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ABSTRACT 

DIETARY CAROTENOIDS AND THE COMPLEX ROLE OF REDNESS IN THE 

BEHAVIOR OF THE FIREMOUTH CICHLID THORICHTHYS MEEKI 

Sarah A. Fauque 

November 18, 2015 

 This dissertation takes a comprehensive approach to the role of dietary 

carotenoids on redness and the subsequent behaviors in the firemouth cichlid, 

Thorichthys meeki.  

I start with a brief introduction into signaling, the importance of carotenoids, and 

mate choice. The dissertation is then divided into three data chapters which are designed 

to stand as independent manuscripts. Chapter II documents how altering the availability 

of dietary carotenoids affects redness in the integument of male and female T. meeki. I 

tracked how redness changed in color and distribution in individuals over the course of 

12 weeks. I confirm that a dichotomy in redness can be obtained in this time period via 

diet alone. 

However, carotenoids are used by animals for more than red ornamentation 

including color vision. To account for this potential effect of carotenoids in my study 

animals, I examined if color vision was affected by the high- and low-carotenoid diet 

treatments (chapter III). Furthermore, I determined whether redness (a trait for which T. 

meeki is named) is innately attractive to this species (chapter III).  
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The sensory bias hypothesis suggests that males and females utilize traits that are 

innately appealing to the opposite sex to attract a mate. My final data chapter examines 

whether males and females use redness and other visual displays as a signal in mate 

selection (chapter IV).  I conclude this dissertation by summarizing my findings and 

proposing future directions in which I wish to examine this system further (chapter V).  
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CHAPTER I 

INTRODUCTION 

 Animal communication uses a complex suite of signals to make decisions on 

various aspects that have the potential to confer fitness consequences for an individual 

(Endler, 1993). A successful signal is dependent upon the emiter’s ability to produce a 

signal as well as the receiver’s ability to receive and process the signal. While this seems 

simple enough, a signal has to pass through the environment, overcome environmental 

noise, and be processed physiologically by the receiver (Endler, 1993).  

 Signals can be of a single modality (eg.vision, olfactory, auditory) or 

multimodal—a combination of one or more signaling pathways. All signaling modalities 

have their respective advantages and disadvantages. For example, visual signals can be 

transmitted very quickly, but they are dependent upon the receiver being in the line of 

sight during a time in which ambient lighting is sufficient (Endler, 1993). Conversely, 

olfactory cues do not require a line of sight, but they are very slow to transmit. 

Furthermore, this type of signal may come at a cost to the signaler—eg. the release of 

cues associated with predation (Endler, 1993).  

While many researchers have historically examined a single signaling modality, 

current research suggests that many signalers use multiple modalities (Raguso & Willis, 

2002;Uetz & Roberts, 2002; Guevara-Fiore et al., 2010; Estramil et al., 2014;). For 

example, Verzijden et al. (2010) demonstrate that an African cichlid (Pundamilla sp.) 
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uses auditory signals for finding mates and hypothesize that these sounds may have 

significant influence on mate selection. However, further exploration of this subject 

found that auditory cues alone are not enough to attract this species. When females were 

presented with sound alone, they didn’t respond more than to a playback of white noise. 

The authors hypothesize that additional cues, such as visual or olfactory signals, are 

necessary for finding their mate, suggesting the importance of multimodal signaling in 

Pundamilla sp. (Estramil et al.,2014).  

Likewise, Hebets and Uetz (1999) studied wolf spiders (Schizocosa spp.) that are 

known to utilize multimodal courtship display—specifically vibratory and visual cues. 

By examining vibratory and visual signals independently, they were able to find that 

species whose courtship display was stridulation-based had females who responded more 

strongly to isolated vibratory cues. Similarly, species whose courtship displays were 

primarily visual possessed females who responded more strongly to isolated visual cues 

than to vibratory cues. This suggests that male courtship displays and female responses 

within Schizocosa spp. have coevolved (Hebets & Uetz, 1999). A hypothesis to explain 

this coevolution is that the female preferences for certain courtship displays are actually 

by-products of males exploiting the best sensory modality in that species.  

