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ABSTRACT

FACE MODELING FOR DIFFERENT FACE UNDERSTANDING APPLICATIONS

Eslam AbdelFattah Mostafa

April 13, 2015

Face understanding is considered one of the most important topics in computer vi-

sion field since the face is a rich source of information in social interaction. Not only does

the face provide information about the identity of people, but also of their membership in

broad demographic categories (including sex, race, and age), and about their current emo-

tional state. Facial landmarks extraction is the corner stone in the success of different facial

analyses and understanding applications. In this dissertation, a novel facial modeling is de-

signed for facial landmarks detection in unconstrained real life environment from different

image modalities including infra-red and visible images.

In the proposed facial landmarks detector, a part based model is incorporated with

holistic face information. In the part based model, the face is modeled by the appearance of

different face part(e.g., right eye, left eye, left eyebrow, nose, mouth) and their geometric

relation. The appearance is described by a novel feature referred to as pixel difference fea-

ture. This representation is three times faster than the state-of-art in feature representation.

On the other hand, to model the geometric relation between the face parts, the complex

Bingham distribution is adapted from the statistical community into computer vision for

modeling the geometric relationship between the facial elements. The global information is

incorporated with the local part model using a regression model. The model results outper-

form the state-of-art in detecting facial landmarks. The proposed facial landmark detector
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is tested in two computer vision problems: boosting the performance of face detectors by

rejecting pseudo faces and camera steering in multi-camera network.

To highlight the applicability of the proposed model for different image modali-

ties, it has been studied in two face understanding applications which are face recognition

from visible images and physiological measurements for autistic individuals from thermal

images. Recognizing identities from faces under different poses, expressions and lighting

conditions from a complex background is an still unsolved problem even with accurate de-

tection of landmark. Therefore, a learning similarity measure is proposed. The proposed

measure responds only to the difference in identities and filter illuminations and pose vari-

ations. similarity measure makes use of statistical inference in the image plane. Addi-

tionally, the pose challenge is tackled by two new approaches: assigning different weights

for different face part based on their visibility in image plane at different pose angles and

synthesizing virtual facial images for each subject at different poses from single frontal

image. The proposed framework is demonstrated to be competitive with top performing

state-of-art methods which is evaluated on standard benchmarks in face recognition in the

wild.

The other framework for the face understanding application, which is a physiolog-

ical measures for autistic individual from infra-red images. In this framework, accurate

detecting and tracking Superficial Temporal Arteria (STA) while the subject is moving,

playing, and interacting in social communication is a must. It is very challenging to track

and detect STA since the appearance of the STA region changes over time and it is not

discriminative enough from other areas in face region. A novel concept in detection, called

supporter collaboration, is introduced. In support collaboration, the STA is detected and

tracked with the help of face landmarks and geometric constraint. This research advanced

the field of the emotion recognition.
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CHAPTER 1

INTRODUCTION

Visual perception is probably the most important sensing ability for humans to en-

able social interactions and general communication. Many researches have attempted to

mimic human visual perception by computer-based methods. This new field is called com-

puter vision which is the intersection of artificial intelligence, machine learning, image

processing, graphics and cognitive science. Although a large number of applications are

explored using this field’s approaches, these approaches only try to mimic the first layer

of human visual perception and going beyond the first layer requires more complicated

techniques

Face understanding is considered one of the most important topics in the field of

computer vision. The face is a rich source of information in social interaction. Not only

does the face provide information about identity of people, but also their membership in

broad demographic categories of humans (including sex, race, and age), and about their

current emotional state.

Facial recognition technology(FRT) has emerged as an attractive solution to address

many contemporary needs for identification and verification of identity claims. It brings to-

gether the promise of other biometric systems, which attempt to tie identity to individually

distinctive features of the body, and the more familiar functionality of visual surveillance

system without requiring physical contact to the sensor and active cooperation from the

target may not be required. Since the middle of the last century, face recognition is noted

to be attractive to intelligent agency and government applications: police station, airport,

metro station, etc.

In the last five years, face recognition has become more popular in many other ap-

plications such as the car industry, cell phone industry, advertising, and social networking.
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FIGURE 1: Application for Face recognition in non-government applications. (a)automatic

personalization of your car, (b)unlock your mobile phone, (c)pay with your face.

In the automotive industry, Ford has incorporated a new system in its cars that recognizes

the driver as shown in Figure 1-a. It was used to automatically adjust the mirrors, seat and

steering wheel, as well as turn on a favorite radio station. The system was also used to

modify performance settings such as throttle response, gear shift patterns and suspension

stiffness. In the smart phone industry, Android smart phones use facial recognition to un-

lock phones. This feature is called Face Unlock as shown in Figure 1-b. In the finance

industry, Uniqul has launched the first ever payment platform based on face recognition.

The system enables customers to pay without having a wallet, card or mobile phone. Pay-

ing is as easy as giving the camera a nod and pressing OK on a point-of-sale tablet as

shown in Figure 1-c. Moreover, Millennial ATM use facial recognition as its primary se-

curity method. Nowadays, auto tagging is popular feature in social networking sites like

Facebook and personal photo organizers like Picasa which enables users to add metadata
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about an image that include the names of the people in the image.

Recently, the interest in another face understanding application called facial ex-

pressions recognition, or emotion recognition, has increased with the emergence of the

Human Computer Interaction(HCI) field. The facial expression is divided into two cate-

gories micro and macro expression. Micro-expressions are very brief facial expressions

lasting only a fraction of a second. They occur when a person either deliberately or un-

consciously conceals a feeling. Psychological research has classified six facial expressions

which correspond to distinct universal emotions: disgust, sadness, happiness, fear, anger,

and surprise [159] as shown in Figure 2. Facial expression is a visible manifestation of the

affective state, cognitive activity, intention, personality, and psychopathology of a person.

It conveys non-verbal communication cues. There are many application areas that could

benefit from the ability to detect affect. These include interfaces that do not interrupt their

users when they are stressed, online learning systems that adapt the teaching if the stu-

dent is confused, and video games that adapt their difficulty based on player engagement.

Further applications include: assisted living environments that can monitor the user’s state

and report to medical professionals if the patient is feeling pain; assistive technologies for

diagnosing conditions such as depression; and systems that monitor drivers or pilots for

boredom.

1.1 Motivation and Contribution

1. Facial Feature Points detection

Face understanding applications face recognition systems, expression recognition,

gender recognition, measure of beauty, ethnicity recognition are based on the shape of the

face. Detecting face shape is considered to be the corner stone in these applications. Face

anthropometry provides a set of meaningful measurements that allow the most complete de-

scription the shape of the face. The measurements are taken between the landmark points,

facial feature points, defined in terms of visually-identifiable or palpable features on the
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FIGURE 2: Six emotions which have universal signals are disgust, contempt, surprise,

anger, fear, and sadness.

subject’s face using carefully specified procedures and measuring instruments.

Automatically detecting these face facial points, face landmarks, for describing the

face shape is an essential and challenging task. It is an essential task since the accuracy of

different face understanding applications such as face recognition, expression recognition,

and age recognition depends mainly on the accuracy of detecting these facial points. The

challenging side is that detection of these points need to be achieved in images captured

indifferent environments: indoor, in the wild outdoor environments, dimly lit rooms, in

presence of harsh shadows, and various other noisy environments. Also, the face image

can be partially occluded by external objects,such as scarf and sunglasses, or self-occluded

due to pose. Moreover, it has to be computationally efficient, especially if large scale mon-

itoring, or analysis of large databases is needed. These requirements combine to present an

extremely challenging task for computer vision.

In the computer vision community, the face has been modeled using different ap-

proaches to detect the face landmarks. These models can be broadly divided into two main

categories global based models and part based models [24, 25, 44, 46].

In the global models, the appearance of the face is described by the holistic appear-

ance of the face using either parametric or non-parametric model. The active appearance
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model (AAM) [26–29] is a prominent example of these approaches where the appearance

of face is represented using a weighted linear combination of face basis, eigen faces. De-

tecting the facial point using AAM model tends to fail with illumination problem and bad

initial for model parameters. Many extensions has been proposed for AAM [30–33, 35–37].

The part based model [38, 43–46] has recently attracted the attention of computer

vision researchers. It describes the face as a collection of parts with connections between

certain pairs of parts. The model is quite general, in the sense that it is independent of the

specific scheme used to model the appearance of each part as well as the type of connections

between parts. A natural way to express such a model is in terms of an undirected graph

G = (V, E), where the vertices V = (v1, · · · , vn) correspond to the n parts, and there is an

edge (vi, v j) ∈ E for each pair of connected parts vi and v j. An instance of the face is given

by a configuration L = (l1, · · · , ln), where each li specifies the location of part vi. Sometimes

L is simply referred as the object location, but ”configuration” emphasizes the part-based

representation. The part based model has an advantage over global models since it robust

for small pose and illumination variation. Active shape model [38–41] is the prominent

example of these part based models. The part based models describe the shape prior using

point distribution model which belongs to constellation family as shown in Figure 3. The

appearance of each part is described using gradient. Detecting the facial landmarks using

active shape model is suboptimal since the texture and shape are not combined together in

the solution. The shape prior used as filter to constrain the output.

This dissertation proposes a new face model that incorporates advantages of the two

families of global and part based models for detecting face landmarks. The proposed part

based model is demonstrated using both theoretical and experimental results advantage to

have advantages over existing models. Moreover, the proposed facial landmark detector has

been a part of two different face analysis and understanding applications that are presented

in this work which are face recognition and emotion recognition for children with autism

spectrum disorder.

The proposed model incorporates the part based model with holistic face informa-

tion. The The part based model is based on soft combining of a texture classifier with

5



FIGURE 3: Graphical geometric models of shape constraint among face parts.

complex Bingham distribution as shape representation. The texture classifier is built by a

support vector machine classifier that uses novel feature representation called pixel differ-

ence. The complex Bingham distribution is adapted from statistical community into com-

puter vision for face shape representation since it is invariant to in-plane rotation giving this

model superiority with respect to existing shape models. Energy minimization function is

formulated to incorporate information from both texture classifier and shape models simul-

taneously. In the final stage, the global information is used to improve the results of the

part based model by using regression model that does not penalize the outliers of human

face shape due to extreme expression, occlusion, and different ethnicity.

The proposed facial landmarks detectors is used in two problems related to com-

puter vision. The first one is camera steering in multi camera surveillance systems. One

of main challenges in multi camera surveillance system is that a subject of interest in the

filed of view of one of the cameras may not be in the field of view of other cameras. Facial
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FIGURE 4: Rejecting pseudo faces using the facial points detector (a) Face detection output

where the undetected faces in red and detected faces in green. (b) Facial points detector

declare the black object is not face

feature points detector aims to help in solution for steering other cameras to the subject of

interest for unified anaylsis. The second application is rejecting pseudo faces for robust

face detection. Face detection produces errors which are false positive and false negative.

The false positive means the detector declares there is a face despite lack of facial presence

while the false negative simply fails to detect the face. The proposed facial feature points

detector can also reject false positive faces as shown in Figure 4.

2. Face Recognition in the wild

Face recognition is considered the standard face understanding and analysis appli-

cation. The field of facial biometrics is vibrant and its applications cross various domains.

Impressive theory and algorithms have been developed under each component during the

past two decades; which have been explored rapidly in recent years with advances in ma-

chine learning, computing and availability of novel sources of facial information, e.g., so-

cial media. The face recognition pipeline usually consists of three main modules: face

detection, face representation and face matching. Face detection is the first step in this
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process since it segments the facial region from the background before further processing

is performed. Face representation provides useful low-level information from face image.

Face matching measures the similarity between two face representations to achieve one of

these tasks: 1- Choose one of the gallery faces that matches a probe face which is called

closed set face recognition. 2- Choose one of gallery faces that matches a probe face or

identify there is no match which is called open set face recognition. 3-Indicate whether the

probe face belong to certain person based on the gallery face which is face verification.

Despite the enormous successes of facial biometrics, still a fully adaptive and fast

functional robust system for facial recognition in the wild is far from being achieved. The

obstacles for achieving this goal stem from the uncertainties in modeling ”age”, ”pose”,

”illumination” and ”expression”, individually, and much more simultaneously.

Pose invariant face representation was identified as one of the prominent unsolved

problems in the research of face recognition [3] and it has attracted great interest in the

computer vision and pattern recognition research community. As the viewpoint varies, the

2D facial appearance will change because the human head has a complex non planar ge-

ometry. Magnitudes of variations of innate characteristics, which distinguish one face from

another, are often smaller than magnitudes of image variations caused by pose variations.

Directly matching and comparing two faces of different poses is quite difficult since a pose

varies in 3-D space, but there is only the information of 2-D appearances in the face im-

ages. There is a strong connection between solving the pose problem and three dimensional

construction of the human head.

This dissertation proposes two different approaches for solving the pose problem.

The first one is called dynamic weighting of facial features [73]. In this approach, the

similarity measure between the face signature of the probe image (query image) and face

signature of gallery images is the sum of similarity measures of feature vectors of the

patches around facial feature points. Since some facial feature can be partially occluded

with head pose angle, a dynamic weight for these facial features is proposed. Dynamic

weights are assigned for each facial feature at each pose based on the overlapping scores

which is based on the number of pixels in the patch in the frontal gallery image and captured
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FIGURE 5: Corresponding vertices in the 3D face for the pixels in frontal which is indi-

cated in yellow, and the pixels in pose image which is indicated in red. The green vertices

correspond to the intersection vertices from red and yellow pixels

pose image that correspond to the same vertices in the 3D shape of the person, as shown in

Figure 5.

The second approach is based on rendering face images at different poses for each

subject from the enroll image [115]. The gallery in this approach consists of multiple im-

ages for the person at different poses that are generated from enroll image(s). Rendering

face images needs information about 3D shape and texture for subject face. The infor-

mation of texture is captured from the galley face image. The 3D shape is reconstructed

using two algorithm. The first algorithm is statistical shape from shading where the in-

put is single image [107]. While the second algorithm is stereo reconstruction where the

input is two face images from two different camera and geometric information about the

relation between two cameras in known. In this approach, the similarity measure between

the face signature of the probe image (query image) and face signature of gallery images

is the sum of similarity measures of feature vectors of the patches around facial feature

points without weighting since both face images (query image and render gallery image)

have approximately same pose angle.

It is worth mentioning that face representation and face matching have the same

goal. Face representation aims to convert the face image from pixel domain into a fea-
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ture vector that invariant to intra-person variations such as pose. However, face matching

aims to make distance between two face representations, two face feature vectors, which

belong to the same identity, should relatively smaller than two face representations, two

face feature vectors, which belong to different identity. Therefore, computing a similarity

measure between a face representation and other face representation plays an important

role in the success of face recognition. Standard distance measure i.e., Euclidean distance,

treats all face representation features equally. However, certain image features could be

more reliable than others. To overcome this drawback and to enhance the measure perfor-

mance, prior information to discard bad features selectively in each individual matching

circumstance should be used on computing the measure.

A novel similarity measure between two pose invariant face representations is pro-

posed where the distance is small if the two face representation belong to same iden-

tity [129]. This similarity measure is based on a nonlinear combination of Mahalanobis

distances which is determined by using equivalent constraints labeled data(the restricted

setting). The proposed similarity measure maps data from its original feature space to a

target space such that a simple distance will be adequate for the verification task. Origi-

nal feature space is invariant to pose but it may be affected by many uncontrolled sources

of variations e.g., changes in illumination, expression and camera properties. The target

should be invariant to pose, illumination, and expression.

3. Steps towards Emotion Recognition for Children with Autism spectrum disorder

Emotion recognition is one of the most important pieces of information provide by

face understanding. Emotions play an important role in human survival and adaptation as

they affect the way people perceive their surroundings, interpret them, and act upon these

perceptions. According to the national research council, children with Autism spectrum

disorder (ASD) have major difficulties in expression and emotion recognition. They show a

reduced verbal and nonverbal communication facility. In other words, they have a problem

in revealing their expressions and emotions, and in understanding others emotions and
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FIGURE 6: Multiple face image representation under different capture conditions for dif-

ferent identities in feature space before and after similarity measure.

expressions. Therefore, it is very hard to understand their emotions based on gesture and

facial expressions.

An affective model to understand the emotion state of children with ASD using the

physiological signal is established using contact sensors [177]. The contact sensors limit

the daily application for emotion recognition. Farag et al. [176] propose a solution for mea-

suring cardiovascular activity and breathing rate using thermal infra-red camera. However,

their approach is limited to laboratory environment. Moving this work into real life situ-

ation is challenging since there is need for continuously tracking and detecting superficial

temporal arterial (STA) branches from thermal camera while the subject is moving, play-

ing, and participating in social communication. The challenges in detection and tracking

STA area are as follows: the size of STA branches area is small (e.g., around 20-30 pixels

height and width), which makes it easy to confuse with many other areas in the face, and

the appearance of STA changes over time in response to cardiovascular activity.

Long term tracking and detection framework is proposed. The proposed framework
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consists of three main modules: (1) an adaptive particle filter tracker for (STA) branches

area which is used to overcome continuous change in the appearance, (2) online detector

that used a new concept which is called supporters to avoid confusion that results of small

size of STA branches area, and (3) an integrated learning and decision making unit.

Moreover, a data set consist of thermal and visible videos of children with autism

spectrum disorder and controlled at age 6-8 years old has been collected at Kentucky

Autism Training center and Medical School Campus, and Down Syndrome of Louisville.

These data has been collected over fifteen months. The data were collected while the sub-

jects are playing games at different levels of difficulty.

1.2 Structure of the dissertation

A novel human face modeling method for detecting facial feature points in multi-

modality imaging (thermal- visible) is presented in Chapter 2, since facial feature points

detection is critical step in different applications of face understanding such as face recog-

nition, emotion recognition, age recognition, and gender recognition.

The proposed facial feature points detector is used to solve two different problems

related to face analysis in Chapter 3. The two applications are rejection of pseudo faces for

robust face detection and steering the cameras in multi-camera network system.

Chapter 4 and Chapter 5 discuss a novel face recognition approach in the wild.

This approach is invariant to pose, illumination, and expression. Chapter 4 presents sev-

eral new approaches for extracting pose invariant face representations. While, Chapter 5

shows a novel similarity measure between two pose face representation which makes the

distance between two pose face representation with same identity but with different ex-

pression and/or illumination is relatively smaller than the distance between two pose face

representation with different identities.

Chapter 6 shows a framework for tracking and detection area of superficial temporal

arterial (STA) branches in thermal imaging and nasal tissue area for measuring vital signs

for children with Autism spectrum disorder (ASD). These measurements signals can be
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used with skin conductance as strong indicator for emotion recognition for ASD children.

Chapter 7 concludes the dissertation with insights toward future work to be explored

in the field.
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CHAPTER 2

FACIAL FEATURE POINTS DETECTION

Facial feature points, also known as facial landmarks or facial fiducial points, have

semantic significance. Facial feature points are mainly located around facial components

such as eyes, mouth, nose and chin. Facial feature point detection (FFPD) refers to a

supervised or semi-supervised process using abundant manually labeled images. FFPD

usually starts from a rectangular bounding box returned by face detectors [7, 51] which

implies the location of a face. This bounding box can be employed to initialize the positions

of facial feature points. Figure 7-a shows the face detection output which is the input for

facial points detector, and Figure 7-b shows the output of proposed facial points detector.

Facial feature points can be reduced to three types: points labeling parts of faces

with application-dependent significance, such as the center of an eye or the sharp corners

of a boundary; points labeling application-independent elements, such as the highest point

on a face in a particular orientation, or curvature extrema (the highest point along the bridge

of the nose); and points interpolated from points of the previous two types, such as points

along the chin. According to various application scenarios, different numbers of facial fea-

FIGURE 7: (a) Face detection output which is the input for facial feature points detector.

(b) output of the proposed facial feature points detector
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FIGURE 8: The linear shape model of an independent AAM. The model consists of a

triangulated base mesh S 0 plus a linear combination of n shape vector S i. The base mesh

is shown on the left, and to the right are the first three shape vectors S 1, S 2, and S 3 overlaid

on the base mesh. Image courtesy of Matthew and Baker [28]

ture points are labeled for example, a 17-point model, 29-point model or 68-point model.

Whatever the number of points is, these points should cover several frequently-used ar-

eas: eyes, nose, and mouth. These areas carry the most important information for both

discriminative and generative purposes. Generally speaking, more points indicate richer

information, although it is more time-consuming to detect all the points.

2.1 Related Work

Detecting the shape of a facial image is a challenging problem due to both the

rigid (scale, rotation, and translation) and non-rigid (such as facial expression variation)

face deformation. Existing facial feature points detection methods can be grouped into

three categories: constrained local model based methods, active appearance model based

methods, and regression-based methods.

Active appearance model based methods model the appearance variation from a

holistic perspective. In the training phase of these algorithms, principal component analysis

(PCA) is applied to a set of labeled faces (manually annotated face) to model the intrinsic

variation in shape, and texture. This results in a parameterized model that can represent

large variations in shape and texture with a smaller set of parameters. Figure 8 and 9

show the set of models (eigenfaces, and eigenshapes) that results from applying PCA on

shape and texture respectively. Eigenfaces should be free of shape variation and is referred
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FIGURE 9: The linear appearance variation of AAM. The model consists of a base appear-

ance image A0 defined on the pixels inside the base mesh S 0 plus a m linear combination.

