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ABSTRACT 

THE EFFECT OF PROTANDIM SUPPLEMENTATION ON OXIDATIVE DAMAGE 

AND ATHLETIC PERFORMANCE 
 

Seteena L. Ueberschlag 

June 25, 2015 

A double-blind placebo-controlled trial determined the long term effects of Protandim® 

supplementation on 5-km running performance, as well as on acute and long-term 

oxidative damage assessed by serum lipid peroxides (Thiobarbituric acid-reacting 

substances: TBARS).  Thirty-eight subjects were placed into one of two groups: an 

experimental (675 mg/day Protandim®) or control group (675 mg/day corn starch). 5-km 

runs were performed at baseline and 88 (SD 4) days post-supplementation with samples 

taken immediately pre- and 10-min post 5-km run, as well as at rest ∼30 and ∼60 days 

during the supplementation period. There was ~25% week-to-week coefficient of 

variation of TBARS at baseline (rested, fasted). The runs did not acutely increase mean 

TBARS, nor was there a change in 5-km time or in mean serum TBARS (at rest, fasted) 

in either group after supplementation. In conclusion, it is unlikely that Protandim® 

improves 5-km performance, or that it reduces serum TBARS at rest.  
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INTRODUCTION 

 
 
 
 
 For many years scientists have connected the process of aging with reactive 

oxygen molecules produced during a human’s normal metabolism. Reactive oxygen 

molecules are often used interchangeably with "free radicals" or "reactive oxygen species 

(ROS)" and cause damage to cellular structures throughout the human body. Cellular 

structures that are most susceptible to cellular damage causing the cell to function 

improperly are cell membranes, DNA, the mitochondria (energy production), and 

immune function (neutrophilic phagocytosis)1. Oxidative stress occurs when the 

production of ROS outweighs the body's ability to remove them1. Therefore, the 

generation of reactive oxygen species causes oxidative stress1. 

 The human body produces these damaging ROS every day during normal living 

and breathing, but ROS are also in the environment in the form of car exhaust, air 

pollution, sunlight, cigarette smoking, alcohol consumption, a poor diet, as well as other 

sources1. As a result of free radicals being all around us in the environment, our bodies 

are constantly at risk of cellular damage unless the necessary precautions are made to 

protect ourselves. 

 Antioxidants are the bodies defense against free radical damage. Antioxidants 

have the ability to help protect every cell in our body from free radicals through reducing 

agents such as dietary antioxidants (such as Vitamin C, Vitamin E, and beta carotene), 
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antioxidant enzymes, and nutritional supplements3. When free radicals are produced in 

the body, antioxidants donate their electrons to stabilize and counteract the free radicals 

damage1. The body's main cellular antioxidant defenses are superoxide dismutase (SOD) 

and glutathione peroxides (GPX) 2. SOD is the body's first line of enzymatic defense 

against intracellular free radical production through removal of one-electron dismutation 

of oxygen (O2
-) to hydrogen peroxide (H2O2) 3. Glutathione (GSH) acts as a substrate for 

GPX to remove hydrogen and organic peroxides (eg. lipid peroxides) within the body3. 

When glutathione levels are reduced in the blood it reflects the redox status of skeletal 

muscle and the heart4. 

 There is a growing amount of evidence that supports the involvement of oxidative 

stress in many pathological processes, including rheumatoid arthritis, arthritis, asthma, 

diabetes mellitus, cancer, atherosclerosis, macular degeneration, chronic fatigue 

syndrome, inflammatory bowel disease, environmental sensitivity, fibromyalgia, and 

neurodegenerative diseases such as Parkinson’s and Alzheimer’s1. Oxidative stress is not 

a disease entity, but rather a state in which the body's antioxidant defenses cannot 

adequately neutralize reactive oxygen species (ROS)1.   

 While the generation of reactive oxygen species (ROS) is a by-product of cellular 

respiration, ROS does increase with increasing intensity of exercise5. As well, physical 

overtraining can also increase oxidative stress5. According to a study by Margonis et al., 

three weeks of six days per week of high intensity resistance training increased TBARS 

by 56% while reducing GSH by 31%, and total antioxidant capacity (TAC) by 20%6. As 

a result of increasing oxidative stress levels, athletes can experience greater fatigue, 

muscle damage, and increased recovery time5. When an athlete experiences any of these 
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symptoms they may not be able to perform to their fullest potential. However, individuals 

whom perform endurance training on a regular basis can increase enzymatic SOD and 

GPX by 25-35% within the muscle7, and 45% in blood6. Endogenous antioxidants 

catalase (CAT), and glutathione (GSSH) can also be activated along with SOD and GPX 

by an acute bout of exercise at sufficient intensity1,8. The results of previous studies have 

demonstrated that the combined response of an antioxidant-rich diet plus antioxidant 

supplementation may provide a synergistic effect together5. 

 As previously mentioned, nutritional supplementation with antioxidants has been 

recognized as a way to provide faster recovery, reduce injuries, improve performance, 

and further enhance overall well-being of athletes9. One study was conducted to 

determine if supplementation with Resurgex Plus would reduce oxidative stress and 

muscle damage in 24 college soccer players5. Resurgex Plus is made from 500 U of an 

oral form of SOD and 1.5 grams of fruit polyphenols. Following twenty days of 

supplementation with Resurgex Plus twice per day, there were no significant 

improvements in performance compared to a placebo group5. Further results showed a 

one marker of oxidative stress, lipid hydroperoxide, decreased slightly post-exercise with 

Resurgex Plus supplementation (2.3 fold increase pre-workout before supplementation 

vs. 1.9 fold increase post-exercise with supplementation, p = 0.067)5. Another significant 

finding of the study was a decrease in muscle damage as seen by a smaller rise in creatine 

kinase (p = 0.044) post-workout compared to pre-workout supplementation5. 

 In order to advance the scientific evidence supporting the beneficial value of 

antioxidants for athletes, further research needs to be done. A number of studies have 

evaluated the effects of antioxidant supplementation, such as Vitamin C and Vitamin E 9-
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15. According to a study by Poljsak15, evidence suggests that supplementation of 

antioxidants no not provide adequate protection against oxidative stress, oxidative 

damage, or increased lifespan. Therefore, more research needs to be performed in the 

area of antioxidant supplementation.  

 Protandim® marketed by LifeVantage Corporation, is a nutritional supplement 

comprised of five phytochemicals components supposedly activates the Nuclear factor 

(erythroid-derived 2)-like 2, (called Nrf2) transcription factor pathway that is integral to 

several antioxidant enzymes, including γ-glutamyl cysteine synthase (an enzyme that 

catalyzes the committed step in glutathione synthesis)74. Nrf2 is a basic leucine zipper 

protein that regulates the expression of antioxidant proteins that protect against oxidative 

damage triggered by injury and inflammation.  Protandim® may induce other endogenous 

antioxidant enzymes, such as SOD and catalase, while decreasing lipid peroxidation16. 

In the past 10 years, there have been some studies published using 

Protandim®16,20-24,73 but only three were assessed in human subjects16,20,73. Two of those 

studies examined long-term oxidative damage assessed by serum lipid peroxides 

(Thiobarbituric acid-reacting substances: TBARS) and found a 20 to 40% decrease in 

plasma TBARS after 30 days of Protandim® supplementation16,73. However, the Nelson 

study was not randomized and not placebo controlled16. The third study, a double-

blinded, randomized, placebo-controlled trial published in 2012, examined the effect of 

Protandim® on pulmonary oxidative stress and alveolar permeability in 30 recovering 

alcoholics20. Protandim® was supplemented in 14 subjects at a dose of 1350 mg/day; 

double the daily dose recommended by the manufacturer) or placebo (in 16 subjects) 

were administered for 7 days. Relative to placebo-treatment, Protandim® had no 
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significant effects on alveolar epithelial permeability or on oxidative stress (TBARS), 

epithelial growth factor, fibroblast growth factor, interlukin 1β, and interlukin-10 levels 

in bronchoalveolar lavage fluid. Treatment with placebo, however, produced a significant 

reduction in plasma levels of TBARS by ~28%20. Thus, there is only ~47 subjects to date 

that has been given Protandim® in humans in scientific research studies.  

As such, due to the limited research on Protandim® in humans, it is necessary to 

add to the scientific literature on this supplement. There are no studies evaluating the 

effects of Protandim® supplementation on endurance performance or subjective measures 

of quality of life according to the WHOQOL-BREF17. This study will address these 

issues.  

Significance of the Study 

 A nutritional supplement is a product taken orally that contains a dietary 

ingredient intended to supplement the diet18. These include vitamins, minerals, herbs, or 

other botanicals, amino acids, and substances18. These include nutritional supplements 

that may help a recreational exerciser, elite athlete, or every day person improve their 

overall health and well-being18. 

 The results of this proposed study are important because it may provide an easy, 

practical, and scientifically proven antioxidant supplement regime for athletes to reduce 

their resting and post- 5-km oxidative stress levels as well and improve performance 

outcome. If the research hypothesis is correct and oxidative damage is reduced at rest and 

post 5-km race, athletes may have improved athletic performance during competitions. 

Also, as a result of the frequency, intensity, and time demanded for a varsity cross-

country or track athlete to train for their sport, it is very important for athletes to practice 
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the best known nutritional practices based on scientific evidence in order to continually 

improve their performance (running time) and overall health and well-being.  

 Not only could this study examine the effect of Protandim® on running 

performance, but this study could also assess either the physical or mental components of 

quality of life according to the WHOQOL-BREF questionnaire17. Therefore, the results 

of this study are advantageous for athletes looking to improve their personal performance 

by decreasing oxidative stress level, while simultaneously improving quality of life.  

 The results of this study are important for sports practitioners so they can 

determine each athletes antioxidant needs to perform a specific sport. Protandim® 

supplementation may also impact the overall well-being of the athlete allowing for faster 

recovery, and a reduced number of injuries9. Finally, assessing blood markers of 

oxidative stress allows evaluation of one's reduction/oxidation ("redox") balance which 

can identify imbalances and prevent chronic illnesses19. 

Purpose of the Study 

 The main objective of Protandim® supplementation is to reduce oxidative stress 

created in the body16. Since oxidative damage is connected to many diseases endpoints, 

determining the effectiveness of Protandim® at reducing oxidative stress produced 

following endurance performance may provide reliable and beneficial answers. 

 Currently there are no studies that have examined the effects of  Protandim®  

supplementation on oxidative stress and endurance performance, although a similar study 

was conducted supplementing with a proprietary antioxidant and nutraceutical blend5.  
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 The purpose of the present study was to evaluate the effect of ~90 day  

Protandim®  supplementation on 5-km running performance on acute and long term 

oxidative damage as assessed by serum lipid peroxides (Thiobarbituric acid-reacting 

substances: TBARS). Secondarily, another purpose of this study was to evaluate the 

effect of  Protandim®  supplementation on measures of quality of life. The experiment 

was a double-blind, placebo controlled study.  

Research Questions & Hypotheses 

The study will address four specific research questions: 

1. Does regular supplementation of Protandim® (675 mg/day for 90 days) reduce oxidative 

damage at rest as assessed by lipid peroxides (TBARS) in well-trained runners?  

Hypothesis: Based on the data by Nelson et al., oxidative damaged will be reduced by 

40% (effect size = 4.8)16 . 

2.  Does regular supplementation of Protandim® in well-trained runners reduce the increase 

in oxidative damage post-race compared to pre-race as assessed by lipid peroxides 

(TBARS)?  Hypothesis: Based on the data by Kyparos et al., we expect a 45% increase in 

TBARS post-exercise compared to pre-exercise (effect size of 3.6)25.  However, we 

expect that those that are on  Protandim®  for 90 days will only have  31% increase in 

TBARS post-race (effect size = 2.5) [based on changes in pre-post lipid peroxides from 

Arent et al.5] 

3. Does regular supplementation of Protandim® improve 5-km running times in well-trained 

runners? Hypothesis:   Protandim® will improve 5-km running time by 0.5 min (SD 1-

min). This is equivalent to an effect size of 0.5. The placebo group will have no change in 

performance. 
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4. Does regular supplementation of Protandim® improve any one of the four domains of 

quality of life according to the WHOQOL- BREF17. Hypothesis: There will be a 

statistical improvement in the quality of life post- Protandim® supplementation which a 

small effect size improvement of 0.33. 

Definition of Terms 

 For the purpose of this study, the following terms and their associated abbreviations 

are defined.  

1. Antioxidant – any compound that protects biological systems against the potential 

harmful effect of processes or reactions that can cause excessive oxidation26. 

2. Cysteine – is the rate-limiting amino acid for GSH, but also functions as an 

extracellular antioxidant and is a precursor for taurine, inorganic sulfate, acetyl-

Coenzyme A, and protein synthesis. A water-soluble antioxidant27. 

3. Cystine – is the oxidized disulfide form of cysteine (Cys) and is the predominant 

form of cysteine in the blood due to its greater relative stability. High cystine 

compared to cysteine, however, suggests a shifted redox balance and oxidative 

stress27. 

4. Cysteine/Cystine Ratio – is a reliable indicator of extracellular redox potential in 

the body. A low ratio can indicate a redox imbalance in the body, i.e., oxidative 

stress (noted in many chronic diseases)27. 

5. Dietary Supplement – a product taken orally that contains a dietary ingredient 

intended to supplement the diet. These include vitamins, minerals, herbs, or other 

botanicals, amino acids, and substances18. 
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6. Endurance – is defined as the time limit of a person’s or animal’s ability to 

maintain a specific power level during a running protocol11.  

7. Free Radicals – any chemical species that has one or more unpaired electrons25. 

8. Glutathione (GSH) – a tripeptide made up of Glutamine, Glycine, and Cysteine 

and is the body’s most potent endogenous antioxidant. GSH has a central role in 

preventing oxidative stress, functioning as an intracellular antioxidant, as well as 

a detoxifying agent. Oxidative stress results when there is low GSH levels in the 

body27. 

9. Lipid Peroxides – When prolonged or severe, oxidative stress eventually results in 

tissue damage and increased risk of disease, as indicated by an elevated lipid 

peroxides (reflecting oxidative damage to lipids in the body)27. 

10. Overtraining Syndrome (OTS) – is characterized by declining performance 

despite an extended rest period, accompanied by physiological, biochemical, 

immunological, and psychological symptoms6. 

11. Oxidative Stress – Oxidative stress results when pro-oxidants are insufficiently 

balanced by antioxidants, resulting in cellular damage. It is thus possible for 

antioxidant levels to be normal yet still inadequate in the face of excessive ROS 

production29. 

12. Reactive Oxygen Species – is a general term for molecular oxygen-derived 

molecules that are reactive species or that are converted to reactive species. 

Reactive oxygen species causes oxidative stress1. 
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13. Redox State (or Redox Balance) – The continuous interaction between reactive 

oxygen species and the cellular environment. Determines the level of oxidative 

stress, which has been linked to many diseases30. 

14. Superoxide Dismutase (SOD) – Are endogenous antioxidant enzymes that protect 

against oxidative stress. SOD is critical for preventing the superoxide radical from 

generating other highly reactive species through its interactions with iron29. 

15. Total Antioxidant Capacity (TAC) – reflects the collective power of reducing 

agents to neutralize free radicals for each individual29.   

16. Sulphate – is produced from cysteine via sulfoxidation.  Sulphate is a critical 

factor as part of Phase II detoxification reactions27. 

Delimitations    

The participants in the study were recruited from running clubs across the local 

community of Louisville. This group of participants was chosen based on the close 

proximity to University of Louisville for exercise testing. The average 5-km running 

times placed these runners as local or regional class runners, thus, extrapolating the 

results to a higher caliber athlete may be tenuous.     

