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ABSTRACT 
 

3D-RECONSTRUCTION OF HUMAN JAW FROM A SINGLE IMAGE: 

INTEGRATION BETWEEN STATISTICAL SHAPE FROM SHADING 
AND SHAPE FROM SHADING 

 

Mohamad Ghanoum 

April 22, 2015 

 

Object modeling is a fundamental problem in engineering, involving talents from 

computer-aided design, computational geometry, computer vision and advanced manu- 

facturing. The process of object modeling takes three stages: sensing, representation, and 

analysis. Various sensors may be used to capture information about objects; optical cam- 

eras and laser scanners are common with rigid objects, while X-ray, CT and MRI are 

common with biological organs. These sensors may provide a direct or indirect inference 

about the object, requiring a geometric representation in the computer that is suitable for 

subsequent usage. Geometric representations that are compact, i.e., capture the main 

features of the objects with minimal number of data points or vertices, fall into the 

domain of computational geometry. Once a compact object representation is in the 

computer, various analysis steps can be conducted, including recognition, coding, 
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transmission, etc. The subject matter of this thesis is object reconstruction from a 

sequence of optical images. An approach to estimate the depth of the visible portion of 

the human teeth from intraoral cameras has been developed, extending the classical shape 

from shading (SFS) solution to non-Lambertian surfaces with known object illumination 

characteristics. To augment the visible portion, and in order to have the entire jaw 

reconstructed without the use of CT or MRI or even X-rays, additional information will 

be added to database of human jaws. This database has been constructed from an adult 

population with variations in teeth size, degradation and alignments. The database 

contains both shape and albedo information for the population. Using this database, a 

novel statistical shape from shading (SSFS) approach has been created. 

To obtain accurate result from shape from shading and statistical shape from shading, 

final step will be integrated two approaches (SFS,SSFS) by using Iterative Closest Point 

algorithm (ICP).    

Keywords: computer vision, shading, 3D shape reconstruction, shape from shading, 

statistical, shape from shading, Iterative Closest Point.  
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CHAPTER 1 

INTRODUCTION  
 
Shape from shading (SFS) is a problem that has been studied for about four decades in 

the vision literature. Stated succinctly, the problem is to recover surface orientation from 

local variations in measured brightness. There is strong psychophysical evidence for its 

role in surface perception and recognition. Since the problem is an ill-posed one, a 

number of additional, simplifying model assumptions have been imposed in order to 

render it tractable. 

      The investigation of the SFS problem was pioneered by Horn [23]. He formulated the 

problem by a nonlinear first order partial differential Equation (PDE) called the image 

irradiance equation. This equation models the relationship between the shape of an object 

and its image brightness under known illumination conditions. His orthographic camera 

model, distant single point light source, and his Lambertian surface assumption became 

characteristic for numerous early SFS algorithms; see e.g. [44] for a survey. 

      In this work, will be proposed a novel strategy to improve the surface recovery results 

of SFS. We incorporate 3D shape priors in the SFS formulation. Since the target 

application is the human tooth reconstruction from intra-oral images, such information is 

statistically extracted from training 3D tooth models. This can serve in several aspects, 

e.g., to improve reconstruction accuracy, solve problems caused by occlusion (e.g., 

because of the tongue), specularity and albedo changes, and/or make up for the lack of 

sufficient, detailed view of a tooth. 
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      Furthermore, will be introduced a more realistic formulation of SFS that better 

considers all the components of the problem under concern, namely: the camera, the light 

source, and the surface reflectance. Since the image acquisition setup consists of a small 

wireless intraoral camera with a built-in bright light source, the camera is modelled by 

perspective projection, which is more practical than the common SFS assumption of 

orthographic projection. The light source is assumed to be located at the optical center of 

the camera. Under this near-illumination imaging, by taking into account the attenuation 

of illumination due to the distance between the light source and the surface, which helps 

to deal with the concave/convex ambiguity in SFS [33, 35]. 

      Shape reconstruction from a single image, augmented with prior information, 

facilitates various studies and applications in art, design, reverse engineering and rapid 

prototyping. The use of prior models is rooted in the cue theory of depth perception, 

which states that humans learn the connection between cue and depth through previous 

experiences. This thesis, the statistically-constrained photometric shape analysis literature 

will be extended into a new domain, ‘human jaw reconstruction, with new challenges 

such as high specular reflection and unfriendly environment for image acquisition. 

     The three-dimensional (3D) reconstruction of the visible part of the human jaw is 

becoming crucial for the treatment of malocclusion problems and several endodontic 

procedures. Meanwhile, since teeth are the most durable parts in the body, they are 

frequently used in forensic applications. Although computer tomography (CT) scanning 

would present 3D information, it is believed that there is no threshold radiation dose 

below which it is considered safe. As such, the aim at making it easy and feasible for 

doctors, dentists and researchers to obtain 3D models of a person’s jaw in vivo, without 
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ionizing radiation, using fewer sample points in order to reduce the cost and the 

intrusiveness of acquiring models of patients teeth/jaws over time. This is a challenging 

problem because of the ‘unfriendly’ environment of taking measurements inside a 

person’s mouth. 

      In particular, the structure of the human jaw reveals what can be acquired in terms of 

prior information to enhance the SFS process and the overall accuracy of jaw modelling. 

For instance, the upper and the lower jaws are symmetric and are lined up according to 

specific anatomical features and landmarks. Thus, one of main objective of this thesis is 

to develop and validate an image-based approach for 3D reconstruction of the human jaw 

based on statistical SFS (SSFS), covering regions which the classical SFS approach does 

not handle and using scanned moulds and images of the oral cavity to estimate the shape 

of a human jaw in order to create a more accurate jaw 3D model. 

      From the practical point of view, the two commercial dental systems that showed the 

most promise during the last few years are the Itero (Cadance) and the Lava systems. 

Although the former is based on a red laser light source to capture multiple images while 

using parallel confocal microscopy to reconstruct the teeth surface, the latter uses 

pulsating visible blue light to capture a video sequence for the underlying jaw segment 

while using active wavefront sampling for surface reconstruction. Yet, these technologies 

have multiple user issues in the real world application. The probes are bulky and hard to 

handle, requiring multiple to many multiple scans to obtain full coverage of the oral 

cavity and the teeth. The Lava system requires the use of a visible powder to obtain good 

registration, and has definite depth of field issues. The Itero has an even heavier probe 

and can only capture one tooth at a time, requiring five views of each tooth, painstaking 
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to obtain acceptable images. For both methods, blood and saliva cause inaccuracies. 

These systems are also laser based and very expensive. The image-based reconstruction 

approach is, on the other hand, on a factor of ten less expensive, allowing it to be 

affordable for most dental and orthodontist offices. 

      In practical, at the beginning of introduction was summarized about two aspects, first 

one is shape from shading and second one statistical shape from shading and was seen 

each one separately, by studying and comparing was find an adorable approach can 

integrate between these two aspects, Iterative Closest Point (ICP) algorithm which has a 

main purpose for integration between two shapes.  

1.1. Image Formation  

The image is a two-dimensional pattern of brightness. In order to use images to get 

information about the three-dimensional world, one needs to study the image formation 

process and understand how the brightness pattern is produced. This task can be 

accomplished by answering two main questions: 

1. Where the image of some point will appear? 

2. How bright the image of some surface will be? 

The first question is related to the camera projection which can be either a perspective 

projection or an orthographic projection. The perspective projection is more general than 

the orthographic projection, but it requires more calculations.  

      The second question is related to surface reflection properties, the illumination 

conditions, and the surface orientation with respect to the camera and light sources. 
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      The following two subsections first give the mathematical expressions of perspective 

and orthographic projections and then describe a simple camera device to illustrate the 

relation between the brightness of image pixels and the reflections of their corresponding 

points on the surface. 

  

1.1.1. Geometric camera models 

     The projection of a surface point of the three-dimensional scene into the two-

dimensional image plane can be described by a perspective projection or an orthographic 

projection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 A pinhole camera produces an image that is a perspective projection of the world. 

 

Figure 1.1. A pinhole camera produces an image that is a perspective 

projection of the world. 
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1.1.1.A.  Perspective projection  

Figure 1.1 shows an ideal pinhole camera located at a fixed distance in front of an image 

plane. Assume that an enclosure is provided such that the image plane is reached only be 

the light coming through the pinhole. For the assumed (ideal) pinhole camera, the 

projection of the scene point 𝑃 of the XY Z-space onto the image point 𝑃́ in the xy-image 

plane is a perspective projection. The optical axis is defined to be perpendicular from the 

pinhole C to the image plane. The distance f between C and the image plane is the focal 

length. If the coordinates system of the XYZ-space is defined such that the XY -plane is 

parallel to the image plane, and the origin is at the pinhole C, then the Z-axis lies along 

the optical axis. 

      Using the geometry shown in Figure 1.2, the equations of the perspective projection 

can be derived as follows: 

                   From the two similar triangles (𝐶𝐴́𝑃́) and (𝐶𝐴𝑃): 

𝑓

−𝑍
=

𝑙

𝑙
 

 
Figure 1.2 1 

 

(1.1) 

 

Figure 1.2. The geometry of the perspective projection. The point P = (X,Y,Z) is 
projected onto 𝑃́= (x, y, f) 
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From the two similar triangles (𝐵́𝐴́𝑃́) and (BAP): 

𝑥

−𝑋
=

−𝑦

𝑌
=

𝑙

𝑙
 

 

 

From the previously mentioned two equations, the perspective projection equations are  
obtained: 

𝑥 =
𝑓 𝑋

𝑍
   and   𝑦 =

𝑓 𝑌

𝑍
 

1.1.1.B. Orthographic projection 

Suppose that the image of a p lane lying at Z = Zo parallel to the image plane is formed. 

