values similar for more than 90% of the records are

manually removed since these attributes provide minimal discriminating value.
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Figure 18. Survival time histogram for instances in 2004 extracted from the SEER
database (0, 6 months, 6-12 months, 2 years, 3 years, 4 years, 5+ years).

Those attributes for which more than 65% of patients have the same value are

deleted. Further, Table8 lists the attributes removed to avoid overfitting or skewness

(for simplicity, the research does not pursue techniques to handle skew classifiers).

Figure 18 shows the range of living which each box shows a range of living for

a number of patients and the number above each bar shows the number of patients

that have lived or are living in that range.

It seems that grain ratio and entropy are not good criteria to evaluate and

ranking the features.
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TABLE 8. List of deleted features to avoid overfitting and skewness. First column is
the name of the attribute and the second column is the number of instances which
mainly have only one value.

Attribute Number Rank
Gain Ratio
Radiation Sequence with Surgery 1267/1549 receive Radiation After Surgery
Radiation 1502/1549 receive beam Radiation
Primary Site 1010/1549 have the same primary site(lung)
Cause of death Except 371 who are still alive, 995/(1549-371) are dead because of lung and bronchus
Reason no directed cancer surgery 1140/1549 receive surgery

TABLE 9. Minimum, maximum, mean and standard deviation of survival time
(months) for each year. Last column is normalized by the maximum number of
survival months for each year.

Year of
Diag-
nosis

Minimum
Sur-
vival
time

Maximum
Sur-
vival
time

Mean
of sur-
vival
time

Standard
Devi-
ation
of sur-
vival
time

Normalized
sur-
vival
time

2004 0 71 31.21 23.63 1.90
2005 0 59 28.86 18.96 1.73
2006 0 35 24.21 14.86 0.73
2007 0 47 20.27 10.03 2.70
2008 0 23 13.78 5.91 1.50
2009 0 11 5.18 3.31 1.81

Since the highest mean survival time corresponds to 2004, normalize the

values of the other years by this value. The normalized values are calculated based

on mean and standard deviation:

Normalizedvalue =
maximumsurvivalmonths−meanofthedata

standarddeviation
(29)

The normalized results show that 2007 has the maximum rate of survival time; the

ranking of the years in terms of survival time then are (from highest to lowest):

2006, 2008, 2005, 2009, 2004, 2007.

C SEER Dataset Classification

The first step of the classification involves removing corrupted or inaccurate

instances from the dataset. Further, although techniques exist to handle missing

attribute values [146], those instances for which one or more attributes are missing

are eliminated in order to maintain a consistent dataset.

Previous results have analyzed the SEER database via statistical techniques

[138, 130, 16, 55, 165, 50, 187, 180], as well as classification techniques
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[8, 154, 9, 7, 72]. Survival time analysis in medical applications is very important

because sometimes the patients are not following up their treatment and the survival

time is missed in future so Kaplen-Meier estimate using the previous probabilities of

patients in time and multiply them to find the missed survival time information [52].

In earlier work by Kai et al. (2007) [189] employs the idea of agglomerative

clustering to generate groups of lung cancer patients. The technique has two steps:

first, patients are divided into groups that do not have the same survival and the

p-value for each is calculated; then the groups are merged so that groups with

smaller p-value are combined and the closest groups are merged with smaller

p-value groups. In the next step they compare the survival function of generated

groups from the first step. If these groups do not have the same survival experience,

then they merge the closest pairs; this forms a new group of patients. Both previous

steps are repeated until in the kth iteration each pair of groups shows different

survival experience. The method is applied on breast cancer data in the SEER

dataset with selected attributes: tumor size, tumor extension and lymph node

status. Numeric attributes are changed to categorical attributes with arbitrary

levels. Tumor size is considered as seven levels, tumor extension as five levels and

factor lymph node as two levels. If one only considers the stage attributes, patients

are assigned into six stages. More than 95% of instances belong to three stages: I,

IIA and IIB. The authors show that stage alone is an insufficient categorization

method to predict survival. If the patients are categorized into 12 groups, then their

survival rates are similar to each other in each group, and this yields an accurate

method for categorizing patients based on survival rate [189]. The threshold for

parameters to merge the groups, however, can be a challenge to determine, and

changing the threshold values will affect the results.

Association rule mining techniques can determine interesting association or

correlation relationships among a large set of items; different techniques have been

proposed to extract the rules and there are several standard criteria which suggest

how to choose the best rules and select the optimized ones based on the given

dataset [10]. Agrawal et al.[8] implemented an automated technique to make a tree
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of rules for lung cancer, some of which are redundant and are manually removed

based on domain knowledge. Three factors were considered: the maximum

branching factors, adding a new branch, and the factor to be used when adding a

new branch. The study considers both numeric and nominal attributes (for which

the value of the feature vector are either numerical or categorical, respectively).

