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ABSTRACT

THE PC-TREE ALGORITHM, KURATOWSKI SUBDIVISIONS, AND THE TORUS

Charles J. Suer

13 May 2015

The PC-Tree algorithm of Shih and Hsu (1999) is a practical linear-time planarity algo-

rithm that provides a plane embedding of the given graph if it is planar and a Kuratowski

subdivision otherwise. Remarkably, there is no known linear-time algorithm for embedding

graphs on the torus. We extend the PC-Tree algorithm to a practical, linear-time toroidality

test for K3,3-free graphs called the PCK-Tree algorithm. We also prove that it is NP-complete

to decide whether the edges of a graph can be covered with two Kuratowski subdivisions.

This greatly reduces the possibility of a polynomial-time toroidality testing algorithm based

solely on edge-coverings by subdivisions of Kuratowski subgraphs.
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CHAPTER 1

INTRODUCTION

This dissertation focuses on the problem of efficiently (polynomial-time) and practically

recognizing which graphs can be embedded on the torus. To design an algorithm for this

problem, we adapt a planarity checking algorithm based on PC-Trees. This chapter intro-

duces the necessary background on surfaces, graph theory, embeddings, and algorithms. An

introduction to the planarity checking algorithm based on PC-Trees is more involved and is

presented in Chapter 2.

1.1 – Surfaces

The plane is the orientable surface with the smallest genus. The genus of a surface is the

largest number of non-intersecting simple closed curves that can be drawn on the surface

without separating it. The genus of the plane is 0 since any simple closed curve separates the

plane into two regions by the Jordan Curve Theorem [16]. Simply an infinite flat surface, the

plane is the setting for a multitude of problems in all of mathematics, not just graph theory.

Another orientable surface is the sphere. While topologically different from the plane, the

sphere has the same genus as the plane and the two surfaces are equivalent in the sense that

a finite graph is embeddable on the plane if and only if it is embeddable on a sphere. The

torus is the orientable surface of genus 1 and is not equivalent to the sphere. While the torus

is often viewed as a teacup (essentially a sphere with a “handle”), this paper will use the

description of it as the surface of a donut.

In order to represent the torus on a planar surface such as the sheet of paper (or computer

screen) on which this document is printed, a series of simple cuts are made. With some

understanding of convention, the torus can be fully represented. Make a cut through the
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Figure 1.1: The cuts needed to represent the torus as a flat rectangle.

torus from the hole to the outside, then un-bend the donut to form a cylindrical tube. Make

another cut along the length of the cylinder and unroll the surface into a rectangle. See figure

1.1. The left and right sides of the rectangle represent the first cut made, and the top and

bottom sides represent the second cut made. Identify the left and right sides as well as the

top and bottom. In particular, this means that when an edge of a graph reaches the left side,

it reappears on the right side at the same “height.” The same applies to the top and bottom

of the rectangle.

1.2 – Graph Theory Basics and Types of Graphs

This dissertation will use standard graph theory terminology and notation [7]. In par-

ticular, the notation Kn represents the complete graph on n vertices and Km,n represents the

complete bipartite graph on partite sets of size m and n. Many of the graphs dealt with in

this paper are in these two classes. All graphs in this paper are assumed to be finite, simple,

and undirected unless stated otherwise.

There are three edge operations that are essential to this paper. Deleting the edge e from

the graph G is the process of simply removing the edge e from the edge set. This is repre-

sented by G− e and results in a graph with the same vertex set and one fewer edge than G.

Contracting the edge e between vertices u and v in the graph G is the process of deleting

the edge e and identifying the endpoints u and v. This is represented by G/e and results in

a graph with one fewer vertex and at least one fewer edge than G (any multiple edges are

removed to keep the graph simple). Finally, subdividing an edge e between vertices u and v

in the graph G is the process of replacing e with a new vertex w and the edges uw and wv.

This results in a graph with one more vertex and one more edge than G. See Figure 1.2.

2
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Figure 1.2: A graph with edge e and the results G− e, G/e, and subdividing e.

A graph G is a subdivision of a graph H if G can be obtained from H by successive

subdivisions of edges. In other words, if G can be obtained by replacing some edges of

H with disjoint paths, then G is a subdivision of H. G is a TH or an H-subdivision and H

is a homeomorph of G and a topological minor of any graph containing G as a subgraph.

Finally, H is a minor of G if a graph isomorphic to H can be obtained from a subgraph of G

by contracting some edges. Denote this H ≺m G and G is an IH. See Figure 1.3.

........................

Figure 1.3: A graph G, with examples of a TG and an IG.

1.3 – Embeddings

Intuitively, a drawing of a graph on a surface produces an embedding. Generally, the

most useful and interesting embeddings are those in which no edges cross (except at their

endpoints). A graph is embeddable on a surface if there is an embedding of the graph on

that surface with no crossing edges. The regions formed by the vertices and edges of the

graph in such an embedding are called faces. If a graph does not have an embedding on a

surface with no edges crossing, then the graph is not embeddable on that surface.

Planar and Toroidal Graphs

A planar graph is a graph that is embeddable on the plane. Planar graphs are used in a

multitude of applications such as circuit design and network design. It is very easy to see

that any planar graph is also embeddable on the sphere. It is only slightly harder to see that
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the converse is also true. This can be rigorously proven using stereographic projections, but

conceptually one can imagine that the sphere is made of very stretchy rubber and that a hole

punctured in one of the faces of the embedded graph can be expanded until the sphere lies

flat and the graph is thus embedded on the plane. Graphs that are embeddable on the plane

have been characterized in many ways and have fast detection algorithms. The orientable

surface of next highest genus has been less well studied and understood. This leads us to the

study of the torus.

A toroidal graph is a graph that is embeddable on the torus. Toroidal graphs also have

many applications, although they are more complex than planar graphs. They are used in

network design, as many computer networks have a toroidal structure, which provides some

stability in the way a planar network would, but with added flexibility.

For an embedding of a graph on a surface, the rotation system consists of a cyclic list

for each vertex. This cyclic list contains the neighbors of that vertex in the clockwise order

in which they appear in the embedding. Given a rotation system, it is easy to construct the

embedding and vice versa.

Euler’s Formula for Genus g

Euler’s Formula states that in any planar embedding of any graph, the number of vertices

minus the number of edges plus the number of faces is always equal to 2. However, there

is a stronger result that applies to all orientable surfaces. An embedding of a graph on a

surface is a 2-cell embedding if every face of the embedding is homeomorphic to an open

disk. Every planar embedding is a 2-cell embedding.

Theorem 1.1. If a graph G with n vertices, and e edges has a 2-cell embedding with f faces

on an orientable surface with genus g, then

n− e + f = 2− 2g.

The value 2−2g is known as the Euler characteristic of the surface. In particular, the Euler

characteristic of the plane (genus 0) is 2 and the Euler characteristic of the torus (genus 1)

is 0.
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Kuratowski’s and Wagner’s Theorems

Planar graphs have been widely studied for many years and as a result are very well

understood. There are many theorems that characterize planar graphs, but this paper will

focus on two of the most important. First is Kuratowski’s Theorem, proved in 1930 [19].

Theorem 1.2. A graph G is planar if and only if it does not contain a subdivision of K5 or

K3,3.

.............

Figure 1.4: The Kuratowski graphs K5 and K3,3.

Subdivisions of these two graphs are often referred to as Kuratowski graphs. See figure 1.4.

In 1937, a similar theorem appeared [27]. Wagner’s Theorem also references the Kuratowski

graphs, but in a slightly different manner.

Theorem 1.3. A graph G is planar if and only if K5 and K3,3 are not minors of G.

It may seem that Kuratowski’s Theorem is stronger since a subdivision can be viewed as a

minor, but the two results are actually equivalent. However, as detailed in the next subsec-

tion, the distinction between minors and subdivisions becomes important when the genus

of the surface increases.

Topological and Minor-Minimal Obstructions

Two non-planar graphs have already been mentioned and non-toroidal graphs are dis-

cussed in Chapter 3. A graph G that is not embeddable on a surface S such that deleting

any edge of G results in a graph that is embeddable on S is a topological obstruction for

the surface S. Similarly, if deleting or contracting any edge of G results in a graph that is

embeddable on S, then G is a minor-minimal obstruction for S. Every graph that is not em-

beddable on S contains a subdivision of a topological obstruction. Similarly, every such
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graph must contain a minor-minimal obstruction as a minor. Every minor-minimal obstruc-

tion is a topological obstruction (for a surface S), but not necessarily vice-versa.

Kuratowski’s Theorem identifies the topological obstructions for the plane as K5 and

K3,3. Wagner’s Theorem happens to identify those same graphs as the only minor-minimal

obstructions for the plane. This is simply coincidence, and there is no guarantee that the two

sets are the same in general. For example, there are 35 minor-minimal obstructions for the

projective plane but 103 topological obstructions. This result is due to Glover, Huneke, and

Wang who identified the obstructions [12] and to Archdeacon who verified that there are no

additional obstructions [1].

No theorem analogous to Kuratowski’s or Wagner’s has been proven for the torus. How-

ever, several thousand obstructions of both types have been identified: 239,322 topological

obstructions and 16,629 minor-minimal obstructions [6], [10], [17], [20], [21], [29].

The Robertson-Seymour Theorem

In 1990, Robertson and Seymour published the eighth paper in the Graph Minors series

[23] in which they prove Wagner’s Conjecture (stated to be an unpublished conjecture in

[22]):

Theorem 1.4. The set of topological obstructions for any surface is finite.

Theorem 1.4 implies that there exists a theorem like Kuratowski’s for every surface.

Since the set of minor-minimal obstructions is a subset of the set of topological obstructions,

it must also be finite. This means there is also a theorem like Wagner’s for every surface.

Because their proof is non-constructive, the Robertson-Seymour Theorem does not provide

the sets of obstructions.

1.4 – Algorithms

A graph algorithm is a set of instructions used to determine information about a given

graph, or to perform some operation on a given graph. These are often implemented for

use by a computer. In particular, algorithms that determine if a graph is embeddable on a

6



surface are of interest in this dissertation. Before discussing these in more detail, the concept

of algorithm complexity must be introduced.

Complexity

The worst-case, time-complexity (or just complexity) of an algorithm is a measure of

how quickly the algorithm can perform its function. It is usually given as the maximum

number of steps the algorithm must perform in the worst case, often in terms of the number

of vertices in the graph. Some simple algorithms perform a number of steps that does not

depend on the number of vertices. For instance, an algorithm that deletes a given vertex

must delete the vertex and all the edges incident to it. The number of edges can vary, but a

vertex of degree 7 can be deleted in the same number of steps regardless of whether there

are a total of 8 vertices or 100 vertices. The number of steps is constant when viewed as a

function of the number of vertices. In this case, the algorithm runs in constant time or is a

constant-time algorithm. Constant-time algorithms are the fastest, but often cannot perform

very complicated procedures.