Then the magnification m can be defined as the ratio of the distance between two points 

in the image to the distance between their corresponding points on the plane: 

𝑚 =
𝑓

−𝑍0
 

For an object located at an average distance - Zo and the variations in Z over its visible 

surface is not significant compared to -Zo (e.g., when the distance between the surface 

 
 
 
 
 
 
 
 
 
 
 

(1.2) 

(1.3) 

 
Figure 1.3. The orthographic projection. 

(1.4) 
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and the camera,-Zo, is very large relative to the variations in the object depth), then the 

image of this object will be magnified by m. For all visible points of the object, the 

projection equations can be simplified to: 

 

 
      The scaling factor m is usually set to 1 or -1 for convenience. Then the projection 

equations can be simplified to the orthographic projection expressed as follows: 

 

 
      As shown in Figure 1.3 the orthographic projection can be modeled by rays parallel to 

the optical axis. The difference between the orthographic projection and the perspective 

projection is small when the object is located far from the camera. 

 

1.2.Shape From Shading VS Statistical Shape From Shading 

Statistical shape from shading (SSFS) is defined as an affordable image-based approach 

for reconstruction of the tooth crowns from a single occlusal image of the human jaw 

under arbitrary illumination based on building statistical models for the 3D shape and the 

2D texture of the visible human jaw, Prior shape (full 3D), albedo (coloured) and 

appearance (net result of illumination and reflectance) models from the real data, which 

are metric in nature, are incorporated into the shape recovery framework . 

𝑥 = −𝑚 𝑋 and 𝑦 = −𝑚 𝑌 

𝑥 =  𝑋 and 𝑦 =  𝑌 

(1.5) 

(1.6) 
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      Shape from Shading (SFS) is defined as an algorithm for recovering the 3-D shape of 

tooth through the analysis of the brightness variation in a single image of that tooth. Two 

tasks have to be accomplished in solving the SFS problem. The first is to formulate an 

imaging model that describes the relation between the surface shape and the image 

brightness. This relation should consider the three components of the problem which are 

the camera, the light source and the surface reflectance. After establishing the imaging 

model, a numerical algorithm has to be developed to reconstruct the shape from the given 

image. 

        The core hypothesis of statistical shape from shading is that using prior information 

(full 3D) would enable obtaining a plausible and more accurate jaw model for the human 

jaw while covering regions that the classical SFS approach does not handle. 

      The output 3D-shape of tooth which obtained from shape from shading illustrated the 

surface detail of human tooth groove, convex and concave region. 

      The output 3D-shape of jaw which obtained from statistical shape from shading 

illustrated an accurate shape, but it lacks a detail surface of the tooth crowns.  

1.3. Thesis Organization  

The proposal is given in six chapters. Here, giving a summary of each one which includes 

the problem, our contribution,  

1.3.1. Chapter 1 

Gives a brief description for the thesis aspect and then explains the image formation 
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1.3.2. Chapter 2 

This chapter proposes a model-based SFS approach which allows for the              

construction of plausible human jaw models in vivo, without ionizing radiation, using 

fewer sample points in order to reduce the cost and intrusiveness of acquiring models of 

patients teeth/jaws over time. 

1.3.3. Chapter 3 

This chapter describes the 3D surface reconstruction aspect for human teeth based on a 

single image. A more realistic formulation of the SFS problem by considering the image 

formation components; the camera, the light source, and the surface reflectance is 

presented.        

1.3.4. Chapter 4 

This chapter proposes the Iterative Closest Point algorithm (ICP). 

1.3.5. Chapter 5 

This chapter describes and shows the experimental result from this thesis. 

1.3.6. Chapter 6  

This chapter concludes the proposed method with insights to future work expanding 

findings from this thesis. 
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CHAPTER 2 

3D RECONSTRUCTION OF THE HUMAN JAW USING 
STATISTICAL SHAPE FROM SHADING (SSFS) 

 

This chapter proposes a model-based SFS approach which allows for the construction of 

plausible human jaw models in vivo, without ionizing radiation, using fewer sample 

points in order to reduce the cost and intrusiveness of acquiring models of patients 

teeth/jaws over time. The inherent relation between the photometric information and the 

underlying 3D shape is formulated as a statistical model where the effect of illumination 

is modeled using Spherical Harmonics (SH) and the partial least square (PLS) approach 

is deployed to carry out the estimation of dense 3D shapes. Moreover, shape and texture 

alignment is accomplished using a proposed definition of anatomical jaw landmarks 

which can be automatically detected. Vis-𝑎́-Vis dental applications, the results 

demonstrate a significant increase in accuracy in favor of the proposed approach. 

In particular, this approach is able to recover geometrical details of tooth occlusal surface 

as well as mouth floor and ceiling as compared to SFS-based approaches. 

      The system is evaluated on database of 180 jaws for crown, inlay, and onlay 

restoration. Results show a promising performance for using the proposed approach in 

clinical application. 
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2.1. Introduction 

Object modeling from a single image, augmented with prior information, facilitates 

various studies and applications in art, design, reverse engineering, rapid prototyping and 

basic analysis of deformations and uncertainties. Without the use of ionizing radiation 

(e.g. X-ray and Computer Tomography - CT), object modeling involves constructing a 

3D representation for the information conveyed in the given 2D images. This problem 

has been studied in the past four decades resulting in many solutions bundled under the 

name shape-from-X. In particular, techniques, such as SFS provide promise of image-

based 3D reconstruction when the imaging environment is somewhat precise. 

      To motivate the contribution of this work, dental application will be considered; 3D 

reconstruction of the visible part of the human jaw. Dentistry usually requires accurate 

3D representation of the teeth and jaw for diagnostic and treatment purposes.  For 

instance,   orthodontic treatment involves the application, over time, of force systems to 

teeth for malocclusion correction. Several existing 3D systems for dental applications 

found in literature rely on obtaining an intermediate solid model of the jaw (cast or teeth 

imprints) and then capturing the 3D information from that model, e.g. [20]. There may 

therefore be a demand for intraoral measurement that could be fulfilled by 

photogrammetry, which has been applied to the measurement of many small objects, 

even the measurement of dental replicas. Thus photogrammetry seems to offers a reduced 

cost technique while avoiding the need for castings. 

      The argument of image-based approach for 3D reconstruction as an alternative to CT-

scanning. During the exposure to diagnostic imaging using x-ray (ionizing/ electro- 

magnetic radiation), the patient body is penetrated by millions of x-ray photons whose 
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ionization can damage the body’s molecules especially DNA in chromosomes. Most 

DNA damage is repaired immediately, but rarely a portion of a chromosome may be 

permanently altered (a mutation) leading ultimately to the formation of a tumor [14]. 

While doses and risks for dental radiology are small, a number of epidemiological studies 

have provided evidence of an increased risk of brain, salivary gland [26] and thyroid 

tumors [22] for dental radiography. Also, pregnant mothers undergoing diagnostic or 

therapeutic procedures involving ionizing radiation, or who may be exposed to 

environmental radiation, there is a great potential for damage to the early embryo [41]. 

These effects are believed to have no threshold radiation dose below which they will not 

occur. On the other hand, CT-scanning is considered expensive and not paid by insurance 

companies unless disease oriented. Meanwhile, dental offices in rural areas do not have 

such a luxury. Thus the intent is to develop a purely image-based reconstruction 

mechanism as a cost-effective information tool for the dentist. 

     This chapter aims to make it easy and feasible for doctors, dentists, and researchers to 

obtain models of a person's jaw in vivo, without ionizing radiation, using fewer sample 

points in order to reduce the cost and intrusiveness of acquiring models of patients 

teeth/jaws over time. This is a challenging problem due to the "unfriendly" environment 

of taking measurements inside a person's mouth [42]. Further assumptions of the 

presence of distinct features or texture regions on the object in stereo images and the 

photo consistency in space carving are rarely valid in practice. 

      Due to the lack of surface texture, shape-from-shading (SFS) algorithms have been 

used to reconstruct the 3D shape of human teeth/jaw due to the significant shading cue 

presented in an intra-oral image, e.g. [1]. Nonetheless, in principle, SFS is an ill-posed 
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problem, Prados and Faugeras [47] showed that constraining the SFS problem to a 

specific class of objects can improve the accuracy of the recovered shape. Thus the main 

objective of the presented work is to develop and validate a holistic approach for image -

based 3D reconstruction of the human jaw based on statistical shape from shading 

(SSFS), covering regions which the classical SFS approach does not handle, using 

scanned molds and images of the oral cavity to estimate the shape of a human jaw in 

order to create a more accurate jaw 3D model. The structure of human jaw reveals what 

can be acquired in terms of prior information to enhance the SFS process where the upper 

and lower jaws are symmetric and lined up according to specific anatomical features and 

landmarks. This approach has the potential to greatly improve plausibility of the resulting 

shape from shading models. 

