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ABSTRACT 

DEVELOPMENT OF A SURROGATE BRUISING DETECTION SYSTEM TO 
DESCRIBE POTENTIAL BRUISING PATTERNS ASSOCIATED WITH 

COMMON CHILDHOOD FALLS 
 

Raymond Dsouza 
 

April 20 2015 
 

Child abuse is a leading cause of fatality in children aged 0-4 years. An 

estimated 1,700 children die annually as a result of child abuse of which three-

quarters (75.7%) of the children were younger than 4 years old1. Infants (younger 

than 1 year) had the highest rate of fatalities among the group. Many of the 

serious injuries and fatalities could have potentially been prevented if clinicians 

and child protective services were able to better distinguish between injuries 

associated with abuse versus those caused by accidents. Missed cases of child 

abuse have been shown to be as high as 71% of all admitted cases, where 

children are presented at hospitals for their injuries and not evaluated as being 

abused 2. Additionally, when child abuse is legally pursued for criminal charges, 

a little more than half of the cases move forward to prosecution as opposed to 

being screened out for reasons including the need for further investigation or 

insufficient evidence 3. Therefore there is a need to provide clinicians, child 

protective services and law enforcement personnel with improved knowledge 

related to the types of injuries that are possible from common household 
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accidents that are often reported to be the underlying cause of injury in child 

abuse. 

Bruising is an early sign of abuse, and can be an effective indicator of 

child abuse. Although not life threatening, bruising injuries or bruising patterns 

provide a “roadmap” documenting a child’s exposure to impact. Previous 

research has relied upon the use of instrumented anthropomorphic test devices, 

or test dummies, to investigate injury risk in common childhood falls and 

accidents in addition to head injury and bone fracture risk in children 4-7. 

However, the ability to predict bruising patterns occurring in association with 

falsely reported events in child abuse does not exist, and could prove extremely 

useful in the distinction between abusive and accidental injuries. 

This study required the modification of an existing pediatric test dummy to 

allow for the prediction of potential bruising locations and bruising patterns in 

children during common household fall events that are often stated as false 

scenarios in child abuse. The scope of this project included the development of a 

“sensing skin” that was adapted to a commercial pediatric test dummy. This 

modified test dummy was then used in mock laboratory experiments replicating 

common household injury events while the “sensing skin” measured and 

recorded levels of impact force and locations of impact on the human surrogate. 

The data from the “sensing skin” was acquired and compiled in a computerized 

visual body map image displaying the areas of contact or impact locations. This 

body map image provided a “roadmap” of the human surrogate’s contact 

exposure during the specific fall event and defined a compatible impact 
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roadmap–specific event combination. Impact roadmap–event combinations for 

various common household falls provide an indication of where potential bruising 

could occur. This knowledge of potential bruising patterns could aid clinicians in 

distinguishing between abusive and accidental injuries for specific fall types.  
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     CHAPTER I: INTRODUCTION 

INTRODUCTION 

 
Child abuse is a leading cause of fatality in children aged 0-4 years. An 

estimated 1,700 children died in 2013 as a result of child abuse of which four-

fifths (75.7%) of the children were younger than 4 years old1. Infants (younger 

than 1 year) had the highest rate of fatalities among the group. Many of the 

serious injuries and fatalities could have potentially been prevented if clinicians 

and child protective services were able to better distinguish between injuries 

associated with abuse versus those caused by accidents. Missed cases of child 

abuse have been shown to be as high as 71%, where children present to 

hospitals for their injuries and not evaluated for abuse 2. Additionally, when child 

abuse is legally pursued for criminal charges, little more than half of the cases 

move forward to prosecution as opposed to being screened out for reasons 

including the need for further investigation or insufficient evidence 3. Therefore 

there is a need to provide clinicians, child protective services and law 

enforcement personnel with improved knowledge related to the types of injuries 

that are possible from common household accidents that are often reported to be 

the underlying cause of injury in child abuse.  

Bruising is an early sign of abuse, and can be an effective indicator of 

child abuse. Although not life threatening, bruising characteristics and bruising 
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patterns provide a “roadmap” documenting a child’s exposure to impact. Previous 

research has relied upon the use of instrumented anthropomorphic test devices, 

or test dummies, to investigate injury risk in common childhood falls and 

accidents in addition to head injury and bone fracture risk in children 4-7. 

However, the ability to predict bruising patterns occurring in association with 

falsely reported events in child abuse does not exist, and could prove extremely 

useful in the distinction between abusive and accidental injuries. 

The purpose of this study was to provide objective data about potential 

bruising locations in children in common household falls. Impact locations 

documented during specific fall experiments identify regions where a bruise could 

potentially develop, but not necessarily occur. Regions where potential bruising 

might occur could aid clinicians in distinguishing between abusive and accidental 

injuries where false histories of household falls are given. The study goal was 

accomplished by conducting multiple fall experiments replicating common 

household falls, using a custom developed contact and force sensing system 

adapted to a child surrogate test dummy. Three specific aims were established to 

achieve the goal of this study.  

SPECIFIC AIMS 

1. Design and develop a sensing skin adapted to a child surrogate capable of 

capturing and recording potential bruising locations and impact force when used 

in simulated injurious events. 
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2. Describe potential bruising patterns (impact locations) in children associated 

with rearward falls. 

3. Describe potential bruising patterns (impact locations) in children associated 

with bed falls. 

The hypotheses for this study are listed below: 

Hypothesis 1 – Different initial condition bed falls (height and position) will lead to 

differences in impact locations recorded in number of planes. 

Hypothesis 2 – Different initial condition bed falls (height and position) will lead to 

differences in impact locations recorded in number of body regions. 

Hypothesis 3 – During bed falls, impacts to the ear region will be less than 10%. 

This study included three methodological components to accomplish the 

established goal and address the specific aims. In the first component we 

adapted an existing pediatric anthropomorphic test device (ATD) with custom 

developed force sensors integrated into a conformable skin. The sensors were 

coupled to a data acquisition system through which recorded force data was 

displayed on a computerized body mapping image system. The surrogate 

bruising detection system (SBDS) was developed to allow for the assessment of 

potential bruising locations while using the ATD to simulate falls. Impact locations 

documented during specific fall experiments identify regions where a bruise could 

potentially develop, but not necessarily occur. 
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The second component utilized the SBDS to simulated rearward fall 

experiments that were performed onto two different impact surfaces (padded 

carpet and linoleum tile over concrete) with two different initial positions (standing 

upright and posteriorly inclined). Potential bruising regions and fall dynamics 

were investigated. 

The final component utilized the SBDS to simulated bed fall experiments 

that were performed from two initial heights (24 in and 36 in) with two different 

initial positions (facing forward and facing rearward). Potential bruising regions 

and fall dynamics were investigated and comparisons were made to skin findings 

clinical fall data obtained from accidental and abuse cases. A key distinction is 

that the experimental falls identify all regions of contact with the impact surface 

during a specific, controlled fall scenario where a bruise could potentially 

develop, but not necessarily occur. Our experimental results do not predict 

bruising; rather only identify fall specific contact locations where potential bruising 

may occur. 
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BACKGROUND AND SIGNIFICANCE 

 
Child Abuse Statistics  

The Federal Child Abuse Prevention and Treatment Act (CAPTA), (42 

U.S.C.A. §5106g), as amended by the Keeping Children and Families Safe Act of 

2003, defines child abuse and neglect as 8: 

 Any recent act or failure to act on the part of a parent or caretaker which 

results in death, serious physical or emotional harm, sexual abuse or 

exploitation; or 

 An act or failure to act which presents an imminent risk of serious harm. 

Child abuse and neglect continues to be an omnipresent public health 

problem that can devastate the lives of children. In 2011 an estimated 2 million 

reports of suspected maltreated, abuse or neglect were assessed by Child 

Protective Services 9. Of these, approximately 680,000 children were found to be 

victims of abuse or neglect. Children in the age group of birth to 1 year had the 

highest rate of victimization at 21.2 per 1,000 children in the national population. 

Additionally more than one-half of the child victims were girls (51.1%) and 48.6 

percent were boys 9. An estimated 1,760 children died as a result of child abuse 

or neglect of which 75.7% of the children were younger than 4 years old1.  

Death and injury resulting from child maltreatment have staggering 

financial costs including medical care, lost future earnings and diminished quality 

of life 10. The direct and indirect costs of child abuse in the US are estimated at 
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$104 billion per year 11. Direct costs include health care services, child welfare 

services, law enforcement services and judicial system costs totaling $33 billion a 

year. Indirect costs associated with child abuse include those associated with 

special education, mental health care, continued health care and lost productivity 

to society, totaling $71 billion a year. 

For adult survivors of child abuse, there are persistent, long-term adverse 

outcomes to the individual, families and society including higher risk of chronic 

disease (heart, liver and lung disease), unhealthy behaviors (smoking, alcohol 

and drug abuse, sexual promiscuity), and mental health problems (depression, 

re-victimization) 12. 

 

Failure to Diagnose Child Abuse  

Of the 1,760 children that die each year due to child abuse, many are 

seen at medical facilities for their injuries prior to death, but early signs of abuse 

are often missed or dismissed as not caused by deliberate trauma. This could be 

due to inadequate training or knowledge in the recognition of abusive injuries or 

inadequate evidence for a conclusive diagnosis of abuse.  

Subtle presentations of child abuse pose diagnostic challenges for 

pediatricians and emergency room physicians. Potentially life-threatening child 

abuse in the youngest, most vulnerable children can be missed when signs and 

symptoms are subtle.  



7 
 

Touloukian 13 presented five fatal cases of abused children with blunt 

abdominal trauma and found that each injury and complication was potentially 

curable, provided early treatment was rendered. However, these cases were not 

suspected as child abuse cases because the physicians were provided 

misleading histories of the injuries from the parent or guardian. Touloukian 

emphasizes the concept that the syndrome of abuse is a progressive event, 

beginning with deprivation and if unchecked, continuing to maltreatment and 

ultimately death of the child. Jackson et al 14 reviewed traumatic injuries in 

children under the age of 2 years at King’s College Hospital in London (England). 

The study 14 found 18 of 100 cases to have been missed cases of child abuse 

and concluded that it was highly likely that other hospitals had missed cases on 

child abuse on their hands as well. O’Neill et al 15 reviewed the cases of 110 

abused children that were seen at Vanderbilt University Medical Center 

(Nashville, Tennessee) over a 5 year period and found that eighty percent of the 

children had signs of repeated injury. Additionally more than 67% of the abused 

children had more than one new injury when first seen at the hospital. 

Supplemental cases of child abuse that were missed by physicians were 

reported by Diamond et al 16. Alexander et al 2 found that 71% of abused children 

that were seen at the University of Iowa hospitals and clinics (Iowa City) had prior 

history of abuse or neglect. Ewing-Cobbs et al 17 discovered signs of preexisting 

brain injury in 45% of children with inflicted traumatic brain injury compared with 

none in children with accidental traumatic brain injury. A retrospective study done 

by Jenny at al 18 found that physicians had missed the diagnoses of head injuries 
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in abused children by 31% and the number of physician visits before the trauma 

was recognized varied between two and nine. Benzel et al 19 reviewed 23 

patients that were victims of abuse and incurred neurological injury as a result of 

the abuse, seen at Louisiana State University Medical Center over a four year 

period. The study found that 9 of the 23 (39%) abused children with head injuries 

were known to have been seen by other physicians because of similar problems 

or other injuries consistent with child abuse.  

Early recognition of child abuse is paramount to saving not only the life of 

the affected child but also possibly the lives of siblings. In a study done by Smith 

et al 20, approximately 45 children from a total sample of 134 child abuse cases 

were found to have a sibling who had also been maltreated. Additionally, 10 

abused children from the sample had siblings that had died, of which some were 

under suspicious circumstances. 

Failure to diagnose child abuse is not only detrimental to the child 

because of the possibility of continued abuse, but also poses legal issues for the 

doctor in charge of the child’s well-being. If a health professional fails to diagnose 

and report suspected maltreatment, they become financially liable if the child is 

further abused or killed and can be sued for medical malpractice 21. 

Such studies suggest a need for pediatricians and health practitioners to 

be vigilant to the possibility of abuse when evaluating children with atypical 

accidental injuries.  
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Failure to Prosecute Substantiated Child Abuse Cases 

During the fiscal year 2011, of the 3.4 million referrals, involving the 

alleged maltreatment of 6.2 million children, approximately 61 percent (60.8%) of 

referrals were screened for investigation or assessed by CPS agencies 9. Of the 

61%, approximately 20 percent of the investigations or assessments determined 

a child to be a victim of abuse 9. While substantiation is typically a predicate to 

legal prosecution, substantiation does not ensure prosecution to follow. 

According to the research done by Tjaden et al 22, in examining 833 cases of 

substantiated child maltreatment, only 21% were found to result in dependency 

court filings and 4% of the cases were found to result in criminal court filings. 

Criminal prosecution was also significantly and positively linked to the severity of 

the maltreatment, such that prosecutors were more likely to prosecute cases 

involving severe maltreatment, violence and death of the victim. It was also found 

that the victims’ age was a contributing factor to the prosecution of the case, as it 

is easier to question the ability of a younger child recalling events accurately than 

that of an older child. Additionally the prosecutors are compelled to pursue only 

those cases where there is a high likelihood of convection. Finally, approximately 

70% of the cases that were criminally prosecuted resulted in convictions, of 

which 92% were obtained through guilty pleas. Approximately 75% of the 

defendants convicted of child abuse, received probation or a deferred sentence 

instead of being incarcerated 22.  

The prosecution of child abuse cases was studied by Cross et al 3 by 

conducting a meta-analysis consisting of 21 studies to examine the rates of 
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criminal justice decisions in child abuse. It was found that a little more than half of 

the cases that were referred for criminal charges were moved forward for 

prosecution as opposed to being screened out. Reasons for not filing criminal 

charges include the need for further investigation, insufficient evidence and victim 

issues related to age and willingness to testify. From the cases carried forward, 

the plea rate was consistently high, exceeding 83%. The trial rates varied from 

3% to 67% with a mean of 18% and the conviction rate was 94% (mean) for the 

cases carried forward. Lastly, the incarceration rate of those convicted varied 

from 24% to 96% with a mean of 54% 3.  

Recently, Sedlack et al. 23 followed the justice system path and examined 

the trajectory of 225 child abuse cases investigated by Child Protective Services. 

210 of these cases were referred to law enforcement (93%) for criminal 

investigation of which 160 cases (71%) were opened for investigation; the 

remaining 50 cases were dropped by law enforcement or were of unknown 

status. Insufficient evidence was the most common reason the Prosecutor 

decided to drop a case. For these cases, the Prosecutor’s office also cited the 

age of the victim and the child’s best interest as part of the explanation for not 

pursuing them in criminal court. A total of thirty-six (36%) percent (n=81) of the 

investigated cases led to sheriff arrests. Further, 80 of these cases in addition to 

9 non-arrest cases (a total of 89 (40%)) were sent on to the prosecutor’s office. 

Of these 89 cases, 72 were filed as felonies, 10 were filed as misdemeanors and 

7 received no filing. 23. 
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Bruising in Children Associated with Accidents and Abuse 

“The skin is the most commonly injured organ system and the easiest to 

examine” 24. Skin is generally composed of three primary layers from outer to 

inner surfaces: epidermis, dermis and hypodermis (or subcutaneous adipose). 

The subcutaneous layer has a majority in the number of capillaries and is also 

composed of fat which makes this layer easily deformable. During an injury, 

capillary networks of the 2 inner surfaces are most affected, causing the 

preponderance of hemorrhages in the subcutaneous layer of tissue. These 

damaged blood vessels, caused either through impact or a “pressure increase 

exceeding the injury threshold of the vessel wall”, and would result in blood loss 

into surrounding tissue 25. The vascular disruption in the lower layers without a 

rupture to the epidermis, results in pooling or accumulation under the surface of 

the skin which shows up as a bruise 26.  Although not a life-threatening injury, 

bruising can be an early indicator of abuse that is easily recognized without the 

need for diagnostic tests. 

Bruising in children is known to be the earliest, most visible and one of the 

most common outcomes of child abuse 20,25,27,28. Despite providing a “roadmap” 

describing the environment that a child has been exposed to, bruising is often 

overlooked in the assessment of a child’s injuries when attempting to differentiate 

between abusive and non-abusive injuries. It is crucial to accurately distinguish 

bruising patterns on children that arise from everyday play activities and 

accidents versus those from intentional causes such as abuse. Early 
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identification of bruises resulting from child abuse can allow for intervention and 

prevent further abuse. 

The scientific literature provides strong evidence that differences in 

bruising patterns (location, number, size) exist in children exposed to accidents 

versus those exposed to physically abusive conditions. Maguire et al 29 compiled 

evidence in support of this hypothesis in his comprehensive review of the 

scientific literature to determine whether patterns of bruising in childhood are 

diagnostic or suggestive of abuse. In doing so, Maguire sourced 6984 papers 

with scientific literature spanning 53 years, relating bruising associated with 

accidents, as well as bruising patterns associated with abuse. After review, 23 

papers met their criteria for full analysis by a panel of 15 reviewers, all with child 

protection expertise. Seven papers addressed bruising in non-abused children, 

14 discussed bruising due to abuse and two more discussed both abused and 

non-abused children. These key studies as well as Maguire’s conclusions are 

described below. 

 

Bruising Associated with Accidents  

Maguire et al 29 identified seven studies 30-36 meeting inclusion criteria that 

addressed bruising patterns in non-abused children. From these studies, 

Carpenter observed, increased bruising with increased family size 30. Bruises 

were characteristically small 30,31,33 with an increased number of bruises noted in 

the summer 32. All bruises were less than 10 mm 30  and 15 mm 33 in any 

dimension. Also bruising was directly correlated to motor developmental stages 
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30,34,36 of the children. It was shown that bruising in a child who has no 

independent mobility was very uncommon 30,34. The prevalence and mean 

number of bruises increased with age and developmental stage 30,32,34 of the 

child. The most common sites of bruising in children who are walking are the 

knees and shins 34-36. Additionally bruises occurred mostly (93%-100%) over 

bony prominences 30,34. Accidental bruises were commonly seen on the front of 

the body and those to the head were usually on the forehead 30. Accidental 

bruising was uncommon to the back, buttocks, forearm, face, abdomen or hip, 

upper arm, posterior leg or foot in children of any developmental stage 30,34,36. 

Lastly, bruising to the ears 31 and hands (all 7 studies) did not occur for the 

studies considered. 

 

Bruising Associated with Abuse 

Maguire 29 also described studies focusing primarily on bruising in abused 

children. Bruising was found to be very common in abused children 20,37-39. The 

mean number of bruises in abused children varied from 5.7 to 10, while controls 

had a mean number of 1.5 bruises 31,39. Additionally, the measured length of 

bruises were found to be greater in abused children 31. It was also found that the 

head was the most common site of bruising in abused children 20,31,38,40. Multiple 

bruises to the head and face were found to occur in fatal child abuse cases as 

shown by de Silva 40. Bruising to the ear, face, head, neck, trunk, buttocks and 

arms was seen significantly more in abused children than controls 31,39. Bruising 

to children with abusive fractures was found to the head and neck 38,  and 
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abused children were found to have bruises on non-bony prominence areas 41. 

Also a common feature in abused children was clustering of bruises 42,43. These 

bruises were thought to be associated with a defensive maneuver and were often 

found on the arm, thigh and trunk. Additionally, bruises often carried the imprint 

of an implement used to inflict injury 43,44. Table 1 shows a summary of the 

characteristic locations of bruises in children incurred by abuse and accident as 

described in the studies above. 

Table 1. Characteristic locations of bruises in children as seen in accident and 

abuse. 

Accident Abuse 

Knees Posterior Torso 

Shins Buttocks 

Forehead Forearm 

Hips Face 

Shoulders Abdomen 

Elbows Hip 

Ankles Upper Arm 

 Foot 

 Torso 

 Ears 

 Thigh 

 

Collectively these above mentioned studies strongly suggest that bruising 

patterns associated with child abuse differ substantially from those occurring as a 
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result of an accident in terms of body region affected, number and size of 

bruises. Frequency of bruises, age of the child and the child’s developmental 

ability are also important factors that must weigh in to determining whether 

bruises are associated with abusive or accidental trauma. Considering these 

differences, it is reasonable to assert that bruising patterns can provide a 

guideline and be used as an indicator in attempting to differentiate between 

abuse and accidental trauma.  

One study that attempted to quantify this difference by developing a new 

scoring system for bruise patterns which could help identify children who may be 

abused was conducted by Dunstan et al 31. In this study, clinicians studied the 

bruising patterns of children, up to the age of 13, attending a specialist children's 

center over a four year period. Dunstan found a significant difference in the 

number of bruises across all body regions when comparing children injured 

through abuse to those injured in accidents. Details of bruises in each of 12 

regions of the body - anterior chest and abdomen, back, buttocks, left and right 

arms, left and right legs, left and right face, left and right ears, and head and neck 

- were recorded for 133 physically abused children and 189 control children aged 

between one and 14 years. In each body region the numbers of bruises were 

recorded together with the maximum dimension of each bruise, and whether or 

not each bruise had a specific shape, such as being linear or shaped like a hand. 

A total of 763 bruises were found in 133 abused children, while 282 bruises were 

found in 189 control children in this study. There were clear statistical differences 

in the number of bruises present in abused versus non-abused children for all 
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body regions except for the legs. Dunstan also investigated location of bruising in 

his study and found that bruising to the head and neck was common in abused 

children, but rare in children that had been accidentally injured. Dunstan further 

determined that head and neck bruises in victims subjected to accidental trauma 

were no larger than 0.1 cm in mean total length, whereas abused children were 

found to have head and neck bruises of a mean total length of 5.1 cm. Therefore, 

Dunstan’s scoring system considered areas such as the head and neck to weigh 

more emphasis than the legs or arms, because children who had not been 

abused, rarely had signs of bruising in this region. Dunstan concluded, “the 

extent of bruising tends to be a good discriminator between children that were 

abused and those who were not”. In addition, the discrimination was even more 

accurate if bruises with a recognizable shape were detected. Lastly, it was also 

found that ear bruising was a good indicator of abuse in his study. Ear bruising 

was present in 16 percent of abused children, but was not present in any of the 

control children in his study resulting in a statistically significant difference 31.  

 

Use of Anthropomorphic Test Devices (ATDs) in Child Abuse Research 

Anthropomorphic Test Devices (ATD), often referred to as crash test 

dummies; are human surrogates that simulate the dimensions, weight and 

dynamic response of the human body. In the recent past, ATD’s have been used 

to study pediatric injury risk in falls, as well as the shaken baby syndrome 4-7,45-47. 

In the absence of human volunteers, these surrogates provide a means of 

studying biomechanical response, estimating injury risk and understanding injury 
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mechanisms associated with various potentially injurious events. A number of 

previous studies have used pediatric ATD’s representing both 12 month old 

(CRABI ATD) and 3 year old (Hybrid II and III ATD) children in simulating free 

falls and bed falls to investigate the risk of femur fractures and head injury 4-7.  

One of the first human surrogate studies in the child abuse field was 

conducted by Duhaime et al 46 who investigated the shaking baby syndrome 

using a modified doll representative of a 1 month old infant, instrumented with 

accelerometers placed in the neck. Prange et al investigated free falls from 

different heights onto different surfaces using a customized infant surrogate 

(representative of a 1.5 month old infant) to determine the rotational response of 

the head of an infant 47. Additionally, Prange et al studied inflicted impacts to the 

head and repeated Duhaime’s shaking baby experiments using the customized 

surrogate 47. The Hybrid II 3 year old ATD was used in studying biomechanical 

measures such as head, chest and pelvis accelerations, femur loads and head 

injury criteria (HIC) in fall experiments from bed heights 4 and feet first impact 

falls from short distances onto different impact surfaces 5. Deemer et al used a 

Hybrid III 3 year old ATD to study pediatric head and femur injury risk in the 

influence of wet surfaces and fall heights in feet-first falls 6. 

  Despite limitations in ATD biofidelity that may exist, these studies have 

allowed for comparative analyses of injury scenarios (e.g. shaking versus free 

fall) to assess relative risk of injury. However, as ATD’s were developed to 

assess injury risk in high energy events, the ATDs biofidelity in lower energy falls 
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have not been validated and hence must be considered a limitation when 

drawing conclusions from these experimental studies.  

 

Levels of force associated with bruising 

As describer earlier, skin is generally composed of three primary layers of 

which the subcutaneous layer has a majority in the number of capillaries and is 

also composed of fat which makes this layer easily deformable. The application 

of blunt force causes a preponderance of hemorrhages in the subcutaneous 

layer of tissue resulting in blood loss into surrounding tissue, which shows up as 

a bruise 25. 