The first three appearance images are shown A1, A2, A3 and also defined on the same set of

pixels. Image courtesy of Matthew and Baker [28]

to as shape-free textures. The coefficients of eigenshapes and eigenfaces can be used to

synthesize different variations in shape and texture. The AAM algorithm aims to find the

coefficient of eigenfaces, and eigenshapes model to minimize the difference between the

texture as sampled from the testing image and the texture that synthesized by the model.

The coefficients of model eigenfaces, and eigenshapes are defined over a high dimensional

space, making it impossible to find its global maximum. Much work has been done to

improve and extend AAM by Cootes [27]. Gao et al. [12] present a survey about the recent

developments on AAM.

Regression-based methods estimate the shape directly from appearance without

learning any shape model or appearance model. It learns a regression function which maps

image appearance (feature) to the target output (shape). Zhou and Comaniciu [13] pro-

posed a shape regression method based on boosting [14, 15]. Their method proceeds in two

stages: first, the rigid parameters are found by casting the problem as an object detection

problem which is solved by a boosting-based regression method; secondly, a regularized

regression function is learned from perturbed training examples to predict the non-rigid

shape. Haar-like features are fed to the non-rigid shape regressors. Cao et al. [16] pro-

posed a two-level cascaded learning framework based on boosted regression [18]. Unlike

the above method which learns the regression map for each individual facial feature, their
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method directly learns a vectorial map that combine all landmarks. The main drawback of

the regression methods is that they need huge amounts of memory as compared with the

methods based on constrained local models and are very sensitive to the initialization.

In the constrained local model, the local texture and shape prior models are the

main components. For the texture model, the local texture around a given facial feature is

modeled, i.e., the pixels intensity in a small region around the feature point, while for the

shape model, the relationship among facial features are modeled. Both models are learned

from labeled images (labeled images).

Texture-based detectors aim to find the best suitable point in the face that matches

the texture model. The texture model can be constructed using different descriptors such

as Haar-like [8], local binary pattern (LBP) [5], Gabor [9], scale-invariant feature trans-

form (SIFT) [10] features instead of using pixel intensity directly as a feature. The search

problem can be formulated either as a regression or classification. For the classification

problem, a sliding window runs through the image to determine if each pixel is a feature

or non-feature. For the regression problem, the displacement vector from an initial point to

the actual feature point is estimated.

Texture-based detectors are imperfect for many reasons; visual obstructions such as

hair, glasses, and hands can greatly affect the results. The detection of each facial feature is

also independent from others and it ignores the relation among these facial feature points.

To overcome the disadvantages of texture-based detectors, constraints related to the relative

location of facial features from each other can be established from the shape model. The

shape model either is used to filter the output of texture model or they are combined together

into single formula.

Cristinacce et al. [40] modeled the relative positions of facial features by a pairwise

reinforcement of feature responses and the texture model around facial features points using

PCA as in ASM. Valstar et al. [21] modeled shape using Markov Random Field (MRF) and

the texture using Haar-like feature with boosting classifier. These two approaches use a

single distribution for shape model, which is not suitable for modeling a wide range of

poses and used the shape model to filter the output of texture model. Felzenszwalb et
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al. [53] modeled the relation between facial featured in a graph tree where the relation

between each two nodes is a gaussian distribution and the texture is modeled using iconic

representation. Everingham et al. [19] extended the relation between facial feature points

from a single Gaussian distribution into a mixture of Gaussian trees to handle different

poses and used the Haar-like features with boosting instead of iconic representation to

represent the appearance (texture) around facial feature points. Zhu et al. [46] built on [19]

but they combined the texture and shape model into single formula and used HOG feature

[54] to represent the texture around each facial feature points. Belhumeur et al. [44] used a

non-parametric approach for shape modeling, using information from their large collection

of diverse, labeled examples and represented the texture around each facial feature point

using SIFT features. They used SVM [55] to classify each pixel as a candidate facial

feature point or not. Their algorithm takes 17 seconds to detect 17 facial feature (1 second

per feature).

2.2 Proposed Face Model

The proposed face model for detecting facial feature points combine advantages of

the part based face model and the holistic face model. The face is modeled using part based

model where the texture around facial points is modeled using pixel difference feature and

complex Bingham distribution is used to model human face shape. The texture and shape

model are combined together to detect human face shape using position of facial feature

points in the image. The output is refined by a regression model that is built using non-

parametric global information.

The following are the contributions of this work [22]: (a) the proposed pixel differ-

ence feature for modeling texture around facial feature point (b)using mixture of complex

Bingham distributions to model human face shape from various viewpoints, (c) developing

a new energy function for facial feature points detection combining two uncertainty terms

related to (a) and (b), and (d) Incorporate non parametric holistic information to proposed

face model for achieving few pixels accuracy.
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The texture around facial feature point is represented by the difference in value of

random pixel in the neighbourhood of this facial feature point. This new feature is the

lowest computational complexity as compared with existing state of art while it has similar

accuracy. The output of the classifier is regularized to handle false positives in the classifi-

cation step of each pixel in a certain neighborhood as feature or non-feature. The output of

the classifier should give a high response in the actual facial feature position and decrease

smoothly going away from the actual position. If the neighborhood variance is low, it is

certain that one pixel position is the actual feature point; otherwise, if the neighborhood

variance is high, i.e., all classifier outputs in the neighborhood have combined high or low

scores, the classifier is uncertain if a feature point exists in the area. Regularization is

performed by dividing a normalization term to the classifier output related to the standard

deviation of the output probability scores in the search neighborhood.

The complex Bingham distribution is more robust in modeling the joint probability

of the location of facial features than existing models. Existing models need a preprocess-

ing step before using the shape prior to filter out scale, translation, and rotation using least-

squares approaches (e.g., Procrustes analysis), which can introduce errors to the system due

to noise and outliers. Since the probability distribution function (PDF) of a complex Bing-

ham has a symmetric property, there is no need to filter out rotation. Scale and translation

can be easily removed by a simple mean and normalization step [48].

The facial feature point detection problem is formulated as energy minimization

function that incorporates information from both texture and shape models simultaneously,

while most of the state-of-the-art approaches use the shape model to filter the results of

texture-based methods.

However, the parametric shape model helps in estimating the positions of facial

points that construct face shape with avoiding outlier solutions. The parametric shape

model has drawbacks since it penalizes the human face shapes that are far from the mean

shape. Therefore, this work proposes adding a stage to refine the output that correspond to

minimum energy by using regression model that estimate displacement to final face shape

model, position of facial feature points. The regression model based on global texture to
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FIGURE 10: Searching space for locating candidate positions for different facial feature

points.

give complementary information with local texture model in local texture model, first stage.

1. Local Texture Detector

Currently, a sliding window searching approach is the standard for object detection.

In a sliding window approach, the image is divided into overlapped windows while trying

to determine if there is an object in the present window or not. Deciding whether or not

there is an object in this window requires two steps object representation and classification.

Object representation aims to transform the pixel information from pixel domain into the

feature domain where the object with different variation have close representation. Object

classification aims to determine if certain representation is an object or not.

The seminal work of Viola and Jones [51] is considered the corner stone for many

developments in the area of object detection. The object is represented by Haar-like features

and adaboost is used for classification and feature selection.

The main idea behind the success of Haar-like feature with Adaboost classifier is

the integral image. The integral image is an algorithm for a quick and efficient calculation

for the sum of intensity values in a rectangular subset of an image. Calculation of Haar-like
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features has constant time using the integral image.

Recently, many researchers [54] moved toward using histograms of gradient ori-

entation for object representation since the histogram of a gradient orientation is invariant

to illumination and small change in view point (affine transformation). However, they use

support vector machine for classification since it shows significant improvement in many

pattern recognition application such as voice recognition, hand writing recognition. The

main drawback of using histogram of gradient orientation over Haar-like feature with ad-

aboost is the computation time. Figure 10 shows histogram representation for some face

parts.

In this work, two approaches have been compared for the application of facial fea-

ture points detection, face landmark detection. Moreover, a new representation is proposed

that is as accurate as histogram of gradient orientation but with lower computational com-

plexity. The feature is based on pixel difference at random positions.

In the facial feature points detection problem, each facial point is considered an

object. Therefore, the sliding window approach is run over the face image n times where

n is the number of facial points. However, the searching area can be limited to certain area

relative to face detection which is smaller than the face region. The idea behind limiting

the search area is removing ambiguity and speed up the running time for the algorithm.

Figure 10 shows the searching region for different facial feature points. The center

of the searching area for facial point i is the mean position of feature point i in all training

images after filtering translation, scale and rotation. The width and height of the searching

area is based on the variance of the feature position from the mean.

Figure 11 shows the search region for tip of nose and left corner of right eye, their

response map, and the candidate positions for each facial point using pixel difference fea-

ture representation. The response map represents the score at each pixel in the searching

area is the tip of nose. The candidates are the peaks in corresponding response map. It

estimated using non-maximal suppression technique.

The sliding window classifier for detecting facial point i scan the corresponding

search area as shown in Figure 10 and the score is that the pixel at position zi is the facial
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FIGURE 11: The score at each pixel in the searching area for the tip of nose and inner

corner of right eye.

feature point S (Dzi)

Calculation the score is that the pixel at position zi is the facial feature point S (Dzi)

is based on the classifier type. Support vector machine is used with histogram of orientated

gradient and pixel difference feature representation, while adaboost classifier is used with

Haar-like feature.

The score S (Dzi) where the appearance of each facial point is represented by Haar-

like feature within window w*w with adaboost classifier is given [22]

S (Dzi) =
r∑

t=1

αtizti(zi) (1)

where αti is weight of weak classifier t for the feature i and zti is the binary response of

weak classifier.

On the other hand, the score S (Dzi) where the appearance of each facial point is

represented by either histogram of orientated gradient or pixel difference feature represen-

22



tation with support vector machine classifier is given by

S (Dzi) =
r∑

t=1

αtiziSi (2)

where αti is weight of each support vector t for the feature i, zi is the extracted texture

feature which is either random pixel difference or histogram of orientated gradient, Si are

the support vectors [55].

In the case of a perfect texture-based detector, the response of classifier, response

map, are homogenous as the probability of the pixel being feature is high at the true position

and decreases smoothly going away from this position. Therefore, the output of classifier

is regularized with a variance normalization factor by dividing the output probability of

classifier with σℵ(z). σℵ(z) is the standard deviation of the output probability among the

neighborhood ℵ(z). Then, the probability of position z is feature i based on the texture

detector P(Dzi) can be written as

P(Dzi) =
K
σℵ(zi)

S (Dzi) (3)

where K is the normalization constant.

Since for each facial feature, a sliding window classifier scan the corresponding

search area, the output of each facial point texture detector can be considered independent

from others. Therefore, the overall probability of Z = [z1, z2...zN], the positions of N facial

features based on the texture-based detector, is given by

P(DZ) =
N∏

i=1

P(Dzi) (4)

Figure 12, and 13 show the candidate positions for each facial feature point using

histogram of oriented gradient and pixel difference feature representation respectively and

the best shape Z. The best shape is the facial feature points output where the only best

candidate is chosen.

Figure 14 shows a comparison between different representation Haar-like feature,

histogram of oriented gradient and pixel difference feature representation with respect to
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FIGURE 12: The candidate positions for different landmarks using Histogram of oriented

gradient feature

detection accuracy. The histogram of oriented gradient and pixel difference feature rep-

resentation shows similar detection accuracy. The main differences are: the window size

that describe the facial point appearance in histogram of orientated gradient is half the win-

dow size in pixel difference feature representation. Increasing the window size captures

more global information which may be needed but unfortunately the running time will in-

crease dramatically using histogram of oriented gradient However it is constant with pixel

difference feature representation.

It is worth describing some implementation details involving training. The face

detection box in the training image is rescaled to 50 × 50. The patch size around a given

facial feature position has been empirically determined to be 13 × 13 for optimum running

time and accuracy. Positive samples are taken at manually annotated locations. Negative

samples are taken at least 10 pixels away from the annotated locations. Figures 15, 16,
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FIGURE 13: The candidate positions for different landmarks using pixel difference feature

FIGURE 14: Detection rate comparison of three different appearance features: Histogram

of oriented gradient feature, pixel difference feature, and Haar-like feature
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FIGURE 15: Illustration of intrinsic variation in the appearance of the eyebrow corner

FIGURE 16: Illustration of intrinsic variation in the appearance of the nose tip

17 show subset of positive samples for the left corner of the eyebrow, the tip of the nose,

and the left corner of the mouth. These figures show high variation within the appearance

positive samples.

2. Shape Prior Model

Faces come in various shapes due to differences among people, pose, or facial ex-

pression of the subject. However, there are strong anatomical and geometric constraints

that govern the layout of facial features. The representation of shape, i.e., joint distribution

between facial feature points, is described by various models in the literature. The active

shape model (ASM) is one example based on a single Gaussian distribution.
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FIGURE 17: Illustration of intrinsic variation in the appearance of the mouth corner

Typically, one would like to have a shape representation that is invariant to trans-

lation, scale and rotation. A common way to address this problem is to use least-squares

(LS) fitting methods, e.g., Procrustes analysis [48], where misalignments due to noise and

outliers may happen [23]. Moreover, an iterative procedure is needed to align multiple

shapes.

Complex Bingham distribution [48] for the proposed facial feature detection ap-

proach is used. The advantage of using this distribution is that shapes do not need to be

aligned with respect to rotation parameters. The probability distribution function of the

Complex Bingham is defined by

P(Y) = c(A)−1exp(Y∗AY) (5)

where c(A) is a normalizing constant and Y∗ is the complex conjugate of the transpose of

Y .

Since the Complex Bingham distribution is invariant to rotation, it is suitable to

represent shape in the pre-shape domain where shapes are zero-offset and unit-scale. In this

work, the classical way of transforming is used to transform from the original shape vector

to the pre-shape domain by simply multiplying to the original shape vector the (matrix) and

then performing normalization [48]. H is given by
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

h1 −h1 0 · · · · · · 0 0

h2 h2 −2h2 0 · · · 0 0

...
...

...
...
. . .

...
...

hN−1 · · · · · · · · · · · · hN−1 −(N − 1)N−1


(6)

where

hb = −(b2 + b)−1/2

Multiplying the original shape vector with the Helmert sub-matrix will project the

original facial features position vector Z ∈ Cn to Cn−1. Then, the shape representation using

the complex Bingham is

P(Z) = c(A)−1exp(
HZ
∥ HZ ∥

∗
A

HZ
∥ HZ ∥ ) (7)

where A is a (N − 1) ∗ (N − 1) Hermitian parameter matrix, N is number of landmarks

or facial feature points. The spectral decomposition can be written as A = UΛU∗, where

U = [U1U2 · · ·UN−1] is a matrix whose columns Ui correspond to the eigenvectors of A

and Λ = diag(λ1, · · · , λN−1) is the diagonal matrix of corresponding eigenvalues.

The normalization constant c(A) is given by

c(A) = 2πN−1
N−1∑
i=1

ai exp(λi) (8)

where a−1
i =
∏

m,i(λi − λm)

The log likelihood of parameters is

L(Λ,U) =
N−1∑
i=1

λiU∗i S Ui − N log c(A) (9)

where the matrix S is a N − 1 × N − 1 matrix denoting the auto correlation matrix for

manually annotated shapes that have zero mean and unit scale. The maximum likelihood

estimators are given by [48]

Ui = Gi i = 1, 2, · · · ,N − 1 (10)
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and the solution to

d log c(Λ)
dλi

=
li

N
(11)

where G = [G1G2 · · ·GN−1] denotes the corresponding eigenvector of S and L = diag(l1, l2 · · · lN−1)

is the diagonal matrix of corresponding eigenvalues.

Since no exact solution exists, λ is estimated by minimization of function F

Fi =
d log c(Λ)

dλi
− N

li
(12)

This function is linearly approximated and solved iteratively using gradient descent.

The update equation is given by

λt+1
i = λ

t
i − κ

ai + λ
t
i
∑N−2

m=1
∏

i,m,k(λi − λk)∑N−1
i=1 aiλ

t
i

(13)

Since the deformation of shape due to different poses is large and cannot be handled

by a single distribution [19], [45], the training annotated shapes is divided into M classes.

Each class carries a small range of poses and a Bayesian classifier rule is used to estimate

the class of testing shape. The index of class is given by

m∗ = argm min
HZ
∥ HZ ∥

∗
Am

HZ
∥ HZ ∥ + log(cm(A)) (14)

3. Combining Texture and Shape Model

In facial feature detection problems, a numbers of hidden variables (position of

facial features) is estimated based on observable variables (image gray level). This problem

can be formulated as a Bayesian framework of maximum a-posteriori (MAP) estimation.

The probability model of the input image and the facial feature positions is given

by the joint distribution, P(I,Z) = P(I|Z)P(Z), where P(I|Z) is the conditional distribution

of the original image given the facial feature positions and P(Z) is the distribution of the

facial feature positions, i.e., the shape prior model. The maximum-a-posteriori estimate of

facial feature positions given the image I is expressed as
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Z∗ = argmaxP(I|Z)P(Z) (15)

The problem of facial features detection is formulated in Bayesian framework of

maximum-a-posteriori. The goal is to find the vector Z, which maximizes the response

probability for the texture model and shape model.

Ẑ = arg max P(I|Z)P(Z). (16)

P(I|Z) represents the probability of similarity between the texture of the face to

off-line model given the facial feature vector which is given by Equation 17

P(I|Z) = P(DZ) =
N∏

i=1

P(Dzi) (17)

Therefore, the maximum-a-posteriori estimate of facial features can be formulated

as energy minimization of function E(Z)

E(Z) = −HZ∗AHZ
∥ HZ ∥2

−
N∑

i=1

log P(DZi) (18)

This energy function is non-linear and not amenable to gradient descent-type al-

gorithms. It is solved by a classical energy minimization technique, which is simulated

annealing.

2.3 Non-parametric global information for detection refinement

Random fern regression is used to find the displacement from the position of de-

tected facial points that corresponding to minimum energy as shown in the previous sec-

tion to more accurate position with few pixels accuracy. The regression model learns the

relation between the appearance around these detected points corresponding to minimum

energy and displacement to the ground truth position of facial feature points, face shape.

A single regression model is not sufficient since the relation is very complex, therefore

boosted regression model is used.

In boosted random ferns regression, T random fern regressors(ℑ1,ℑ2,...,ℑT ) are

combined in an additive manner. Given a face image I and detected facial feature points,
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face shape, corresponding to minimum energy Z0, each random ferns computes a shape

increment δZ from the appearance representation around these points and updates the de-

tected facial feature points in a cascaded manner:

Zt = Zt−1 + ℑt(I, Zt−1), t = 1, 2, ..., T, (19)

where Zt−1 is the position of facial feature points that is the output of previous

random fern regressor stage, while Zt is the output of the current random fern regressor

stage.

Each fern is learned by minimizing the sum of alignment error in the training set.

Alignment error is difference between the detected positions for facial feature points, face

shape, and the ground truth positions of facial feature points. In the training stage, the

regression function ℑ, is learned which minimizes the alignment error that is estimated

from as following

ℑt = arg min ∥Ẑ − (Zt−1 + ℑt(I,Zt−1)∥ (20)

where Ẑ is the ground truth positions of facial feature points which is manually

annotated.

The regression function in each fern is estimated by dividing the training data into

b bins based on face appearance represented by pixel difference feature. Each bin is as-

sociated with regression output δZt that minimizes alignment error of the training samples

falling into this bin. Figure 18 shows an illustration for testing fern using pixel difference

feature.

Dividing the data into b bins to build regressor fern requires selection of log2 b fea-

tures and their threshold from B pixel difference feature that represent the holistic appear-

ance of the face image. A good fern should satisfy two properties: (1) each feature in the

fern should be highly discriminative to the regression target; (2) correlation between fea-

tures should be low so they are complementary when composed. To find features satisfying

such properties, correlation-based feature selection method is used [16]
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FIGURE 18: Illustration of regression output using pixel difference feature in random tree

regression

1. Project the regression target to a random direction to produce a scalar where the

regression target is the difference between position of current facial feature points and the

ground truth.

2. Among B features, select a feature with highest correlation to the scalar.

3. Repeat steps (1) and (2) log2 b times to obtain log2 b features.

4. Construct a fern by log2 b features with random thresholds.

The random projection serves two purpose. The first purpose is preserving proxim-

ity such that the features correlated to the projection are also discriminative to delta shape.

The second purpose is the selected features are likely to be complementary.

2.4 Experiments

The proposed model for facial feature detection is evaluated in visible [22] and

thermal images [52]. The same procedure is applied for thermal and visible. The only

difference is the number of facial features in thermal image is chosen to be six points instead

of sixty eight points in visible images. In the thermal image, most facial points cannot even

be detected manually since the iris is hardly visible and there is no contrast with the sclera.