Suppose an algorithm A performs a maximum of f(n) steps, where n is the number of

vertices in the input graph. If f(n) is a polynomial, then A runs in polynomial time or is

a polynomial-time algorithm. Similar definitions exist for when f is linear, quadratic, cu-

bic, and exponential. Linear-, quadratic-, and cubic-time algorithms are all examples of

polynomial-time algorithms. Note that these definitions do not take into account any coeffi-

cients. Complexity is often used to determine how an algorithm will perform on a graph with

a very large number of vertices. An algorithm that performs f(n) = 106n steps is prized over

an algorithm that performs g(n) = n2 steps because the former will be faster on all graphs

with more than 106 vertices. Similarly, an exponential-time algorithm (no matter how small

the base) will always end up running slower than a polynomial-time algorithm (no matter

how large the degree), given a large enough graph.

In the context of determining whether a graph is embeddable on a surface, polynomial-

time algorithms are considered “fast” (even when the degree of the polynomial is high) and
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exponential-time algorithms are considered “slow.” Linear-time algorithms are especially

prized.

By implying the existence of Kuratowski-like and Wagner-like theorems for every sur-

face S, the Robertson-Seymour Theorem also implies the existence of a polynomial-time

algorithm that determines whether a given graph is embeddable on S. This algorithm simply

looks for a subgraph of the given graph isomorphic to each topological obstruction (assum-

ing they are all known), a polynomial-time process [24]. Since the number of topological

obstructions is a finite constant k, and the algorithm that looks for a subgraph isomorphic to

the obstruction runs in cubic time, this algorithm performs a maximum of f(n) = kn3 steps.

Besides the fact that determining the whole set of topological obstructions for a surface has

proved difficult for most surfaces, it is also clear that the constant k is very large for all but

the simplest surfaces. Therefore, the search has been for embeddability algorithms that use

a different technique to achieve better results.

Planarity Checks and Toroidality Checks

Algorithms that determine whether a given graph is planar are called planarity checks.

It is expected that these algorithms provide a plane embedding of a planar graph and exhibit

a Kuratowski subdivision (or minor) in a non-planar graph. Linear-time planarity checks

have been known since the 1970’s. A more detailed history of planarity checks is given in

the next chapter.

Toroidality checks are algorithms that determine whether a graph has an embedding

on the torus. Again, these algorithms are expected to return a torus embedding of a toroidal

graph. In 2002, Gagarin and Kocay [9] published a paper containing a linear-time toroidality

check for K3,3-free graphs. However, the algorithm presented is very theoretical and does

not provide any means to extend to all graphs. In 2006, Woodcock’s master’s thesis [29]

improves an existing exponential-time toroidality check. While the improvements make the

algorithm practical (implementable), simpler, and faster, the result is still exponential-time.

The goal of this project is to find a practical (implementable), polynomial-time toroidal-

8



ity check. We have extended the simple and intuitive linear-time PC-Tree planarity check

of Shih and Hsu [26] into a linear-time toroidality check for graphs that do not contain a

subdivision of K3,3. In the future, we hope to be able to extend this algorithm further to serve

as a toroidality check for all graphs.

In Chapter 2 of this dissertation, there is a discussion of the PC-Tree algorithm of Shih

and Hsu. Chapter 3 investigates various important results about K3,3-free graphs, and Chap-

ter 4 presents our extension of the PC-Tree algorithm. Finally, in Chapter 5, determining

whether a graph can be covered with two Kuratowski subdivisions (useful for identifying

toroidal obstructions) is proven to be NP-complete.

9



CHAPTER 2

PC-TREE ALGORITHM

2.1 – History

Linear-time planarity checking algorithms have been known since 1974 [13]. Remark-

ably, no linear-time toroidality checking algorithm has yet been found. Since then there

have been several more linear-time planarity algorithms developed. Among these are path

addition algorithms, vertex addition algorithms, and edge addition algorithms.

In 1976, Booth and Lueker [2] developed a data structure, called a PQ-Tree, to test

whether a given matrix has the consecutive ones property (not defined here). Their algorithm

was later adapted to test planarity in linear time. The PQ-Trees themselves seem particularly

suited to be useful on graphs, but the algorithm uses a large amount of cases to reduce the

tree, and these are not intuitive.

In 1999, Shih and Hsu [26] further developed the idea of PQ-Trees by introducing a

similar but more flexible structure called a PC-Tree. This innovation simplified and clari-

fied algorithms based on PQ-Trees. The PC-Tree algorithm remains one of the most intuitive

(although complicated) planarity check algorithms. It is also powerful because it is capable

of compactly describing all different planar embeddings of a planar graph. For these rea-

sons, we chose the PC-Tree algorithm as our basis in an attempt to extend a planarity check

algorithm into an algorithm to determine whether a graph can be drawn on the torus without

crossing edges.

In 2001, Hsu and McConnell [15] wrote a chapter for the Handbook of Data Structures

and Applications detailing the use of PQ-Trees for the consecutive ones problem and for

determining whether a given graph is an interval graph. This chapter clearly describes the

PC-Tree planarity algorithm in detail.

10



In 2003 Wen-Lian Hsu wrote a paper [14] describing an implementation of the PC-Tree

Algorithm including pseudo-code for various parts of the algorithm. The abstract of this

paper includes a link to a LEDA implementation of the PC-Tree Algorithm.

Finally, also in 2003, Boyer, Fernandes, Noma, and DePina [3] wrote a paper of cor-

rections to the PC-Tree algorithm. These corrections filled small, but annoying, holes in

the technical details of the algorithm. They also implemented the algorithm and compared

its practical running time to some other known linear planarity algorithms, including the

Booth-Lueker and Boyer-Myrvold algorithms. The PC-Tree algorithm was found to be the

slowest of those tested. However, the structural advantages to the PC-Tree algorithm make

it a likely candidate for extension to a practical, polynomial-time toroidality check.

The rest of this chapter is a complete description of the PC-Tree algorithm, distilling

the information from the various sources listed above into one coherent explanation of the

algorithm. This uses the vocabulary and notation from Hsu and McConnell [15]. Each sec-

tion of this chapter deals with a portion of the algorithm. Section 2.2 deals with the ordering

of the vertices via Depth First Search and Postorder Numbering. Section 2.3 introduces P-

nodes and C-nodes. In section 2.4, discusses how the recursive steps of the algorithm work,

including full and empty nodes, finding the terminal path, and updating the PC-Tree. The

process of how the algorithm identifies a Kuratowski subdivision in a non-planar graph is

in Section 2.5 and how it exhibits an embedding of a planar graph is in Section 2.6. One

single example is followed all the way through these sections. Section 2.7 contains further

examples, Section 2.8 provides a proof of correctness for the algorithm, and Section 2.9 has

a brief discussion of the implementation of the PC-Tree data structure.

The graph depicted in Figure 2.1 is the example graph that will be revisited throughout

the text to illustrate the PC-Tree algorithm and related concepts. Call this graph S. The

PC-Tree algorithm provides a planar embedding of a graph, or provides a certificate of non-

planarity in the form of a subgraph that is a subdivision of a Kuratowski graph.

11



...........

Figure 2.1: The example graph S.

2.2 – Depth First Search and Postorder Numbering

The PC-Tree Algorithm is a vertex-addition algorithm, meaning it adds a single vertex

at each step of the algorithm. Therefore, the algorithm first needs to determine the order

in which it will add the vertices. This is done using a depth-first search (DFS) tree. This

process builds a spanning tree T of the graph G and also defines an order on the vertices

of G. It starts at any vertex of G; this is called the root of the tree and it is the first vertex

in the ordered list. At each vertex x, an arbitrary neighbor y of x that is not already in V(T)

is added to V(T), entered as the next vertex in the list, and the edge from x to y is added to

E(T). If no such neighbor of x exists, the process considers the neighbors of z, the neighbor

of x on the path in T from x to the root. It keeps moving up towards the root until it finds a

neighbor that has not been added to V(T). This continues until all vertices have been added.

See Algorithm 1.

Algorithm 1 DepthFirstSearch
1: procedure DFS(G)
2: VISITED← ∅
3: v← root
4: while VISITED ̸= V(G) do
5: if there is x ∈ N(v)\VISITED then
6: VISITED← VISITED ∪{x}
7: v← x
8: else if PARENT(v) exists then
9: v← PARENT(v)

10: else
11: v is the root and the graph has been traversed
12: return VISITED

The edges of G are thus partitioned into the edges of the depth-first search tree are called

12



tree edges and the remaining edges called back edges. A vertex with an incident back edge

from one of its descendants is called a back vertex. The back neighborhood of a vertex v is

all back edges from descendants of v to v.

The ordered list defined by the depth-first search of the graph G starts with the root

and lists the vertices in the order they were visited. The PC-Tree Algorithm uses this list

in reverse to define the order in which vertices of G are added to the PC-Tree. In other

words, the first vertex to be added to the PC-Tree is the last vertex visited in the depth-first

search and the root of the depth-first search tree is the last vertex added to the PC-Tree. This

reverse depth-first search numbering is called a postorder numbering. Therefore the first

vertex added to the PC-Tree is 1 and the last is n. Suppose the algorithm is at the step where

it adds i. Then all the vertices from 1 to i−1 are earlier than i and all the vertices from i+1

to n are later than i.

In the example graph S, suppose the vertex second from the right in the bottom row is

the root r of the DFS Tree. Figure 2.2 shows two possible DFS trees on S with root r. The

vertices are labelled according to the postorder numbering. In both cases, the root is labelled

10 because there are 10 vertices in S. On the left, the DFS algorithm must backtrack after

visiting vertices 7 and 3. On the right, the DFS Tree happens to be a Hamiltonian path.

When future sections make reference to this example, the PC-Tree algorithm uses the DFS

tree on the right, but the process would be similar if it used the tree on the left.
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Figure 2.2: Two different DFS Trees on S. The DFS Tree on the right is used in future
sections.

The reader should note that there are conflicting reports on whether the PC-Tree Al-
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gorithm is a vertex-addition algorithm or an edge-addition algorithm. In [26], Shih and

Hsu mention that they “add all back edges from the descendants to node i,” indicating edge-

addition. However, in Boyer and Myrvold’s 2004 paper [4], they make reference to the “fun-

damental operation of adding a back edge” in their planarity algorithm. Realizing that the

fundamental operation of the PC-Tree Algorithm is the addition of a set of all edges with

a certain property in relation to one vertex, we treat the PC-Tree Algorithm as a vertex-

addition algorithm.

2.3 – P-nodes and C-nodes

The PC-Tree algorithm creates an unrooted tree consisting of P-nodes and C-nodes

called the PC-Tree. As the algorithm manipulates the tree, it follows certain rules. In or-

der to find a rotation system of a planar embedding of the graph, the neighbors of a P-node

(which correspond to the vertices of the graph) can be permuted in any way. However, the

neighbors of a C-node (which correspond to certain 2-connected components of the graph)

have a cyclic order that can only be reversed. P-nodes are represented with a small closed

vertex and C-nodes are represented with a circled vertex. See Figure 2.3. The P-nodes in

the PC-Tree are the vertices of the graph G, and the C-nodes represent the cycles and the

boundaries, up to rotation, of planar embeddings of certain subgraphs of G.
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r

.
s
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t
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u

.
v

........ C.

r

.
s

.

t

.

u

.
v

Figure 2.3: The neighbors of a P-node can be permuted in any way. The order of the neigh-
bors of a C-node can only be reversed.