There seems to be no precise answer to the question of how much force 

can cause a bruise. This is primarily due to the fact that there are many 

contributing factors that affect the development of a bruise which is a very 

complex issue in itself. Extrinsic factors such as the amount of force applied, rate 

of force application, distribution of the force over larger/smaller areas are some of 

the parameters that can affect the presence or absence of a bruise. Additionally, 

intrinsic factors related to the architecture of the skin such as tissue thickness, 

toughness of skin, fat content, vessel fragility, presence and depth of underlying 

bone add to the complexity of the issue. Additionally, factors pertinent to an 

individual such as hemoglobin levels, systemic blood pressure, vascular 

diseases and vasoactive drugs can also have a great influence on the variability 

of bruises induced for varying loads. However it can be said with some degree of 
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certainty that smaller forcers will result in smaller sized bruises while larger 

forces will cause larger bruises. 

Information in the literature related to force levels required to cause a bruise 

is very limited. Hrysomallis 48 studied thigh contusions as related to common 

sports related injuries. Hrysomallis evaluate the relative effectiveness of 

protective cricket thigh guards by developing a model. This study utilized data 

generated from impacts on human volunteers and cadavers to select a surrogate 

soft tissue component for developing the thigh model. The data collection 

consisted of measuring accelerations caused by dropping a known mass (2.23 

kg steel hemispherical impactor with a 73 mm diameter) fitted with an 

accelerometer from a known height onto the anterior part of the mid thigh of the 

volunteers and the cadaver. From the pilot work done by Hrysomallis, it was 

established that a drop height of 100 cm onto living tissue (volunteers) often lead 

to a mild contusion and was considered as the threshold level for injury. The data 

collected in this study 48 was used to select a surrogate tissue that was integrated 

into the thigh model. The surrogate tissue was attached to a stainless steel beam 

that represented the femur and was instrumented with a transducer to measure 

local peak forces induced during testing. This thigh model was used to provide a 

measure of the impact force attenuation capacity of varying protective 

equipment. 

Desmoulin et al 49 studied bruising mechanics in a living human subject by 

using an impact recording system. The equipment consisted of an impactor, a 

limb mount, force plate and potentiometer. For each impact, the limb was placed 



20 
 

on the limb mount on the force platform directly underneath the impact 

apparatus. A total of twelve impacts evenly spaced along the length of the limb 

were performed. Of these, six were performed using a 1.9 kg weight on one leg 

(3 shin, 3 calf) and six impacts using a 2.6 kg weight on the other leg (3 shin, 3 

calf). Twenty four hours after impact, the impact area was examined for 

contusions and if present, its location, size, color, and shape were noted. Eight of 

the twelve impacts produced bruising. Peak force, peak pressure, displacement, 

tissue stiffness, impact velocity, force impulse, pressure impulse, and energy 

density all did not vary significantly under the two categories of bruise or no 

bruise. However, energy absorbed by the limb did vary significantly according to 

the two criteria. For energy absorbed by the limb, a contusion threshold of 6.5 J 

was found. 

Mc Brier et al 50 conducted a study where they created and validated an 

injury producing device that could generate multiple levels of injury starting from 

a contusion, all the way up to fractures by using experimental animals. The 

device consisted of a free falling mass (276g) with the ability of adjusting desired 

fall heights. The mass was directed to fall onto a location, where the 

experimental animal’s extremities could be secured. A load cell was installed in 

the base of the impactor to measure the loads transmitted through the animal’s 

extremities being impacted. The animal testing consisted of 20 caged, sedentary, 

male Wistar rats, 3 to 4 months old. Prior to injury, animals were euthanized via 

carbon dioxide inhalation and then the hind limbs were positioned in the device 

with the hind limb fully extended inside the leg holder and clamped into position. 
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Measurements taken included peak displacement, peak velocity, peak load, 

impulse, and energy. After the impact, the animal was scanned with magnetic 

resonance imaging (MRI) to evaluate the level of injury induced by the different 

drop heights (40, 50, 60, or 70 cm). Based on the data collected, it was found 

that for the weights dropped from a height between 40 and 50 cm produced mild 

to moderate level of injury, which could be reproduced. When the drop height 

was increased to 60 cm or higher moderate to severe levels of severity were 

sustained. Heights of 70 cm or greater were likely to result in fractures of the tibia 

and fibula. 

In a study done by Hamdy et al 51, the factors affecting experimental 

bruises in animals were studied by observing the visible and chemical changes 

that were associated with bruise healing. The study used cattle and rabbits as 

the experimental animals. Each cow was bruised with approximately the same 

force, using a 7 lb hammer which traveled at about 3 ft/sec. The rabbits received 

ten blows from a rubber pressure tube that was 1.5 inch thick, traveling at 

approximately 4 ft/sec. The results from this study showed that there was an 

influence of previous bruising on the rate of healing as the time required for 

complete healing was shorter for every subsequent bruise administered. 

Additionally, the rate of healing in different animals was shown to be very similar 

across cattle, hogs, sheep and rabbits. Lastly, bruises subjected to younger 

animals were seen to heal more rapidly that those seen in older animals. 
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Force/Pressure Sensor Technologies 

There are a wide range of force/pressure sensors available which have 

various operating principles and functional ranges. Additionally, they can have 

different shapes, sizes and could be constructed from a variety of materials. The 

majority of the sensors available are based on resistive, capacitive, or optical 

technologies. These sensor technologies and others are described below: 

 

Resistive Pressure Sensors 

The operating principle of this type of sensor is the transformation of a 

change in the physical pressure applied to the sensor to a relative change or 

modulation of the sensors electrical resistance. Mostly, resistive sensors 

measure an increase in force/pressure with a corresponding decrease in the 

resistivity measured across the sensor. The use of flexible materials that have 

defined force-resistance characteristics have received considerable attention in 

touch and tactile sensor applications. Manufacturers such as Interlink, IEE, 

Teckscan and Verg Inc provide force sensing sensors based on resistive 

technology. 

 

Force Sensing Resistor (FSR) 

A type of resistive sensor is a force sensing resistor which is made up of 

two parts, usually flexible polymer sheets that are either screen printed (thick 
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film) or deposited (thin film) with conductive lines. Figure 1 shows the two layers 

that usually make up a FSR. 

 

Figure 1: The two laminated layers that make up a Force Sensing Resistor 

The first part is a pressure sensitive ink or semi-conductive sensing 

material that is applied to one side of the film. The sensing film could consist of 

both electrically conducting and non-conducting particles suspended in a matrix 

such that it changes resistance in a predictable manner following application of 

force to its surface. The particle sizes and order are formulated to improve 

response characteristics, reduce the temperature dependence, and improve 

mechanical properties. The second part is a set of conductive (usually silver or 

silver/graphite) interconnected contacts applied to one side of the film. These two 

parts or films are then placed over each other so that the printed sides of the two 

films interact to create a FSR. The semi conductive material serves to make an 

electrical path between the sets of conductors on the other film. Applying a force 

to the surface of the sensor, causes the sensing film conductive particles to touch 

the conducting electrodes and this in turn changes the resistance of the sensor.  

Depending on the properties of the semi-conductive sensing film, a sensors 

response (conductivity) can approximate a linear function of applied force. As 
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with all resistive based sensors a force sensitive resistor requires a relatively 

simple interface and can operate satisfactorily in most environments 

There are two operating principles in FSR’s. One is the Shunt-Mode and 

the other is the Thru-Mode. Shunt-Mode was described above in the operation of 

the FSR, which consists of the two substrate layers, commonly made of polyester 

film, with one layer being coated with the force-sensitive ink and the other 

substrate layer being screen printed with conductive electrode fingers. The two 

substrates are positioned facing each other, such that the conductive fingers and 

sensing ink can interact with each other. When a force is applied to the sensor, 

shunting or short circuiting takes place. The more force applied to the sensor, the 

more conductive the output. A Thru-Mode FSR is also constructed with two 

layers of substrate such as polyester film. However, in this case, there are two 

conductive pads with the interconnected finger like electrodes that are screen 

printed on each of the two substrates. Additionally, the force-sensing ink is then 

screen printed over the conductive pads. These two printed substrates are then 

placed facing each other such that they form a laminate of the two substrate 

layers, forming the force sensor. The more force applied to the ThruMode 

sensor, the more conductive the output. 

 

Capacitive Pressure Sensors 

Similar to resistive sensors, capacitive sensors use a three layered 

structure which forms the basic capacitive circuit. Two electrode surfaces with a 

specific contact area are separated by a dielectric medium which could comprise 
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of a compressible non-conducting elastomer. The capacitive sensor functions via 

the applied force either changing the distance between the capacitive plates or 

the effective surface area of the capacitor. This change in capacitance can be as 

low as a few pF (picofarad) which requires highly sensitive equipment to register 

or sense the read out. In such a sensor if the two conductive plates and the 

dielectric medium, are made of flexible materials, then the entire sensor can be 

flexible while having good repeatability and sensitivity in its force-to-capacitance 

characteristics. Manufacturers such as Pressure Profile Systems and Xsensor 

incorporate capacitive technology for their force sensors. 

 

Optical Sensors 

Optical technology provides an alternative method of producing pressure 

sensors. The operating principles of optical-based sensors are known to fall into 

two categories: intrinsic and extrinsic. Extrinsic sensors are those where the light 

leaves the transmitting fiber to be changed by the system being measured, 

before it continues to the detector through the return or receiving fiber.  Intrinsic 

sensors are different in that the light beam doesn’t leave the optical fiber but is 

changed in optical phase, intensity, or polarization by the measured system while 

still contained within it fiber. Intrinsic and extrinsic optical sensors can be used for 

touch, force or pressure sensing. For robotic touch and force-sensing 

applications, the extrinsic sensors are more commonly used due to their 

simplicity in construction and data processing. 



26 
 

Tactex controls Inc (Tactex controls Inc., Victoria, BC V9A 3K5, Canada) 

has developed a force/pressure sensitive sensor (Kinotex®) based on optics 

related to the way light scatters within cellular foam. The sensor consists of two 

plastic optical fibers, one transmitter fiber and one receiver fiber that are 

embedded in cellular foam.  An LED light source is used to impart light along the 

transmit fiber into the foam sensing surface. When pressure is applied to the 

foam, the intensity of the back-scattered light increases, which is monitored by 

the receive fiber sent back to a photo-diode for processing. 

 

Force/Pressure Sensors for Artificial Skin Applications 

Pressure sensing technology has been a key factor and a primary area of 

interest in robotics from the early development of robots designed for human 

interaction 52,53 . Artificial skin or electronic skin is the key aspect in obtaining 

complete artificial intelligence in robots 52,53. Important factors of tactile sensors 

used in robotic applications include the sensors being thin, flexible and resilient, 

properties which are similar in nature to the pressure sensors we are considering 

with this project. A review of the relevant literature describing pressure sensors 

developed and utilized in electronic skin sensor applications is provided below: 

Shimojo et al 54 developed a sensor that uses pressure conductive rubber 

as the primary material in the sensor. Pressure-conductive rubber was selected 

because of its good flexibility, workability, and ease of use. This rubber is a 

product of The Yokohama Rubber Co., Ltd. (Corporate Head Office: 6-11, 

Shimbashi 5-chome, Minato-ku, Tokyo 105-8685, Japan) and consists of carbon 
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particles, which function as an electro-conductive material which is dispersed 

uniformly in a silicone rubber matrix. The conductive mechanism of the pressure-

conductive rubber seems to be due to the following principle. In a state with no 

pressure acting, the carbon particles within the pressure-conductive rubber are 

positioned apart from each other; consequently, the resistance value is infinitely 

large. However, when pressure is increased, the thickness of the rubber 

decreases, therefore the carbon particles come in closer contact which reduces 

the measured resistance. In this study, a single layer composite structure was 

adopted by stitching wires into the pressure conductive rubber. The sensors 

consisted of electrodes that were configured in the horizontal direction by 

stitching wires into the front and back surfaces of the rubber, alternating back 

and forth, and similarly, the columns of wires were configured in the vertical 

direction.  

Each sensing element was formulated by the intersection of the row and 

column wires. The wire was stitched at 3-mm intervals in the horizontal and 

vertical directions. Additionally, the stitch pattern was manually sewn with a 

needle, so the wire positions were not exactly linear. Electrical isolation of the 

sensor was (required because the exposed wires on both sides of the pressure-

sensitive rubber) achieved by the artificial leather and a silicone rubber film. The 

total thickness of the sensor was approximately 0.5 mm with the sensor being 44 

mm long and 12mm wide. The sensing area consisted of 163 sensels with a 3 

mm pitch. The sensors pressure sensitivity was analyzed and reported in the 

range of 0 – 30 psi. The endurance of the pressure-conductive rubber was tested 
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by applying a repeated force (12 N) at a cycle rate of 3 Hz with a flat-head rod 

(diameter: 5 mm). The testing resulted in no change of the rubber’s 

characteristics after one million cycles of loading. Additionally, there was no 

variation in the resistance value measured after repeated cyclic loading (over one 

million times) that proves good endurance for the sensor. The sensors response 

time was measured by subjecting the sensor to an impulse hammer and 

comparing the waveform of the resistance change from the load applied to the 

sensor to that recorded from the impulse hammer. The respective timing of peak 

values of both waveforms from sensor and impact hammer (15 N over a time 

period of less than 10 ms) were compared, which resulted in a delay of 

approximately 1 ms. Therefore the sensors response time was estimated to be 1 

ms. The entire sensing system consisted of the sensor, scanning circuit and 

control, and the PC. The sensors were lastly attached to a four-finger robot hand 

and was analyzed for grasping different shaped objects (column, sphere, cone 

shaped). The experimental data collected, resulted in successfully characterizing 

the grasping operation in terms of grasping pressures and transitions in parts of 

the robot hand in contact and not in contact while holding different object 

shapes54.  

Ohmura et al 55 presented a study related to the design and testing of a 

tactile sensor skin capable of conforming to curved surfaces . The tactile sensing 

elements operated on the basis of light optics and consisted of a photo-reflector 

covered by a layer of urethane foam. The foam was not only used as a light 

reflector for the working of the sensor, but also guaranteed mechanical 
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compliance and protection for the sensing elements and associated circuitry. 

These sensors worked by measuring the light scattered by the urethane foam 

upon deformation (The scattered light is concentrated by the deformation). Their 

sensor was listed as a variant of the optical sensors used by KINOTEX (Tactex 

controls Inc., Victoria, BC V9A 3K5, Canada). However, KINOTEX sensors, were 

described as being affected by problems related to flexibility and size because of 

the number of fiber optic cables at a LED and a photo detector. This study 

suggested ways to solve both problems by not using fiber-optic cables and 

instead bonding a photo-reflector directly onto the urethane foam.  Ohmura used 

photo-reflectors with a size of 3.2 mm× 1.7 mm× 1.1 mm. The only disadvantage 

of this system deals with high power consumption when using a large number of 

photo-reflectors (each is rated at 50mA). The study claimed that this issue could 

be avoided by restricting the number of powered-on LEDs through time-sharing 

control.  

The study proposes each module consisting of tactile sensor elements be 

mounted to a bendable substrate. Additionally the distance between each tactile 

sensor element can also be adjusted to user desired spacing. Ohmura’s tactile 

sensor sheet consisted of 32 tactile sensor elements connected to a serial bus of 

a computer. Eight tactile sensor elements shared one analog-digital converter 

and each set of eight tactile sensor elements were simultaneously controlled by 

the micro-controller (responsible to switch on and off the LEDs corresponding to 

the individual tactile elements).  
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The sensors operation in a zero load condition was shown by the output of 

the photo-reflector being saturated or maximum. For increasingly larger 

pressures, the change of voltage decreased and eventually flattened out. The 

sensors characteristics were analyzed for pressure ranges of 0 – 73 psi and were 

found to be nonlinear in nature with a high sensitivity. However these 

characteristics could be controlled by changing the variety and thickness of the 

urethane. The sampling time was defined as the sum of the time required for 

communication and of the time of transition duration of a tactile sensor after 

switching the LED on. The time required for sampling four sensors was evaluated 

to be approximately 0.2 ms. The complete tactile sensor was deemed suitable for 

a large scale, dynamic whole-body application such as in robotic humanoids.  

Meyer et al 56 presented the design of a pure textile, capacitive pressure 

sensor designed for integration into clothing to measure pressure on human 

body. The intended applications for these sensors include any field requiring a 

soft and bendable sensor where high resolution is needed, such as rehabilitation, 

pressure-sore prevention or motion detection due to muscle activities. The pure 

textile pressure sensor consisted of a three-layer structure forming a capacitor 

with a pressure sensing dielectric textile (thickness of 3 mm and a compressibility 

of 50 % at 1.8 N/cm2) placed between two electrodes. Arrays of individually 

connected textile electrodes were embroidered using silver coated yarn that 

made up the sensor matrix. A square area of 2x2 cm was found to be an 

appropriate sensor size for measuring the local pressure resolution and maintain 

accuracy of measurement. The dielectric material separating the textile 
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electrodes consisted of a compressible textile. Two additional layers of 

conductive textile shielding were placed over the outer layers of the capacitive 

array sensor. Using the described design concept, Meyer assembled and tested 

these pressure sensors with 1, 8, 16, and 30 sensing elements. The 

compressibility and thickness of the dielectric textile were found to influence the 

pressure range and the resolution capabilities of the sensor making it easily 

adjustable for different pressure ranges. To measure the capacitance from the 

sensor array, it was connected to an analog to digital converter and then linked to 

a computer. Meyer used an iterative algorithm to adjust for hysterisis caused in 

the foam textile due to cracking and deformations in the inner molecular structure 

and calculated the output of the sensors for each time step. The pressure was 

measured with a maximal error of 0.5 N/cm2 (0.72 psi) in the range of 0 to 4 

N/cm2 (5.8 psi) when the textile spacer was utilized. The error increased for 

higher pressures up to 10 N/cm2 (14.5 psi), since the compression-pressure 

curves slope increased.  

Meyer used the developed sensor to detect the activity of the muscles of 

the upper arm during a lifting motion. The sensor was fixed on the biceps and 

triceps with an elastic band placed on the muscle where the highest variation in 

pressure was observed. When the muscle contracted, it increased the pressure 

of the stretched band which was measured while continuously lifting a weight of 2 

kg. The experiment proved that not only could the motion of the arm can be 

detected but also independent motions of the bicep and triceps could be 

evaluated. Lastly Meyer concluded that integrating these sensors directly into a 
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piece of clothing could help evaluate breathing in addition to the physical state of 

the wearer of the clothing. Other applications stated were integrating the sensors 

into a cushion for pressure sore detection.  

Sergio et al 57 also developed a textile based capacitive sensor which 

consisted of an array of capacitive elements whose capacitance varied according 

to exerted pressure on the sensors. The rows and columns of the array sensors 

were conductive fibers patterned on two opposite sides of elastic synthetic foam, 

which acts as the dielectric. The output of these pressure sensitive fabric arrays 

were linked to an operational amplifier for amplifying the output signal which was 

then digitized by an A/D converter. The data was collected by a data acquisition 

board and then digitally processed by digital filters, for noise compensation and 

gamma correction to produce pressure images displayed in real time at about 3 

F/s onto a PC monitor. The emphasis in this study was on the detection of light 

pressures being applied over a relatively wide area. Advantages of these sensors 

were listed as simple capacitive sensing elements that could be used as robust 

sensors even when exposed to strong mechanical stresses. 

Inaba et al 58 conducted a study to develop a full body tactile sensor suit 

using electrically conductive fabric and string. The tactile sensing mechanism is 

based on a layered fabric FSR approach using electrically conductive fabric and 

strings. The structure of the tactile sensor consisted of six layers. The top and 

bottom most layers were soft cloth layers to cover the sensing element and the 

wiring layer. The sensing element of the sensor was made of three layers 

consisting of the wiring, grid switch pattern and the spacer material respectively. 
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The last layer was a conductive fabric used for grounding purposes. The 

sensitivity of this sensor depended on the size of the net hole and the thickness 

and structure of the grid pattern spacer layer. The lower value of recorded 

pressures during testing was 70 g/mm2 (hg) or 1.35 psi. This sensor was 

incorporated into the structure of an entire suit for a full-body humanoid robot. 

This suit consisted of four sections including, left and right sides of sleeves, front 

body and back body. The suit had a total of 160 sensing regions varying in size 

from 10 cm x 5 cm to 5 cm x 5 cm areas and was tested on a remote-brained 

robot. The signals from the sensor suit were integrated into a visual image by a 

video multiplexer and processed on a remote computer. The suit provided the 

robot with the ability to sense touch. The robot sensor suit was deemed a 

promising research tool to advance behavior based control of robots through 

body interactions. 

Someya et al 59 developed a large-area, flexible pressure sensor matrix 

using organic field-effect transistors for artificial skin applications. The pressure 

sensor structure consisted of a multiple layers sandwiched together to form the 

organic transistor with pressure sensitive rubber laminated to the bottom to form 

the FSR. The transistor consisted of a base film (substrate) which was ultra-high 

heat-resistant polyethylene naphthalate (PEN) with a thickness of 100 µm. This 

film was sandwiched between two layers of polyethylene terephthalate (PET) to 

help in the later drilling process. Through this film, holes were drilled and the PET 

layers were then removed by an organic solvent. Then both sides of the PEN 

base layer were coated with 150 nm thick gold layers with 5 nm thick chromium 
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adhesion layer in order to make an electronic connection between electrodes on 

the two sides of the base film. Next, polyimide was spin-coated to form a 500 nm 

thick gate dielectric layer which was drilled into so as to have contact with the 

other layers. Also pentacene and gold layers were added to complete the organic 

transistor design. Lastly, the pressure-sensitive rubber sheet and the copper 

electrodes were laminated to the bottom of the base film to integrate pressure 

sensors with the transistor.  

The sensors were arranged in a matrix with a spacing of 2.54 mm. Higher 

densities could be obtained by reducing device dimensions or using a shorter 

channel length in the transistor design. The accuracy of the pressure sensor 

reading over large areas was limited mainly by the performance of organic 

transistors, whereas the sensitivity was limited by the performance of the 

pressure-sensitive conducting rubber. The developed pressure sensor could 

detect a few tens of kilopascals, claimed to be comparable to the sensitivity of 

discrete pressure sensors. An important characteristic of this sensor related to its 

flexibility as it was found that the device was electrically functional even when 

being wrapped around a cylindrical bar with a 2 mm radius. Additionally, the time 

response of the pressure-sensitive rubber was close to hundreds of milliseconds, 

and the individual sensors did not respond to higher frequencies. The scan 

speed of the entire sensor cell array (16 x16) was limited by the performance of 

individual transistors and was independent of the frequency response of the 

pressure sensors. The cycle time of each transistor was measured to be around 

30 ms in this study, from which the total time to access the 16 x16 transistors 
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was estimated to be 480 ms. This implies that for a larger device with a large 

number of sensor cells, the organic transistors will be the limiting factor of the 

frequency response. For artificial skin in particular, the integration of pressure 

sensors and organic peripheral electronics allowed the sensor to be mechanical 

flexibility, have a large area, and low cost which was demonstrated in this study. 

 

SUMMARY 

Previous studies have shown that bruising patterns resulting from abuse 

are significantly different than those resulting from accidents. However, this 

distinguishing feature of abuse inflicted bruising is often overlooked in the clinical 

setting, as well as in forensic investigations in part because there is no objective 

information about potential bruising patterns seen in accidental falls which are 

often used as false histories by perpetrators. There needs to be agreement 

between a child’s bruising and the biodynamics of the stated cause. It is this 

evaluation of biodynamic compatibility based upon the bruising “roadmap” that 

our study aims to address by predicting potential bruising patterns occurring in 

falls which are sometimes used as false histories in children subjected to abuse. 
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  CHAPTER II: EVALUATE AND IDENTIFY 

FORCE SENSORS 

EVALUATE AND IDENTIFY FORCE SENSORS THAT MEETS THE DESIGN 

REQUIREMENTS OF THE FORCE SENSING SKIN  

 

OVERVIEW 

Unexplained bruising is an early sign of child abuse. Bruising locations on 

the body can be an effective delineator in abusive versus accidental trauma.  

However, the ability to predict potential bruising locations associated with falsely 

reported injury causing events (e.g. bed falls, stair falls) in child abuse does not 

exist. An existing pediatric ATD can be used to recreate common household fall 

events that are often stated as false scenarios in child abuse. However the ATD’s 

standard instrumentation that includes multiple accelerometers and load cells 

does not allow for independent force measurements over discrete body 

segments or regions as would be required to assess potential bruising locations 

while using the ATD to simulate falls. To overcome this, we propose to develop a 

“sensing skin” that will consist of multiple individual force sensors arranged so as 

to be adapted to a commercial pediatric test dummy, capable of capturing and 

recording potential bruising locations and impact force when used in simulated 

injurious events 
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The scope of this study includes establishing design criteria for the force 

sensors, and the sensing skin and evaluation and identification of force sensors 

that meet the established design requirements. 