2.2. Related Work 

There has been a substantial amount of work regarding statistical shape recovery for 

human face modeling and biomedical structures with distinct shapes - e.g., modeling the 

corpus callosum, the kidney and spinal cord; it is an active research area under shape and 

appearance modeling (e.g., [39, 40]). Atick et al. [5] proposed the first SSFS method 

where principal component analysis (PCA) was used to parameterize the set of all 

possible facial surfaces. Scene parameters such as pose and illumination were estimated 

in the process of a morphable model fitting using a stochastic gradient descent-based 

optimization. By considering the statistical constraint of [5] and the geometric constraint 

of symmetry in [45], Dovgard and Basri [17] introduced a statistical symmetric SFS 

method. Smith and Hancock [40] modeled surface normals within the frame- work of 

statistical SFS. Based on active appearance models (AAM) concept of Cootes et al. [16], 
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Castelan et al. [13] developed a coupled statistical model to recover the 3D shape from 

intensity images with frontal light source, where the 2D shape model in [16] is replaced 

with a 3D shape model composed of height maps. The main advantage of the Castelan 

approach over the 3D morphable model framework [9] is the straightforward recovery of 

the 3D face shape, without undergoing a costly optimization process. 

      One of the main challenges that confronts SFS algorithms is dealing with arbitrary 

illumination. Basri and Jacobs [7] proved that images of convex Lambertian object taken 

under arbitrary distant illumination conditions can be approximated accurately using low-

dimensional linear subspace based on spherical harmonics. This has also been validated 

for near illumination conditions. Since then, SH was incorporated in SFS framework to 

tackle the problem of illumination [4, 12, 38, 39]. Zhang and Samaras [43] primary goal 

was to recover the SH basis images from a single test image. Basri and Jacobs [6] relies 

on multiple images, i.e. photometric stereo, to infer the 3D shape. Ahmed and Farag [4] 

extended Castelan's coupled statistical model [13] by combining shape, 

appearance/albedo and SH in order to parameterize facial surfaces under arbitrary 

illumination. Rara et al. [48] further extended the work of Ahmed and Farag [4] to 

include 2D shape information in the model. In subsequent work, Rara et al. [38] 

decoupled the coupled model of [4] to obtain a separate model for shape and albedo 

where the classic brightness constraint in SFS is approximated using SH basis images. 

Castelan and Horebeek [12] and Rara [39] cast their models in a regression framework 

using the Partial Least Squares (PLS) method which uses a few matrix operations for 

shape reconstruction to provide a computationally efficient alternative to the iterative 

methods used in [13][38]. 
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2.3. Contributions 

This work proposes an image-based approach for reconstruction of tooth crowns which 

can serve as a fully automated framework for tooth restoration from a single optical 

image. The presented approach is based on building statistical models for 3D shape and 

2D texture of human's visible jaw (clinical crowns). The process starts with annotating 

the jaw at known anatomical landmarks, in order to co-register the shapes and textures 

needed to construct the corresponding models. The key challenge is then the estimation 

of non-rigid transformation between an input image and the mean jaw (the origin of the 

object space). Such transformation is estimated using the physically motivated thin-plate 

splines [15] warping function using a proposed definition of anato- mical human jaw 

landmarks that are automatically detected. The need for hand-picked jaw features is then 

eliminated using an extended version of Active Shape Model (ASM) [30]. 

      the SSFS approach will be proposed to investigate on the human jaw where face and 

jaw modeling carry similarities and differences. Facial images can be easily obtained and 

databases of various imaging conditions are already in place, along with a significant 

body of algorithmic development. Human faces are easy to annotate and automate the 

process of face cropping and feature extraction. On the other hand, the human jaw is not a 

friendly environment to image, as indicated before, while no databases exist to carry out a 

SSFS methodology. 

      The SSFS problem for reconstruction of the human jaw is using a series of textures 

and shapes (obtained from CT scans of molds) for a group of subjects. The process starts 

with annotating the jaw at the known anatomical landmarks, in order to co-register the 

shapes and textures needed to construct the corresponding models. By using spherical 
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harmonics to provide the optimal basis for illumination representation and the partial 

least square (PLS) approach to carry out the estimation of dense 3D shapes. Key 

requirements for successful SSFS are the availability of a comprehensive database that 

describes the teeth/jaw variability per age, gender and ethnic factors. This work aims to 

undertake such a task and make the databases available for researchers worldwide. 

2.4. Dental Database Construction 

A major goal of this chapter is to collect resources for the jaw project in a common 

repository for dissemination among researchers elsewhere. At the University of 

Louisville Dental school there exists enormous number of molds and patient records. The 

first steps was taken to arrange these molds into subjects categorized with respect to 

gender, age and ethnicity (see Table 2.1). Using the Cone beam CT scanner of Dr. Allan 

Farman we scanned these molds and using the image processing tools created a mesh per 

mold as shown in Figure 2.2 and Figure 2.3. The data we used to generate the SSFS 

results were obtained from this data. The data was annotated (images and corresponding 

3D mesh from the molds) and will make the data available to colleagues elsewhere. 
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2.5. Anatomical Jaw Landmarks - Proposed Definition 

2.5.1. Dental Nomenclature 

Human teeth can be classified in two groups [28]; anterior teeth which rip food apart and 

posterior/molar teeth which help chewing food, see Figure 2.4 for illustration. A tooth 

consists of several layers [46] (see Figure 2.5), however it has been believed that the 

enamel and dentine layers have a major impact on the visual appearance of teeth [36]; 

contributions from layers such as pulp may be neglected [28]. 

      All anterior teeth have four types of surfaces: (1) Mesial - the surface toward the 

midline, (2) Distal - the surface away from the midline, (3) Labial – the outside surface 

towards the lips and (4) Lingual - the inside surface toward the tongue. Posteriors exhibit 

 #Teeth 

 

Age Gender Race # of 

Jaws Males Females Black White 

Upper 

Initial 

12 16 -46  6 7 3 10  

      83 14 15-46 15 15 9 21 

Upper 

Final 

12 16-21 8 7 6 9 

14 41-46 16 9 8 17 

Lower 

Initial 

12 11-19 11 9 7 13  

97 14 15-46 17 18 13 22 

Lower 

Final 

12 14-19 5 6 2 9 

14 13-46 18 13 8 23 

 

Table 2.1. Database construction of the human Jaw: subjects categorized 
with respect to gender age and ethnicity   
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mesial, distal and lingual surfaces in addition to Buccal surface which is outside toward 

the cheek and Occlusal surface which is the chewing surface. See Figure 2.6 for 

illustration. 

2.5.2. Landmarks Definition 

This work mainly focuses on the reconstruction of the clinical crowns which are defined 

to be the portion of the teeth that is visible in the human mouth. As such, the jaw's 

anatomical landmarks are limited to such a space according to their location, i.e. on the 

tooth surface or on the interface between the tooth and the gum. Typically a landmark 

represents a distinguishable point which is present in most of the images under 

consideration, for example, the location of central grooves of each tooth. Figure 2.7 

illustrates the location of 62 landmark points for a jaw containing twelve-teeth. 
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Figure 2.2. Sample of the human jaw (pre-repair) lower and upper jaws: first 
column shows the 2D images, 3D scans using cone beam CT machine shows in 
the second column. 
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Figure 2.3. Sample of the human jaw (post-repair ) lower and upper jaws: first 
column shows the 2D images, 3D scans using cone beam CT machine shows in 
the second column. 
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2.5.2.A. Teeth Landmarks 

In case of posterior teeth (i.e. cuspids, premolars and molars) which are responsible for 

chewing food, the coalescence of the crown lobes are of interest. In particular, a central 

pit or groove can be considered as a landmark which is the deepest portion of a tooth 

fossa. While an anterior tooth (i.e. incisors) whose job is to rip food apart is identifiable 

by a convex elevation of the crown surface which forms the biting edge. Hence the 

midpoint of the incisal edge or ridge is considered as a landmark for an anterior tooth. 

 

Figure 2.4. Dental nomenclature, common language used in dentistry. Teeth are 
categorized into two main classes, anterior teeth which rip food apart and 
posterior/molar teeth which chew the food. All anterior teeth exhibit four types of 
surfaces and one edge on their crowns (mesial, distal, lingual and buccal), while 
posterior teeth have fives surfaces on their crowns (mesial, distal, lingual, buccal and 
occlusal). Proximal surface refer to any surface between two teeth, thus it can be 
either mesial or distal according whether it is towards or away from the midline. 
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2.5.2.B. Teeth-Gum Landmarks 

The fibrous tissue covering the alveolar bone and surrounds the necks of the teeth, i.e. 

The gum forms what is termed as gingival line. This line marks the level of termination 

of the non-attached soft tissue surrounding the tooth. It separates the clinical crown and 

 

Figure 2.5. Teeth anatomy: different layers of a human model tooth are shown where the 
enamel and dentine layers are believed to play an important role in characterizing teeth 
appearance. 