Agrawal 2011 [8] proposed a tree-based algorithm using the entire dataset

from the very beginning, and descending into the data in a depth-first fashion using

a greedy approach. Each node of the tree represents a segment and hence an

association rule. The attributes include: age birth place, cancer grade, diagnostic

confirmation, farthest extension of tumor, lymph node involvement, type of surgery

performed, reason for no surgery, order of surgery and radiation, scope of regional

lymph node surgery, cancer stage, number of malignant tumor, and total regional

lymph nodes examined.

Measuring the efficiency of treatments and surgery is a desired result from

analyzing the SEER dataset, although the dataset lacks the information of

chemotherapy. Yan Wu et al. [187] considered the effectiveness of radiation and

surgery. The study explored the question whether lung cancer patients survive

longer with surgery or radiation, or both. A Propensity Score was used,

representing a conditional probability that a unit will receive a treatment given a

set of observed covariates. Two methods are applied for estimating the score:

logistic regression and classification tree. Since patients can receive surgery or

radiation separately or together, the score is calculated for each group and then the

attributes are ranked. Statistical information related to the combination of survival

time and radiation are extracted, and a classification tree is generated for each

group. The results show that patients who have not received radiation with or

without surgery have the longest survival time [187].

Several classification techniques are applied and compares the accuracy and

F1-score of each classifier separately. Six different classes are defined, so multi error

classification is calculated. The codes are developed in Weka to compare the results

of different classification techniques. This section will compare each applied
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classifier.

Classification techniques can be grouped by type. In this paper supervised

learning is used to classify patients, and one from each group of classification

techniques is chosen.

Supervised learning can be applied if there are a sufficient number of labeled

data. The process involves collecting and labelling a current dataset, and then

developing or customizing classification techniques for this dataset. The

classification model is then used to classify unknown instances. About 60% of the

data is used for training, 20% for cross validation, and 20% for testing. An

alternative is to use k-fold cross validation so for each experiment k folds are used

for training and the remaining samples are used for testing. The advantage of

k-cross validation is that all the samples in the dataset are used for both training

and testing. The error rate of the classifier is the average of the calculated errors for

the k-number of experiments.

Chosen classification technique should not be low variance or high biased.

Low variance means that the model is not well fitted to the current training set so

the error rate increases for the test sets. High variance occurs when the model is

overfitted and the error rate for the training set is very low while the error rate for

the test or cross validation sets are high.

The classification techniques are implemented using Weka and applied k-fold

validation to indicate the error rate. The k is chosen as 10, which means that each

algorithm is applied 10 times and the error accuracy is the average of the error rate

of the 10 experiments.

The dataset was extracted from the SEER database has several features, and

those with overlapped information are excluded. The goal is to apply the various

classifiers and compare the accuracy results based on the survival rate of the

patients. Since labeled data are needed to classify the information, the dataset is

divided into six classes, and each class indicates patients with one year survival time

difference.

Machine learning techniques can be mostly divided into three groups: 1-
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Supervised Learning 2- Unsupervised Learning 3- Semi-supervised Learning.

Supervised learning algorithms categorize the records of instances or feature vectors

based on the labeled data. The classification finds the model to maximize the

difference between classes and minimize the difference within each class.

Unsupervised techniques do not have any labeled data in advance, so the learning

technique is based on measuring the similarity of the intra classes and dissimilarity

of inter instances. Semi supervised techniques use a small group of labeled data and

the mathematical model changes as new unknown data is added to the system.

In general, classification techniques can be categorized as:

• Logic based techniques: Decision tree from this group is chosen.

• Statistical techniques: Nave Bayes from this group is chosen.

• Instance based techniques: KNN(K Nearest Neighbor) is chosen, the k8 shows

the best results.

• Support Vector Machine: Polynomial kernel function is applied.

• Neural Networks: Non technique from this category is chosen.

K-NN uses neighbors information to classify the data. K is the parameter

that shows the number of the neighbors that should be defined to make the decision

about the datas class. K is the number of data points in the neighbors, every new

data point are labeled based on similarity measure which is the distance function

between the new datapoint and the other data points with k nearest neighbors. A

vote for each instance or a weighted function is calculated which shows the value of

the data point that belong to that class [123, 124].