 

METHODS 

 

Establish Design Criteria for Sensors 

Design criteria and target values for each criterion that must be met by 

sensing skin were established and represented in a comparison matrix. The 

design criteria for the sensors included, but not limited to the following factors: 

 Force or pressure sensing range – The sensors should be able to detect 

low as well as high impact forces (associated with falls) 

 Sensitivity – The ability for the sensor to read small increments in force 

over its entire range is favorable 

 Response time – A quick response time is required to record forces during 

impact events. 

 Conformability and compliance – The sensor should be able to conform to 

all curved surfaces of the ATD without affecting sensor operation. 

 Weight – Individual sensor weight should be low, since the sensors will 

cover the entire ATD surface area. 
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 Power consumption – Low power consumption is desired, because with 

the large number of sensors required to cover the ATD surface, the power 

requirements would be multiplied.  

 Size and thickness – Individual sensor size should be small enough so as 

to capture a high number of discrete sensing locations but at the same 

time not be so small that the number of sensors required to cover the 

entire ATD exceeds the limits of the data acquisition system. A thin sensor 

is desired to limit the bulk added to the ATD.  

 Toughness – High robustness against impact and shear forces is desired 

because of the impact loads applied to the sensors.  

 Hysteresis and creep – Lower values of hysteresis will be required for 

minimal differences between loading and unloading measurements of the 

sensors. Lower creep values will be required in static applications where 

the sensor value should not vary with time on the application of constant 

load. As our application is dynamic and we are primarily interested in the 

loading curve, these properties have a low priority in our design. 

 Cost – Lastly the sensors should be relatively inexpensive considering the 

larger number of sensors required to envelope the ATD surface; the 

associated costs could exceed the budget limitations. 

All available and applicable sensor systems were evaluated and 

compared to determine how well they compare to established sensor criteria. 
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Establish Design Criteria for Sensing Skin 

The design criterion for the sensing skin includes but is not limited to the 

following factors: 

 Flexibility – Skin needs to adapt to the irregular conforms of the 12 month 

old ATD surface 

 Friction – A high contact friction is required between the skin and ATD 

surface so as to prevent relative motion between the two surfaces. This 

will facilitate in maintaining sensor positions on the ATD surface 

 Protective – The skin should help limit sensor damage through the 

intended dynamic impact testing of the system (drop tests) 

 Thickness and weight – In an effort to reduce overall bulk of system, the 

skin needs to limit the amount of bulk or thickness as well as weight added 

to the ATD so as to not drastically change the ATD’s dynamics 

Evaluate Commercial Sensors 

Commercially available, distributed and discrete sensors were evaluated 

against established design criteria for potential use in the sensing skin. We 

expect the sensors used to form the sensing skin to be either resistive or 

capacitive type force sensors. The sensors force sensing range and sensitivity 

was evaluated by exerting a known load/pressure on the sensor and then 

measuring the corresponding output. A comparison between measured loads 

and applied load provided the measurement error for each tested sensor. 
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Data Acquisition 

The output from each evaluated sensor was recorded using Labview 8.2 

(National Instruments) running on a PC (operating system- Windows XP sp3) 

equipped with a National Instruments data acquisition card (NI PCI-MIO-16E-4) 

connected to a 68-Pin I/O terminal block (NI CB-68LP). A simple VI (virtual 

instrument) developed in Labview helped in evaluating and data logging of the 

sensors output. 

The sensors were tested under static load conditions by applying a known 

load/weight over a known surface area. Additionally, dynamic testing of the 

sensors was performed by subjecting the sensors to an impact with the means of 

an impulse hammer (PCB, #086C02). The output from the impulse hammer was 

recorder along with the sensors output in Labview. These two output signals 

were then compared to evaluate the error in sensor force measurement and the 

delay in response time for evaluated sensors.  

If commercial sensors fail to meet design criteria, in-house sensor design 

and fabrication needs to be explored. 

Design and Fabrication Techniques of In-House Developed Sensors 

    The FSR’s conductive side was produced in house, however the 

semiconductive side was custom ordered to our specifications from an industry 

leading manufacturer (Sensitronics): The methodology of producing individual 

force sensing resistive sensors (FSRs) in- house were explored by multiple 

processes described below: 
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1. Milling of conductive patterns onto a flexible copper-coated substrate using a 

rapid circuit board plotter.  

2. Photolithography, where a matrix of individual sensor patterns are transferred 

from a photo mask onto a copper substrate, which is then etched to produce 

a desired space and trace pattern (University of Louisville Micro/Nano 

Technology Center). 

3. Printing the sensor matrix pattern directly onto flexible copper clad substrate 

using a solid ink laser printer, followed by a copper etching process.  

Various space and trace designs of the conductive side were generated 

using the above in-house methodologies. Additionally, several different semi-

conductive materials will joined with the conductive side designs for evaluation 

purposes. Cabling and cabling interface strategies (between the sensor matrix 

and cable, and between the cable and data acquisition hardware components) 

were evaluated for in-house generated integrative sensor matrices. 

Prototype Sensing Skin Design  

After conducting the sensor evaluation, the candidate sensor(s) were 

integrated into a protective skin to form the sensing skin that can be easily 

adapted to the ATD’s body segments. The sensors were glued with an adhesive 

bonding agent into the protective skin and made to conform to the desired area 

of coverage. The individual sensor elements were wired together such that each 

sensor would have individual leads that could connect to the data acquisition 
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system.  We have originally conceptualized the skin to be similar to a neoprene 

wet suit. 

RESULTS 

Commercial Sensors 

A comprehensive review of pressure sensors manufacturers that design 

and develop pressure sensors relevant to our application yielded companies 

such as Tekscan, Trossen robotics, Pressure Profile Systems and Sensitronics. 

These manufacturers’ sensors were further evaluated during the course of this 

study. The above listed manufacturers’ sensor specifications and characteristics 

were arranged in a matrix alongside the desired characteristics that would be 

required from the sensors in our application. Additionally, a preliminary ranking 

based on the importance of each listed criteria that should be met by sensing 

skin prototypes are represented in the comparison matrix listed below in Table 2:  

Table 2 : Sensor Design Criteria and Comparative Matrix 

Sensor 
Technology 

Tekscan Trossen PPS Sensitronics Criteria 

Sensing Range 
(psi) 

0 – 75 0 – 175 0 – 508 0 – 125 ≥ 110 

Resolution  
(sensors per cm2) 

0.6 ≥ 0.6 5 ≥ 0.6 1 

Sensor Elements 96 1 ≤ 10,240 1 - 

Sensitivity (psi) - 
1.5 – 
150 

- 1 – 125 ≥ 1 

Error 11% 2 - - - ≤ 5% 

Response time 
(msec) 

- 1 – 2 - 1  2 
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Sensor 
Technology 

Tekscan Trossen PPS Sensitronics Criteria 

Hysteresis - - - - ≤ 5% 

Conformability - - 
Stretch 

10% 
- - 

Temperature 
Range (°C) 

- -30 to 70  -20 to 50 -15 to 200 -20 to 50 

Scan Rate 500 Hz 1 - 10 kHz - Variable 

ADC Resolution 8-bit 1 - 12-bit - Variable 

Weight 10 gm - - - 
0.1 

gm/sensor 

Thickness (mm) 0.15 1  0.2–1.25  3 0.2 – 1.25 1 

Active Area  
(mm x mm) 

203 x 76 38 x 38 
407 x 
508 

510 x 610 Variable 

Lifetime cycles - >106 - > 106 > 50,000 

Cost ~$300 ~$ 10 ~$1500 ~$500 ≤ $ 1.00 

 

Sensing Skin 

We had envisioned the sensing skin to be similar to a wet suit enveloping 

the ATD, which is why we opted to use neoprene which is a synthetic rubber 

material designed to be flexible, durable has a high coefficient of friction with the 

ATD surface and will serve well to protect the sensors during dynamic testing. 

The neoprene is 1.0mm in thickness and double nylon backed. 

Evaluate Commercial Sensors 

Sensors based on capacitive and optical technology are typically unable to 

sustain impact without damage to the sensor structure. Thus we eliminated these 

types of sensors from further consideration and focused our evaluation on force 
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sensing resistive sensors (FSRs). Commercially available discrete resistive force 

sensors were evaluated for potential use in the sensing skin. If commercial 

sensors failed to meet design criteria, in-house sensor design and fabrication 

would need to be explored. 

Static Testing: 

Commercially available resistive sensors from Sensitronics, Trossen 

Robotics, Tekscan and Distance Lab were evaluated under static loading 

conditions. Measurements of the individual sensors included physical 

dimensions, resistance range while unloaded and with maximum registered load, 

sensor rise time and static load measurement error were recorded for all samples 

attained. A listing of the commercially available sensors testing is shown in 

Appendix 1. 

The results demonstrate nonlinear response characteristics for all the 

sensors. This is observed as the measured percent error varied nonlinearly as 

the load on the sensor increased or decreased. Also the sensors with smaller 

physical dimensions could tolerate higher pressures while still recording a 

change in resistance, which translated into a higher sensing range capability 

(Trossen circular small, Sensitronics circular small and Sensitronics square small 

sensors had greater pressure measuring ranges varying from 0-37 psi, 0-140 psi 

and 0-50 psi respectively than the rest of the samples). 



45 
 

Dynamic Testing: 

Dynamic testing of the sensors was performed by subjecting the sensors 

to an impact force with the means of an impulse hammer. The output from the 

impulse hammer and sensor output were compared to evaluate the 

measurement error in sensing force. The average of 5 trials for the sensors 

output and impulse hammers output along with the corresponding mean percent 

error is shown in Table 3 for all the sensor samples tested.  

Table 3: Dynamic testing of sensors with impulse hammer 

SENSOR 

Mean Applied 
Pressure (psi) 

Mean 
Recorded 

Pressure (psi) 
Mean % 

Error 
Impulse 
Hammer 

Sensor 

Distance Lab 9.25 11.44 -23.67 % 

FlexiForce-Tekscan 88.31 55.31 37.36 % 

Trossen-Circle 12.11 15.10 -24.65 % 

Trossen-Small Circle 10.94 8.27 24.44 % 

Trossen-Square 10.96 8.30 24.35 % 

Sensitronics – Circle 13.81 14.65 -6.09 % 

Sensitronics –Circle Prototype 56.50 61.71 -9.22 % 

Sensitronics –Small Circle 81.34 98.11 -20.60 % 

Sensitronics –Square 14.50 14.36 0.95 % 

Fabric – 1 Layer Velostat 71.11 57.94 18.51 % 

Fabric – 4 Layer Velostat 75.76 59.61 21.31 % 



46 
 

The dynamic testing results exhibited mean percent error of all sensors to 

vary from approximately -25% to 37%. The Sensitronics square sensor showed 

the least mean percent error (0.95%) of all the tested sensors. The dynamic 

testing was within a range of 10 to 90 psi; thus, testing through different load 

ranges could yield different results. Additionally, during dynamic testing, the 

output signals from the impulse hammer and sensors were compared to evaluate 

the delay in response time for evaluated sensors. Table 4 provides the recorded 

time delay between the impulse hammer and the sensors. 

Table 4: Time delay recorded for every sensor evaluated during dynamic testing. 

SENSOR 
Time delay between hammer and 

sensor (ms) 

Distance Lab - 1 Layer Velostat -1.7 

FlexiForce-Tekscan -0.2 

Trossen-Circle -1 

Trossen-Small Circle -1 

Trossen-Square -1.1 

Sensitronics – Circle -0.4 

Sensitronics –Circle Prototype -1.3 

Sensitronics –Small Circle -0.4 

Sensitronics –Square -0.6 

Fabric – 1 Layer Velostat -1.8 

Fabric – 4 Layer Velostat -1.2 
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A negative value of time delay implies that the sensors response to the 

input force was observed after the impulse hammers output was recorded. Our 

recorded time delay values from the testing are within the manufacturers 

specifications which states that the sensors response times should be 1-2 msec. 

The testing revealed that the sensors met most of the design criteria 

except for sensor density, bulk and cost. Since off-the-shelf commercial sensors 

are very limited in sizes, building a matrix of individual sensors to cover the ATD 

surface would have led to an unacceptably high sensor density and sensing skin 

mass (see Results Objective 1.3). Additionally, commercial customized sensor 

matrices (i.e. a single substrate containing multiple sensors of varying sizes and 

shapes) designed to adapt to contoured body regions of the ATD were found to 

be cost prohibitive. Thus the design and fabrication of in-house developed 

sensors were explored.  

Design and fabrication techniques of in-house developed sensors 

1. Milling of conductive patterns onto a flexible copper-coated substrate using a 

rapid circuit board plotter. 

The design of the first batch of sensors consisted of seven various space 

and trace configurations so as to allow us to test and optimize the sensor design. 

Figure 2 illustrates various space and trace conductive side designs considered. 

The sensor designs were created by milling the pattern with a rapid circuit board 

plotter onto a flexible substrate coated with copper (Pryalux® - DuPont™). Figure 
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3 illustrates the implementation of these designs resulting in milled copper clad 

conductive side prototypes. 

 

Figure 2: Conductive side space and trace designs to be implemented through 

milling of copper clad substrate. 

 

 

Figure 3: Milled copper clad conductive side with various space and trace 

patterns. 
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The in-house milled copper clad conductive side joined with various semi-

conductive materials (to form an FSR sensor), along with commercial sensors 

showing promise based upon static testing results, were evaluated under 

dynamic loading conditions to characterize sensor change in resistance versus 

force application (Appendix B) 

In-House Integrated Sensor Matrix Design and Fabrication  

Even though the milled sensors produced desirable characteristics in 

comparison to commercial sensors, it was determined that matrices consisting of 

individual sensors would lead to excessive wiring and thus, excessive bulk and 

weight in our sensing skin (see Figure 13a and 13b). This increased bulk could 

interfere with sensor function when sensing skins from multiple body regions 

were introduced. Thus, we sought to develop a conductive side of an FSR sensor 

with multiple integrated sensors on a single substrate that also incorporated 

wiring to join the sensors. This approach would lead to a uniform thickness 

across the sensing matrix. Wiring for all sensors within the matrix were designed 

to have a common terminal point that would interface with external cabling. 

A sensor matrix design incorporating eight (8) individual sensors and their 

associated wiring was generated for the ATD forearm (Figure 4). This matrix 

configuration was established with the intent of being able to wrap it, enveloped 

with neoprene protective layers, around the ATD forearm. 
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Figure 4: Drawing of forearm conductive side of integrated sensor matrix 

incorporating 8 individual sensors and associated wiring and terminal end 

connection. 

 In order to have this matrix design made by a contract manufacturer we 

approached several companies and the quotes to do so came in ranging from 

$3,000 to $18,000. This was just for a single forearm design, so extrapolating this 

cost to the entire ATD, even with our providing each ATD body region integrated 

matrix design, would lead to a cost prohibitive sensing skin. Thus we embarked 

upon attempting to fabricate this forearm sensor matrix design using affordable 

in-house capabilities. 

The two approaches that were evaluated for their feasibility include 

1) photolithography - typically used to transfer geometric patterns from a 

mask to the surface of a silicon wafer, and  
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2) Printing the sensor matrix pattern directly onto flexible copper clad 

using a solid ink laser printer, followed by a copper etching process.  

Appendix C outlines the steps used to attempt to create the integrated 

sensor matrix conductive side using photolithography in the University of 

Louisville Micro/Nanotechology Center (clean room). As described in Appendix 

C, this method was found to produce a pattern with discontinuities, and thus was 

deemed to be unacceptable. However, the direct printing of the conductive side 

pattern proved to be successful once we employed a solid ink laser printer. This 

method entailed direct printing of the pattern from a CAD-based drawing onto 

flexible copper clad sheeting fed into the printer. The copper clad sheeting with 

the pattern was then subjected to etching to remove unprotected copper, thereby 

retaining the wax-protected copper pattern (Figure 5). The final step was to 

protect the copper traces from corrosion by overlaying them with a tin coating. 

Joining the conductive side with a 1 M ohm semi-conductive material formed the 

FSR. 
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Figure 5: Conductive side forearm sensor matrix printed using solid ink on copper 

clad sheeting and etched. 

 

In comparison to commercial fabrication of our forearm sensor matrix 

design ($3000), our sensor material costs after purchasing a $600 solid ink 

printer (also used to produce subsequent sensor matrices) were approximately 

$20 and required approximately 5 hours for sensor fabrication. The in-house 

printed sensor was compared to initially established design criteria and was 

determined to have acceptable performance (Table 5). 
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Table 5: In-House Printed Sensor Performance Versus Design Criteria 
 

Sensor Technology U of L Printed Sensor Design Criteria 

Sensing range (kPa) 0–690 ≥ 0–760 

Sensing range (psi) 0 – 100 ≥ 110 

Resolution (sensors per cm2) >1 1 

Sensor elements Variable - 

Sensitivity (psi) 1 – 100 ≥ 0 – 110 

Error - ≤ 5% 

Response time (msec) ≤ 1 2 

Hysteresis - ≤ 5% 

Conformability 6.25 cm radius 6.25 cm radius 

Temperature range (°C) -15 to 200 -20 to 50 

Scan rate 250 kS/s Variable 

ADC resolution 16 Bit Variable 

Weight 0.2 gm/sensor 1 gm/sensor 

Thickness (mm) 0.3 mm 1 

Active area (mm x mm) Variable Variable 

Lifetime in cycles > 106 > 50,000 

Cost $ 0.41 ≤ $ 0.50 
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Prototype Sensing Skin Development 

We initially created a prototype(s) forearm sensing skin using off-the-shelf 

commercial sensors available in limited sizes and shapes. Forearm prototype 

sensing skins were generated using individual FSR sensors from Sensitronics. A 

total of 17 square sensors were used in this matrix prototype, where all sensors 

were protected by inner and outer neoprene layers cut in a pattern that fit 

snuggly when wrapped around the forearm (Figure 6). Ends of the neoprene 

were joined together to maintain placement on the forearm. 

 
Figure 6: Neoprene patterns (top and bottom layers) cut for the prototype matrix 

sensor that would wrap around the forearm. 

The FSR sensors forming the sensing skin prototype (Figure 7) were 

wired together so as to have a common lead that could be fed into the data 

acquisition system, where sensor data could be collected and processed using 

Labview. 
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Figure 7: Prototype sensor matrix showing the placement of the sensors in 

relation to the forearm and associated wiring.  

As previously stated, off-the-shelf sensors were only available in limited 

small sizes and incorporating them in the sensing skin would create a large 

sensor density on ATD surface. For smaller ATD surfaces such as the forearm, 

this may be acceptable, however to get full coverage of larger surfaces such as 

the chest and back, this would translate to a large number of sensors increasing 

bulk and weight. We looked into an alternative technology of piezo electric 

sensors that were available in larger sizes than off-the-shelf FSR’s. The 

piezoelectric film sensors were made by Measurement Specialties Inc (Figure 8) 

and function by producing an output voltage proportional to change in strain 

applied.  
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Figure 8: Piezoelectric film sensors designed by Measurement Specialties Inc. 

 

Ten piezo electric sensors were used to develop an additional prototype 

sensor matrix for the forearm of the test dummy. The matrix consisted of the 

piezo film sensors wired together to a common lead and sandwiched between 

two layers of neoprene cut to fit the dummy’s forearm (Figure 9). 

 
Figure 9: Prototype matrix using piezo-film sensors showing the placement of the 

sensor matrix. 
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Additional forearm sensing skins were developed using individual in-house 

milled sensors (Figure 10 b), and using the in-house printed integrated sensor 

matrix (Figure 10 c). As evident in Figure 10, the in-house integrated sensor 

matrix prototype (Figure 13c) led to a sensing skin having a uniform thickness 

and reduced bulk. Additionally this prototype had the lowest mass, an important 

factor when adapting the sensing skin to the ATD so as to not alter the inertial 

characteristics of the ATD. 

  

 

Figure 10 a. 

Prototype sensing 

skin using individual 

commercial sensors. 

Figure 10 b. Prototype 

sensing skin using individual 

in-house milled sensors. 

Figure 10 c. Prototype 

sensing skin using in-

house integrated sensor 

matrix. 

Figure 10: Comparison of forearm sensing skin prototypes  
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Conclusions 

We successfully established design criteria and requirements for the force 

sensors, and sensing skin that would be required in the surrogate bruising 

detection system. Testing and the evaluation results proved that commercial off 

the shelf sensors were too bulky to work into our needs and custom sensors from 

industry manufacturers would not be cost effective to get full coverage of the 

ATD. This led us down the path to custom develop our own in-house force 

sensors after finalizing on a viable method of production. The in-house sensors 

would prove to be the candidate sensors that would be a primary component in 

our surrogate bruising detection system. 
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  CHAPTER III: FORCE SENSING SKIN 

DESIGN AND DEVELOPMENT 

DESIGN AND DEVELOPMENT OF A FORCE SENSING SKIN ADAPTED TO A 

CHILD SURROGATE TO IDENTIFY POTENTIAL BRUISING LOCATIONS 

 

OVERVIEW 

Unexplained bruising is an early sign of child abuse. Bruising locations on 

the body can be an effective delineator of abusive versus accidental trauma.  

However, the ability to predict potential bruising locations associated with falsely 

reported events (e.g. bed falls, stair falls) in child abuse does not exist. In our 

study we adapted an existing pediatric anthropomorphic test device (ATD) with 

custom developed force sensors integrated into a conformable skin. The sensors 

were coupled to a data acquisition system through which recorded force data 

was displayed on a computerized body mapping image system. A simulated 

abdominal blow demonstrated the modified ATD’s capability to predict potential 

bruising location and impact force. To our knowledge no such system exists. This 

forensic tool can ultimately be utilized to develop a knowledge base of potential 

bruising “roadmaps” associated with accidental and abusive events. 
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INTRODUCTION 

Child abuse is a leading cause of fatality in children aged 0-4 years. An 

estimated 1,760 children die annually as a result of child abuse of which three-

quarters (75.7%) of the children were younger than 4 years old1. Infants (younger 

than 1 year) had the highest rate of fatalities among the group. Additionally, there 

were approximately 150,000 children who are permanently disabled each year in 

association with child abuse1. Many of the serious injuries and fatalities could 

have potentially been prevented if clinicians and child protective services were 

able to better distinguish between injuries associated with abuse versus those 

caused by accidents. Missed cases of child abuse have been shown to be as 

high as 71%, where children were presented to hospitals for their injuries and not 

evaluated for abuse2. Additionally, when perpetrators are charged with child 

abuse, little more than half of the cases move forward to prosecution as opposed 

to being screened out for reasons including the need for further investigation or 

insufficient evidence3. Therefore there is a need to provide clinicians, child 

protective services and law enforcement personnel with improved knowledge 

related to the types of injuries that are possible from common household 

accidents that are often falsely reported to be the underlying cause of injury in 

child abuse.  

Bruising is an early sign of abuse, and can be an effective indicator of 

child abuse. Although not life threatening, bruising characteristics and bruising 

patterns (constellation of individual bruises throughout the body) provide a 

“roadmap” documenting a child’s exposure to impact. Previous studies have 
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relied upon the use of instrumented anthropomorphic test devices (ATD), or test 

dummies, to investigate injury risk in common childhood falls and accidents4-7. 

However, the ability to predict potential bruising locations occurring in association 

with falsely reported events in child abuse does not exist, and could prove useful 

in the distinction between abusive and accidental injuries. 

In our study we propose to modify an existing pediatric ATD to allow for 

the prediction of potential bruising location in children during common household 

fall events that are often stated as false scenarios in child abuse. The scope of 

this project included the development of a “sensing skin” that was adapted to a 

commercial pediatric test dummy. This modified test dummy is capable of being 

used in mock laboratory experiments replicating common household injury 

events while the “sensing skin” measures and records levels of impact force and 

locations of impact on the human surrogate. This recorded data will provide a 

“roadmap” of the human surrogate’s contact exposure during a specific event 

and will identify the associated potential bruising roadmap for that specific event. 

 

METHODS 

 
System Overview 

The surrogate bruising detection system was developed specifically for the 

12 month old CRABI ATD (10 kg mass with a standing height of approximately 

30 in) since bruising in this age group of children who are not independently 

mobile is often suggestive of abuse29,34. Additionally there is a high rate of abuse 
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related fatalities in children aged 1 year or less1. The conceptual model of the 

surrogate bruising detection system (Figure 11) consists of the following 

components: 

 a pressure sensor integrated sensing skin, 

 a data acquisition system, and 

 a computerized body mapping image system. 