Assumptions 

This study will use self-reporting for data collection. Participants will adhere to 

the supplement regime as directed (1 pill a day for 90 days). We also expect the runners 

to provide accurate information to the research team regarding their running logs, 

including the intensity, duration, and frequency of their running regime. Another 

assumption we must make is that athletes will provide a best effort during each of 5-km 
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trials throughout the entire study. We must also assume the participants are not taking 

any other supplements throughout the course of the study. Furthermore, we are assuming 

that the runners will discontinue the use of any other supplement prior to the start of the 

study and not take any other supplement throughout the course of this study. Lastly, we 

assume the athletes are maintaining their fitness level throughout the duration of the 

study. 
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LITERATURE REVIEW 

 

 

Background on Oxidative Stress Testing  

 As previously stated, through normal human activity every day- detoxification of 

pollutants, immune defense, and energy production, free radicals are produced in the 

body. Continual free radical production can be damaging to the human body causing 

greater risk of disease and aging. However, free radical production can be controlled and 

counter-balanced by antioxidants present in our body and from supplementation. Therein 

lies the importance and benefits of oxidative stress testing.  

 Oxidative stress testing is used to assess equilibrium between oxidative damage 

and antioxidant reserve in the body. The first measure of oxidative stress testing 

addresses antioxidant reserve, which provides protection against free radical damage and 

is necessary for healthy functioning of neural, immune, endocrine, and detoxification 

systems in the body29. Our body’s antioxidant reserve includes glutathione, total 

antioxidant capacity (TAC), cysteine, sulphate, cysteine/sulphate, cystine, and 

cysteine/cystine ratio29. The second measure of oxidative stress testing in the blood is 

enzyme protection29. The components of enzyme protection, superoxide dismutase 

(SOD) and glutathione peroxides (GPx), provide essential defense against oxidative 

damage29. The last measure of oxidative stress testing is tissue damage. Tissue damage is 

measured by lipid peroxides in the blood and can determine the amount of imbalance 



13 
 

between free radical production and antioxidants. However, the measured amount of lipid 

peroxides is far to general and lacks specificity of the location of the oxidative stress 

within the body. When lipid peroxides in the blood are high, oxidative damage occurs. 

Table 1 shows the reference ranges for each measure of protection, enzymes, and damage 

from blood samples29.  

Blood Measurements of Oxidative Stress 

ANTIOXIDANT RESERVE 

 The strongest most powerful endogenous antioxidant produced by the body is 

glutathione (GSH). Glutathione has many roles as an antioxidant such as detoxification of 

xenobiotics, which are found in pesticides and plastic, as well as prevention of many 

disorders and chronic diseases4. When glutathione levels are deficient, individuals are at a 

higher risk for heart disease, AIDS, stroke, diabetes, Parkinson's and Alzheimer's disease, 

cancer, and inflammatory bowel disease4. Glutathione is a tripeptide composed of amino 

acids cysteine, glutamic acid and glycine, which synergistically work to prevent oxidative 

stress4.  

 When free radicals are produced in the body GSH synthesis is upregulated to 

reduce inflammation and protect the body from harmful damage. GSH concentrations are 

not unlimited and when stores in the blood and tissues become depleted they need to 

become replenished27. According to the Interpretive Guidelines by Genova Diagnostics27, 

low GSH is associated with reduced antioxidant capacity, reduced ability to detoxify 

environmental toxins and byproducts of metabolism, compromised gut lining, decreased 

immunity, reduced exercise endurance, and lastly, reduced SAMe synthesis and 
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methylation. S-Adenosyl-L-methionine (SAMe) is synthesized from L-methionine and 

ATP in a 2-step reaction where the complete tripolyphosphate moiety is cleaved from 

ATP as SAMe is being formed27. 

 There are a number of treatment options to increase glutathione levels in the 

blood. These include: 1) consuming a diet rich in antioxidants (which will be discussed 

later), 2) supplementation (e.g. digestion support, GSH and/or its building blocks and 

cofactors, B2, B6, B12, and folic acid), 3) additional supportive nutrients (e.g. vitamins C 

& E, plant-based antioxidants, B5, selenium, zinc, and bioflavonoids)27. 

 Total Antioxidant Capacity (TAC) is defined as the total amount of all 

antioxidants in a person’s blood27. TAC is the overall cumulative effect of all 

antioxidants to neutralize free radical damage and prevent oxidative stress to tissues27. 

Similar to GSH, low TAC has been observed in individuals with heart disease, metabolic 

syndrome, major depression, sepsis, fibromyalgia inflammatory bowel disease, cancer, 

sulfite excess, and hypertension27.  

 In order to neutralize ROS in the blood it is important to first identify the cause of 

oxidative stress such as from infection, inflammation, toxic metal exposure etc27. Once 

the cause of oxidative stress is known, treatment options include a diet rich in 

antioxidants, as well as a combination of fat-soluble and water-soluble antioxidants 

including vitamins C, E, and A, GSH and precursors and cofactors, beta-carotene, 

Coenzyme Q10, and epigallocatechin gallate (ESCG- green tea extract) to name a few27. 

Increasing TAC is most effectively done when more than one treatment option is 

performed since TAC encompasses the whole antioxidant levels in the body27. TAC 

measurement is the best indicator of antioxidant levels in the blood and tissue27. 
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 A third antioxidant reserve measured in the blood is Cysteine. Cysteine is a semi-

essential amino acid and functions as a rate-limiting amino acid in GSH synthesis27. 

Cysteine also serves as a precursor for the amino acid taurine, inorganic sulfate 

(important for detoxification), acetyl-Coenzyme A, and protein synthesis27. When low 

levels of Cysteine are observed in the blood there is reduced antioxidant capacity as well 

as a reduced ability for the body to form GSH27. Individuals with low GSH are at a higher 

risk for oxidative stress and many chronic diseases27. 

 A fourth blood measurement of oxidative stress is the Cystine and the 

Cysteine/Cystine Ratio27. Cystine is the oxidized form of cysteine (Cys), and when levels 

of cystine are high, oxidative stress is present27. A low cysteine/cystine ratio is also 

associated with a redox balance in the direction of oxidative stress27. Low ratios are 

linked to aging, smoking, and chronic conditions such as atherosclerosis, amyotrophic 

lateral sclerosis (ALS), Parkinson's and Alzheimer's disease, diabetes, cancer, persistent 

atrial fibrillation, and cataract formation in the eyes27.  

 A fifth measurement of oxidative stress in the blood is the Sulfate and the 

Cysteine/Sulfate Ratio27. Sulfate is produced from Cysteine by means of sulfoxidation. 

Sulfates role in the body is detoxification27. Therefore, when individuals have a low 

cysteine/sulfate ratio and/or low sulfate in the blood, they are at a greater risk of leaky 

gut, environmental illness, food sensitivities, rheumatoid arthritis, motor neuron disease, 

Alzheimer's and Parkinson's disease, and gastrointestinal tract problems27. When high 

concentrations of sulfate are observed in the blood it can directly lower total antioxidant 

capacity (TAC) as well as increase lipid peroxides as a result of oxidative stress27. 
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ENZYME PROTECTION 

 The human body classifies cellular antioxidant defenses into two categories: 

enzymatic and nonenzymatic antioxidants27. The main antioxidant enzymes that provide 

a vital defense against oxidative stress are superoxide dismutase (SOD), glutathione 

peroxides (GPX), and catalase (CAT)27. Both SOD and GPX are endogenous 

antioxidants, meaning they are produced by the body and therefore provide the greatest 

protection against oxidative stress4. Superoxide dismutase is the first line of enzyme 

defense against free radical production by removing one-electron dismutation of oxygen 

(O2) to hydrogen peroxide (H2O2) 4. Glutathione peroxides catalyses the reduction of 

H2O2 and organic hydroperoxide to water and alcohol, respectively, using GSH as the 

electron donor4. Glutathione serves as a substrate for GPX to remove hydrogen and 

organic peroxides (e.g. Lipid peroxides)4. GSH is then oxidized to oxidized glutathione 

(GSSH) by donating a pair of hydrogen ions3. Reduced glutathione measured in the blood 

can adequately reflect the redox status (oxidative stress) of skeletal muscle and the heart4. 

Imbalances in SOD levels have been linked to Parkinson's and Alzheimer's disease, ALS, 

neurological diseases, Down's syndrome, impaired glucose tolerance, diabetes, dengue 

fever, and cataracts27. GPX is considered an irreplaceable antioxidant in the mitochondria 

of the cell because mitochondria do not contain catalase for protection against 

peroxides27. Imbalances in GPX are linked with accelerated aging, as well as chronic 

disorders such as cardiovascular disease, cancer, diabetes, Alzheimer's disease, alcohol-

induced oxidative stress, cholecystitis (inflammation of the gallbladder), and urticaria (a 

rash of round, red welts on the skin that itch intensely, sometimes with dangerous 

swelling, caused by an allergic reaction)27.  
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DAMAGE 

 The final measurement included in oxidative stress testing is lipid peroxidation. 

The oxidation of lipids, also known as lipid peroxidation, is a marker of injury caused by 

free radical damage to polyunsaturated fatty acids (PUFAs), suggesting that production of 

ROS has been inadequately imbalanced by antioxidants27. In the face of excessive ROS it 

is possible for antioxidant levels to be normal, however still inadequate due to high levels 

of ROS production27. Lipid peroxidation in cell membranes can result in cellular 

dysfunction and is associated with increased risk of disease27. Normal lipid peroxide 

values demonstrate the ability of antioxidants to prevent oxidative stress, and therefore 

oxidative damage has not occurred27.  

Earliest Research on Oxidative Stress and Exercise 

 The earliest research conducted in the area of oxidative stress and exercise was 

performed in the fifties and showed evidence of free radicals present in muscles with 

exercise31. Further studies conducted in 1980 by Koren et al.,32 showed that when limb 

muscles are stimulated to contract repeatedly, free radical content in the muscle tissue 

and blood were elevated. Following these findings, research was performed in 1982 by 

Davies et al.,33 which demonstrated free radical production in skeletal muscle of rats after 

running until exhaustion. Another study performed 10 years later by Vina et al., showed 

that a single bout of exhaustive exercise causes oxidative stress but only when the 

exercise is exhaustive12. The findings of these three studies were just the beginning of 

research on oxidative stress and exercise.  
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Exercise Frequency, Intensity, and Duration Effecting Free-Radical Production 

 The intensity at which an individual exercises does affect the amount of free 

radicals produced. Low-intensity exercise causes lower free radical production and 

typically does not exceed antioxidant capacity, therefore it does not result in oxidative 

stress34. However, the higher the intensity of exercise an individual performs, the greater 

the free radical production and oxidative stress34.  

 When an individual performs moderate intensity physical activity there is mild 

tissue trauma which decreases during recovery6. When moderate physical activity is 

performed on a regular basis the human body is able to adapt to the stress from exercise 

and athletic performance improves6. When exercise volume, intensity, or frequency are 

increased too much all together or individually, the body is not able to recover quickly 

enough and tissue damage results6. If intense training continues for a prolonged period of 

time the individual will experience a decline in performance accompanied by 

biochemical, physiological, psychological, and immunological symptoms6.  In exercise 

and sports, this is called Overtraining Syndrome. Overtraining syndrome has been 

reported to produce high levels of free radicals, causing oxidative damage6. According to 

a study by Margonis et al., there is a dose response relationship between training load and 

oxidative stress biomarkers, were exercise induced overtraining elicits a significant 

response of oxidative stress biomarkers6.  

 The effects of overtraining also have an impact on maximal strength performance. 

Overtraining causes prolonged muscular strength deterioration and is associated with 

ROS-induced muscle damage. Margonis et al., investigated responses to oxidative stress 

biomarkers to a resistance training protocol of progressively increased and decreased 
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volume and intensity6. Twelve males (21 (SD 2) participated in the 12-week resistance 

training program consisting of five three-week periods of varying frequency, intensity 

and duration for each group, followed by a three week period of rest6.  They showed that 

when a decline in maximal strength performance was observed, biomarkers of oxidative 

stress reduced glutathione/oxidized glutathione (GSH/GSSG) and urinary F2-

isoprostanes (F2-IsoP) increased6. The results of blood samples demonstrated that 

TBARS increased following overtraining by ~56%6. A second finding showed exercise-

induced oxidative stress, observed by lipid peroxide levels, may not reach peak levels 

immediately post-exercise and may has a delayed response6. This was proven in the 

present study when TBARS elevated (40-70%), at 48 hours post-exercise in the strenuous 

exercise group6. Higher TBARS concentrations 48 hours post-exercise were likely caused 

by lipid peroxidation of low density lipoproteins (LDL) in the blood cause injury to 

muscle cell membranes6. Therefore, overtraining results in an increase in oxidative stress 

biomarkers that are proportional to the frequency, intensity, and duration of the training 

protocol6.  

 In the same study by Margonis et al., the antioxidant glutathione (GSH) decreased 

by ~30% in the blood following overtraining only, and ~20% following intense resistance 

exercise, but both returned to normal levels soon after6. Lower training intensities and 

volumes did not have a significant effect on participants’ glutathione levels and therefore 

adequate levels of GSH were present prior to exercise to counterbalance the small 

amount of free radicals produced6. Total antioxidant capacity (TAC) increased following 

light and intense training, but decreased following overtraining6. The increase in TAC 

levels can be explained by an elevation in uric acid6. Uric acid accounts for 
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approximately one-third of TAC in the body and is elevated post-exercise to 

counterbalance free radical production6.  

 There have been numerous studies showing the effects of oxidative stress 

following extreme exercise (indicated by increases in plasma TBARS), but there has only 

been one study performed on rats that investigated endurance exercise overtraining35. 

However, the results of the study were not significant in showing endurance exercise 

overtraining causes an increase in oxidative stress, likely because the training protocol 

was not strenuous enough in nature35. 

 As previously stated, exercise duration does effect the amount of oxidative stress 

produced in the body. In a study by Revan et al., short duration high intensity exhaustive 

running of ~4 minutes in duration was performed by males approximately 24 years of 

age8. They examined lipid peroxidation, antioxidant status and muscle damage post-

exercise8. The results of this study showed a non-significant decrease in GPX levels in 

the blood, which demonstrates that there is likely a relationship between exercise 

performed to exhaustion (intensity) and the duration of the exercise performed8. 

 Numerous studies have investigated the effects of short duration exhaustive 

exercise and endurance exercise on oxidative stress level but only one has compared the 

blood redox status at rest and post-exercise in two groups of rowers, a group that showed 

exercise-induced hypoxemia during rowing, and a group that did not25,28. The two groups 

of trained rowers showed no significant difference in baseline redox status, however both 

groups showed significant increases in oxidative stress levels post-2000-m row, observed 

by increases in serum TBARS, protein carbonyls, catalase activity and TAC25,28. 

Therefore, despite differences in oxygenation during exercise between the two groups,  
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well-trained rowers showed similar and significant post-exercise increases in oxidative 

stress25,28.  

Chronic Training and its Effects on Oxidative Stress 

 There is a lack of research performed on humans regarding whether chronic 

exercise training produces less oxidative stress. Recent studies performed on mice have 

shown that ROS can exert favorable effects in the process of training adaptation36. With 

chronic training there is an up-regulation of endogenous antioxidant enzymes such as 

mitochondrial superoxide dismutase (MnSOD), glutathione peroxidase, and γ-

glutamylcysteine synthetase (GCS) 36. The up-regulation of these antioxidants results 

from the cumulative effects of repeated exercise bouts36. However, the exercise intensity 

must be sufficient enough to stimulate ROS and therefore cause an up-regulation of 

endogenous antioxidants36. Not only has chronic training in animals resulted in less 

oxidative stress compared to untrained animals, but regular exercise has also shown to 

prevent chronic diseases and increase longevity 11,36. In a similar study, when 

antioxidants were administered to rats before regular training, these training adaptations 

were diminished because the antioxidants interfered with muscle cell adaptation36. 