Sensory exploitation or sensory bias is one way in which traits and preferences 

can coevolve (Ryan & Keddy-Hector, 1992; Fuller et al.,2005). Other hypotheses on 

mating preferences include both indirect and direct benefits to the choosing female 

(Kirkpatrick & Ryan, 1991; see Brooks & Griffith, 2010). The direct benefits model of 

sexual selection states that females will choose to mate with a male who provides her 

with resources that benefit her survival and fitness. For example, females can obtain 
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nourishment via nuptial gifts such as spermatophores or body parts of the mating male 

that are associated with courtship displays (Vahed, 1998). Likewise, selecting a quality 

male in some species allows access to his territory. This access can confer benefits such 

as more foraging patches, protection from predation, or assistance with raising young. 

The indirect benefits model of sexual selection is dissimilar in that females are choosing 

to mate with males who will best benefit her offspring. Males who possess attractive 

qualities will pass on the good genes that make them attractive, thus resulting in attractive 

progeny. Similarly, the genes coding for preferring particular traits will be passed as well 

resulting in offspring who are both attractive and prefer attractive partners.  

 In order for males to attract females via these models, they need to convince their 

potential mates that they are an excellent choice. A common mode of communicating 

vigor is through honest signaling. An honest signal of mate quality has constraints that 

make it difficult to cheat. Traits that are energetically costly to produce, costly to fake, or 

have physiological requirements are often considered honest signals. For example, many 

fish species prefer larger mates. While there are adaptations that can increase the apparent 

size display of an animal (Neil, 1983), size is often physiologically controlled and unable 

to be faked.  

Likewise, carotenoid-dependent coloration is considered an honest indicator of an 

individual’s quality. Carotenoids cannot be synthesized de novo and the color associated 

with it (hues of yellow, orange, and red) depend on access to carotenoid-rich foraging 

patches and the ability to process these pigments (Hill & Johnson, 2012). Carotenoids are 

essential for more than just ornamental color. These compounds are essential for immune 

function and vision (Hill & Johnson, 2012; Toomey & McGraw, 2012). To produce 
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brilliant ornamental coloration there is often a trade-off between carotenoids that are used 

in an essential living capacity and carotenoids used for integument color. Therefore, 

individuals that are vibrantly colored can be assumed to be in good health as they were 

able to allocate this essential resource to their integument which is often not necessary for 

survival. The variation in carotenoid-dependent coloration and its role in mate choice has 

been intriguing to many scientists. 

Mate choice is expected when either sex allocates significant energy into 

reproduction. Even if no parental care is provided, females tend to intrinsically contribute 

more energy into offspring than males due to anisogamy. Therefore, females are often 

considered the choosier sex and female mate choice has been extensively studied. 

However, male mate choice and mutual mate choice have been greatly overlooked until 

recently.  

Currently, male mate choice has been examined in a variety of taxa including 

spiders (MacLeod & Andrade, 2014; Rundus et al., 2015), insects (Tigreros et al.,2014; 

Barry et al.,2015; Wittman & Fedorka, 2015), fish (Bahr et al., 2012; Roth et al., 2014; 

Wright et al.,2015), and lizards (Swierk et al.,2013). Male mate choice has been 

examined specifically in organisms with sex-role reversal such as fish within the family 

Sygnathidae. Since the males in this system provide significant care for eggs and fry in 

this family, they selectively pair with females (Bahr et al.,2012; Roth et al.,2014). 

However, male mate choice is not confined to situations of sex-role reversal and has been 

investigated in systems with conventional sex roles (Jones et al., 2014; MacLeod & 

Andrade, 2014; Ala-Honkola et al.,2015; Baxter et al.,2015; Rundus et al.,2015; Wittman 



5 
 

& Fedorka; 2015). As with females, males are expected to be choosy when reproductive 

or parental investment is high (Rundus et al, 2015). 

However, male and female mate choice are not mutually exclusive. In systems 

where both parents invest significantly in their offspring, we would expect both sexes to 

selectively mate (Johnstone et al.,1996). Mutual mate choice studies have been increasing 

in frequency in the literature, but there is still a disparity when compared to the vast 

understanding of female mate choice and the recent studies on male mate choice. Here, I 

examine the complex role of carotenoid mediated redness in the firemouth cichlid, 

Thorichthys meeki. 

 T.meeki is a monogamous, Neotropical cichlid that displays ventral, red color in 

both sexes (Neil, 1984). Males and females are essentially monomorphic with the 

exception that the males often have longer, filamentous extensions of their medial fins; 

however this trait has been documented in females as well. The role of redness in T. 

meeki has been described thus far for males, where redder individuals won agonistic 

contests more than their less red counterparts (Evans & Norris, 1996). This suggests that 

redness is an honest indicator of male fighting ability in T. meeki. Unfortunately, the role 

of redness has not been examined in female T. meeki or whether it has a role in 

intersexual communication between conspecifics.  