 

Figure 11. Conceptual model of surrogate bruising detection system (Patent No.: 

US 8,292,830 B2). 
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Sensor Overview  

There are a wide range of force/pressure sensors available having various 

operating principles and functional ranges. Additionally, they can have different 

shapes and sizes, and could be constructed from a variety of materials. The 

majority of the sensors available are based on resistive, capacitive, piezoelectric 

or optical technologies. We opted to use resistive based sensors in our 

application because of their relatively simple operation and ability to operate 

satisfactorily in impact environments (shock resistance). The operating principle 

of the resistive sensor is based on the conversion of a change in physical 

pressure applied to the sensor, to a relative change in the sensor’s electrical 

resistance. Mostly, resistive sensors measure an increase in applied force 

through a proportionate decrease in resistivity measured across the sensor 

electrodes. A typical resistive force sensor is made up of two parts. One part 

usually being a flexible polymer sheet that is either screen printed (thick film) or 

deposited (thin film) with conductive lines and the other part being a semi-

conductive or pressure sensitive ink printed on a flexible substrate. These two 

layers placed over each other make up a force sensing resistor (FSR). 

The ATD was divided into seven regions including the head, anterior 

torso, posterior torso, forearm, upper arm, thigh and shank; each requiring FSR 

coverage. Each section was individualized with a custom sensor array or matrix 

containing a varying number of sensor sizes and shapes depending on their 

location. This customized conductive layer was paired together with a semi-

conductive layer (Sensitronics LLC, Bow, WA) to produce the FSR. These 
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customized FSR’s were then integrated into a protective neoprene covering to 

form the sensing skin that could be easily adapted to the ATD’s body segments. 

Each individual sensing region of the ATD that was equipped with a sensor 

matrix has a flat flexible cable (FFC) that serves as an individual wire lead for all 

sensors in that region to complete the connection to the data acquisition system. 

 

Data Acquisition System (DAQ) 

The data acquisition system collected and compiled the output from the 

sensing skin adapted to the ATD. The sensor matrices FFC’s leading from each 

region of the ATD terminated on breakout boards that were wired to a connector 

block which in turn were connected to a DAQ card in the computer. Additionally, 

the resistive sensors in the sensing skin were connected to the DAQ through a 

voltage divider circuit to convert resistance to voltage; one sensor lead was 

connected to a power source and the other lead connected to ground, through a 

pull-down resistor. The points between the fixed pull-down resistor and the FSR 

served as the connection point to the analog input of the DAQ card.  

Data acquisition hardware (National Instruments, Austin, Texas, U.S.) was 

used to capture and convert the analog sensor output. The multifunctional 

input/output data acquisition cards (NI, PCI-6225) acquired, conditioned and 

digitized the sensor output signals. The National Instruments PCI-6225 data 

acquisition card is capable of measuring 80 single ended analog channels at a 

16 bit resolution and a sample rate of 250kS/s. A personal computer served as 

the platform for the data acquisition hardware. 
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Image Mapping 

Graphical programming application software (Labview 2009, NI) was used 

to acquire, process, analyze, store and present sensor output in a meaningful 

format. This software provides algorithms and functions designed specifically for 

analysis and signal processing. A Virtual Instrument (VI) was developed to 

accomplish this objective. An active 3D (3-dimensional) body map image 

representing the ATD served as a graphical interface and was developed using 

Labview (National Instruments) software. The body image was discretely 

mapped to the sensors on the ATD such that active sensor outputs (those which 

have been impacted) and their locations were displayed on the computerized 

body map image. Sensor outputs in terms of force were color-coded, designating 

a pre-determined force range so as to aid in the quick overview of locations with 

high intensities of impact. The color contours/gradients were generated as a 

function of the sensor recorded force and distance from the sensor. The region at 

the center of the sensor represented the color equating to the recorded force 

value. As the distance increased from the sensor, the color gradient radially 

propagated outward, decreasing the color representative force value. This 

reduction was proportional to the distance from the sensor. 

The three elements of the surrogate bruising detection system (sensing 

skin, DAQ, image mapping) were integrated into one functional unit with the 

capability to detect impact events, and present sensor outputs in a useful 
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computerized body map image that displays location of impact and level of 

impact force. 

RESULTS 

 
We designed individual custom sensor matrices for each of the seven 

regions of the ATD. However, to illustrate the design and development of the 

sensors we will limit our description to one of the seven regions of the ATD; the 

forearm. 

Adapted Sensing Skin  

Two-dimensional drawings of the sensor matrix and associated wiring 

terminating at a single point were prepared. The forearm section representing the 

conductive side of the sensor which consists of 8 individual sensors arranged to 

fit the contours of the ATD geometry is shown in Figure 12. 

 

Figure 12 : The sensor matrix schematic incorporating 8 individual sensors and 

associated wiring that constitute the forearm sensor matrix (A). The sensor 
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design etched on copper clad laminate, constituting the conductive side of the 

forearm sensor matrix illustrating the individual sensors and associated leads 

coming together at the terminal point where the ZIF connector was soldered (B). 

The sensor design pattern (Figure 3-A) was printed onto copper clad 

laminate (DuPont™ Pyralux®, FR 91130R) and then etched, generating the 

conductive side of the FSR. Following sensor fabrication, a zero insertion force 

(ZIF) connector was soldered to the matrix to facilitate easy attachment of a FFC 

lead that links the sensor matrix to the DAQ system (Figure 3-B). The copper 

clad sensor matrix was layered with the semi-conductive material (Sensitronics 

LLC, Bow WA) to form the force resistive sensors (FSR). This material has a 

resistance of 1MΩ, with standoff dots, that adds to the initial resistance of the 

sensor. The FSR was then sandwiched between two layers of neoprene that was 

cut in a pattern so as to conform to the ATD’s forearm (Figure 13). A high level of 

friction between the neoprene and ATD surface, as well as the conforming 

pattern, serves to limit movement of the neoprene relative to the ATD when the 

sensing skin is adapted to the ATD. 
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Figure 13: The forearm sensor matrix enveloped in neoprene, ready to be 

adapted to the ATD. 

 

Sensor Characteristics 

Once the output voltage from the sensors was read via the Labview VI 

and represented on the computer display, a means of calibration was established 

to convert the sensor voltage output into the appropriate units of force by 

adjusting the sensitivity of the force sensor. There are several factors affecting 

the calibration as the sensor output voltage is proportional to the sensor supply 

voltage, voltage divider resistance, semi-conductive material resistance, sensor 

space (spacing) and trace (width). Furthermore, sensor output is influenced by 

location-specific characteristics such as the variation in ATD surface 

curvature/contour and non-uniformity in the underlying substrate thickness of the 
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ATD representative soft tissue. Varying a sensor’s initial radius of curvature 

influences its unloaded voltage output, thereby introducing an offset that must be 

zeroed during calibration. Additionally, changes in underlying ATD surrogate soft 

tissue thickness has a direct influence on the stiffness of combined substrate 

underlying the sensor which could either decrease (softer ATD substrate) or 

increase (firmer ATD substrate) the sensor’s registered load. When force is 

applied to a sensor on the ATD, there is a deflection in the ATD underlying 

representative soft tissue, leading to depression of the sensor, which varies the 

sensor’s radius of curvature. The sensor output is dependent upon the extent of 

surrogate soft tissue deflection. Therefore it is essential to individually calibrate 

each sensor while properly positioned on the ATD to account for location-specific 

characteristics in the calibration curve. 

The sensors’ were calibrated (dynamically) while positioned on the ATD, 

using a force transducer to generate a specific load-voltage profile (Figure 14-A). 

Additionally, sensor repeatability was evaluated using a material testing system 

(MTS) (Figure 14-B) where sensors were subjected to loads of 10, 20 and 30 lbs 

while recording sensor output in order to compare sensor recorded and MTS 

applied loads. The force was administered on the sensor adapted to the forearm 

(approximate radius of curvature of 0.9 in) such that the ratio of force distribution 

area to sensor area was 0.25. The mean percent error recorded across the FSR 

measured load and the MTS measured load was 0.76%, 0.79% and 0.38% for 

the 10, 20 and 30 lbs, respectively. Figure 15 illustrates the loads exerted on the 
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sensor by the MTS versus the load measured by the FSR sensor during this 

testing. 

 

Figure 14: Load versus voltage calibration profile for the forearm sensor (A). FSR 

sensor repeatability testing schematic indicating a load applied to the sensing 

skin fitted on the ATD forearm (B). 

 

 
 

Figure 15: Loads of 10 lbs (n=6), 20 lbs (n=6) and 30 lbs (n=6) exerted by the 

MTS versus load measured by the FSR to demonstrate sensor repeatability 

(error bars show one standard deviation). 
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Although Figure 15 illustrates test data from 6 trials under 3 loading 

conditions for an individual sensor, this sensor is representative of all sensors 

implemented within the sensing skin given that FSRs use the same semi-

conductive and conductive materials and have the same space and trace. 

 

Computerized Body Mapping Image System 

The calibration data was entered into the customized Labview VI 

developed to collect sensor data through the DAQ cards. Within the Labview VI, 

the sensor matrix output was represented on a 3D image of the ATD, to provide 

visual details of location and active sensor force readings. Figure 16-A illustrates 

compression (i.e. squeezing) of the forearm with varying color intensities 

equating to the level of force measured by the sensors. Additionally the ATD 

abdomen was dynamically impacted with a fist blow to illustrate the body 

mapping system’s function (Figure 16-B). 
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Figure 16: 3D body mapping images of the forearm (overlaying the outline of 

individual sensors shown in white) (A) and complete ATD (B) capable of 

displaying varying colors dependent on the level of force imparted to specific 

regions of the body. Test results show peak force on the forearm sensor matrix 

associated with a squeezing action (A), and peak force on the abdominal region 

sensor matrix associated with a fist blow (B). 

 

The same design process described for the sensor matrix of the forearm 

body region (ranging from custom FSR design and fabrication, to FSR calibration 

and finally sensor integration into the DAQ system for 3D-image sensor mapping) 

was repeated for all other remaining body regions of the ATD to complete the 

entire surrogate bruising detection system. 
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DISCUSSION AND CONCLUSION 

ATD’s or crash test dummies provide valuable data related to how the 

human body reacts to crashes and have contributed greatly to this cause. They 

have been designed primarily to measure response to acceleration, deflection, 

force and moments generated during a crash. However, the capability to assess 

the potential for soft tissue injuries such as the bruising has not been addressed 

by current ATD designs. The goal of our system was to provide an ATD 

adaptation with the capability to record locations of impact and measure contact 

force during simulated events. These recorded contact locations are regions 

where soft tissue injury such as bruising may occur. The only comparable soft 

tissue injury assessment device is the Facial Laceration Measurement System 

(FMLS) produced by Humanetics Innovative Solutions Inc. (Plymouth, MI). Our 

device differs from the FMLS in that it is capable of measuring and recording 

location of contact and force applied to any region of the body rather than solely 

the face. 

Our system was designed so as to not inhibit the free motion of the joints 

or place any additional resistance on the ATD joints. This was achieved by 

limiting interference between the sensing skin and the moving components of the 

ATD. An additional goal was to assure that the inertial properties of the ATD 

were not altered. The total weight added to the ATD over the entire surface of 

coverage is approximately 1.4 lbs including all components of the sensing skin. 

When compared to the weight of the 12 month old ATD (22lbs) this equates to an 
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increase of approximately 6.4% evenly distributed over the coverage area which 

should not alter ATD dynamics as it relates to inertial characteristics. 

In the diagnosis, investigation, and legal prosecution of child abuse cases, 

bruising patterns (constellation of individual bruises throughout the body) are 

often overlooked by child protective services, pediatricians, law enforcement 

personnel, biomechanics experts, and the judicial system since these injuries are 

typically non-life threatening. However, ignoring the incidence of bruising patterns 

is a missed opportunity to gain a better understanding of the environment that a 

child has been exposed to. Bruising provides a “roadmap” illustrating the child’s 

exposure to force application. Previous studies have shown that bruising patterns 

resulting from abuse are significantly different than those resulting from 

accidents31,39 and our bruising detection system will aid in further distinguishing 

biodynamic compatibility between the bruising pattern and stated cause. The 

surrogate bruising detection system has the potential to influence child abuse 

diagnosis, investigation and prosecution by contributing objective biomechanical 

data to the overall assessment of the child’s injuries.  

Use of our device is expected to provide key personnel with objective data 

as to potential bruising locations that can be expected in common household 

accidents that are often provided as false histories in an effort to conceal child 

abuse. Conversely, use of the surrogate bruising detection system has the ability 

to provide objective data regarding potential bruising locations that can also 

serve to exonerate those who are innocent of alleged abuse. Thus, the surrogate 

bruising detection system provides an objective method to elucidate the 
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differences in potential bruising locations that can occur in abusive versus 

accidental trauma as a source of evidentiary data in the diagnosis and 

prosecution of child abuse.  

Additional applications could include the assessment of soft tissue injury 

risk in automotive crash safety testing, as well as to simulate and evaluate 

abusive versus accidental soft tissue injuries in the elderly population, as bruising 

can also be a marker of elder physical abuse60,61.  

 

LIMITATIONS 

The ATD has a total of 114 sensors that cover approximately 576 square 

inches. This implies an approximate sensor density of 0.2 sensors per square 

inch.  The number of discrete sensing points was guided by a study that 

retrospectively reviewed bruising histories from the medical record of children 

aged 0 to 48 months that had been admitted to the Pediatric Intensive Care Unit 

with either accidental or abusive trauma in an effort to develop a bruising clinical 

decision rule62. In that study, all skin findings were recorded in a skin assessment 

database that allowed for region-specific documentation. Each entry consisted of 

the type of skin finding, body region of skin finding, and the number of discrete 

skin findings. In our bruising detection system, we chose a sensor density to 

allow us to distinguish contact points on the ATD with equally distinguishable 

spatial resolution for the different body regions as in the study by Pierce et al62. 

Although an increased sensor density would have resulted in an enhanced 

resolution in sensor recordings it would have required an increased number of 
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sensors, connectors, and associated wiring; all of which would increase the 

weight of the bruising detection system and thus the ATD. Additionally, a higher 

sensor density implies an increased number of input channels to the DAQ 

system, thereby increasing the complexity and cost of the device.  

FSR sensor output is dependent on the ratio of force application area to 

sensor area. The sensors were calibrated at a 25% force application-sensor area 

ratio. However since it is difficult to predict how much of the sensor’s active area 

will be contacted while using the system in experiments, there could be a small 

percent error in the output force recorded by the sensors. For example, we found 

that in altering the ratio of applied force contact area to active sensor area, from 

25% to 75%, there was a maximum 3% error observed for constant loads of 10, 

20 and 30 lbs. Therefore, this limitation must be considered when interpreting 

force output data recorded by the system. 

The occurrence and severity of a bruise varies from person to person for a 

given application of forces given the many contributing factors that affect bruise 

development26,63,64. Extrinsic factors such as the amount of force applied, rate of 

force application, and distribution of the force over larger/smaller areas are 

parameters that can affect the presence or absence of a bruise. Additionally, 

intrinsic factors related to the physiological and anatomical structures, such as 

architecture of the skin, soft tissue thickness, toughness of skin, fat content, 

vessel fragility, and presence and depth of underlying bone add to the complexity 

of this physiological event64. Variables such as blood platelet levels, systemic 

blood pressure, vascular diseases and vasoactive or anticoagulant drug use in 
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addition to nutritional and allergy related disorders can have a great influence on 

the presence, absence and variability in intensity of bruise25,64-66. This implies 

that the minimum load to cause bruising, the “bruising threshold”, varies across 

individuals. However it can be said with some degree of certainty that larger 

forces are associated with a greater potential for bruising. So instead of 

definitively asserting the presence of a bruise, we envision our device to be used 

as an investigative tool to determine potential bruising locations occurring within 

a body region under specific loading conditions. 

The biofidelity of the CRABI ATD and in particular the soft tissue biofidelity 

is a limitation of our bruising detection system. The ATD surrogate tissue 

consists of a heat cured vinyl plastisol which is molded to mimic the contours of 

the body regions. There is urethane foam between the outer and inner layers of 

vinyl plastisol, which is compliant and is intended to represent the soft tissue of a 

child. The tissue biofidelity greatly influences force/pressure measured by our 

system as the sensor measured forces are proportional to the stiffness of the 

underlying ATD surrogate soft tissue. Also, since the CRABI ATD was primarily 

designed for measuring a child’s response to a high deceleration automotive 

crash environment, any testing conducted with the ATD in lower deceleration 

events (e.g. short distance falls) are limited by the biofidelity of the ATD. These 

limitations must be considered when using the ATD-adapted force sensing skin 

to assess bruising potential in falls. 
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CHAPTER IV: POTENTIAL BRUISING 

PATTERNS IN REARWARD FALLS  

POTENTIAL BRUISING PATTERNS ASSOCIATED WITH REARWARD FALLS 

IN CHILDREN 

 

OVERVIEW 

Children presenting multiple unexplained bruises can be an early sign of 

physical abuse. Bruising locations on the body can be an effective delineator of 

abusive versus accidental trauma.  However, the ability to predict potential 

bruising locations associated with accidents (childhood falls) often used as 

falsely reported events in child abuse does not exist. In our study we used a 12-

month old pediatric anthropomorphic test device (ATD) adapted with a custom 

developed force sensing skin to predict potential bruising locations during 

rearward falls from standing. The sensing skin measured and displayed recorded 

force data on a computerized body image mapping system when sensors were 

activated. Simulated rearward fall experiments were performed onto two different 

impact surfaces (padded carpet and linoleum tile over concrete) with two different 

initial positions (standing upright and posteriorly inclined) so that the ATD would 

fall rearward upon release. Findings indicated possibility of bruising in the 

posterior plane primarily within the occipital head and posterior torso regions.  
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INTRODUCTION 

The United States is infamous as one of the worst among developed 

nations in its prevalence of child abuse. On average between four and seven 

child fatalities occur daily because of child abuse and neglect in the U.S.1. Child 

abuse is a leading cause of fatality in children up to 4 years of age; an estimated 

1,520 children are fatally injured annually as a result of child abuse1. Infants (less 

than 1 year in age) are the most vulnerable to abuse and have the highest rate of 

fatalities of all age groups1.  

Bruising in children is visually apparent and is frequently an early 

manifestation of a child’s abusive environment. Accidental bruising is infrequently 

observed in infants, due to their low degree of independent mobility67. Bruising 

locations and bruising patterns (constellation of individual bruises throughout the 

body) provide a “roadmap” documenting a child’s exposure to impact. Health 

care professionals and law enforcement officials often have to address the 

question of likelihood that a child’s presenting injuries are compatible with history 

provided by the care giver. If injuries were distinguishable between accidental 

and abusive trauma, presenting abused children could be diverted from being 

reintroduced into their abusive environments which often results in further harm 

or death68.  

Previous studies have retrospectively highlighted differences in bruising 

patterns observed clinically, to provide a better understanding of skin findings in 

children that maybe at a high risk of abuse in their current 
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environment25,29,34,36,62,67,69,70. However, the ability to predict potential bruising 

locations associated with falsely reported events (e.g. short distance falls) in child 

abuse does not exist and could prove useful in the distinction between abusive 

and accidental injuries. 

In our study we used a bruising detection system to identify potential 

bruising patterns in simulated rearward falls from standing using a child surrogate 

representative of a 12-month old child (stage of early independent mobility). The 

bruising detection system consists of a pediatric anthropomorphic test device 

(ATD) adapted with a custom developed force sensing skin that is linked to 

display recorded force data on a computerized body mapping image system 

when the force sensors are activated71. Simulated rearward fall experiments 

were performed onto two different impact surfaces with two different initial 

positions, while recording ATD impact sites so as to predict potential bruising 

locations.   

The purpose of this study is to provide a “roadmap” of the child surrogate’s 

contact exposure during specific fall events and to identify whether variations in 

the fall parameters (impact surface, initial position) lead to differences in impact 

locations. Our goal was characterize potential bruising locations or patterns 

associated with a common childhood fall. 

 

METHODS 

The surrogate bruising detection system (SBDS), consisting of the 12 month old 

CRABI ATD (10 Kg mass) fitted with a force sensing skin and associated data 
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acquisition hardware and analysis software, was used to predict potential 

bruising patterns in simulated fall scenarios. The sensing skin of the SBDS 

consists of 114 force sensors enveloping the surface of the ATD that is divided 

into seven regions including the head, anterior torso, posterior torso, upper arm 

(arm), lower arm (forearm), upper leg (thigh), lower leg (shank). Each region has 

individualized custom sensor arrays. Graphical programming software (Labview 

2010; National Instruments, Austin, Texas) was used to acquire and display 

sensor output in a manner that relates sensor location to body region. Additional 

details of the SBDS and its individual components are described in earlier 

publications71,72.  

The SBDS was used to assess potential bruising locations on the body during a 

series of rearward fall experiments as this type of fall is commonly experienced 

by children who are in the early development stage of independent mobility. 

 

Test Setup 

The ATD was placed in an upright standing (orthostatic) position on 

ground level using a suspension system supported by a tripod with a manually 

operated release mechanism to allow the ATD to fall under the effect of gravity. 

The ATD has a standing height of 74.7cm (29.4 in). Fall experiments were 

conducted using two different initial conditions. The ATD was suspended to fall 

rearward upon release starting from two initial positions. The first initial position 

(Fig. 17) being a torso angle of 20 degrees (this was the minimum angle required 

to initiate repetitive rearward falls) and the second, 30 degrees to the vertical. 
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From now forward the 20 degree initial position will be referred to as the “upright” 

position and the 30 degree initial position will be referred to as the “inclined” 

position. The ATD’s CG height above ground level differed for each fall scenario 

(Table 6). In both fall scenarios the ATD’s feet were in contact with the ground at 

the start of the fall. To initiate a fall, the release mechanism was activated which 

released the ATD allowing it to fall rearward. 

 

Figure 17: ATD in an upright initial position (scenario 1) for simulated rearward 

fall experiments 

 

Prior to each fall, ATD joint angles were adjusted using a goniometer to 

ensure repeated positioning in all tests. Additionally, joint stiffness was calibrated 

to manufacturer specifications whereby the joints were tightened until the friction 

was just sufficient to support the weight of the limb against gravity. Two impact 

surfaces were evaluated for each fall scenario: 1) padded carpet over a wood 

subfloor and 2) linoleum tile over a concrete subfloor. The carpet surface 

consisted of a 1.3 cm (1/2 in) thick open loop carpet placed over 1.0 cm (3/8 in) 
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thick foam padding. The carpet and padding were placed over a 1.9 cm (3/4 in) 

thick plywood platform 183 cm x 91.5 cm (6 ft x 3 ft) built to standard building 

codes with 5.1 cm x 10.2 cm (2 in x 4 in) joists, spaced 40.6 cm (16 in) on center. 

0.32 cm (1/8 in) linoleum tile was adhered to a concrete subfloor for the second 

impact surface scenario used in fall experiments. 

 

Data Acquisition and Analysis 

The SBDS’s sensors consist of force sensing resistors whose outputs 

were fed to the data acquisition system through a voltage divider circuit to 

convert resistance to voltage. Data acquisition hardware (National Instruments, 

Austin, Texas) was used to capture and convert the analog sensor output. 

Multifunctional input/output data acquisition cards (PCI- 6225; National 

Instruments) acquired, conditioned and digitized the sensor output signals. A 

personal computer served as the platform for the data acquisition hardware. 

Graphical programming software (Labview 2010; National Instruments, 

Austin, Texas) was used to acquire, process, analyze, store and present sensor 

output. An active 3D body map image representing the ATD served as a 

graphical interface; the ATD body image was discretely mapped to the sensors 

on the ATD such that active sensor outputs (those which have been impacted) 

and their locations were displayed on the computerized body map image. Sensor 

measured forces were color-coded, designating a pre-determined force range so 

as to provide a quick overview of body regions with high intensities of impact. A 
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filtering lower bound force of 4.5 N (≈1 lb) was used to establish the onset of 

contact between the ATD and impact surface. 

Eight trials of each simulated rearward fall scenario (upright and 

posteriorly inclined initial positions) were conducted onto two different impact 

surfaces (padded carpet and linoleum) (Table 6). A total of 32 fall experiments 

were conducted. 

 

Table 6: Evaluated fall scenarios, ATD center of gravity (CG) position and impact 

surfaces 

Fall Type & Initial Position CG Height (cm/in) Surface Type 

Rearward – Upright 46 (18) 
Padded Carpet on Wood 

Linoleum Tile on Concrete 

Rearward – Posteriorly Inclined 38 (15) 
Padded Carpet on Wood 

Linoleum Tile on Concrete 

 

Motion Capture 

All falls were captured using a digital video camera (120 frames per 

second) to record overall fall dynamics.  The camera was positioned so that the 

line of sight was perpendicular to the ATD sagittal plane.  This allowed for 

qualitative assessment of fall dynamics. 
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Statistical Methods 

A two-way analysis of variance (ANOVA) test was used to analyze impact 

forces on body regions to determine if initial position and impact surface factors 

led to significant differences. Additionally, post-hoc tests were conducted to 

further examine where significant differences existed (p ≤ 0.05). Individual 

sensors were grouped by body region. Body regions were defined as head, 

anterior torso, posterior torso, left and right upper arm, left and right lower arm, 

left and right upper leg, and left and right lower leg.  