However, when exercise training was exhaustive in trained rats, results showed it was 

beneficial to consume an antioxidant supplement since the generation of ROS would 

overwhelm endogenous antioxidant defences36. 

Acute and Long Term Effects of Lipid Peroxidation, TAC, GPX, and SOD. 

 Acute exercise training can promote oxidative stress within the blood. One of the 

most widely used measurements of oxidative stress is plasma thiobarbituric acid-reactive 
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substances (TBARS)25. TBARS is a strong marker of lipid peroxidation that reflects 

oxidative damage to polyunsaturated fatty acids within the cell membranes of our DNA25. 

At rest and during exercise, serum TBARS elicits a moderate to strong correlation with 

lipid peroxide values within the heart muscle (r= 0.71 and r= 0.99 respectively), and a 

strong and moderate correlation (r=1.0 and r= 0.68) at rest and during exercise with the 

liver25. In the review of literature on the acute effects of intense exercise on oxidative 

damage, as represented by lipid peroxidiation obtained from serum blood samples, there 

was a mean increase in oxidative damage with an standardized mean difference (or effect 

size) +1.6 using a random effects model (n = 282 subjects, 22 studies, Figure 1 5,8,25,38-56). 

The preponderance of data suggests that acute intense exercise increases serum lipid 

peroxide from pre- to post exercise. Therefore, it can be stated that an acute bout of 

strenuous exercise bout can promote oxidative stress within the blood35. 

 In the review of literature on the acute effects of intense exercise on superoxide 

dismutase concentration from serum blood samples, there was a mean increase in the 

concentration of this antioxidant enzyme in the blood with an standardized mean 

difference (or effect size) +1.2 using a random effects model (n = 85 subjects, 8 studies, 

Figure 2 40,42,45,48,50,51,54,55). The prevalence of data suggests that acute intense exercise 

increases serum superoxide dismutase from pre- to post exercise. 

 Based on the findings of 11 studies investigating the acute effects of intense 

exercise on glutathione peroxidase concentration from serum blood samples, there was a 

mean increase in concentration of  this antioxidant enzyme in the blood with a 

standardized mean difference (or effect size) +0.8 using a random effects model (n = 167 
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subjects, Figure 3 8,19,40-42,45,49,50,52,54,55). According to these findings, acute intense 

exercise increases serum glutathione peroxidase from pre- to post exercise. 

 Several studies have analyzed the acute effects of intense exercise on total 

antioxidant capacity (TAC) concentrations from serum blood samples. Based on the 

results of 9 studies, there was a mean increase in this parameter showing a standardized 

mean difference (or effect size) +1.2 using a random effects model (n = 143 subjects, 

Figure 4 13,19,25,28,38,39,45,48,49,52). Data taken from Kyparos et al.25,28 seemed to be the same 

data published in both articles, therefore nine studies were used in the meta-analysis. The 

data suggests that acute intense exercise increases serum total antioxidant capacity from 

pre- to post exercise. 

 Based on a review of literature performed looking at the long term effects of 

chronic training on oxidative damage, as represented by lipid peroxides obtained from 

serum blood samples in a rested state after a period of long term training, there was no 

statistical effect of long term training on serum lipid peroxide using a random effects 

model (n = 61 subjects, 5 studies, Figure 5 43,49,52,55,57). The data from these studies 

suggests that long term chronic training has no effect on serum lipid peroxides taken at 

rest after long term training.  

 A literature review was performed to determine the long term effects of chronic 

training on superoxide dismutase, as obtained from serum blood samples in a rested state 

after a period of long term training. There was no statistical effect of long term training 

on serum superoxide dismutase values using a random effects model (n = 26 subjects, 2 

studies, Figure 6 55,58). Based on these two studies, data suggests that long term chronic 
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training has no effect on serum superoxide dismutase taken at rest after long term 

training.  

 Based on four studies that investigated the long term effects of chronic training on 

glutathione peroxidase, as obtained from serum blood samples in a rested state after a 

period of long term training, there was no effect of long term training on serum 

glutathione peroxides values using a random effects model (n = 53 subjects, Figure 7 

49,52,55,58). Based on these results, the data suggests that long term chronic training has no 

effect on serum glutathione peroxides taken at rest after long term training.  

 A review of literature was performed on the long term effects of chronic training 

on total antioxidant capacity, as obtained from serum blood samples in a rested state after 

a period of long term training. There was no effect of long term training on serum total 

antioxidant values using a random effects model (n = 42 subjects, 4 studies, Figure 8 

43,49,52,57). The data suggests that long term chronic training has no effect on serum total 

antioxidant capacity taken at rest after long term training. 

Sources of Antioxidants in Food 

 At the present time, there is not a recommended daily amount of antioxidants an 

individual should consume on a daily basis59. The amount of antioxidants each person 

should have will be different depending on activity levels and competition goals59. A diet 

high in antioxidants can fend off exercise-induced oxidative stress and promote training 

adaptations9.  

 Reducing exercise-induced oxidative stress takes dietary planning. High amounts 

of antioxidants can be found in fruits and vegetables9. The brighter the fruit or vegetable 

is, the higher its antioxidant content9. In general, each color group of fruit or vegetable 
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represents a class of antioxidants9. It is recommended that individuals consume a few 

servings from each color group every day for optimal health9. 

 Research has shown that the body's ability to produce its own internal endogenous 

antioxidant enzymes (SOD, GPX, and catalase) is more effective in fighting free radicals 

than consuming an antioxidant supplement11. In a study by Jacob et al.,60 normal healthy 

men (both smokers and non-smokers) with low intakes of fruits and vegetables consumed 

a moderate supplement of vitamins E, C, and folic acid to reduce oxidative stress. The 

results of the study showed no significant change in normal healthy males oxidative 

stress levels with supplementation of vitamins E, C, and folic acid60. A similar study 

performed by Van den Berg et al.,61 and Moller et al.,62 showed that supplementation 

with a daily intake of 600 grams of fruits and vegetables or supplementation with a 

concentrate of fruits and vegetables results in no significant effects on markers of 

oxidative stress. Therefore, there appears to be no improvement in reducing oxidative 

stress through antioxidant supplementation16. 

The Effects of Antioxidant Supplements on Health 

 Most research conducted using nutritional antioxidants are vitamins E and C63. 

The optimal antioxidant intake is one that minimizes the incidences of both deficiency 

and toxicity9. For example, when doses of vitamin E are excessively high, it may 

interfere with vitamin K metabolism as well as platelet function64. Other antioxidants 

such as selenium, vitamin C, and vitamin E in high does can act as pro-oxidants in the 

body. Excessive high doses of zinc has also been associated with depressed immune 

functioning64. 
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  The results of these studies lead us to believe that high-dose antioxidant 

supplementation may disrupt our body's natural antioxidant defense against ROS. Since 

approximately 70% of the U.S. population uses isolate high-dose antioxidant supplements 

at least occasionally and 40% uses them on a regular basis, individuals may be causing 

more harm than good to their body every day11. 

 Currently, there is debate as to whether athletes should consume high doses of 

antioxidants to help reduce the increased production of ROS. However, research as early 

as 1971 reported that vitamin E supplementation (400 IU daily for 6 weeks) had no 

benefits, but did have result in unfavorable effects on the adolescent swimmers endurance 

performance65. More recently, a study was performed to determine the effects of vitamin 

C supplementation on training-induced increases in aerobic capacity and endurance, and 

on skeletal muscle mitochondrial biogenesis in rats and humans11. The results of the 

study showed vitamin C supplementation significantly reduced endurance capacity in 

rats, and did not improve aerobic capacity in both humans and rats11. Vitamin C 

supplementation prevented the activation of antioxidant enzymes in skeletal muscle when 

exercise was performed11. Vitamin C supplementation also hindered endurance 

swimmers’ mitochondria biogenesis in skeletal muscle, which is directly related to 

endurance capacity11. Thus, since endurance capacity may be negatively affected by 

vitamin C and E supplementation, athletes should not consume high-dose vitamin C and 

E supplements since it could hamper their performance11. 

Antioxidant Supplementation and Athletes 

 Athletes are normally the healthiest and fittest individuals, yet ironically athletes 

are among the highest consumers of supplements on the market today59. Athletes are 
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generally those with 1) the healthiest diet that is high in fruits and vegetables, 2) non-

smokers, and 3) have a regular, structured exercise program59. Through regular training 

on a daily basis and a progressive training load, an individual's antioxidant reserve adapts 

and is able to produce enough antioxidant enzymes to rid the blood and muscle tissue of 

ROS more rapidly 41,59. However, the speed at which each individual’s endogenous 

antioxidant reserve adapts to a training load differs59. The adaptive response is the 

function of individual factors such as the type of exercise performed, the age of the 

individual, the training period and level, environmental conditions, and lastly inter-

individual differences59.   

 Athletes are always seeking out ways to improve their performance and the best 

method may require improving their daily nutrition and removing foods and drinks which 

cause ROS (e.g. alcohol)59. A healthy diet can play a protective role in reducing ROS 

produced throughout the day and during exercise when ROS levels are higher59. The 

adequate intakes of antioxidant micronutrients for athletes is unknown because it has 

been poorly investigated in the past59.  

 Traditionally, antioxidant supplements have been prescribed to athletes 

undergoing intensified training protocols to aid in the maintenance and balance of 

oxidative, inflammatory, and neuro-endocrinological systems2. However, the excessive 

nature in which some individuals’ intake antioxidant supplements may suppress redox 

signaling processes and reduce the benefits of regular training within the cell2. 

Nevertheless, at the present time there are findings reporting the potential of antioxidant 

supplements to interfere with the body's ability to adapt to exercise, causing reduced 

performance2. 
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 Future research should focus on the amount of antioxidant supplementation 

athletes require to improve athletic performance without interfering with cellular 

signaling processes2,59 . 

Sex Differences and Inter-Individual Differences 

 Research has shown that gender is a determinant of aging and an individuals' life 

span, however little is known about free-radical homeostasis differences between males 

and females66. Many factors contribute to the aging process, but it is known that free 

radicals play a key important role66. Since it has been demonstrated that females have a 

longer life span than males, it is believed that females live longer as a result of lower 

oxidative stress levels66. Further research has reported gender differences influence the 

adaptation to changes in antioxidant capacity66. Studies has shown that males and females 

have different ROS production following exercise66. 

 According to a study by Mullins et al., there were no significant differences in 

changes in protein carbonyls (PC), GPX, and TAC between females and males following 

a maximal treadmill exercise test to exhaustion19. However, males were found to have a 

higher GPX pre-exercise compared to females, as well as higher post-exercise TAC and 

GPX values compared to females following a maximal treadmill exercise test19. Although 

there were no significant changes in PC, GPX, and TAC levels between males and 

females, it is believed there is a large inter-individual difference in exercise-induced 

changes in oxidative stress and antioxidant biomarkers, suggesting there may be 

responders and non-responders to exercise induced oxidative stress19.  
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Resurgex and its Effects on Oxidative Stress  

 Nutritional supplementation with antioxidants have been discussed as a way to 

further enhance overall well-being for athletes, faster recovery, minimization of injury 

time, and overall improved performance9. One study used Resurgex Plus (which includes 

500 U of an oral form of SOD and 1.5 grams of fruit polyphenols) in 24 fit male college 

division 1 soccer players to determine if supplementation decreased muscle damage and 

reduced oxidative stress5. The experimental group consumed Resurgex supplements 2x 

per day for 20 days and results showed no improvement in performance compared to the 

placebo group5. However, with Resurgex supplementation, lipid hydroperoxide seemed 

to be blunted post-exercise compared to pre-exercise (2.3 fold increase in lipid 

hydroperoxide before supplementation, to 1.9 fold increase post-supplementation, p = 

0.067)5.  A second finding of the study was a lower resting CK (creatine kinase) 

compared with the control group5. The rise in creatine kinase (a marker of muscle 

damage), post-workout compared to pre-workout was smaller with the supplementation5.    

Protandim® Marketed by LifeVantage Corporation 

 A current nutritional antioxidant supplement on the market is Protandim® 

marketed by LifeVantage Corporation. Protandim®  is comprised phytochemicals, 

specifically five botanical sources (675 mg/day containing 225 mg of milk thistle, 150 

mg of bacopa extract, 150 mg dose of ashwagandha root, 75 mg of turmeric, and 75 mg 

green tea)16. These phytochemicals are thought to help the body to produce its own 

antioxidant enzymes and lower oxidative damage in blood/tissues. Protandim® 

supplementation has shown to reduce lipid peroxidation in the blood in humans16,73 . 
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 In a study by Nelson et al., subjects were assigned to one of two groups16. Twenty 

subjects were assigned to Group 1 and received the full supplement of Protandim® (675 

mg) in a single daily capsule for 30 days16. Twelve subjects from Group 1 continued 

supplementation for a total of 120 days. Group 1 had blood sampling taken at 0, 30 days, 

and 120 days16. Group 2 consisted of four subjects who received 338 mg/day of 

Protandim® in a single capsule for 30 days16. Blood sampling was taken at 0, 5 days, 12 

days, and 30 days. Oxidative stress was measured by serum blood analysis of TBARS16. 

 Figure 9 shows results of the study16. Figure 9 (A) shows an age-dependent 

increase in TBARS in normal subjects before supplementation with Protandim®.  

However, supplementation of Protandim® for 30 days caused the age-related increase in 

TBARS to disappear16. When subjects were separated by gender there were no significant 

differences in plasma TBARS [Figure 9 (B)]. In Figure 9 (C), subjects who self-reported 

supplementation with vitamin C and E had significantly higher plasma TBARS as well as 

greater age relatedness, compared to subjects who reported taking no vitamin 

supplements16. Lastly, Figure 9 (D) shows TBARS levels dropped an average of 40% (n 

= 20; p < 0.0001) following 30 days supplementation of Protandim®.  

 Figure 10 shows the results of subjects supplemented with Protandim® for 120 

days on SOD activity16. After 30 days of supplementation, erythrocyte SOD increased by 

8% compared to baseline, and increased by 30% compared to baseline after 120 days16. 

Since erythrocytes have a circulating lifespan of 120 days, during the 120 days of the 

study the red blood cells would have been replaced by maturing reticulocytes from the 

bone marrow16. Therefore, it would be expected that after 120 days of supplementation, 
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100% of erythrocytes would have turned over, reflecting new steady state levels of 

SOD16.  

 Figure 11 shows the results of Group 2 subjects who consumed half a pill per day 

(338 mg/day) of Protandim® and its effects on plasma TBARS16. There appears to be a 

rapid initial decrease in plasma TBARS levels occurring by 5 to 12 days post 

supplementation16. Although no significant difference was not seen, these results also 

showed that a full dose of Protandim®  supplementation (675 mg/day) is more effective at 

lowering TBARS to an average of 1.10 (0.05) μM (n = 20) versus of 1.29 (0.14) μM (n = 

4)16.  

 Nelson et al., also concluded from the study that the age-dependent increase in 

oxidative stress observed prior to supplementation was almost completely abolished 

when subjects consumed the full dose of Protandim®  (675 mg/day)16. The overall 

reduction in plasma TBARS was 40% with Protandim® supplementation16. In conclusion, 

all subjects benefited from Protandim® supplementation by experiencing reduced 

oxidative stress levels observed by TBARS16. Individual differences were observed 

between subjects with low initial levels of lipid peroxidation and those with higher initial 

levels, where lower initial levels saw only modest declines in TBARS16.  

 However, the Nelson study was not a randomized, placebo-controlled study, 

which would limit the study’s findings. In 2012, a double-blinded, randomized, placebo-

controlled trial examined the effect of Protandim® on pulmonary oxidative stress and 

alveolar permeability in 30 recovering alcoholics20. Protandim® was supplemented in 14 

subjects at a dose of 1350 mg/day; double the daily dose recommended by the 

manufacturer) or placebo (in 16 subjects) were administered for 7 days. Relative to 
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placebo-treatment, Protandim® had no significant effects on alveolar epithelial 

permeability or on oxidative stress (TBARS), epithelial growth factor, fibroblast growth 

factor, interlukin 1β, and interlukin-10 levels in bronchoalveolar lavage fluid. Treatment 

with placebo, however, produced a significant reduction in plasma levels of TBARS by 

~28%20.  