The eyebrows are not consistently visible since this depends on their density. Also, the
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lips are in many cases undistinguishable and therefore the mouth is hardly distinguishable

if it is closed. Therefore, the number of detected facial points in thermal is small which

are around 3 − 6 points and most of the algorithms for detection facial points in visible

images cannot be used in thermal images. The facial feature points detector is evaluated

using cumulative distribution of the relative error. The relative error is distance between

the detected facial feature point and manual annotated point (ground truth) divided by the

ground truth distance between the two eyes. At every point in the curve, the x-axis shows

the relative error, and the y-axis is the percentage of facial feature points that have relative

error less than or equal the value of x-axis.

FIGURE 19: A comparison of the cumulative error distribution measured on BIO-ID

dataset.

1. Visible Images

The performance of the introduced facial features detector is evaluated on BIO-

ID dataset, Labeled Face Parts in the Wild (LFPW) dataset [44], and Helen dataset [66].

Most of the researchers about facial features detection in the literature reported results

on the BIO-ID database, therefore it is included here as a testing dataset. The BIO-ID
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dataset contains 1521 images, each showing a near frontal view of a face in controlled

indoor environments with no illumination and occlusion problems for 23 distinct subjects.

On the other hand, Belhumeur et al. [44] released LFPW as a challenging uncontrolled

dataset. It consists of 1432 faces from images collected from the web. The dataset contains

different challenges pose, existence of shadow, presence of occlusion objects as sunglasses

or subject’s hand, existence of in-plane rotation, and blurred images. Recently, Vuong et

al. [66] released Helen dataset consisting of 2,330 faces in 2,330 high resolution images

collected from Flickr with a broad range of appearance variations.

FIGURE 20: A comparison of the cumulative error distribution measured on LFPW

dataset.

Figure 19, and Figure 20 show the cumulative error distribution for the proposed

detector versus those reported by [154], [46], [44], [21], [19], and [40] on BIO-ID, and

LFPW dataset respectively. The introduced detector and detectors in [16], [46], [44], [21],

and [19] have comparable performance on BIO-ID since this database includes images

with near frontal view of a face in controlled indoor environments with no illumination

and occlusion problems. In LFPW database, the introduced detector and detectors by Bel-

humeur et al. [44] showed similar performance. This performance has the highest accuracy
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compared with other approaches. Cao et al. [16], and Burgos et al. [17] reported their per-

formance using mean error as percentage of interocular distance instead cumulative error

distribution. Figure 21 (a,b) show the mean error as percentage of interocular distance for

Belhumeur et al. [44], Cao et al. [16], Burgos et al. [17], and the proposed approach on

Helen , and LFPW dataset, while Figure 21 (c,d) show the other two factors in comparison

which are model size, and running time.

FIGURE 21: A comparison of proposed detector against the state-of-art according to accu-

racy, running time, and memory usage.

Detector model by Belhumeur et al. [44] takes a long time since it is based on

SIFT feature which is extensive feature in extraction. The model utilizes more memory as

compared with most of the existing algorithms since it needs to save shapes instead of the

parameters of the shape model. While the proposed shape model is a mix between para-

metric and non-parametric shape models. The parametric shape model with local texture

detector is used for finding approximate positions for facial feature points which it does not

need a lot of memory. On the other hand, regression random ferns are used to find accurate

facial feature points starting from the output of the parametric model. This stage needs
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more memory but is still less demanding than detectors by either Cao et al. [16] or Burgos

et al. [17]. Their detectors need many stages of cascade regression trees to achieve good

results since they start with random initialization which may be far from the true position.

FIGURE 22: Samples of results of the proposed facial feature detector on Labeled Faces

Parts in the Wild (LFPW) dataset.

Figure 24 shows the accuracy of each stage in the proposed detector using three

experiments. The first one is denoted as local texture detector where the pixel difference

feature with support vector machine is used to find best candidate for each facial feature

point without any shape constraint. The second experiment is denoted as parametric shape

model. In this experiment, the facial points are detected based on optimized energy function

that combines complex Bingham distribution for shape modeling with texture model. The

last one is the fine tuning stage based on the ferns regression model for shape relaxation
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FIGURE 23: Samples of results of the proposed facial feature detector on Helen dataset.

and incorporates global information.

2. Thermal Images

The performance of the newly facial features detector is evaluated on a subset of the

UND dataset. This subset consists of 328 thermal images. This subset contains 82 subjects

with four different images (i.e., different illuminations and expressions). Figure 25 shows

the cumulative error distribution for the proposed detector compared to [49, 50]. Trujillo et

al. [49] detected the two eyes and mouth for expression recognition. Their method is based

on applying the Harries algorithm to extract critical points in the face thermal image. Then

k-means clustering is performed under the assumption that the cluster will be coincident

with the facial component. Martinez et al. [50] used Haar features and the GentleBoost
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FIGURE 24: Effects of each component in the proposed approach: local texture detect

only, local texture detector with shape constraint, and the full proposed approach.

algorithm to detect the two eyes and the nostrils. The classifier has many false outputs

because the search for a feature is done in the whole image. These outliers have been

filtered by using Gaussian distribution as a shape constraint.
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FIGURE 25: A comparison of the cumulative error distribution measured on Notre Dame

dataset.

FIGURE 26: Samples of the results of the proposed facial features detector on Notre Dame

dataset (Thermal Imaging)
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CHAPTER 3

FACIAL FEATURE POINTS DETECTOR: APPLICATIONS

Facial Feature points are important components in many face analysis and under-

standing application such as face recognition, emotion recognition, and gender recognition.

This chapter focuses on two new applications for facial feature points that are not related

to recognition task which are camera steering in multi camera surveillance systems and

rejecting pseudo faces for robust face detection.

Multi camera surveillance systems exist in many transit stations, shopping stores,

grocery, parks, private and government buildings, and many streets all over the world. In

the last decade, the main application for multi camera surveillance systems is monitoring

and recoding. Due to advances in technology and higher security demands, there is a

noticeable upsurge in application of biometrics to be a part of multi-camera surveillance

system. There is a particular interest in biometric systems which are capable of acquiring

multi view images for integrated surveillance/identity tasks since active cooperation from

the target may not be required. Fixing many cameras to the same scene for capturing multi-

view images is very expensive. Therefore, each camera is usually mounted on pan/tilt unit

that allows the camera to rotate in 3D space. When a suspicious action is happening in the

field of view of the camera, the other cameras should be steered to the same action/subject.

Figure 27 shows an illustrated example using two cameras where a suspicious subject is

detected by one of the cameras while this subject is not in the field of view of the second

camera. The goal is to automatically steer the second camera such that it captures the

subject of interest. A passive approach (i.e., no need for active sensing devices) without

adding an extra wide field view camera for solving steering problem is discussed in this

chapter. This approach for steering the other cameras is based on utilizing information

from the detected facial feature points.
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FIGURE 27: A multi-NFOV camera surveillance system: the cameras are constantly mov-

ing to cover the whole area (1st row). Once a suspicious subject is detected by one camera

(2nd row, left). The other camera can be imaging a completely different area (2nd row, mid-

dle). The goal is to steer this other camera to get the same target subject in its field-of-view

(2nd row, right).
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FIGURE 28: Illustration of face detection errors. The red rectangular is false negative

(undetected faces) while the blue rectangular is false positive (pseudo faces)

Rejection of pseudo faces for robust face detection is the second application for

the proposed facial feature points detector. Face detection can be defined as the automatic

process of isolating faces from their background. Figure 28 shows examples of the two

error types in face detection: missing detection and false positive detection. There is a

strong connection between these two errors since decreasing one error leads to an increase

in the other error. This chapter presents an approach for decreasing the false positives

without increasing the missed detections. The approach is based on utilizing information

from facial feature points detector. The facial feature points detector extracts the facial

features for all face candidates resulting from the face detector regardless of the nature of

these candidates being true positives or false alarms but it generates a probability that can

be used to reject false alarms.
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3.1 Camera steering in multi camera surveillance system

1. Problem statement and Related work

Considerable effort has been made on management of camera network in surveil-

lance applications. Prior work in this field focusing on the efforts related to the system

configuration and how one camera or more is/are steered to a particular subject given the

subject is captured by another camera for the purpose of facial image capturing and recog-

nition will be reviewed.

Stillman et al. [118] developed a system for person recognition consisting of two

static overlapped WFOV cameras and two NFOV cameras. The two overlapped WFOV

cameras are used to determine 3D location in real world coordinates of the person using

triangulation, then the two NFOV cameras are steered based on the calculated 3D position.

Similarly, Hamppaur et al. [128] and Wheeler et al. [119] proposed a system from the point

of view of how to locate a subject in 3D and they differ in the tracking method and how they

detect the subject in WFOV cameras. Krahnstoever et al. increase the number of WFOV

cameras from two to four for more coverage area and accordingly increasing the accuracy

of locating a subject in 3D world coordinates. All these systems have one or more NFOV

cameras that are steered based on the location of a subject in world coordinates to capture

the facial image that is used for recognition.

Greiffenhagen et al. [117] developed a system based on only one static overhead

WFOV camera mounted below the ceiling to capture the 3D location of a subject. They

used in their algorithm the person’s foot since the z-component of the person’s foot is

known. Given the distance between the camera position and the floor, the captured image

from WFOV can be used to estimate the x-y component. The system is restricted for indoor

application. Zhou et al. [127] used one WFOV camera for outdoor application to locate the

subject. They used a regression model between the position of a subject (in pixels) in the

image, which is captured from the WFOV, and the camera control parameters (pan and tilt

angle) of the NFOV cameras. Marchesotti et al. [122] also used one WFOV camera. They
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restricted the starting point of tracking and steering the camera at a certain distance, to

coincide with the gate of the parking area. These restrictions help to find the 3D location

of a subject in world coordinates using the image captured from a WFOV camera.

Elders’ group [120, 124] developed an approach for 2D localization in the image

plane based on a combination of the likelihood of three cues: 2-frame motion difference,

background subtraction, and skin detection. No modality alone is sufficient. In their work,

they did not explain how a subject is located in the 3D world coordinates and how NFOV

cameras parameters, pan and tilt angle, are evaluated. Their system is also intended for

indoor coverage.

Rother et al. [121] have developed a 3D prior for scene learning from a single view.

They use the average height of the person to locate a subject in world coordinates. How-

ever, since the statistics of people’s height has rather a high variance, the uncertainty of

estimation depth is accordingly high. In addition, this approach would encounter difficul-

ties when the subject’s complete height is not visible in the image (e.g. subject sitting,

bending, or even partially occluded). As a result the distance estimate can be way off.

2. Proposed approach

To solve the steering problem, a passive approach (no need for active sensing de-

vices) is proposed . Unlike other approaches, the proposed approach does not need WFOV.

In fact, the proposed approach uses facial biometric measures which are statistically more

consistent. The contribution of the proposed approach is the use of human face biometric

measures to infer an approximate estimate of the subjects distance to a camera. In particu-

lar, inter-pupil distance (IPD) of a human face is used for that purpose. The IPD has much

more consistent statistics across different people with much smaller variance. The IPD

statistics is shown in Table-1, and has similar mean across the male and female population,

as well as having a low standard deviation. Therefore, IPD can lead to more accurate esti-

mate of the subject distance. In addition, the distance from the mid-point between eyes to

outer edge of the lips (ELD) is used. This additional biometric has a well-known statistic,
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FIGURE 29: Biometric distances used in the proposed approach.

and more importantly is quite robust to subject pose. Hence, the subject’s distance can be

estimated away from the camera even if she/he is only visible from the side view (profile),

sitting or even with occluded body. The distance from the mid-point between eyes to outer

edge of the lips is approximately 1.2 times of inter-pupil distance.

Although, the proposed approach is applicable for multi-camera systems, its de-

scription in this section is restricted to a two-camera system. This approach can be sum-

marized in three steps. First, from the statistics of distances IPD and ELD in centimeter

and the measured distances in the image plane of one of the cameras in pixels, the ap-

proximate distance of the subject to this camera (reference) can be estimated. Then, given

the distance of the subject to the reference camera, a trigonometric is used to estimate the

required pan of the second camera in order to automatically steer it to the vicinity of the

target. Afterwards, since the two cameras are assumed to have equal elevation above the

mount platform, the tilt angle of the second camera is set equal to that of the reference

camera. After the movement, two or more subjects may appear in the field of view of the

steered camera, see for example the right image in the 2nd row of Figure 27. Therefore, a

quick search for the target subject in the captured image of the second cameras is carried

out using matched filter to localize the face of the target subject.

2..1 Distance from subject to the reference camera To estimate the distance of

the target subject to the reference camera, assume that the camera is modeled as pinhole

45



TABLE 1: IPD values (mm) from 1988 Army Survey [126]

Gender Population size Mean Std. Min. Max.

Male 1771 64.7 3.7 52 78

Female 2205 62.3 3.6 52 76

camera model, where the world coordinates system coincidences with the camera coordi-

nates system originated at the camera’s focal point. As such, any 2D point x = [x y 1]⊤ in

the image plane is related to the corresponding 3D point X = [X Y Z 1]⊤ via x = K[I|0]X,

where K is the camera matrix that encompasses all the camera intrinsic parameters, such

as the horizontal and vertical scales kx and ky. For two horizontal 3D points (Y1 = Y2) on a

plane vertical at the camera optical axis (i.e., same distance from the camera: ζ1 = ζ2 = ζ),

their projections on the image plane will be displaced by

∆x =
kx

ζ
(X2 − X1) =

kx

ζ
∆X, (21)

where ∆x is the disparity between the two points in pixels. From this relationship, the

distance from the reference camera to the target subject ζ can be estimated if there is two

nearly horizontal points that are on the same fronto-parallel plane, for which the disparity

∆x and the metric 3D distance ∆X are known. In this work, these two points are the center

of the pupils of the eyes (and the distance between them is the inter-pupillary distance and

denoted by D). The two points have the same distance to camera and can be considered

on a fronto-parallel plane. The corresponding pixel disparity ∆x, denoted by d, can be

easily computed from the previous step of facial features extraction. kx is easily determined

beforehand from a camera calibration process done off-line (or known from camera specs).

Based on the notation, d = kx
ζ

D.

Similarly, for the two vertical points on the same fronto-parallel plane approximat-

ing the eye to lips distance (ELD), the vertical distance between them M is related to the

their disparity in the image plane m via m = ky

ζ
M), where ky is often equal to kx, i.e.,

kx = ky = k. From the known statistics on D and M, and the measurements of d and m from
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FIGURE 30: The setup geometry of the two cameras. The reference camera on the right

is fixated on a target at a distance ζ with a pan angle β1. The target is at a distance ζ2 of

the second camera on the left, which will be panned with an angle β2. The base distance

between cameras is B.

the extracted features, a least mean square estimate of the distance ζ can be found from

ζ =
k(d D + m M)

d2 + m2 . (22)

2..2 Steering the second camera After solving for the estimated distance (ζ)

between the reference camera and the target subject from the previous step, the next stage

is finding the parameters necessary to direct the second camera’s pan angle β2 such that

the target subject should be in the field of view of the second camera. It is a trigonometry

problem, as illustrated in Figure 30. The base distance B between the two cameras are

assumed known.

Given the pan angle of the reference camera β1, the estimated distance between the

subject and the second camera can be found using the law of cosines

ζ2
2 = ζ

2 + B2 − 2Bζ cos(β1). (23)

Then, the pan angle β2 of the second camera can be estimated using sine law

sin(β2) =
ζ

ζ2
sin(β1) (24)
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From the previous equations, the error in pan angle of the second camera depends

on the distance ζ, baseline distance B, and the pan angle of the reference camera. Now, it

is interest to estimate the error in this angle due to the localization error in d and m from

facial features extraction and the uncertainty in the two face biometrics M and D. To do

this, the Jacobian matrix J of β2 need to be estimated with respect to all these variables,

J = [
∂β2

∂D
∂β2

∂∆d
∂β2

∂M
∂β2

∂∆m
]

=



k sin(β1)(ζB cos(β1)−ζ2+ζ22 )

∆xζ22
√
ζ22−ζ2 sin2(β1)

k∆X sin(β1)(ζ2−ζB cos(β1)−ζ22 )

(∆x)2ζ22

√
ζ22−ζ2 sin2(β1)

k∆Y sin(β1)(ζ2−ζB cos(β1)−ζ22 )

(∆y)2ζ22

√
ζ22−ζ2 sin2(β1)

k∆Y sin(β1)(ζ2−ζB cos(β1)−ζ22 )

(∆y)2ζ22

√
ζ22−ζ2 sin2(β1)



⊤

.

After analyzing the proposed detector results, the localization error in d can be

expressed as N(0, 22), and the uncertainty in D (IPD) can be expressed as N(63.5, 3.72)

(from Table 1). One can propagate the uncertainty to the error in β2 via JΣJ⊤ computed at

the mean values of the variables with

Σ = diag(σ2
d, σ

2
D, σ

2
m, σ

2
M), where σd = 2, σD = 3.7, σm = 2.8 and σM = 4.44

Figure 31 shows the pan angles of second camera β2 and its error statistics for

different pan angles of the reference camera at different distances and a baseline distance

7.5 meters.

3. Results and Discussion

The performance of steering the camera is evaluated using the collected dataset

(UoFL-EWA). The pan and tilt angles of camera (1) and baseline distance are known and

the objective is to estimate of the pan of camera (2). The mean, standard deviation and the

maximum difference between the estimated angle and the ground truth is summarized in

Table 2 at different poses.

The ground truth is defined when the subject’s face is centered in the frame of

steered camera. If the difference is less than half the field of view angle, the subject will
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FIGURE 31: The pan angle of left camera (in degrees) given the baseline distance is 7.5

meters at different right camera pan angles of 15◦, 25◦, 40◦, and 50◦.

Distance Maximum Difference Mean Difference Standard deviation of difference

Near Frontal 25◦ 45◦ Near Frontal 25◦ 45◦ Near Frontal 25◦ 45◦

50m 1.31 1.52 1.80 0.62 0.69 0.72 0.45 0.73 0.82

80m 1.35 1.42 1.54 0.52 0.55 0.52 0.43 0.49 0.51

100m 0.77 1.33 1.34 0.36 0.40 0.41 0.23 0.28 0.32

150m 0.65 1.27 1.37 0.35 0.38 0.42 0.21 0.27 0.35

TABLE 2: The maximum, mean, and standard deviation of the difference between esti-

mated pan angle of camera(2) and ground truth in degree
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FIGURE 32: The success rate of steering algorithm at different ranges with different poses

near frontal, 25◦, and 45◦.

appear in the image. Therefore, the matched filter can find the exact position in the image.

If any part of target subject’s face appears in the image plane of second camera, then the

steering algorithm is successful. In other words, the steering is successful if the difference

between estimated and ground truth pan angle is less than half the field of view angle.

Figure 32 shows the success rate of the steering approach for subjects at different distances

and have different poses. The lower success rate at distance (30m) is due to the fact that

at this distance any small deviation in estimation the 3D location of the subject leads to

high deviation in the estimated pan angle from the ground truth. So the target subject’s face

disappears from the image plane of the second camera completely. This can be overcome

by a heuristic search in three different images captured at the estimated camera position,

one step forward and backward from the estimated angle. The step angle is the field of

view angle.

Figure 33 shows samples of the results of the steering approach in field test. The

first column shows the scene as captured by the reference camera. The reference camera

adjusts itself to make the subject in the middle of FOV. The second column shows the

scene as captured by second camera before steering. The last column shows the scene after
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steering the camera to the subject where the target’s face subject is appeared in the image

plane.

FIGURE 33: A sample result of the algorithm for steering a second camera to a subject

given a single image for the subject from the first camera indoor at range 5 meters.(a) The

left camera image with the subject in its FOV. (b) Locating the facial feature of the subject

of interest. (c) The right camera image after steering, using our proposed algorithm. A

bounded region is marked on the subject of interest, using the matched filter results.
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FIGURE 34: A sample of failure of proposed algorithm. The first column shows the scene

as captured by first camera. The second column shows the scene as captured by second

camera before steering. The last column shows the scene after steering.

3.2 Rejecting Pseudo faces for Robust Face Detection

1. Related Work

The input for a face detector is simply a digital image that may have multiple faces,

a single face or even no faces at all. The output of the detector is the location and extent

of each face in the image if any [60]. Despite the maturity of face detection algorithms,

the problem is still open-ended in uncontrolled environments. There are several challenges

in face detection their combined contribution makes the problem even difficult. Some of

these problems include partial occlusion (by sunglasses or hair), pose (in-plane or out-of-

plane rotation), expression (laughing, smiling), illumination, skin color, and out-of-focus

faces. The two errors in face detection are false positive and false negative errors. The

False Negative (FN) rate counts the number of faces in the image that was not detected and

the False Positive (FP) rate counts the number of false detections in the image where the

detector labeled a wrong region in the image as a face. Recently, a database for face de-

tection in unconstrained settings called Face Detection Database and Benchmark (FDDB)

was released [65] with the performance of several common algorithms in the face detection

literature, e.g., Viola-Jones (VJ) [51], Mikolajczyk [68], and Kienzle et al. [71] detectors.
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The results of these algorithms show that the current algorithms suffer from high false pos-

itive and false negative rates. Jain et al. [67] showed significant improvement by online

adaption of the trained VJ cascade classifiers for decreasing the false negative rate. How-

ever, their detector is based on the assumption that there is more than one face in the image.