 

RESULTS 

 

Fall Dynamics 

All fall scenarios generated contact in one body plane (posterior) and no 

other body planes came in contact with the impact surface. 

 

Rearward Falls – Upright Initial Position 

In the upright falls (scenario 1), the ATD fell after release into a squatting 

position with hips and knees flexed (200 ms – Fig. 18), then rotated rearward 

(posteriorly) about the feet. The first body region contacting the impact surface 

was the posterior pelvis (320 ms – Fig. 18), followed by the posterior aspect of 

the head and torso (450 ms – Fig. 18). Upon initial impact the ATD head and 

torso rebounded upward and rearward off the impact surface. This led to nearly 
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simultaneous secondary impact of the posterior head and torso (500 ms – Fig. 

18). The body map images (Fig. 18) correspond to the video capture images 

describing areas of contact during the fall sequence. Since we were primarily 

concerned with the initial impact event, data associated with the secondary 

impact following rebound was not evaluated. Additionally, there were no 

observable differences in fall dynamics across surface type. 

t = 20 ms t = 200 ms t = 320 ms t = 450 ms t = 500 ms 

     

     

Figure 18: Frame sequences showing video capture of the upright initial position 

fall onto the carpet surface and SBDS body map images at corresponding time 

intervals. The body map images show the posterior ATD where the colors and 

intensities vary depending on the level of force (N) imparted to specific regions 

during the fall event. 
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Rearward Falls – Posteriorly Inclined Initial Position 

In the inclined falls (scenario 2), the ATD torso fell downward flexing at the 

hip, followed by rearward rotation of the torso about the hip (hip extension). As 

the torso was rotating posteriorly about hip the neck extension occurred allowing 

the head to rotate posteriorly. The first body regions contacting the impact 

surface were the posterior pelvis and upper legs (200 ms – Fig. 19). The pelvis 

then rebounded, while the head and torso continued to rotate rearwards (350 ms 

– Fig. 19). Finally the occipital region of the head and posterior torso impacted 

the surface with the head leading the torso (450 ms – Fig. 19). Similar to the 

upright fall scenario, there were no visual differences in fall dynamics across 

surface type for the inclined falls. There was reasonable agreement between the 

body map images and video images of the fall sequence (Fig. 19). 

t = 20 ms t = 200 ms t = 350 ms t = 450 ms t = 500 ms 
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Figure 19: Frame sequences showing video capture of the inclined initial position 

fall onto the carpet surface and SBDS body map images at corresponding time 

intervals. The body map images show the posterior ATD where the colors and 

intensities vary depending on the level of force (N) imparted to specific regions 

during the fall event. 

Contact Forces 

The occipital region of the head and posterior torso were the two common 

body regions to contact the impact surface during all conducted falls. The mean 

peak impact force for the head (1995 N ± 162) and posterior torso (1050 N ± 

154) were the highest in falls having an upright initial position onto the linoleum 

over concrete surface. The lowest mean peak impact force to the head (1050 N ± 

79) occurred during the falls having a posteriorly inclined initial position with 

impact onto the carpet over wood surface. The lowest mean peak impact force to 

the posterior torso (244 N ± 61) occurred during falls with an upright initial 

position onto the carpet over wood surface (Table 7).  

Table 7: Mean (8 trials) peak contact force (N ± CI) for each body region in 

various fall scenarios 

Body Region 
Concrete 
Upright 

Concrete 
Inclined 

Carpet 
Upright 

Carpet 
Inclined 

Head 1995a ( ± 162) 1397 ( ± 62) 1372 ( ± 90) 1050a ( ± 79) 

Anterior Torso ↓ ↓ ↓ ↓ 

Posterior 
Torso 

1050a ( ± 154) 529a ( ± 93) 244 ( ± 61) 291 ( ± 47) 

Left Upper 
Arm 

↓ ↓ ↓ ↓ 
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Body Region 
Concrete 
Upright 

Concrete 
Inclined 

Carpet 
Upright 

Carpet 
Inclined 

Right Upper 
Arm 

11a ( ± 1) ↓ ↓ ↓ 

Left Lower 
Arm 

16b ( ± 5) 12b ( ± 1) ↓ ↓ 

Right Lower 
Arm 

9b ( ± 1) 12b ( ± 1) ↓ ↓ 

Left Upper 
Leg 

↓ 59a ( ± 31) ↓ 19a ( ± 2) 

Right Upper 
Leg 

↓ 71a ( ± 38) ↓ 22a ( ± 3) 

Left Lower 
Leg 

20b ( ± 11) 16b ( ± 5) ↓ ↓ 

Right Lower 
Leg 

22b  ( ± 5) 12b ( ± 6) ↓ ↓ 

↓ – represents recorded forces that were below the established filtering lower bound of 5% of ATD body 

weight. 

a – represents significant difference between designated cell and all other fall scenarios for a given body 

region. 

b – represents significant differences between designated cell and other fall surface (for both initial 

conditions) for a given body region. 

Head forces differed significantly across falls of varying initial position and 

impact surface type, F(3,28) = 78.13, p < .001, ω = 0.95. Both main effects of 

position and surface for head force were statistically significant indicating that 

head force differs between falls onto concrete and carpet F(1,28) = 118.49, p < 

.001, ω = 0.89 and between falls with an upright and inclined initial position 

F(1,28) = 106.46, p < .001, ω = 0.89.  The interaction effect of surface and 

position was also significant F(1,28) = 9.59, p < .05, ω = 0.51, indicating that 

head force measured during impact onto different surfaces was influenced by 

initial position. Post-hoc Tukey’s HSD tests indicated that head impact forces 

generated in both the concrete upright fall type and carpet inclined were 
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statistically significant from all other fall types (p < .001). However, the concrete 

inclined and carpet upright fall types did not differ significantly (p > 0.05).  

Posterior torso forces differed significantly across falls of varying initial 

position and impact surface type, F(3,28) = 79.56, p < .001, ω = 0.95. Both main 

effects of position and surface for posterior torso force were statistically 

significant indicating that posterior torso force differs between falls onto concrete 

and carpet F(1,28) = 158.85, p < .001, ω = 0.92 and between falls with an upright 

and inclined initial position F(1,28) = 32.82, p < .001, ω = 0.73.  The interaction 

effect of surface and position was also significant F(1,28) = 47.01, p < .05, ω = 

0.79, indicating that posterior force measured for different impact surfaces is 

moderated by initial position. Post-hoc Tukey’s HSD tests indicated that both the 

concrete upright and concrete inclined fall type were statistically significant from 

all other fall types (p < .001). However, the carpet upright and carpet inclined fall 

types did not differ significantly (p > 0.05). 

Contact Regions 

Linoleum over concrete 

The regions of maximum recorded force by the SBDS for the upright and 

inclined reward falls onto linoleum on concrete surface show a difference in 

locations of impact (Fig. 20.). The occipital region of the head and the posterior 

torso reflect the majority of the impact forces with the lower leg and lower arm 

showing minor forces. The posterior regions of the upper legs only observed 
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contact in the inclined falls. The inclined falls appear to have no force imparted to 

the topmost region of the posterior torso in comparison to the upright falls.  

Upright Inclined 

        

Figure 20: Maximum impact force across 8 trials for each initial position scenario 

as recorded by the SBDS for rearward falls onto linoleum over concrete surface. 

The body map images show the posterior ATD where the colors and intensities 

vary dependent on the level of force (N) imparted to specific regions during the 

fall event. 

Carpet over wood 

The regions of maximum recorded force by the SBDS for the upright and 

inclined reward falls onto carpet on wood surface show variation in locations of 

impact (Fig. 21.). The occipital region of the head and the posterior torso again 

reflect the majority of the impact forces, while the posterior regions of the upper 

legs only observed contact in the inclined falls. The inclined falls also appear to 
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have no force imparted to the topmost region of the posterior torso in comparison 

to the upright falls.  

Upright Inclined 

     

Figure 21: Maximum impact force in across 8 trials for each initial position 

scenario as recorded by the SBDS for rearward falls onto carpet on wood 

surface. The body map images show the posterior ATD where the colors and 

intensities vary dependent on the level of force (N) imparted to specific regions 

during the fall event. 

DISCUSSION AND CONCLUSION 

Dynamics 

For the fall dynamics, we primarily analyzed the initial contact with the 

impact surface and any secondary or rebound impacts were disregarded. Prior 

studies7,73,74 have shown that differences in initial position, fall dynamics and 

impact surfaces in fall experiments using the CRABI 12 ATD have a notable 
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effect on recorded outcome measures. For this reason we chose to explore two 

initial positions and two impact surfaces in our fall experiments. There were 

observed differences in fall dynamics between the two initial positions (upright 

and inclined). In the upright falls, the ATD fell after release into a squatting 

position with hips and knees flexed, and then rotated rearward about the feet. 

These fall dynamics closely resemble the dynamics of a previous study by 

Thompson et al.7 where feet-first free falls  from three fall heights were simulated 

using the CRABI 12 onto five impact surfaces to determine the influence of fall 

environment characteristics on head injury risk outcomes. In 46 cm (18 in) falls, 

Thompson et al.7 found similar ATD dynamics, where the first major impact with 

the ground surface occurred at the pelvis followed by the torso and then head. 

Differences in fall dynamics between the two impact surfaces did not show 

any observable influence in our experiments. This may be as a result of the feet 

always being in contact with the floor surface from the start of the falls and lack of 

relative movement between the feet and surface in all experiments. The lack of 

relationship between impact surface and fall dynamics in our experiments is 

similar to the findings of Thompson et al.7 which revealed no differences in fall 

dynamics in 46 cm (18 in) falls onto 5 different impact surfaces (padded carpet, 

playground foam, linoleum over wood, linoleum over concrete, wood) having 

varying frictional properties.  
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Forces   

The mean peak head impact force (1995 N ± 162) was the highest in falls 

having an upright initial position onto the linoleum over concrete surface and the 

lowest mean peak head impact force (1050 N ± 79) occurred during the falls 

having a posteriorly inclined initial position with impact onto the carpet over wood 

surface. Using the CRABI 12 ATD to assess head injury risk in experiments over 

three fall heights and five surfaces, Thompson et al.7 found falls onto linoleum 

over concrete and carpet over wood from 46 cm (18 in) generated peak resultant 

linear head accelerations of 89 g and 37 g respectively. Based upon the ATD 

head accelerations and head mass of 2.6 Kg (5.8 lb), calculated head impact 

forces for the Thompson et al.7 study result in 2305 N (± 567) and 971 N (± 299) 

for falls onto linoleum over concrete and carpet over wood respectively. 

Prange et al.75 dropped cadaveric pediatric head specimens ranging in 

age of 1, 3 and 11 days and the CRABI 6 month old ATD head from heights of 15 

cm and 30 cm onto a flat anvil while measuring head accelerations on different 

regions of the head (vertex, occiput, forehead, right parietal, left parietal). The 

pediatric head impacts for the occipital region resulted in an average peak 

acceleration of 39 g and 55 g for the 15 cm and 30 cm fall heights, respectively. 

The ATD head drop impacts resulted in accelerations of 39 g and 62 g for the 15 

cm and 30 cm heights, respectively. The CRABI 6 month old has a head mass of 

2.1 Kg (4.6 lb)  which results in a calculated head impact force of 817 N (184 lb) 

for the 15 cm (5.9 in) fall height and 1275 N (± 286 lb) for the 30 cm (11.8 in) fall 

height. 
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Coats et al.76 studied impact force and angular acceleration associated 

with low-height falls in infants. They developed an instrumented infant (1.5 month 

old) surrogate to measure the forces and 3D angular accelerations associated 

with falls from low heights (0.3–0.9 m) onto three impact surfaces - mattress, 

carpet pad, or concrete. The surrogate was dropped from a supine position with 

arms and legs extended to the sides of the body. Results of the study revealed 

peak head impact forces from surrogate drops onto concrete being significantly 

larger than those onto carpet (p < 0.001). The peak head impact force in the fall 

experiments was approximately 500 N for both 0.3 m (12 in) drops onto carpet 

and concrete surfaces and approximately 650 N and 1000 N for the 0.6 m (24 in) 

drop onto carpet and concrete respectively. 

The head impact forces measured in our fall experiments in comparison to 

the studies described above are summarized in Table 8. Head forces associated 

with upright falls onto both impact surfaces in our experiments are in reasonable 

agreement with those reported by Thompson et al.7 for falls using the same ATD 

and initial position. The head impact forces determined using data from the 

Prange et al.75 and Coats et al.76 studies are generally lower than our findings for 

a few reasons. Prange et al.75 conducted head drop tests on an anvil using a 

smaller ATD (CRABI 6) in comparison to our testing using the entire ATD (CRABI 

12) dropped onto carpet and concrete. Coats et al.76 used a custom designed 

ATD which is younger in age (1.5 months) to ours (12 months) and has a neck 

design that is less stiff than the CRABI 12 ATD neck. In addition to the reduced 

neck stiffness, the lighter mass of the head and different initial position (supine) 
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in Coats et al.76 study reflect head forces that differ from our study. The head 

force in falls conducted by Thompson et al.7 are close in comparison to ours 

however it should be noted that those forces were calculated from measured 

head accelerations and head mass and are therefore approximates of actual 

head forces.  

Table 8: Comparison of head impact forces, ATD head properties and initial 

conditions for various fall studies 

 Our study  
CRABI 12 

Thompson et al.7 
CRABI 12 

Prange et al.75 
CRABI 6 

Coats et al.76 
1.5 month 

ATD 

Head force – 
carpet (N) 

1050 – 
1375 

972 a – 500 – 650 

Head force – 
concrete (N) 

1397 – 
1995 

2305 a 817 & 1275 a,  b 1000 

Head contact 
region 

Occiput Occiput Occiput Occiput c  

Head mass 
(Kg) 

2.6 2.6 2.1 1.0 

ATD initial 
position 

Inclined, 
Upright 

Upright Head drop Supine 

Fall height 
(cm) 

38, 46 46 15, 32 30, 60, 90 

a
Force calculated from measured acceleration and head mass. 

b
Drops ono an anvil surface. 

c
Assumed to be to the posterior aspect of the head (based on initial position) but not specified in 

study. 

Contact Regions 

Across all (n=32) trials in all fall scenarios, the occipital head and posterior 

torso were the common regions of impact in rearward falls. Considering the 

dynamics of a rearward fall, impact in those regions was expected.  For falls onto 

carpet over wood, the common regions of impact for both initial positions were 
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the head and posterior torso. In addition to these common regions, sensors on 

the upper leg indicated impact for the inclined fall position. For falls onto linoleum 

over concrete, the common regions of impact for both initial positions were the 

head, posterior torso, lower arm and lower leg. In addition to these common 

regions, sensors on the upper leg indicated impact for the inclined position.   

The commonality of impact to the upper legs in falls onto both surfaces for 

the inclined fall position is due to similar fall dynamics. In the inclined falls, the 

ATD fell into a seated position with legs fully extended on the ground, thus 

making contact on the upper leg region, whereas in the upright falls, the ATD 

rotated rearward while in a squat position onto his back thereby preventing 

contact of the upper legs. 

When evaluating children with bruises in an effort to delineate between 

accidental and abusive trauma, the location, and pattern (constellation of 

individual bruises throughout the body) of bruising are especially important. 

Maguire et al.77 conducted a review of current literature seeking to identify 

patterns of bruising that may be suggestive or diagnostic of abuse. The reviewed 

studies noted that bruises resulting from accidental trauma occurred 

predominantly on the anterior regions of the body, over bony prominences and 

were correlated to the child’s level of independent mobility. In abused children 

the bruises tended to be larger and the most common sites were the face, neck, 

ear, head, trunk, buttocks, and arms. 
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Pierce, Kaczor et al.62  studied the skin findings (bruises, lacerations, etc.) 

of children ages 0-4 years that were admitted to the pediatric intensive care unit 

of a tertiary care children’s hospital where cause of injury was identified through 

the trauma registry as abuse or accident. Each patient’s age, and skin findings 

including bruising, body region of skin finding, and number of skin findings were 

recorded. A total of 95 patients were analyzed in the study; 42 patients were 

exposed to abusive trauma and 53 patients were exposed to accidental trauma. 

Differences in body regions with bruising were identified for children with abusive 

versus accidental trauma. The face, cheek, scalp, head, and legs had bruising in 

patients with abusive and accidental trauma; these regions did not delineate 

between accident and abuse. However, bruising to the ear, neck, hands, right 

arm, chest and buttocks regions were predictive of abuse. All bruising to the 

genitourinary area and hip occurred only in patients with abusive trauma  

Kemp et al.78 described the characteristics of bruising and the extent to 

which these differ between children (aged < 6 years) where abuse was confirmed 

and those where it was excluded in children with suspected physical abuse. Data 

was collected from 506 children; abuse was confirmed in 350 and excluded in 

156 children. Results indicated that abused children were significantly more likely 

to have bruising than those where abuse was ruled out. Abused children also 

had significantly more bruises, more bruising sites and clustering of bruises than 

the group where abuse was excluded.  Bruising to the left ear, cheeks, neck, 

trunk, front of thighs, upper arms, buttocks and genitalia were found significantly 

more frequently in abused children, than when abuse was ruled out. 
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When assessing body regions of impact during simulated falls, it is 

important to compare ATD morphology/geometric shape to that of an infant’s 

morphology. While the CRABI 12 ATD represents the anthropometrics and mass 

distribution of a 12-month-old 50th percentile infant, its morphology (external 

shape/geometry) may vary somewhat from that of a 12-month-old 50th percentile 

infant. For example, the ATD morphology does not replicate soft tissue of the 

buttocks region; instead in our study, the proximal posterior upper leg region of 

the ATD represents the buttocks. The ATD head morphology provides a 

reasonable replica of a 12-month child when viewed (Fig. 22) but does not 

include ears, nose, lips and orbital region as individual features. However, we did 

not observe contact or impact to the facial region in our simulated falls. Also, the 

ATD head morphology does not represent the caudal most aspects of the 

occipital region or the mandible. Thus, it would not be possible to measure and 

record impact to these regions.  
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Figure 22: Lateral comparative overlay of 11-month-old child (3D reconstruction 

of CT imaging) and 12-month-old CRABI ATD (transparent; blue) highlighting 

morphological differences in head profile. 

The impact regions recorded in our testing in comparison to the bruising 

locations found on children from relevant studies described above are 

summarized in Table 9.  
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Table 9: Comparison of potential bruising locations in our study to observed 

bruising in previous clinical studies 

 Our study Kemp et al.78  Maguire et 
al.77  

Pierce et 
al.62  

Regions of 
Abusive 
Bruising 

- Cheek, ear, 
neck, trunk, 

head, front of 
thighs, upper 

arms 

Head including 
face, front of 

body, ear, 
neck, trunk, 

arms, buttocks 

All regions 
including 
torso, ear 
and neck 

Regions of 
Accidental 
Bruising 

aHead occipital, 
posterior torso, 
posterior upper 
leg, posterior 

lower leg, 
posterior lower 

arm 

Rear trunk, 
head 

Knees, shins, 
head, forehead, 

hands, back, 
buttocks, 

forearm, foot 
and abdomen 

All regions 
excluding 
torso, ear 
and neck 

 

In our study we predominantly found impact to the head occipital region 

and posterior torso. The upper legs, lower legs and lower arms were impacted, 

however magnitudes of force were lower than those measured to the occipital 

and posterior torso regions. Compared to previous clinical studies describing 

bruising locations for a range of accident types, the head and posterior torso 

were found to be common regions of bruising77,78. Parallel to Kemp et al.78, 

Maguire et al.77 and Pierce et al.62 we did not find impact or potential for bruising 

to the ears or neck.  However, Kemp et al.78 and Maguire et al.77 did not report 

fall description, mechanism or injury causation. Thus, this limits direct 

comparisons to those studies as our experimental findings are specific to one fall 

scenario. The study by Pierce et al.62 did indicate cause of accidental trauma, 

however children in their study were admitted to the hospital’s intensive care unit 

(ICU) and had severe injuries likely associated with high energy events unlike a 
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fall from standing height. A key distinction in this comparison is that the 

experimental falls identify all regions of contact with the impact surface during a 

specific, controlled fall scenario where a bruise could potentially develop, but not 

necessarily occur. Our experimental results do not predict bruising; rather only 

identify fall specific contact locations where potential bruising may occur. 

 

LIMITATIONS 

 The biofidelity of the CRABI ATD and in particular the soft tissue biofidelity 

is a limitation of the SBDS. The ATD surrogate “soft tissue” consists of a heat 

cured vinyl plastisol that is layered with urethane foam between the outer and 

inner layers. The plastisol is compliant and molded to mimic the body contours 

representing “soft tissue”. SBDS sensor measured forces are proportional to the 

stiffness of the underlying ATD surrogate soft tissue; therefore soft tissue 

biofidelity greatly influences the measured forces. However, our primary goal was 

to determine points of contact during various injurious events and secondarily to 

assess relative levels of force imparted to different regions of the body. Thus, 

biofidelic limitations of the surrogate soft tissue do not prevent us from meeting 

our goals. 

Also, since the CRABI ATD was primarily designed for measuring a child’s 

response to a high energy automotive crash environment, any findings from 

testing conducted with the ATD in lower deceleration events such as falls should 

be interpreted in light of biofidelity limitations. For example, the neck is somewhat 
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stiffer with limited range of motion designed for frontal impacts having little or no 

out of plane motion. The rubber elements that attach the limbs to the ATD torso 

are used in the hip and shoulder joints to provide the CRABI infant-like range of 

motion, but are an approximation of true infant biofidelity. In addition, joints of the 

shoulders, elbows, hips, and knees of the ATD are limited to motion primarily in 

the sagittal plane. Though ATD kinematics in our simulated falls occurred 

primarily in the sagittal plane, any out of plane motion may lead to inaccuracies in 

kinematics and force measures. Varying ATD joint stiffness could additionally 

alter fall dynamics thereby influencing impact locations and forces. Additionally, 

we were unable to implement sensors in the neck region of the ATD given its 

construction (segmented rubber and aluminum disks), but based on our 

experimental fall dynamics, the ATD neck had a low likelihood of contact/impact 

during falls. 

The occurrence of a bruise varies from person to person for a given 

application of force based on many contributing factors that affect bruise 

development. Extrinsic factors include the amount of force applied, rate of force 

application, and distribution of the force over larger/smaller areas, intrinsic factors 

related to the physiological and anatomical structures include the architecture of 

the skin, soft tissue thickness, toughness of skin, fat content, vessel fragility, and 

presence and depth of underlying bone add to the complexity of this 

physiological event. Variables such as blood platelet levels, systemic blood 

pressure, vascular diseases and vasoactive or anticoagulant drug use in addition 

to nutritional and allergy related disorders can have a great influence on the 
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presence, absence and variability in intensity of a bruise. This implies that the 

minimum load to cause bruising, the “bruising threshold”, varies across 

individuals. However it can be said with some degree of certainty that larger 

forces are associated with a greater potential for bruising. So instead of 

definitively asserting the presence of a bruise, we are assessing potential 

bruising locations occurring within a body region under specific fall conditions. 

While our findings predicted potential bruising locations in a rearward fall 

from standing using the SBDS, limitations described herein must be considered. 

The experimental falls identify all regions of contact with the impact surface 

during a specific, controlled fall scenario where a bruise could potentially 

develop, but not necessarily occur. Our experimental results do not predict 

bruising; rather only identify fall specific contact locations where potential bruising 

may occur. Despite these limitations, the capability to predict potential bruising 

locations or patterns is useful when attempting to determine compatibility 

between a stated cause and associated skin findings in forensic analyses. 
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CHAPTER V: POTENTIAL BRUISING 

PATTERNS IN BED FALLS  

POTENTIAL BRUISING PATTERNS ASSOCIATED WITH BED FALLS IN 

CHILDREN 

 

OVERVIEW 

It is difficult to differentiate abusive from accidental injury in children as 

accidental falls are common occurrences in early childhood and falls are 

frequently stated as explanations in an effort to conceal abuse by a caregiver. 