 

the root. The gingival line midpoint is defined to be the minima (for lower jaws) or 

maxima (for upper jaws) point on the gingival line formed by a single tooth. On the other 

hand, gingival embrasure is the respective point in the open space between the proximal 

surfaces of two adjacent teeth in the same dental arch. 
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2.5.3. Landmark Localization in Optical Images 

In the online stage of the proposed approach, a single image of the visible crowns is 

given from which the defined landmarks should be identified. This guides the alignment 

of the input image to the prior model, e.g. [8]. Hence, it is essential to automate the 

detection of such landmarks. In the training set, one manually annotates an ensemble of 

human jaws surfaces (based on CT-scanning of molds) in order to construct a sparse 

version of the jaw shape. These landmarks serve as a correspondence operator between 

individual training samples where the generalized Procrustes analysis [21] is used to

 

Figure 2.6. Tooth surfaces: anterior teeth have four types of surfaces, towards and away 
from the midline (mesial and distal resp.), towards the lips (labial) and towards the 
tongue (lingual). While posteriors exhibit an additional surface for chewing (occlusal), 
besides the inside surface is named buccal. 
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Figure 2.7. Illustration of the proposed human jaw anatomical landmarks. The upper left 
corner shows a sample detected landmarks on a real image using Active Shape Model 
[72]. 

 

filter out translation, scale and rotation. An extended version of ASM [30] is deployed to 

search for the landmarks in the given image. The ASM repeats the following two steps 

until convergence: (i) suggest a tentative shape by adjusting the locations of shape points 

by template matching of the image texture around each point (ii) conform the tentative 

shape to a global shape model. The individual template matches are unreliable and the 

shape model pools the results of the weak template matchers to form a stronger overall 

classifier. The entire search is repeated at each level in an image pyramid, from coarse to 

fine resolution. The initialization of the mean shape onto the given image is accomplished 

by segmenting the teeth region based on fitting a Gaussian mixture to the image intensity 

with two dominant classes; jaw and background. 
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2.6. Illumination-Invariant Statistical Shape from Shading 

When the light source and the viewer are far from the object, the image intensity I at a 

pixel x can be obtained from the image irradiance of the corresponding surface point, 

which is defined as the surface radiance being modulated by the surface texture 𝑎(x), 

i.e. I(x) = 𝑎(x)ℜ(𝑛⃗  (x)). The classical brightness constraint in SFS measures the total 

brightness of the reconstructed image compared to the input image, it can be defined as;  

 𝜖 = ∬(𝐼(𝑥) − 𝑎(𝑥)ℜ(𝑛⃗ (𝑥))2𝑑𝑥  

      Where 𝑎(:) is the surface texture at point x while ℜ(:) is the radiance of the surface 

patch with unit normal 𝑛⃗  (x), also known as surface reflectance function. 

      The brightness constraint in equation (2.1) can be rewritten in the discrete domain as 

a linear combination of harmonic basis images resulted from the 2nd order SH approxi- 

mation to the reflectance function [7]. Thus the image intensity I can be expressed as; 

𝐼(x) = ∑ 𝑎𝑖 𝑏𝑖(𝑥)
𝑛−1

𝑖=0
 

      Where 𝑏𝑖(𝑥) = f𝑖(𝑎(x),n(x)) are the harmonic basis images which are functions of 

surface texture 𝑎(x) and surface normals 𝑛⃗  (x) at pixel x (refer to [7] for their definition). 

The coefficient 𝑎𝑖   denotes the 𝑖𝑡ℎ coefficient in the illumination spectrum being 

modulated by the Lambertian kernel spectrum. 

In matrix notation, let I ∈ ℝ𝑑∗1be an image vector with 𝑑 pixels, 

B=[𝑏0, 𝑏1, ……𝑏𝑛−1(𝑥)] ∈ ℝ𝑑∗𝑛 be the matrix of harmonic basis images as its columns, 

where n is the number of basis images, typically 𝑛 = 9, and 𝑎 ∈ ℝ𝑛∗1 vector of SH 

coefficients. Hence the discrete version of the brightness constraint becomes, 

(2.1) 

(2.2) 
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ϵ = ∑ (𝐼(𝑥) − 𝐵(𝑥)𝑎)2 = ||𝐼 − 𝑩𝑎||
𝑛

𝑥
 

     Representing the surface reflectance function in terms of SH allow us to infer the 

illumination of a given image; given an input image I, the harmonic basis images B of a 

3D object (a human jaw in particular), defined by it shape s =[𝑛(𝑥0), …… , 𝑛(𝑥𝑛−1)]
𝑇 and 

texture a = [𝑎(𝑥0),…… , 𝑎(𝑥𝑑−1)]
𝑇, are obtained to deduce the coefficients â that best 

matches the input image. This results in an over-determined linear system of equations    

I = Ba which can be solved for â using singular value decomposition (SVD). 

      If the input image and the basis images used to compute the coefficients â belong to 

the same object, the input image was constructed by these coefficients, i.e. ℎ= B â = I, 

where ℎ denotes what we call harmonics projection (HP) image. However in the general 

case, the basis images B would belong to an object which is different from the one in the 

input image I, nonetheless they belong to the same object class e.g. different realizations 

of a human jaw. Thus the reconstructed image ℎ provide a mean of encoding the 

illumination of the input image while maintaining the identity of the object whose basis 

images are used in the reconstruction process. 

      While Equation (2.1) can be solved in an iterative manner to infer the underlying 

shape as in [38], the inherent relation between the HP images ℎ and the corresponding 

shape s can be cast into a regression framework resulting into the HP-to-shape model. In 

this case, the shape is solved for using a series of matrix operations guaranteeing faster 

shape recovery when compared to its iterative counterpart. This was proven to yield 

comparable results in terms of reconstruction accuracy [39]. 

(2.3) 



 
 

29 
 

      Dimensionality reduction is performed using PCA to construct the 3D shape model 

(offline step) and HP model (online step) where the coefficients are used to build the 

regression model rather than the original shape and HP instances. In particular, the 3D 

shape model can be constructed by performing PCA on a set of aligned samples of 3D 

shapes, the resulting shape model is 𝒔 = 𝒔 + 𝑷𝒔𝒃𝒔 where 𝒔 is the mean shape, 𝑷𝒔 are the 

shape eigenvectors and 𝒃𝒔 is the set of shape coefficients. On the other hand, the HP 

model is trained online which incorporate the illumination conditions of the input image; 

given an image I and the basis images 𝑩𝒌 of object instance k, the HP image 𝒉𝒌 is 

obtained, where 𝒉𝒌 = 𝑩𝒌â𝒌  with â𝒌 obtained by solving the linear system of equations  

I=𝑩𝒌a𝒌. After reconstructing the projection images of all the instances in the jaw 

database, we can model the HP images using PCA as ℎ = 𝒉 + 𝑷𝒉𝒃𝒉where 𝒉 is the mean 

HP image, 𝑷𝒉 are the HP images eigenvectors and 𝒃𝒉 is the set of HP coefficients. Thus, 

instead of using the high dimensional vectors 𝒃𝒔𝒌  and 𝒉𝒌  into the regression, they are 

replaced by their respective coefficients 𝒃𝒔𝒌 and𝒃𝒉𝒌, where the HP coefficients are 

considered the independent variable while the shape coefficients are the dependent 

variables. Following [39], we use partial least squares regression (PLS) instead of the 

classical least squares to avoid random noise which might exist in the dependent and 

independent variables. Figure 2.1 shows a block diagram of the offline/online processes 

for the proposed shape recovery approach. 

      Moreover as we saw recently that we modeled the HP image model by using PCA as          

, in the same concept we model a sparse 2D model Landmarks for annotation landmarks 

by using PCA as 𝒔2𝐷 = 𝒔𝟐𝑫 + 𝑷𝒔𝟐𝑫𝒃𝒔𝟐𝑫.We use the partial least squares regression(PLS) 

for “  (𝒃𝒔𝟐𝑫) 𝒕𝒐 𝑺𝒉𝒂𝒑𝒆 (𝒃𝒔) “. 
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2.7. Summary 

This chapter presented an affordable, flexible, automatic dental tool for the reconstruction 

of the clinically visible part of the human jaw. It was based on a single captured optical 

image and a statistical shape recovery approach which makes use of a small number of 

measured points to construct a plausible 3D model through a learned correspondence 

based on a measured human jaw dataset. The surface reflectance function is expressed in 

terms of spherical harmonics to provide the optimal basis based on training data for 

illumination representation. The brightness constraint was then cast as a Partial Least 

Squares (PLS) regression problem, which allows for the rapid computation of the 

solution. The PLS algorithm is composed of a sequence of matrix operations; the 

approach in this work can recover 3D shapes much faster than its iterative counterpart, 

without compromising the integrity of the results. The results demonstrated the effect of 

adding statistical prior as well as illumination modeling on the accuracy of the recovered 

shape. 
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CHAPTER 3 
3D RECONSTRUCTION OF THE HUMAN TEETH USING SHAPE 

FROM SHADING (SSFS) 
 
Image formation involves understanding sensor characteristics and object reflectance. In 

dentistry, an accurate 3D representation of the human jaw may be used for diagnostic and 

treatment purposes. Photogrammetry can offer a flexible, cost effective solution for 

accurate 3D representation of the human teeth, which can be used for diagnostic and 

treatment purposes. Nonetheless there are several challenges, such as the non-friendly 

image acquisition environment inside the human mouth, problems with lighting and 

errors due to the data acquisition sensors. In this chapter, the 3D surface reconstruction 

aspect will be focused for human teeth based on a single image. A more realistic 

formulation of the SFS problem will be introduced by considering the image formation 

components; the camera, the light source, and the surface reflectance. We propose a non-

Lambertian SFS algorithm under perspective projection which benefits from camera 

calibration parameters. The attenuation of illumination due to near field imaging will be 

taken into account. The surface reflectance is modeled using Oren-Nayar-Wolff model 

which accounts for the retro-reflection case. 
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3.1. Introduction  

Modern dentistry requires the accurate 3D representation of the teeth and jaw for 

diagnostic and treatment purposes. For instance, orthodontic treatment involves the 

application, over time, of force systems to teeth for malocclusion correction. Oral and 

maxillofacial radiology can provide the dentist with abundant 3D information about the 

jaw. Several existing 3D systems for dental applications found in literature rely on 

obtaining an intermediate solid model of the jaw (cast or teeth imprints) and then 

capturing the 3D information from that model. Due to the lack of surface texture, SFS 

algorithms have been used to obtain such 3D tooth reconstructions due to the significant 

shading cue presented in a tooth image, e.g. [1, 11]. 