 In 2014, an abstract was published in the FASEB journal examining the effects of 

30 days of 675 mg/day of Protandim® on serum lipid peroxidation in 13 overweight 

and/or obese subjects73. Ashwagandha is a banned medicinal ingredient in some 

countries, so the phytochemical piperine was substituted for Ashwagandha in this study.  

Serum TBARS decreased from 6.3 (3.3) to 4.9 (1.7) nmol/mL (p < 0.05), or ~28% in the 

Protandim® (piperine) group. The placebo group, on the other hand, showed no change in 

serum TBARS post-supplementation.  

 Thus, based on these three human studies to date (~47 subjects), there is still 

debate as to whether Protandim® actually reduces oxidative damage as reflected by serum 

TBARS.   

Nrf2 Activation is the Future of Cellular Protection 

 Nrf2 is a protein that regulates the body's antioxidant response to oxidative 

stress67,68. Nrf2 has been called the 'thermostat' within our cells because it can determine 

the level of oxidative stress and initiate an antioxidant protective response to combat the 

stress67,68. Nrf2 activation enables our cells to use their own antioxidant reserve from 

naturally-occurring and plant-derived activators, such as sulforaphane from broccoli and 

curcumin from turmeric67,68. Some Nrf2 activators are synthetic compounds and thus 

must be developed by pharmaceutical treatments67,68. New research findings are revealing 
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that the human body's own internal network of antioxidant enzymes is approximately one 

million times more protective against oxidative stress versus consumption of antioxidant 

supplements on the market, such as vitamins C and E67,68 . Therefore, the future of 

cellular protection may lie in Nrf2 activation. 

 The ingredients in Protandim® by LifeVantage provide a natural option to activate 

Nrf2 within the cells. As previously stated, Protandim®  is comprised of five botanical 

sources: bacopa monniera, silybum marianum (milk thistle), withania somnifera 

(ashwagandha), camellia sinensis (green tea), and curcuma longa (turmeric), which have 

been shown to change the gene expression in hundreds of genes associated with heart, 

brain, and colon health16. Therefore, these research findings suggest that our cells have 

the genetic resources and capability of maintaining oxidative balance and slowing the 

aging process if Nrf2 can be adequately activated16. 

  In order to make conclusions about the effectiveness of Protandim® to reduce 

oxidative stress and improve endurance performance, extensive research needs to be 

conducted. There are currently no studies to date that have measured oxidative stress and 

endurance performance with Protandim® supplementation, although a similar study has 

been done using another supplement5.
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METHODS 

 
 

Participants 

 A total of 40 community runners between the ages of 18 and 55 years were sought 

to participate in this study. Runners were recruited from running clubs across the local 

community. Local residents of the Louisville area were targeted due to availability and 

close proximity for exercise testing in the study. The runners had to be considered “local 

class” or faster for 5-km time, based on USA Track-and-Field age and sex graded 

performance categories78. The age- graded score is the ratio of the approximate world-

record time for that age and sex divided by the runner’s actual time. “Local class” 

classified as an age and sex-graded score of 60% to 69%, “regional class” is classified as 

an age and sex-graded score of 70.0 to 79.9%, “national class” is classified as an age and 

sex-graded score of 80.0 to 89.9%, and “world class” is classified as an age and sex-

graded score of 90 to 100% of approximate world record time.   

  Procedures 

 This study was a double-blind, randomized, placebo controlled trial where 

participants were placed into one of two groups randomly by blocks of two, controlling 

for sex and running time (clinicaltrials.gov identifier: NCT02172625). The experimental 

group was taking the supplement Protandim® for the entire duration of the study, whereas 
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the control group was taking a placebo (corn starch and food coloring). To control threats 

to internal validity the study was a double-blind setup, the subjects’ were selected 

through randomly assigned blocks of two, and there was a placebo group. Each subject 

underwent six testing sessions, with five different days of blood draws. 

Session 1 (Initial Screening Day) 

 Every subject was provided with an informed consent document explaining their 

responsibilities and risks by participating in this study. Subjects were also instructed to 

complete a physical activity readiness questionnaire (PARQ) to clear them for physical 

activity69. Each participant was asked to list all the nutritional supplements they were 

taking, including multivitamins.  

 Subjects were asked to refrain from taking any multivitamins or nutritional 

supplements for the duration of the study due to the previous evidence that Vitamin E and 

C supplementation affects plasma TBARS16. A training diary was given to each 

participant to fill out for the entire duration of the study. Participants were asked to use 

the diary to record their intensity, training duration, and mileage per week of running. 

Lastly, each participant was given five quality of life questionnaires (WHOQOL- BREF) 

to fill out at home for the duration of the study17. The quality of life assessments are 

easily administered and do not require much time to complete. The assessment is scored 

in four domains: Domain 1: Physical health, Domain 2: Psychological, Domain 3: Social 

relations, and Domain 4: Environment17. The WHOQOL-BREF has a good to excellent 

psychometric properties of reliability and performs well on tests of construct validity 
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(The Health and QOL R2 was 0.52 overall, with Physical = 0.32, Psychological= 0.26, 

Social= 0.10, and Environment = 0.17)17.   

Diet Records 

 To examine whether dietary changes influences lipid peroxidation and antioxidant 

status outcomes, subjects were given instructions to record what they eat during the 24 hr 

prior to each session. Subjects were taught how to complete the diet recall and determine 

food serving and sizes. Participants were asked by a member of the research team to eat 

the same thing and do same activity before the five pre-determined follow up sessions. 

Session 2 (Baseline, About 15 days after Session 1) 

 Subjects were fasted in the morning when they arrived at University of Louisville 

for their pre-exercise blood sampling. Each subject brought their 24-hr dietary recall to 

the session, as well as their WHOQOL- BREF form17. Approximately three teaspoons of 

blood was withdrawn 30 minutes prior to exercise for analysis of several blood 

parameters (Table 1).  

 Following blood samples being taken, participants partook in the first of two 

baseline 5-km time trials at the University of Louisville outdoor track. Time trials have 

greater logical validity compared to time-to-exhaustion tests, which is the reason time-

trials were selected as the performance measure70.  

 Approximately 10-minutes post-exercise, another three teaspoons of blood was 

taken from each subject. Only after their post-exercise blood draw were subjects able to 

eat.  

 Participants were divided into one of two groups based on their first 5-km time 
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trial results.  The participants were randomly assigned in blocks of two so that number of 

males and females per group would be similar and the average 5-km performance time 

per group would be similar. Based on the first baseline 5-km results, all the women and 

men were ranked from fastest to slowest based on their 5-km performance from this 

session. Women were ranked amongst themselves, and then the men were ranked 

amongst themselves.  The first two ranked women were grouped together and then a coin 

was flipped. If the coin came up heads, the first ranked woman of the pair was placed in 

Group 1, if the coin came up tails, the second ranked woman in that pair would be placed 

in Group 1.  This would then continue for the next two fastest women, and so on.  The 

men were then randomly assigned into one of two groups the same way, in groups of two, 

with the first two ranked males placed together, and randomized by a coin toss, and then 

the next two ranked males were placed together, and then randomized by a coin toss, and 

so on.    

Session 3 (About 7 days after Session 2) 

 Subjects were fasted in the morning when they arrived at University of Louisville 

for their pre-exercise blood sampling. A member of the research team collected each 

participants’ post- 24-hr food diary and their WHOQOL- BREF forms17. Approximately 

three teaspoons of blood was withdrawn 30 minutes prior to exercise for analysis of 

several blood parameters (Table 1). Following participants blood being drawn, each 

subject was required to partake in another baseline 5-km time trial at the University of 

Louisville track. 
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 At approximately 10-minutes post-exercise, another three teaspoons of blood was 

taken from each subject. Only after their post-exercise blood draw were subjects able to 

eat. 

Then, depending on the group, subjects were given either a ~90 day supply of 

Protandim® pills (US Protandim® Lot# X14-0901) or ~90 supply of placebo pills (corn 

starch and food coloring). Since the study was double-blinded, neither the researchers nor 

the subjects knew which pills they were ingesting. Subjects were instructed to ingest one 

pill per day, ideally with breakfast (675 mg per day, for ∼90 days). The subjects were 

also given a signs/symptoms form, where they were asked to report any signs/symptoms 

they had during the supplementation period, such as diarrhea, stomach aches, nausea 

etc…  

Session 4 (~30 days post-supplementation) 

 At session four, participants arrived fasted in the morning at the University of 

Louisville for their pre-exercise blood sampling. Each subject brought their 24-hr dietary 

recall with them and their WHOQOL- BREF forms17. The forms were collected by a 

member of the research team. Participants had approximately three teaspoons of blood 

drawn. There was no 5-km running race performed at this session. 

Session 5 (~60 days post-supplementation) 

 At session five, participants arrived fasted in the morning at the University of 

Louisville for their pre-exercise blood sampling. Each subject brought their 24-hr dietary 

recall with them and their WHOQOL- BREF forms17. The forms were collected by a 
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member of the research team. Participants had approximately three teaspoons of blood 

drawn. There was no 5-km running race performed at this session. 

Session 6 (~90 days post-supplementation) 

 At session six, participants arrived fasted in the morning at the University of 

Louisville for their pre-exercise blood sampling. They each brought their 24-hr dietary 

recall with them and their WHOQOL- BREF forms17, and their running logs. The forms 

were collected by a member of the research team. Participants also brought with them 

any unused pills for proper documentation. Participants had approximately three 

teaspoons of blood drawn 30 minutes prior to exercise. Following participants’ blood 

being drawn, each subject was required to partake in a 5-km time trial at the University of 

Louisville track.  

 At approximately 10-minutes post-exercise, another three teaspoons of blood was 

withdrawn from each subject. Only after their post-exercise blood draw were subjects 

able to eat. 

Blood sampling 

 Blood sampling was completed using a traditional venipuncture method with a 

mix of 21 and 23 gauge needles. Both straight and “Butterfly” needles were used to 

accommodate the comfort of test subjects. Blood was collected in vacuum-sealed tubes 

designed to contain and preserve specimens in a manner appropriate with their respective 

analysis. The tubes used were two ten-millimeter tubes designed to promote clotting and 

formation of a platelet barrier that permanently separates the serum from the cellular 

elements and clotting factors of whole blood, and one six-millimeter tube treated with 



40 
 
 
 

Potassium Ethylenediaminetetraacetic acid (EDTA). This not only preserves the cellular 

element of the whole blood, but allows the coagulation factors to remain suspended in the 

plasma. EDTA prevents coagulation in the blood via a removal of ionized calcium from 

the blood, which acts as a co-factor in the coagulation cascade. The presence of 

potassium in the preservative and the absence of calcium has physiological effects on 

enzymatic activity within the blood, thus both samples were necessary for analysis for a 

clear view of the oxidative activity within the subjects4. 

 Once drawn, specimens were separated and the EDTA tubes were put into 

immediate refrigeration, whereas the larger gel tubes were allowed to clot for fifteen 

minutes, then centrifuged at 3000 RPM (Champion F-33 Series Centrifuge, Ample 

Scientific, Norcross, GA) for fifteen minutes. The pre-centrifugation clotting is necessary 

to prevent fibrin, a co-factor of coagulation, from forming a gel matrix in the serum, 

rendering it unsuitable for analysis. Hemolysis always being a factor in venipuncture 

analysis was mitigated by ensuring proper vein selection before the procedure begins, 

central placement of the needle within the vein during the procedure, and gentle rocking 

of the specimens after the venipuncture to ensure uniform contact with the walls of the 

tube4. 

  After centrifugation, the serum samples were frozen at -20°C for at least 4 hours 

and then shipped overnight to Geneva Diagnostics for analyses. Genova Diagnostics is a 

global, fully accredited clinical laboratory, located in Ashville, North Carolina [Licensed 

by Clinical Laboratory Improvement Amendments (CLIA) Certification number 

#34D0655571].    
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Blood and Serum Sample Analyses  

Thiobarbituric acid-reactive substances (TBARS): This is a direct marker of oxidative 

damage to polyunsaturated fatty acids within cell membranes, otherwise known as lipid 

peroxidation. Serum TBARS have been shown to be correlated with oxidative damage to 

certain tissues, namely heart and liver tissue at rest (r = 0.71 to 1.0) and exercise (r = 0.68 

to 0.99)4. The lipid peroxide assay is designed to measure the lipid peroxidation products 

in serum. After acid hydrolysis the lipid peroxidation products are reacted with 

thiobarbituric acid resulting in a spectrophotometrically active product. Malondialdehyde 

(MDA) is used as the standard for determination of levels of lipid peroxidation products. 

The specimen type for this assay is serum obtained from a clot activated serum separator 

tube. A TBARS assay kit (Cayman Chemical, U.S.), which allows a rapid photometric 

detection of the thiobarbituric acid malondialdehyde (TBAMDA) adduct at 532 nm, was 

used. Samples were read by a microplate reader spectrophotometer (Infinite M200, 

Tecam, Austria). A linear calibration curve was computed from pure MDA-containing 

reactions4. 

Total antioxidant capacity (TAC): Plasma TAC, assesses an individual’s blood 

specimen to inhibit an oxidation reaction. This test reveals the combination of all anti-

oxidants blood to neutralize free radicals. Plasma TAC was determined from serum using 

a proprietary methodology (Genova Diagnostics, Asheville, NC). The basis for this assay 

is that it measures the antioxidant capacity of a serum sample via the ability of the 

antioxidants within the sample to neutralize a spectrophotometrically active compound 

that is optically active when oxidized. The decrease in color intensity of the compound 
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when compared to the standard, Trolox, under the same reaction conditions is equivalent 

to the serum antioxidant capacity of the serum sample. The specimen type for this assay 

is serum obtained from a clot activated serum separator tube. It was measured by an 

enzymatic reaction assay kit (Cayman Chemical, U.S.) using a microplate reader 

spectrophotometer (Infinite M200, Tecam, Austria). This enzymatic reaction assay is 

based on the ability of antioxidants in the plasma to inhibit the oxidation of 2, 2′-azinobis 

(3-ethylbenzithiazoline) sulfonic acid (ABTS, Sigma) to the radical cation ABTS+ by a 

peroxides. The amount of the produced ABTS+ has been assessed by measuring the 

absorbance signals at 705 nm. The antioxidants concentration is proportional to the 

suppression of the absorbance signal. TAC was evaluated by a trolox (6-hydroxy-2,5,7,8-

tetramethylchroman-2-carboxylicacid, Aldrich) standard curve, and was expressed as 

trolox-equivalent antioxidant capacity concentration (mM)4. 

Glutathione (GSH): Blood Glutathione, the most potent endogenous antioxidant, is 

correlated well with muscle and heart tissue at rest (r = 0.93 to 1.0) and at exercise (r = 

0.66 to 1.0)4. GSH was determined from whole blood using a proprietary methodology 

(Genova Diagnostics, Asheville, NC) and is designed to measure the level of glutathione 

in whole blood. The basis for this assay is a follows: The samples is first completely 

lysed and proteins are precipitated. The supernatant is then reduced and combined with a 

spectrophotometrically reactive compound which generates a detectable absorption peak.  