On the other hand, Erden et al. [57] proposed utilizing the color information of the image

by using skin color detector for false reduction after VJ detector. Many approaches utilize

the skin with VJ detector as pre-filtering to limit the search space of VJ detector.

2. System Description

The input to the proposed framework is a digital image. This image is processed by

a face detector based on Haar cascades in this experiment. The detector gives us all face

candidates in the image which contains false alarms. Each face candidate passes through a

facial feature detector that detects facial feature points. Moreover, it also gives the probabil-

ity of the candidate being a false alarm. This probability is based on the texture around each

detected facial feature point and the relation among the facial features. In the meantime,

the colored version of each face candidate passes also through a skin detector that gives the

probability of being a false alarm utilizing the complimentary information in color images.

Finally, the probability of false alarm from the two detectors are combined for deciding

face or non-face. If the image is not colored, the decision will only depend on the facial

features. These blocks will be illustrated in details in the following subsections. This pro-

posed framework aims to decrease the false positive numbers while it does not affect the

false negative error.

2..1 Facial Features Points probability OpenCV implementation of face detec-

tor is used which can be replaced by any other face detector without affecting the proposed

framework. The facial feature points, landmarks, has been detected using the proposed de-

tector in the previous chapter. It is important to realize that the landmark detector assigns a

probability for each landmark using the texture model given by P(W(Zi)|Zi) that describes

how much texture around this point is similar to off-line model. It also has another proba-
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bility given by P(Z) that describes its relation to other features. The combined probability

of each landmark is given by P(W(Zi)|Zi)P(Z).

The facial feature points detector detects the facial features for all face candidates

resulting from the face detector regardless of the nature of these candidates being true

positives or false alarms. Although the proposed framework gives a solution for the location

of landmarks in both true positive and false alarm cases, the combined probability of the

landmark has a low value in false alarm cases which can be used in rejecting false alarms.

The probability of the candidate face being false alarm based on facial feature detector is

given by

P( f f ) = 1 −
n∏

i=1

P(W(Zi)|Zi) P(Zm∗) (25)

The advantage of using the facial landmarks in rejecting false alarms is that it is

accurate and it adds no overhead time to the system since the stage of landmark detection

is usually required after face detection for further processing.

2..2 Skin Detection Probability Skin segmentation in color images can be sum-

marized into choosing the suitable color space for image representation then selecting a

satisfactory classifier. The HSV (hue-saturation-value) color space is used since it has

several interesting properties [62]. The classifier is created by maximizing the agreement

between the three channels of HSV for estimating the boundaries on each subspace. This

method for creating the classifier removes the need for supervised annotation and allows

rapid adaption of the classifier to different data which are the drawbacks of most of the

existing classifiers [64]. Let L = l1, l2, l3, l4, l5, l6 be the boundaries of the subspace. A pixel

(i) is classified as a skin if its color components in HSV space conform to : ℓ1 < Hi < ℓ2,

ℓ3 < S i < ℓ4 , and ℓ5 < Vi < ℓ6

An estimate of the boundaries on each subspace given the channels HSV of the

color image I is expressed as

L∗ = argmax (τ) (26)
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where τ is the Kendall’s agreement given by [64]

τ =
P(H ∈ I1, S ∈ I2,V ∈ I3) P(H ∈ Ic

1, S ∈ Ic
2,V ∈ Ic

3)√
P(H ∈ I1)P(H ∈ Ic

1)P(S ∈ I2)P(S ∈ Ic
2)P(V ∈ I3)P(V ∈ Ic

3)
(27)

where I1 = [ℓ1 ℓ2], I2 = [ℓ3 ℓ4], I3 = [ℓ5 ℓ6].

A Dynamic programming-based solution is used to optimize two of the parameters

at a time, iterating among channels until a solution is converged.

The skin class is modeled as multivariate gaussian distribution and the probability

of the pixel C(i,j) being a skin is given by

P(C(i, j)) =
1

2π3/2|Σ|1/2
exp(−1

2
(C − µ)Σ−1(C − µ)T ) (28)

where C = [H S V], Σ = diag(σH, σS , σV), σH =
l2−l1

6 , σS =
l4−l3

6 , , σV =
l6−l5

6 , µ =

[ l1+l2
2

l3+l4
2

l5+l6
2 ].

The probability of the face candidate resulting from the face detector is being false

alarm based on skin model is given by

P( fs) =
i=N∑
i=1

j=M∑
j=1

1 − P(C(i, j))
N ∗ M

(29)

2..3 Combining probabilities for rejecting pseudo faces Based on the facial

feature and skin model, each candidate face has a probability for being a false alarm from

each model P( f f ),and P( fs), respectively. The probability of false alarm based on combin-

ing the two models is given by

P( ft) = P( fs) ws + P( f f ) w f (30)

where ws, and w f are the weight of skin model, and facial feature model. The

optimal weights for the facial feature and skin models has been empirically determined to

be 0.75 and 0.25, respectively in color images. In grayscale images, the weights are 1 and

0 respectively since there is no information about the skin in gray image.
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3. Experimental Results

To evaluate the proposed system, the face Detection Database and Benchmark (FDDB)

is used. This database was created in 2010 to act as a benchmark for face detection in un-

constrained conditions. It consists of 2845 images with 5171 manually annotated faces. It

contains photographs from several news sources under unconstrained environments with a

wide range of challenges including partial occlusion, difficult poses, low resolution and out

of focus faces. It contains mainly colored images with only 18 gray scale images. Some

images, interestingly, are colored but contain both real colored faces and printed gray scale

faces. The ground truth annotations of the faces are ellipses. To represent the degree of

match between annotation and detection, the ratio of the overlapped area to the annotation

area is calculated. If this ratio is greater than 0.5 then this detection is considered a true

positive, otherwise it is considered a false positive.

The results of the proposed algorithm are compared with the following algorithms:

The Open CV implementation of the Viola-Jones face detector which is used as the base

face detection algorithm. Since it is used in the core of the proposed algorithm this makes it

the natural baseline in the following comparisons. Mikolajczyk et al. [68] approach is also

included which is considered one of the best performing public implementations of face

detection algorithms [67]. The approach by Subburaman et al. [70] showed improvement in

performance for a range of false positives while the performance of Jain et al [67] exceeded

all the above algorithms. The performance of the proposed algorithm showed significant

improvement over these algorithms. The performance curves for all of these approaches

are shown in Figure 35.

Figure 36 shows a sample of the results acquired by the proposed face detector on

the FDDB dataset. The originally annotated faces are displayed as red ellipses while the

final results are displayed in green boxes. The blue dotted boxes show some of the false

positives that were removed by proposed approach.

To show the effect of each block in the proposed block diagram, further experiments

were conducted by removing one block at a time and measuring the resulting performance
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FIGURE 35: ROC curves for different approaches.

TABLE 3: Comparison of the effect of each component

Method TP FP Time in sec

Proposed detector 0.77 403 0.82

Without facial Feature 0.67 479 0.37

Without skin 0.73 436 0.81

at specific operating point. Table 3 shows TP and FP rates with the associated execution

time. Removing the facial feature step results in 76 false positive increase while removing

the skin results in only 33 false positive increase. Also, the execution time shows that the

added blocks did not add significant overhead time.
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FIGURE 36: Sample results of the proposed face detector.
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CHAPTER 4

POSE INVARIANT FACE REPRESENTATION FOR FACE RECOGNITION

The face recognition pipeline usually consists of three main modules: face detec-

tion, face representation, and face matching. Face detection is the first step in this pro-

cess since it segments the facial region from the background before further processing is

performed. Face representation provide useful low-level information from image. Face

matching measures the similarity between two face representations to indicate whether the

probe face belongs to a certain person based on his gallery face.

Face representation and face matching complete the framework to achieve same

ultimate goal. Face representation aims to find a representation that is discriminative for

inter-person difference and invariant to intra-person variations. The intra-person variation

is a variation in capturing condition such as pose, lighting, and expression. While, face

matching aims to make the distance between the two face representations, which belong to

the same identity relatively smaller than the distance of the two face representations, which

belong to different identity. In other words, face matching aims to have a similarity measure

that is robust against intra-person variations and discriminative for inter-person difference.

This chapter focuses on extracting a face representation that is invariant to pose

variation which is the most challenge in intra-person variations. The organization of the

remaining of this chapter is as followed. First, a review on face representation is presented.

Then, related work for pose invariant face representation is presented, followed by the two

proposed approaches for pose invariant face representation. Finally, experimental results is

discussed.

4.1 Face Representation

The face representation algorithms can be categorized into two broad categories.
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FIGURE 37: An example showing the distance between two frontal images of different

persons is smaller than the distance between the same person under different view points

using holistic approach

The first is the holistic category where the appearance of the whole face image is trans-

formed into a vector in one step (e.g. Eigenfaces [2], and Fisherfaces [1]). These ap-

proaches usually have low recognition rates under pose changes as they do not take into

account the 3D alignment issue when creating the feature vector. Figure 37 shows repre-

sentation of the feature vector of two frontal images for two different persons and one pose

image for one of this person. In particular, it shows the distance between two frontal images

of different persons is smaller than the distance between the same person under different

viewpoints.

The other category is local approaches where the face image is divided into blocks.

The blocks are defined with grid over a face image. The appearance of each block is

converted to a feature vector independently. The whole face representation, face signature,

is a concatenation of the feature vectors of the different blocks. The local approaches

are more robust for pose problem. However, they suffer from the problem of missing

regions and region displacement as shown in Figure 38. To overcome the problem of

missing regions and region displacement, the face image appearance is represented with

the appearance of sparse patches instead of the patches on face grid. These patches are
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FIGURE 38: An example showing lack of correspondence due to missing regions and

region displacement. Blue and red blocks indicate region displacement and missing region,

respectively for traditional local approaches for face representation.

FIGURE 39: The feature based local approaches for face representation.

taken around facial feature points as shown in Figure 39. This representation is called the

facial feature based face representation. This facial signature is state of the art, since it is

more compact and efficient than traditional grid based face representation by preventing

the region displacement. Moreover, it highlights the important area in the face since most

of facial parts does not have distinguishing characteristics.

Gabor wavelets [9] and Local Binary Patterns (LBP) [5] are the most widely used

algorithms for converting the appearance face into a feature vector. Due to its similarity to
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FIGURE 40: Left, Traditional face signature using LBP [5]. Right, face signature using

feature based LBP.

perception in human vision system, Gabor wavelets have been successfully applied to face

recognition with many proposed variants in the literature [91]. The first and very notable

method that used Gabor wavelets was elastic bunch graph matching (EBGM) [95]. The

inherent disadvantages of Gabor based methods are heavy computation cost and very high

dimension of feature vectors. In contrast, LBP based methods require lightweight computa-

tion and smaller feature vectors while providing very competitive recognition performance

comparing with Gabor based ones. Many variations of LBP have been proposed, a related

literature survey can be found in [6]. Many systems were formed by combining Gabor

wavelets and LBP to capture the light computation from LBP and the high performance

from gabor wavelets (e.g [94], [93], [92]).

In this work, the local binary pattern is adopted due to its efficacy. The used LBP

signature is generated as follows. The LBP code of a given pixel (xc, yc) (a decimal value)

is computed by comparing its intensity with the intensities of its surrounding pixels which

are located on a circle, whose center is at the pixel itself. In details, with n neighboring

pixels (n = 8), and radius r = 3, the formula for calculating LBP label of one pixel

LBPN,R(xc, yc) =
N∑

i=1

s(gN,R
i − gc)2i−1 (31)

where gc is the gray level intensity of the given pixel and gi is gray level intensity of ith

62



neighbor. The S (x)is defined as

s(a) =


1 i f a ≥ 0

0 i f a < 0

(32)

LBP code is extracted from all pixels in the image patch 21 × 21 pixels around

facial feature point (i), then LBP codes in the image patch are represented by the histogram

(x f ). The histograms of image patches are concatenated into a single feature vector, which

represents the face signature.

Following [5], the similarity between the signature of two face images x, and ξ is

measured by Chi square statistics (χ2)

χ2(x, ξ) =
T∑

f=1

M∑
j=1

x f j − ξ f j

x f j + ξ f j
, (33)

where T is the number of selected facial feature points (total number of image patches in

the face image) and M is the number of bins in the histogram of LBP codes in each image

patch.

4.2 Related Work for Pose Invariant Face Recognition

Pose invariant face representations can be categorized into multi-view based, poses

normalization based, and invariant feature extraction based algorithms. In the first and

second category, the challenge due to pose is solved in the image domain before transfor-

mation into feature vector. While in the last categories, the challenge is handled in the

feature vector domain.

The simplest approach in multi-view based is recording each subject at each possi-

ble angle. A related approach is to take several images of the subject and use these to build

a statistical model that can interpolate to unseen views. Other approaches of research inter-

est under this category involve rendering 2D images for each subject under different poses

from a 3D model of the head. The 3D model of the face can be directly measured or can

be constructed from multiple images (e.g geometric stereo, photometric stereo) or video

(structure from motion). These methods are valid, and some produce high-quality results.
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However, they require either multiple images, or 3D sensors. Zhang et al. [110] introduced

an automatic texture synthesis (ATS) approach to synthesis rotated virtual face views from

a single frontal view for recognition using a generic face shape model. This face shape

was generated by averaging 40 3D face shapes in range data format which were aligned

using two eyes’ locations. Liu and Chen [111] introduced a probabilistic geometry assisted

(PGA) face recognition algorithm to handle pose variations. In their algorithm, human

heads were approximated as an ellipsoid whose radiuses, locations, and orientations were

estimated based on universal mosaic model. Their assumption that all faces have same 3D

geometry is weak. The generic face model does not capture all 3D faces variances.

Many efforst have addressed the issue of 3D reconstruction of human face for recog-

nition from single image. Atick et al. [76] introduced the first statistical SFS method by

parameterizing the set of all possible facial surfaces using principal component analysis

(PCA). Smith and Hancock [109] embedded a statistical model of surface normal within

a shape from shading framework. Blanz and Vetter [77] introduced a face recognition sys-

tem based on 3D morphable models that depend on image-based reconstruction and prior

knowledge of human faces. The prior knowledge of face shapes and texture was learned

from a set of 3D face scans. Then, shape and texture information in the forms of vertices

and diffuse reflectance coefficients were spanned into different eigenspaces where princi-

pal component analysis was performed to construct a 3D morphable model. However, the

identity-related shape and texture coefficients may be affected during cost function mini-

mization [3]. Castelan et al. [78] developed a coupled statistical model, which is a variant

of the combined AAM [27] that can recover 3D shape from intensity images with a frontal

pose. The shape and intensity models in Castelan’s work are similar to that of the AAM

model. Note that in the shape recovery literature, albedo can be used, interchangeably,

with the term intensity. The primary difference in Castelan’s approach is that the 2D shape

model in AAM is replaced with a 3D shape (height map) model.

The second category of the approaches that handle pose variation is the pose normalization-

based approach. These aim to generate a virtual frontal image from a captured head pose

image. One of these approaches is Active Appearance Model (AAM) [27], which was pro-
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posed as a 2D model-based approach for face alignment. Once the model is fitted to an

input image, the optimized shape model parameters are used to estimate the pose angle.

Then, a frontal view of an input face image can be synthesized by configuring the shape

parameters that control the pose using the optimized appearance model parameters. In-

stead of synthesizing a frontal face using the texture of the optimized model, Guillemaut et

al. [82] warped the texture inside the shape of the fitted model to the pose corrected shape.

The latter method is evaluated by Gao et al. [81]. In their work, they evaluated the effect of

different texture wrapping techniques. They conclude that texture warping approaches have

the advantage of preserving the textural information such as moles and freckles contained

in the original image, which are lost in the synthesis-based approaches where the model

parameters only represent the principal components of the appearance.

On the other hand, Chai et al. [80] introduced a local linear regression algorithm. In

their algorithm, they divided the face image into patches. The appearance of each patch in

the probe image was represented as a linear combination of the appearance of correspond-

ing patches in the training images at pose angle of the probe image. The coefficients of the

linear combination are used to combine the appearance of corresponding frontal patches

in the training images to generate the virtual frontal view for the patch. However, this ap-

proach handles the pose problem in discrete domain (e.g., it solves pose 15, 45). Also, it

requires manual detection of the center of two eyes and knowing the head pose angle of

the probe image. Recently, Ho et al. [88] overcome the latter problem by using a Markov

Random Field and an efficient variant of the Belief Propagation algorithm to estimate the

head pose of the input image. However, this solution is computationally intensive i.e., it

takes two minutes to estimate a pose.

Blanz and Vetter [77] recovered a 3D model from an input consisting of 2D face

image using the idea that the variations in appearance caused by pose are closely related

to the 3D face structure since 3D face information extracted as shape and texture features

remain the same across all poses. This is the core of 3D Morphable Model (3DMM).

Hence, in their work, given a 2D image they estimated the corresponding 3D model, i.e.,

the 3D shape and texture space, which is used in the matching process. Although this
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method performs better than other algorithms for pose invariant face recognition, it heavily

depends on the accurate extraction of 3D information from the 2D image. However, to learn

the 3D shape and texture space, it requires 11 fiducial points and 3D face models during

training. Thus estimation of 3D information is a difficult problem and computationally

intensive, which makes this method is it too slow to be used in real-time application. To

overcome these disadvantages, Prabhu et al. [112] showed that 3D depth information is not

discriminative for pose invariant face recognition. Therefore, Asthana et al. [75] generated

a virtual 2D image at frontal pose from a generic 3D face shape that is aligned with the

input image using 2D detected facial feature points. Liu et al. [89] used a similar idea to

the work in [75], but they improved the accuracy of recognition by filling occluded regions

using facial symmetry property and they also enhanced the facial feature detection by using

the multi-view random forest embedded active shape model.

The last category of pose invariant face representations are based on invariant fea-

ture extraction. Kanade et al. [83] learned a probabilistic model of the distance between

two feature vectors of two face images. They modeled the distance between the two feature

vectors in a similar (i.e., same identity but may differ in pose angle.) or a dissimilar (i.e.,

different identities) group as Gaussian distribution. Prince et al. [120], [113] used gener-

ative models to synthesize face images of a person across different poses from a common

latent variable, which is called Latent Identity Variable (LIV). At the time of recognition,

the images are transformed to the LIV space using a pose-specific linear transformation and

recognition is carried out in that space. To learn the model parameters, they used the EM

algorithm, which is prone to local minima and is computationally expensive. Moreover,

the assumption that a single LIV can be used to faithfully generate all the different poses of

a person seems to be over simplified. This is clear from poor performance even for small

poses angles with simple intensity features. To improve the performance, they used 14 to

21 manually annotated points on face images to extract Gabor filter responses, which are

more discriminative than raw pixels. However, this approach cannot be used in many ap-

plications since locating fiducial points automatically and accurately in non-frontal images

is still an open problem.

66



Castillo and Jacobs [79] used the cost of stereo matching between a gallery face

image and a probe face image to recognize faces. Since the approach is purely image

based, it does not consider appearance change due to pose variation. Sarfraz et al. [84]

assumed that there’s a linear transformation between a face features representation in each

pose and the face features representation in the frontal view. Then they represented any face

using a gradient location-orientation histogram (GLOH) [56]. Although, there is no need

for manual annotation in their algorithm, the solution is in the discrete domain of poses and

information about the head pose of the probe is needed. Sharma et al. [86] used partial least

square to learn a linear transformation from gallery and probe sets to correspondence latent

space (CLS) where direct comparison can be applied. Their comparison in CLS is done

using Linear Discriminant Analysis (LDA). The proposed approach solves the problem in

discrete domain of poses and manual annotation of 4 points are needed for the solution

while the head pose has to be known. Li et al. [87] represented the face image in each pose

as a linear combination of face images in a training set. In each pose, they used a linear

regression to formulate this representation. Also, two poses can be coupled by identity so

joint face representation across two poses can be formulated as coupled regression problem.

They used a similarity measure based on the correlation between the regressions parameters

of a probe and a gallery images and a reconstruction error of the probe and the gallery

images from the training set. Similar to other approaches, their approach had the same

disadvantages that the head pose has to be known, it solves the problem in discrete domain

of poses and manual annotation of five points are needed for the solution.

4.3 Rendering Posed face images for Pose Invariant Face Recognition

The first proposed approach for pose invariant face representation is based on ren-

dering face images at different poses for each subject from the enroll image. The gallery

in this approach consists of multiple images for the person at different poses that are gen-

erated from enroll image/images. Rendering face images requires information about 3D

shape and texture for a subject face. The information of texture can be captured from the
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FIGURE 41: Samples from the gallery. Columns from left to right are: the frontal captured

image, synthesized images at poses 40◦, 20◦,−20◦, and −40◦.

galley face image, while the 3D facial shape can not be easily inferred from the image.

This work focuses on two algorithm for 3D reconstruction. The first algorithm is statisti-

cal shape from shading where 3D shape is estimated using single image and prior model.

The second algorithm is stereo reconstruction where the input is two face images from two

different camera where geometric information about the relation between two cameras is

known. Figure 41, and Figure 42 show the render images at different poses while the 3D is

reconstructed using statistical shape from shading and stereo, respectively.
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FIGURE 42: Samples from the gallery. Rows from upper to lower are: the left captured

image, the right captured image, synthesized images at poses 40◦, −40◦, −20◦, and 20◦.
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1. 3D Face Reconstruction from a Single Image

This subsection discusses the model-based approach for 3D facial shape recovery

using a small set of feature points from an input image of unknown pose and illumination.