      Photogrammetry seems to offer a flexible, cost effective solution while avoiding the 

need for castings. Nonetheless, intra-oral photogrammetric measurement is inherently 

difficult due to non-friendly image acquisition environments with lighting problems, 

specularity effects due to saliva, inevitable subject motion and errors due to the data 

acquisition sensors [31, 42]. Hence the common assumptions of the image formation 

process for typical shape reconstruction algorithms are hardly valid, e.g. Lambertian 

reflectance and distant light source. 

      Starting from the pioneering work of Horn [25], shape recovery from a single image 

usually involves two steps; deriving an image irradiance equation under a certain set of 

assumptions related to the image formation process and designing a numerical scheme to 

solve such an equation for the underlying shape. Most of the SFS approaches (e.g. see 

[18]), however, focus on the computational part of the SFS problem, i.e. the numerical 

solution. As a result, the imaging model in most conventional SFS algorithms has been 
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simplified under three simple, but restrictive assumptions: (1) the camera performs an 

orthographic projection of the scene, (2) the surface has a Lambertian reflectance and (3) 

the light source is a single point source at infinity. Unfortunately, such assumptions are 

no longer held in the case of intra-oral imaging environment for human teeth. 

      This chapter introduces a more realistic formulation of SFS by considering all the 

components of the problem, namely: the camera, the light source, and the surface 

reflectance. For the camera and the light source use the same modeling as in [34]. The 

camera will be modeled by perspective projection with the camera parameters being 

known from an offline calibration process and incorporated in the SFS formulation. The 

light source is assumed to be located at the optical center of the camera, i.e. retro-

reflection situation where the object is illuminated in the viewing direction. Under this 

near-field imaging, the attenuation of illumination was taken into account due to the 

distance between the light source and the surface; hence our method can deal with 

concave/convex ambiguity. Accounting for departures from Lambertian reflectance due 

to surface roughness, we use a modified Oren-Nayar-Wolff model [27] where surface 

roughness is physically measured using optical surface profiler. The Oren-Nayar model 

[32] modulates the Lamberts cosine law by a term that depends on the squared sine of the 

incidence angle, resulting in apparent brightening at surface patches which move away 

from the light source; assumed to be in self shadow. Wolff, on the other hand, has a 

physically deeper model for diffuse reflectance from shiny but slightly rough surfaces. 

The model uses an angle dependent Fresnel term to account for the refractive attenuation 

of incident light at the surface-air boundary [37]. This Fresnel term modifies the 
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Lambertian cosine model in a multiplicative way. The effect is to depress the surface 

radiance for near-normal incidence. 

      The numerical solution, classified as Minimization-based [18], is based on the Taylor 

series expansion of the image irradiance equation followed by the application of the 

Jacobi iterative method. On the other hand, the image irradiance equation can be formula- 

ted as a partial differential equation (PDE) to solve for surface gradients, where the 

theory of viscosity solutions for Hamilton-Jacobi type equations provide a good 

framework of SFS algorithms [18]. However explicit PDE formulation of the SFS 

problem imposes regularity of the image irradiance function which is assumed to be 

continuous [18]. Nonetheless, human teeth do not fit such an assumption, due to the 

geometrical structure of the occlusal surface in particular, which forms attached and cast 

shadows in the captured image causing image discontinuities. 

      Carter et al. [11] evaluated three SFS models for artificial tooth surface reconstruction 

based on the work of Ahmed and Farag [2]. They concluded that, based on the 

quantitative error analysis, a perspective camera projection with an Oren-Nayar 

reflectance model has been proved to be the most ideal SFS formulation for extracting 

tooth crown surface from a single image. Nonetheless, their work did not incorporate the 

available camera parameters from their acquisition setup nor the object physical 

characteristics into the SFS-PDE formulation. The proposed SFS approach is compared 

with a non-Lambertian PDE-based approach [3, 11] via quantitative error metric derived 

from groundtruth teeth surfaces obtained from a CT-scanner. Vis-𝑎́-Vis dental 

applications, the results demonstrate a significant increase in accuracy in favor of the 
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proposed approach. In particular, this approach is able to recover geometric details of the 

tooth's occlusal surface as compared to PDE-based approaches. 

3.2. Image Irradiance Equation 

According to the microscopic view of occlusal surface height variations, tooth surface 

reflectance can be modeled by micro-facet reflectance models where the Oren-Nayar-

Wolff model is well-suited for the retro-reflection case [37]. When the object is 

illuminated in the viewing direction, taking into account the illumination attenuation term 

(1/𝑟2), the expression of the image irradiance E using Oren-Nayar-Wolff model can be 

simplified to [27]: 

 

 

E(x) =
𝐴(1 − 𝐹(𝜃,𝓃))2 cos 𝜃  + 𝐵 sin2 𝜃  

𝑟2
 

 

s.t.   𝐴 = 1 − 0.5
𝜎2

σ2+0.33
  , 𝐵 = 0.45

𝜎2

σ2+0.09
  . 

     

 Where 𝑟 is the distance to the light source, the parameter 𝜎 denotes the standard 

deviation of the Gaussian distribution which is used as a measure of the surface 

roughness, 𝜃 is the inclination angle of the viewer/source and 𝐹 refer to the Fresnel 

reflection function [27] with refractive index of 𝓃. 

 

(3.1) 
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3.3. Parametric SFS for Non-Lambertian Surfaces 

A surface point in the 3D space can be related to its corresponding position in the image 

plane through the camera intrinsic (solved for once) and extrinsic (updated while the 

camera is in motion) parameters. The relation between a 3D point X = (𝑋, 𝑌, 𝑍)𝑇 and the 

corresponding point in the image coordinates x = (𝑥, 𝑦)𝑇is written as s(x)𝑥  = PX+ b, 

where s is a scalar parameterized by the image pixel coordinates, P is a 3 × 3 camera 

matrix, b is a 3×1 translation vector and 𝑥  =  [𝑥𝑇 1]𝑇is the extended vector defined in 

homogeneous coordinates. Therefore the point in 3D coordinates can be written as a 

function of the corresponding point in the image plane as, 

 

𝑋 = 𝑃−1[𝑠(𝑥)𝑥 − 𝑏] = 𝑔(𝑥(𝑠)) 

 

Equation (3.2) represents the line in 3D passing through the optical center and the 

projected point x in the image plane. Thus solving for the scalar s(x) ∀𝑥 ∈ ℝ2, using the 

available shading cues in the image domain 𝒟 ∈ ℝ2, accounts for defining a unique 3D 

point X on the object's surface. The inherent relationship between the scale factor s(x) 

and the surface normal vector 𝑛⃗ (x) can be expressed in terms of surface gradients 

(p(x),q(x)) in the gradient space [24], where p(x) =  𝜕𝑔(𝑠(𝑥))

𝜕𝑥
 = p(s) and q(x) = 𝜕𝑔(𝑠(𝑥))

𝜕𝑦
= 

q(s) . The image irradiance E(.) now becomes a function of the scalar s(x) defined in 

equation(3.2). In the sequel, the variation formulation was presented for the problem in 

case of near illumination with Oren-Nayar-Wolff reflectance. 

(3.2) 
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3.5. Summary 

This chapter focused on the surface reconstruction aspect of human teeth from a single 

image captured by an intra-oral camera under near-field imaging. This work has 

addressed several challenges related to the image formation process including near 

illumination, perspective projection, while taking into account the deviation from the 

simplifying Lambertian assumption. the formulation exploits all calibration information 

provided by the acquisition system setup. In particular, on average, this approach reduces 

the error metric by 0,4434mm compared to un-calibrated PDE-based SFS formulation. 

While the improvements are fractions of a millimeter, this is considered significant for 

dental-related applications such as tooth implant and surface analysis.  
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CHAPTER 4  

ITERATIVE CLOSEST POINT TECHNIQUE FOR 3D SHAPE 
REGISTRATION 

 

In this chapter, a convenient 3D shape registration technique based on the Iterative 

Closest Point (ICP) mapping function was presented. The method can determine the 

corresponding 3D shape information and obtain the matching shape structure from 

different shapes. Using this technique, the two sets of shape coordinate information used 

as the mapping parameters obtained from the relative shapes with different techniques 

were chosen from a developed computer user interface manually. The selected shape 

coordinate points were used to find out the coordinate relationship of each shape 

information to decide the mapping function. Furthermore, the deformed shapes and 

registration results can be integrated by the determined mapping function.  