Support vector machine (SVM) was originally proposed by 1992training,

vapnik1998statistical, cortes1995support. SVM is a supervised technique which is

mainly a linear model but with kernel mapping would change to nonlinear model. If

two data points are linearly separable there are several hyperplanes that can

separate them into two. However the one that has the largest margin and the
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distance to the points on the nearside of the margin is maximized. SVM is also

using marginal information by using two hyperplane, so if the data points are

linearly separable then the two hypeplane that there is no point between them are

used and the distance between the two hyperplane is maximized, meanwhile the

distance between the points in each group to the hyperplane side is minimized. The

points that are defined on the margins are called control points. The hyperplane is

defined linearly but if it needed to design a non-linear hyperplane then it uses a

kernel function which is a nonlinear function which maps the feature space into a

new space in such a way to be able to define a linear hyperplane [123, 124].

Decision Tree classifier: decision tree is one of the famous approach for data

classification. Features are leveled and the most efficient features are selected in the

root and features are arranged based on their efficiency in the dataset. The level of

tree for cutting is chosen, so in this way the clusters are generated. Nave Bayes:

this classification technique is one of the probabilistic techniques which use Bayes

rules to classify data. The data are labelled and then the conditional probabilities

or bayes rules should be defined to find the probability of the given data and classify

them:

P (Y = yi/X) =
P (X/Y yi)∑

P (X/Y = yi)P (Y )
(30)

Nave Bayes classifiers can handle an arbitrary number of independent

variables whether continuous or categorical. A given set of data points construct the

posterior probability for each class, the posterior is calculated as:

p(classj|X) = p(X|classj) ∗ p(classj) (31)

the posterior is the probability that X belongs to classj [123, 124].

The second step is to define the likelihood of the given data for each class,

and the conditional probability of a class to the data points [123, 124] are found.

Support vector machine (SVM) is one of the best classification techniques in

which instead of finding a hyperplane in the feature space to separate data into

different classes would find a margin between datapoints in different classes. The

main approach is to maximize the distance of the margin and minimize the distance
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of the critical points with the border of the marginal plane. One of the important

step of the SVM is finding the critical points in each class, the margins in the

feature space is defined based on this critical points. SVM does not apply the

approach on original feature space however it would use kernels to map the data

points into another mathematical space, the kernel function depends on the given

dataset [123, 124, 27, 56, 157].Some techniques like PCA is used (principle

component analysis) to map data into a compressed feature space [4, 70]. Selecting

the appropriate kernel function is critical and depends on the dataset. Polynomial

kernel function is used as follows. Optimization techniques can be used to find the

optimized margin for the classifier [27, 56, 157].

Random forest is a classification technique that is called ensemble learning

that it constructs a multitude number of decision trees at the training phase and

based on their classification results would make the final decision about the label of

the datapoint. The method is a combination of bagging and random forest selection

of features. Random forest for the unsupervised learning and clustering data is used.

Adaboost defines a weighted function to find a strong classifier. The weighted

terms are features or weak classifiers. The weighs are updated in each iteration until

the minimum weighted error is gotten. The weights are initialized the same for all

the terms and the update term for the weights are defined as:

Dt+1 =
Dt(i)exp(−αtyiht(xi))

Zt

(32)

Where Zt is a normalization factor chosen so that the weight in t+1 is a distribution.

The output would be the strong classifier:

H(x) = sign

(
T∑

t=1

αtht(x)

)
(33)

The first step of the classification involves removing corrupted or inaccurate

instances from the dataset. Further, although techniques exist to handle missing

attribute values [146], those instances for which one or more attributes are missing

are eliminated in order to maintain a consistent dataset. The extracted dataset

from the SEER database has several features, and those with overlapped
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TABLE 10. Classifier results based on attributes selected in Table 6-1. Instances are
labelled with period of one year.

Classifier Name Statistical analysis of results
Nave Bayes Correctly Classified Instances 9619 92.1095 %

Incorrectly Classified Instances 824 7.8905 %
Relative absolute error 15.1994 %
Average Precision 0.034
Average Recall 0.919
Average F1-Score 0.919

SVM-polynomial Correctly Classified Instances 10335 98.9658 %
Incorrectly Classified Instances 108 1.0342 %
Relative absolute error 1.4666 %
Average Precision 0.003
Average Recall 0.988
Average F1-Score 0.988

J48 (logic-based algorithm) Correctly Classified Instances 10443 100%
Incorrectly Classified Instances 0 0%
Relative absolute error 0%
Average Precision 1
Average Recall 1
Average F1-Score 1

Random Tree(using tree and probabilistic data structures) Correctly Classified Instances 8289 79.3737%
Incorrectly Classified Instances 2154 20.6263%
Relative absolute error 29.9294%
Average Precision 0.064
Average Recall 0.791
Average F1-Score 0.794

Random Forest Correctly Classified Instances 9718 93.0576%
Incorrectly Classified Instances 725 6.9424%
Relative absolute error 36.0728%
Average Precision 0.016
Average Recall 0.928
Average F1-Score 0.929