The methods discussed here need only the 2D feature points from a single input image to

reconstruct the 3D shape. Specifically, the input is a 2D image with detected feature points

and the output is a 3D shape. This algorithm formulates the shape recovery problem into

a regression framework, i.e., it uses Principal Component Regression (PCR) to reconstruct

the 3D shape.

The USF database [104] used in this work contains both albedo and dense shape,

where they are expressed as Monge patches, i.e., (x, y,Z(x, y),T (x, y)). The image data

of the USF database samples are manually annotated with 68 points, which are the same

facial points of the face alignment step. Since both image and dense shape data are in

correspondence with each other, the annotation points can also be applied to the height

maps, which results into 3D sparse shapes. Since the USF dataset has multiple subjects, a

series of dense shapes together with corresponding sparse shapes exist. This series of dense

and sparse shapes is integral to the proposed method in this work.

Suppose the input is a 2D sparse shape, which is the output of facial feature points

detector, and the goal is to find the camera projection matrix C from its unknown (and yet

to be solved) actual 3D sparse shape. A good substitute for this unknown 3D shape is the

mean shape. A camera projection matrix can be computed between the mean 3D sparse

shape and the input 2D sparse shape. Further, this projection matrix can be used to project

a sample USF 3D sparse shape to the 2D space. The projection matrix C can be used to

project all USF database samples to the 2D space.

The next step is to build two models related to the 3D USF dense shapes and the

projected 2D shapes, projected facial features, of USF dataset , i.e., s3D = s̄3D + Ps3Dbs3D

and s2D = s̄2D + Ps2Dbs2D .

Principal Component Regression (PCR) is used to model the relationship between

the dependent and independent data in the combined model. The basic idea is to decompose
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both 2D and 3D dense shapes into a low-dimensional subspace, i.e., replace xi and Xi by

their respective PCA coefficients bs2D,i and bs3D,i. Standard multivariate linear regression

(MLR) is then performed between the low-dimensional representations of xi and Xi.

Let T = [bs2D,1, · · · , bs2D,m−1] and U = [bs3D,1, · · · , bs3D,m−1] be the low-dimensional

representations of xi and Xi, respectively. Performing MLR yields

U = TCR + F (34)

where CR is the matrix of regression coefficients and F is the matrix of random noise errors.

The least squares method then provides

C̃R = (TT T)−1TT U (35)

There are two remaining steps before the 3D dense shape can be recovered. The

shape coefficient of the 2D input feature points need to be solved, i.e., bs2D,inp = PT
s2D

(xinp −

s̄2D). Using the PCR model above, the 3D dense shape coefficient can be inferred with the

following equation, b̃s3D = bs2D,inpC̃R. The solved shape coefficient b̃s3D can be substituted

to the 3D shape model, i.e., xr = s̄3D + Ps3Db̃s3D , to get the 3D dense shape. Algorithm 1

below summarizes these steps.

To quantify the reconstruction accuracy, the 3D shape for 80 out-of-training USF

samples is recovered. The input images are generated with a random pan angle within

the range of (-20 to 20), where the face moves left-to-right or right-to-left, sideways. For

each reconstructed shape, the following measures are used: (a) Height Error - the recov-

ered height map is compared with the ground truth height and the mean absolute error is

computed as

S err =
1

Np

Np∑
i=1

|si − sGT,i|
sGT,i

(36)

where Np is the number of pixels, si and sGT,i are height values at the ith pixel

position for the recovered shape and the ground−truth shape, respectively, and (b) Surface

Orientation Error calculated by examining the directions of the recovered normals vectors
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Algorithm 1 Principal Component Regression (PCR) Framework for 3D Dense Shape Re-

covery
INPUT: (a) Input image feature points, xinp (b) USF dense (Xd

1, · · · ,Xd
n) and sparse shape

samples (X1, · · · ,Xn) (c) Sparse mean shape, Xm

OUTPUT: (a) Recovered 3D dense shape, xd
r

1: Solve for the camera projection matrix: Determine C such that xinp = CXm.

2: Project all 3D sparse shapes to the 2D space using the computed projection ma-

trix: Solve for (x1, · · · , xn), such that xi = CXi

3: Build the 3D dense shape model from the USF samples using PCA: Construct s3D =

s̄3D + Ps3Dbs3D .

4: Build the 2D sparse shape model from the projected 2D USF samples (x1, · · · , xn):

Construct s2D = s̄2D + Ps32bs2D .

5: Replace the 3D dense shape samples (X1, · · · ,Xn) with its coefficients: Solve for

bs3D,i = PT
s3D

(Xi − s̄3D)

6: Replace the projected 2D shape samples (x1, · · · , xn) with its coefficients: Solve for

bs2D,i = PT
s2D

(xi − s̄2D)

7: Setup matrices for Principal Component Regression (PCR): Let T =

[bs2D,1, · · · ,bs2D,m−1], and U = [bs3D,1, · · · , bs3D,m−1]

8: Build the PCR model: Construct C̃R = (TT T)−1TT U

9: Solve for the shape coefficients of the 2D input feature points (xinp): Solve for

bs2D,inp = PT
s2D

(xinp − s̄2D)

10: Solve for the shape coefficients: Get b̃s3D = bs2D,inpC̃R

11: Solve for the recovered 3D dense shape: xd
r = s̄3D + Ps3D b̃s3D
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FIGURE 43: Recovered shapes, together with the input image and ground-truth(GT) shape,

for the 3D shape recovery from 2D detected facial feature points

are compared with the ground truth data. The average of the difference angle is computed

as

θerr =
1

Np

Np∑
i=1

cos−1(
ni · nGT,i

∥ni∥ · ∥nGT,i∥
) (37)

ni and nGT,i are normal vectors at the ith pixel position for the recovered shape and

the ground-truth shape, respectively.

Figure 44 is a side-by-side visualizations of the mean height and surface orientation

to compare the 3D shape recovery accuracy using the manual annotation facial feature

against the detected facial feature points using proposed detector. Average mean height

error is 2.71% and 3.09% and average mean surface orientation error is 0.044 rad and 0.050

rad, across all 80 out-oftraining sample, for the case of manual annotated facial features and

proposed facial feature points detector, respectively.
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FIGURE 44: The 3D reconstruction accuracy, mean height error and mean surface orienta-

tion error, using manual annotated facial feature points verses using detected facial feature

points from proposed algorithm.

2. 3D Reconstruction from stereo Imaging

This subsection discusses stereo reconstruction for 3D facial shape recovery from

two face images captured from two different cameras where geometric information about

the relation between two cameras is known. In the classical stereo matching problem, the

objective is to find the pairs of corresponding points p and q that result from the projection

of the same scene point into the two images. As shown in Figure 45, the distance from the

scene point to the cameras is determined by difference in image locations of points p and q.

This difference is called the disparity. To reconstruct the 3D shape of an object, one needs

to determine the disparities of the correspondences between pixels of the images.

Finding the disparity map f for a stereo pair is an image labeling problem. Where,

I and Ĩ represent the left and right images, respectively. The set of label L is the dis-

parity range {∂1
x, · · · , ∂K

x }. To correctly solve this problem, the constraints of the visual

74



FIGURE 45: General stereo pair setup. The relation between the depth and the disparity.

correspondence should be satisfied. The uniqueness is one of these constraints, where each

pixel in I corresponds to at most one pixel in Ĩ. The occlusion is another constraint, where

some pixels do not have correspondences. To overcome these problems, Kolmogorov’s ap-

proach [96] is used in this work, which treated the two images symmetrically by computing

the disparities for both images in the same time. In this case, P represents the set of pixels

of both images and f is the labeling of both images.

The framework for this problem can be the search for MAP configurations in a

MRF model. The MAP problem is formulated as minimizing an interaction energy for the

model. Therefore, the desired disparity map f is equivalent to minimizing the following

energy function:

E(f) =
∑
{p,q}∈N

V( fp, fq) +
∑
p∈P

D( fp). (38)

Most of stereo matching approaches are based on an assumption that corresponding

pixels have a similar color value. Thus the data term D( fp) is usually chosen as a similar-

ity measure (e.g., [97]) that handles slight variation between corresponding pixels’ colors.
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However, colors of the real scene are transformed nonlinearly to another colors in the stereo

pair images, which violates color consistency assumption. In this work, the color normal-

ization approach described in [98] is used to convert the transformation between the pixels’

colors in two images from non-linear to a liner transformation. Then, the Normalized Cross

Correlation (NCC) [99] is used in data term since (NCC) is invariant to linear transforma-

tion. The execution time of the NCC is reduced by reducing the calculation of the means

of the pixels in the windows using an integral image. To enforce the visibility constraints,

the approach [96] compares only pixels that have the same disparity in both images. The

smoothness term is chosen to be piecewise smooth prior to allow smooth variations in the

disparity map.

V( fp, fq) = min(| fp − fq|, M), (39)

where M is a constant. Note, M > 1 leads to piecewise smooth prior.

After finding the disparity map, the occluded regions is filled by interpolating be-

tween the correctly reconstructed pixels of each scan line using a cubic Splines interpola-

tion model. The cloud of 3D points, which are estimated using the disparity map and sys-

tem geometry, is denser than required for reproducing the amount of actual detail present

in the face. So first, these points are downsampled. Then to remove some artifacts of the

reconstruction, an additional surface fitting step is done. The reconstructed scattered data

is approximated in a least squares sense to generate a smoothed surface. Finally, triangular

mesh from the smoothed and downsampled points is generated.

The stereo matching approach is used to reconstruct human faces in a 3D face recog-

nition framework. Figure 46 illustrates the setup that is used to capture images. The setup

parameters are shown in Table (4). Figure 47 shows the complete flow chart of the face

reconstruction process.

To evaluate 3D reconstructions, the reconstructed 3D from stereo is compared to

a laser scanner. In this comparison, the distance, which are shown in Figure 4.3.2(a), is

measured between specific points in the 3D faces. These specific points and distances are

selected depending on the most discriminatory anthropometric facial proportions. Since
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FIGURE 46: The system setup.

TABLE 4: Stereo setup parameters

Range Baseline Zoom Focus Pan Tilt Roll

(m) B (m) f (mm) ϕ (degree) (degree) (degree)

3 0.6 150 Range 5o 0 0

FIGURE 47: The stereo matching-based human faces reconstruction flowchart.
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FIGURE 48: (a)Distances that are used in comparison. (b) The means and variances of

the relative error between the distances from the proposed results and the laser scanner’s

outputs.

the final goal is to generate a 3D face that will be used in recognition, measuring the er-

rors in these distances is a good evaluation to the reconstruction. To do the comparison,

the differences between these distances are computed that are measured from the recon-

structed 3D faces in this work and the correspondence distances that are measured from

laser scanner’s 3D faces. For the most 10 discriminant distances, shown in Figure 4.3.2(a),

Figure 4.3.2(b) shows the means and variances of relative errors (for 12 shapes for which

the scanner’s 3D faces is existed). The results in Figure (b) illustrate that, for 3M probe’s

reconstructions, the variances is less than ±%10, which means less than a ±1 millimeter

error in the centimeter. For the 15M probe’s results, the variances is less than ±%15, which

means less than a ±1.5 millimeter error in the centimeter.

4.4 Weighting of Facial Features for Pose Invariant Face Recognition

The main drawback of the rendering approach either based on statistical shape from

shading or geometric stereo is increasing the gallery size since each enroll image/stereo

not represented by a single face signature, however, it is represented by number signatures

corresponding to different pose angles that corresponding to render images. Facial feature

based face representation, as shown in Figure 39, seems to be a good solution for pose
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FIGURE 49: A schematic diagram for dynamic weighting of facial features approach.

invariant face representation since it generated feature vectors in patches around facial fea-

ture points in the captured pose image and the frontal gallery image. The question arise is

that pixels in the patch in the frontal gallery image and captured pose image correspond to

the same vertices in the 3D of the subject.

Since the vertices that correspond to pixels in a patch around a certain facial feature

in the frontal gallery image may be visible, partially occluded, or completely occluded in

the posed probe image, the pixels in a patch around a certain facial feature in a captured

probe image may not correspond to the same pixels in the frontal gallery image.

To illustrate that pixels in the patch in the frontal gallery image and captured pose

image are not correspond to the same vertices in the 3D of the subject, Figure 50 shows

3D dense face shapes with colored vertices at different poses angles. The red vertices

correspond to pixels in a patch around a certain facial feature in a frontal galley image. The

yellow vertices correspond to pixels in a patch around the same facial feature in a posed

probe image. Overlapped vertices have green color. As shown in the Figure 50, the green

vertices around facial features, which are located in the right half of the face, decrease
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FIGURE 50: The effect of pose on the corresponding patches overlapping. Green vertices

increases and decrease as the head moves left and right.

dramatically as the face rotates to the right and vice versa. This decrease in the overlapped

vertices means that the distance between signature vectors, which are extracted from the

corresponding patches in the frontal gallery image and posed probe image, increases. This

is clearly because each signature represents a different pixels patch in the corresponding

images.

To solve this problem, the first scenario is that the signature should be extracted

around each facial feature, in the enroll and probe image, at the common pixels only, i.e.,

pixels correspond to green vertices. The main disadvantage of this solution is that in the

offline stage for each enrolled image, instead of extracting a single signature from a fixed

patch around a certain facial features, for each facial feature many signatures should be

extracted from different variable patches corresponding to common areas at different head

pose angles. This increases the gallery size i.e., each gallery image can not be represented

by a single signature, however, it is represented by number signatures corresponding to

pose angles you deal with. This method will have the same problem of rendering images

at different pose angles. Otherwise, the image should be saved in the gallery instead of

the extracted signatures. In the latter case, signature extraction is done online. This means

that signatures will be extracted for all gallery images and a probe image at the time of

recognition. This solution is time consuming.

The second scenario, which is proposed in this work, is assigning weights for each
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FIGURE 51: The two steps for estimation the weight of each facial feature. Step 1 (left)

is estimation the pose. Step 2 (right) rotate 3D dense and find overlap between the patch

around facial feature point at the frontal and captured pose angle.

facial feature point at each pose based on the overlapping score.

These weights are estimated from the captured head pose image and a 3D dense

mean shape. This is done in two steps as shown in Figure 51. The first step is estimating

head pose angle from posed image. The second one is rotating the 3D dense mean shape

and find the overlap score in the window around each facial feature point.

A 3D point in world coordinate is related to its corresponding 2D point in the im-

age plane by a projection matrix. Based on the perspective camera model assumption, the

projection matrix has 11 degrees of freedom; five intrinsic camera parameters, three rota-

tion parameters, and three parameters representing the translation of the camera center with

respect to the world coordinate system.

Estimation of the projection matrix needs at least 6 (3D-2D) correspondences. In

this work, many 2D points are known, these are the output of the face alignment step,

however, their corresponding 3D points are unknown. A good substitute for these unknown

3D points is the 3D mean shape. The difference between the actual value and the mean can

be neglected in this application. Using these data, the rotation parameters (the unknown

pose) can be estimated.

In the second step, the weight for each facial feature is estimated. First, each vertex
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FIGURE 52: Proposed scheme for generating virtual frontal image (pose normalized im-

age) from captured pose image

in the frontal 3D dense mean shape is rotated to the same pose of captured image using the

estimated rotation parameters. Then the z-buffer test is carried out to determine the set of

visible and occluded vertices in the rotated 3D dense mean shape. According to the z-buffer

test, a vertex belongs to the occluded set, if there exists one or more vertex possessing the

same x and y components and has z component less than the z component of this vertex. A

subset of vertices, which correspond to a subset of pixels in a patch around a certain facial

feature, is visible, if it is visible in both the frontal and the rotated 3D dense mean shapes.

The overlapping score at a feature i is calculated using these visible vertices as follows:

Oi(V fi ,Vri) =
V fi
∩

Vri

V fi
∪

Vri

(40)

where V fi , and Vri are the subsets of visible vertices around the facial feature i in the

frontal and rotated 3D dense mean shapes, respectively.

In this work, the facial feature points are divided into eight groups: parts of right

eye, left eye, right eyebrow, left eyebrow, right part of mouth, left part of mouth, right part

of nose, and left part of nose. Figure 52 shows the overlapping percentages of different

facial parts at different head pose angles. At each pose, the scores are normalized to give

the dynamic weights at that pose.
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4.5 Experimental Results

1. Databases for pose invariant face Recognition

Experiments are performed on three indoor data sets where each subject is cap-

tured using one camera at different angles, i.e., the CMU-PIE [103], FERET [102] and

the Multi-PIE [105], and one outdoor in-house dataset, UoFL-EWA, where the subject is

simultaneously captured by two camera, stereo imaging at different angles.

CVIP-EWA dataset is collected in outdoor with different illumination conditions.

It is collected within one year with laps three months. It consists of 773 sessions taken

at distance ranges of 30, 50, 80, 100 and 150 meters and at different head pose angles

from −40◦ to 40◦. Each session consists of a pair of images from two cameras where

the face is centered in both images with additional ground truth information related to

cameras, pan and tilt angles and the baseline distance (the distance between two cameras).

The image pairs are captured at different ranges using Canon 7D cameras, with 800mm

telephoto lenses, FOV(2.5o). Figure 56 shows samples images from UoFL-EWA database.

The frontal neutral expression session at distance 50 meter for each subject is used in the

enrollment stage, while the other pose images used as query.

In the CMU-PIE database, all 68 persons with one frontal image for enrollment

and 6 non-frontal poses images with yaw angles from −45◦ to +45◦ with pose difference

+22.5◦(Pose ID c11, c29, c05, c37) and pitch from −22.5◦ and 22.5◦ (Pose ID c07, c09)

for each subject as query images (testing images) are used in these experiments. For

the FERET dataset, all 200 subjects at 6 different non frontal poses with yaw angles

−40◦,−25◦,−15◦,+15◦,+25◦, and +40◦ (Pose ID bh, bg, bf, be, bd, bc) are used. For

Multi-PIE, one hundred and thirty seven subjects (Subject ID 201 to 346) captured in four

sessions with neutral expressions and frontal illumination are used at 6 different non-frontal

poses with yaw angle from −45◦ to +45◦ with pose difference +15◦ as query images against

neutral expressions, frontal illumination, and frontal pose as enrolled image.
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FIGURE 53: Example subject from CMU-PIE database. The top row is gallery image at

frontal pose. The bottom row is probe (query) images at different pose angle.

FIGURE 54: Example subject from FERET database. The top row is gallery image at

frontal pose. The bottom row is probe (query) images at different pose angle.

FIGURE 55: Example subject from Multi-PIE database. The top row is gallery image at

frontal pose. The bottom row is probe (query) images at different pose angle.
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FIGURE 56: Example subject from CVIP-EWA database. The middle column is gallery

image at frontal pose. The other columns are probe (query) images at different pose angle.

Thus data base is stereo, therefore there is left and right image for each subject in each

session.

2. Weighting facial features for pose invariant face representation

In the ”Enrollment” stage, for each subject, the near frontal neutral expression

session is used. The face represented by local binary pattern signature [5] extracted around

detected facial feature points.

In the online stage, the input is a probe session, which is a 2D image that is captured

under unknown pose. The face is detected [51], then the system automatically detects the

facial features. Afterward, the LBP signature is extracted from patches around these facial

features. Then, the face representation is compared with the signatures of the gallery while

the weight for each facial points is different based on pose.

First, the effect of facial feature weighting using manual annotated facial feature

points is presented. Fifteen facial feature points are manually annotated. These 15 facial

features are used to align mean 2D shape of 51 facial feature points to the face image. The

recognition rate using each group from facial features at frontal and each pose angle from

−45◦ to 45◦ are shown in Figure 58. Figure 58 also shows that recognition rate of the right

group of features (right eye, right eyebrow, and right part of mouth and nose) is higher

than left group of features at poses 45◦, 30◦, and 15◦. Moreover, the difference between the

right and the left group of the features in the recognition rate increases with the increasing

head pose angle since the right group of features get more occluded and vice versa at poses
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FIGURE 57: First one recognition rate for studying the effect of dynamic and static weights

using manual annotated facial feature points on Multi-PIE

FIGURE 58: First rank recognition rate using different face parts at different head pose

angle using manual annotated facial feature points on Multi-PIE database.

−45◦, −30◦, and −15◦. The results emphasis the importance of assigning a dynamic weight

for each facial feature based on the pose.

Since each group of features have different recognition rate as compared with the

other facial features. A weight for each facial feature is assigned based on discriminatively

of the group feature as compared with other groups. This weight is static since it does not

change with pose angle. This weight is calculated in the frontal pose. The static weight for

the feature is the recognition rate using this feature only in the recognition divided by the
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FIGURE 59: Performance evaluation for studying the effect of facial feature detector and

proposed weights on CMU-PIE database.

sum of the recognition rate of all other features.