In my study, I altered the redness in T. meeki by varying dietary carotenoid 

content. I quantified how redness changed over the course of the experiment to document 

that this is indeed a carotenoid-dependent trait and that a dichotomy in color can be 

expressed. For example, redness can also be displayed by producing pteridines. This 
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compound has been found alone in a color patch or mixed with carotenoid-dependent 

color patches.  

As carotenoids have other biological functions, I also consider if vision is affected 

by diet. An inadequate ability to perceive visual signals would have a detrimental effect 

on the fitness of T. meeki. By accounting for potential variation produced by dietary 

carotenoids in non-target traits I can assess whether my target trait, redness, is innately 

attractive and plays a significant role in mate preference in this species.  
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CHAPTER II 

CAROTENOID-MEDIATED CHANGES IN REDNESS IN THE  

FIREMOUTH CICHLID, THORICHTHYS MEEKI 

 

Introduction 

Visual signals are common throughout the animal kingdom and the 

conspicuousness of some signals has long been intriguing to researchers. Redness is a 

visual signal utilized by a wide variety of taxa for inter- and intraspecific communication. 

Many red signals are produced through the metabolic processing of dietary carotenoids 

into various red, orange, and yellow pigments. Variation in carotenoid-mediated color 

depends on the availability of carotenoids in the diet, the ability of the animal to absorb 

carotenoids, and the metabolic pathway that produces the ornamental color (Hill & 

Johnson, 2012; Olson & Owens, 1998). Carotenoids can also mitigate oxidative stress, 

stimulate immune function, and affect vision (Kodric-Bown, 1998; Olson & Owens, 

1998; Hill & Johnson, 2012). According to the carotenoid trade-off hypothesis, an 

individual must first satisfy the demands of its immune system for carotenoids before it 

will invest them in brighter body coloration. Accordingly, as carotenoids cannot be 

synthesized de novo, colors produced by carotenoids are considered to be honest 

indicators of quality in carotenoid-limited environments (Kodric-Brown, 1985; Wedekind 

et al.,1998; Candolin, 2000). These colors can also demonstrate resistance to parasites; 
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the presence of parasites has been shown to affect the uptake and metabolism of dietary 

carotenoids and thus reduce red and orange coloration (Olson & Owens, 1998).  

Not all reddish colors are produced solely by carotenoids, as some species possess 

the ability to synthesize pteridines to produce yellow, red, and orange colors (Grether et 

al., 2001; Sefc et al., 2014; Johnson & Fuller, 2015). However, at least within the fishes, 

individuals that can synthesize these pigments cannot use them to compensate for low 

carotenoid levels because although pteridines can be synthesized de novo, their presence 

in orange patches decreases with carotenoid scarcity instead of increasing (Grether et al., 

2001). Grether et al. (2001) suggested that pteridines are likely costly to produce, and 

because carotenoid availability is linked with food availability, the reduced energy 

available prevents increases in pteridine production.  

 Thorichthys meeki is a Central American cichlid commonly known as the 

firemouth cichlid because it has red coloration running ventrally from the mouth to the 

anal fin (Baerends & Baerends Van-Roon, 1950; Neil, 1984a). The degree of redness 

varies among individuals, and previous researchers suggested the red color is carotenoid-

mediated (Evans & Norris, 1996). T. meeki is an opportunistic, omnivorous feeder that 

consumes a variety of invertebrates and algae (Neil, 1984a). Dominant males defend 

territories with greater food availability (Hodapp & Frey, 1980) and thus should be redder 

than lower-ranked conspecifics. When male redness is altered by the addition of 

carotenoids to their diet, the redder males won agonistic contests more frequently than 

their less-red opponents. (Evans & Norris, 1996).  

Researchers often manipulate carotenoid-dependent coloration to study its 

behavioral effects (Evans & Norris, 1996; Baron et al., 2008; Yasir & Qin, 2010) . 
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Typically, such studies are performed by dividing subjects into two groups and providing 

one with additional carotenoids in their food. This results in all other aspects of the 

animals remaining equal (such as size, health, etc.) with the exception of carotenoid-

mediated color. By altering only coloration, researchers can explore how redness alone 

affects various behaviors. One drawback to this protocol is the lack of information on 

how long this manipulation takes to have an effect on color and a common failure to 

quantify to what extent the final coloration differs between the groups. The literature is 

inconclusive on how long individuals need to be on their respective diets (Evans & 

Norris, 1996; Wallat et al.,2005; Baron et al., 2007; Doolan et al.,2009; Yasir & Qin, 

2010; Adeljean et al., 2013a; Adeljean et al., 2013b; Yi et al.,2014). Researchers often 

note that their chosen period was sufficient to provide an obvious dichotomy in color, but 

few studies have quantified how the colors differ or tracked color change over time.  