The PC-Tree algorithm is recursive; that is, it calls itself. The algorithm adds the back

neighborhood of vertex i, reduces the PC-Tree, and then makes a call to itself to add the back

neighborhood of the next later back vertex. It then receives either a Kuratowski subdivision
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or an embedding of all back neighborhoods of vertices later than i. If it receives a Kura-

towski subdivision, it simply returns that. If it receives a partial embedding, it extends that

embedding by including the back neighborhood of i and returns the extended embedding.

2.4 – Full and Empty Nodes and the Terminal Path

The PC-Tree is initialized as the DFS tree T of G. Recall that a vertex i is earlier than

vertex j if i < j in the postorder numbering of V(G). In this case, j is later than i. Recall that

the back neighborhood of a vertex v is all back edges from descendants of v to v. Before

adding the back neighborhood of vertex i, all earlier neighbors of i in G are marked as full

in the PC-Tree and all earlier vertices that have a neighbor in G later than i are marked as

empty. Vertices that are both full and empty get marked as partial.

Any remaining internal vertices in the PC-Tree (including any C-nodes) that are earlier

than i are classified as follows. If there exists a rooting of the subtree induced by the descen-

dants of i in which the subtree of vertex x consists entirely of full (empty) nodes, then x is

full (empty). If no such rootings exist for a vertex, or if a vertex would be classified as both

full and empty, then that vertex is classified as partial.

An edge of the PC-Tree is a terminal edge if both of its endpoints are partial. Equiv-

alently, an edge is terminal if removing it results in two subtrees, each with both full and

empty nodes. It is clear that the terminal edges must be connected. If the terminal edges

form a path, then this is called the terminal path.

If, for each vertex on the terminal path, there is a legal ordering of its neighbors of the

form

(terminal), full, . . . , full, (terminal), empty, . . . , empty,

then planarity is maintained and the algorithm uses the terminal path to create a C-node.

This is proved in Lemma 2.1. Note that either (or both) terminal neighbors might need to

be ignored if the vertex is an endpoint (or the only vertex) of the terminal path. Note that

since P-nodes accept any permutation of their neighbors, only C-nodes (specifically, those
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of degree at least 4) on the terminal path can create a non-planarity if the terminal edges

form a path.

Suppose the algorithm is at the step where it adds the back neighborhood of vertex i and

a cycle is created by doing this. Suppose further that terminal edges form a path and that the

full and empty subtrees can be flipped onto opposite sides of the terminal path. In order to

create a C-node, the PC-Tree algorithm needs to identify which vertices become neighbors

of the C-node, and which vertices and edges are removed from the PC-Tree. As a rule, all

full nodes not on the terminal path are removed. This includes any nodes on the paths from

the endpoints of the terminal path to the vertex i and all the nodes in the full subtrees. Any

vertices on the terminal path that are not empty and do not have any empty neighbors are

smoothed, that is, such a vertex is deleted and its neighbors on the terminal path become

adjacent. Once these deletions are complete, the terminal edges and any edges incident to

i are removed and the C-node created. The C-node is adjacent to the remaining vertices of

the terminal path (in order), and vertex i. If the new C-node ends up adjacent to another

C-node from the terminal path, the edge between them is contracted and the neighborhood

of the older C-node becomes part of the neighborhood of the new one, preserving the order

and position of the neighbors.

Presented below are most of the steps of the PC-Tree algorithm working on the example

graph S and most of the reductions explained in the previous paragraph are put into action.

Recall that the algorithm is using the DFS postorder numbering given on the right side of

Figure 2.2. The PC-Tree is initialized as the DFS Tree, which happens to be a path.

Vertex 3 is the earliest vertex with a back neighborhood (edges to descendants). Both

vertices 1 and 2 are neighbors of 3, therefore they are full (denoted with a black triangle).

However, they also both have neighbors later than 3, therefore they are also empty (denoted

with a white triangle). Since vertices 1 and 2 are both full and empty, they are designated

as partial, and the edge between them constitutes the terminal path at this step (highlighted

in gray). Since both vertices on the terminal path are empty, they become neighbors of
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the soon-to-be-created C-node. Edges 12, 23, and 13 are deleted, and the new C-node is

adjacent to vertices 1, 2, and 3. This is the simplest way in which a C-node is created. Note

that there is a second white triangle at 1 only as a reminder that it has two neighbors later

than 3 (namely, 9 and 10). Please see Figure 2.4 for a visualization of this paragraph.
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Figure 2.4: The PC-Tree for S before and after adding the back neighborhood of vertex 3.

Vertices 4 and 5 do not have back neighborhoods. Therefore, no edges are added and no

C-node created. Vertex 6 is the next vertex with a back neighborhood. The neighbors of 6

are 3 and 5, therefore, they are full. All of the vertices in {1, 2, 3, 4, 5} are empty since they

all have a neighbor later than 6. So, vertices 3 and 5 are partial. In order to complete the

classification of vertices, consider the subtree induced by the descendants of 6, that is the

vertices 1, 2, 3, 4, 5, and the C-node. If this tree is rooted at 3, then the subtree at 3 consists

of 1 and 2, both empty. Therefore, 3 is empty. There is no rooting of this tree so that the
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subtree at 4 is all full or all empty. Therefore, 4 is partial. Equivalently, deleting 3 leaves a

component of all empty nodes (so 3 is empty), but deleting 4 leaves two components, both

with full and empty nodes (so 4 is partial). The edges 34 and 45 form the terminal path, and

all vertices on the terminal path are empty, so none are deleted or smoothed. These edges

are removed along with edge 56 and another C-node is created, adjacent to 3, 4, 5, and 6 (in

that clockwise order). Note that the subtree at 3 does not change. Please see Figure 2.5 for

a visualization of this paragraph.
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Figure 2.5: The PC-Tree for S before and after adding the back neighborhood of vertex 6.

Vertex 7 has the next back neighborhood. Vertices 3, 5 and 6 are neighbors of 7, and so

they are full. Vertices 1, 2, 4, and 5 all have neighbors later than 7, so they are all empty.

Vertex 3 is empty since it has an empty subtree. Therefore 3 and 5 are partial. The C-node

adjacent to 1, 2, and 3 is empty for the same reason it was in the last step. The other C-node
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is partial because deleting it from the subtree induced by the descendants of 7 leaves an

empty subtree (4) and a full subtree (6). Therefore, the edges from the C-node of degree

four to 3 and to 5 form the terminal path. Note that vertex 6 is deleted because it is a full

node not on the terminal path. It is clear that the full subtrees can be flipped to one side

of the terminal path and the empty can be flipped to the other. A third C-node is created

adjacent to 3, the C-node that had been on the terminal path, 5, and 7 (in that clockwise

order). The edge between the C-nodes is contracted, resulting in a C-node adjacent to 3, 4,

5, and 7 (again, in that clockwise order). Please see Figure 2.6 for a visualization of this

paragraph.
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Figure 2.6: The PC-Tree for S before and after adding the back neighborhood of vertex 7,
then after combining the adjacent C-nodes.

Vertex 8 has the next back neighborhood. Vertices 5 and 7 are adjacent to 8, and so

they are full. Vertices 1, 2, and 4 are all empty since they have neighbors later than 8. The

C-node adjacent to 1, 2, and 3 and vertex 3 are empty for the same reasons they have been

in past steps. The other C-node is partial because deleting it from the subtree induced by
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the descendants of 8 leaves both entirely full and entirely empty trees. Here is a case where

there is only one partial node. This is considered a terminal path of length 0. Since the full

and empty subtrees are not alternating around the C-node, the full can be flipped to one side

of the “terminal path” and the empty to the other side. The vertices 5 and 7 are deleted since

they are full vertices not on the terminal path. Therefore a C-node adjacent to 8 and the

terminal C-node is created. The C-nodes are immediately combined into a C-node adjacent

to 3, 4, and 8 (in that clockwise order). Please see Figure 2.7 for a visualization of this

paragraph.
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Figure 2.7: The PC-Tree for S before and after adding the back neighborhood of vertex 8,
then after combining the adjacent C-nodes.

Vertex 9 has the next back neighborhood. Vertices 1, 3, 4, and 8 are full since they are

adjacent to 9. Deleting the C-node adjacent to 8 from the subtree induced by the descendants

of 9 leaves a full subtree (8), so it is full. Vertices 1 and 2 are empty since they have neighbors

later than 9. Therefore, 1 is partial and since deleting the C-node adjacent to 1 from the

subtree induced by the descendants of 9 leaves a full tree and an empty tree, the C-node is

also partial. So, the edge incident to 1 is the terminal path and clearly the full and partial
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subtrees can be flipped to opposite sides. Vertices 3, 4, and 8, as well as the full C-node are

all deleted since they are full and not on the terminal path. A new C-node is created and

is adjacent to 1, the partial C-node, and 9 (in that clockwise order). The two C-nodes are

combined to create a C-node adjacent to 1, 2, and 9 (in that clockwise order). Please see

Figure 2.8 for a visualization of this paragraph.
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Figure 2.8: The PC-Tree for S before and after adding the back neighborhood of vertex 9,
then after combining the adjacent C-nodes.

The final back neighborhood is the back neighborhood of vertex 10. All other vertices

of the PC-Tree are full since there are no vertices later than 10. As discussed in the next

section, a Kuratowski subdivision cannot be detected when adding the last vertex of the

graph. Therefore, the PC-Tree algorithm concludes that the graph is planar since it did not

find any Kuratowski subdivisions. A later section discusses how the algorithm extracts an

embedding of a planar graph given the PC-Tree, including one for the example graph S.

However, the configurations in the PC-Tree that correspond to Kuratowski subdivisions in

non-planar graphs are the next topic.
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2.5 – Finding a Kuratowski Subdivision

This section consists of the proof of one critical result, stated below. However, the proof

also provides the exact configurations for which the PC-Tree algorithm searches in order to

find a subdivision of K3,3 or K5 in a non-planar graph.

Lemma 2.1. If the input graph G is planar, the terminal edges at each step of the PC-Tree

algorithm form a path (or a single vertex) such that for each vertex on the terminal path,

there is a legal ordering of its neighbors where the full and empty subtrees are on opposite

sides of the terminal path.

Proof. Argue by proving the contrapositive: If the terminal edges do not form a path, or if

the full and empty subtrees cannot be flipped to opposite sides of the terminal path, then the

graph is not planar. In particular, the PC-Tree algorithm can then identify a subdivision of

K3,3 or K5.

Suppose first that the terminal edges do form a path (or there are no terminal edges), but

that there is a terminal C-node with neighbors (a, b, c, d) in that order where a and c are full

and b and d are empty. Then there are edges from b and d to vertices later than i. Let t be the

earliest of these vertices. Then {a, c, i} and {b, d, t} are the partite sets of branch vertices of

a K3,3 subdivision. See Figure 2.9.
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Figure 2.9: A subdivision of K3,3 from a C-node with four alternating full and empty neigh-
bors.

Now suppose that the terminal edges do not form a path. Then they form a subtree with
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at least three leaves, z1, z2, and z3, each of which has at least one full subtree and at least

one empty subtree. Let w be the vertex so that the paths z1 − w, z2 − w, and z3 − w are

edge-disjoint. Since zk has an empty subtree, there is at least one path from zk to a vertex

later than i. For each k ∈ {1, 2, 3}, let tk be the earliest of these vertices. Note that t1, t2, and

t3 need not be distinct. Let t be the vertex whose DFS label is the median of the DFS labels

of t1, t2, and t3.