4.1. Introduction 

Shape from Shading (SFS) algorithm in (chapter 3) has been used to reconstruct the 3D 

shape of human teeth due to the significant shading cue presented in an intra-oral image. 

Nonetheless, in principle, SFS is an ill-posed problem, Prados and Faugeras [47] showed 

that constraining the SFS problem to a specific class of objects can improve the accuracy 

of the recovered shape. Also the statistical shape from shading (SSFS) algorithm (chapter 

2) has been used to reconstruct the 3D shape of human jaw and covering regions which 

the classical SFS approach does not handle, using scanned molds and images of the oral 
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cavity to estimate the shape of a human jaw in order to create a more accurate jaw 3D 

model.  

      Due to the lack of surface depth from statistical shape from shading, an expected tool 

was developed that deformed and reconstructed shape to obtain integrated information of 

two approaches; Shape from shading (SFS) and statistical shape from shading (SSFS). 

The developed tool used a method called Iterative Closest Point (ICP) [49] mapping 

method. ICP algorithm function can be used to determine a deformation function 

according to two sets of corresponding control points on the relative shapes. 

4.2. Related work 

The original ICP algorithm has been widely applied to rigid registration, but it does not 

work well in non-rigid registration problems. [50] Proposed an extension of the ICP 

Algorithm for scaling registration. [51] Used an additional stiffness term and a landmark 

term for locally affine regularization, which is based on the extended ICP algorithm. 

Some scholars managed to solve non-rigid registration problems but they avoided using 

the ICP algorithm. [52] Proposed a robust approach for non-rigid registration by using 

mixture of Gaussian. [53] And [54] presented algorithms to register multiple unlabeled 

point sets to an emerging mean shape. In non-rigid registration, affine registration is an 

important and key problem. When affine transformation is considered to register two 

point sets without noise, the error of least square (LS) problem is 0, but affine 

transformation is not unique. For example, if two point sets are best matched with the 

true affine transformation, the error is 0. However, if the affine transformation is close to 

0, that is, all points of one point set are transformed to register one point of the other 

point set, and then the error is also close to 0. To solve this ill-posed problem, the usual 
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way is to add regularization terms. [55] Introduced the normal and the principal 

curvatures in points coordinates. It is apparently time-consuming to compute the normal 

and the principal curvatures and search the closet points. Meanwhile, much information 

of point sets is needed. For instance, the interior and the exterior of objects need to be 

known to obtain the orientation of the normal. Moreover, some scholars managed to 

avoid using optimization to guarantee uniqueness of affine transformation. [56] [Reduced 

the general affine registration problem to that of the orthogonal case with covariance 

matrices]. However, its result is not quite accurate. In addition, some scholars have tried 

to use probabilistic point set registration methods which soft assign correspondence for 

registration. [57] Proposed the thin plate spline_ robust point match (TPS_RPM) 

algorithm which used the soft assignment of weights for non-rigid registration. 

Furthermore, probabilistic point matching (PPM) and coherent point drift (CPD) were 

proposed by [59], [59] and [60], respectively. These methods need to establish 

correspondence of all point sets, so their speed is much slower. 

4.3. The ICP Algorithm  

[61] Described a LS problem in which rigid transformation was considered in point set 

registration. Given two overlapping point sets in ℝ3, a data shape 𝑃 ≜ {𝑝 𝑖}𝑖=1

𝑁𝑝 (𝑁𝑝 ∈ ℕ) 

and a model shape 𝑀 ≜ {𝑚⃗⃗ 𝑖}𝑖=1
𝑁𝑚 (𝑁𝑚 ∈ ℕ). A rigid registration between two 3D point 

sets is to find rotation and translation transformations, with which P is in the best 

alignment with M, then the formulation is given here based on LS criterion as follows: 
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min
𝑹𝑻,𝑡 ,𝑗∈{1,2,…,𝑁𝑚}

(∑‖(𝑹𝑝⃗ 
𝑖
+ 𝑡 ) − 𝑚⃗⃗⃗ 𝑗‖2

2

𝑁𝑝

𝑖=1

)                                                        (4.1) 

 

                            s.t.  𝑹𝑻𝑹 = 𝐼3, det(𝑹) = 1   ,  

 

Where 𝑹 ∈ ℝ3×3is a rotation matrix, 𝑡  ∈ ℝ3 is a translation vector.  

      The ICP algorithm achieves rigid registration with good accuracy and fast speed 

mainly in two steps. 

      Firstly, built up correspondence between two point sets: 

𝐶𝑘(𝑖) = arg𝑚𝑖𝑛
𝑗∈{1,2,…,𝑁𝑚}

(‖(𝑹𝑘−1𝑝 𝑖 + 𝑡 𝑘−1) − 𝑚⃗⃗ 𝑗‖2

2
) , 𝑖 = 1,… . . , 𝑁𝑝.         (4.2) 

      Secondly, compute the new rotation and translation transformations by minimizing 

squared distance:  

(𝑅𝑘, 𝑡𝑘) = arg𝑚𝑖𝑛
𝑹𝑻𝑹=𝐼3,det(𝑹)=1,𝑡 

(∑‖𝑹𝑝 𝑖 + 𝑡 − 𝑚⃗⃗ 𝐶𝑘(𝑖)‖2

2

𝑁𝑝

𝑖=1

)                              (4.3) 

4.4. Affine Registration  

In this section, to get the best affine registration between two 3D point sets, a general LS 

problem is proposed. 

4.4.1. Problem Statement 

Affine registration of 3D point sets is an arduous work. To tackle it, a general statement 

is described as follows. Given two point sets in ℝ3and assume one point set can be 

transformed with an affine transformation to match a subset of the other point set. To 
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register between these two 3D point sets is to find an affine transformation T, with which 

P is registered to be in the best alignment with M. Hence the affine registration between 

two point sets is based on the following LS criterion: 

min
𝑇,𝑗∈{1,2,…,𝑁𝑚}

(∑‖𝑇(𝑝⃗ 
𝑖
) − 𝑚⃗⃗⃗ 𝑗‖2

2

𝑁𝑝

𝑖=1

) .                                                                (4.4) 

        To simplify this objective function, T needs expressing in a more explicit form. 

Firstly of all, the affine transformation T is decomposed into an invertible matrix 𝑨 and a 

translation vector  𝑡⃗⃗  , so Equation (4.4) is rewritten as 

min
𝐴, 𝑡⃗⃗ ,𝑗∈{1,2,…,𝑁𝑚}

(∑‖(𝑨𝑝⃗ 
𝑖
+  𝑡⃗⃗ ) − 𝑚⃗⃗⃗ 𝑗‖2

2

𝑁𝑝

𝑖=1

)  .                                                    (4.5) 

        Secondly, according to singular value decomposition (SVD) method, an invertible 

matrix with real coefficients 𝑨 ∈ 𝐺𝐿(3, 𝑅) is decomposed into three special matrices: two 

orthogonal matrices 𝑼 and 𝑽, a diagonal matrix with positive entries 𝑺. Namely, 𝑨 =

 𝑼𝑺𝑽𝑻. Because 𝑽𝑻 and 𝑽 are all orthogonal matrices, without loss of generality, by 

assuming𝑹 ≜ 𝑉𝑇, so 𝑹 is still an orthogonal matrix. By substituting this in equation 

(4.5), the objective function can be formulated as 

min
𝑼,𝑹,𝑺,𝑡⃗⃗ ,𝑗∈{1,2,…,𝑁𝑚}

(∑‖(𝑼𝑺𝑹𝑝⃗ 
𝑖
+  𝑡⃗⃗ ) − 𝑚⃗⃗⃗ 𝑗‖2

2

𝑁𝑝

𝑖=1

) .                                          (4.6) 
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 As is known to all, an affine transformation is a combination of a series of basic 

transformations, such as translation, reflection, rotation and scale transformations. In 

equation (4.6), the orthogonal matrices 𝑼 and 𝑹 both stand for reflection and rotation 

transformations while 𝑺 represents scale transformation. 

4.4.2. The Affine ICP Algorithm 

As reflection and rotation transformations are two different transformations and reflection 

transformation can be given at the initial stage of the registration like the ICP algorithm, 

rotation transformation is to be considered. Moreover, there is a phenomenon in Equation 

(4.6) that points of a set may converge to a point of the other set, that is, the affine 

transformation is close to 0. According to |𝑑𝑒𝑡 (𝐴) | = | 𝑑𝑒𝑡 (𝑈) 𝑑𝑒𝑡 (𝑆) 𝑑𝑒𝑡 (𝑅)|  =

 |𝑑𝑒𝑡 (𝑆)| , the scale transformation is close to 0. A method to avoid this phenomenon is 

to bound the scale matrix S in Equation (4.6). With the exposition above, the affine 

registration problem now becomes the following constrained optimization problem: 

min
𝑼,𝑹,𝑺,𝑡⃗⃗ ,𝑗∈{1,2,…,𝑁𝑚}

(∑‖(𝑼𝑺𝑹𝑝⃗ 
𝑖
+  𝑡⃗⃗ ) − 𝑚⃗⃗⃗ 𝑗‖2

2

𝑁𝑝

𝑖=1

)                                               (4.7) 

                                    s.t.     𝑼𝑇𝑼 = 𝐼3, det(𝑼) = 1, 

𝑹𝑇𝑹 = 𝐼3, det(𝑹) = 1, 

                     𝑺 = 𝑑𝑖𝑎𝑔(𝑠1, 𝑠2, … . , 𝑠𝑚), 𝑠𝑗 ∈ [𝑎𝑗 , 𝑏𝑗] 

Where 𝑼 and 𝑹 are rotation matrices, 𝑺 is a scale matrix. 