 The aim of this study is to use digital imaging to document and quantify the color 

changes that occur through a manipulation in diet over 12 weeks, a time period used to 

alter T. meeki coloration in a previous study (Evans and Norris, 1996). In addition to 

determining if the diet provided a dichotomy in hue, I also examine how carotenoids are 

integrated into the integument by documenting the number of red patches as well as what 

proportion of the fish is red. This quantification of carotenoid-mediated integument 

coloration over time is the first in T. meeki and will be a useful parameter for those 

wishing to achieve this dichotomy.  
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Methods 

Study species and diet 

Thorichthys meeki were obtained as juveniles from a local pet shop which 

acquires their stock from various fish breeders. All fish were housed in 300L aquariua. 

To make conditions conducive to growth and normal behavior, all aquaria contained a 

gravel substrate and refugia consisting of plastic plants, pieces of slate, and clay pots. 

Additionally, power filters provided aeration and heaters kept water temperature at 

approximately 27° C. This experiment was approved by the University of Louisville’s 

Institutional Animal Care and Use Committee (proposal #12040). 

Since the sexes may differ in hue and in response to the diets, I separated them for 

the experiment. To determine sex, I examined the genital papilla of unsexed fish under a 

stereoscope every two weeks. After a fish had matured enough so that its sex could be 

determined, I placed it into one of four 300-liter aquaria depending on fish sex and the 

diet the fish would receive—high carotenoid male (HCM), low carotenoid male (LCM), 

high carotenoid female (HCF), and low carotenoid female (LCF).  

The high carotenoid (HC) diet consisted of Cobalt Aquatics Color Flakes ® while 

the low carotenoid (LC) diet consisted of Cobalt Aquatics Spirulina Flakes ®. These diets 

were chosen because they differed in the number and quantity of carotenoid-rich 

components they contained. Ingredients for both diets are listed in order of weight 

emphasizing a difference in carotenoid content. Cobalt Aquatics Color Flakes® have 

ingredients rich in carotenoids including: salmon fish meal, plankton, krill, and 

astaxanthin. Astaxanthin is an additional carotenoid that is used frequently to alter animal 

coloration (Wallat et al.,2005; Baron et al.,2008; Doolan et al.,2009; Yasir & Qin, 
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2010;Adeljean et al.,2013a; Adeljean et al.,2013b; Yi et al.,2014). The spirulina flakes 

are lower in carotenoids but not completely devoid of them because they are necessary 

for fish health (Olson & Owens, 1998; Hill & Johnson, 2012; Sefc et al., 2014). This 

variety also contains salmon fish meal as the primary ingredient, however, spirulina 

flakes are more plant-based than the color flakes and include ingredients such as 

spirulina, algae, and kelp. Since T. meeki are omnivores that eat a variety of animal and 

plant-based organisms in the wild (Neil, 1983), it was expected that both of the chosen 

food types would be sufficient for their dietary needs.  

When research fish reached sexual maturity, photographs were taken of each 

flank (see protocol below) just before the diet began (week zero) as well as every two 

weeks following. All fish were fed their respective diets (HC or LC) ad libitum six days 

per week for twelve weeks.  

Data collection occurred from February to May, 2014 and March to June, 2015. 

Because sexual maturity did not occur simultaneously for all fish in either year, diet start 

date was staggered—2014 had two cohorts of fish while 2015 had three. Overall, 97 fish 

(HCM=29, LCM=14, HCF=28, LCF=26) completed the experiment resulting in a total of 

1,358 photos.  

During the 2015 trials, no photographs were taken on one planned sampling date 

(21 April). Because there were individuals that had been on their assigned diet for 

different amounts of time housed within a single aquarium, I could not simply remove 

one particular week from the analysis. Since not all juveniles reached maturity at the 

same times, they started the diet on different dates; therefore some fish missed the 

photograph for week 2, while others missed week 4 or week 6. Accordingly, I averaged 
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color values for weeks 2 and 4 and for weeks 6 and 8 for all fish so that they could be 

combined across trials. This resulted in five time points in the experiment: week zero, 

weeks 2-4, weeks 6-8, week 10, and week 12.  