Secondly, an evaluation of the effect of different facial feature point detectors and

proposed weighting scheme with automatic facial points detection is presented. Four ex-

periments are done. First, the facial feature detector in [46] is used and without using the

proposed weights is evaluated (baseline performance). Second, the proposed detector is

used and also without using the proposed weights. These two experiments show the im-

portance of proposed detector. Third, the proposed detector is used with using dynamic

weights (DW) for facial features. The last one, the proposed detector is used with using

both dynamic weights (DW) and static weights (SW) for facial features. Figures 59, 60,

and 61 show the performance of these four experiments on CMU-PIE, FERET, and Multi-

PIE database respectively. Moreover, the effect of the weighting on the recognition rate,

regardless the effect of facial feature detector, is studied by using manual annotated facial

feature points as shown in Figure 57.

3. Rendering Pose face images for Pose Invariant Face Representation

In the ”Enrollment” stage, for each subject, the near frontal neutral expression ses-

sion is used to reconstruct a 3D face either using stereo based or statistical shape from

shading. Ray-tracing techniques are used to render synthetic images under different poses
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FIGURE 60: Performance evaluation for studying the effect of facial feature detector and

proposed weights on FERET database.

FIGURE 61: Performance evaluation for studying the effect of facial feature detector and

proposed weights on Multi-PIE database.
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using the reconstructed 3D shape for subject’s face. A gallery entry of each subject con-

sists of five images: the captured image plus four synthesized images at poses of yaw angles

±20◦ and ±40◦. Finally, LBP technique [5] is used to generate five signatures from the five

images around facial feature points that was part in 3D reconstruction.

In the online stage, the input is a probe session, which is a 2D image that is captured

under unknown pose. The face is detected [51], then the system automatically detects the

facial features. Afterward, the LBP signature is extracted from patches around these facial

features. Finally, the probe pose is estimated from the projection matrix [75], which is

determined by using the mean shape, the first step in 3D reconstruction. Then, its signature

is compared with the signatures of the gallery subset, which has the closest pose to probe

pose.

The proposed framework is evaluated using four experiments. First, the gallery con-

sists of the captured images and no synthesis images are enrolled. The signature is LBP

around facial feature points that are detected by Zhu and Ramanan [46]. This experiment

is denoted as ”Facial Detector [46]+ No synthesis” as shown in Figures 62, 63, and 64.

(Experiment II) Then, the previous experiment is repeated by using the proposed facial

points detector [22]. This experiment is denoted as ”Proposed detector + No Synthesis”.

(Experiment III), the last experiment deals with replacing the 3D reconstructed shape in

the proposed framework with a generic 3D shape to show the effect of reconstruction ac-

curacy on recognition. This experiment is denoted as ”Proposed detector + Mean Shape

Synthesis”. The generic shape is constructed similar to that in [110]. Notice the incre-

mental improvement of the recognition results as more components are added towards the

proposed system framework.

Figures 62, 63, and 64 show the results of these four experiments on CMU-PIE,

FERET, and Multi-PIE respectively while the 3D facial shape in these results is constructed

from single image using statistical shape from shading. Moreover, Table 5 shows the results

of these experiments on CVIP-EWA dataset but the 3D facial shape in these results is

constructed using geometric stereo instead of statistical shape from shading.

Table 6 shows a comparison among proposed approaches which are rendering from
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FIGURE 62: Comparison among the proposed framework and its variations to highlight

the effect of each component on CMU-PIE database.

FIGURE 63: Comparison among the proposed framework and its variations to highlight

the effect of each component on FERET database.
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FIGURE 64: Comparison among the proposed framework and its variations to highlight

the effect of each component on Multi-PIE database.

TABLE 5: Rank-1 recognition rates (number are percentage) on the UoFL-EWA dataset

in three experiments: without including the synthesis images in the gallery (left col-

umn in each pose), ”generic+synthesized” approach (middle column in each pose), and

”stereo+synthesized” approach (left column in each pose).

Distance −45◦ −25◦ +25◦ ±15 +45◦ Avg

50m 63 74 77 71 80 81 — — — 86 88 89 74 76 82 74 79 82

80m 52 68 75 60 72 73 83 85 85 76 81 83 63 64 68 67 74 77

100m 46 53 59 56 64 69 78 78 78 76 79 81 59 62 62 63 67 70

150m 31 33 44 41 43 48 49 49 49 33 49 55 26 36 45 36 42 49

Avg 48 57 63 57 65 68 70 71 71 68 74 77 56 60 64

statistical shape from shading and geometric stereo approach and weighting of facial fea-

tures approach. The comparison is based on recognition rate, number of images required,

computational time, and memory usage on UoFL-EWA dataset since there is no publicly

available stereo database.
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TABLE 6: Comparison among proposed approaches for pose invariant face recognition

[105].

Method No. Images Memory usage offline time −45◦ −25◦ +25◦ +45◦ Avg

Synthesis from Mean shape 1 ×5 2.5 sec 57 65 74 60 64.0

Hybrid 2D-3D approach 1 ×5 2.8 sec 58 64 74 62 64.5

Weighting of facial features 1 ×1 0.8 sec 61 66 74 63 66.0

Stereo based from synthesis 2D images 2 ×5 80 sec 63 68 77 64 68.0

4.6 Comparison with State-of-Art Methods

Dynamic weighting of facial features shows a better recognition rate than render

face pose images. Moreover, the rendered pose face images approach needs five times

memory as compared to the memory need by weighting facial feature approach to store the

gallery signature. The gallery signature is frontal pose image plus four synthesis images

in rendering approach but it is the signature of frontal pose image only in weighting facial

feature approach. It also solves the problem in discrete domain that means that there is

a sweet spot at pose angle of synthesis images. Therefore, weighting of facial features is

compared with the state of art methods.

Tables 7, 8, and 9 show a comparison the weighting of facial features approach with

state-of-art approaches on CMU-PIE, FERET, and Multi-PIE database respectively. The

comparison is based on recognition rate, face alignment (either automatic or manual), the

algorithm is trained on images from the same dataset of probe images, and the algorithm

need information about probe image head pose angle.

Many methods (e.g. [88], [87], [86], [83], [80], and [84]) are based on building

a model that related images at frontal with images at certain pose angle. Therefore, the

information about the pose angle should be known prior to determine which model will

be used and these algorithms handle a discrete set of head pose angles. The work in [83]

and [84] solved this issue by using statistical model but the recognition drops significantly.

92



Ho et al. [88] proposed a method based Markov Random Fields and an efficient variant

of the Belief propagation algorithm but it has a high complexity. Therefore, using prior

information is an important drawback since it hinders to use the method in full automatic

system and the performance drops significantly to solve this issue. Manual intervention is

another important drawback since it affects the performance dramatically. The proposed

method has a recognition rate 88% and 99.5% using manual and automatic detected facial

feature points respectively.

It can be seen that the proposed approach in general outperformed the methods

proposed in [85], [80], [81], [79], [84], [90] and [75]. The performance of the proposed

method is close to the [88], [87], [86]. However, the advantage of proposed approach

over [87], and [86] that there is no need for prior information about probe head pose angle.

The proposed method solves the pose problem in continues domain (from −45◦ to +45◦),

it is no discrete set of poses. Their results are based on at least four manual detected facial

features points. The reported results are reported on whole dataset (68 subjects CMU-PIE,

200 FERET, and 137 Multi-PIE) but they reported in half number of subjects since they use

the other half in training. The advantage of the proposed approach over [88] that it takes 2

minutes and the entire proposed approach process in the 2.8 seconds. measured on Intel(R)

Xeon CPU 3.2 GHZ (excluding the timing for comparison that varies based on the size of

the gallery in both methods).
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TABLE 7: Recognition rates of different approaches on the CMU-PIE database [103].

Trained on NEED c11 c29 c07 c09 c05 c37

Method Alignment CMU-PIE POSE −45◦ −22◦ ↑ 22◦ ↓ 22◦ +22◦ +45◦ Avg

Kanade et al. [83] Manual-3pts Yes No 96.8 100 100 100 100 100 99.5

Zhang et al. [85] Automatic No No 71.6 87.9 78.8 93.9 86.4 74.6 82.2

Chai et al. [80] Manual-3pts Yes Yes 89.8 100 98.7 98.7 98.5 82.6 94.7

Castillo et al. [79] Manual No Yes 100 100 90 100 100 99.0 98.2

Sarfraz et al. [84] Automatic Yes Yes 84.0 87.0 − − 94.0 90.0 88.8

Asthana et al. [75] Automatic No NO 98.5 100 98.5 100 100 97.0 99.0

Li et al. [87] Manual-5pts Yes Yes 100 100 100 100 100 100 100

Ho et al. [88] Automatic No No 97.0 100 100 97.0 98.5 100 98.8

Proposed Automatic No No 95.5 100 100 100 100 100 99.3

TABLE 8: Recognition rates of different approaches on the FERET database [102].

Trained on Need bh bg bf be bd bc

Method Alignment FERET POSE −40◦ −25◦ −15◦ +15◦ +25◦ +40◦ Avg

Blanz et al. [77] Manual-8pts No No 95.4 96.4 97.4 99.5 96.9 95.4 96.8

Zhang et al. [85] Automatic No No 62.0 91.0 98.0 96.0 84.0 51.0 80.5

Chai et al. [80] Manual No Yes 55.0 89.5 93.0 89.0 77.0 53.0 76.1

Gao et al. [81] Manual Yes No 78.5 91.5 98. 97.0 93.0 81.5 90.0

Sarfraz et al. [84] Automatic Yes Yes 92.4 89.7 100 98.6 97.0 89.0 94.5

Asthana et al. [75] Automatic No No 90.5 98.0 98.5 97.5 97.0 91.9 95.6

Li et al. [87] Manual-5pts Yes Yes 96.0 99.0 98.0 96.0 96.0 91.0 96.0

Sharma et al. [86] Manual-4pts Yes Yes 100 100 100 97.0 100 94.0 98.5

Ho et al. [88] Automatic Yes No 91.0 97.3 98.0 98.5 96.5 91.5 95.5

Proposed Automatic No No 91.3 98.0 100 99.5 96.0 90.7 96.0
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TABLE 9: Recognition rates of different approaches on the Multi-PIE database [105].

Trained on Need 080 130 140 051 050 041 190

Method Alignment Multi-PIE POSE −45◦ −30◦ −15◦ 0◦ +15◦ +30◦ +45◦ Avg

Zhang et al. [85] Automatic No No 37.7 62.5 77.0 92.6 83.0 59.2 36.1 64.0

Schwratz et al. [90] Automatic No Yes 65.0 87.0 99.0 − 94.0 84.0 65.0 83.0

Asthana et al. [75] Automatic Yes No 74.1 91.0 95.7 96.9 95.7 89.5 74.8 87.7

Li et al. [87] Manual-5pts Yes Yes 91.0 96.0 99.0 − 100 96.0 85.0 94.5

Sharma et al. [86] Manual-4pts Yes Yes 85.7 93.7 98.7 − 98.7 94.9 87.8 93.3

Ho et al. [88] Automatic No No 86.3 89.7 91.7 92.5 91.0 89.0 85.7 89.4

Proposed Automatic No No 81.0 88.0 96 97.7 91.0 85.0 77.0 88.0

Proposed Manual-15pts No No 97.0 100 100 100 100 100.0 99.3 99.5
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CHAPTER 5

SIMILARITY MEASURE IN FACE RECOGNITION

Computing a similarity measure between a face representation and other represen-

tation plays an important role in the success of face recognition. The standard distance

measure i.e., Euclidean distance, treats all face representations equally. However, certain

image features could be more reliable than others. To overcome this drawback and to en-

hance the measure performance, prior information to discard bad features selectively in

each individual matching circumstance should be used in computing the measure. The

similarity measure should satisfy that, in the features space, the distance between same

subjects is smaller than the one between different subjects.

Studies on the distance measure use supervised or unsupervised learning techniques

to learn a similarity measure. The unsupervised learning is easier than its competitors since

there is no need for a labeled training set. However, it is less accurate as compared with

supervised learning techniques. Principle Component Analysis (PCA), Multidimensional

Scaling (MDS), and Neighborhood Preserving Embedding (NPE) [131] are examples of

unsupervised metric learning algorithms. On the other hand, for supervised learning, the

need of labeled data is a challenging task, especially, in the case of learning a large scale

dataset with a huge amount of data. There are two main settings for supervised labelling:

unrestricted and restricted settings. The unrestricted setting where all data points have

fully supervised labels is infeasible. The restricted setting, which is the easier one, speci-

fies labels in the form of equivalent constraints. Where, each pair is labeled as similar or

dissimilar without any information about the object class.

This chapter focuses on proposing a similarity measure between two pose invari-

ant face representations. This similarity measure is learned using equivalent constraints

labeled data (the restricted setting). The proposed similarity measure maps data from its
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original features space to a target space such that a simple distance can be adequate for the

verification task. The original feature space is invariant to pose but it may be affected by

many uncontrolled sources of variations e.g., changes in illumination, expression and cam-

era properties. On the other hand, the target space should be invariant to pose, illumination,

and expression.

The organization of the remaining of the chapter is as followed. First related work

about supervised distance learning in restricted setting is reviewed. Then, the proposed

similarity measure is presented. Finally, experimental results and summary are explained.

5.1 Related Work

Supervised learning approaches that learn distance metrics can be categorized into

linear and non-linear techniques. In the linear techniques, a linear mapping is performed

to map feature vectors into another space. Then their pairwise Euclidean distances, in the

projected space, are computed. Information-Theoretic Metric Learning (ITML) [138], and

Distance Metric Learning with Eigenvalue Optimization (DML-eig) [141] are examples of

this family. However, the original image space, which is used in many computer vision

applications, is highly nonlinear. This non linearity is due to high variability of the image

content and style. Thus; nonlinear supervised distance metric learning approaches show a

better performance in this case. The non-linear supervised distance metric learning meth-

ods are also known as kernelization methods. These methods typically comprise two parts:

the first part maps (usually nonlinearly) the input points to a features space often of much

higher or even infinite dimensionality. Then the second part applies a relatively simple

(usually linear) classifier in the projected features space [133]. An example of these ker-

nelization methods is the localized multikernel metric learning (LMKML) algorithm which

was recently presented by Lu et al. [153]. In order to reliably represent a set of images of

the same class, authors extracted multiple order statistics as features of this set. Then,

these features are mapped to another dimensional features space where a distance between

samples is calculated as a dot product.
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These supervised approaches can also be classified into global and local methods. In

the local methods, the distance metric satisfies some local properties of the dataset. Learn-

ing the distance locally make the distance performance better in the retrieval and k-nearest

neighbours applications. However, rather than requiring the equivalence constraints, infor-

mation about the class labels are needed. Thus it is impossible to be used in a restricted

setting i.e., training examples are labeled similar or dissimilar. One of these approaches

is Locally Linear Embedding (LLE) [132]. In this approach, the authors tried to find the

low dimensional embedding such that the local neighborhood structure is preserved. Lo-

cally Smooth Manifold Learning (LSML) is another local method, which finds a projection

such that the local neighbors of different classes are separated. Also, Large Margin Nearest

Neighbor (LMNN) [139] is a local method. This approach encourages target neighbors to

be at least one distance unit closer than any imposter using two terms: One term strength-

ens the correlation to target neighbors while the other weakens it to impostors. Recently, to

perform a kinship verification, Lu et al. [148] proposed a local iterative method, which is

neighborhood repulsed metric learning (NRML). Their aim is to learn a distance such that

samples with a kinship relation are pulled as close as possible and neighbored interclass

samples are repulsed as far as possible. Given a set of labeled training images, first, they

used Euclidean distance to find k-nearest neighbors for each sample. Then they performed

a local optimization using these k-nearest neighbors to learn a metric. After that k-nearest

neighbors are updated using the new metric. This is iteratively done until a convergence

error is achieved.

On the other hand, the global methods learn the distance such that it satisfies some

global properties of the data set. Examples of global methods are Relevant Component

Analysis (RCA), Discriminative Component Analysis (DCA), Information-Theoretic Met-

ric Learning (ITML) [138], Logistic Discriminant Metric Learning (LDML) [140], and

Distance Metric Learning with eigenvalue optimization (DML-eig) [141]. Davis et al. [138]

formulated the problem of learning a linear distance as a minimization of the differential

relative entropy between two multivariate Gaussians constraining the distance function.

Authors expressed this problem as a particular Bregman optimization problem of minimiz-
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ing the LogDet divergence subject to linear constraints. Guillaumin et al. [140] introduced

a linear logistic discriminant model to learn a metric. This model estimates the probabil-

ity of whether the two samples belong to the same class i.e., p(xi = x j). The a posteriori

probability is modeled by a sigmoid function and model’s parameters are estimated by iter-

atively adapting the Mahalanobis metric to maximize the log-likelihood. Ying et al. [141]

introduced a metric learning approach, which minimizes the maximal eigenvalue of the

symmetric matrix of Mahalanobis metric. Köstinger et al. [142] introduced a non-iterative

algorithm to learn Mahalanobis metric based on statistical inference where the difference

between two objects in similar and dissimilar groups are represented as a Gaussian distri-

bution. Cao et al. [154] tried to exploit the good performance of cosine similarity function

and the Mahalanobis distance in face verification. They proposed a generalized similarity

metric learning approach that combines both distances in a unified formula. However, this

method does not have any physical meaning.

5.2 Proposed Approach

A supervised method to learn a nonlinear similarity measure, based on a nonlin-

ear combination of Mahalanobis distances, is proposed. The proposed approach is built

on Kostinger et al. [142], where the measure is derived from a log-likelihood ratio of a

difference feature vector of two intra-class samples to a difference feature vector of two

inter-class samples. Since the training dataset is labeled in form of equivalent constraints

(the restricted setting), the proposed method belongs to global approaches.

The identity of a subject and variations in the capturing process are the main com-

ponents, which influence the appearance of the face image. The identity component of

an face is constant regardless the variations in its capturing process. Therefore for the

same identity, any feature vector xi, which represents the face appearance, is drawn from

a k mixture of distributions. These distributions reflect the randomness in the capturing

process variables e.g., expressions, lightings, backgrounds, hairstyles, etc.

Let xi j = xi − x j denotes a sample from the pairwise differences space. If the

99



two samples xi and x j belong to different identities, a new component, which represents

variation in the identities, will appear in xi j. This component that represents the difference

in the identities can be assumed as a random variable. Therefore, xi j will be a sample drawn

from a mixture of k + 1 distributions: variation in the identities distribution (or identities

distribution for simplicity) and k distributions represent the capturing process variables.

On the other hand, if the two face images xi and x j belong to the same identity, there

is no difference in the identities. Thus the identity component will not contribute in the

feature vector in the differences space. Then xi j will be a sample drawn from a mixture of

k distributions, which represent the variations in the capturing process variables.

Using the Maximum a Posterior (MAP) rule, the decision about the two face images

xi and x j are belonging to same identity is made by testing the following likelihood ratio:

l(xi, x j) =
p(xi, x j|HE)
p(xi, x j|HI)

. (41)

Where HI represents the intra-class variation hypothesis that the two face images xi and

x j belong to the same identity, and HE is the inter-class variation hypothesis that the two

samples belong to different identities, subjects.

Note that if the hypothesis HE is valid, the pair xi and x j will lead to a high likelihood

ratio. In the space of pair wise differences xi j, Equation 41 can be rewritten as follows.

l(xi, x j) =
p(xi j|HE)
p(xi j|HI)

. (42)

According to the assumption, p(xi j|HE) is represented by a mixture of k + 1 distributions,

and p(xi j|HI) is represented by a mixture of k distributions. Assuming these distributions

are Gaussian, the likelihood ratio can be rewritten as follows.

l(xi, x j) =

∑k+1
m=1 wm exp(−1

2 xT
i jΣ
−1
m xi j)∑k

n=1 wn exp(−1
2 xT

i jΣ
−1
n xi j)

. (43)

The mixture parameters i.e., the covariance matrices Σm and Σn and the weights wm and wn

are simultaneously estimated using the Expectation Maximization (EM) algorithm.
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1. The relation between proposed approach and Mahalanobis distances

What is the relation between the proposed learned similarity measure and Maha-

lanobis distances? This is an important question to be answered. Equation 43 can be

reformulated as follows.

l(xi, x j) =
k+1∑
m=1

wm exp(
−1
2

xT
i jΣ
−1
m xi j)

( k∑
n=1

wn exp(
−1
2

xT
i jΣ
−1
n xi j)

)−1
,

=

k+1∑
m=1

( k∑
n=1

w−1
m wn exp(

1
2

xT
i jΣ
−1
m xi j) exp(

−1
2

xT
i jΣ
−1
n xi j)

)−1
,

=

k+1∑
m=1

( k∑
n=1

w−1
m wn exp(

−1
2

xT
i j(Σ

−1
n − Σ

−1
m )xi j)

)−1
,

l(xi, x j) =
k+1∑
m=1

( k∑
n=1

wnm exp(
−1
2

xT
i jΣ
−1
nmxi j)

)−1
, (44)

where wnm =
wn
wm

and Σ−1
nm = Σ

−1
n − Σ

−1
m .

Let dΣnm denotes the squared Mahalanobis distance xT
i jΣ
−1
nmxi j, then Eq.44 can be

rewritten as follows.

l(xi, x j) =
k+1∑
m=1

( k∑
n=1

wnm exp(
−1
2

dΣnm)
)−1
. (45)

As seen in Equation 45, the proposed similarity measure i.e., the likelihood ratio, is ex-

pressed as a non-linear combination of (k(k+1)) Mahalanobis distances. Where the learning

matrix of each Mahalanobis distance is Σnm. To avoid over fitting, choosing k is critical.