Bruising injuries are one of the most common early signs of child abuse as 

bruising locations on the body can be an effective delineator of abusive versus 

accidental trauma.  However, the ability to predict potential bruising locations 

associated with falsely reported fall events in child abuse does not exist. In our 

study we used a 12-month old pediatric anthropomorphic test device (ATD) 

adapted with a custom developed force sensing skin to predict potential bruising 

locations during bed falls. The sensing skin measured and displayed recorded 

force data on a computerized body image mapping system when sensors were 

activated. Simulated bed fall experiments were performed from two initial 

positions (facing forward and facing rearward) and two fall heights (24 in and 36 

in) onto a padded carpet impact surface. Findings indicated possibility of bruising 
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in two planes with impact location primarily within the frontal, temporal and 

parietal head, anterior and posterior torso and upper arm and upper leg regions. 

There was significant similarity between our fall experiments and clinical findings 

in cases of accident bed falls and change table falls in terms of number of 

bruising regions and no significance between our experiments and clinical 

findings in abuse cases. 

 

INTRODUCTION 

Child abuse is a leading cause of fatality in children up to 4 years of age 

and infants (less than 1 year in age) are the most vulnerable to abuse and having 

the highest rate of fatalities of all age groups1. Early detection of abuse from 

subtle injuries could help prevent those who are at risk from escalating abusive 

injuries. Unexplained bruising injuries in children are visually apparent and 

frequently an early manifestation of a child’s abusive environment. Accidental 

bruising is infrequently observed in infants, due to their low degree of 

independent mobility67. Bruising locations and bruising patterns (constellation of 

individual bruises throughout the body) provide a “roadmap” documenting a 

child’s exposure to impact.  

Falls from beds and other household furniture are common occurrences in 

children and sometimes result in injury but are also often used as false histories 

to conceal abuse4,73,76,79. Clinicians often have to address the question of 

likelihood that a child’s injuries are compatible with history provided by the care 

giver. Objective information about injury likelihood from household falls could 
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help distinguish between accidental and abusive trauma, thereby preventing 

abused children from being reintroduced into their abusive environments which 

often results in further harm or death68.  

Previous studies have retrospectively highlighted differences in bruising 

patterns observed clinically, to provide a better understanding of skin findings in 

children that maybe at a high risk of abuse in their current environment 

25,29,34,36,62,67,69,70. However, the ability to predict potential bruising locations 

associated with falsely reported events such as common household furniture falls 

does not exist and could prove useful in the distinction between abusive and 

accidental injuries. 

To identify potential bruising injuries and patterns in household furniture 

falls, we simulated falls from a horizontal surface representing a bed or change 

table. A bruising detection system71 was used to identify potential bruising 

patterns while simulating rolling off a bed surface using a child surrogate 

representative of a 12-month old. The bruising detection system consists of a 

pediatric anthropomorphic test device (ATD) adapted with a custom developed 

force sensing skin that is linked to display recorded force data on a computerized 

body mapping image system when the force sensors are activated. The effects of 

varying bed height and initial position on recorded impact regions predicting 

potential bruising locations was also examined. 

The purpose of this study is to provide a “roadmap” of the child surrogate’s 

contact exposure during specific fall events and to identify whether variations in 

the fall parameters (initial height, initial position) lead to differences in impact 
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locations. Our goal was characterize potential bruising locations or patterns 

associated with a common household furniture falls and compare our findings to 

skin findings observed in clinical cases. 

 

METHODS 

The surrogate bruising detection system (SBDS), consisting of the 12 

month old CRABI ATD (10 Kg mass) fitted with a force sensing skin and 

associated data acquisition hardware and analysis software, was used to predict 

potential bruising patterns in simulated fall scenarios. The sensing skin of the 

SBDS consists of 114 force sensors enveloping the surface of the ATD that is 

divided into seven regions including the head, anterior torso, posterior torso, 

forearm, upper arm, thigh and shank. Each region has individualized custom 

sensor arrays. Graphical programming software was used to acquire and display 

sensor output in a manner that relates sensor location to body region. Additional 

details of the SBDS and its individual components are described in earlier 

publications71,72.  

The SBDS was used to assess potential bruising locations on the body 

during a series of bed fall experiments as this type of furniture fall is commonly 

experienced by young children. 

Test Setup 

The ATD was placed in a side-lying position on the edge of a horizontal 

surface representing a couch, bed or change table (Fig. 23). A swinging 
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pendulum actuator supported by a tripod with a manually operated release 

mechanism was positioned at the ATD posterior mid-torso (approximate center of 

mass). The pendulum actuator provided a consistent initial force sufficient to 

initiate roll of the ATD from the bed surface and allow it to fall under the effects of 

gravity. Fall experiments were conducted using two different initial conditions and 

two different bed heights. The impact surface for all the falls was padded carpet.  

 

Figure 23: CRABI anthropomorphic test device (ATD) in side-lying, facing 

forward initial position for bed fall experiments. The pendulum actuator providing 

the initial force to the posterior torso of the ATD is located behind the ATD. 

 

Prior to each fall, ATD joint angles were adjusted using a goniometer to 

ensure repeated positioning in all tests (Table 10). Additionally, joint stiffness was 

calibrated to manufacturer specifications whereby the joints were tightened until 

the friction was just sufficient to support the weight of the limb against gravity. 

The impact surface evaluated for all fall scenarios was padded carpet over a 
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wood subfloor. The carpet surface consisted of a 1/2 in (1.3 cm) thick open loop 

carpet placed over 3/8 in (1.0 cm) thick foam padding. The carpet and padding 

were placed over a 3/4 in (1.9 cm) thick plywood platform 6 ft x 3 ft (183 cm x 

91.5 cm) built to standard building codes with 2 in x 4 in (5.1 cm x 10.2 cm) joists, 

spaced 16 in (40.6 cm) on center. 

Table 10: Initial joint angles for the side lying ATD 

Joint location Angle (degrees) 

Right shoulder angle 135 

Right elbow angle 110 

Left shoulder angle 0 

Left elbow angle 170 

Hip angle (both) 130 

Knee angle 100 

 

Data Acquisition and Analysis 

The SBDS’s sensors consist of force sensing resistors whose outputs 

were fed to the data acquisition system through a voltage divider circuit to 

convert resistance to voltage. Data acquisition hardware was used to capture 

and convert the analog sensor output. Multifunctional input/output data 

acquisition cards (Resolution - 16 bit, Sample rate - 250kS/s) acquired, 

conditioned and digitized the sensor output signals. A personal computer served 

as the platform for the data acquisition hardware. 
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Graphical programming software (Labview 2010; National Instruments, 

Austin, Texas) was used to acquire, process, analyze, store and present sensor 

output. An active 3D body map image representing the ATD served as a 

graphical interface; the ATD body image was discretely mapped to the sensors 

on the ATD such that active sensor outputs (those which have been impacted) 

and their locations were displayed on the computerized body map image. Sensor 

measured forces were color-coded, designating a pre-determined force range so 

as to provide a quick overview of body regions with high intensities of impact. A 

filtering lower bound force of 4.5 N (≈1 lb) was used to establish the onset of 

contact between the ATD and impact surface. 

Five trials of each of the four simulated bed fall scenario (facing forward 

and facing rearward positions for both fall heights of 24 in and 36 in) were 

conducted onto padded carpet for a total of 20 fall experiments (Table 11). A 

sample size calculation on previously collected data from rearward fall 

experiments revealed five trials to provide a power of 0.8 with a medium (0.25) 

effect size.  

Table 11: Evaluated fall scenarios with surface height, ATD initial position and 

impact surface. 

Fall Type & Height (trials) Initial Position Surface Type 

Bed fall – 24 in (n= 5) Facing forward 

Carpet over wood 
Bed fall – 24 in (n= 5) Facing rearward 

Bed fall – 36 in (n= 5) Facing forward 

Bed fall – 36 in (n= 5) Facing rearward 
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Motion Capture 

All falls were captured using a digital video camera (120 frames per 

second) to record overall fall dynamics.  The camera was positioned so that the 

line of sight was perpendicular to the ATD sagittal plane.  This allowed for 

qualitative assessment of fall dynamics. 

Statistical Methods 

A two-way analysis of variance (ANOVA) test was used to analyze impact 

forces on body regions to determine if initial position and bed height factors led to 

significant differences. Additionally, post-hoc tests were conducted to further 

examine where significant differences existed (p ≤ 0.05). Data was evaluated for 

normal distribution. Individual sensors were grouped by body region. Body 

regions were defined as head, anterior torso, posterior torso, left and right upper 

arm, left and right lower arm, left and right upper leg, and left and right lower leg.  

 

RESULTS 

 

Fall Dynamics 

All fall scenarios indicated possibility of bruising in two planes with impact 

location primarily on the frontal, temporal and parietal head, anterior and 

posterior torso and upper arm and upper leg regions. 
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Facing Forward – 24 in bed height (FF24) 

In the initial position the ATD was facing the edge of the bed such that the 

longitudinal (mid-sagittal plane) axis of the body was parallel with the ground (10 

ms Fig.24). Subsequent to actuator-ATD contact, the ATD rolled forward about 

the edge of the bed surface (500 ms Fig. 24) longitudinally. During the free fall to 

the floor, the ATD continued to rotate about its longitudinal axis while 

simultaneously the head surpassed the feet just prior to impact (750 ms Fig. 24). 

The ATD impacted the floor surface on its lateral left with the left shoulder (the 

upper arm was impinged between the chest and floor) and left parietal head 

impacting at approximately the same time (790 ms Fig.24). Following the initial 

impact with the floor, the ATD rebounded upward off the floor before finally 

coming to rest (1000 ms Fig. 24).  

t = 10 ms t = 500 ms t  = 750 ms t = 790 ms t = 1000 ms 

    
 

 
 

Figure 24: Frame sequences showing video capture of the FF24 bed fall onto the 

padded carpet surface at corresponding time intervals. 

 

The SBDS body map image showing four views ( anterior, posterior, left 

lateral and right lateral) highlighting the ATD to floor surface impact locations 

(Fig. 25) for the FF24 bed fall as shown in Fig. 24 (t = 790 ms). Since we were 
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primarily concerned with the initial impact event, data associated with the 

secondary impact following rebound was not evaluated. 

 

Anterior Posterior Left Lateral Right Lateral 

    

Figure 25: SBDS body map image corresponding to the FF24 bed fall impact 

where the colors and intensities vary depending on the level of force imparted to 

specific regions during the fall event 

 

Facing Forward – 36 in bed height (FF36) 

In the initial position the ATD was facing the edge of the bed such that the 

longitudinal (mid-sagittal plane) axis of the body was parallel with the ground (10 

ms Fig. 26). Subsequent to actuator-ATD contact, the ATD rolled forward about 

the edge of the bed surface (500 ms Fig. 26) longitudinally. During the free fall to 

the floor, the ATD continued to rotate about its longitudinal axis while 

simultaneously the head surpassed the feet just prior to impact (875 ms Fig. 26). 

The ATD impacted the floor surface on its posterior side with the left posterior 

shoulder and parietal head at approximately the same time (875 ms Fig.26). 

Following the initial impact with the floor, the ATD rebounded upward off the floor 

before finally coming to rest (1000 ms Fig. 26).  
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t = 10 ms t = 500 ms t  = 850 ms t = 875 ms t = 1000 ms 

  
 

 
 

  

Figure 26: Frame sequences showing video capture of the FF36 bed fall onto the 

padded carpet surface at corresponding time intervals. 

 

The SBDS body map image showing four views ( anterior, posterior, left 

lateral and right lateral) highlighting the ATD to floor surface impact locations 

(Fig. 27) for the FF36 bed fall as shown in Fig. 26 (t = 875 ms). Secondary 

impact following rebound was not evaluated. 

 

Anterior Posterior Left Lateral Right Lateral 

    

Figure 27: SBDS body map image corresponding to the FF36 bed fall impact 

where the colors and intensities vary depending on the level of force imparted to 

specific regions during the fall event 
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Facing Rearward – 24 in bed height (FR24) 

In the initial position the ATD was facing away from the edge of the bed 

such that the longitudinal (mid-sagittal plane) axis of the body was parallel with 

the ground (10 ms Fig. 28). Subsequent to actuator-ATD contact, the ATD rolled 

rearwards about the edge of the bed surface (350 ms Fig. 28) longitudinally. 

During the free fall to the floor, the ATD continued to rotate about its longitudinal 

axis. The right arm was outstretched and leading the ATD followed by the legs 

and head which slightly trailed just prior to impact (565 ms Fig. 28). The ATD 

impacted the floor surface in a right anterior aspect with the right arm (the right 

lower arm was impinged between the chest and floor) followed by the legs, torso 

and right frontal head (625 ms Fig. 28). Following the initial impact with the floor, 

the ATD rebounded upward off the floor before finally coming to rest (1000 ms 

Fig. 28).  

t = 10 ms t = 350 ms t  = 565 ms t = 625 ms t = 1000 ms 

    
 

 
 

Figure 28: Frame sequences showing video capture of the FR24 bed fall onto the 

padded carpet surface at corresponding time intervals. 

 

The SBDS body map image showing four views ( anterior, posterior, left 

lateral and right lateral) highlighting the ATD to floor surface impact locations 
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(Fig.29) for the FR24 bed fall as shown in Fig. 28 (t = 625 ms). Since we were 

primarily concerned with the initial impact event, data associated with the 

secondary impact following rebound was not evaluated. 

 

Anterior Posterior Left Lateral Right Lateral 

    

Figure 29: SBDS body map image corresponding to the FR24 bed fall impact 

where the colors and intensities vary depending on the level of force imparted to 

specific regions during the fall event 

 

Facing Rearward – 36 in bed height (FR36) 

In the initial position the ATD was facing away from the edge of the bed 

such that the longitudinal (mid-sagittal plane) axis of the body was parallel with 

the ground (10 ms Fig. 30). Subsequent to actuator-ATD contact, the ATD rolled 

rearwards about the edge of the bed surface (350 ms Fig. 30) longitudinally. 

During the free fall to the floor, the ATD continued to rotate about its longitudinal 

axis. The right arm was outstretched and leading the ATD followed by the legs 

and slightly trailed by the head just prior to impact (700 ms Fig. 30). The ATD 

impacted the floor surface in an anterior aspect with the right arm followed by the 

legs, torso and right frontal head (770 ms Fig.30). Following the initial impact with 
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the floor, the ATD rebounded upward off the floor before finally coming to rest 

(1000 ms Fig. 30).  

t = 10 ms t = 350 ms t  = 700 ms t = 770 ms t = 1000 ms 

     

Figure 30: Frame sequences showing video capture of the FR36 bed fall onto the 

padded carpet surface at corresponding time intervals. 

 

The SBDS body map image showing four views ( anterior, posterior, left 

lateral and right lateral) highlighting the ATD to floor surface impact locations 

(Fig. 31) for the FR36 bed fall as shown in Fig. 30 (t = 770 ms). Secondary 

impact following rebound was not evaluated. 

 

Anterior Posterior Left Lateral Right Lateral 

    

Figure 31: SBDS body map image corresponding to the FR36 bed fall impact 

where the colors and intensities vary depending on the level of force imparted to 

specific regions during the fall event 
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Contact Forces 

The mean peak impact force for the head (2631 N ± 100), anterior torso 

(1990 N ± 63), right upper leg (2006 N ± 293) and left lower leg (907 N ± 167) 

were the highest in the FR36 falls. The mean peak impact force for the posterior 

torso (1945 N ± 146) and left upper arm (1598 N ± 118) were the highest in the 

FF36 falls. The mean peak impact force for the left upper leg (1249 N ± 158) was 

the highest in the FF24 falls. The lowest mean peak impact force to the head 

(2045 N ± 254) was in the FF24 falls (Table 12). A post hoc power analysis 

resulted in a power of 0.87 which demonstrates we maintained power based on 

the initial sample size analysis.  

 

Table 12: Mean (5 trials) peak contact force (N ± CI) for each body region in 

various fall scenarios 

Body Region FF24 FF36 FR24  FR36 

Head 2045 b (±254) 2510 (±179) 2223 b (±112) 2631 (±100)  

Anterior Torso 624 a  (±137) ↓ 912 a  (±99) 1990 a  (± 63) 

Posterior Torso 606 a  (±70) 1945 a  (±146) 944 a  (±192) ↓ 

Left Upper Arm 1583  (±112) 1598  (±118) ↓ ↓ 

Right Upper Arm ↓ ↓ ↓ ↓ 

Left Lower Arm ↓ 68 (±73) ↓ ↓ 

Right Lower Arm 44 (±37) ↓ 850 a (±115) ↓ 

Left Upper Leg 1249 a (±158) 424 (±155) 336 (±149) 399 (±173) 
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Body Region FF24 FF36 FR24  FR36 

Right Upper Leg ↓ ↓ 1371 a (±194) 2006 a (±293) 

Left Lower Leg 184 (±67) ↓ 322 (±202) 907 a (±167) 

Right Lower Leg ↓ ↓ ↓ ↓ 

 
↓ – represents recorded forces that were below the established filtering lower bound of 5% of ATD body 

weight. 

a – represents significant difference between designated cell and all other fall scenarios for a 
given body region. 

 
b – represents significant differences between designated cell and other fall height (for both initial 

positions) for a given body region. 
 

 

The head region recorded the highest levels of force in all falls when 

compared to other body regions. Additionally, since injuries to the head have the 

greatest consequences in terms of injury, we will primarily discuss the 

significance of head force on height and position factors. Head forces differed 

significantly across falls of varying fall heights and initial positions, F(3,16) = 

18.46, p < .001, ω = 0.88. Both main effects of height and position for head force 

were statistically significant indicating that head force differs between from 24 in 

and 36 in F(1,16) = 49.42, p < 0.001, ω = 0.83 and between falls with an facing 

forward and facing rearward initial position F(1,16) = 5.776, p < 0.05, ω = 0.28. 

The interaction effect of height and position was not significant F(1,16) = 0.21, p 

> 0.05, ω = 0.51, indicating that head force measured during impact for a certain 

height was influenced by initial position. Post-hoc Tukey’s HSD tests indicated 

that head impact forces generated by the 24 in fall heights were statistically 

significant from those in the 36 in fall heights for both initial conditions (p < 0.05). 
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However, the head forces generated for different initial positions for the same 

height did not differ significantly (p > 0.05).  

 

Contact Regions 

 

Facing Forward – 24 in and 36 in bed height 

The regions of maximum recorded force (all 5 trials) by the SBDS for the 

24 in (Fig. 32) and 36 in (Fig. 33) facing forward falls show a difference in 

locations of impact on the ATD. For the FF24 falls (Fig. 32), the left parietal 

region of the head, left upper arm and left upper leg reflect the majority of the 

contact forces with the impact surface. The left upper arm was trapped between 

the chest and floor and therefore we saw body contact between the medial 

aspect of the left upper arm and the chest. Additionally, the anterior plane, 

posterior plane and right lateral plane of the ATD recorded no contact with the 

floor. 

In comparison, the FF36 falls highlight impact on the left lateral posterior 

and show no contact in the anterior and right lateral planes of the ATD. 

Therefore, in addition to the left parietal region of the head, left upper arm and 

left upper leg, there was contact to the occipital head and left posterior torso 

regions (Fig. 33). 

Anterior Posterior Left Lateral Right Lateral 
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Figure 32: Maximum impact force across 5 trials as recorded by the SBDS for the 

FF24 fall scenario. The body map images show the anterior, posterior, left lateral 

and right lateral aspects of the ATD. The colors and intensities vary dependent 

on the level of force (N) imparted to specific regions during the fall event. 

 
 

Anterior Posterior Left Lateral Right Lateral 

    

Figure 33: Maximum impact force across 5 trials as recorded by the SBDS for the 

FF36 fall scenario. The body map images show the anterior, posterior, left lateral 

and right lateral aspects of the ATD. The colors and intensities vary dependent 

on the level of force (N) imparted to specific regions during the fall event. 

 

Facing Rearward – 24 in and 36 in bed height 

The regions of maximum recorded force (all 5 trials) by the SBDS for the 

24 in (Fig. 34) and 36 in and (Fig. 35) facing rearward falls show a difference in 

locations of impact on the ATD. For the FR24 falls (Fig. 34), the right frontal 
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region of the head and torso and right upper leg reflect the majority of the contact 

forces with the impact surface while the left upper leg and lower leg show minor 

forces. The right lower arm contact was from being impinged between the chest 

and floor surface. Additionally, the posterior plane, and left lateral plane of the 

ATD saw no contact with the floor. 

In comparison, the FR36 falls highlight impact on the anterior plane of the 

ATD and show no contact in the posterior and left lateral planes. There was 

contact on the frontal region of the head, anterior torso, right and left upper leg 

and left lower leg (Fig. 35). 

Anterior Posterior Left Lateral Right Lateral 

    

Figure 34: Maximum impact force across 5 trials as recorded by the SBDS for the 

FR24 fall scenario. The body map images show the anterior, posterior, left lateral 

and right lateral aspects of the ATD. The colors and intensities vary dependent 

on the level of force (N) imparted to specific regions during the fall event. 

 
 

Anterior Posterior Left Lateral Right Lateral 
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Figure 35: Maximum impact force across 5 trials as recorded by the SBDS for the 

FR36 fall scenario. The body map images show the anterior, posterior, left lateral 

and right lateral aspects of the ATD. The colors and intensities vary dependent 

on the level of force (N) imparted to specific regions during the fall event. 

 

A synopsis of the experimental bed fall results highlighting body planes 

with and without contact and body regions with and without contact with the floor 

surface is shown in Table 13 and Table 14 respectively 

Table 13: Overview of body planes with and without contact with the impact 

surface as observed in all conducted experimental falls. 

Fall Type Plane with Contact Plane without Contact 

FF 24 
Anterior (left)  

L lateral 

Posterior 

R lateral 

FF 36 
Posterior (right) 

L lateral 

Anterior 

R lateral 

FR 24 
Anterior 

R lateral 

Posterior 

L lateral 

FR 36 
Anterior  

R lateral 

Posterior 

L lateral 

Note: Individual sensor placement is not segregated along planes which implies that some 

sensors have coverage of multiple planes 
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Table 14: Overview of body regions with and without contact with the impact 

surface for all conducted experimental falls. 

Fall Type Region with Contact Region without Contact 

FF 24 

L parietal head  
L anterior torso a  

L lateral torso 
L upper arm  
L upper leg 
L lower leg 

 
Frontal head 

Occipital head 
R parietal head 
L posterior torso 
R anterior torso 
R posterior torso 

R lateral torso 
L lower arm  
R upper arm  
R lower arm 
R upper leg 
R lower leg 

 

FF 36 

L parietal head 
Occipital head  

L posterior torso 
L lateral torso 
L upper arm  
L upper leg 
L lower arm 

 
Frontal head 

R parietal head 
L anterior torso 
R anterior torso 
R posterior torso 

R lateral torso 
R upper arm  
R lower arm 
R upper leg 
R lower leg 
L lower leg 

 

FR 24 

Frontal head 
R parietal head 
R anterior torso 
R lateral torso  
R upper leg 
L Upper Leg 
L Lower Leg 
R lower arm 

 

 
Occipital head 
L parietal head 

R posterior torso 
L anterior torso 
L posterior torso 

L lateral torso 
R upper arm 
R lower leg  
L upper arm  
L lower arm  
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Fall Type Region with Contact Region without Contact 

FR 36 

Frontal head  
L anterior torso 
R anterior torso 

R upper leg 
L upper leg 
L lower leg 

 
Occipital head 
R parietal head 
L parietal head 

L posterior torso 
R posterior torso 

R lateral torso 
L lateral torso 
R upper arm  
R lower arm 
L upper arm  
L lower arm 
R lower leg 

 
a – contact due to body contact and not impact surface contact 

The results show a difference in the regions of contact and no contact as 

well as the planes of contact and no contact when comparing initial position and 

fall height. 

 

DISCUSSION AND CONCLUSION 

We chose to explore two initial positions and two fall heights in our fall 

experiments since prior studies7,73,74 have shown that differences in initial 

position and fall height while conducting fall experiments using the CRABI 12 

ATD have a notable effect on recorded outcome measures. Additionally, a bed 

fall height of 24 in closely represents household falls from a typical bed or couch 

while a 36 in fall height represents a typical change table height. 
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Dynamics 

For the fall dynamics, we primarily investigated the initial contact with the 

impact surface and any secondary or rebound impacts were ignored. There were 

similarities and observed differences in fall dynamics between the two initial 

positions (facing forward and facing rearward) and the two fall heights (24 in and 

36 in).  The similarities in dynamics between falls with varying bed heights and 

similar initial position maintains close until the moment of impact. In the higher 

falls (36 in), the larger fall distance allows the ATD to rotate longitudinally for a 

longer time period prior to impact. These findings are similar to a study done by 

Thompson et al80 that conducted a parametric sensitivity analysis on a validated 

computer model simulating a bed fall using a CRABI 12-month old. The model 

was used to investigate the influence of altering fall parameters on injury 

outcome measures. Thompson found that increasing or decreasing the bed 

height had an influence on fall dynamics and impact orientation. 