If w is a P-node, then {z1, z2, z3} and {t, i,w} are the partite sets of branch vertices of a

K3,3 subdivision. See Figure 2.10.
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Figure 2.10: A subdivision of K3,3 from three terminal edges incident to a P-node.

Suppose w is a C-node. If at least one of z1, z2, and z3 is not a neighbor of w (without

loss of generality, say z3), then there is a neighbor of w, called w′ with paths to z1 and z2 in

G (since w′, z1, and z2 are neighbors of a C-node) and a path to z3 in the PC-Tree (and hence

G). Then {z1, z2, z3} and
{

t, i,w′} are the partite sets of branch vertices of a K3,3 subdivision.

See Figure 2.11.

Now consider the case where w is a C-node, and all of z1, z2, and z3 are neighbors of w.

Without loss of generality, t3 is a minimal element of t1, t2, and t3. If either t1 or t2 is equal

to t3, then {z1, z2, z3, i, t3} is the branch vertex set of a K5 subdivision. See Figure 2.12.
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Figure 2.11: A subdivision of K3,3 from three terminal edges incident to a C-node where
one of the neighbors of the C-node is incident to another terminal edge.
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Figure 2.12: A subdivision of K5 from three terminal edges incident to a C-node where the
earliest back ancestor of i is adjacent to at least two of the subtrees of the neighbors of the
C-node.

If t1 ̸= t3 ̸= t2, then let t = min{t1, t2}. Then {i, t, z2} and {z1, t3, z3} are the partite sets

of branch vertices of a K3,3 subdivision. See Figure 2.13.

Since Kuratowski subdivisions arise in these situations, G is non-planar, and the proof

is complete. �
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Figure 2.13: A subdivision of K3,3 from three terminal edges incident to a C-node where
the earliest back ancestor of i is adjacent to only one of the subtrees of the neighbors of the
C-node.
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2.6 – Producing Embeddings

If the back neighborhoods of all the vertices of G get added without encountering a

Kuratowski configuration, then G must be planar. However, planarity algorithms should be

demonstrative, that is, they should exhibit a planar embedding when the graph is planar. One

of the advantages of the PC-Tree algorithm is that it is actually able to produce all possible

planar embeddings of a planar graph.

If the back neighborhood of n− 1 has been added and the PC-Tree reduced without en-

countering any Kuratowski configurations, then the algorithm concludes that the graph G is

planar. The back neighborhood of n can be trivially embedded (possibly in many ways). This

is the first partial embedding that gets returned to the calling function. Thus the embedding

process takes place as the algorithm steps back out of the recursive calls.

After adding the back neighborhood of vertex i and reducing the PC-Tree, the recursive

function calls itself to add the neighborhood of vertex i + 1. Suppose this call returns an

embedding of all later back neighborhoods. Then the function can extend this embedding

by embedding the back neighborhood of i since no Kuratowski subdivision was returned.

This extended embedding gets returned to the calling function.

This process is probably best illustrated by following it through our example graph S.

At the end of Section 2.4, the PC-Tree algorithm paused its worked on the graph S having

added the back neighborhood of vertex 9, and finding no Kuratowski configuration, declared

S planar. From this point, it produces an embedding of S in the plane. Recall that the PC-

Tree algorithm can produce any of the planar embeddings of a graph. Presented below are

two tracks for the PC-Tree algorithm to take, each producing a different embedding of S.

This split is based on a decision in the first embedding step. At several points after that,

the algorithm is shown choosing just one embedding of the “active” back neighborhood,

when a different choice could be made to produce a different embedding. These options

arise because the order of incident edges at P-nodes can be permuted in any way and the

order at C-nodes can be reversed.
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Embedding the back neighborhood of vertex n is the base case for the recursive function.

For S, this means embedding the edges (10)1 and (10)2. Because the order of the edges

incident to the C-node can be reversed, the algorithm can embed the edges in two different

ways, shown in Figure 2.14.
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Figure 2.14: Embedding the back neighborhood of 10 in two different ways.

The choice between these two options determines which partial embedding gets re-

turned, and therefore, which partial embedding gets extended to the embedding of S. The

consequences of both choices are continued here, keeping the choices consistent whenever

possible in the future to exemplify how two different embeddings can be obtained from the

same PC-Tree.

Next the algorithm embeds the back neighborhood of 9. The choice of embedding in the

previous step forces the algorithm to embed the edges incident to 9 in a different order. See

Figure 2.15.

Now the algorithm embeds the back neighborhood of 8. Notice that it is using the version

of the PC-Tree that was current just after adding the back neighborhood of 8 and reducing

the tree. See Figure 2.16.

Then the algorithm embeds the back neighborhood of 7. See Figure 2.17.

Next the algorithm embeds the back neighborhood of 6. Note that the edges 34 and 45

are present in the PC-Tree at this step. They are not drawn them vertically simply to make

the picture clearer. See Figure 2.18.

Finally, the algorithm embeds the back neighborhood of 3. The results are in fact two
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Figure 2.15: Embedding the back neighborhood of 9.
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Figure 2.16: Embedding the back neighborhood of 8.

different embeddings of S. This can be verified by comparing the sizes of faces. For example,

the face that is bordered by the edges 78 and 89 has size 5 on the left and size 6 on the right.

See Figure 2.19.

28



...

10

..

9

..

8

..

7

..

6

...

5

..

4

..

3

...

2

..

1

..

10

..

9

..

8

..

7

..

6

...

5

..

4

..

3

...

2

..

1

Figure 2.17: Embedding the back neighborhood of 7.
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Figure 2.18: Embedding the back neighborhood of 6.
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Figure 2.19: Embedding the neighborhood of vertex 3. The results are two different embed-
dings of S.
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2.7 – Further Examples

Example 1–Planar

The first example is a graph that is obviously planar. The graph in Figure 2.20 is a

subdivision of K3,3 minus an edge. There are no vertices of degree four, so there is clearly a

subdivision of neither K5 nor K3,3 in the graph.
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Figure 2.20: Example 1. A planar graph.

The vertices are numbered according to a post-order depth-first-search tree. As the al-

gorithm begins to construct the PC-Tree, there are no cycles created by vertices 1 through

7, resulting in the diagram on the left in Figure 2.21. When the algorithm adds vertex 8, it

finds that vertices 3 and 7 are full and vertices 1 and 5 are empty. Thus 4 is also full and 2

is empty. Vertices 5, 6, and 7 are partial since they are both full and empty. Thus there are

two edges in the terminal path. The diagram on the right in Figure 2.21 shows the terminal

path drawn horizontally with all the full subtrees flipped above and all the empty subtrees

flipped below.

Now a C-node is created. All full nodes that are not on the terminal path are deleted (or

embedded). Vertex 6 is also deleted since it is not empty not adjacent to an empty vertex. The

new C-node is adjacent to the new vertex, 8, and to the remaining vertices of the terminal

path, 5 and 7. Note that the cycle (2-connected component) consisting of the terminal path,

the full subtrees, and the edges going to the new vertex 8 is removed.

No cycle is created by adding 9 to the PC-Tree, and now the algorithm has reached the

final vertex of the graph to be added, 10. See the left diagram in Figure 2.22. All vertices of
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Figure 2.21: Example 1. The PC-Tree when adding vertex 8.

the PC-Tree are labelled as full and the edges can be added to the embedding trivially. See

the center diagram in Figure 2.22. To obtain an embedding of the original graph, the PC-

Tree algorithm need only expand the C-node back into the cycle (2-connected component)

that it represents. See the right diagram in Figure 2.22. This is a planar embedding of the

original graph.
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Figure 2.22: Example 1. The PC-Tree when adding vertex 10. A planar embedding of the
original graph.
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Example 2–Non-planar, K3,3 one way

For the next example, add the edge 23 to the previous example to create a graph that has

a K3,3-subdivision. The numbering used in Example 1 is still a DFS numbering. See Figure

2.23.
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Figure 2.23: Example 2. A graph with a K3,3-subdivision.

As the algorithm adds vertices to the PC-Tree, it creates no cycles until vertex 7. See the

left side of Figure 2.24. The edges 23, 34, and 45 are the terminal edges because removing

any one of them leaves components with both full and empty vertices. Orienting the terminal

path horizontally, flipping the full vertices above the path, and the empty vertices below, it

is clear how the cycle containing the terminal path and the vertex 7 can be embedded. See

the center of Figure 2.24. Note that the full vertex 6 is removed from the tree because it can

be trivially embedded and does not interact with any later vertices.

...1 ..

2

..

3

..

4

..

5

..

6

...

1

..

2

..

3

..

4

..

5

..

6

..

7

... 1..

2

..

3

..

5

...

7

Figure 2.24: Example 2. The PC-Tree when adding vertex 7, the creation of the C-node, and
the PC-Tree when detecting the K3,3-subdivision by adding vertex 8.
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The result is the PC-Tree on the right side of Figure 2.24. When adding vertex 8, the

algorithm finds that there are no terminal edges, but just a single terminal vertex, the C-node.

The full and empty vertices alternate in the cyclic order around the C-node. Therefore, this

is the situation described in Figure 2.9.

There is a K3,3-subdivision with partite sets {7, 3, 8} and {5, 2, 10}. Note that i = 8 and

t = 10 when referring to Figure 2.9. This subdivision was detected when attempting to add

the fifth branch vertex.

Example 3–Non-planar, K3,3 another way

In this example, add two more edges, 37 and 25, to the previous example. As before, the

numbering is still a DFS numbering. This graph also contains a K3,3-subdivision, but the

PC-Tree algorithm finds a different configuration this time.
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Figure 2.25: Example 3. Another graph with a K3,3-subdivision.

No cycles are created until the PC-Tree algorithm adds vertex 5. The left side of Figure

2.26 shows the PC-Tree and the single terminal edge 23. Orienting the terminal edge hori-

zontally with the full vertices above and the empty ones below, the embedding of the cycle

that contains the edge 23 and vertex 5 becomes clear. See the center of Figure 2.26. As with

vertex 6 in Example 2, vertex 4 gets removed from the tree.

The result is the PC-Tree on the right of Figure 2.26. When adding vertex 7, there is

only one terminal vertex, the C-node. The algorithm has encountered the configuration in

Figure 2.13. There is a K3,3-subdivision with partite sets {7, 10, 3} and {2, 5, 8}. Using the

notation from Figure 2.13, i = 7, t3 = 8, and t = 10. Also, z1, z2, z3 are all adjacent to the

C-node w, and t3 = 8 is adjacent to only one neighbor of the C-node. This subdivision was
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Figure 2.26: Example 3. The PC-Tree when adding vertex 5, creating the C-node, and the
PC-Tree when adding vertex 7.

detected when attempting to add the fourth branch vertex.

Example 4–Non-planar, K5

For the last example, add one more edge, 58, to the previous example. This clearly still

has a K3,3-subdivision, but it also now contains a K5-subdivision. The numbering is still a

DFS numbering and the algorithm detects the K5-subdivision. See Figure 2.27.
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Figure 2.27: Example 4. A graph with both a K3,3-subdivision and a K5-subdivision.