Here, the relation between the proposed similarity measure and the one introduced

by Kostinger et al. [142] can be discussed. Actually, Kostinger et al. [142] approach is a

special case from the proposed one. Their big assumption is that xi j is a sample drawn

from a single Gaussian distribution weather the two samples xi and x j belong to the same

identity or different identities. Köstinger et al. [142] did not give any interpretation or

evidence of why the distance between two samples can be represented by a single Gaussian

distribution. This can be interpreted as follows: Back to Equation 45, let m change from

1 to k instead k + 1, n changing from 1 to k and k = 1, then the likelihood ratio will

be a function of a single Mahalanobis distance. This means that xi j is a sample drawn

from a single distribution. This distribution will carry information about the variations in
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capturing process, if the two samples belong to a same identity. Where, if the two samples

have different identities, xi j is a sample drawn from a single distribution that captures the

identities variation. The limitation of the latter is that it ignores any information about the

variations in capturing process.

2. Classification Enhancement by Proposed Approach

To highlight the enhancement of the proposed nonlinear combination of Maha-

lanobis distances on the classification of the pairs (xi,x j) to similar or dissimilar pairs, a

simple example is discussed here. It is well known that the Mahalanobis distance
√

dΣnm(xi j)

is the L2-norm of a linearly transformed difference vector xi j. So dΣnm(xi j) can be written

as follows.

dΣnm(xi j) = xT
i jΣ
−1
nmxi j = ∥Lxi j∥2, (46)

where Σ−1
nm = L⊤L. However, Euclidean distance (L2-norm) does not achieve the classifi-

cation task in many cases as shown in figure 65. Where, each point in this figure either a

triangle or a circle represents a difference feature vector xi j, which is a 2-dimension vector

for illustration purpose. It is obvious that using L2-norm directly, i.e., the distance to the

origin in X-Y coordinates, will misclassify all the similar samples i.e., triangles. Note that

the discrimination between the distances to the origin from the triangles and from the cir-

cles is achieved. A better classification can be achieved using one Mahalanobis distance,

which is equivalent to compute the L2-norm of the samples in V-U coordinates. However,

the circle labeled (a) has a bigger distance than the three encircled triangles. This means

that the three encircled triangles will be misclassified as dissimilar samples. Finally, by

using the proposed nonlinear combination of just two Mahalanobis distances (i.e., the sim-

plest case k = 1), the best classification can be achieved. Assuming the circle labeled (a)

has L2-norm 20 in V1-U1 coordinates and L2-norm 2 in V2-U2 coordinates. The proposed

similarity measure is e−1 + e−10 = 0.3679. Note that this is the farthest dissimilar sample,

which means that all other circles have bigger similarity measures. On the other hand,

assuming the triangle labeled (b) has L2-norm 4 in V1-U1 coordinates and L2-norm 4 in
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FIGURE 65: A classification example of 2D data illustrates the improvement achieved by

the proposed similarity measure. X-Y coordinates is the pairwise difference space, which

are linearly transformed to V-U coordinates using a one Mahalanobis distance and are

linearly transformed to V1-U1 coordinates and V2-U2 coordinates using two Mahalanobis

distances.

V2-U2 coordinates. The proposed similarity measure is e−2 + e−2 = 0.27. Note that this

is the closest similar sample, which means that all other triangles have smaller similarity

measures. Since the smallest similarity measure of dissimilar samples is greater than the

bigger similarity measure of similar samples, all samples are correctly classified using the

proposed non-linear combination of two Mahalanobis distances.

5.3 Experimental Results

The experiments are conducted on the two recent face recognition benchmarks: La-

beled Faces in the Wild (LFW) [150] and Public Figures Face Database (PubFig) [149].

Since choosing the number of Mahalanobis distances to be learned in the proposed simi-

larity measure is critical for avoiding overfitting, this issue is investigated in the following

experiments by using different values of k.
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FIGURE 66: Several examples face pairs of the same person from the LFW data set. Left:

similar pairs and right: dissimilar pairs.

In the first set of experiments, a very challenging database, the Labeled Faces in

the Wild (LFW) dataset [150] is used. LFW’s faces are captured in uncontrolled settings

i.e., general imaging and environmental conditions. These conditions include different ex-

pressions, poses, lightings, backgrounds, hairstyles, etc. This dataset can be considered

as the de facto standard dataset for face identification. LFW dataset contains 13, 233 un-

constrained face images of 5, 749 individuals. Some illustrative examples are given in

figure 66. To be used for cross validation experiments, images of this dataset are divided

into ten fully independent folds. Each fold contains 600 pairs of images. For 300 pairs out

of 600, each pair belongs to an individual. In the remaining 300 pairs, the images of each

pair belong to different individuals. Using this paradigm, the face verification task can be

tested by individuals that have not been used in the training stage.
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In the first experiment, the SIFT-based descriptor is used, which is proposed by

Guillaumin et al. [140], to generate a feature vector. At three different scales, Guillaumin

et al. [140] extracted 128 dimensional SIFT descriptors [156] from patches centered on

9 facial features (corners of the mouth, eyes and nose). The descriptor of Guillaumin et

al. [140] is a 3456 dimensional feature vector. this descriptor is used, because it provides

a fair comparison to the-state-of-the-art in distance learning [138, 140–142] where those

authors reported their best results using that descriptor as compared with other descrip-

tors e.g., Local Binary Pattern (LBP) [5], Three-Patch LBP (TPLBP) and Four-Patch LBP

(FPLBP) [155].

Face verification results on the LFW dataset are shown in figure 67. Where, Re-

ceiver Operator Characteristic (ROC) curves for KISSME [142], DML-eig [141], LDML [140],

ITML [138], SVM [55], and the proposed measure as a function of two Mahalanobis dis-

tances (i.e., k = 1) and as a function of six Mahalanobis distances (i.e., k = 2) are generated.

The performance of the proposed similarity measure is computed by averaging verification

results over the 10 folds. Notice that the proposed method outperforms others and reaches

an Equal Error Rate (EER) of 83% at (k = 1). While this is a competitive improvement,

the proposed method is also computationally efficient compared to ITML and LDML.

It is worth mentioning that other state-of-the-art e.g. [145–147, 151, 152], which fo-

cus purely on faces on LFW, provide better results, however, they combine many features

and require considerably more domain knowledge. Also, for a fair comparison, the com-

parison is done only with the global methods e.g., LDML and ITML, which are similar to

the proposed method that requires restricted setting to be learned. However, local methods,

e.g., LMNN, require unrestricted setting to be learned (i.e., information about the class

label is needed).

The influence of using Principle Component Analysis (PCA) for dimension reduc-

tion of the used feature vector is investigated. The verification results of the proposed

technique, DML-eig [141], KISSME [142], ITML [138], and LDML [140] for the 10-fold

cross validation tests are obtained using different principal components. The verification

rates of these approaches are plotted versus these different principal components as shown

105



FIGURE 67: Face verification results on the LFW dataset

FIGURE 68: The verification rates of the proposed technique compared to other state-of-

the-art versus different principal components. The results of LDML is copied from [140]

in Figure 68. When the principal components are 80 at k = 1 and 70 at k = 2, the proposed

method achieves its best performance. These results can be used to draw conclusion that

by learning more Mahalanobis distances smaller number of principle components can be

used.

Finally, the performance of some ”high-level” visual features [149], or attributes

(e.g., gender, race, and age), of a face image that are insensitive to imaging conditions
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FIGURE 69: ROC curves for the attribute features-based face verification results on the

LFW dataset.

(e.g., pose, illumination, and expression), for face representation is investigated. In Kumar

et al. [149] approach, a face is warped using detected fiducial points. Then, the warped face

is manually divided into parts e.g., the eyes, nose, and mouth. After that low-level features

e.g., image intensities in different color spaces, edge magnitudes, and gradient directions,

are constructed from these regions. An adaboost method is used to choose from the set

of low-level features the one that drops error rates the most. For each attribute, this set

of features is used to learn an attribute classifier (i.e., SVM with an RBF kernel) using

data labeled by Amazon Mechanical Turk. Then, at the testing stage, these binary trained

classifiers can be used to recognize the presence or absence of the attributes.

Figure 69 shows the ROC curves of the proposed approach compared to the-state-

of-the-art approaches curves. The results reported in figures 69 and 67 can be used to

conclude that there is no optimum number of Mahalanobis distances that always achieves

best results. The optimum k in the case of low dimension vector length and large training

dataset is usually around k = 2. In the high dimension vector length, the gain of using a

nonlinear combination of Mahalanobis distances over one Mahalanobis distance is small.

In the following experiment, the PubFig dataset [149] in the face verification test

is used. Similar to the LFW dataset, the PubFig dataset [149] is a challenging large-scale
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database, consisting of 58, 797 images collected from the internet. In total 200 people

appear in the images. Also, like the LFW dataset, images of this dataset are divided into

ten fully independent folds, which can be used for cross validation experiments. Each fold

contains 1000 pairs of images from the same identity and another 1000 pairs of images

from different identities.

Unlike the common faces dataset e.g., LFW, due to copyright issues, the authors of

PubFig dataset do not distribute images in any format. Instead, the PubFig dataset consists

of a list of image URLs that can be used to download the images by the user. However, this

makes it impossible to exactly compare numbers, as image links disappear over time. To

overcome this problem they extracted attribute features of these images and made them

available for comparison. Therefore, in this experiment, we use these features, which

are high-level descriptors and are robust against image variations compared to low-level

features. Moreover, these high-level features help on evaluating the performance of the

similarity measure learning algorithms.

Face verification results on the PubFig dataset are shown in figure 70. Where, Re-

ceiver Operator Characteristic (ROC) curves for KISSME [142], DML-eig [141], LDML [140],

ITML [138], SVM [149], and the proposed method are generated. The proposed method

reaches with an Equal Error Rate (EER) of 80.9% at k = 2, which is better than all the

others.

As expected, the experiments illustrate that there is no optimum number of Maha-

lanobis distances that always achieves best results. Actually, this optimum k is based on

both the length of the feature vector and the size of the training dataset. This is because for

a feature vector of a length d, there are d2 unknowns for each Mahalanobis distance. Since

the proposed similarity measure has k(k + 1) Mahalanobis distances (Eq. 45), k(k + 1)d2

unknowns need to be learned. This means that one needs more than k(k + 1)d2 samples to

learn the Mahalanobis distances otherwise overfitting occurs. Back to Figure 68, for a fixed

number of samples, increasing d from 20 to 80 enhances the performance, since the num-

ber of samples is still greater than k(k + 1)d2. On the other hands, as d becomes more than

80, the number of samples becomes less than k(k + 1)d2 and the performance is degraded
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FIGURE 70: ROC curves for the attribute features-based face verification results on the

PubFig dataset.

due to overfitting. Also, this explains why the performance in the case of k = 2 enhances

faster than the case of k = 1 when d = 20 or 40, and it degrades faster when d > 80. This

conclusion is confirmed in Figures 69 and 70. Since the dimensions of the attribute feature

is small (d = 40), the performance in the case of k = 2 is better than the performance in the

case of k = 1. However, in the case of k = 3 overfitting occurs.
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CHAPTER 6

STEPS TOWARDS EMOTION RECOGNITION FOR AUTISTIC CHILDREN

The Centers for Disease Control and Prevention (CDC) conducted a survey study

in 2006. In this study, they stated that one child in every 110 aged 8 years old in the United

States is currently diagnosed with an Autism Spectrum Disorders (ASD). According to the

national research council, children with ASD have major difficulties in expressions and

emotions recognition. They can only show a little verbal and nonverbal communication.

In other words, they have a problem in revealing their expressions and emotions, and in

understanding others’ emotions and expressions. Therefore, it is very hard to understand

their emotions based on gesture and facial expressions.

6.1 Background

1. Emotion

There are differing theories and models regarding the relationship between bodily

changes, cognitive processes and emotions. The most famous model is the representation

of emotions in 2D valence/arousal space, see Figure 71, where valence represents the way

one judges a situation, from unpleasant to pleasant and arousal expresses the degree of ex-

citement felt by people, from calm to excited. Emotions drastically influence many aspects

of human activity such as:perception, intention, communication, organization of memory,

learning, attention, performance, goal generation, evaluation, social interaction and deci-

sion making. Emotion recognition may be studied using contact or contactless sensors.

Contactless sensors include video, to capture facial expression and gesture, and micro-

phones, for analysis of the vocal intonations [159]. Unfortunately, individuals with ASD
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FIGURE 71: Representation of emotions in 2D valence/arousal space

often do not readily expose emotions; hence, these contactless sensors may not be a directly

applicable. The other way to recognize emotion is using contact sensors that measure the

physiological activities related to emotional states. The usage of physiological parameters

in such context is beneficial because they are mostly under control of Autonomic Nervous

System (ANS), which means that they are less affected by the conscious manipulations.

2. Physiological metrics for Emotion Recognition in Autism

Liu et al [177, 178] established an affective model to relate the physiological mea-

sures to the emotion state of children with ASD. The physiological measures were mea-

sured using a BioPac system. The BioPac system measured three different groups of physi-

ological signals which are electromyogram (EMG), electrodermal activity (EDA), and car-

diovascular measure. This physiological data was collected using contact sensors placed

on chest, face, and one of the subject’s hands, see Figure 72. Electromyogram signals

have been used as strong indicators of emotion state for typical individuals [160]. While

in this experiment, it is observed that it is less discriminatory than the cardiovascular and

electrodermal activities. The reason behind that, is children with ASD often have nonverbal
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FIGURE 72: Electrode arrangements for collecting physiological data during an exercise,

which invokes emotional activities of autistic individual (adopted from [177])

communicative impairments regarding expression of affective states (e.g., abnormal body

postures and gestures and absence of facial expression), which reduce the discriminatory

capability of EMG signals (e.g., muscle activities from both the corrugator supercilii and

the zygomaticus major) to reveal affective cues of the participants. Cardiovascular and

electrodermal activities are the main indicator of the emotion state for children with ASD.

However, collecting the measurements for cardiovascular and electrodermal activities by

contact sensors limit the usage of these measurements in real life situations.

3. Physiological Measurements by Thermal IR sensors

The heart consists of four chambers, namely the left and right atria and ventricles,

which work in unison acting as a two-stroke pump to circulate the blood. During systole,

the heart contracts and the blood heated in the core of the body is circulated through the

various tissue layers via the arterial network and eventually reaches the skin via the capil-

laries. As blood passes through the capillary bed, the temperatures between the skin and

blood equilibrate. During diastole, the heart expands and the blood exits the capillary bed

via the veins to the venous return channels. As a result, the blood temperature in a vein rep-

resents the average temperature of the tissues drained by that vein. The blood is reheated

as the process repeats. When the body attempts to maintain homeostasis, heat variations
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resulting from the underlying vasculature are conducted through soft tissues so it can be

measured measurable by an Infrared camera [174–176].

FIGURE 73: Samples of extracted underlying vasculature map in face image

While the carotid complex, STA/SO, and forearm are the most accessible superficial

arteries for thermal IR measurements, the carotid artery is prone to being covered by fatty

deposits while also located in a deformable region on the neck and the forearm is not

nearly as convenient or practical to image as the face. The superficial temporal arterial

(STA) branches in the forehead region are identified as the regions of interest (ROI) [176].

The STA is a continuation of the carotid artery on the neck, which splits into the parietal,

frontal, and supra orbital (SO) branches. The skin in the forehead over the STA/SO is less

susceptible to movements introduced by facial expression, neck movement, and breathing.

These structures are sufficiently large and close to the skin’s surface, creating a distinct

heat signature. Figure 74 shows the regions of interest which is the center of forehead

area around supraorbital branch for measuring heart activities. Moreover, the nasal tissue

area is another region of Interest for measuring the breathing function. In [174–176], the

dominant heart rate frequency is estimated by averaging the power spectra of each pixel

in the vascular map in the regions of interest. The power spectra is calculated by adaptive

Fourier-based signal filtering method on the pixel appearance over N frames. Figure 73

shows the automatic computer extract of underlying vasculature in thermal images.

6.2 Related Work

It is one of the important missing components for making the contactless emotion

recognition for children with Autism Spectrum Disorders is tracking and detecting a Region
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of Interest (ROI). However, robust tracking of a region Of Interest (ROI), center of forehead

area around supraorbital branch or nasal tissue area, is a challenging task, therefore it is the

focus of this work. Recently, region-based tracking approaches have seen very popular in

visual tracking. Tracking a region of interest (ROI) is accomplished by searching for the

best match for the ROI. Some methods limit the search domain in an area where the ROI is

expected [180], while others use the state predication [181] (e.g. particle filter [179]). The

ROI can be represented as a template or a generative model. The template can be static

(i.e., the template does not change over time) or adaptive (i.e., a new template is always

extracted from the previous frame).

Jepson et al. [163] proposed a statistical appearance template, which gives pixels

with stable behavior heavier weights than pixels with less stable behavior. This algorithm

shows a good performance in visible images, however, it fails in thermal images. This

is due to that it does not support abrupt changes in the appearance and saturates after a

long tracking periods (i.e., it needs re-initialization). While tracking the ROI for vital signs

should support fast changes in the appearance since the appearance changes with the blood

flow in the body.

In the thermal imaging domain, Dowdall et al. [164] proposed a network of parti-

cle filters trackers driven by deterministic template function. Each pixel in the template is

updated if a respective difference exceeds a predetermined threshold. This approach also

could not handle the abrupt changes in the appearance and is vulnerable to the drifting prob-

lem. Zhou et al. [161] proposed a particle filter tracker driven by a probabilistic template

mechanism, which is based on the Matte algorithm [162]. This algorithm handles changes

in appearance better than the algorithm proposed in [164]. Certainly these methods face

several challenges in practice such as abrupt motion of the ROI, frame-cut, and leaving of

the ROI the field of view.

6.3 Proposed Framework

The focus of this work is the detection and tracking of ROI, center of forehead area
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FIGURE 74: The variation in the appearance in the two different regions of interest.

around supraorbital branch or nasal tissue area, in thermal video. This framework handles

the two unique problems for detecting ROI for vital signs. The first one is the small size of

ROI (e.g., around 20-30 pixels height and width)which makes confusion in the detection

since many other areas in the face may have same appearance. The second challenge is that

the appearance of ROI changes with time in response to change in cardiovascular activities,

as shown in figure 74.

The proposed framework, as shown in figure 75, consists of three main modules: an

adaptive particle filter tracker of the ROI, a detector of the ROI, and a unit of integration

and learning decision. A thermal video is processed by the particle filter and the detector

independently. The outputs (i.e., bounding boxes of ROI) from the detector and from the

particle filter tracker are combined in the integrator and learning decision module into one

ROI. If both outputs can not be combined, ROI is assumed to be invisible. Moreover, the

integrating and learning module decides if the frame work needs to be learned or does not.

In the learning stage, the template in the particle filter is updated and positive and negative

samples are generated from current frame to update the random ferns classifier.

The tracker is based on adaptive particle filter to overcome the problem of appear-

ance change in ROI. While the detector is based on a novel concept which uses supporters

in detection of ROI to handle the challenge of small size of ROI. The supporters are five

facial feature points that have more discriminative appearance than ROI. The detection is

done by detecting ROI that follows the geometric constrain with the facial feature points.
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FIGURE 75: Proposed long term tracking framework in thermal imaging for vital signs

1. Particle filter Tracking of ROI

Particle filtering to track the ROI’s position in the current frame, based on template

matching is used. The particle filter tracker uses r = 60 particles (candidate ROIs) in a

single iteration per frame. The tracker output ROI C∗t is selected from the candidate ROIs

(particles) by choosing the closest one to the template. The similarity measure between the

template T at time t − 1 and one of the candidate ROIs Cr is estimated as follows.

S (T,Cr) =
Σi(Tt−1[i] − µ(Tt−1))(Cr

t [i] − µ(Cr
t ))

σ(Tt−1)σ(Cr
t )

, (47)

where µ(Ti−1) and µ(Cr
t ) denote the means of the template at time t−1 and the r candidate at

time t, respectively. σ(Tt−1) and σ(Cr
t ) are the standard deviations. The index i represents

the ith pixel.

Since the appearance of ROI exhibits a large variation over time, the template should

be updated. Updating the template every frame makes the tracker being prone to drifting.

Unlike Zho et al. [161], the template is updated using the output of the integrator module

whenever the learning decision module is permitted for learning the framework. The up-

dated template, at time t, will be a weighted sum of the previous template and the integrator
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output P∗t from the current frame:

Tt[i] = wt[i]P∗t [i] + (1 − wt[i])Tt−1[i], (48)

where wt[i] is called Matte value [162], which indicates the necessary degree of updating

for each pixel. To compute the matte of the current ROI, the intensity of each pixel in the

image I[i] is assumed to be a convex combination of a stable S [i] and an unstable U[i]

component.