Adaboost Correctly Classified Instances 7402 70.88%
Incorrectly Classified Instances 3041 29.12%
Relative absolute error 101.1879%
Average Precision 0.103
Average Recall 0.571
Average F1-Score 0.615

KNN (k =8 and higher) Correctly Classified Instances 5618 53.7968%
Incorrectly Classified Instances 4825 46.2032%
Relative absolute error 84.4012%
Average Precision 0.478
Average Recall 0.478
Average F1-Score 0.477

information are excluded. The goal is to apply the various classifiers and compare

the accuracy results based on the survival rate of the patients. Since labeled data

are needed to classify the information, the dataset is divided into six classes, and

each class indicates patients with one year survival time difference.

The accuracy results and the statistical properties of each technique are

summarized in Table 10, showing that SVM with the polynomial kernel is the best

technique to classify the dataset in terms of patient survival time:

Classification techniques can be grouped by type. This paper uses supervised

learning to classify patients, and one from each group of classification techniques is

chosen. The accuracy results are summarized in Figure19 based on the ROC

(receiver operating characteristic) analysis:
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Figure 19. Comparison of ROC curve of different classification techniques. The order
of the algorithms based on ranking of ROCs is: Decision Tree, SVM, Random Forest,
Nave Bayes, Random Tree, Adaboost, KNN.
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D Applying Clustering Techniques and Analyzing the Results on SEER

Database

The features are selected from Table 10. The main goal is finding the most

optimized feature vector in analyzing lung cancer patients survival time based on

SEER database. Clinics mostly extract tumor grade and stage which indicate the

main behavior of tumor growth in patients. Most of the papers in considering

healthcare applications are biased and they do not report false negative results, so

there are several patients that their final survival date is unknown. Although it

seems reasonable that patients diagnosed with higher stage and grade, but an

automatic technique that use machine leaning algorithm to evaluate the results is

needed.

Figures 20 through 24 visualize the instances and attributes that are most

clinically relevant; a common feature among them is survival time class which has

seven values, namely patients who survive in a period of one year. In order to better

evaluate the feature vector, some of the features that are clinically important are

visualized in two dimensions. A rate of error is added to the data features to give a

better sense of the density of instances in every row of each figure.

Each box and whisker plot in 20 through 24 indicates the first to the third

quartile. The dataset is divided into four equal groups. The data is sorted in its

ascending order then the lower half needs to be defined, median and the upper half

of the dataset. Based on this categorization the quartiles is defined. The lower half

of the dataset is all the values that are on the left side of the median values and the

upper half is all the values that are on the right side of the median value. First

quartile is the median of the lower half, second quartile is the median of the dataset

and the third quartile is the median of the upper half of the dataset. The dark line

in the boxes is the median, points lying outside the box are outliers.

Clustering techniques categorize data points and label the most similar points

in one group. Clustering techniques can be classified into hierarchical, partitioning,

density-based, multimodal clustering, grid-based, and soft-computing methods
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Figure 20. Survival Time vs Stage (there are only a few number of patients with
stage 0 so no box is plotted.
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Figure 21. Survival Time vs Grade.
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Figure 22. Survival Time vs M.
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Figure 23. Survival Time vs T (there are only a few patients with T0 and Tis so no
box is plotted)
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Figure 24. Survival Time vs N (Survival Time vs N)
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[196, 108]. A different approach to group clustering techniques is considered in [196]:

agglomerative vs divisive, monothetic vs polythetic, hard vs fuzzy, deterministic vs

stochastic, incremental vs non-incremental. Such techniques are typically used to

find a group of data points that have similarity. The similarity metric can be very

different depending on the applied clustering technique. The clustering techniques

that using distance metric might not be appropriate for qualitative features or with

a combination of both quantitative and qualitative features.

Three groups of clustering techniques are compared: the first group uses

distance metric to illustrate the membership of instances to each cluster. The

second group uses probabilistic information of the data to find the most separable

clusters, and the third group is called non-negative matrix factorization (NMF),

which uses a mathematical technique to factorize the feature matrix. Although the

three groups of clustering techniques use different methods to cluster the data, they

generate the same results for the two groups of feature vector.

Hierarchical clustering creates a hierarchy of clusters, in which distance

metrics are used as the similarity measurement to split or merge the clusters.

Hierarchical clustering with density based clustering (EM) and matrix factorization

are compared, both of which do not use distance measurement. One of the

optimized adaptations of the density based clustering technique (an optimized EM)

is considered.

The feature vector is split into two groups: one groups are the features that

are used by clinics to predict the survival time and the second group is chosen from

the remained feature vector, or first- and second-level feature vectors as defined

above. The analysis shows that clusters generated from these vectors are able to

determine very different patient survival times.