No cycles are created until the algorithm adds vertex 5. The steps are the same as in

Example 3, until adding vertex 7. See the left side and center of Figure 2.28. The PC-Tree

looks exactly the same as in Example 3, but now vertex 5 is adjacent to 8.

Therefore, the PC-Tree algorithm encounters the configuration in Figure 2.12. There is

a K5-subdivision with branch vertex set {2, 3, 5, 7, 8}. Using the notation from Figure 2.12,

i = 7, and t = 8. Also, z1, z2, z3 are all adjacent to the C-node w, but t3 = 8 is adjacent

to two neighbors of the C-node. This subdivision was detected when attempting to add the
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Figure 2.28: Example 4. The PC-Tree when adding vertex 5, creating the C-node, and the
PC-Tree when adding vertex 7.

fourth branch vertex.

2.8 – Proof of Correctness

This section contains a proof of the following:

Theorem 2.2. The PC-Tree algorithm correctly identifies planar and non-planar graphs,

producing an embedding of a planar graph, or a Kuratowski subdivision in a non-planar

graph.

Proof. If G is planar, then the PC-Tree algorithm does not encounter any of the configura-

tions in Section 2.5 by Lemma 2.1. Therefore, it adds all the vertices of G to the PC-Tree

and then steps back out of the recursive calls, building a plane embedding of G.

If G is non-planar, then it contains a Kuratowski subdivision. Suppose that the PC-Tree

algorithm does not find any of the configurations in Section 2.5. Then the algorithm adds

all the vertices of the graph to the PC-Tree and begins to step back out of the recursive calls,

building a plane embedding. However, at each step of the embedding process, the algorithm

can expand any C-node into a trivially embeddable subgraph of the PC-Tree (due to all C-

nodes being created only when the full and empty subtrees can be flipped to opposite sides

of the terminal path). This cannot fail to produce a plane embedding of G. This contradicts

the assumption that G is non-planar. Therefore, the PC-Tree algorithm must find one of the

configurations in Section 2.5. �
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2.9 – Implementation

Because the PC-Tree Algorithm adds each vertex one at a time and never backtracks,

it is a linear-time algorithm. However, it is not fully clear that the analysis, updating, and

maintenance of the PC-tree structure can be done in linear time. In order to show why these

subprocesses run in linear time, a discussion of the implementation of the PC-Tree data

structure is necessary.

The following paragraph is taken directly from [15] (Definition 1.1).

The data structure for the PC tree is the following. Each P node carries a pointer

to the parent edge. Each edge uv is implemented with two oppositely directed

twin arcs (u, v) and (v, u). Each arc (x, y) has a pointer to its two neighbors in

the cyclic order about y, a pointer to its twin, and a parent bit label that indicated

whether y is the parent of x. In addition, if y is a P node, then (x, y) has a pointer

to y. The algorithm chooses not to use an explicit representation of a C node;

its existence is implicit in the doubly-linked circular list of its edges that gives

their cyclic order. No two C nodes are adjacent, so each of these edges has one

end that identifies a neighbor of the C node, and another end that indicates that

the end is incident to a C node, without identifying the C node.

Figure 2.29 shows a diagram of the implementation of the indicated PC-Tree. Notice

that there is no explicit C-node, just a doubly-linked list of arcs surrounding it. There is also

a doubly-linked list of arcs around vertex 3, but since it is a P-node, there are pointers to and

from it explicitly. The double-loop arcs such as those to and from (3, 2) are there simply

because one vertex has only one neighbor (such as 2). Therefore, the edge is adjacent to

itself in both directions in the list of neighbors of that vertex.

These doubly-linked cyclic lists of edges are discordant lists, a type of list where there is

an order to the elements, but no direction to that order. Each element has two pointers (to its

two neighbors in the list). Whenever the algorithm traverses this list, it simply moves in the

direction of the pointer that does not indicate the element it last visited. This change in the
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Figure 2.29: A PC-Tree implemented.

way lists are traversed allows the lists that represent C-nodes to be “flipped” and combined

in linear-time. The lack of direction in the doubly-linked list relieves the need to reverse

elements of a list in order to “flip” the neighbors of a C-node, a quadratic-time operation.

The PC-Tree algorithm is a recursive algorithm. There are four items that get passed to

the embedding function at each call:

(i) A two-connected constrained graph G.

(ii) The earliest back vertex i.
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(iii) The PC Tree.

(iv) An ordered list of i and all later vertices.

At each step, the algorithm identifies certain vertices and edges that can be embedded triv-

ially. It then reduces the PC-Tree and makes a recursive call to itself. If the graph G is planar,

this call returns an embedding of the reduced graph. The algorithm can then add back the

trivially embeddable elements and return an embedding of the graph G. If the graph G is

non-planar, the recursive call returns a Kuratowski subdivision in the form of a list of branch

vertices.
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CHAPTER 3

K3,3-FREE GRAPHS

This chapter focuses on testing K3,3-free graphs for embeddability on the torus. This

is a good place to test a novel approach for an algorithm to test toroidality. As expected, a

novel approach is not difficult to develop successfully. This chapter presents an adaptation of

the PC-Tree planarity algorithm into a practical, polynomial-time algorithm to test whether

a K3,3-free graph can be embedded on the torus. The algorithm can easily be modified to

produce an obstruction to such an embedding (if none exists) or a torus embedding (if one

exists).

3.1 – K5 Subdivisions in a Toroidal Graph

The Kuratowski graphs K5 and K3,3 are both toroidal graphs. The graph K5 has six dif-

ferent embeddings on the torus, and K3,3 has two. These embeddings are shown in Figure

3.1. Because of Kuratowski’s Theorem, a non-planar graph that avoids a K3,3-subdivision

must contain a subdivision of K5. The ways these subdivisions can overlap and interact in

a toroidal graph is critical to understand. First is a simple lemma that will help to identify

a K3,3 subdivision when adding certain paths to a K5 subdivision. This lemma has been

discovered many times, particularly in [8] and [9].

Lemma 3.1. Let P1,P2, . . . ,P10 be the ten internally disjoint paths forming a subdivision

of K5, called G. If a new path Q intersects G, and Pi and Pj (i ̸= j) are two paths intersected

by Q consecutively (i.e., Q intersects no other P-paths between Pi and Pj), then there is a

subdivision of K3,3 in the resulting graph.

Proof. Note that each branch vertex of G belongs to four of the paths P1,P2, . . . ,P10. Every

other vertex belongs to only one path. The proof proceeds by considering the following
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...... ...... ......
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Figure 3.1: The six embeddings of K5 and the two of K3,3 on the torus.

cases:

(i) One of the intersection points is a branch vertex of G.

(ii) Neither intersection point is a branch vertex of G.

(a) Pi and Pj are parallel (i.e., they share no vertices).

(b) Pi and Pj share a common endpoint.

As Figure 3.2 shows, there is a subdivision of K3,3 in the resulting graph in each case. The

highlighted edge indicates the path Q and the squares and triangles indicate the partite sets

of the subdivision of K3,3. �

Next is an important theorem of Gagarin, Myrvold, and Chambers [10]. The result com-
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Figure 3.2: A subdivision of K3,3 in Case (i), Case (ii)(a), and Case (ii)(b).

pletely characterizes K3,3-free toroidal graphs in terms of forbidden subdivisions. This forms

the cornerstone for the analysis of K5 subdivisions in toroidal graphs.

Theorem 3.2. A graph G, with no subdivision of K3,3, is toroidal if and only if it avoids

subdivisions of the eleven graphs in Figure 3.3.
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Figure 3.3: The eleven topological obstructions for K3,3-free toroidal graphs.

It is important to note some characteristics of these obstructions. First, it is clear that all of

them except G4 are “built” from two subdivisions of K5. This leads to two obvious questions.

First, are there any “subdivision-minimal” combinations of two subdivisions of K5 missing

from this list (i.e., are there any that are toroidal)? Second, what is different about G4 and
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why is it included in this list?

The answer to the first question is “yes”: there is one combination of two K5’s that is

in fact toroidal, and is therefore not an obstruction. When two subdivisions of K5 share

exactly two branch vertices, the result is the graph M, shown in Figure 3.4, along with its

nine embeddings on the torus.

..

M

..........

.........................................................................

Figure 3.4: The graph M and its nine embeddings on the torus.
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See Figure 3.5 to verify that a graph consisting of two subdivisions of K5 that share

three or four branch vertices contains a subdivision of K3,3. Therefore further attention is

restricted to those graphs in which the two K5 subdivisions share zero, one, or two branch

vertices.

..............

Figure 3.5: Two K5-subdivisions sharing three or four branch vertices results in a K3,3-
subdivision (partite sets shown).

Because M is toroidal, it is easier to identify G4 as three K5’s, each sharing the same

two branch vertices (those at the top and bottom in the figure above). Essentially, G4 is the

obstruction that concedes that M is toroidal, but disallows any further K5’s to be added in

this fashion.

At this point, there is a small complication in the analysis of how subdivisions of K5 can

interact in a toroidal graph. It is clear that a toroidal graph can contain an arbitrary number

of K5 subdivisions: if all the subdivisions have the same branch vertex set, then all the

internally disjoint paths running between any two branch vertices can simply be embedded

in parallel according to any of the six embeddings of K5 on the torus. In order to avoid such

occurrences where two subdivisions act essentially as one, at least in terms of embedding

the graph, we say henceforth that two subdivisions of K5 are equivalent if they have the same

set of branch vertices. This qualification leads to the following statement, first discovered

by Gagarin and Kocay [9], but reproven here.

Theorem 3.3. If G is a toroidal graph with no subdivision of K3,3, then there are at most

two non-equivalent subdivisions of K5 in G.

Proof. Argue by contradiction. Suppose G has three non-equivalent subdivisions of K5,

called H1,H2, and H3. Further, without loss of generality, suppose G is a minor-minimal
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such counterexample. Let v1, v2, . . . , v5 be the branch vertices of H1, and let P1,P2, . . . ,P10

be the ten internally disjoint paths forming the subdivision of K5 (some might have only one

edge). Now consider G′ = G − {v1, v2, . . . , v5}. Suppose that the interiors of two paths Pi

and Pj are in the same component of G′. Then there is a path Q that connects Pi to Pj that

does not pass through a branch vertex of H1. By Lemma 3.1, there is a subdivision of K3,3

in G. Since this contradicts our hypothesis, the interiors of each of P1,P2, . . . ,P10 must be

in different components of G′. See Figure 3.6.

........

Pi

.

Pj

.
Q

Figure 3.6: If two paths are in the same component in G′, then there is a K3,3-subdivision in
G by Lemma 3.1.

Consider the graph G′′ obtained by augmenting each component of G′ with copies of the

two branch vertices deleted from G incident to that component. The number of components

stays the same. Since H1 and H2 are different subdivisions of K5, there is at least one branch

vertex y of H2 that is not a branch vertex of H1. This vertex must be in a component of G′. If

there are branch vertices of H2 in different augmented components of G′′, there would be a

path Q from the interior of one path Pi (through y) to a branch vertex of H1 not on Pi, since H2

is 5-connected. This creates a subdivision of K3,3 by Lemma 3.1, which is a contradiction.