 

Photography  

Photographs were taken with a Cannon Elph-100 HS digital camera held parallel 

to focal fish on a tripod at a distance of 24.5 cm. Images were taken at high resolution (12 

megapixels) with no flash under ambient, fluorescent lights. Fish were removed from 

water and photographed on a weigh-boat, and each picture included a DGK Digital Kolor 

Kard for standardization and a ruler. The flanks of each fish were dabbed with a paper 

towel to assist in identification as well as reduce obstruction of color patches by glare. 

Many studies anesthetize their fish, but this protocol is known to affect the subsequent 

color (Gray et al., 2011). While stress and handling can also affect color to a degree, all 

individuals were handled in the same manner resulting in similar stress levels.  

 To standardize photos, I corrected images to ideal white illumination creating the 

same brightness intensity for all channels of RGB. Images were corrected for 

illumination using ImageJ freeware following methods described in Yamamoto et al. 

(2007). Original images were first split into the three RGB (red, green, and blue) 

channels. A rectangular region of interest (ROI) was selected within the white standard 

and the mean brightness (MB) was measured for each channel. The maximum value of 

illumination that can be displayed in an RGB photograph is 255. As most white standards 

are assumed to reflect 90% of the incident light, ideal white lighting should thus yield a 

brightness value of approximately 229 (0.9 x 255 ≈ 229). Accordingly, each channel was 
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corrected to the same brightness level by multiplying each pixel by 229/MB in the 

appropriate channel. This process of multiplying each pixel by this calculated value 

standardizes the brightness across all channels. The R, G, and B channels were then 

merged to form a corrected, composite image which was saved as a JPEG. Fluorescent 

lighting generally shifts the visual spectrum towards the blue range (Yamamoto et al., 

2007), a tendency which was observed in my raw photos—the blue channel needed to be 

brightened by a lesser degree than did the other two channels. By standardizing the 

images in this manner the color shift was removed. The color accuracy was subsequently 

checked using the standards on the DGK Kolor Kard to ensure that RGB values fell 

where expected.  

 

Identification 

 I identified individuals by their uniquely shaped opercular spots which vary in 

size and shape. To assign identification, an unknown photograph was visually compared 

to known fish of the same sex and diet from the previous session. When one flank was 

matched, the other flank went through the same visual comparison. When both flanks 

matched a known fish, the identity was assigned to the unknown photograph. When a fish 

was assigned a specific identity, their current photo was compared to the “before” photo 

to ensure that there were no misidentifications.  

 

Photo Quantification 

 ImageJ was used to select specific areas of fish and examine multiple aspects of 

redness in T. meeki. All ROIs were selected using the freehand tool. Red ROIs—areas 
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that were pink, orange, or red to an observer—were selected, then the size of the patch 

and the RGB composition was collected for each flank. Contiguous areas of red were 

considered a single patch, but if there were scales of other colors between red areas, those 

areas were considered distinct patches. RGB values were determined using the Measure 

RGB plug-in (Analyze > Measure RGB). Each red ROI was selected three times and 

measurements were averaged to account for possible researcher error in selection. 

Hue was the color component of interest because it is dependent on the dominant 

wavelength of light but independent of saturation and brightness. The RGB data was used 

to calculate the hue of the distinct patches on each flank in Excel. Hue is measured in 

degrees on a color wheel, with, for example, red at 0°, orange at 30°, and yellow at 60°. 

Because some fish started with zero red patches and others lost their red patches over the 

course of the study, not all individuals had a hue value for all time points. To account for 

this, the hue variable was transformed into a redness rank classification that was scored 

from zero through fifteen. Individuals that possessed no red patches and thus no hue 

value were given a redness classification of 0. For the fish that did have red patches, hue 

values ranged from 33° for the least red fish to 5.5° for the reddest. Redness rank values 

one through fifteen corresponded with two-degree ranges of hue, with the least red fish 

(hues of 32-33°) assigned a rank value of 1 and the reddest fish (hues of 5-6°)  given a 

rank value of 15. The distribution of redness was analyzed by counting the number of 

distinct red patches and by calculating the percentage of each fish’s side that was 

occupied by the patches. The data from individual patches were combined to examine the 

total amount of red present on a fish. 
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Statistics 

 Statistical analysis was conducted in SPSS 21. All statistics were nonparametric 

because data were not normally distributed and could not be transformed. When 

comparing how the various aspects of redness differed among diet groups, sexes were 

analyzed separately. To determine whether the redness of each group (HCM, LCM, HCF, 

LCF) varied over the course of the experiment, I used a Friedman analysis of variance. 