Several techniques are available to choose the appropriate number of clusters

and they depend on the dataset and the values of the attributes. One of the most

common methods for choosing the number of clusters is called elbow criterion

[158, 156]. Another technique selects a threshold which defines the appropriate

number of instances in each cluster. If the number of instances is less or greater
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than a particular threshold, then the clusters are merged or split, respectively [70].

The elbow criterion is typically applied when the dataset instances are very large

(e.g., 106 records). Since the dataset is not this large, zero is selected as the

threshold to merge the clusters because the number of instances in each generated

cluster is meaningful (i.e., the numbers are comparable to each other). The values of

the features of many instances are similar to each other, so the clusters needs to

merge based on a predefined threshold. Thus, if the number of instances in a cluster

is zero then a new generated cluster is not expected.

E Multimodal clustering

A variety of mathematical models can be applied to fit a dataset. The

approach is to cluster the dataset and find an optimized model for it. The

multimodal library developed in R is used to select the optimized expectation

maximization (EM) technique to analyze the data. EM is a density-based

(statistical) technique which assumes that points belonging to each cluster are

drawn from a specific probability distribution. The component densities could be

multivariate Gaussian (in case of numeric data, e.g., tumor size) or multimodal (in

case of categorical data, e.g., marital status). The overall distribution of the data is

thus assumed to be a mixture of several distributions. The aim of the multimodal

technique is to identify the clusters and their parameters. One of the prevalent

means for this identification is using maximum likelihood. In this case, the

parameters and the probability distribution of the data are chosen such that the

parameters are maximized.

The application of EM involves two steps to find the best parameters. The

first step is expectation and the second step is maximization. In the statistical

domain the parameters can be defined as mean, variance or higher moments of the

given dataset. The expectation step computes the parameters such as mean and

variance of the distribution, thus calculating the conditional expectation of the

complete data using the observed data and parameter estimations. The

maximization step maximizes the complete data log likelihood from the expectation
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step. The two steps are run iteratively until they converge. The EM algorithm is

defined as follows:

X is the incomplete data, y is the complete data and is the parameter vector

(e.g., mean, variance or higher moments). If at initialization is given, the algorithm

updates until changes are small. The expectation and maximization steps perform

the changes to update the feature vector. Expectation-Step:

Q(θ|θ(k)) = E[ln P (y|θ)|y, θ(k)] (34)

Maximization-Step:

θ(k + 1) = argmaxQ(θ|θ(k)) (35)

θ(k) is the parameter vector in the k-iteration. P (y|θ) is the probability density

function of clusters.

The results of applying the multimodal clustering are summarized and

compared with survival rates below. Figure 25 compares the density of clusters vs.

survival rate. The left plot shows that by using the second-level features, the peaks

of the density of the clusters mostly have the same range of survival time. The right

plot shows that by using first-level features, the peaks of the clusters are very

distinct, indicating that the instances can be well separated based on their survival

time. Thus, it shows that the resulting clusters provide differentiation within the

survival times, showing that the clusters are separable when choosing first-level

features but not with second-level features.

F Hierarchical Clustering

Hierarchical clustering is based on finding a hierarchy of features and creating

a tree of these features based on a distance matrix between instances. The method

creates a hierarchical decomposition of the set of objects using information gain and

entropy. The method iteratively merges two close groups until all the data are

merged into a single cluster. Each level of the resulting tree represents a set of

clusters of the data. The tree is cut (i.e., the level to be the best set of clusters is

chosen) based on the threshold zero so that the number of instances in each cluster
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Figure 25. Survival Time determined using multimodal clustering technique. The
left panel shows the clusters of first-level features, the right panel shows the clusters
of second-level features.
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of the set is meaningful. The similarity between instances within a cluster is

determined based on the distance metric. Three popular similarity metrics include

single-linkage, complete linkage and group average. The complete linkage is chosen

to analyze the dataset, in which the distance between two clusters is the maximum

of all pairwise distances between pairs in two clusters. This is in contrast to the

single linkage method, in which the distance between two clusters is the minimum

set of distances between all pairs of patterns drawn from the two clusters. Single

linkage uses smallest dissimilarity between two points in opposite group and

complete linkage uses largest dissimilarity between two points in the opposite group,

finally average uses the average dissimilarity measure points in two opposite groups.

The single linkage only need one pair of points to be close, however the complete

linkages scoring is based on worst-case dissimilarity pairs so the clusters are impacts

but some points are found that are closer to points in other clusters than its own

cluster. The average clustering uses average pairwise dissimilarity. Average linkage

is not used because the result of single and complete linkage clustering are

unchanged under monotone transformation of dissimilarity [99].