The fall dynamics of the FF24 falls closely resemble the dynamics of a 

previous study by Thompson et al.73 where bed fall experiments were simulated 

from a 24 in high horizontal surface using a CRABI – 12 month old onto five 

different impact surfaces. The initial position in the study was a side lying position 

similar to our facing forward position. The fall dynamics of the study closely 

resemble our study with rotation about the longitudinal axis while free falling to 

the ground and impacting with the head and left shoulder at approximately the 

same time. 
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Bertocci et al.4 simulated bed falls from a 27 in (0.68 m) high horizontal 

surface using a Hybrid II 3-year old ATD. The initial position in the Bertocci study 

was a side lying position similar to our facing forward position. Additionally, the 

fall dynamics were somewhat similar to ours prior to impact, however, possibly 

because of the size disparity in the Bertocci study ATD versus our ATD, their 

findings indicated the legs or pelvis of impacted the surface first where we 

noticed the shoulder and head first making contact in our experiments. 

The differences in fall dynamics when comparing falls with varying initial 

position (FF and FR) and similar fall heights shows the ATD has a tendency to 

rotate longitudinally a greater amount for the FR falls compared to the FF falls. 

The approximate longitudinal rotation of the ATD from the initial position until the 

moment of impact with the floor for the FF falls was ≈180 and ≈225  for the 24 

in and 36 in falls respectively. Alternatively the approximate longitudinal rotation 

of the ATD from the initial position until the moment of impact with the floor for 

the FR falls was ≈225 and ≈270  for the 24 in and 36 in falls respectively. This 

difference could be due to the orientation of the ATD’s flexed legs. In the FF 

initial position the legs provide rotational rigidity, thereby reducing the overall 

rotational (about the longitudinal direction) force generated on the ATD when 

struck by the fall initiating impactor. In the FR falls the legs had minimal influence 

in reducing the generated rotational (about the longitudinal direction) force as 

they were in the opposite direction of the fall. 
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Forces 

The mean peak head impact force (2631 N ± 100) was the highest in the 

36 in falls with a facing rearward initial position and the lowest mean peak head 

impact force (2045 N ± 254) occurred in the 24 in falls with a facing forward initial 

position. 

Several studies have investigated head injury risk in pediatric falls using 

varying representative ages of ATD’s. Thompson et al.73 conducted bed fall 

experiments from a 24 in high horizontal surface using a CRABI – 12 month old 

falling from a side lying position similar to our facing forward position. Thompson 

conducted the bed falls on five different impact surfaces and recorded an 

average linear head acceleration of 85 g for falls onto padded carpet. Based 

upon the ATD head accelerations and head mass of 2.6 Kg (5.8 lb) of the 

CRABI-12, calculated head impact forces for the Thompson73 study result in 

2170 N (± 140) for falls onto padded carpet over wood. 

Coats et al.76 studied impact force and angular acceleration associated 

with low-height falls in infants. They developed an instrumented infant (1.5 month 

old) surrogate to measure the forces and 3D angular accelerations associated 

with falls from low heights between 12 in and 36 in (0.3–0.9 m) onto three impact 

surfaces - mattress, carpet pad, or concrete. The surrogate was dropped from a 

supine position with arms and legs extended to the sides of the body. The peak 

head impact force in the fall experiments was approximately 650 N for the 0.6 m 

(24 in) drops and 1000 N for the 0.9 m (36 in) drops onto carpet surface. 
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Ibrahim et al81 simulated falls using an 18- month-old surrogate that was 

dropped from heights of 0.3 m, 0.6 m and 0.9 m (12 in, 24 in and 36 in) onto 

carpet pad and concrete. The surrogate was suspended above the floor in a 

supine position with the head lower than the feet (to ensure the head made 

contact the ground before the torso) and allowed to free fall until impact. Peak 

estimated head impact force was approximately 3715 N (± 850) and 4570 N (± 

285) for the 0.6 m and 0.9 m (24 in and 36 in) drops onto carpet pad respectively. 

Bertocci et al.4  conducted bed falls from a 0.68 m (27 in) high horizontal 

surface using a Hybrid II 3-yearold ATD with a similar initial position as compared 

to our facing forward falls. The falls were conducted onto 4 impact surfaces 

including wood, padded carpet, linoleum and playground-foam. Results indicated 

linear head accelerations of approximately 160 g (± 60) for falls onto padded 

carpet. Based upon the ATD head accelerations and head mass of 2.7 Kg (6 lb) 

of the Hybrid II 3 Year Old Child Dummy, calculated head impact forces for the 

Bertocci et al. study result in 4237 N for falls onto padded carpet over wood. 

The head impact forces measured in our fall experiments in comparison to 

the studies described above are summarized in Table 15. Head impact forces 

associated with 24 in facing forward falls in our experiments are in reasonable 

agreement with those reported by Thompson et al.73 for falls using the same 

ATD, initial position and fall height. The head impact forces in Coats et al.76 study 

are lower than our findings for a few reasons. Coats used a custom designed 

ATD reflecting a young infant which is younger in age (1.5 months) to ours (12 

months) and has a neck design that is less stiff than the CRABI 12 ATD neck. In 
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addition to the reduced neck stiffness, the lighter mass of the head and different 

initial position (supine) in Coats study reflect head forces that differ from our 

study. Alternatively, the head impact forces from the Ibrahim et al.81  and Bertocci 

et al.4 studies are higher than our findings mainly because of the difference in 

ATD size. Ibrahim used a custom designed ATD which is older in age (18 

months) to ours (12 months), in addition to a different initial position (supine free 

fall) than our experiments which simulated the entire fall event (rolling off the 

bed). The Bertocci et al.4 study also used an older ATD (Hybrid II 3 year old) 

which has greater mass (30 lbs) versus ours (20 lbs) which could account for the 

great head forces when compared to our findings. It should be noted that the 

head forces for the Thompson et al.73 and Bertocci et al.4 studies were calculated 

from measured head accelerations and head mass and are therefore 

approximates of actual head forces.  
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Table 15: Comparison of head impact forces, ATD head properties and initial 

conditions for various fall studies 

 Our study 
Thompson 

et al.73  
Coats et 

al.76  
Ibrahim et 

al.81  
Bertocci  

et al.4  

Head Force 
– 24 in (N) 

2045 – 
2223  

2170 a  650 3715 4237 a 

Head Force 
– 36 in (N) 

2510 – 
2631 

– 1000 4570 – 

ATD Age 12 month 12 month 1.5 month 18 month 36 month 

Head 
contact 
region 

Frontal, 
Parietal, 
Occiput 

Parietal b Occiput Occiput Occiput b 

Head mass 
(Kg) 

2.6 2.6 2.1 1.0 2.7 

Fall Type 
Bed fall, 

Side lying, 
FF, FR 

Bed fall, 
Side lying, 

FF 

Supine, 
Free fall 

Supine, 
Free fall 

Bed fall, 
Side lying, 

FF 

a – force calculated from measured acceleration and head mass. 

b – assumed based on initial position and described fall dynamics but not specified in study. 

 

Potential Bruising Regions 

When assessing body regions of impact during simulated falls, it is 

important to compare ATD morphology/geometric shape to that of an infant’s 

morphology. While the CRABI 12 ATD represents the anthropometrics and mass 

distribution of a 12-month-old 50th percentile infant, its morphology (external 

shape/geometry) may vary somewhat from that of a 12-month-old 50th percentile 

infant. For example, the ATD morphology does not replicate soft tissue of the 
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buttocks region; instead in our study, the proximal posterior upper leg region of 

the ATD represents the buttocks. The ATD head morphology provides a 

reasonable replica of a 12-month child (Fig. 36) but does not include ears, nose, 

lips and the eyes orbital region as individual features. Also, the ATD head 

morphology does not represent the caudal most aspects of the occipital region or 

the mandible. Thus, it was not possible to measure and record impact to these 

regions. 

   

Figure 36: Lateral (A) and overhead (B) views of a comparative overlay of an 11-

month-old child (3D reconstruction of CT imaging) and the 12-month-old CRABI 

ATD (transparent; blue) highlighting morphological differences in head profile. 

A comparative overlay of an 11-month-old child (3D reconstruction of CT 

imaging) and the 12-month-old CRABI ATD highlighting approximate head 

sensor locations (shown in red) as comprised in the SBDS is shown in Fig. 37. It 

is important to note the approximate placement of the ears on the ATD head 

relative to the head sensor location (ear representative sensor shown as the red 
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square over the ears region in Fig. 37). Even though the ‘ear representative 

sensor’ is at the approximate location of the ear, the sensor size/area is relatively 

larger when compared to an actual ear (CT image in the overlay Fig. 37). This 

implies that loading at the far reaches of that sensor would still indicate bruising 

to the ear region. Our results indicate that in all the falls conducted (n = 20) the 

peak mean force recorded in the ‘ear representative sensor’ (red square 

representing the sensor over the ear region in Fig. 37) was 18 N ± 34. Therefore 

bruising in the ear region is unlikely within the conditions of all our conducted bed 

falls. 

 

Figure 37: A comparative overlay of an 11-month-old child (3D reconstruction of 

CT imaging) and the 12-month-old CRABI ATD head (transparent; blue) 

highlighting approximate head sensor locations (red) as comprised in the SBDS. 
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Across all trials (n=20), we recorded contact within a maximum of two 

planes in any given scenario. Additionally, a consistent pattern emerged; the 

majority of contact regions and greater forces were recorded in one plane, with 

fewer regions of contact and decreased force exhibited in the second plane. 

Alternatively our findings suggest no possibility of bruising (as we saw no 

contact) in the two planes complementary to the impact planes for each fall 

scenario as highlighted in Table 13. It is pertinent to consider that the design of 

the boundaries/extremities of the individual sensors that make up the SBDS is 

not explicitly directed by the body planes. This implies that individual sensors 

cross over multiple planes and therefore could indicate impact in more than one 

plane even thou the acting force was not directed at multiple planes. Additionally, 

the articulation of the extremities following the fall initiation and during the impact 

with the surface could influence locations of impact and consequently the planes 

of impact.   

When assessing children with bruises, the location, and pattern 

(constellation of individual bruises throughout the body) of bruising is especially 

important in trying to delineate between accidental and abusive trauma. Several 

studies have investigated the distinction between bruising patterns in abused 

children versus those seen in accidental circumstances.  

Maguire et al.77 conducted a review of current literature seeking to identify 

patterns of bruising that may be suggestive of abuse. The reviewed studies noted 

that bruises resulting from accidental trauma occurred predominantly on the 

anterior regions of the body, over bony prominences and were correlated to the 
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child’s level of independent mobility. In abused children the bruises tended to be 

larger and the most common sites were the face, neck, ear, head, trunk, 

buttocks, and arms. 

Kemp et al.78 described the characteristics of bruising and the extent to 

which these differ between children (aged < 6 years) where abuse was confirmed 

and those where it was excluded in children with suspected physical abuse. Data 

was collected from 506 children; abuse was confirmed in 350 and excluded in 

156 children. Results indicated that abused children were significantly more likely 

to have bruising than those where abuse was ruled out. Abused children also 

had significantly more bruises, more bruising sites and clustering of bruises than 

the group where abuse was excluded.  Bruising to the left ear, cheeks, neck, 

trunk, front of thighs, upper arms, buttocks and genitalia were found significantly 

more frequently in abused children, than when abuse was ruled out. 

Pierce, Kaczor et al.62 studied the skin findings (bruises, lacerations, etc.) 

of children ages 0-4 years that were admitted to the pediatric intensive care unit 

of a tertiary care children’s hospital where cause of injury was identified through 

the trauma registry as abuse or accident. Each patient’s age, and skin findings 

including bruising, body region of skin finding, and number of skin findings were 

recorded. A total of 95 patients were analyzed in the study; 42 patients were 

exposed to abusive trauma and 53 patients were exposed to accidental trauma. 

Differences in body regions with bruising were identified for children with abusive 

versus accidental trauma. The face, cheek, scalp, head, and legs had bruising in 

patients with abusive and accidental trauma; these regions did not delineate 
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between accident and abuse. However, bruising to the ear, neck, hands, right 

arm, chest and buttocks regions were predictive of abuse. All bruising to the 

genitourinary area and hip occurred only in patients with abusive trauma.  

The impact regions recorded in our testing in comparison to the bruising 

locations found on children from relevant studies described above are 

summarized in Table 16.  

Table 16: Comparison of potential bruising locations in our study to observed 

bruising in previous clinical studies 

 Our study 
Kemp et 

al.78  
Maguire et 

al.77  
Pierce et al. 62  

Regions of 
Abusive 
Bruising 

- 

Head, cheek, 
ear, neck, 

trunk, upper 
arms, front of 

thighs, 

Head including 
face, front of 

body, ear, 
neck, trunk, 

arms, buttocks 

All regions 
including 

torso, ear and 
neck 

Regions of 
Accidental 
Bruising 

a
Head, 

Torso, 
Left upper 
arm, Right 

lower arm, L 
& R upper 
leg, Left 
lower leg 

 

Head, Rear 
trunk 

Head, 
forehead, 

back, 
abdomen, 
forearms, 

hands, 
buttocks, 

knees, shins, 
foot 

All regions 
excluding 

torso, ear and 
neck 

a – recorded impact locations that could represent potential bruising locations and are only 

specific to one fall type (bed falls). 

In our study we predominantly found impact to the head, torso, left upper 

arm, right lower arm, left and right upper legs and left lower leg. Compared to 

previous clinical studies describing bruising locations for a range of accident 

types, the head and posterior torso were found to be common regions of 
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bruising77,78. In similarity to Kemp et al.78, Maguire et al.77 and Pierce et al.62  we 

found it unlikely to have bruising to the ears.  However, Kemp et al.78 and 

Maguire et al.77 did not report detailed fall description, mechanism or injury 

causation. Thus this limits direct comparisons to those studies as our 

experimental findings are specific to bed fall scenarios.  

Clinical Skin Findings in Accidental and Abuse Cases 

We evaluated clinical cases from the bruising clinical decision rule (BCDR) 

database 62 and noted whether clinically documented bruised regions were 

contained within our experimentally predicted contact regions. A key distinction is 

that the experimental falls identify all regions of contact with the impact surface 

during a specific, controlled fall scenario where a bruise could potentially 

develop, but not necessarily occur. Our experimental results do not predict 

bruising; rather only identify fall specific contact locations where potential bruising 

may occur. 

The BCDR database consists of clinical histories of children 0-4 years of age 

that were brought into the emergency room of a children’s hospital (Chicago, 

Cincinnati and Pittsburg children's hospital) and had a bruise injury. The 

database does present selection bias as it is limited to families that decided to 

seek care after an injurious event. Each patient’s age, and skin findings including 

total number of bruises, body location of bruising, bruising count, bruising planes 

and stated cause of injury, among many other variables were recorded in the 

BCDR database. Each case entered into the database was evaluated and 
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categorized by an expert panel to determine whether the case qualifies for one of 

five categories; definite abuse, likely abuse, definite accident, likely accident or 

indeterminate. Query results from the BCDR database included falls related to 

furniture falls in children 10-14 months of age. Through the assistance of Dr. 

Pierce and K. Kaczor 62, multiple queries were performed on the BCDR database 

to gather case results that included bed falls, change table falls and abuse cases.  

Clinical Cases – Bed Falls 

This database query involved bed fall cases identified as definite accident 

or likely accident in children 10-14 months of age. Eight cases from a total of a 

hundred furniture fall cases fit our defined criteria. The cumulative skin findings 

observed in these cases highlight bruising to the frontal, occipital and right 

parietal head and the front of the left lower leg (Fig. 38). Also no bruises were 

seen in the anterior or posterior torso, upper extremities and the right upper and 

lower leg. 
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Anterior Posterior Left Lateral Right 
Lateral 

    
Images provided courtesy of Pierce MC and Kaczor K

62 

Figure 38: Cumulative humagram highlighting skin findings from the BCDR 

database cases involving bed falls identified as definite accident or likely accident 

in children 10-14 months of age. 

A direct comparison of clinical findings to our experimental results is not 

viable because the experimental results indicate contact regions where there is a 

potential for bruising rather than actual bruising locations. A clinical to 

experimental case by case comparison is also not possible as fall parameters 

(height, initial position, impact surface) in clinical cases are commonly 

insufficiently documented, and when documented, are not always accurately 
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witnessed accounts of the incident. Rather, we noted whether clinically 

documented bruised regions were contained within our experimentally predicted 

contact regions. 

Bruising locations in clinical cases deemed accidental bed falls (n = 8) 

were contained within the regions contacted in the experimental falls (FF 24 and 

FR 24) with the exception of the occipital head (Table 17). The 24 inch 

experimental falls were simulating bed and couch falls and only two different 

initial positions were evaluated. Thus, a different initial position in experimental 

falls could have resulted in contact to the occipital region of the head. 

Table 17: Regions with and without contact in experimental 24 inch facing 

forward and facing rearward falls, highlighting bruising locations recorded in 

clinical cases (shown as ‘#’) involving bed falls identified as definite accident or 

likely accident in children 10-14 months of age. 

Fall Type FF24 (n = 5) FR24 (n = 5) 

Regions with 
Contact 

L parietal head  
L anterior torso   
L lateral torso 
L upper arm  
L upper leg 
L lower leg# 

Frontal head# 
R parietal head# 
R anterior torso 
R lateral torso  
R upper leg 
L Upper Leg 
L Lower Leg# 
R lower arm 
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Fall Type FF24 (n = 5) FR24 (n = 5) 

Regions 
without 
Contact 

Frontal head# 
Occipital head# 
R parietal head# 
L posterior torso 
R anterior torso 
R posterior torso 

R lateral torso 
L lower arm  
R upper arm  
R lower arm 
R upper leg 
R lower leg 

 

Occipital head# 
L parietal head 

R posterior torso 
L anterior torso 
L posterior torso 

L lateral torso 
R upper arm 
R lower leg  
L upper arm  
L lower arm 

 

‘#’ indicates regions with a bruise, recorded in clinical cases involving accidental bed falls (n = 8) 

 

Clinical Cases – Change Table Falls 

This database query involved change table fall cases identified as definite 

accident or likely accident in children 10-14 months of age. Four cases from a 

total of a hundred furniture fall cases fit our defined criteria. The cumulative skin 

findings observed in these cases highlight bruising to the frontal and occipital 

head, and the right lower arm (Fig. 39).  
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Anterior Posterior Left 
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Right 
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Images provided courtesy of Pierce MC and Kaczor K

62 

Figure 39: Cumulative humagram highlighting skin findings from the BCDR 

database cases involving change table falls identified as definite accident or 

likely accident in children 10-14 months of age. 

Again, a direct comparison of clinical findings to our experimental results 

is not viable because the experimental results indicate contact regions where 

there is a potential for bruising rather than actual bruising locations. A clinical to 

experimental case by case comparison is also not possible as fall parameters 

(height, initial position, impact surface) in clinical cases are commonly 

insufficiently documented, and when documented, are not always accurately 
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witnessed accounts of the incident. Rather, we noted whether clinically 

documented bruised regions were contained within our experimentally predicted 

contact regions. 

Bruising locations in clinical cases deemed accidental change table falls (n 

=4) were contained within the regions contacted in the experimental falls (FF 36 

and FR 36) with the exception of the right lower arm (Table 18). The 36 inch 

experimental falls were simulating change table falls and only two different initial 

positions (facing forward and facing rearward) were evaluated. Thus, a different 

initial position in experimental falls could have resulted in contact to the right 

lower arm region. 

Table 18: Regions with and without contact in experimental 36 inch facing 

forward and facing rearward falls, highlighting bruising locations recorded in 

clinical cases (shown as ‘#’) involving change table falls identified as definite 

accident or likely accident in children 10-14 months of age. 

Fall Type FF36  (n = 5) FR36  (n = 5) 

Regions with 
Contact 

L parietal head 
Occipital head#   
L posterior torso 

L lateral torso 
L upper arm  
L upper leg 
L lower arm 

Frontal head#  
L anterior torso 
R anterior torso 

R upper leg  
L upper leg  
L lower leg 
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Fall Type FF36  (n = 5) FR36  (n = 5) 

Regions 
without 
Contact 

Frontal head# 
R parietal head 
L anterior torso 
R anterior torso 
R posterior torso 

R lateral torso 
R upper arm  
R lower arm# 
R upper leg 
R lower leg 
L lower leg 

 

Occipital head# 
R parietal head 
L parietal head 

L posterior torso 
R posterior torso 

R lateral torso 
L lateral torso 
R upper arm  
R lower arm# 
L upper arm  
L lower arm 
R lower leg 

 
‘#’ indicates regions with a bruise in clinical cases involving accidental change table falls (n=4) 

Clinical Cases – Abuse 

This database query involved falsely stated furniture fall cases identified 

as abuse or likely abuse in children 10-14 months of age. Three cases from a 

total of a hundred furniture fall cases fit our defined criteria. The skin findings 

observed in these cases highlight multiple bruises to the frontal, left parietal and 

right parietal head, anterior, posterior, left and right torso, left and right upper arm 

and right upper leg (Fig. 40–A, Fig. 40–B, Fig. 40–C). A fundamental difference 

observed in abuse cases compared to accidental cases was bruises were 

scattered, and multiple in number per body region. Also, alternative skin findings 

(abrasions) in addition to bruises were presented as overlaid injuries in abuse 

cases. There also was bruising on the sole of the right foot (Case–C; not shown 

in Fig. 40–C) that was not considered in our observations. 
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Images provided courtesy of Pierce MC and Kaczor K

62 

Figure 40-A: Cumulative humagram highlighting skin findings from the BCDR 

database Case–A identified as definite abuse or likely abuse in a child 10-14 

months of age. Legend - Bruise indicates discrete bruises. Petechiae describes 

red spots under the skin surface caused by intradermal hemorrhage. Multi-

confluent indicates a bruised region where a discrete bruised area is difficult to 

identify; thus the area surrounding the bruised region was recorded. Patterned 

implies a distinct bruise imprint left by an impacting object. 
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Images provided courtesy of Pierce MC and Kaczor K

62 

Figure 41–B: Humagram highlighting skin findings from the BCDR database 

Case–B identified as definite abuse or likely abuse in a child 10-14 months of 

age. Legend - Bruise indicates discrete bruises. Petechiae describes red spots 

under the skin surface caused by intradermal hemorrhage. Multi-confluent 

indicates a bruised region where a discrete bruised area is difficult to identify; 

thus the area surrounding the bruised region was recorded. Patterned implies a 

distinct bruise imprint left by an impacting object. 
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Figure 42–C: Humagram highlighting skin findings from the BCDR database 

Case–C identified as definite abuse or likely abuse in a child 10-14 months of 

age. Legend - Bruise indicates discrete bruises. Petechiae describes red spots 

under the skin surface caused by intradermal hemorrhage. Multi-confluent 

indicates a bruised region where a discrete bruised area is difficult to identify; 

thus the area surrounding the bruised region was recorded. Patterned implies a 

distinct bruise imprint left by an impacting object 
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Abuse Case Histories Provided 

History, Case–A:  Unwitnessed fall where patient reportedly tried to climb from a 

bed onto a nightstand, then fell and hit their face on the 

nightstand. 

History, Case–B:  Patient reportedly fell from crib onto a carpeted area. 

History, Case–C:  Patient fell from bed, face-first onto a carpeted floor (3 to 4 ft 

fall height). Under a second caregiver, later that day patient 

fell out of the high chair and hit his head. Final confession of 

abuse by the second caregiver included shaking and throwing 

the patient. 

Evaluation of Abusive Bruising Locations 

Bruising locations in clinical cases with false histories of accidental 

furniture falls deemed abuse were beyond the regions of contact recorded in our 

experimental bed falls (Table 19). The abuse cases showed bruising on three or 

more body planes in multiple regions (Case–A had three planes of bruising, 

Case–B had four planes of bruising, Case–C had three planes of bruising). In 

contrast, our experimental falls recorded contact with the impact surface in only 

two planes for each fall type. 

Table 19: Experimental results of the 24 inch facing forward and facing rearward 

falls, comparing regions with, and without contact highlighting bruising locations 
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(shown as ‘#’) recorded in clinical cases involving furniture falls identified as 

abuse in children 10-14 months of age. 