      Actually the problem can be solved by the affine ICP algorithm in the way the ICP 

algorithm does by iteration. At each iterative stage, two main steps are included in the 

affine ICP: 
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           [1]: establish the correspondence of the point sets with the (𝑘 − 1)𝑡ℎ 

transformations (𝑼𝑘−1, 𝑺𝑘−1, 𝑹𝑘−1, 𝑡 𝑘−1): 

𝐶𝑘(𝑖) = arg𝑚𝑖𝑛
𝑗∈{1,2,…,𝑁𝑚}

(‖(𝑼𝑘−1𝑺𝑘−1𝑹𝑘−1𝑝 𝑖 + 𝑡 𝑘−1) − 𝑚⃗⃗ 𝑗‖2

2
) , 𝑖 = 1,… . . , 𝑁𝑝.      (4.8) 

            [2]: compute the 𝑘𝑡ℎ transformations(𝑼𝑘 , 𝑺𝑘, 𝑹𝑘, 𝑡 𝑘): 

(𝑼𝑘, 𝑺𝑘, 𝑹𝑘, 𝑡 𝑘) = arg𝑚𝑖𝑛
𝑼,𝑹,𝑺,𝑡⃗⃗ ,𝑗∈{1,2,…,𝑁𝑚}

(∑‖𝑼𝑺𝑹𝑝 𝑖 + 𝑡 − 𝑚⃗⃗ 𝐶𝑘(𝑖)‖2

2

𝑁𝑝

𝑖=1

)                        (4.9) 

       

4.5. Landmarks definition for Iterative Closest Point 

The purpose of the registration technique based on the ICP mapping method is not only 

to align two different shapes modalities but also construct the deformation shapes 

according to the original shape information. The mathematical model of ICP theorem has 

been described above, and the method can be utilized to find out the matching points in 

the two corresponding shapes to generalize a new deformation shape that we can use in 

any further applications.  

      In essence ICP depends on the points that are obtained from two shapes, i.e. 

landmarks, the (x,y,z) position points which extracted from the statistical shape from 

shading model(SSFS) (Figure 4.1), should be corresponding to the (x,y,z) position points 

which extracted from the shape from shading(SFS) (Figure 4.2). 

      The number of points which should be taken from each shape, depend on two things 

1: taking more landmarks points from each shape, will be obtained accurate integration. 
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2: Number of teeth that are part of integration process, i.e. If we have one tooth in each 

shape and we want to integrate between them we can get an accurate result by taking nine 

points .The more teeth that are part of the integration process, the number of needed 

points increases.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. 3D-Shape of Jaw from Statistical shape from shading with the Landmarks 
on one tooth for registration approach. 

First point  

Last point  
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4.6. Summary 

This chapter focused in describing the Iterative closest Point (ICP) registration for 

integrate between shape from shading (SFS) and statistical shape from shading (SSFS) 

results and then described in literary how the ICP works, finally is defined the way to 

choose the landmarks from these two shapes.  

 

 

 

 
 
 
 

 
 

 

Figure 4.2. 3D-Shape of tooth from shape from shading with the Landmarks on it for 
registration approach 

First point  

Last point  
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CHAPTER 5 
EXPERIMENTAL RESULTS  

 

This chapter will be explained in detail the result which got it from the three parts of the 

thesis. First in detail the result will be explained from Statistical shape from shading and 

compare it with the groundtruth and to monitory evaluate accuracy, Second , the shape 

from shading result will be explained and compare it with the groundtruth and to indicate 

error between them. Finally the result from statistical shape from shading and the shape 

from shading will be taken to integrate them by using Iterative Closest Point (ICP) for 

getting an accurate shape and surface result.    

5.1. 3D Reconstruction of Human Jaw using Statistical Shape from Shading 

(SSFS) 

This section shows experiments to evaluate the performance of the proposed framework 

in recovery 3D models for human jaws. Upper and lower jaw models are constructed 

from 83 upper jaw molds belonging to 45 males and 38 females with average age 20 

years old (see Table 2.1 for more details). Whereas lower jaw models are constructed 

from 97 lower jaw molds belonging to 51 males and 46 females with average age 19 

years old (see Table 2.1). There are two samples per subject, one pre-repair jaw and 

another post-repair jaw, referring to the jaw status before and after applying an 

orthodontic teeth alignment process respectively. The statistical priors (shape, albedo and 

appearance models) are trained using out-of-training samples with pre- and post-repair 
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instances using the oral cavity images and CT-scan of the respective molds (lower and 

upper jaws). 

      The core hypothesis of this work is that using prior information (full 3D) would 

enable obtaining a plausible and more accurate jaw model for the human jaw while 

covering regions that the classical SFS approach does not handle As such, one compares 

the proposed approach with a recently evaluated SFS approach [11] for tooth surface 

reconstruction based on the work of Ahmed and Farag in [2, 3]. In their work, the image 

irradiance equation was formulated as a Partial Differential Equation (PDE) to solve for 

surface gradients, where the theory of viscosity solutions for Hamilton-Jacobi type 

equations provide a good framework of SFS algorithms [18]. Moreover, the presented 

work is compared with one's earlier work in [19] which assumes Lambertian reflectance 

and using Height maps instead of full 3D prior information. 

       In order to share the same metric coordinate frame, the average jaw shape 𝑠 ̅(along 

with its anatomical landmarks) is used as a reference to establish a dense correspondence 

between the groundtruth CT scan of the jaw mold corresponding to each testing image 

and the reconstructed shape. The alignment proceeds as follows. Procrustes-based rigid 

registration [21] is used to filter out translation, scale and rotation followed by 3D thin-

plate splines [10, 15] for non-rigid registration. 

5.1.1. Visible Crowns Reconstruction     

To evaluate the proposed approach, out-of-training jaw samples are reconstructed and 

compared against the ground truth CT-scan. Four types of samples are considered: 
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(a)pre-repair and (b) post-repair lower jaw, (c) pre-repair and (d) post-repair upper jaw. 

Along with the groundtruth shapes, Figures 5.1and 5.2 show a sample of shape and 

albedo reconstruction of upper and lower jaws, respectively. It important to note that SFS 

only recovers a height map (2:5D) of the input image where there is no metric inform- 

ation reserved. With the metric prior used to train the offline shape model, the proposed 

approach reconstructs the triangular mesh (3D) corresponding to the input image. 

Further, most of SFS approaches assume known parameters of surface reflectance and 

point light source with known direction. In contrast, one's approach explicitly accounts 

for complex illumination and models surface reflectance without the need of the exact 

reflectance parameters. In Figures 5.1 and 5.2, one can observe the closeness of the 

SSFS-based reconstruction to the groundtruth shape. This emphasizes the role of 

incorporating prior-information for shape recovery as well as appearance modeling. 

      To evaluate the proposed approach, out-of-training jaw samples are reconstructed and 

compared against the groundtruth CT-scan. We assess the reconstruction accuracy in 

accordance with an error estimator which is based on the RMS error between the 3D 

points from the CT scan and the corresponding reconstructed surface points. Note that 

the errors are computed based on the surface points of the visible crowns to exclude the 

errors which might rise from the reconstruction of the mould base. 

      Table 5.1 reports the average and the standard deviation of the RMS error in mm 

between the 3D points from the CT scan and the corresponding reconstructed surface 

points.  
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Jaw type Non-Lambertian 

Upper, 12 teeth 0.9686∓ 0.6031 

Upper, 14 teeth 0.7873∓ 0.3571 

Lower, 12 teeth 0.7390∓ 0.1966 

Lower, 14 teeth 0.8195∓ 0.3457 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.1. Average and Std of the whole jaw surface reconstruction accuracy (RMS) in mm 
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Input Image Groundtruth Recovered Shape 

Figure 5.1. Sample reconstruction result for a Lower (post-repair) jaw( second row the 
Image, recovered shape and groundtruth with the landmarks of the Input Image for 
certain that the recovered shape take the same shape of the groundtruth).Third row show  
from another scene for the occlusal surface. 
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Input Image Groundtruth Recovered Shape 

Figure 5.2. Sample reconstruction result for a Upper (post-repair) jaw( second row the 
Image, recovered shape and groundtruth with the landmarks of the Input Image for 
certain that the recovered shape take the same shape of the groundtruth).Third row show  
from another scene for the occlusal surface. 
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5.2. 3D Reconstruction of Human Teeth from a Single Image using Shape 

from Shading (SFS) 

A wireless setup camera is used to acquire the images of an ensemble of 84 invitro real 

human teeth (5 mandibular 3rd molars, 15 mandibular molars, 24 maxillary molars, 26 

maxillary deciduous, and 14 premolars) while the camera is held at a distance close to the 

crown surface to simulate the near-imaging condition inside the human mouth. CT 

scanning is performed to provide more dense groundtruth information while maintaining 

the surface geometric detail. Figure 5.3 illustrates the 32 adult human teeth. Figure 5.4 

shows samples of the acquired CT scans for one tooth type. The root part of each tooth is 

manually taken out from the CT scan, and the visible 3D tooth surface is segmented out. 