The single-linkage finds the similarity of the closest point:

dSL(G,H) = mini∈G,j∈Hdi,j (36)

The complete-linkage finds the similarity between the furthest pair:

dCL(G,H) = maxi∈G,j∈Hdi,j (37)

The group average finds the similarity between groups:

dGA =
1

NG, NH

∑

i∈G

∑

j∈H

di,j (38)

where i and j are instances selected from two clusters G and H. di,j is the Euclidean

distance between instances I and j. NG and NH are the number of the instance in

the two clusters G and H.

A hierarchical clustering package developed in R-language is used. The tree is

cut to obtain the highest number of separable clusters, which for this dataset is five.
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Figure 26. Survival Time determined using Hierarchical clustering technique. The left
column show the clusters of second-level features, the right column show the clusters
of first-level features.
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Figure 26 (left) shows the results obtained by choosing the second-level feature

vector. In this case, the density peaks of the clusters vs. survival time are within

the same range, providing no discrimination between them. Figure26 (right) shows

that by choosing the first-level feature vector, the density peak of the clusters are

clearly separated, indicating that the survival time of patients can be well separated

based on these features.

G Non-Negative Matrix Factorization (NMF)

NMF mathematically factorizes a matrix into two other matrices using linear

algebra and other available techniques to find the basis vectors of each cluster. The

resulting clustering depends on the method used to factorize the matrices. This

clustering does not depend on the Euclidean distance of the samples in the feature

space. One of the factorized matrices is the basis vector of the clusters and the other

one is the weighted matrix of the basis vectors. Principal component analysis (PCA)

is mostly used to analyze the data in a new space, data are mapped into the space

which is generated based on the eigen vectors of the original database. The mapped

data have n-dimension which n is the number of components which are chosen to

map the dataset. In PCA domain each axis are orthogonal to each other, however

NMF is using similar technique in the other way such that the axis of the new space

are not necessarily orthogonal to each other. This new technique map data to a

better space which has more direction information of the basis functions [4, 70].

Assume that the input data matrix is X = (x1, x2, . . . , xn), where the

columns indicate the feature vector and the rows represent the instances of the

dataset. The input matrix is factorized into two matrices:

X ≈ FGT (39)

where X ∈ Rp×n, F ∈ Rp×K and G ∈ Rn×k. Generally, the rank of matrices F and

G is much lower than the rank of X, such that k ¿ min(p, n). F represents the

centroids of clusters or the basis vectors that defines the clusters, while G represents

the weighting matrix which could be defined as the ranking of the instances relative
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to the basis vectors. Some of the matrix factorization techniques include:

1. SVD: Singular Value Decomposition. Principal Component Analysis (PCA)

uses singular value decomposition.

X± = U±V± (40)

2. NMF: Non-negative matrix factorization. The input matrix is limited to only

have non-negative signs.

X+ = F+G+ (41)

3. Semi NMF: The input data has both negative and positive signs.

X± = F±G+ (42)

4. Convex-NMF: The elements of the F matrix can be any integer in a large

space. In order to capture a better definition of the centroids of the clusters

the matrix can be spanned by the columns of X, i.e:

fl = w1lx1 + w2l + . . . + wnlxnorF = XW (43)

where fl is a convex combination wij > 0 of the data points.

5. Tri-Factorization: This technique clusters both the rows and columns of the

clusters simultaneously.

X+ = F+S+GT
+ (44)

The factorization is in such a way that F gives row clusters while G gives

column clusters.

6. Kernel NMF: This method is based on a mapping function ϕ(·) The kernel is

defined as: k = ϕT (x)ϕ(x). The factorization equation is written as:

ϕ(X±) ≈ ϕ(X±)W+GT
+ (45)
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TABLE 11. Different matrix factorization techniques.
Technique Matrix Factorization

1 SVD X± = U±V±
2 NMF X+ = F+G+

3 Semi-NMF X± = F±G+

4 Convex-NMF fl = w1lx1 + w2l + . . . + wnlxnorF = XW
5 Kernel-NMF k = ϕT (x)ϕ(x)
6 Tri-Factorization X+ = F+S+GT

+

In summary, the various matrix factorization matrix techniques include

[99, 20]:

NMF package in R is used to apply two NMF-specific techniques to obtain

the factorized matrix, namely alternating least squares and multinomial method.

The results obtained through either technique were not significantly different.

Multinomial method is chosen because it is a general version of probabilistic model,

the nature of the dataset shows that probabilistic information can yield more

accurate information. Figure27 (left) shows that the results obtained by choosing

the second-level feature vector are unable to separate the density peaks of the

clusters vs. survival time. Figure27(right) shows that by choosing the first-level

feature vector, the density peak of the clusters are clearly separated.