When compared to known concentrations of GSH under the same reaction conditions a 

determination of GSH levels in blood is determined. The colorimetric assay is performed 

using the Abbott Diagnostics Architect System. The specimen type for this assay is 

EDTA preserved whole blood4. 
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Superoxide Dismutase (SOD): Superoxide Dismutase (both cystolic and mitochondrial 

SOD), is another protective anti-oxidant enzyme that was measured by a colorimetric 

assay. Superoxide Dismutase assay is designed to measure the activity of the SOD 

enzyme in red blood cell lysates. The SOD activity is determined spectrophotometrically 

based on the ability of the superoxide dismutase compound to reduce reactive oxygen 

species in an enzymatic reaction necessary for the production of an optically active 

compound. The result is expressed as units of SOD relative to the gram amount of 

hemoglobin in the sample. The colorimetric assay is performed using the Abbott 

Diagnostics Architect System. The specimen type for this assay is EDTA preserved 

whole blood4. 

Glutathione Peroxidase (GPX): This was determined from whole blood using a 

proprietary methodology (Genova Diagnostics, Asheville, NC). The Glutathione 

Peroxidase (GPX) assay is designed to measure the level of glutathione in red blood cell 

lysates. The level of GPX in the sample is determined spectrophotometrically based on 

the ability of the compound to catalyze a reduction reaction in the presence of 

glutathione. The change in the absorption level of the substrate is then utilized to 

determine the level of GPX present in the sample. The result is expressed as units of GPX 

relative to the gram amount of hemoglobin in the sample. The colorimetric assay is 

performed using the Abbott Diagnostics Architect System. The specimen type for this 

assay is EDTA preserved whole blood4. 

Sulphate: Sulphate was determined from whole blood using a proprietary methodology 

(Genova Diagnostics, Asheville, NC). The basis of this assay is as follows: Sulfate was 

measured via a Turbidimetric Assay Kit. This assay is designed for determination of 



44 
 
 
 

sulphate levels in serum utilizing the chemical property of sulfate ions to cause the 

formation of precipitates that can be measured by absorbance of light. The use of a 

sulphate standard curve under the same reaction conditions facilitates the ability to 

determine the level of sulphate in the serum sample. The assay is performed using the 

Abbott Diagnostics Architect System. The specimen type for this assay is serum obtained 

from a clot activated serum separator tube4. 

Cysteine/Cystine: The assay designed for the measurement of serum cysteine is an 

adaptation of the Gaitonde procedure developed for the detection of amino acids which 

utilizes the colorimetric reaction of amino acids with ninhydrin. The specimen type for 

this colorimetric assay is serum obtained from a clot activated serum separator tube4. A 

lower cysteine to cystine ratio demonstrates a shift towards increased oxidative stress4.  

 Throughout the study, information was gathered through self-report at sessions 

two through six ensure adherence to the program, as well as the three planned exercise 

tests. Participants were responsible for bringing their weekly training log with intensity, 

training duration and mileage per week of their runs as well as a food record of what they 

ate during the 24 hour period prior to the test day (Session 2). Participants were asked to 

eat the same thing and do the same activity before the follow up tests at 7 days and 90 

days post supplementation.  

Sample size calculation 

 The independent variable in this study was the two different supplementation 

groups. The main dependent variables measured were 5-km finishing time, TBARS, 

SOD, GPX, TAC, and the four domains of the WHOQOL- BREF questionnaire17. Based 
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on a 5-km time improvement of 2.5% or about 30 seconds (SD = 1 minute) with 

Protandim®, and no improvement in the placebo group, about 34 runners in total were 

needed (Effect size ƒ = 0.25, statistical power = 80%, alpha error probability = 5%, two 

measurements per group, correlation amongst repeated measures = 0.50, F-test Family, 

ANOVA repeated measures, within-between interaction, G*Power 3.1.2, Universität 

Kiel, Germany). Accounting for a ~20% attrition rate (8 subjects), a total of 40 subjects 

was recruited (20 per group).   

Statistical Analyses 

 A 2 x 4 repeated measures analysis of variance (ANOVA) was chosen to compare 

long term, chronic changes in blood parameters (rested, fasted state) over the duration of 

the study (2 groups; 4 time-points: average baseline, 30, 60, 90 days post-

supplementation). A 2 x 3 repeated measures ANOVA compare the acute changes in 

blood parameters between pre and immediately post exercise (2 groups; 3 time-points: 

baseline 1, baseline 2, 90 days post-supplementation). A repeated measures design also 

provided the experimenter the opportunity to control for individual differences among 

participants. To adjust for multiple comparisons post-hoc, a Bonferroni correction was 

used.   

To compare groups, baseline subject characteristics (including anthropometric 

data, environmental conditions, and resting, fasted, blood variables) were performed 

using independent t-tests. If any of the variables were not normally distributed (as 

verified by a Shapiro-Wilk test), then a Mann-Whitney t-test was used to compared 

groups.     
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It is also important to determine the inter-session variability over time so that one 

can distinguish between the inherent variability of the test, from small, real physiological 

change caused by an interventional study. To compare the variability in baseline 5-km 

time-trials from week-to-week, the coefficient of variation (C.V.) was calculated for each 

subject and averaged [(SD ÷ mean)∙100]. To calculate the reproducibility in 5-km times, 

the following was done: Reproducibility was calculated by obtaining the square root of 

the mean square error obtained from a repeated measures analysis of variance obtained 

from the two 5-km baseline time trials that were performed a one week period. Both 

groups were placed together in this analyses because neither group as of that point was 

under the influence of the supplement. The square root of the mean square error obtained 

from the repeated measures ANOVA was reported as the common week-to-week within 

subject standard deviation (SDw)74. Reproducibility was defined as 2.77∙SDw
74. That is, 

the difference between the 5-km times on different weeks for the same subject is 

expected to be less than 2.77 times the within-subject standard deviation for 95% of pairs 

of observations74. Since the calculation of reproducibility may be considered too 

stringent, the smallest measureable change was reported as half of the reproducibility75. 

Any 5-km time that was above or below the smallest measureable change was considered 

a meaningful change. As well, the C.V. and reproducibility was calculated for each 

domain of the WHOQOL- BREF. Furthermore, the baseline C.V. was calculated for all 

blood parameters.  

The baseline 5-km time was reported as the as the fastest of the two baseline 5-km 

time trials. A Fisher’s exact test determined whether there was a difference between the 

two groups in the number of subjects that improved by more than the smallest meaningful 
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change in 5-km time post-supplementation. A Fisher’s exact test was also used to 

compare groups for the signs and symptoms reported during the supplementation period.  

In order to control for differences in the exercise training regimes between the 

two groups, an aerobic training index was calculated at baseline, and then again post-

supplementation. The aerobic training index was calculated as the total number of 

minutes of aerobic physical activity over the previous 14 days multiplied by the average 

rating of perceived exertion score over the previous 14 days (6 = no exertion, 20 = 

maximal exertion. A Kruskal-Wallis one-way analysis of variance was used to compare 

the training index between groups pre and post supplementation.   

A Kruskal-Wallis one-way analysis of variance was also used to compare each 

domain of the WHOQOL- BREF between groups during the supplementation period.  

Statistical significance was set at 0.05. Statistical analyses was performed using 

IBM SPSS for Windows version 21.0, released in 2012 (IBM Corporation, Armonk, 

NY).  

Protection of Human Subjects 

 Prior to group assignments, subjects were notified of the benefits and risks 

associated with the study through informed consent. The protocol for the study was 

discussed in detail to ensure everyone was aware of the expectations involved, and they 

were informed of their rights as participants in the study. After providing this 

information, an informed consent form were given to the participants to sign. This study 

was reviewed and approved by Institutional Review Board (IRB) (Approval Number 

14.0614).  
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Data Management and Storage 

 All documents and data collected was stored in a locked cabinet in a locked lab 

(Dr. Zavorsky’s Lab in room 17A, Crawford Gym). This lab was locked at all times with 

access granted only to the faculty advisor and three student researchers. Personal 

information and data that was on a computer was stored on a locked computer with a 

password needed to gain access. 
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RESULTS 

 
 
 

Intervention Data  

 Forty subjects, 20 to 46 years of age were recruited to participate in this clinical 

trial. These subjects were recruited through word of mouth, and through the local running 

stores. One subject did not make the time-trial standard so she was eliminated from the 

study, and the other subject did not continue on with the study after the informal 

information session. Thus, 38 subjects were retained. The anthropometric characteristics, 

baseline 5-km times, and fasting blood glucose concentration were not different between 

groups (Table 2).   

In the end, one female subject withdrew from the study two weeks after the 

beginning of supplementation due to complaints that the supplement caused her to be 

depressed. It was later determined that she was in the Protandim® group. In addition, 

another female subject dropped out just before the final 5-km time trial because she was 

pregnant. A male subject also did not complete the final 5-km time trial because he was 

in a car accident a week earlier. However, he did have his fasted pre-exercise blood 

drawn at ~88 days supplementation. Thus, there is some missing data from these 38 

subjects due to these unforeseen circumstances.  
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 Venous blood samples were obtained at baseline (there were two baseline 

sessions one week apart from each other), and at 30 (SD 2), 57 (2), and 88 (4) days post-

supplementation. The subjects returned their pill bottles and the combined average 

number of pills not taken by both groups was 3 (4), with a range of 0 to 19 pills missed. 

 5-km Time Trial Performance  

 These 38 subjects were randomized into the experimental and control groups by 

random blocks of two according to gender and 5-km time trial performance. In the end, 

equal number of males and females were in the Protandim® group and the Placebo group, 

and both groups had similar 5-km times of ∼20.3 (2.1) minutes (Table 2). The mean 

rating of perceived exertion (RPE) for the baseline 5-km time trials was 17.5 (1.7) out of 

20 (6 = no exertion, 20 = maximal exertion).  This mean value is qualitatively labeled 

between “very hard” and “very very hard” for the effort of the 5-km runs.  The data 

presented in Table 2 is the best performance of both baseline time trials. The mean 

coefficient of variation between both baseline 5-km time trials was 1.1% and the 

correlation between both these 5-km time trials was 0.99, (p < 0.01). There was no 

difference in mean 5-km time trial performance between both baseline sessions. After 

removal of outliers, the reproducibility was 23 seconds, and the smallest meaningful 

change was 12 seconds (half of the reproducibility). Supplementation did not change 5-

km time trial performance in either group (Figure 12-13, p = 0.91, Group x Time 

interaction effect, p = 0.84). There were eight out of 16 subjects that improved by ≥ 12 

seconds in the Protandim® group, while nine out of 19 subjects improved by ≥ 12 seconds 
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in the placebo group. Thus, the proportion of subjects that improved by the smallest 

measureable change of at least 12 seconds were similar between groups (p > 0.05).  

Aerobic Training Index  

 In order to control for changes in training volume that could affect 5-km time trial 

performance, an aerobic training index was calculated at baseline and ~90 days post-

supplementation. The baseline aerobic training index was the summed total number of 

minutes of running/physical activity for the 14 days prior to the distribution of the 

supplement multiplied by the average rating of perceived exertion for those 14 days (6 = 

no exertion, 20 = maximal exertion). The aerobic training index at the ~88 days post 

supplementation period was the summed total number of minutes of running/physical 

activity for the 14 days prior to the end of the study  multiplied by the average rating of 

perceived exertion for those 14 days (6 = no exertion, 20 = maximal exertion). While 

there was a significant correlation between the aerobic training index between baseline 

and post-supplementation (Spearman’s rho = 0.66, p < 0.01), the changes in the aerobic 

training index in that period was not different between groups (t = -1.63, p = 0.11, Table 

6).    

Environmental Conditions  

The environmental conditions for all three 5-km time trials are presented in Table 

7. There was no statistically significant differences in either temperature, dew point, or 

humidity measured between groups within any of the three sessions. However, there was 

some adjustment for the final 5-km times for seven subjects. Those subjects experienced 
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unseasonably hot and humid conditions (Temperature = 71°F, Humidity = 71%, Dew 

point = 61°F). According to the following source which adjusts for temperature and dew 

point79, the final times were adjusted down by 2% for only those seven subjects in that 

final session only.  

Baseline Blood Parameters 

 The baseline blood parameters that is listed in the oxidative stress panel provided 

by Genova diagnostics are presented in Table 3. These data presented are the average 

baseline values measured twice over a period of one week. The mean values for both 

groups are within the reference ranges provided by Genova Diagnostics (Table 3). There 

was no difference in any parameter between groups at baseline (rested, fasted, Table 3, 

Table 8).  

 The week-to-week coefficient of variation for every blood parameter is presented 

in Table 4. As can be seen, the coefficient of variation ranged from as low as 5% (for 

fasting blood glucose) to 26% (lipid peroxides, TBARS). This is similar to the acceptable 

laboratory coefficient of variation for replicates from the same sample, assayed at a 

different time-points (Table 5).  

Chronic Effects of Supplementation on Blood Parameters Measured at Rest 

Supplementation did not change blood parameters measured at rest (Table 8, 

Figures 14-18). However, there were mean differences in  glutathione (GSH), total 

antioxidant capacity (TAC), cystine, sulphate , cysteine to sulphate ratio, superoxide 
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dismutase (SOD), and glutathione peroxidase (GPX) measured across the four time-

points (all p < 0.05, Table 8, Figures 14 to 18).  

Acute Effects of Exercise on Blood Parameters 

 The 5-km time trials did not affect any blood parameter in the oxidative stress 

panel (Figures 19 to 21). However, blood glucose increased by +70 (29) mg/dL from pre-

to 10-minutes post-exercise (Table 10, p < 0.01). Supplementation did not affect these 

changes.  

 However, in a subset of subjects, the mean increase in TBARS in 21 

individuals that were “responders to oxidative stress” when both baseline 5-km races 

were averaged, was +1.6 (SD 1.4) μmol/L [minimum increase = 0.1, maximum increase 

= 4.3 μmol/L].  This represents 11 subjects out of 19 subjects (~58%) in the placebo 

group, and 10 subjects out of 19 subjects (~53%) of the subjects in Protandim® group.   

After 88 days of supplementation, five out of nine responders in the Protandim® group 

(~63%) experienced a reduction in serum TBARS post-race, while eight out of 11 

responders in the placebo group (~73%) experienced a reduction in serum TBARS post-

race (Fisher’s exact test, p = 0.64).  Thus, Protandim® was ineffective in reducing post-

exercise serum TBARS in responders compared to placebo.   

Dietary Recall Analyses 

 The number of individuals in each group that ate the same food 24 hours prior to 

the blood draw for each of the five blood draw days are shown in Table 9. Thirteen 

subjects in the Protandim® group ate mostly or completely the same food prior to each 
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session compared to 5 subjects in the placebo group. This was significantly different (p < 

0.01, Fisher’s exact test). 

Quality of Life Analyses 

 Figure 22 displays the World Health Organization Quality of Life raw scores. 

There was no significant difference between groups in Physical Health, Social 

Relationships, and Psychological Health throughout the 88 days of supplementation. 

Only at 88 days post-supplementation did the Placebo group have higher environmental 

scores compared to the Protandim® group (p = 0.047, Figure 22). Table 13 shows the 

stability of responses for the WHOQOL-BREF over a one week period. The week-to-

week coefficient of variation was 4 to 7% for all domains (Table 13).   

Signs and Symptoms  

 Table 12 shows the total number of events of a given sign/symptom over the 88 

day supplementation period. The total number of sign/symptoms in the Protandim® group 

over 88 days was 233 episodes (51%), compared to 220 episodes (49%) in the placebo 

group. The number of subjects that experienced at least one event was similar between 

groups (p > 0.05, Fishers exact test).  
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DISCUSSION 

 

 

 The purpose of this study was four-fold:  First we wished to assess whether 

regular supplementation of Protandim® (675 mg/day for 90 days) reduces oxidative 

damage in the blood at rest as assessed by lipid peroxides (TBARS) in runners. The 88 

(4) day supplementation period did not change serum peroxides levels in either group. 