Therefore, the branch vertices of H2 must all be in one augmented component of G′′. A

similar argument shows that the same is true of the branch vertices of H3. Since H1 was

chosen without loss of generality, for i ̸= j, Hi contains no more than two branch vertices of

Hj.

If |V(Hi)∩V(Hj)| > 2, then there exists a vertex u ∈ V(Hi)∩V(Hj)\Br(Hi). If possible,

choose u ∈ Br(Hj). If u ∈ Br(Hj), then there is a path from u to a branch vertex of Hi that

does not contain any other branch vertex of Hj. If u /∈ Br(Hj), there is still such a path.
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If not, the intersected branch vertex of Hj could have been chosen as u. Contract this path

away. This destroys no subdivisions of K5, and the graph is still toroidal. This contradicts

the minor-minimality of G. Thus, |V(Hi) ∩ V(Hj)| ≤ 2 for all i ̸= j.

The next part of the proof establishes that any two subdivisions of K5, Hi and Hj share

exactly two vertices and that these vertices must be branch vertices of both subdivisions.

First, suppose that Hi and Hj share no branch vertices. If, in fact, Hi and Hj share no

vertices at all, then G contains the obstruction G1. If Hi and Hj share a single vertex z,

it might be a branch vertex of one or the other, or neither, but not both. If z is a branch

vertex of one subdivision, then G contains the obstruction G5. If z is not a branch vertex

of either subdivision, G contains the obstruction G6. If Hi and Hj share two vertices u and

v, there are four cases. If u and v are branch vertices of both subdivisions, G contains the

obstruction G8. If u is a branch vertex of only Hi and v is a branch vertex of only Hj, G

contains the obstruction G9. If u is a branch vertex of one subdivision, and v is a branch

vertex of neither, G contains the obstruction G10. If u and v are branch vertices of neither

subdivision, G contains the obstruction G11. Now suppose that Hi and Hj share one branch

vertex, x. If x is the only vertex shared, G contains the obstruction G2. If the two subdivisions

share a second vertex v, there are two cases. Either v is a branch vertex of one subdivision, in

which case G contains the obstruction G3, or v is a branch vertex of neither, in which case G

contains the obstruction G7. have found the obstruction G8. Therefore, any two subdivisions

of K5 share exactly two vertices, and those are branch vertices of both subdivisions.

... x..................

Figure 3.7: The partite sets of the branch vertices of a K3,3 subdivision are shown.

If
∩3

i=1 Br(Hi) = {u, v}, then G contains the obstruction G4. If
∩3

i=1 Br(Hi) = {x}, then
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there is a subdivision of K3,3 as shown on the left in Figure 3.7. If
∩3

i=1 Br(Hi) = ∅, then

there is a subdivision of K3,3 as shown on the right in Figure 3.7. �

Corollary 3.4. If G is a toroidal graph with no subdivision of K3,3 and exactly two subdi-

visions of K5, then G contains a subdivision of M.

Proof. As in the end of the proof of Theorem 3.3, any two subdivisions of K5 share exactly

two vertices, and those are branch vertices of both subdivisions. Such a situation yields

exactly a subdivision of M. �

3.2 – A Simple Toroidality Algorithm

Theorem 3.3 leads to a simple, fast, practical toroidality check for K3,3-free graphs that

works by finding a K5-subdivision and looking for additional K5-subdivisions in the side-

components. The algorithm presented here uses the PC-Tree algorithm of Shih and Hsu, but

does not extend it. In fact, this algorithm could use any linear-time planarity check algorithm

that provides the branch vertices of a Kuratowski subdivision in a non-planar graph. The

algorithm in the next chapter modifies and extends the PC-Tree algorithm, a seemingly

necessary step in order to construct a PC-Tree based toroidality algorithm for all graphs.

We call this simple algorithm the Side Component algorithm and present it in pseudo-code.

See Algorithm 2. When augmenting the components of G− A on line 9 (and again on line

20), Lemma 3.1 implies that each augmented component has exactly two branch vertices of

the K5 subdivision.

This algorithm is linear in the number of vertices. It makes a bounded number of calls

to the PC-Tree algorithm, which is a linear-time algorithm. Theorem 3.3 guarantees the

PC-Tree algorithm is called at most 21 times: once on G, ten times on the augmented com-

ponents from deleting the branch vertices of H and ten times on the augmented components

from deleting the branch vertices of J. Since this number is bounded and the PC-Tree algo-

rithm itself is linear-time, this algorithm is also linear-time. In the next chapter, knowledge

of K3,3-free toroidal graphs extends the PC-Tree algorithm into a toroidality algorithm.
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Algorithm 2 Side Component Algorithm
1: procedure SC(G)
2: K5 counter← 0
3: if PC-Tree(G) = planar then return toroidal
4: else if PC-Tree(G) = non-planar (H ∼= K5) then
5: K5 counter← K5 counter + 1
6: A← set of branch vertices of H
7: delete A from G
8: for each component C of G− A do
9: augment C with copies of the vertices in A adjacent (in G) to vertices of C

10: if PC-Tree(C) = non-planar (J ∼= K5) then
11: K5 counter← K5 counter + 1
12: B← the set of branch vertices of J
13: if K5 counter = 1 then return toroidal
14: else if K5 counter > 2 then return non-toroidal
15: else (K5 counter = 2)
16: if |A ∩ B| < 2 then return non-toroidal
17: else (|A ∩ B| = 2)
18: delete B from the component C containing B
19: for each component D of C− B do
20: augment D with copies of the vertices in B adjacent to vertices of D
21: if PC-Tree(D) = non-planar (L ∼= K5) then
22: K5 counter← K5 counter + 1
23: if K5 counter = 2 then return toroidal
24: else (K5 counter > 2) return non-toroidal
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CHAPTER 4

PCK-TREE ALGORITHM

4.1 – K-nodes

This chapter discusses the PCK-Tree algorithm, an extension of the PC-Tree algorithm,

which determines the toroidality of K3,3-free graphs. This algorithm achieves exactly the

same result as the algorithm presented at the end of Chapter 3. However, there is much

more potential to further extend this algorithm into a toroidality check for more, if not all,

graphs.

The PCK-Tree algorithm begins exactly like the PC-Tree algorithm. First find any DFS

Tree of the given graph G, and from that, identify the post-ordering of the vertices. Proceed

by constructing the PC-Tree as usual. If the given graph is planar, the existing PC-Tree

algorithm is sufficient, returning an embedding of G on the plane (which also serves as an

embedding of G on the torus). If G is non-planar, then it must contain a subdivision of K5

since G is K3,3-free.

......

Figure 4.1: A K-node is adjacent to the four known branch vertices of a K5-subdivision.

The PCK-Tree algorithm extends the PC-Tree algorithm by allowing a new type of ver-

tex, a K-node, that encodes a Kuratowski subdivision. As in Figure 4.1, K-nodes will be

represented as a vertex with a square around it. As described in the PC-Tree algorithm,

this occurs in the K3,3-free case when the algorithm adds the fourth branch vertex of a K5-

subdivision. At this point, the PC-Tree algorithm would simply return the fact that G is
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non-planar and indicate the branch vertices of the K5 (the fifth is found easily). However,

the PCK-Tree Algorithm needs to continue since K5 can be embedded on the torus (in six

different ways, in fact). To continue, the algorithm creates a new node called a K-node. Its

neighbors are the four known branch vertices of the K5. As when the algorithm creates a C-

node, all full vertices and edges get removed from the tree. Any remaining vertices (together

with those added between the fourth and fifth branch vertices) represent the paths from their

respective branch vertices to the fifth (as of yet, unadded) branch vertex.

A K5 subdivision is detected by the PC-Tree algorithm when it encounters a very specific

situation. See Figure 4.2 for an example. Note that all the nodes that were full have been

embedded (i.e., removed from the tree). The vertices x, y, z, and the newly added vertex w,

are the neighbors of the new K-node. They are the four known branch vertices of the K5

subdivision.

....
x

......y ....... z......

w

.. x....

y

... z...

Figure 4.2: Adding vertex w with the terminal edges highlighted and the resulting reduced
PCK-Tree.

When the algorithm creates a K-node, it also increments a counter ℓ that keeps track

of the number of K5 subdivisions found so far and provides a list of the known branch

vertices of the newest K5 subdivision. Then the algorithm checks this list against that of

any previously identified K5 subdivision. Call these lists L1 and L2. The two K5’s must have

exactly two branch vertices in common. If they share fewer than two, the algorithm has found

an obstruction and so the graph must be non-toroidal. It is impossible for them to share more

than two since this implies a K3,3 subdivision. If, at any point, the algorithm creates a third

K-node, it has found an obstruction (by Theorem 3.3) and can immediately report that the
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graph is non-toroidal. Therefore, it only needs to maintain two lists of branch vertices L1

and L2.

It is possible to create two K-nodes in the same step. This seems to be a problem for the

graph M, because the algorithm may create two K-nodes, both adjacent to the two shared

branch vertices, creating a cycle in the PCK-Tree. However, the DFS numbering prevents

this from happening. Such a situation would require a numbering where each TK5 in M has

a non-shared branch vertex later than the two shared branch vertices. This implies there is a

path from one non-shared branch vertex to the other because the numbering is produced by

a DFS Tree of the graph. By Lemma 3.1, the result contains K3,3. Therefore, this situation

is impossible. See Figure 4.3 for an example numbering.

...

4

..5 ..

8

.. 1..

2

..
3
..

6

..

7

Figure 4.3: Adding vertex 6 in this numbering of M creates two K-nodes in the same step.
The dashed edge is necessary for this numbering to be a DFS numbering, but also completes
a K3,3-subdivision.

Thus, if the PCK-Tree algorithm creates two K-nodes in the same step, it has found two

K5-subdivisions that do not share two branch vertices. Therefore, the procedure need not

change in this case. Two lists of branch vertices are made and the same checks above are

performed. It happens in this case that the lists will not share exactly two branch vertices;

that is, the algorithm will find an obstruction.

When the algorithm adds the fifth branch vertex to any K5 subdivision, the K-node will

be on the terminal path, or it will be full. Following the rules of the PC-Tree algorithm, the

PCK-Tree algorithm creates a C-node adjacent to the newly added vertex and the vertices

of the terminal path, possibly including the K-node. The edge between the K-node and the

C-node can be contracted (the resulting vertex being a C-node) as between two C-nodes in
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the PC-Tree algorithm. The K5 counter has been incremented and the algorithm keeps the

list of branch vertices (which can now be completed to include all five) to check against

possible future K-nodes. Embedding only the full nodes as always ensures that any empty

vertices are still in the PCK-Tree. Therefore, the K-node can be safely removed from the

PCK-Tree.

It is possible to add the fifth branch vertex of two K5-subdivisions at once. In this case,

they are sure to share at least one branch vertex (the newly added vertex). The algorithm

simply performs the check of the other branch vertices immediately. Both K-nodes are con-

tracted into the new C-node unless the graph is found to be non-toroidal at this step.