The clustering results are compared not based on density of the survival rate

but on the features of the instances within each cluster. Interestingly, the

multimodal and hierarchical clustering show similar Principal Component Analysis

(PCA) scores for instances in the same cluster, while NMF indicates that the

first-level feature vector is the best choice for clustering patients.

H Analyzing the Results of Clustering Technique Based on PCA Scores

PCA is a technique mostly used for dimensional reduction, in which data in

multiple dimensions are mapped into a lower dimensional space. The technique is

based on linear combination of orthogonal variables, for which the basis shows the

pattern of the data in orthogonal directions. Either spectral decomposition of the

correlation matrix or singular value decomposition of the data matrix is performed

to obtain linear combinations which are called principal components, where the
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Figure 27. Survival time determined using Non-Negative Matrix Factorization (NMF)
technique. The left column show the clusters of second-level features, the right column
show the clusters of first-level features.
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weights of each original variable in the principal component are called scores. Each

sample of the dataset has a value for each feature, and for each feature the principal

components are calculated. The first two largest components are chosen and the

score for each sample is calculated. The two highest scores are thus calculated for

each sample.

Figures 25, 26, 27 show that using multimodal and hierarchical clustering can

create distinct clusters based on either first- or second-level feature vectors. This

suggests that density- and distance-based methods are unable to distinguish

between the two feature vectors based on separation of clusters. The NMF method,

however, is able to create distinct clusters based on the first-level features but not

based on the second-level features. NMF uses matrix factorization instead of

probabilistic similarity metric (which multimodal clustering uses) or Euclidian

similarity distance metric (which hierarchical clustering uses). The reason is that

the values of both feature vectors have categorical variables and the two latter

techniques cannot distinguish between patients with similar feature vector values

when a similarity metric is applied.

The left panels in Figures 28, 29 and 30 plot the relation between the two

highest PCA scores for first- and second-level features. For both multimodal (Figure

28) and hierarchical (Figure 29) clustering, the second-level feature vector (left

panels) shows that the scores of the classes are in the same range to each other in

principal component score space, and the scores are separated. In contrast, the

first-level feature vector PCA scores (right panels) show that the instances in the

same class have scores spanning the range of the horizontal dimension) and that the

clusters are inter-mixed. Thus, although the scores obtained with the second-level

feature vector show separation with both multimodal and hierarchical clustering,

the clusters do not contain sufficient information to distinguish data points based on

their survival time as shown in Figures 28, 29 and 30 (left panels).

For NMF clustering, the PCA scores for the second-level features (left) are

completely mixed, while for the first-level features (right) the scores are separated in

distinct groups. Since this technique enables distinguishing patients based on
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TABLE 12. Columns 1 and 2 show the mean of each cluster (center of the clusters) for
the three chosen clustering techniques. First column is based on second level feature
vector and column 2 is based on first level feature vector.

Technique Matrix Factorization
Hierarchical 13.22 0

17.93 23.10
47.55 26.18
31.48 24.5
20.0 22.68
16.83 22.71

21.24
21.75
20.067
13.04
15.70
11.43
16.51
15.54
13.35
12.65

NMF 14.38 10.86
31.42 19.69
10.94 24.57
11.25 21.88
56.01 21.89
10.006 14.11

Probability Based Technique 24.03 24.05
19.45 25.33
19.81 15.58
13.69 24.29
19.53 23.14
30.15 21.99
19.33
18.98

survival time (Figure 30), the separation of PCA scores suggests that NFM

clustering enables distinguishing between patients based on similar PCA scores

which reflect similar survival times.

The results in Figures 28, 29 and 30 are a visual summary of the density of

survival time for each class. Table 12 summarizes the mean of each cluster for the

two feature vectors. The same clustering techniques are applied to the two vectors.

The first level feature vector shows more accurate results to cluster the patients

records. The lack of separation between the clusters in the second level feature

vector show that features such as stage and grade cannot discriminate between the

survival time of lung cancer patients, while the first level feature vector can better

distinguish between patient survival. Table 12 shows the mean of each cluster

assumed to be at the center of each class. The variance of the center is higher for

the second level feature vector when each clustering technique is applied.
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Figure 28. Relation between two highest PCA scores and classes from multimodal
clustering. The left panel show the clusters of first-level features, while the right panel
shows the clusters of second-level features. The clusters are shown with different
colors. Scores sharing the same color belong to the same cluster.
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Figure 29. Relation between two highest PCA scores and classes from Hierarchical
clustering. The left panel show the clusters of first-level features, while the right panel
shows the clusters of second-level features. The clusters are shown with different
colors. Scores sharing the same color belong to the same cluster.