Second, we wanted to determine whether regular supplementation of Protandim® in 

runners reduces the increase in oxidative damage post-race compared to pre-race as 

assessed by lipid peroxides. Since acute exercise did not change mean serum lipid 

peroxides levels, we were not able to assess whether supplementation had any effect on 

this change. However, in a group of responders of oxidative stress caused by 5-km time 

trials, Protandim® did not mitigate the increase. Third, we wanted to know whether 

regular supplementation of Protandim® improved 5-km running times. The supplement 

did not improve running performance, but it did not worsen performance either. Lastly, 

we wished to determine whether regular supplementation of Protandim® improved any 

one of the four domains of quality of life according to the WHOQOL- BREF17.  The 

week-to-week coefficient of variation in quality of life scores for both baseline sessions 

was small (4% to ~7%, depending on which domain was observed), yet after 88 (4) days 

of supplementation, Protandim® did not improve, nor worsen, quality of life17.  
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 Quality of life is a subjective measure of health and well-being frequently used by 

those in the health fields to assess an individual’s satisfaction with various domains of 

their lives17. The full quality of life measure from the World Health Organization 

(WHOQOL-100) consists of 100 items throughout six domains, and has been shown to 

be highly reliable17. The brief version (WHOQOL-BREF) has been developed to 

decrease the burden on subjects completing it to allow for more accurate results in some 

clinical trials17. The domains covered in the WHOQOL-BREF are Physical Health, 

Social Relationships, Psychological Health and Environmental17. Bergner noted that 

during clinical trials, recording and examining quality of life is imperative in order to 

understand and quantify all potential side-effects or benefits77. 

As mentioned previously, Protandim® marketed by LifeVantage Corporation is a 

nutritional supplement comprised of five phytochemicals components supposedly 

activates the Nuclear factor (erythroid-derived 2)-like 2, (called Nrf2) transcription factor 

pathway that is integral to several antioxidant enzymes, including γ-glutamyl cysteine 

synthase (an enzyme that catalyzes the committed step in glutathione synthesis)74. Nrf2 is 

a basic leucine zipper protein that regulates the expression of antioxidant proteins that 

protect against oxidative damage triggered by injury and inflammation. Protandim® may 

induce other endogenous antioxidant enzymes, such as SOD and catalase, while 

decreasing lipid peroxidation16. 

There are many studies published using Protandim®16,20-24,73 but only three studies 

were assessed in human subjects16,20,73. Two of those studies examined long-term 

oxidative damage assessed by serum lipid peroxides (Thiobarbituric acid-reacting 

substances: TBARS) and found a ~20 to ~40% decrease in plasma TBARS after 30 days 
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of Protandim® supplementation16,73. However, one of these studies was not randomized 

and not placebo controlled16. The third study, a double-blinded, randomized, placebo-

controlled trial published in 2012, examined the effect of Protandim® on pulmonary 

oxidative stress and alveolar permeability in 30 recovering alcoholics20. Protandim® was 

supplemented in 14 subjects at a dose of 1350 mg/day; double the daily dose 

recommended by the manufacturer) or placebo (in 16 subjects) were administered for 7 

days. Relative to placebo-treatment, Protandim® had no significant effects on alveolar 

epithelial permeability or on oxidative stress (TBARS), epithelial growth factor, 

fibroblast growth factor, interlukin 1β, and interlukin-10 levels in bronchoalveolar lavage 

fluid. Treatment with placebo, however, produced a significant reduction in plasma levels 

of TBARS by ~28%20. Furthermore, an abstract was published in 2014 in the FASEB 

journal examining the effects of 30 days of 675 mg/day of Protandim® on serum lipid 

peroxidation in 13 overweight and/or obese subjects73. Ashwagandha is a banned 

medicinal ingredient in some countries, so the phytochemical piperine was substituted for 

Ashwagandha in this study.  Serum TBARS decreased by ~28% in the Protandim® 

(piperine) group. The placebo group, on the other hand, showed no change in serum 

TBARS post-supplementation. Thus, to date, there were only ~47 subjects given 

Protandim® in humans in scientific research studies.  

In this study, 19 subjects were given Protandim® for ~88 days. Serum TBARs 

were within normal range before the three exercise sessions. Supplementation with 

Protandim® did not increase serum TBARs at rest (Table 10, Figure 14). Furthermore, 

acute, strenuous exercise has been shown to increase serum lipid peroxides in humans 

(Figure 1). As a whole, there was no increase in serum lipid peroxides caused by 
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strenuous exercise (Table 10, Figure 19). However, the 5-km races did raise serum lipid 

peroxides in 21 (~55%) of the subjects, but 88 days of Protandim® supplementation did 

not attenuate the increase in these subjects compared to the placebo.  

The changes in SOD over the supplementation period was not different between 

groups (Table 10, Figure 14). In a different cohort of subjects ranging from 20 to 80 years 

of age, SOD has been shown to increase by ~20% after the same period supplementation 

(Figure 10), however our runners did not experience a similar increase in SOD while 

taking Protandim® compared to placebo. After ~30 and ~88 days post-supplementation, 

the increase in SOD was ~25% and ~66%, respectively, compared to baseline (Table 10, 

Figure 14), however, this increase was experienced by both groups.    

Blood glucose levels taken at rest from baseline to ~88 days supplementation 

increased post-exercise in both groups. The average increase post-exercise in blood 

glucose levels between the two baseline sessions +70 (29) mg/dL (n=38), which is 

similar to the increase in blood glucose levels experienced ~88 days post 

supplementation, with an increase of +72 (41) mg/dL (n= 35) (Table 10). The pre and 

post exercise glutathione (GSH) values at both baseline sessions decreased by -11 (84) 

μmol/L (n= 38), compared to ~88 days post-supplementation which experienced an 

increase in GSH of +43 (229) μmol/L (n= 35) (Table 10).  

The results of the pre- to post exercise changes in TAC, from baseline to ~88 days 

supplementation demonstrated no statistical difference. The average of both baseline 

weeks had an increase in TAC post exercise of +0.11 (0.05) mmol/L (n= 38), which is the 

same as the increase observed at ~88 days supplementation, +0.11 (0.04) mmol/L (n=35) 

(Table 10). 
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Limitations 

 There were several limitations of this study. First, the standard deviation in 5-km 

running times was 2.1 minutes (128 seconds) in this cohort. Thus, to show any small 

improvement in performance from supplement use given the large standard deviation 

would require many more participants. However, the effect size in the improvement in 

performance was small (< 0.2), so that it is unlikely that any meaningful change would 

ever be found with supplementation of Protandim®.  

   Second, the week-to-week variability in oxidative damage as expressed by 

serum lipid peroxides (resting values, fasted) was ∼26%. This is a large variability and 

includes both biological variability and variability of the assay. According to Mullins and 

colleagues, the between subject-variability in oxidative stress biomarkers is large, 

suggesting that there may be responders and non-responders to oxidative stress post-

exercise19. The between-individual coefficients of variation were: plasma F2-isoprostanes 

(Isop) (152%), PC (240%), GPX (130%) and TAC (243%)19. In the current study, there 

were 21 individuals (~55% of the total sample) that experienced increases in oxidative 

stress from the 5-km race (when averaged over both baseline 5-km sessions). Those 

subjects that has an increase in TBARS post-race could mean that these particular 

subjects were unable to regulate redox homeostasis (ie. responders)19. The mean increase 

in TBARS in those 21 individuals that were “responders to oxidative stress” when both 

baseline 5-km races were averaged, was +1.6 (SD 1.4) μmol/L. As mentioned previously, 

this represents 11 subjects (~58%) in the placebo group, and 10 subjects (~53%) of the 

subjects in Protandim® group. Thus, approximately the same proportion of subjects in 
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each group did not show increases in serum peroxides levels triggered by the 5-km race. 

In a post-hoc analyses, we examined whether those responders had a lower increase in 

TBARS post-race after the 88 day supplementation period. In the Protandim® group, 5 

out of 8 subjects (~63%) showed lower increases in serum TBARS concentration post-

race, while 8 out of 11 subjects (~73%) in the placebo group showed lower serum 

TBARS concentration post-race after the 88 day supplementation period. Thus, 88 days 

of Protandim® supplementation was not able to mitigate the increase in oxidative stress 

post-race in those responders of oxidative stress.  

 Third, serum lipid peroxides may have been measured too early post-exercise to 

show any meaningful increases in oxidative damage. The results of a study conducted by 

Michailidis et al., demonstrated that there is a range of ideal blood sampling time points 

after exhaustive aerobic exercise used to assess blood markers of oxidative stress at peak 

levels39. Following the cessation of exercise, each biomarker assessed in the blood can 

take up to a couple of hours to reach its peak oxidative stress level39. For example, the 

time to highest concentration post exercise for TBARS is 1.2 (0.6) hours (95% CI = 0.8 

to 1.6 hours post-exercise), and 2.2 (0.9) hours (95% CI = 1.6 to 2.8 hours post-exercise) 

for TAC39. Thus, in an oxidative stress panel, each parameter has an ideal post-exercise 

sampling time-point, which varies from parameter to parameter. The present study all 

blood parameters in the oxidative stress panel were measured at the same time post-

exercise time-point, which was at ~10 minutes post-exercise, instead of the recommended 

48 minutes to 96 minutes post-exercise for serum TBARS39. In order to measure serum 

levels of oxidative damage following an endurance run, multiple blood draws would also 

need to be performed. However, the cost associated with multiple blood draws for each 
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participant at each of the three post-exercise blood sampling time points would be very 

expensive28. In this study, every blood sample sent to Genova Diagnostics cost~$150, 

thus for approximately 300 blood samples, the total analyses was $45,000.  In addition, it 

is unlikely that we would have been able to retain subjects if those subjects were asked to 

stay around after their race for an additional 48 to 96 minutes for multiple post-exercise 

blood draws, especially in a fasted state, hungry, and especially when all these subjects 

had to make it to work that morning. Despite this limitation,  several studies have 

assessed oxidative damage within 10 minutes post-exercise and the preponderance of the 

data demonstrate that there should be a measurable increase in serum lipid peroxides 

post-exercise (Figure 1). As a whole, we did not see an increase in TBARS caused by all-

out exercise lasting ~20 minutes (Table 10, Figure 19), but again, as discussed earlier, 

~50% of the subjects were responders to oxidative damage caused by exercise and 

experienced a measureable acute increase in oxidative stress, and ~50% were not 

responders to oxidative damage caused by exercise as assessed by serum TBARS.  

Fourth, the validity of serum TBARS in detecting lipid peroxidation has been 

criticized for a lack of specificity. Serum TBARS is a direct marker of oxidative damage 

to polyunsaturated fatty acids within cell membranes, otherwise known as lipid 

peroxidation. But, the levels of serum TBARS are very general and do not precisely 

pinpoint where the oxidative damage is occurring in the body. However, many human 

studies have continued use serum lipid peroxides as a marker of oxidative damage 

(Figure 1), and this study is no different. Nonetheless, serum lipid peroxides does reflect 

oxidative damage of the heart and liver at rest and immediately post-exercise, as 

demonstrated in rats4. Glutathione levels in the blood also reflect muscle and heart 
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glutathione levels at rest and immediately post-exercise4, so we believe that our findings 

are specific to those tissues.   

 Fifth, there were a many forms that the subjects had to fill out diligently and 

consistently for ~88 days, which can be considered another limitation. Subjects self-

reported training diary, quality of life questionnaires, food diary recalls, signs-and-

symptoms forms were a burden to the subjects. Thus, their diligence, compliance and 

honesty in filling out these forms could be a limitation and thus we are unsure of the 

accuracy of their reporting.  

Sixth, there may have been compliance issues with the required ingestion of one 

pill every day for 90 days. Nonetheless, both groups forgot to similarly ingest only 3% of 

their allotted amount during the supplementation period. This indicates good compliance.  

 Seventh, the weather was an issue for a few subjects during the final session. 

Seven subjects experienced unseasonably hot and humid conditions (Temperature = 

71°F, Humidity = 71%, Dew point = 61°F). According to the following source which 

adjusts for temperature and dew point79, the final times were adjusted down by 2% for 

only those seven subjects in that final session only.  

 The color of the pills could be a final limitation of the study. The inside contents 

of the placebo pills and the Protandim® pills was visibly different from one another. If the 

subjects got together and compared their pills with each other by opening the capsules of 

the individual pills, they may have been able to determine whether they were in the 

Protandim® group or the placebo group. However, this is just conjecture, and we have no 

idea how many subjects were that keen or that curious as to the contents of the pills. No 
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subject discussed with us that they compared pills with fellow runners, so we are just 

speculating that this may have been a limitation. 

Conclusions 

In conclusion, this study demonstrated these findings: 

1. Regular supplementation of Protandim® (675 mg/day for 88 days) did not reduce 

oxidative damage at rest in healthy athletes as assessed by serum lipid peroxides.   

2. Regular supplementation of Protandim® in runners did not reduce the increase in 

oxidative damage post-race compared to pre-race as assessed by lipid peroxides 

(TBARS) in runners who were responders to oxidative stress of 5-km running. 

3. Regular supplementation of Protandim® did not improve 5-km time trial 

performance.  

4. Regular supplementation of Protandim® did not improve, nor worsen, quality of life 

in runners. 

Future Research Directions 

 Athletes are always seeking new ways to improve their athletic performance and 

the best method may require improving their daily nutrition and removing foods and 

drinks causing increased oxidative stress59. A healthy diet can play a protective role in 

reducing oxidative stress caused by exercise59. However, the adequate intakes of 

antioxidant micronutrients for athletes is unknown because of a lack of research59. Future 

research should focus on the amount and type of antioxidant supplementation athletes 

require to reduce oxidative stress and improve their performance59. 
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Table 1. Blood parameters measured by Genova Diagnostics29: 

Parameter Method of analysis Reference range 

Reserve   

Glutathione (GSH) Colorimetric assay ≥ 669 μmol/L 

Total Antioxidant Capacity 

(TAC) 

Enzymatic reaction 

assay 

≥ 0.54 mmol/L 

Cysteine (Cys-SH) Colorimetric assay 0.61 to 1.16 mg/dL 

Sulfate Turbidimetric assay 3.0 to 5.9 mg/dL 

Cysteine to Sulfate ratio - 0.12 to 0.32  

Cystine (Cys-S-S-Cys) Colorimetric assay 1.60 to 3.22 mg/dL 

Cysteine/Cystine Ratio - 0.23 to 0.53 

Protective Enzymes   

Glutathione Peroxidase (GPX) Enzymatic reaction 

assay 

20 to 38 U/g Hb 

Superoxide Dismutase (SOD) Colorimetric assay 5275 to 1662 U/g Hb 

Damage   

Lipid Peroxides Thiobarbituric acid-

reacting substances 

(TBARS) assay 

< 10 μmol/L 
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Table 2. Baseline anthropometric characteristics, baseline 5-km time-trial results, and 
baseline fasting blood glucose results 

 Variables Protantim  
(n=19) 

Placebo  
(n=19) 

p -
value 

Combined 
Mean 

(n = 38) 
    

Age (yrs) 
34 (6) 

[23 to 44] 
35 (8) 

[20 to 46] 0.56 
34 (7) 

[20 to 46] 
 

Weight (kg) 
68.1 (11.4) 

[42.6 to 88.6] 
64.6 (11.1) 

[47.5 to 88.5] 0.34 
66.4  (11.2) 

[42.6 to 88.6] 
 

Height (cm) 
174 (10) 

[155 to 191] 
171 (11) 

[155 to 188] 
 

0.30 
172 (11) 

[155 to 191] 
 

BMI (kg/m²) 22.3 (2.1) 
[17.7 to 26.3] 

22.1 (2.7) 
[18.6 to 27.6] 0.82 22.2 (2.4) 

[17.7 to 27.6] 
 
5-km time (sec) 
 

 
1225 (136) 

[1047 to 1450] 

 
1210 (121) 

[1029 to 1469] 
0.72 

 
1217 (128) 

[1029 to 1469] 
     
5-km time (min) 20.4 (2.3) 20.2 (2.0) 0.72 20.3 (2.1) 
 [17.5 to 24.2] [17.2 to 24.5]  [17.2 to 24.5] 
     
% of world record 
for age and gender 
 

68% (4%) 
[61% to 76%] 

69% (6%) 
[60% to 81%] 0.34 

69% (5%) 
[60% to 81%] 

Fasting blood 
glucose (mg/dL) 
 

90 (5) 
[81 to 97] 

89 (9) 
[73 to 104] 0.73 

90 (7) 
[73 to 104] 

Mean (SD), [range], 22 subjects (58% of the sample) was classified as Local Class, 15 
subjects (40% of the sample) was classified as Regional Class, one subject (3% of the 
sample) was classified as National Class. Baseline 5-km time trial performance was taken 
as the best result between two baseline 5-km time trials held one week apart.  Baseline 
fasting blood glucose values was the average fasting blood glucose values for both 
baseline sessions held one week apart.  All variables were normally distributed (Shapiro-
Wilk test p > 0.05 for all). 
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Table 3. Baseline blood results.   