The embedding portion of the PCK-Tree algorithm is also similar to that of the PC-Tree

algorithm, with a few additions. There are six ways to embed K5 on the torus, and there are

nine ways to embed M on the torus. Based on the value of ℓ, the PCK-Tree algorithm can

figure out which embeddings of K5 it can choose to create an embedding of the graph. If

ℓ = 1, it can choose any of the six because then the side components of the K5-subdivision

are all planar. If ℓ = 2, there are three it can choose for the first K-node it expands, and

based on an embeddings of M, it can finish the embedding of the graph when it expands the

second K-node because the side components of the M-subdivision are all planar.

4.2 – Example

For an example, consider the K3,3-free graph in Figure 4.4. The steps the PCK-Tree

algorithm takes on this graph are described below. Let the counter for K5-subdivisions be

called ℓ (initially 0) and let the lists of branch vertices be L1 and L2 (both initially empty).

Until adding vertex 8, the PCK-Tree algorithm works exactly like the PC-Tree algorithm.

This results in the PC-Tree shown on the left side of Figure 4.5. When adding vertex 8, there

are three terminal edges all incident to a C-node. At this point, the algorithm recognizes a K5-

subdivision with branch vertices 1, 2, 7, and 8. Therefore, it sets ℓ = 1 and L1 = {1, 2, 7, 8}.

The K-node created is shown in the center of Figure 4.5.
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Figure 4.4: A K3,3-free graph with a DFS numbering.
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Figure 4.5: Example. The PCK-Tree when adding vertex 8, vertex 9, and vertex 10.

Next, the PCK-Tree algorithm adds vertex 9. There are three terminal edges all incident

to a C-node. See the center of Figure 4.5. First, the algorithm completes the first K-node,

because it is a full vertex, by setting L1 = {1, 2, 7, 8, 9}. Then it recognizes a second K5-

subdivision due to the configuration of terminal edges. The algorithm sets ℓ = 2 and L2 =

{3, 4, 7, 9}. Then it checks to make sure the lists of branch vertices are compatible before

continuing. L1 and L2 currently share exactly two members, so no obstruction is detected.

The algorithm continues as usual by embedding all full vertices, thus removing them from

the PCK-Tree, and creating a new K-node for the second K5-subdivision. The result is on the

right side of Figure 4.5. In the last step, the algorithm adds vertex 10 which completes the

second K5-subdivision. The list L2 gets updated to {3, 4, 7, 9, 10} and L1 and L2 still share

only two members. Therefore, the graph is toroidal.

Since there are two K5 subdivisions in the example graph, there must be an M-subdivision.
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The algorithm expands the K-nodes accordingly when stepping back out of the recursive

calls of the algorithm. One of the possible embeddings is shown in Figure 4.6.
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Figure 4.6: Example. A torus embedding of the example graph.

4.3 – Implementation, Complexity, and Correctness

The PCK-Tree algorithm is an extension of the PC-Tree algorithm and borrows its im-

plementation from the planarity check. A K-node is implemented similarly to a C-node:

the only necessary addition is a flag in each edge incident to the implicit vertex to indicate

that it is a K-node. Besides this extension of the PC-Tree data structure, the algorithm also

maintains the aforementioned counter for the number of K5-subdivisions found in the graph

and lists of the known branch vertices of those K5-subdivisions.

By Theorem 3.3, there are at most two non-equivalent K5-subdivisions in a toroidal K3,3-

free graph. Thus, the PCK-Tree algorithm must maintain at most two lists of branch vertices

(each of size at most 5), and these need only be checked against one another. These additions

are clearly independent of the number of vertices in the graph. Therefore, extending the PC-

Tree algorithm to the PCK-Tree algorithm does not increase the complexity. The PC-Tree

algorithm is linear-time, and so is the PCK-Tree algorithm.

To close this chapter, a proof of the following result is given.

Theorem 4.1. The PCK-Tree algorithm correctly identifies toroidal and non-toroidal K3,3-

free graphs, producing an embedding of a toroidal graph, or a subdivision of a toroidal

obstruction (from Theorem 3.2) in a non-toroidal graph.
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Proof. Let G be a K3,3-free graph. If G is toroidal, then it contains at most two non-equivalent

K5-subdivisions by Theorem 3.3 and if it contains two non-equivalent K5-subdivisions, then

it contains a subdivision of M by Corollary 3.4. From the PC-Tree algorithm, the only way

to find a K5 subdivision is to encounter the configuration in Figure 2.12. The PCK-Tree

algorithm detects this configuration, extracts the necessary information about the subdivi-

sion’s branch vertices, and performs a reduction to the PCK-Tree. Because G is toroidal,

the counter ℓ remains less than three and the lists L1 and L2 (if both exist) agree in exactly

two members. In this case, the PCK-Tree algorithm adds all the vertices of G to the PCK-

Tree and then steps back out of the recursive calls building a torus embedding of G. This is

mostly done according to the PC-Tree algorithm. The only additional method involves the

PCK-Tree algorithm choosing one of the six embeddings of K5 on the torus when expand-

ing a K-node, and ensuring that it is one of the three embeddings compatible with the nine

embeddings of M on the torus if ℓ = 2. Therefore, the PCK-Tree algorithm produces a torus

embedding of the graph G.

If G is non-toroidal, then it contains one of the obstructions in Figure 3.3 by Theorem

3.2. These are exactly the graphs that have more than two K5-subdivisions or have two

K5-subdivisions that share fewer than two branch vertices. Therefore, when the PCK-Tree

algorithm finds either the second or third K5-subdivision, it declares G to be non-toroidal

and can provide the appropriate obstruction from Figure 3.3. This detection is outlined in

the proof of Theorem 3.3. �
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CHAPTER 5

KURATOWSKI COVERINGS

Both the Side-Component algorithm in Chapter 3 and the PCK-Tree algorithm in Chap-

ter 4 test for toroidality by exploiting the structure and interaction of K5-subdivisions in

K3,3-free graphs. For general graphs, a toroidality algorithm could exploit the structure and

interaction of Kuratowski subdivisions in the input graph. One way to characterize these

interactions is to determine if the edges of a graph can be covered with Kuratowski subdivi-

sions. This chapter contains an investigation of such graphs and a proof that, despite consid-

erable evidence and conjectures, a covering by Kuratowski subdivisions is not a property

that enables a polynomial-time toroidality check. The main result is that the Kuratowski

cover problem is NP-complete (see Theorem 5.10).

A graph G is coverable by graphs H1,H2, . . . ,Hn if each Hi is isomorphic to a subgraph

of G and every edge of G is in at least one Hi. Often, the Hi’s are isomorphic to each other,

or are taken from a specific set. For example, K4 is coverable by three K3’s, but not two. See

Figure 5.1.

.........

Figure 5.1: K4 is not coverable by two K3’s (the highlighted edge is not in a K3), but it is
coverable with three K3’s.

5.1 – Covering with Two Kuratowski Subdivisions

Glover conjectured that a graph that is a topological obstruction for a surface of genus

g is coverable by 3 − g Kuratowski subdivisions. This was disproven by Brunet, Richter,
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and Širán̆ in 1996 [5] . The counterexample they provided (minimally non-toroidal, but not

coverable with three Kuratowski subdivisions) is shown in Figure 5.2.

...........

Figure 5.2: A counterexample to Glover’s Conjecture.

There is no K5 subdivision in this graph and no K3,3 subdivision contains either of the

highlighted edges. It might be expected that a counterexample would be a non-toroidal graph

that is coverable with four Kuratowski subdivisions, as opposed to one that is simply not cov-

erable with Kuratowski subdivisions. The graph shown above is “built” from two non-planar

graphs. Kuratowski covers seem linked to toroidality and obstructions for embeddability on

a surface of genus g. Additionally, the search for a PCK-Tree based toroidality check relies

on the structure of Kuratowski subdivisions. Therefore, further investigation of Kuratowski

covers is warranted.

Toroidal and K3,3-free

The following is a direct result of Theorem 3.3 and Corollary 3.4.

Theorem 5.1. Suppose G is a toroidal graph with no K3,3 subdivision that is coverable by

two subdivisions of K5. Assuming the two K5 subdivisions have different branch sets, then

G is a subdivision of M, possibly with a second path between the shared branch vertices.

Proof. By Corollary 3.4, there is a subgraph of G that is a subdivision of M. Each of the

covering K5 subdivisions are needed to cover one side of the M subdivision, with possibly

one path between the shared branch vertices left over. Clearly, there can be no other vertices

or edges. �
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Structure

Let G be a graph. To determine if G can be covered with two Kuratowski subdivisions,

consider all possible sets of branch vertices, that is, all B ⊆ V(G) with 5 ≤ |B| ≤ 12. (Ac-

tually, only vertices with degree 3 or more need be considered.) Robertson and Seymour’s

solution to the disjoint paths problem [24] provides a polynomial-time algorithm for deter-

mining if a given set of vertices is the branch set of a Kuratowski subdivision. This may not

provide the Kuratowski subdivision sought for the covering of the graph, but an equivalent

subdivision that covers more edges may exist. Using this test rules out sets of vertices that

are not branch sets of any Kuratowski subdivision. Let B be the set of vertices chosen to

be the branch vertices of either or both of the Kuratowski subdivisions. Let B = V(G)− B

and let G[B] be the graph induced by B. Since the covering paths cannot intersect them-

selves or any other path from the same Kuratowski subdivision except at branch vertices,

it is clear that all vertices in B have degree 2, 3 or 4. If an edge is covered by a path from

each Kuratowski subdivision, the edge is called double-covered. A configuration of edges

and vertices is called reducible if it can be replaced with a configuration with fewer edges or

vertices such that the graph has the same coverability. Such a replacement process is called

a reduction.

Lemma 5.2. Here are some observations about the vertices and edges in the induced sub-

graph G[B] of a graph G where B is a set of branch vertices of two Kuratowski subdivisions.

(i) All vertices of degree 2 can be contracted away without changing the coverability of

the graph (an elementary reduction).

(ii) If G is coverable by two Kuratowski subdivisions, then a vertex of degree 3 has

exactly one incident edge that is double-covered.

(iii) If G is coverable by two Kuratowski subdivisions, then a vertex of degree 4 has no

incident edges that are double-covered.

(iv) If G is coverable by two Kuratowski subdivisions, then double-covered edges in G[B]

have endpoints of degree 3.
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(v) A vertex of degree 3 adjacent to three vertices of degree 4 is an uncoverable config-

uration.

Proof. The proofs of these statements are elementary and are omitted. �

Kuratowski subgraphs in G[B]

One approach to designing a polynomial-time algorithm to test coverability by two Ku-

ratowski subdivisions is to find a set of unavoidable configurations in G[B] and show that

they are all reducible. Ideally, once all possible reductions have been performed, the result

is a small number of vertices in B, which could be checked by brute force.

Theorem 5.3. In a reduced graph, G[B] contains no subgraphs isomorphic to K5 or K3,3.

Proof. Suppose G[B] contains a K5 subgraph. Since K5 is 4-regular and there must be paths

leading to the vertices in B, there must be a vertex of degree 5 in B. This is a contradiction.

Suppose G[B] contains a K3,3 subgraph. Clearly K3,3 cannot be covered with one path.