103



Figure 30. Relation between two highest PCA scores and classes from NMF clustering.
The left panel show the clusters of first-level features, while the right panel shows the
clusters of second-level features. Scores sharing the same color belong to the same
cluster.
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The results show that NMF clustering technique is the best choice for

clustering this dataset and the second best technique is Hierarchical technique and

finally the probability based technique which the results for two feature vectors are

not very different.

I Conclusions

The results show that the current patient staging system based on Grade and

Stage cannot adequately discriminate lung cancer patients to reliable predict their

survival time. Three different types of clustering techniques are applied to show

that second-level features such as cancer stage and grade are insufficient to establish

a patient’s survival time in lung cancer. Three groups of clustering are chosen:

based on distance of instances in the feature space (hierarchical clustering), using

the probability information of the dataset (multimodal clustering) which chooses

the best modified model of expectation maximization, and matrix factorization

which does not use similarity techniques. NMF shows that the center of the clusters

have higher difference in survival time compared with the other two techniques, and

the first level feature vector get more promising clusters than the second level

feature vector in all three clustering techniques. The results show that the clinically

common criterion of cancer stage is not correlated with patient survival time. The

separation of patient features into first and second-level as defined in this study

could be applied to analyze survival for other cancer types in the SEER database.

[4]
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CHAPTER VII

CONCLUSIONS AND FUTURE WORKS

Medical data analysis requires diverse applications. The input data and its

complexity can be analyzed to determine the applicable framework. Two of the

applications describe two different methodologies analyzing perfusion curves. One of

them is a dataset of perfusion curves collected from DCE-MR images and the other

dataset utilizes IVM collected from vessel perfusion. Features of interest were

directly extracted from the measured datasets using a mathematical fitting

technique and applying the most efficient and accurate classification algorithms.

FCM and KNN were chosen because FCM is the best to rank each sample while

KNN shows the best ROC value.

Personalization of healthcare datasets using machine learning techniques is a

new idea which could help clinicians choose the best treatment and predict the best

status of a particular patient based on the history of large number of patients. The

techniques currently used and potential algorithms that are a combination of

mathematical tumor models and medical images are reviewed. It is shown that the

information of the location of the tumor in the body could be used to predict the

speed of the tumor growth. In the future works a large dataset of this information

from previous patients could be used to develop machine learning techniques to

adapt the parameters of the tumor growth models.

The personalization project seemed to be hard to develop a large dataset of

patients with lung cancer was used to be able to predict the survival time using

machine learning techniques. The results are compared, and it finds that SVM has

the best ROC value, and applied several clustering techniques. Comparison of the

results and similarity of the records considering survival time indicate the best
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feature vector to represent the patients and predict their survival time. The next

step would be to develop a new Kernel function based on two analyzed feature

vectors and apply the customized SVM which would make a connection between the

clinical features that predict the survival time and also those that are available in

the SEER database.

3D vessel segmentation and reconstruction is a difficult problem. A new

vessel enhancement technique is proposed for MRA-TOF images. The proposed

technique uses the strengths of the non-linear diffusion filter in finding homogenous

regions in images while combining it with EM algorithm to brighten the vessels and

glooming the background.

The experience with several practical healthcare datasets indicates that a

novel solution could be found to combine all of the clinical information. The large

number of factors requires new techniques such as machine learning algorithms to

analyze large datasets in a way to find the pattern of similar patients and also to

analyze them beyond just a statistical analysis. The relation between treatment and

patients, survival time and treatment efficiency, could be considered more accurately

with machine leaning. Personalization of treatment for each patient in this manner

may thus help to cure the disease.
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APPENDIX

2D Two Dimensional

3D Three Dimensional

CAD Computer Aided Diagnostic

CI Confidence Interval

CT Computed Tomography

DCE-MRI Dynamic Contrast Enhanced Magnetic Resonance Imaging

EM Expectation Maximization

FCM Fuzzy C-Mean Clustering

IVM Intravital Microscopy

KNN K Nearest Neighbor Classifier

MRA Magnetic Resonance Angiogram

MT Magnetic Resonance

NCI National Cancer Institute

NIH National Institutes of Health

NSCLC Non Small Cell Lung Cancer

ORG Ordered Region Growing

PCA Principal Component Analysis

PET Positron Emission Tomography

PK Pharmacokinetic

ROC Receiver Operating Characteristic

ROI Region Of Interest

SCLC Small Cell Lung Cancer

SEER Surveillance Epidemiology End Results

SVD Singular Value Decomposition

SVM Support Vector Machine

TOF Time of Flight

VEGF Vascular Endothelial Growth Factor
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