 

 
Figure 5.3. 32 Adult human teeth 



 
 

54 
 

 

 

 

  

Figure 5.4. Sample CT scans for various human tooth types. (a) Maxillary 
deciduous teeth. (b) Maxillary molars. (c) Mandibular molars. (d) Mandibular 
third molars. 
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Table 5.2 summarizes the proposed minimization-based solution, terms as Algorithm A. 

      The SFS algorithms are compared in accordance with an error estimator based on the 

root mean square (RMS) error between the 3D points from the CT scan and the 

corresponding reconstructed surface points. It is worth mentioning that throughout our 

experimentations. Algorithm A converges after 5-10 iterations. Table 5.3 shows the 

overall surface reconstruction accuracy of Algorithm A based on the testing images 

panel. Figure 5.4 illustrate the differences between the groundtruth (CT scanning) for 

different teeth and the 3D construction based on the approach (Algorithm A)   

Algorithm Reflectance Model Camera Parameters Numerical Solution 

A-new Oren-Nayar-wolff Fully calibrated Minimization-based 

Table 5.2. SFS Algorithm Panel 

Table 5.3. Overall surface reconstruction accuracy (RMS) in mm 

Tooth type Algorithm A-new 

Mandibular 3rd molars 0.47232 

Mandibular Molars 0.63568 

Maxillary Molars 0.58694 

Maxillary deciduous 0.65997 

Premolars 0.45267 
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Figure 5.5. (a) Images for different types of human teeth, captured by the 
intra-oral camera. (b) Groundtruth occlusal surface generated from CT 
scanning. Surface reconstruction based on (c) Algorithm A  
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5.3. Iterative Closest Point Technique for 3D Shapes Registration 

This section focused on registration approach between Shape from shading and statistical 

shape from shading. As previously mentioned in (Chapter 4), by integration between 

SSFS and SFS an accurate result will be obtained and that is because the SSFS will give a 

shape of the jaw from just a single image but it does not give a truly surface for the tooth 

so the SSFS was supported by SFS approach. 

   SSFS was used for the situations where the SFS cannot handle . the SFS approach if it 

is used for one tooth it will give an accurate result comparing with groundtruth because it 

need near illumination, but if it is used of a whole jaw it won’t give a result like SSFS 

give  (see Figure 5.7). 

       

 

 

 

 

 

 

 

 

 

   
Input Image 3D construction   

(SFS) 
3D construction 

(SSFS) 

 

Groundtruth           
(CT scanning) 

Figure 5.6. The Input Image and the difference between the SSFS and SFS approach 
in 3D construction for a jaw and comparing them with groundtruth (CT scanning) 
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As following, we will move to a practical part and illustrate the TPS approach in steps. 

      The single image will be taken and make a manual annotation for it if the jaw contain 

14 teeth , 72 Landmarks will be obtained but if it contain 12 teeth just 62 Landmarks ,the 

experimental will be 14 teeth, around each tooth and in the center of it there is 7 

Landmarks (Figure 5.7) 

 

 

 

 

 

 

Then this jaw will be taken and build the 3D scene by Statistical shape from shading 

(Figure 5.8). Before the 3D processing the characteristic of the input should be 

determined, if is it pre repair or post repair and is it contain14 teeth or 12 teeth and is it 

upper or lower, this experiment contains 14 teeth and jaw type lower and status jaw pre 

repair.  

 

 

 

 
Figure 5.7. Input Image with the Landmarks (Landmarks illustrate in red color points) 
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 Also an algorithm was developed to recovered the albedo from the input jaw image and 

interpolate it with the 3D shape of the jaw (Figure 5.9) 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8.Show the 3D construction for the Input Image (Figure 5.7) jaw with a 
different scene   

  

 
Figure 5.9. 3D- shape for the jaw with the albedo recovered 
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   Now the tooth from this jaw will be taken (Figure 5.10) and the 3D shape will be 

constructed by Shape from shading algorithm (Figure 5.11)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10. Input tooth Image  

  

Figure 5.11. 3D reconstructions with different scenes for the tooth Image from shape 
from shading 
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After the 3D shapes were obtained for both input jaw and one tooth for this jaw, the 

Landmarks will be taken from 3D shape jaw (Figure 5.12). As previously mentioned in 

(Chapter 4) if the integration is between just two teeth, must be take at least nine points to 

get accurate results. 

 

 

 

 

 

 

       

 

Now the Landmarks from 3D shape tooth will be taken jaw (Figure 5.13). 

 

 

 

 

 

 

 

Figure 5.12. 3D shape for the jaw with the Landmarks 

 

Figure 5.13. 3D shape tooth with the Landmarks 
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After getting the landmarks for the 3D shape tooth and the correspondence landmarks 

from the 3D shape jaw, applying these points on the Iterative Closest Point (ICP) 

algorithm to obtain the deformation equation. Finally after obtained the ICP equation, the 

3D shape tooth was applied to become in the same domain of the 3D shape jaw (Figure 

5.14) 
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Figure 5.14. 3D shape with different scenes obtained from the Integration 
approach between the statistical shape from shading (SSFS) and shape from 

shading (SFS). 
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5.4. Graphic User Interface Approach for Jaw Construction Shape 

After completing this approach, GUI (Graphic User Interface) was built for the Jaw 

construction shape (Figure 5.15). 
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Figure 5.15. Graphic User Interface Approach for Jaw Construction Shape 
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1-Tooth Image Axes: hold Input tooth image.  

2-Open tooth Image: Select Input tooth Image for shape from shading approach. 

3-Process-3D: hold the input tooth image and apply (SFS) algorithm on it. 

4- Jaw Image Axes: hold Input jaw image.  

5-Open Jaw Image: Select Input jaw Image for statistical shape from shading approach. 

6-Output Directory: Determine folder for saving the output from the approach on it. 

7-Annotate-jaw-im: Select the Landmarks for the Input jaw Image (annotation process).  

8- Process-3D: hold the input jaw image and apply (SSFS) algorithm on it. 

9-Determine the characteristic of Input Jaw: 

   A: Prior jaw info: Determine status of jaw. 

   B: IN jaw status: Determine the actual status of jaw. 

   C: Jaw type: Determine the input jaw type (lower, upper). 

   D: Num Teeth: Determine the number of teeth in the input jaw (12, 14).   

10-Crop: making a shrink for the input jaw image if it need. 

11-Process_3D_Albedo: recovered the albedo from the input image jaw. 

12- Annotate-jaw-3D: Select the Landmarks for the 3D shape of tooth. 

13- Tooth Shape Axes: hold Input tooth 3D shape. 

14-In Large 3D Teeth: Open the 3D shape tooth in new figure. 

15- Annotate-jaw-3D: Select the Landmarks for the 3D shape of jaw. 

16- In Large jaw: Open the 3D shape jaw in new figure. 

17- Jaw Shape Axes: hold jaw 3D shape. 

18- In Large Final Shape: Open the 3D shape after the integration process in new figure. 

19-Number of 3D annotate: Determine the number of Landmarks for 3D annotate. 

20-PROCESS: run Thin-Plate Spline algorithm between the tooth and jaw. 

21- Final-3D-Shape Axes: hold the output 3D shape from TPS algorithm. 
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5.5. Summary  

    this chapter focused on showing the experimental and result part of the approach, since 

at the beginning the Statistical shape from shading part was explained in detail and 

supported it with pictures for the output and then starting to show the result from shape 

from shading part and also support it by pictures, then the TPS registration algorithm was 

explained by taking the result from shape from shading part and statistical shape from 

shading part for enhance the result. Finally GUI was built for combining the three main 

parts of this approach.   
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK  
 
This thesis has presented 3D reconstruction and shape modeling with applications to 

dentistry. 

6.1. Summary of Contributions 

The findings from this thesis make several contributions to the current literature which 

can be summarized as follows: 

1. In Chapter 2, a model-based SFS approach has been proposed which allows for 

the construction of plausible human jaw models in vivo, without ionizing 

radiation, using fewer sample points in order to reduce the cost and intrusiveness 

of acquiring models of patients; teeth/jaws over time. 

 

2. Chapter 3 focused on the 3D surface reconstruction aspect for human teeth based 

on a single image. A more realistic formulation of the SFS was introduced 

problem by considering the image formation components; the camera, the light 

source, and the surface reflectance. Proposed a non-Lambertian SFS algorithm 

under perspective projection which benefits from camera calibration parameters. 

We take into account the attenuation of illumination due to near-field imaging. 
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3. In Chapter 4, a convenient 3D shape registration technique based on Iterative 

Closest Point (ICP) mapping function was presented. The method can determine 

the corresponding 3D shape information and obtain the matching shape structure 

from different shapes 

6.2. Future work 

1. The presented approach throughout this work uses manual annotation which 

increases the overall time of the 3D reconstruction process. In the future, it is 

intended to investigate using computer vision methods for automating the 

annotation process.  

2. The proposed works only if the jaw contains 12 teeth or 14 teeth. In the future, it 

could be extended to work with any number of teeth. That could be achieved by 

making an automatic segmentation approach for the teeth. 
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