It is also clear that since K3,3 is 3-regular, a path must enter at a vertex of degree 4 and only

one path enters the K3,3 at that vertex. So, there are at least two paths, each entering and

exiting at a different vertex; there must be at least four vertices of degree 4. There cannot

be five vertices of degree 4 and one of degree 3 since a vertex of degree 3 adjacent to three

vertices of degree 4 is uncoverable. Thus, there are either four or six vertices of degree 4 in

the K3,3.

First assume there are six vertices of degree 4. Without loss of generality, there is one

path from G1 and two from G2. The path from G1 must touch all the vertices of the K3,3,

so its entry points must be in different partite sets. The only possibility, up to symmetry, is

shown on the left side of Figure 5.3 and it determines the paths from G2.

Now assume there are four vertices of degree 4. Then there is one path from each of

G1 and G2. There are two degree 3 vertices that must be adjacent and the shared edge must

be double-covered. Both paths must touch all the vertices of the K3,3, so their entry points

must be in different partite sets. The only possibility, up to symmetry, is shown on the right

side of Figure 5.3. In the first case, the K3,3 is reducible to two adjacent vertices of degree
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4 where the edges leaving one of the vertices correspond to the edges leaving one of the

partite sets of the K3,3. In the second case, the K3,3 is reducible to a single vertex of degree

4. Therefore, any subgraphs isomorphic to K3,3 in G[B] can be reduced. �

................

Figure 5.3: Two ways to cover K3,3 in G[B] and the results after reduction.

5.2 – Using Wagner’s Theorem

Later (see Theorem 5.10) we prove that it is NP-complete to detect those graphs whose

edges can be covered by two Kuratowski subdivisions. Indeed, we prove that a special case

of this problem is NP-complete: it is NP-complete to recognize graphs that avoid a minor

of K5, and can be covered with two K3,3 subdivisions. Graphs that have no K5 minor have

been characterized in a Theorem due to Wagner [28] that uses a new concept and a special

graph.

A clique sum is a way of combining two graphs into a new graph. In particular, a k-clique

sum (or, if the meaning is clear, a k-sum) of two graphs G and H is defined by identifying

the vertices of a Kk subgraph in G with the vertices of a Kk subgraph in H, and then possibly

deleting some of the edges of the Kk subgraph in the resulting graph. Therefore, a 1-sum of

two graphs is just the operation of identifying one vertex in G with another vertex in H. A

2-sum identifies an edge of G with an edge of H, with the edge optionally being removed.

Figure 5.4 shows some clique sums of copies of K4.
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....................

Figure 5.4: A 1-sum and two 2-sums of two K4’s.

Figure 5.5 shows the Möbius Ladder, that is, L4 with two edges connecting the vertices

of degree 2 on opposite corners of the ladder. This graph is called V8. It is also often de-

scribed as C8 with four extra edges, connecting opposite points on the cycle. Finally, V8

can be viewed as K3,3 with two non-incident edges subdivided, and the subdivision vertices

adjacent.

.........................

Figure 5.5: Three pictures of V8: it is the Möbius Ladder, an 8-cycle with chords between
opposite vertices, and K3,3 with an edge between two subdivided edges.

The following is Wagner’s Theorem [28], which characterizes graphs that avoid K5 as a

minor.

Theorem 5.4. K5 is not a minor of a graph G if and only if G is made from 0-, 1-, 2-, and

3-sums of planar graphs and V8.

For example, K3,3 contains no K5-minor, so it should be the 0-, 1-, 2-, and 3-sum of

planar graphs and V8. There are an insufficient number of vertices in K3,3 for V8 to be used

in this sum to produce K3,3. K3,3 can be built from three copies A, B, and C, of the planar

graph K4 in the following way: Take a 3-sum of A and B, keeping the edges of the triangle.

Now take a 3-sum of the result with C on the same triangle, this time deleting the edges of

the triangle. The vertices in the triangle are one partite set of the K3,3 and the other vertices

form the other partite set. See Figure 5.6.
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Figure 5.6: K3,3 as 3-sums of K4’s. The dashed edges get deleted in the second 3-sum.

As an example of the difficulty in detecting which K5-minor-free graphs have edge sets

that can be covered with two subdivisions of K3,3, the following lemma illustrates an analysis

for the graphs that are a 2-sum of V8 with itself.
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Figure 5.7: Three 2-sums of V8 with itself.

Proposition 5.5. A 2-sum of V8 with itself is not coverable with two subdivisions of K3,3.

Proof. Let W be a graph that is a 2-sum of two graphs A,B ∼= V8. Suppose the 2-cut formed

by the 2-sum is {x, y}. Because V8 is not edge-transitive, there are three ways to do this.

They are shown in Figure 5.7. For sake of contradiction, suppose W is covered with two

subdivisions of K3,3, one red and one green. Since they have degree 5, neither x nor y are

in W[B], so each is a branch vertex of at least one K3,3 subdivision. Since {x, y} is a 2-cut

and K3,3 is 3-connected, all branch vertices of one K3,3 subdivision are in A, or they are all

in B. If the red and green branch vertices are both in, without loss of generality, A, then one

red xy-path and one green xy-path must cover all of B, including the edge xy. This is clearly
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impossible. Suppose that the green branch vertices are in A and the red are in B.

If neither x nor y is a green branch vertex, then the red K3,3 subdivision must cover all

of B. Since B is isomorphic to V8, this is impossible. So there is at least one red and at least

one green branch vertex in {x, y}.

Since A is isomorphic to V8, the green K3,3 subdivision cannot cover all the edges of A.

Therefore, there is a red edge (and therefore, a red xy-path) in A−xy. By the same argument,

there must be a green xy-path in B− xy. Therefore, the edge xy can be neither green nor red.

Thus, W is not coverable by two K3,3 subdivisions. �

A 0- or 1-sum of V8 with itself is not coverable with two K3,3 subdivisions because each

subdivision would have to cover an entire component or block isomorphic to V8, but V8 is

not coverable with one subdivision of K3,3 (see the right side of Figure 5.5). By Proposition

5.5, a 2-sum of V8 with itself is not coverable with two K3,3 subdivisions. Finally, V8 has

no triangles, so there is no graph that is a 3-sum of V8 with itself. Therefore, in a graph

avoiding K5 as a minor and coverable by two K3,3 subdivisions, there is at most one subgraph

isomorphic to V8.

Further analysis of the structure of K5-free graphs coverable with two K3,3-subdivisions

is difficult because it leads to the problem of characterizing graphs coverable with two xy-

paths (for two vertices x and y in the graph). This problem is related to finding a Hamiltonian

decomposition in the given graph, a concept introduced and used in the next section.

5.3 – Complexity of Covering with Kuratowski Subgraphs

In this section, we prove that recognizing those graphs with edge sets that can be covered

by two Kuratowski subdivisions is NP-complete. The proof reduces the well known NP-

complete problem of deciding Hamiltonicity of 3-regular graphs to this one.

The Hamiltonian problem is well known and well studied. It asks whether a given graph

has a cycle that passes through each vertex exactly once. Such a cycle is called a Hamiltonian

cycle. Famously, it is NP-complete to determine if a given graph is Hamiltonian. See Figure
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5.8.

.......................

Figure 5.8: The Icosahedron graph is Hamiltonian, but the Petersen graph is not.

A related problem for regular graphs with vertices of even degree is the Hamiltonian

decomposition problem. This asks whether the edges of the given 2r-regular graph can be

partitioned into r disjoint cycles, each of which is a Hamiltonian cycle. See Figure 5.9.

.......

Figure 5.9: A Hamiltonian decomposition. Both the highlighted and unhighlighted edges
are Hamiltonian cycles.

Lemma 5.6. The Hamiltonian decomposability problem for 4-regular planar graphs is de-

cidable in at most twice as much time as the Kuratowski coverability problem for K3,3-free

graphs.

Proof. Let G be a 4-regular planar graph and suppose that the Kuratowski coverability of

K3,3-free graphs is decidable in polynomial time. Let v be a vertex of G with incident edges

e = uv, f1 = w1v, f2 = w2v. Create the graph G′ by performing a 2-sum with G and a

K5 at e, deleting the edge e. Then, for each i = 1, 2 perform another 2-sum with G′ and a

K5 at fi, deleting the edge fi, and call the result G′
i. Clearly G′

i is K3,3-free. Suppose G′
i is

Kuratowski coverable (determinable in polynomial time) for either i = 1 or i = 2. Then

there is a path from u to v and a path from v to wi that together cover E(G)−{e, fi}. Since G
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is 4-regular, these paths are edge-disjoint and both are Hamiltonian. It is clear that by adding

the edge e to the path from u to v and the edge fi to the path from v to wi, two edge-disjoint

Hamiltonian cycles in G are created. Thus G is Hamiltonian decomposable. However, if

neither G′
1 or G′

2 is Kuratowski coverable, then there are not paths from u to v and from v to

wi that cover E(G) − {e, fi}. Therefore, G is not Hamiltonian decomposable. Both G′
1 and

G′
2 must be checked because if G is Hamiltonian decomposable, the K5’s must be attached

at edges in different Hamiltonian cycles. Although the edges in each Hamiltonian cycle are

unknown, either e and f1 or e and f2 are in different cycles. Therefore, if G′
i is coverable

with two Kuratowski subdivisions, then e and fi are in different cycles in the Hamiltonian

decomposition of G. �

We now introduce three results that, with Lemma 5.6, form a chain that leads to the

result in Theorem 5.10. The line graph of a graph G is a graph L(G) with V(L(G)) = E(G)

and where two vertices of L(G) are adjacent if and only if the corresponding edges in G are

incident to the same vertex. First is a theorem due to Sedlác̆ek [25].

Theorem 5.7. The line graph of G is planar if and only if

• G is planar,

• Δ(G) ≤ 4, and

• for all vertices v of G, if deg(v) = 4 then v is a cut vertex.

Condition (iii) of Theorem 5.7 is irrelevant when the graph is 3-regular as in the follow-

ing theorem due to Kotzig [18]. This is the link between the Hamiltonian circuit problem

and the Hamiltonian decomposition problem.

Theorem 5.8. A 3-regular graph is Hamiltonian if and only if its line graph has a Hamil-

tonian decomposition.

Finally, the following result states that the Hamiltonian circuit problem is still NP-

complete even when several strong restrictions are placed on the graph. This was proven

in 1976 by Garey, Johnson, and Tarjan [11].

Theorem 5.9. The Hamiltonian circuit problem is NP-complete even for cubic, planar, 3-
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connected graphs.

With this chain of results, the following is an easy consequence.

Theorem 5.10. The Kuratowski Cover Problem for K3,3-free graphs is NP-complete.

Proof. Let G be a cubic, planar, 3-connected graph. By Theorem 5.9, it is NP-complete

to determine if G is Hamiltonian. Since G is cubic and planar, its line graph L(G) is 4-

regular and is also planar by Theorem 5.7. Due to Theorem 5.8, it is also NP-complete to

determine if L(G) has a Hamiltonian decomposition. By Lemma 5.6, the Kuratowski Cover

Problem for K3,3-free has the same complexity as the Hamiltonian decomposition problem

for 4-regular planar graphs. Therefore, the Kuratowski Cover Problem for K3,3-free graphs

is NP-complete. �
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