Fall Type FF24 (n = 5) FR24 (n = 5) 

Regions with 
Contact 

L parietal head#  
L anterior torso#   
L lateral torso 
L upper arm#  
L upper leg 
L lower leg# 

Frontal head# 
R parietal head# 
R anterior torso# 
R lateral torso#  
R upper leg# 
L Upper Leg 
L Lower Leg# 
R lower arm 

Regions 
without 
Contact 

Frontal head# 
Occipital head# 
R parietal head# 
L posterior torso# 
R anterior torso# 
R posterior torso# 

R lateral torso# 
L lower arm  

R upper arm#  
R lower arm 
R upper leg# 
R lower leg# 

 

Occipital head# 
L parietal head# 

R posterior torso# 
L anterior torso# 
L posterior torso# 

L lateral torso 
R upper arm# 
R lower leg#  
L upper arm#  
L lower arm 

 

‘#’ indicates regions with a bruise in clinical cases involving accidental change table falls (n=4) 

 

In conclusion, the SBDS was used to predict a “roadmap” of the child 

surrogate’s contact exposure during specific furniture fall events. Falls with 

varying parameters (initial height, initial position) did lead to differences in impact 

locations and forces in the head. This implies that initial height and initial position 

lead to differences in fall dynamics and impact orientation which lead to 

differences in bruising patterns and forces. 
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We evaluated clinical cases from the bruising clinical decision rule (BCDR) 

database and noted whether clinically documented bruised regions were 

contained within our experimentally predicted contact regions. Bruising locations 

in clinical cases deemed accidental bed falls (n = 8) and accidental change table 

falls (n = 4) were within the regions contacted in our experimental falls except for 

the occipital head and right lower arm respectively. Our experimental results do 

not predict bruising; rather only identify fall specific contact locations where 

potential bruising may occur. Additionally, bruising locations in clinical cases with 

false histories of furniture falls deemed abuse were beyond the regions of contact 

recorded in our experimental bed falls. This has important implications as it 

further reinforces that there are differences in bruising patterns between 

accidental falls and inflicted abuse.  

 

LIMITATIONS 

 The biofidelity of the CRABI ATD and in particular the soft tissue biofidelity 

is a limitation of the SBDS. The ATD surrogate “soft tissue” consists of a heat 

cured vinyl plastisol that is layered with urethane foam between the outer and 

inner layers. The plastisol is compliant and molded to mimic the body contours 

representing “soft tissue”. SBDS sensor measured forces are proportional to the 

stiffness of the underlying ATD surrogate soft tissue; therefore soft tissue 

biofidelity greatly influences the measured forces. However, our primary goal was 

to determine points of contact during various injurious events and secondarily to 

assess relative levels of force imparted to different regions of the body. Thus, 
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biofidelic limitations of the surrogate soft tissue do not prevent us from meeting 

our goals. 

Also, since the CRABI ATD was primarily designed for measuring a child’s 

response to a high energy automotive crash environment, any findings from 

testing conducted with the ATD in lower deceleration events such as falls should 

be interpreted in light of biofidelity limitations. For example, the neck is somewhat 

stiffer with limited range of motion designed for frontal impacts having little or no 

out of plane motion. The rubber elements that attach the limbs to the ATD torso 

are used in the hip and shoulder joints to provide the CRABI infant-like range of 

motion, but are an approximation of true infant biofidelity. In addition, joints of the 

shoulders, elbows, hips, and knees of the ATD are limited to motion primarily in 

the sagittal plane. Though ATD kinematics in our simulated falls occurred 

primarily in the sagittal plane, any out of plane motion may lead to inaccuracies in 

kinematics and force measures. Varying ATD joint stiffness could additionally 

alter fall dynamics thereby influencing impact locations and forces. Additionally, 

we were unable to implement sensors in the neck region of the ATD given its 

construction (segmented rubber and aluminum disks), but based on our 

experimental fall dynamics, the ATD neck had a low likelihood of contact/impact 

during falls. 

The occurrence of a bruise varies from person to person for a given 

application of force based on many contributing factors that affect bruise 

development. Extrinsic factors such as the amount of force applied, rate of force 

application, and distribution of the force over larger/smaller areas are parameters 
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that can affect the presence or absence of a bruise. Additionally, intrinsic factors 

related to the physiological and anatomical structures, such as architecture of the 

skin, soft tissue thickness, toughness of skin, fat content, vessel fragility, and 

presence and depth of underlying bone add to the complexity of this 

physiological event. Variables such as blood platelet levels, systemic blood 

pressure, vascular diseases and vasoactive or anticoagulant drug use in addition 

to nutritional and allergy related disorders can have a great influence on the 

presence, absence and variability in intensity of a bruise. This implies that the 

minimum load to cause bruising, the “bruising threshold”, varies across 

individuals. However it can be said with some degree of certainty that larger 

forces are associated with a greater potential for bruising. So instead of 

definitively asserting the presence of a bruise, we are assessing potential 

bruising locations occurring within a body region under specific fall conditions. 

While our findings predicted potential bruising locations in a bed fall and 

change table fall from a side-lying position using the SBDS, limitations described 

herein must be considered. The experimental falls identify all regions of contact 

with the impact surface during a specific, controlled fall scenario where a bruise 

could potentially develop, but not necessarily occur. Our experimental results do 

not predict bruising; rather only identify fall specific contact locations where 

potential bruising may occur. However, the capability to predict potential bruising 

locations or patterns is useful when attempting to determine compatibility 

between a stated cause and associated skin findings in forensic analyses. 
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          CHAPTER VI: SUMMARY AND 

CONCLUSIONS 

SUMMARY AND CONCLUSIONS 

 

A summary of the results of our hypotheses testing are provided herein: 

Hypothesis 1 – Different initial condition bed falls (height and position) will lead to 

differences in impact locations recorded in number of planes. 

 This hypothesis was tested through bed fall experiments conducted with 

the SBDS placed in different initial conditions (height and position) while 

recording impact locations as described in Chapter V. Impact planes were 

defined as a body plane that displayed any region of contact within the plane. 

There were four body planes (Anterior plane, posterior plane, left lateral plane 

and right lateral plane) defined for the surrogate. Results from all experimental 

bed falls (n = 20) recorded 2 planes of contact and 2 planes without contact. 

Therefore, there was no difference observed in the number of planes with impact 

when comparing height and position parameters in experimental bed falls. 

Hypothesis 2 – Different initial condition bed falls (height and position) will lead to 

differences in impact locations recorded in number of body regions. 

 This hypothesis was tested through bed fall experiments conducted with 

the SBDS placed in different initial conditions (height and position) while 
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recording impact locations as described in Chapter V. Body regions were defined 

as one of eighteen (Frontal head, Occipital head, R parietal head, L parietal 

head, R anterior torso, R posterior torso, R lateral torso, L anterior torso, L 

posterior torso, L lateral torso, R upper arm, R lower arm, L upper arm, L lower 

arm, R upper leg, R lower leg, L upper leg, L lower leg). Results from the 

experiments indicate a difference in the number of body regions impacted 

between bed falls of different initial conditions, but this difference was not 

statistically significant (p = 0.57). There were six, eight, seven and six regions 

with impact for the FF24, FR24, FF36 and FR36 falls respectively. A chi square 

analysis done independently on comparing different fall parameters (comparing 

height and position) showed no significant difference (p>0.05) implying that fall 

height and position had no significant difference on the number of impact 

regions. 

Hypothesis 3 – During bed falls, impacts to the ear region will be less than 10%.  

We were unable to test this hypothesis given the limitations of the head 

sensor pattern; the representative ear sensor has an area/size that is relatively 

larger compared to an actual ear, so it recorded loads from regions beyond a 

child’s ear. Loading at the far reaches of this sensor would indicate potential 

bruising to the ear region which thereby prevents testing of this hypothesis. 
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Key Findings and Clinical Implications 

The purpose of this study was to provide objective data regarding the 

potential bruising locations and bruising patterns in children in common 

household falls so as to aid clinicians in the distinction between abusive and 

accidental injuries. This study included three methodological components. In the 

first component we adapted an existing pediatric anthropomorphic test device 

(ATD) with custom developed force sensors integrated into a conformable skin. 

The sensors were coupled to a data acquisition system through which recorded 

force data was displayed on a computerized body mapping image system. The 

sensor outputs that make up the sensing skin have been shown to be repeatable 

under dynamic testing. The surrogate bruising detection system (SBDS) is the 

first patented tool capable of predicting potential bruising patterns when used in 

simulated events.  

In the second component we utilized the SBDS to simulate rearward fall 

experiments that were performed onto two different impact surfaces (padded 

carpet and linoleum tile over concrete) with two different initial positions (standing 

upright and posteriorly inclined). Potential bruising regions and fall dynamics 

were investigated. Across all (n=32) trials in all rearward fall scenarios, the 

occipital head and posterior torso were the common regions of impact. The mean 

peak impact force for the head (1995 N ± 162) and posterior torso (1050 N ± 

154) were the highest in falls having an upright initial position onto the linoleum 

over concrete surface. The lowest mean peak impact force to the head (1050 N ± 

79) occurred during the falls having a posteriorly inclined initial position with 
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impact onto the carpet over wood surface. The lowest mean peak impact force to 

the posterior torso (244 N ± 61) occurred during falls with an upright initial 

position onto the carpet over wood surface. For falls onto carpet over wood, the 

common regions of impact for both initial positions were the head and posterior 

torso. In addition to these common regions, sensors on the upper leg indicated 

impact for the inclined fall position. For falls onto linoleum over concrete, the 

common regions of impact for both initial positions were the head, posterior 

torso, lower arm and lower leg. In addition to these common regions, sensors on 

the upper leg indicated impact for the inclined position. Compared to previous 

clinical studies describing bruising locations for a range of accident types, the 

head and posterior torso were found to be common regions of bruising77,78. 

Parallel to literature78,77,62 we did not find impact or potential for bruising to the 

ears or neck which is not commonly seen as a location for bruising in accidental 

falls. A key distinction is that the experimental falls identify all regions of contact 

with the impact surface during a specific, controlled fall scenario where a bruise 

could potentially develop, but not necessarily occur. Our experimental results do 

not predict bruising; rather only identify fall specific contact locations where 

potential bruising may occur. 

The final component utilized the SBDS to simulate bed fall and changing 

table fall experiments that were performed from two initial heights (24 inch and 

36 inch) with two different initial positions (facing forward and facing rearward). 

Results from the experiments recorded a mean peak head impact force (2631 N 

± 100) that was the highest in the 36 inch falls with a facing rearward initial 
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position and the lowest mean peak head impact force (2045 N ± 254) occurred in 

the 24 inch falls with a facing forward initial position. Head impact forces 

associated with 24 inch facing forward falls (2045 N ± 254) in our experiments 

were in reasonable agreement with those reported in literature 73 (2170 N) for 

falls using the same ATD, initial position and fall height as our experiments. 

Across all trials (n=20), we recorded contact within a maximum of two planes in 

any given scenario. Additionally, a consistent pattern emerged; the majority of 

contact regions and greater forces were recorded in one plane, with fewer 

regions of contact and decreased force exhibited in the second plane. The 

experiments predicted differences in potential bruising locations in body regions 

based on initial conditions and fall heights.  

The experimental falls identify all regions of contact with the impact 

surface during a specific, controlled fall scenario where a bruise could potentially 

develop, but not necessarily occur. Our experimental results do not predict 

bruising; rather only identify fall specific contact locations where potential bruising 

may occur. Bruising locations in clinical cases deemed accidental bed falls (n = 

8) were contained within the regions contacted in the experimental falls (FF 24 

and FR 24) with the exception of the occipital head. However, a different initial 

position in experimental falls could have resulted in contact to the occipital region 

of the head. Bruising locations in clinical cases deemed accidental change table 

falls (n =4) were contained within the regions contacted in the experimental falls 

(FF 36 and FR 36) with the exception of the right lower arm. Again, a different 

initial position in experimental falls could have resulted in contact to the right 
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lower arm region. Bruising locations in clinical cases with false histories of 

accidental furniture falls deemed abuse were beyond the regions of contact 

recorded in our experimental bed falls. The abuse cases showed bruising on 

three or more body planes in multiple regions; our experimental falls recorded 

contact with the impact surface in only two planes for each fall type. This has 

important implications as it further reinforces that there are differences in bruising 

patterns between accidental falls and inflicted abuse.  

The biofidelity of the CRABI ATD and in particular the soft tissue biofidelity 

could influence sensor measured forces and therefore potential bruising 

locations. The tissue stiffness is proportional to the forces measured by the 

SBDS. A more compliant soft tissue would better represent the soft tissue of a 

child and therefore for a given fall could produce lower forces.  

Contact with an impact surface generates forces on the skin. The 

generation of a bruise at that location is influenced by the anatomic area 

subjected to the force. The areas of the body in which subcutaneous tissue and 

muscle directly lie over bone, such as the head, show bruises more readily due 

to the bone providing unyielding support to the compressed soft tissue. In 

contrast, areas such as the abdomen, buttocks, etc. have a lower potential to 

bruise from the same level of force because of the greater volume of tissue. The 

occurrence of a bruise varies from person to person for a given application of 

force based on many contributing factors that affect bruise development. 

Extrinsic factors such as the amount of force applied, rate of force application, 

and distribution of the force over larger/smaller areas are parameters that can 
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affect the presence or absence of a bruise. Additionally, intrinsic factors related 

to the physiological and anatomical structures, such as architecture of the skin, 

soft tissue thickness, toughness of skin, fat content, vessel fragility, and presence 

and depth of underlying bone add to the complexity of this physiological event. 

This implies that the minimum load to cause bruising, the “bruising threshold”, 

varies across individuals. Currently there is no established bruising threshold that 

provides a definitive answer on when bruising occurs based on recorded 

outcome measures. So instead of definitively asserting the presence of a bruise, 

we are assessing potential bruising locations occurring within a body region 

under specific fall conditions. 

To our knowledge, the SBDS is the first tool capable of predicting potential 

bruising patterns during common household falls. The results of this study may 

aid clinicians by providing insight to better asses a child’s injuries for compatibility 

between the stated cause and presenting bruises in common household falls. 

Clinicians and child protective services should place more emphasis in detailed 

and accurate case histories that include parameters related to fall environment 

(height, surface, initial position) and fall dynamics as these factors affect the 

potential bruising locations.  

 

Future work 

The biofidelity of the CRABI ATD and in particular the soft tissue biofidelity 

could be improved upon to better represent the soft tissue properties of a child. 
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SBDS sensor measured forces are proportional to the stiffness of the underlying 

ATD surrogate soft tissue; therefore soft tissue biofidelity greatly influences the 

measured forces. Improvements in sensor density in the sensing skin of the 

SBDS could allow for more discrete sensing locations. A higher sensor resolution 

could translate to better distinction of contact within and around different body 

regions. Incorporating sensors within the sensing skin that could record 

additional outcome measure related to bruising prediction, such as applied 

pressure, soft tissue penetration depth, etc. could improve the potential bruising 

prediction capability. Additional outcome measures related to stress, impulse or 

energy could help in determining the prediction of a bruise.   

Testing additional fall scenarios will provide a larger database of impact 

roadmap–event combinations for various falls and provide an indication of where 

potential bruising could occur for each specific event. Developing a computer 

simulation model representing a SBDS to predict potential bruising patterns will 

help investigate the influence of child and fall environment parameters on 

potential bruising patterns. A sensitivity analysis could describe the individual 

influence of child parameters (weight, height, joint stiffness) and fall parameters 

(fall height, initial position, impact surface) on bruising potential. We believe that 

in addition to protecting abused children, innocent families wrongly accused of 

abuse could also benefit from the outcomes of an event specific bruising 

prediction model. 
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APPENDIX A 

Commercial Sensor Static Testing 

Sensitronics square sensor with green spacers  

 

 Sensor dimensions: 32 mm x 32 

mm, Thickness = 0.35 mm 

 Resistance Range – 3 M ohms to 

0.15 K ohms 

 Sensor rise time – 0.1 sec 

 

Static Load (lbs) 
over 0.75 in2 

Applied Pressure 
(psi) 

Recorded 
Pressure (psi) 

% Error 

0.125 0.166 0.0 100.00 % 

1.000 1.330 2.0 -50.38 % 

3.125 4.166 4.2 -0.82 % 

5.125 6.830 6.5 4.83 % 

6.125 8.000 7.8 2.50 % 

8.125 10.660 10.2 4.32 % 
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Sensitronics square small sensor  

 

 Sensor dimensions: 12 mm x 14 

mm, Thickness = 0.27 mm 

 Resistance Range – 3 M ohms to 

0.15 K ohms 

 Sensor rise time – 0.1 sec 

 

Static Load (lbs) 
over 0.125 in2 

Applied Pressure 
(psi) 

Recorded 
Pressure (psi) 

% Error 

0.125 1 0 100.00 % 

1.000 8 4 50.00 % 

3.125 25 28 -12.00 % 

5.125 41 41 0.00 % 

6.125 49 49 0.00 % 

8.125 65 50 23.08 % 
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Sensitronics circular sensor with green spacers 

 

 Sensor dimensions: 35 mm dia., 

Thickness = 0.35 mm 

 Resistance Range – Infinite ohms 

to 0.5 K ohms 

 Sensor rise time – 0.1 sec 

 

Static Load (lbs) 
over 0.75 in2 

Applied Pressure 
(psi) 

Recorded 
Pressure (psi) 

% Error 

0.125 0.166 0.00 100.00 % 

1.000 1.330 2.00 -50.38 % 

3.125 4.166 5.42 -30.10 % 

5.125 6.830 7.00 -2.49 % 

6.125 8.000 7.90 1.25 % 

8.125 10.660 9.20 13.70 % 
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Sensitronics circular sensor small 

 

 Sensor dimensions: 5 mm dia., 

Thickness = 0.55 mm 

 Resistance Range – 6.2 M ohms 

to 45 K ohms 

 Sensor rise time – 0.1 sec 

 

Static Load (lbs) 
over 0.05 in2 

Applied Pressure 
(psi) 

Recorded 
Pressure (psi) 

% Error 

0.125 2.5 0 > 100.00 % 

1.000 20.0 0 > 100.00 % 

3.125 62.5 65 -4.00 % 

5.125 102.0 55 46.08 % 

6.125 122.0 110 9.84 % 

8.125 162.5 140 13.85 % 
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Troseen circular sensor large

 

 Sensor dimensions: 18.5 mm 

dia., Thickness = 0.57 mm 

 Resistance Range – Infinite ohms 

to 0.6 K ohms 

 Sensor rise time – 0.1 sec 

 

Static Load (lbs) 
over 0.75 in2 

Applied Pressure 
(psi) 

Recorded 
Pressure (psi) 

% Error 

0.125 0.166 0.7 -321.69 % 

1 1.33 3.5 -163.16 % 

3.125 4.166 8.2 -96.83 % 

5.125 6.83 9.4 -37.63 % 

6.125 8 9.9 -23.75 % 

8.125 10.66 10.6 0.56 % 
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Troseen square sensor 

 

 Sensor dimensions: 43.7 mm x 

43.7 mm, Thickness = 0.57 mm 

 Resistance Range – Infinite ohms 

to 125 ohms 

 Sensor rise time – 0.1 sec 

 

Static Load (lbs) 
over 0.75 in2 

Applied Pressure 
(psi) 

Recorded 
Pressure (psi) 

% Error 

0.125 0.166 2.2 -1225.30 % 

1 1.33 4.2 -215.79 % 

3.125 4.166 8.0 -92.03 % 

5.125 6.83 9.5 -39.09 % 

6.125 8 9.7 -21.25 % 

8.125 10.66 10.5 1.50 % 
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Troseen circular sensor small 

 

 Sensor dimensions: 8 mm diam., 

Thickness = 0.4 mm 

 Resistance Range – Infinite ohms 

to 2.75 K ohms 

 Sensor rise time – 0.1 sec 

 

Static Load (lbs) 
over 0.12 in2 

Applied Pressure 
(psi) 

Recorded 
Pressure (psi) 

% Error 

0.125 1.04 1.4 -34.62 % 

1.000 8.33 8.0 3.96 % 

2.125 21.87 19.0 13.12 % 

3.125 26.00 30.0 -15.38 % 

6.125 51.00 37.0 27.45 % 

8.125 67.70 37.0 45.35 % 
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Distance lab square fabric pressure sensor 

 

 Sensor dimensions: 50 mm x 40 

mm, Thickness = 4.5 mm 

 Resistance Range – Infinite ohms 

to 4.35 K ohms for single layer of 

velostat 

 Sensor rise time – 0.1 sec 

 

Static Load (lbs) 
over 0.75 in2 

Applied Pressure 
(psi) 

Recorded 
Pressure (psi) 

% Error 

0.125 0.166 1.4 > -100.00 % 

1 1.33 2.6 -95.49 % 

3.125 4.166 2.6 37.59 % 

5.125 6.83 3.0 56.08 % 

6.125 8 3.0 62.50 % 

8.125 10.66 3.0 71.86 % 
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APPENDIX B 

Dynamic Testing of Commercial Sensors and In-House Milled Sensors 

 

 

 

Figure B1.  Dynamically applied load versus sensor resistance profiles: in-house 

milled conductive side different space and trace designs joined with 500 kΩ 

semi-conductive material. Design 1 (green profile) represents the finest space 

and trace, while Design 7 (blue profile) represents the coarsest space and trace. 

Design 1 provided the most desirable response given its ability to output 

resistances that can be differentiated across the range of loads applied.  

 



178 
 

 

Figure B2. Dynamically applied load versus sensor resistance profiles for select 

commercial FSR sensors and in-house milled conductive side (U of L; Design 1 – 

finest space and trace) joined with two different semi-conductive materials. The 

standoff spacers on the Sensitronics sensor (green profile) enabled the sensor to 

delay activation upon the application of load. 
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Figure B3. Dynamically applied load versus sensor resistance profiles: semi-

conductive materials evaluation when joined with in-house milled conductive side 

(U of L; Design 1 – finest space and trace) compared to Sensitronics 

(commercial) sensor with standoff spacers. The 250 K-ohm semi-conductive 

material produced the most desirable output given its resistance output that can 

be discriminated across the range of loads applied.  
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APPENDIX C  

Photolithographic Process to Generate Integrated Sensor Matrix 

 

The steps involved in the photolithographic process to create the conductive 

side of an FSR are as follows: 

 Photomask - design and cutting - The photomask consists of a square 

glass plate that has a film of metal emulsion on one side. The mask is 

fabricated by means of an electron beam that cuts the metal layer from the 

glass leaving behind the shape of the design pattern (Figure C1).  

 

Figure C1: The glass photomask with our forearm sensor matrix pattern. 
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 Copper substrate – DuPont's Pyralux Copper Clad Laminate – AP9131; 

double sided, with a dielectric thickness of 3 mil and a copper thickness of 

35 um.  

o Cleaning – The copper substrate was cleaned with acetone to 

remove any waxes or oils that may be coating the surface. 

o Photoresist application - Shipley 1827 photoresist was applied to 

the copper substrate using the rotating process to obtain a uniform 

thickness (Figure D2). 

 
Figure C2: Copper substrate positioned within rotating machine tub after 

application of the photoresist. 

o Soft Baking – The photoresist-coated copper substrate was 

removed from the rotating device and placed on a hotplate at 115 

degrees C for approximately 90 seconds to allow the photoresist 

coating film to dry (Figure C3). 
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Figure C3: Photoresist coated copper substrate placed on the hot plate for soft 

baking. 

o Mask alignment and exposure – The copper substrate was aligned 

with and positioned beneath the photomask, and then exposed to 

UV radiation for 35 seconds (Figure C4). This process alters the 

chemical properties of the photoresist that is not protected by the 

photomask, thereby producing a pattern transfer from the 

photomask to the photoresist onto the copper substrate. 
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Figure C4: Glass photomask aligned over the photoresist coated copper 

substrate prepared for UV exposure. 

o Development – The photoresistive layer on the copper substrate 

was developed using MF-319 developer. The copper substrate is 

soaked in the developer for approximately 45-50 seconds while 

constantly agitating the mixture (Figure C5). The substrate was 

examined after development to ensure that exposed photoresist 

has been properly developed. 
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Figure C5: Developing the photoresist using MF-319 developer. The copper 

substrate is soaked in the developer which removes the photoresist that was 

exposed to UV light. 

o Copper Etching – The copper substrate was then placed in ferric 

chloride solution (FeCl) so as to etch away the copper that was not 

protected by the photoresist pattern (Figure C6). The FeCl bath had 

to be constantly agitated and etching times varied from 120 to 150 

mins.  
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Figure C6: Ferric Chloride used for etching the copper clad laminate in the clean 

room. 

It is in this last step of copper etching that we experienced problems with 

loosing portions of the protective photoresist and therefore introducing 

discontinuity in our pattern. We believe it is the extended time period that it takes 

this pattern to etch that is responsible for the intermittent loss of pattern in the 

photoresist. We have attempted to use various methods of reducing the pattern’s 

FeCl exposure time with similar unacceptable results (Figure C7). 
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Figure C7: Various trials of etched sensor matrix patterns showing the lack of 

continuity in some of the traces due to under-etching of copper pattern. 
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