Variables Protandim®  
(n=19) 

Placebo 
(n=19) 

p -
value 

Combined 
Mean 

(n = 38) 

Reference 
Range  

Reserve     

Glutathione (GSH) 
(μmol/L) ≥ 669 

1051 (148) 
[785 to 1412] 

1016 (189) 
[740 to 1370] 0.54 

 

1033 (169) 
[740 to 1412] 

 

≥ 669 

Total Antioxidant 
Capacity (TAC) 
(mmol/L)  

0.86 (0.07) 
[0.73 to 1.05] 

0.85 (0.06) 
[0.52 to 0.79] 0.98 

 

0.86  (0.06) 
[0.73 to 1.05] 

 

≥ 0.54 

Cysteine (mg/dL) 
0.67 (0.13) 

[0.40 to 0.87] 
0.63 (0.07) 

[0.52 to 0.79] 
 

0.29 
 

0.65 (0.11) 
[0.40 to 0.87] 

 

0.46-1.20 

Cystine (mg/dL) 2.1 (0.4) 
[1.4 to 3.0] 

2.2 (0.3) 
[1.6 to 3.0] 0.14 2.1 (0.4) 

[1.4 to 3.0] 
1.6-3.2 

 
Cysteine to Cystine 
ratio 
 

 
0.34 (0.11) 

[0.18 to 0.59] 

 
0.29 (0.07) 

[0.21 to 0.48] 0.14 

 
0.32 (0.09) 

[0.18 to 0.59] 

 
0.17-0.50 

      
Sulphate (mg/dl)   3.8 (0.4) 3.9 (0.9)  3.9 (0.7) 3.0-5.9 
 [2.9 to 4.7] [2.7 to 5.9] 0.60 [2.7 to 5.9]  
      
Cysteine to Sulphate 
ratio 

0.18 (0.05) 
[0.09 to 0.27] 

0.17 (0.04) 
[0.09 to 0.25] 0.51 0.18 (0.04) 

[0.09 to 0.27] 
0.12-0.32 

      
Protective enzymes      
Superoxide 
dismutase (SOD, 
U/g Hb x 1000) 

11.4 (3.1) 
[6.0 to 17.9] 

11.7 (3.7) 
[4.0 to 18.5] 0.79 

11.5 (3.4) 
[4.0 to 18.5] 

5.3-16.7 

      
Glutathione 
Peroxidase (GPX, 
U/g Hb) 

28.1 (4.6) 
[22.1 to 36.6] 

28.4 (7.4) 
[18.7 to 43.2] 0.87 

28.2 (6.1) 
[18.7 to 43.2] 

20-38 

      
Damage      
Lipid Peroxides 
(TBARs, μmol/L) 
 

8.2 (2.0) 
[5.1 to 11.6] 

7.9 (1.9) 
[4.8 to 10.8] 0.67 

8.0 (1.9) 
[4.8 to 11.6] 

≤ 10 

Mean (SD), [range], baseline blood parameters in a fasted state was determined to be the mean of two 
baseline sessions held one week apart.  All variables were normally distributed except for the cysteine 
to cystine ratio and GSH. For GSH, one extreme outlier was removed.  A non-parametric Mann 
Whitney t-test was use to compare groups for the cysteine to cystine ratio.     
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Table 4. The week to week coefficient of variation in the blood variables. All blood 
variables were measured by Genova Diagnostics (n = 38). 

Blood Profile components Week-to-week 
coefficient of 
variation (%)  

(at rest, fasted) 

Correlation 
between session 

1 at baseline 
versus session 2 
at baseline (r) 

Percent of shared 
variance between 

both baseline 
sessions 

(r2 x 100) 
RESERVE    
Glutathione (GSH) (μmol/L) 16% 0.52* 

[0.24 to 0.72] 
 

27% 
[6% to 52%] 

Total Antioxidant Capacity 
(TAC) 
(mmol/L)  

7% 0.45* 
[0.15 to 0.67] 

 

20% 
[2% to 45%] 

Cysteine (mg/dL) 19% 0.24 
[-0.08 to 0.52] 

 

6% 
[1% to 27%] 

Cystine (mg/dL) 13% 0.62* 
[0.37 to 0.78] 

 

38% 
[14% to 61%] 

Cysteine to Cystine ratio 27% 0.41* 
[0.11 to 0.65] 

 

17% 
[1% to 42%] 

Sulphate (mg/dL) 19% 0.40* 
[0.10 to 0.64] 

 

16% 
[1% to 41%] 

Cysteine to Sulphate ratio 24% 0.37* 
[0.06 to 0.62] 

 

14% 
[0% to 37%] 

PROTECTIVE ENZYMES    
Superoxide Dismutase (SOD)  
(U/g Hb) 

24% 0.52* 
[0.24 to 0.72] 

 

27% 
[6% to 52%] 

Glutathione Peroxidase (GPX)  
(U/g Hb) 

15% 0.80* 
[0.64 to 0.89] 

 

64% 
[41% to 79%] 

DAMAGE    
Lipid peroxides (TBARS, 
μmol/L) 

26% 0.37* 
[0.06 to 0.62] 

14% 
[0% to 38%] 

 
OTHER    
Fasting Blood Glucose (mg/dL) 5% 0.64* 

[0.40 to 0.80] 
41% 

[16% to 64%] 
Brackets signify the 95% confidence interval. * The correlation between baseline week 1 and 
baseline week 2 is statistically significant p < 0.05 
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Table 5. Genova Diagnostic’s intra and inter-assay coefficient of variation for most 
parameters in the oxidative stress panel. 

Blood Profile components Acceptable coefficient of 
variation for replicates 
from the same sample; 
assayed at a different 

time point  

Coefficient of 
variation (%) of 
current controls 

Reserve   
Glutathione (GSH) (μmol/L) 25% 18% 

 
Total Antioxidant Capacity (TAC) 
(mmol/L)  
 

25% 9% 
 

Cysteine (mg/dL) 25% 16% 
 
Cystine (mg/dL) 

 
25% 

 
16% 

 
Sulphate (mg/dL) 25% 18% 

 
Protective enzymes 
 

  

Superoxide Dismutase (SOD)  
(U/g Hb) 
 

30% 27% 
 

Glutathione Peroxidase (GPX)  
(U/g Hb) 
 

25% 15% 
 

Damage 
 

  

Lipid peroxides (TBARS, μmol/L) 
 

30% 16% 
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Table 6. The aerobic training index between groups. This is the total amount of physical 
activity in minutes over a two week period multiplied by the average rating of perceived 
exertion value.  

Variables 

 

Baseline (pre-
supplementation) 

 

88 days post-
supplementation  

 

Mean 
Difference  

(n = 38) 

Protandim®  
n = 15 

 

 
 

6457 (4497) 
[4901] 

 
 
 

 
 

5753 (5340) 
[4474] 

 

 

-704 (2836) 

 

Placebo 
n = 19  

7982 (5992) 
[6235] 

9184 (5302) 
[8864] 

+1202 (3891) 

    
Mean (SD), [median], Median values are also reported due to non-normal distribution. 
For the baseline value, the total amount of physical activity in minutes over the previous 
two week period prior to the issue of the supplement was multiplied by the average rating 
of perceived exertion value for those two weeks. (6 = no exertion to 20 = maximal 
exertion).  For the post-test period, the total amount of physical activity in minutes over 
the previous two week period prior to the 88 days post-supplementation period was 
multiplied by the average the average rating of perceived exertion value for those two 
weeks. The changes in the aerobic training index was not different between groups (t = -
1.63, p = 0.11)   
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Table 7. Environmental conditions for all three 5-km time trials held at the University of 
Louisville outdoor track. 

 First baseline 5-km 
time trial 

Second baseline 5-km 
time trial 

Final 5-km time trial 
(~100 days after the 

first time trial) 

 Protandim
®   

Placebo Protandim®  Placebo Protandim
®  

Placebo 

Temp. 
(°F) 
 

35 (5)° 34 (6)° 36 (3)° 37 (2)° 49 (14)° 50 (15)° 

Dew 
Point 
(°F)  

28 (8)° 26 (9)° 28 (4)° 30 (5)° 39 (15)° 39 (15)° 

Humidit
y (%) 

79 (11)% 77 (12)% 73 (11)% 76(13)
% 

71 (19)% 70 (18)% 

Mean (SD). There was no statistically significant differences in any parameter between 
groups within each session.  The Dew Point is the temperature at which water vapor starts 
to condense out of the air (the temperature at which air becomes completely saturated). 
Above this temperature the moisture will stay in the air. If the dew-point temperature is 
close to the dry air temperature, then the relative humidity is high; however if the dew 
point is well below the dry air temperature then the relative humidity is low. 
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Table 8. Summary probabilities for all blood parameters at rest using a 2 x 4 repeated 
measures ANOVA. 

Repeated measures ANOVA 
results  

Main 
effect of 
group 

Main effect of 
Time 

Group x 
Time 

interaction 
effect 

RESERVE    
Glutathione (GSH) (μmol/L) 
 

0.51 < 0.001* 
(Partial η2 = 0.26) 

 

0.27 

Total Antioxidant Capacity 
(TAC) (mmol/L) 
  

0.68 < 0.001* 
(Partial η2 = 0.31) 

0.85 

Cysteine (mg/dL) 0.60 0.055 
(Partial η2 = 0.07) 

 

0.21 

Cystine (mg/dL) 0.52 0.038* 
(Partial η2 = 0.08) 

 

0.23 

Cysteine to Cystine ratio 0.30 0.14 
(Partial η2 = 0.05) 

0.35 

 
Sulphate (mg/dL) 

 
0.66 

 
0.001* 

(Partial η2 = 0.15) 
 

 
0.84 

Cysteine to Sulphate ratio 0.69 0.002* 
(Partial η2 = 0.13) 

 

 
0.48 

PROTECTIVE ENZYMES    
Superoxide Dismutase (SOD)  
(U/g Hb) 

0.81 < 0.001* 
(Partial η2 = 0.40) 

 

0.55 
 

Glutathione Peroxidase 
(GPX)  
(U/g Hb) 

0.66 < 0.001* 
(Partial η2 = 0.23) 

 

0.851 

DAMAGE    
Lipid Peroxides (TBARS, 
μmol/L) 

0.74 0.31 
(Partial η2 = 0.035) 

0.38 

    
OTHER    
Fasting Blood Glucose 
(mg/dL) 

0.67 0.01 
(Partial η2 = 0.15) 

0.26 

*Statistical significance of p < 0.05 or lower. The partial η2 is the partial eta squared.  
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Table 9. The number of individuals in each group that ate the same food 24 hrs prior to 
the blood draw for each of the five blood draw days. 

 Not at all (<40%) or 
Somewhat (40 to 60%) 

Mostly (61 to 85%) 
or Completely (86 

to 100%) 

Protandim®  Group (n = 18) 5 13 

Placebo Group (n = 19) 14 5 

Not at all (<40%) or Somewhat  (40 to 60%) category represent the combined number of 
individuals in each group who ate less than 60% of the same food and drink prior to each 
session. Mostly (61 to 85%) or Completely (86% to 100%) category represent the 
combined number of individuals in each group who ate >61% of the same food and drink 
prior to each session. Fisher’s exact test, p < 0.01 between groups. 
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Table 10. Pre and post exercise blood values from both baseline sessions and at 88 days 
post-supplementation. Both groups were combined due to lack of a between group effect. 

 Pre-
exercise 

10-minutes 
post exercise 

change p value 

Damage     
Lipid Peroxides (TBARs, μmol/L)     
Baseline week 1  8.7 (3.4) 9.4 (2.4) +0.6 (3.1) 0.21 
Baseline week 2  7.4 (2.2)# 7.5 (2.1) +0.1 (1.7) 0.78 
Average of both baseline weeks  8.1 (1.9) 8.4 (2.4) +0.4 (1.8) 0.22 
88 days post-supplementation  7.6 (3.2) 7.1 (2.5) -0.5 (3.6) 0.47 
 
Protective Enzymes 

    

Superoxide dismutase  
(SOD, U/g Hb x 1000) 

    

Baseline week 1 11.8 (3.3) 12.2 (3.4) +0.3 (1.5) 0.17 
Baseline week 2  11.2 (4.4) 11.1 (4.3) -0.1 (1.7) 0.66 
Average of both baseline weeks  11.5 (3.4) 11.6 (3.3) +0.1 (1.1) 0.55 
88 days post-supplementation  19.3 (7.1) 19.9 (7.0) +0.5 (3.1) 0.35 
     
Glutathione Peroxidase (GPX, U/g 
Hb) 

    

Baseline week 1  29.5 (8.1) 29.3 (7.7) -0.2 (2.6) 0.63 
Baseline week 2  26.9 (4.6)# 27.0 (4.6) +0.1 (1.9) 0.68 
Average of both baseline weeks  28.2 (6.1) 28.2 (5.9) 0.0 (1.6) 0.88 
88 days post-supplementation  31.3 (6.4) 31.4 (5.9) +0.1 (3.1) 0.89 
 
Other 

    

Glucose levels (fasted) (mg/dL)     
Baseline week 1  92 (7) 165 (33) +72 (31) <0.01 
Baseline week 2  90 (7) 158 (36) +68 (37) <0.01 
Average of both baseline weeks  91 (7) 161 (31) +70 (29) <0.01 
88 days post-supplementation  91 (8) 163 (44) +72 (41) <0.01 
 
Reserve 

    

Glutathione (GSH) (μmol/L)     
Baseline week 1  1087 (252) 1076 (223) -11 (131) 0.61 
Baseline week 2  1013(196)# 998 (206) -15 (200) 0.64 
Average of both baseline weeks  1033 (169) 1023 (165) -11 (84) 0.45 
88 days post-supplementation  999 (235) 1042 (186) +43 (229) 0.27 

Mean (SD). Both Protandim® and placebo groups were combined due to the fact that there were 
no differences between them. Probability values compares post-exercise with pre-exercise within 
each session. n = 38 for both baseline sessions, n = 35 at 88 days post-supplementation period. # 
p < 0.05 compared to baseline week 1 . # Baseline week 2 pre-exercise is significantly different 
compared to Baseline week 1 pre-exercise (p < 0.05).  
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Table 11. Pre and post exercise blood values at both baseline sessions and at 88 days post-
supplementation. Both groups were combined due to lack of a between group effect. 