I[i] = w[i]S [i] + (1 − w[i])U[i]. (49)

Various methods have been proposed to solve for wt[i] [162]. The cost function proposed

by [168] is used in this work since it considered the spatiotemporal smoothing term, which

is very important in the tracking. The estimation of the Matt value is formulated as a

quadratic optimization problem with respect to wt as follows.

w∗t = arg min
wt

(wT
t Ltwt + (wt − wt−1)T (wt − wt−1) + ϵ(wt − dt)T Dt(wt − dt)), (50)

where ϵ is chosen to be a large number 103 to avoid updating seeds in the optimization. Lt

is the the similarity measure between a pair of pixels in the integrator output module P∗t .

Dt is a diagonal matrix whose diagonal elements are 1 for seeds (stable and unstable) and

0 for all other pixels. dt is a vector containing 1 for unstable seeds and zero for all other

pixels. The iterative generalized minimal residual method linear equation solver is used to

solve the optimization formula.

The stable and unstable seeds from P∗t are extracted based on the following inequal-

ities:

|P∗t [i] − Tt−1[i]| < λs, and |P∗t [i] − Tt−1[i]| > λu. (51)

where λs and λu are predetermined thresholds. In [168], authors showed that choosing

these values is flexible and the performance is not very sensitive to this choice. In this

paper, these thresholds are chosen to be 5 and 15, respectively.
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2. Detection Region Of Interest (ROI)

Region of Interest (ROI), center of forehead area around supraorbital branch or nasal

tissue area, detection is a task of localizing the ROI in an input image. Sliding window-

based approaches show great success in the object detection, where the input image is

scanned by different sizes of windows and for each window a decision is made if the win-

dow contains the object or does not. This work focuses on building online ROI detector

where an offline model for ROI does not exist. Building an ROI detector, which is based

on an offline model, is a challenge due to the following reasons. The ROIs are areas, which

have a signification appearance variance over time. This is due to heart activity and breath-

ing cycle. Also, The ROI’s appearance differs from subject to subject and does not have a

shape structure. Furthermore, the online ROI detector is flexible enough to be used for any

ROI. In vital signs measuring, the ROIs differs in their positions based on the interested

physiological measure (e.g., the nose area in measuring breathing cycle, part of forehead

region in the blood pressure waveform). In this work, only five facial feature points are

detected as supporters for detecting ROIs to construct a geometrical constraints for the

position of the ROIs. Figure 77 shows facial feature points that collaborate in detecting

ROI.

2..1 Classifier and ROI representation Due to the efficiency of the randomized

ferns classifier, which is widely used in recognition [170] and tracking [167], it has been

deployed in this work to detect the ROI in every frame. Randomized ferns were originally

proposed by Ozuysal et al. [171] to increase the speed of randomized forest approach [182].

Unlike the tree-structure in randomized forest, ferns have non-hierarchical structures and

consists of a number of binary testing functions. In this work, each fern classifier is learned

by a set of Binary Pattern features. The Binary Pattern features are generated by performing

pixel comparisons in the ROI similar to Binary Robust Independent Elementary Features

(BRIEF) [184] and Oriented FAST and Rotated BRIEF (ORB) [183] descriptors. Each leaf

in a fern records the number of added positive and negative samples during training. For a

test sample, its evaluation by calculating the binary pattern features leads it to a leaf in the
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fern. After that, the posterior probability for that test sample (i.e., feature vector fi) to be

labeled as an ROI (i.e., y = 1) by fern j is computed as Pr j(y = 1| fi) = p/(p + n) where p

and n are the numbers of positive and negative samples recorded by the leaf. The posterior

probability is set to zero if there is no record in the leaf, respectively. The final probability

is calculated by averaging the posterior probabilities given by all the ferns (N):

Pr(y = 1| fi) =
N∑

j=1

Pr j(y = 1| fi) (52)

The number of ferns is chosen to be 10. Each fern learn on an 8-bit comparison in

the ROI. Thus the ROI is represented by 80 binary bits each bit represents a pixel compar-

ison in the ROI.

2..2 Geometrical Constraint The five collaborated facial feature points and the

center of ROI construct a shape vector Z. This shape vector Z is given by [xroi + iyroi xl +

iyl xr + iyr]. This vector represents the spatial coordinates of the centroid of the ROI, and

the position of the five facial feature points. To be in-plane rotation invariant, this shape

vector is modeled as multivariate complex gaussian distribution. The mean vector µz is

initially estimated as the center position of manually detected ROI and the positions of

detected facial feature points in the first frame. The covariance matrix Σz is modeled as a

random noise with zero mean and unit standard deviation. Finally, the confidence score of

the output of randomized ferns classifier based on geometric constraints is given by:

Pr(y = 1|Z) =
1√

(2π)3|∑z |
exp(
−1
2

(Z − µz)TΣ−1
z (Z − µz)). (53)

This shape constraint works as a filter for the output of random ferns classifier. The

overall confidence level of the detector is given by

Pr(y = 1) = Pr(y = 1|Z)Pr(y = 1| fi) (54)

3. Integrating and learning Module

The integrator combines the bounding box of the tracker and the bounding boxes of

the detector into a single bounding box. The ROI is declared as not visible if there is no
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detector output and the tracking confidence level is less than 0.5, or the confidence levels

of all bounding boxes are less than 0.2. If the detected boxes overlap with the bounding

box of the tracker, the integrator outputs the maximally confident bounding box which is

given by:

Total Con f idenec = Pr(y = 1) Overlap(C∗, f i), (55)

where Overlap(C∗, f i) is the percentage of area of overlap between the detector and tracker

bounding boxes. In the case of no overlapping boxes with the bounding box of the tracker,

the integrator outputs the maximally confident bounding box that correspondence to max(Pr(y =

1), S (T,C∗)).

The learning step is performed when the tracker is valid with a confidence more

than 0.8 and no detector output, or there is a detection box that overlaps with tracker output

and both of them have confidence more than 0.2. In the learning procedure, positive and

negative samples are generated from the current frame to update the random ferns. The

positive samples are warped versions from output of the integrator. The negative samples

consist of random boxes that are generated far from the integrator’s output box and the

boxes that feed into the integrator and the integrator decided that they are false positives.

Also, the template of the tracker is updated as shown in subsection 6.3.1.

6.4 Experimental Results

The experiment is conducted on collected thermal faces database from Bluegrass

autism center. The motivation behind collecting this dataset is that there is no public ther-

mal imaging datasets that capture the face movement for tracking to measure the vital signs.

The collected dataset consists of 40 subjects (children aged 6-8 years), 20 control

subjects and 20 autistic children. Figure 76 shows a subset of subjects who participate

in this study. The subject is captured while playing a face recognition game, with two

different levels of difficulty to excite different emotional states of the subject. In the easy

level, the subject tries to match visible images with visible images that are captured with
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FIGURE 76: Thermal images for subset of children with ASD who participate in this study.

time lapse. In the difficult level, the subject tries to match a vascular map for a face to

other vascular map. The dataset is collected on these children since the ultimate goal of

the project is emotion understanding for children with ASD. Each subject is captured for

at least 8 minutes with N2-cooled Indigo Phoenix QWIP LWIR Camera System with Real

Time Imaging Electronics (Product 420-0011-007, Rev. 120) and Talon Ultra 5.2 image

acquisition software (Ver. 4.5.1.27) to acquire 1024 video frames at 20 fps, spatial resolu-

tion of 320x256 and thermal resolution (MRTD) of 35mK. The regions of interest in this

experiment are the nasal tissue area and the center of forehead area around the supraorbital

artery.

To quantify how well each tracker performs, one needs to have the ground truth

location of the ROI and compare the detected ROI with the ground truth through time lines.

However, with hundreds of thousands of frames in the dataset (40 subjects, 8 min/subject,

1200 frames/min), manual ground truth is not practical. Instead, the data is downsampled

to 100 frames/min and two videos are clipped per subject: every video is three minutes to

reduce the number of frames. The detected ROI using the proposed approach and other

approaches are compared with the manually annotated ground truth.
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FIGURE 77: Samples of the detecting and tracking facial feature points.

Figure 77 shows sample of the proposed approach results for detecting the region

of interest and detecting other facial feature points.

Tables 10 and 11 show the performance of the proposed tracker comparing with

other recently proposed trackers on four autistic subjects and four control subjects on the

nasal tissue area and the center of forehead, respectively. The performance evaluation is

measured by Precision, Recall, and F-measure which are calculated from true positive, false

positive, false negative, and true negative quantity. The performance of the tracker for each

subject is evaluated on two videos. The first video is captured in the beginning of recording

while playing the easy game so the movement is not big and the appearance of the ROI

does not change very fast, since the subject is in a normal situation, the results are shown

in the upper row for each subject in the table. The second video is captured at the end of

session while a subject playing the difficult game so the movement is large since he/she is

stressed, the results are shown in the lower row for each subject in the table. The processing
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TABLE 10: A comparison of the nasal tracking results using the proposed algorithm and

other alternatives.

Group Proposed TLD [167] STM [168] OB [172] BS [173]

Autistic 1.00/1.00/1.00 0.89/0.91/0.90 0.95/1.00/0.98 0.86/0.89/0.87 0.90/0.81/0.86

0.90/0.89/0.90 0.86/0.87/0.86 0.69/0.61/0.65 0.69/0.06/0.11 0.98/0.03/0.07

Autistic 1.00/1.00/1.00 1.00/1.00/1.00 1.00/1.00/1.00 1.00/0.92/0.96 1.00/0.83/0.91

1.00/1.00/1.00 1.00/0.96/0.98 0.98/0.73/0.84 0.98/0.46/0.63 0.89/0.49/0.64

Autistic 0.95/0.93/0.94 0.80/0.83/0.82 0.88/0.85/0.87 0.76/0.82/0.79 0.83/0.84/0.83

0.75/0.53/0.62 0.50/0.47/0.48 0.50/0.53/0.52 0.36/0.40/0.38 0.95/0.09/0.16

Autistic 0.97/0.93/0.95 0.87/0.88/0.88 0.72/0.83/0.77 0.94/0.84/0.89 0.98/0.62/0.76

0.96/0.96/0.96 0.86/0.98/0.92 0.70/0.76/0.73 0.90/0.14/0.25 0.93/0.32/0.47

Control 1.00/0.95/0.97 1.00/0.92/0.96 0.98/0.97/0.98 0.98/0.91/0.94 0.99/0.89/0.94

0.96/0.92/0.94 0.92/0.76/0.83 0.85/0.64/0.73 0.94/0.35/0.50 0.93/0.66/0.77

Control 0.98/0.92/0.95 0.96/0.82/0.89 0.97/0.99/0.98 0.98/0.87/0.92 0.99/0.67/0.80

0.95/1.00/0.97 0.83/0.91/0.87 0.82/1.00/0.90 0.97/0.22/0.36 0.86/0.69/0.77

Control 1.00/1.00/1.00 1.00/1.00/1.00 1.00/0.00/0.97 1.00/0.89/0.94 1.00/0.93/0.96

0.98/0.86/0.91 0.94/0.96/0.95 0.90/0.57/0.70 0.75/0.62/0.68 0.91/0.67/0.77

Control 0.99/0.87/0.93 0.98/0.89/0.93 0.98/0.89/0.93 0.92/0.46/0.61 0.97/0.58/0.73

1.00/0.43/0.60 1.00/0.21/0.35 0.89/0.12/0.20 0.83/0.05/0.10 0.82/0.29/0.43

speed of all algorithms are greater than 25 fps (e.g. real time processing). The proposed

tracker has the best performance, since it enhances the performance of TLD [167] by adding

geometrical constraint to remove false positives and avoid drifting. Also, proposed tracker

combines the advantages of STM tracker [168] in the framework. Combing STM tracker

in the framework avoids drifting and solves the problem of when the ROI re-enters the field

of view.

Figures 78 shows samples of the nasal tracking results using the proposed algorithm

and other alternatives.
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TABLE 11: A comparison of the forehead tracking results using the proposed algorithm

and other alternatives.

Group Proposed TLD [167] STM [168] OB [172] BS [173]

Autistic 0.99/0.90/0.94 0.76/0.77/0.77 0.85/0.90/0.87 0.81/0.98/0.8869 0.90/0.79/0.84

0.84/0.77/0.81 0.57/0.71/0.63 0.54/0.53/0.53 0.98/0.20/0.34 0.86/0.82/0.84

Autistic 0.99/0.90/0.94 0.67/0.84/0.75 0.86/0.82/0.84 0.56/0.51/0.53 0.77/0.81/0.79

0.92/0.84/0.88 0.46/0.58/0.51 0.91/0.63/0.75 00.84/0.69/0.76 0.93/0.40/0.56

Autistic 0.82/0.81/0.82 0.88/0.71/0.79 0.85/0.78/0.81 0.70/0.76/0.73 0.59/0.78/0.67

0.57/0.43/0.49 0.38/0.49/0.43 0.36/0.42/0.39 0.63/0.91/0.75 0.26/0.32/0.28

Autistic 0.90/0.85/0.87 0.66/0.98/0.79 0.63/0.86/0.73 0.760.54/0.63 0.87/0.81/0.84

0.92/0.87/0.90 0.78/0.92/0.89 0.55/0.58/0.57 0.80/0.13/0.22 0.8670/0.08/0.85

Control 0.98/0.86/0.91 0.98/0.92/0.95 0.97/0.99/0.98 0.99/0.67/0.80 0.97/0.83/0.86

0.95/1.00/0.97 0.92/0.46/0.61 0.82/1.00/0.90 0.97/0.22/0.36 0.86/0.67/0.75

Control 0.98/0.92/0.95 0.96/0.82/0.89 0.97/0.99/0.98 0.98/0.87/0.92 0.99/0.65/0.75

0.95/1.00/0.97 0.83/0.91/0.87 0.82/1.00/0.90 0.97/0.22/0.36 0.86/0.68/0.77

Control 0.97/0.99/0.98 0.98/0.92/0.95 0.97/0.99/0.98 0.98/0.92/0.95 1.00/0.93/0.96

0.99/0.87/0.93 0.98/0.89/0.93 0.98/0.89/0.93 0.92/0.46/0.61 0.97/0.58/0.73

Control 0.98/0.86/0.91 0.94/0.96/0.95 0.90/0.57/0.70 0.75/0.62/0.68 0.91/0.67/0.77

0.96/0.92/0.94 0.92/0.76/0.83 0.85/0.64/0.73 0.94/0.35/0.50 0.86/0.69/0.77
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FIGURE 78: Samples of the nasal tracking results using the proposed algorithm and other

alternatives.

125



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

Face understanding is considered one of the most important topics in computer

vision field since the face is a rich source of information in social interaction. Not only

does the face provide information about the identity of people, but also their membership

in broad demographic categories of human (including sex, race, and age), and about their

current emotional state. Facial landmarks extraction is the corner stone in the successful

development of different face analysis and understanding applications. In this dissertation,

a novel face modeling is designed for facial landmarks detection in unconstrained real life

environment from different image modality, infra-red and visible images.

The model for landmark detection has been studied in the two face understanding

applications which are face recognition from visible images and physiological measure-

ments for autistic individual from thermal images. However maturity of face recognition

systems, recognize face identity with different poses, expressions and lighting conditions

from a complex background is still unsolved problem even with accurate detection of land-

mark. To handle illumination and expression variation, learning similarity measure be-

tween two face image representation is proposed that it only responds to the difference in

identity and filter the illumination and expression variation. The pose challenges are tack-

led by two new approaches where the three dimensional face representations from images

has been involved.

The other framework for the face understanding application is a physiological mea-

sures for autistic individual from infra-red images. Accurate detecting and tracking of

superficial temporal arteria while the subject is moving, playing, and interacting in social

communication is challenging while it is must. The challenges come from two sources:

the appearance of the STA region changes over time. The appearance is not discrimina-
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tive enough from other area in face region since it is few pixel width and height. A novel

concept,supporter collaboration, in detection is introduced.

7.1 Summary of Contributions

This dissertation proposed a novel human face model for facial landmarks detec-

tion. The facial landmarks detection has been apart for two face understanding applica-

tions/frameworks face recognition from visible images and emotion recognition for chil-

dren with Autism spectrum disorder from thermal images. The proposed model incorpo-

rates the part based model with holistic face information. The part based model is based on

soft combining a texture classifier with complex Bingham distribution as a shape represen-

tation. The texture classifier is built by a support vector machine classifier that used a novel

feature representation, which is called the pixel difference feature. The complex Bingham

distribution is adapted from statistical community into computer vision for face shape rep-

resentation since it is invariant to the in-plane rotation which gives this model superiority.

An energy minimization function is formulated to incorporate information from both the

texture classifier and the shape model simultaneously. In the final stage, global information

is used to improve the results of the part based model by using regression model that does

not penalize the outliers of the human face shape due to extreme expression, occlusion, and

different ethnicity.

In the presented face recognition framework, the face image is represented by con-

catenating and transforming the appearance around the facial landmarks. This representa-

tion is not robust for illumination, expression, and pose. To handle illumination and ex-

pression, learning a similarity measure between two face representations is proposed that

it only responds to the difference in identity and remains almost constant with illumination

and expression variation. The learning similarity measure aims to discard bad features se-

lectively in each individual matching circumstance which should not be used on computing

the measure. The proposed similarity measure is derived from a statistical inference as a

non-linear combination of mahalanobis distance. This similarity measure is evaluated on
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two different datasets in the wild which are Labeled Face in the Wild and Public Figure

using different face representations. The proposed similarity measure outperforms the ac-

curacy of state-of-art similarity measures, which are based on learning using the equivalent

constraint.

The pose invariant face representation is achieved by proposing two approaches.

The first approach is based on dynamic weighting of the contribution of each facial land-

mark in the similarity measure between two face representations. This method has been

called ”dynamic weighting for pose invariant face recognition”. Dynamic weights are

assigned for each facial feature at each pose based on the overlapping scores. This score

is based on the number of pixels in the patch in the frontal gallery image and the captured

pose image. These pixels correspond to the same vertices in the 3D person’s head. The sec-

ond approach for the pose invariant face representation is based on the existence of multiple

images for a subject at different poses in the gallery, therefore each identity is represented

by multiple face representations. These images are virtual images that are synthesized from

a reconstructed 3D face. The 3D face is reconstructed using two different techniques. The

first technique is based on a single image where the problem of 3D construction is for-

mulated as regression relation between face landmarks in two dimensional space and the

dense three dimensional face shape. This approach is called ”Hybrid 2D-3D”. The sec-

ond technique for 3D face reconstruction is based on geometric stereo. In geometric stereo,

two different cameras simultaneously captured two images and the distance between two

cameras is known.

The approaches for pose invariant face recognition has been tested on three pub-

lic datasets which are FERET, CMU-PIE, and Multi-PIE, and in-house collected dataset

(UofL-EWA). UofL-EWA dataset had been collected since there is no public available

dataset for stereo. The experimental results show that dynamic weighting for pose invariant

face recognition achieves state-of-art results in indoor environments with limited variation

in expression and illumination since it can not be combined with learned distance metric.

While ”Hybird 2D-3D” and stereo face recognition outperform the dynamic weighting

approach in uncontrolled environment since the distance metric learning can be combined
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with these approaches for pose handling while they show slightly decrease in performance

in indoor environment as compared to the dynamic weighting approach.

The dissertation moves the research in non-intrusive physiological measurements

for emotion recognition for children with autism spectrum disorder forward by propos-

ing framework for continuously tacking and detection superficial temporal arterial (STA)

branches from thermal camera while the subject is moving, playing, and interacting in

social communication. A long term tracking and detection framework is proposed. The

proposed framework consists of three main modules: (1) an adaptive particle filter tracker

for (STA) branches area which is used to overcome continuous change in the appearance

with changing the blood flow, (2) online detector that used a new concept which is called

supporters to avoid the confusion that results from the small size of STA branches area,

and (3) a unit of integration and learning decision. Moreover, a dataset consists of ther-

mal and visible videos for children with autism spectrum disorder and controlled at age 6-8

years old has been collected while they engaged in playing game that has different difficulty

levels.

7.2 Limitations and Suggested Future Directions

This work tackled the following face recognition problems: illumination, expres-

sion, and pose variations. Pose is handled using information about the 3D structure of the

face while illumination and expression variations in recognition are handled by learning

similarity measure. The main assumption behind dividing the illumination and expres-

sion into one category and the pose in another category is that the pose is the rotation of

the subject’s head in the 3D dimensional space while illumination and expression can be

understood from the two dimensional space, image plane. In extreme illumination and ex-

pression, this assumption is not valid and a 3D model is needed. The main challenge is

combining different 3D models that are used to solve different face challenges. It is still an

open question in face recognition research with an unconstrained environment.

Face is represented by features captured around facial landmarks using hand crafted
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features. Recently, many researchers have moved toward combining face representation

with learning a similarity measure using a convolution deep belief network known as deep

learning. These approaches show similar performances to the approaches that separate

face representation and similarity measure when the data available for learning similarity

measure in order of thousands of the face images. However, deep learning may significantly

improve the performance when the training data in order of millions/billions face images

which is not publicly available yet since the learning algorithm for the similarly measures

may not scalable to big dataset.

The dissertation has additionally attempted to move forward research in the emotion

recognition for children with autism spectrum disorder with the useof thermal camera by

detection and tracking superficial temporal arterial. Thus is very beneficial for real life

situations while the subject is moving, playing, and interacting in social communication.

However, this work does not go explore ideas of movement on the model of extracting

physiological measurement from thermal images.
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