 Pre-
exercise 

10-min post 
exercise 

change p-value 

Reserve     
Total Antioxidant Capacity (TAC) 
(mmol/L) 

    

Baseline week 1 0.86 (0.06) 0.96 (0.08) +0.11 (0.07) < 0.01 
Baseline week 2  0.87 (0.08) 0.98 (0.09) +0.11 (0.07) < 0.01 
Average of both baseline weeks  0.86 (0.06) 0.97 (0.07) +0.11 (0.05) < 0.01 
88 days post-supplementation  0.80 (0.06) 0.91 (0.08) +0.11 (0.04) < 0.01 
     
Cysteine (mg/dL)     
Baseline week 1  0.62 (0.14) 0.65 (0.13) +0.02 (0.11) 0.18 
Baseline week 2  0.68(0.14)# 0.72 (0.17) +0.05 (0.18) 0.13 
Average of both baseline weeks  0.65 (0.11) 0.69 (0.12) +0.03 (0.11) 0.06 
88 days post-supplementation  0.59 (0.13) 0.64 (0.16) +0.04 (0.12) 0.04 
     
Cystine (mg/dL)     
Baseline week 1  2.1 (0.4) 2.2 (0.4) +0.1 (0.4) 0.15 
Baseline week 2  2.2 (0.5) 2.2 (0.4) +0.1 (0.3) 0.03 
Average of both baseline weeks  2.1 (0.4) 2.2 (0.4) +0.1 (0.3) 0.02 
88 days post-supplementation  2.1 (0.3) 2.2 (0.5) 0.0 (0.4) 0.63 
     
Cysteine to Cystine ratio      
Baseline week 1  0.31 (0.10) 0.31 (0.10) 0.0 (0.08) 0.98 
Baseline week 2  0.33 (0.12) 0.33 (0.14) 0.0 (0.12) 0.85 
Average of both baseline weeks  0.32 (0.10) 0.32 (0.10) 0.0 (0.08) 0.81 
88 days post-supplementation  0.29 (0.09) 0.39 (0.56) 0.10 (0.56) 0.28 
     
Sulphate (mg/dL)      
Baseline week 1  3.6 (0.8) 3.8 (0.9) +0.2 (0.7) 0.08 
Baseline week 2  4.1 (0.8)# 4.6 (1.3) +0.5 (1.2) 0.02 
Average of both baseline weeks  3.9 (0.7) 4.2 (0.9) +0.3 (0.8) 0.01 
88 days post-supplementation  3.8 (0.7) 4.1 (0.8) +0.3 (0.5) < 0.01 
     
Cysteine to Sulphate ratio      
Baseline week 1  0.18 (0.06) 0.18 (0.06) 0.0 (0.04) 0.69 
Baseline week 2  0.17 (0.05) 0.17 (0.06) 0.0 (0.05) 0.72 
Average of both baseline weeks  0.18 (0.04) 0.17 (0.05) 0.0 (0.04) 0.67 
88 days post-supplementation  0.16 (0.04) 0.16 (0.04) 0.0 (0.04) 0.96 

Mean (SD). Both Protandim® and placebo groups were combined due to the fact that there were no 
differences between them. Probability values compares post-exercise with pre-exercise within each session. 
n = 38 for both baseline sessions, n = 35 at 88 days post-supplementation period. # Baseline week 2 pre-
exercise is significantly different compared to Baseline week 1 pre-exercise (p < 0.05). 
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Table 12. The total number of participants and events of a given sign / symptom over the 
supplementation period of 88 days. 

Signs/ Symptoms 
Protandim® 

(n=19) 
Placebo 
(n=19) 

Total number of 
events from both 
groups over 88 

days 
Stomach Ache 5(18) 2(2) 20 

Diarrhea 5(10) 2(12) 22 

Vomiting 2(2) (2) 4 

Headache 6(40) 3(12) 52 

Rash (Hands/Feet) 0 0 0 

Gas 1(51) 4(137) 188 

Drowsiness 2(3) 4(17) 20 

Constipation 2(17) 1(8) 25 

Nausea 5(17) 2(7) 24 

Dizziness 5(33) 2(5) 38 

Insomnia 1(1) (0) 1 

Itching 1(8) 0 8 

Joint Pain 2(12) 3(6) 18 

Low Blood Sugar 2(18) (0) 18 

Low Blood Pressure 0 0 0 

Head cold /  
congestion 
 

1(1)  0 1 

Increased appetite  (0) (1) 1 

Total (233) (220) 453 
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The numbers outside of parentheses represents the number of individuals who had the sign or 
symptom over the supplementation period. The numbers within the parentheses represent the 
number of events in each group compared to the summed total of both groups. 
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Table 13. The stability of the responses for the WHOQOL-BREF Questionnaire over a 
one week baseline period (n= 38). 

 Week-to-
week C.V % 
for the raw 

scores 

Within 
subject SD 

(SDw) for raw 
scores 

Reproducibility 
(2.77 x SDw) of 
the raw scores 

Smallest 
measureable 
change for 
raw scores 

Physical 
Health 

(Raw scores 
can range 

from 7 to 35) 
 

 
5.3% 

 
1.5 

 
4.1 

 
2.0 

Psychological 
Health 

(Raw scores 
can range 

from 6 to 30) 
 

 
7.2% 

 
1.7 

 
4.6 

 
2.3 

Social 
Relationships 
(Raw scores 
can range 

from 3 to 15) 
 

 
4.4% 

 
0.5 

 
1.4 

 
0.7 

Environment 
(Raw scores 
can range 

from 8 to 40) 

 
4.0% 

 
1.4 

 
3.7 

 
1.9 

The within subject SD is considered the measurement error. 
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Figure 1. A meta-analysis of the acute effect of intense exercise on oxidative damage as 
assessed lipid peroxides from serum blood samples. This represents an immediate post-
exercise change (within 10 minutes post exercise) in lipid peroxides compared to pre-
exercise. Using a fixed effect model on 282 subjects from 22 studies, the effect size was 
+0.8 (95% CI = 0.6 to 1.0, p < 0.001). With a random effects model, the effect size was 
+1.6 (95% CI = 0.9 to 2.3, p < 0.001). There was a heterogeneity effect between studies 
(Q = 278.4, Df = 21, p < 0.001) 5,8,25,38-56. 

  
 

 
 

 
  

Lipid Peroxides
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Standardized Mean Difference

Vezzoli et al. (2014), Running
Duthie et al. (1990), Running
Diaz et al. (2011), Running
Alessio et al. (1997), Running
Maughan et al. (1989), Running
Revan (2011), Running
Revan (2010), Running
Vider et al. (2001), Running
Arent et al. (2010), Running
Bogdanis et al. (2013), Running
Michailidis et al. (2007), Running
Feairheller et al. (2011), Running
Inayama et al. (1996), Running
Marzatico et al. (1997), Running
Rokitzki et al. (1994), Running
Fatouros et al. (2004), Running
Miyazaki et al. (2001), Bike
Fisher at al. (2011), Bike
Bloomer et al. (2005), Bike
Kyparos et al. (2009), Rowing
Kabasakalis et a. (2011), Swimming
Margaritis et al. (1997), Triathlon

Total (fixed effects)
Total (random effects)
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Figure 2. A meta-analysis of the acute effect of intense exercise on superoxide dismutase 
concentration from serum blood samples. This represents an immediate post-exercise 
change (within 10 minutes post exercise) in superoxide dismutase compared to pre-
exercise. Using a fixed effect model on 85 subjects from 8 studies, the effect size was 
+0.7 (95% CI = 0.4 to 1.0, p < 0.001). With a random effects model, the effect size was 
+1.2 (95% CI = 0.2 to 2.0, p = 0.014). There was a heterogeneity effect between studies 
(Q = 50.7, Df = 7, p < 0.001) 40,42,45,48,50,51,54,55. 
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Diaz et al. (2011), Running

Feairhellar et al. (2011), Running

Fisher et al. (2011), Biking

Total (fixed effects)

Total (random effects)
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Figure 3. A meta-analysis of the acute effect of intense exercise on glutathione 
peroxidase concentration from serum blood samples. This represents an immediate post-
exercise change (within 10 minutes post exercise) in Glutathione Peroxidase compared to 
pre-exercise. Using a fixed effect model on 167 subjects from 11 studies, the effect size 
was +0.5 (95% CI = 0.3 to 0.7, p < 0.001). With a random effects model, the effect size 
was +0.8 (95% CI = 0.3 to 1.3, p = 0.004). There was a heterogeneity effect between 
studies (Q = 54.6, Df = 10, p < 0.001) 8,19,40,42,45,49,50,52,54,55. 
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Duthie et al (1990), Running 

Fisher et al. (2011), Biking

Bogdanis et al. (2013), Biking

Total (fixed effects)

Total (random effects)
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Figure 4. A meta-analysis of the acute effect of intense exercise on total antioxidant 
capacity from serum blood samples. This represents an immediate post-exercise change 
(within 10 minutes post exercise) in total antioxidant capacity compared to pre-exercise. 
Using a fixed effect model on 143 subjects from 9 studies, the effect size was +0.5 (95% 
CI = 0.2 to 0.7, p < 0.001). With a random effects model, the effect size was +1.2 (95% 
CI = 0.3 to 2.0, p = 0.007). There was a heterogeneity effect between studies (Q = 81.3, 
Df = 8, p < 0.001) 13,19,25,28,38,39,45,48,49,52. 

 

 
 

Data taken from Kyparos et al. (2009 and 2012) seemed to be the same data published in 
both articles. 
 
  

Total Antioxidant Capacity
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Standardized Mean Difference

Diaz et al. (2011), Running

Fatouros et al. (2004), Running

Mullins et al. (2013), Running

Michailidis et al. (2007), Running

Vider et al. (2001), Running

Bogdanis et al. (2013), Biking

Kyparos et al. (2009, 2012), Rowing

Kabaskalis et al. (2011), Swimming

Finaud et al (2006), Rugby

Total (fixed effects)

Total (random effects)
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Figure 5. A meta-analysis of the effect of long term chronic training on oxidative 
damage as assessed lipid peroxides from serum blood samples. This represents serum 
values in a rested state after a period of long term training. Using a fixed effect model on 
61 subjects from 5 studies, the effect size was +0.2 (95% CI = -0.2 to +0.7, p = 0.32). 
With a random effects model, the effect size was +1.6 (95% CI = -1.4 to +4.5, p = 0.30). 
Thus, no effect of long term training on serum lipid peroxides values.  There was a 
heterogeneity effect between studies (Q = 121.7, Df = 4, p < 0.001) 43,49,52,55,57. 
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Vezzoli et al. (2014), Running

Fatouros et al. (2004), Running

Leonardo-Mendonça et al. (2014), Biking

Bogdanis et al. (2013), Biking

Miyazaki et al (2001), Biking

Total (fixed effects)

Total (random effects)
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Figure 6. A meta-analysis of the effect of long term training on superoxide dismutase 
concentration from serum blood samples. This represents serum values in a rested state 
after a period of long term training. Using a fixed effect model on 26 subjects from 2 
studies, the effect size was +0.4 (95% CI = -0.1 to 1.0, p = 0.13). With a random effects 
model, the effect size was +0.4 (95% CI = 0.1 to 1.0, p = 0.13). There was no 
heterogeneity effect between studies (Q = 0.30, Df = 1, p = 0.58). There was no long term 
training effects of superoxide dismutase 55,58. 
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Figure 7. A meta-analysis of the effect of long term training on glutathione peroxidase 
concentration from serum blood samples. This represents serum values in a rested state 
after a period of long term training. Using a fixed effect model on 53 subjects from 4 
studies, the effect size was +1.0 (95% CI = 0.5 to 1.4, p < 0.001). With a random effects 
model, the effect size was +1.0 (95% CI = -0.7 to +2.6, p = 0.27). There was 
heterogeneity effect between studies (Q = 42.4, Df = 3, p < 0.001). There was no long 
term effect of training on glutathione peroxidase concentration from the random effects 
model 49,52,55,58. 
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Figure 8. A meta-analysis of the effect of long term training on total antioxidant capacity 
from serum blood samples. This represents serum values in a rested state after a period of 
long term training. Using a fixed effect model on 42 subjects from 4 studies, the effect 
size was +0.5 (95% CI = 0.0 to 0.9, p = 0.065). With a random effects model, the effect 
size was +0.9 (95% CI = -1.0 to +2.8, p = 0.34). There was heterogeneity effect between 
studies (Q = 38.7, Df = 3, p < 0.001). There was no long term effect of training on total 
antioxidant capacity 43,49,52,57. 
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Figure 9. Normal subjects before supplementation with Protandim®16. 
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Figure 10. Group 1 subjects supplemented with Protandim® for 120 days showed a 
significant increase (*) in erythrocyte superoxide dismutase (SOD) of 30% (SD 10%) (n 
= 10, p < 0.01)16. 
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Figure 11. Group 2 subjects supplemented with Protandim®  at 338 mg/day for 30 day 
showed a substantial decline in TBARS at 5 and 12 days (squares, n = 4). By 30 days, the 
levels of plasma TBARS dropped an average of 50% (p < 0.03). The closed circle shows 
the average TBARS of the Group 1 (675 mg/day) subjects after 30 days, which is not 
significantly different16. 
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Figure 12. The 5-km time trial performance times between the post-supplementation 
period and baseline (minutes). There was no significant differences between groups (p = 
0.91), there was no significant differences between the two time-points (p = 0.19), and 
there was no interaction effect between group and time (p = 0.84) 
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Figure 13. Box-and-whisker plots of the change in 5-km time trial performance 
(minutes) between post-supplementation period and baseline (post – pre). There was no 
significant differences between groups (p = 0.84, n = 16 in the Protandim® group, n = 19 
in the placebo group). The 10th, 25th, 75th, and 90th percentiles are vertical boxes with 
error bars.  The middle horizontal line across each box represents the 50th percentile.  The 
solid circles represent the lowest and highest value in each group, usually the 5th and 95th 
percentiles for each group. One outlier was present in the Protandim® group (+1.6 
minutes). An outlier is defined as larger than the upper quartiles plus 1.5 times the 
interquartile range) 
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Figure 14. The long term effects of supplementation on various blood parameters (rest, 
fasted state). There was no difference between groups for either variable. (*p < 0.05 
compared to baseline). Mean values represented by circles, error bars represent SD. 
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Figure 15. The long terms effects of supplementation on various blood parameters (rest, fasted 
state). There was no difference between groups for either variable. (*p < 0.05 compared to 
baseline). Mean values represented by circles, error bars represent SD. 
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Figure 16. The long terms effects of supplementation on various blood parameters (rest, 
fasted state). There was no difference between groups for either variable. (*p < 0.05 
compared to baseline). Mean values represented by circles, error bars represent SD. 
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Figure 17. The long terms effects of supplementation on various blood parameters (rest, 
fasted state). There was no difference between groups for either variable, and there was 
no difference in these variables at any time point (p > 0.05). Mean values represented by 
circles, error bars represent SD. 
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Figure 18. The long terms effects of supplementation on various blood parameters (rest, 
fasted state). There was no difference between groups for either variable. (*p < 0.05 
compared to baseline). Mean values represented by circles, error bars represent SD. 
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Figure 19. Acute changes in blood parameters of oxidative stress between rest and 10-
minutes post exercise at baseline and 88 days post-supplementation. There was no 
difference between groups nor was there any difference between baseline and post 
supplementation periods.  Mean values represented by circles, error bars represent SD. 
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Figure 20. Acute changes in blood parameters of oxidative stress between rest and 10-
minutes post exercise at baseline and 88 days post-supplementation. There was no 
difference between groups nor was there any difference between baseline and post 
supplementation periods.  Mean values represented by circles, error bars represent SD.  
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Figure 21. Acute changes in blood parameters of oxidative stress between rest and 10-
minutes post exercise at baseline and 88 days post-supplementation. There was no 
difference between groups nor was there any difference between baseline and post 
supplementation periods.  Mean values represented by circles, error bars represent SD.  
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Figure 22. World Health Organization Quality of life (BREF) raw scores. Upper panel A, 
circles, represent Physical Health scores, triangles represent Social Relationship scores. Lower 
panel B, circles, represent Psychological Health scores, triangles represent Environment scores. 
(Black = Protandim®, White = Placebo). Only at 88 days post-supplementation did the placebo 
group have higher “environment scores” compared to Protandim® (* p = 0.047). Mean values 
represented by circles and triangles, error bars represent SD. 
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