For groups that showed significant variation in redness, I then performed post-hoc 

analyses with Wilcoxon signed-rank tests, using a Bonferroni corrected p-value to 

account for multiple tests.  

 Various aspects of redness were examined within and between the groups 

including the redness classification rank as well as the distribution of redness. Wilcoxon 

signed-rank tests were used to examine changes in redness distribution within the groups 

by comparing photos taken at weeks zero and twelve. Mann-Whitney U tests were used 

to determine if male and female redness varied between the diets before the diet began 

and at 12 weeks.  

 

Results 

 Friedman analyses showed that HCM, LCM, and LCF groups all had time points 

that differed significantly (Χ
2
(4)=33.956, p<0.001; Χ

2
(4)=22.525), p<0.001; 

Χ
2
(4)=24.796, p<0.001, respectively, Figures 1 and 2.). The HC females, in contrast, did 

not change in redness rank over the course of the experiment (Friedman analysis, 

Χ
2
(4)=6.543, p=0.16, Figure 2a). For post-hoc analysis of the groups that did change in 
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redness rank, with Wilcoxon signed-rank tests I used a Bonferroni correction, resulting in 

a p value of <0.005 being required for significance.  

In the HCM group, Weeks 10 and 12 were significantly different from week 6-8 

(Z= -2.79, p=0.005 and Z= -3.17, p=0.002, respectively), but they did not vary 

significantly from each other (Z= -0.7, p=0.48). Weeks 2-4 had a slightly lower rank than 

week zero. While weeks 6-8 did not differ significantly in rank from week 2 (Z= -0.81, 

p=0.42), week 10 and 12 were both significantly different from weeks 2-4 (Z= -3.67, 

p<0.001 and Z= -4.48, p<0.001, respectively) There were no significant differences 

between week zero and any other time point (Week 2-4: Z= -1.52, p=0.13; week 6-8: Z = 

-0.46, p=0.65; week 10: Z= -1.66, p=0.1; week 12: Z= -2.4, p=0.02). .  

In the LCM group, average redness rank decreased from the beginning of the diet 

until the 6-8 week mark after which redness increased in weeks 10 and 12. Redness rank 

differed significantly only between week 6-8 and week zero( Z= -3.19, p=0.001).  

The LCF group similarly showed a reduction in redness rank from the beginning 

of the experiment until week 6-8, when redness differed significantly from week 0 (Z= -

3.89, p<0.001) but not weeks 2-4 (Z= -2.02, p= 0.04).  Fish redness increased slightly in 

weeks 10 and 12 but remained significantly different from week zero at week 10 (Z= -

3.4, p=0.001). Redness in week 12 was marginally significantly different from week 0 

(Z= -2.77, p=0.006). Weeks 2-4 did not differ significantly from any other time point 

(week 0 : Z = -2.16, p=0.016; week 6-8: Z= -2.02, p=0.04; week 10: -1.81, p=0.07; week 

12: Z=-1.02, p=0.31) . Weeks 10 and 12 did not differ significantly from weeks 6-8 . 

(Weeks 6-8: Z= -0.33, p=0.74 and Z= -0.42, p=0.68, respectively. Additionally, weeks 10 

and 12 did not differ from each other (Z= -0.78, p=0.43). 
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Figure 1. Male changes in median (IQR) redness rank over 12 weeks. (a) 

HC males (N=29) differ significantly from weeks 2-4 at the 10-week 

point. (b) LC males (N=14) drop in redness rank quickly and are 

significantly different from before the diet started at the 6-8 week mark. 

However, redness started to increase after this point resulting in weeks 10 

and 12 showing no difference from week 0.  
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Figure 2. Female median (IQR) changes in redness rank over 12 weeks. 

(a) HC females (N=28) do not differ significantly in their redness rank 

over the course of the experiment. (b)LC females (N=26) lose redness 

quickly and differ significantly at the 6-8 week point.  
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Mann-Whitney U tests showed that before the diets began, males in the HC (N= 

29) and LC (N=14) diet groups did not differ significantly in the number of patches 

(mean ± SE: HC= 2.3 ± 0.18, LC= 2.3 ± 0.3, U=166, p=0.34), the percent of the fish 

covered by patches (mean ± SE: HC= 9.4% ± 0.01, LC= 7.3% ± 0.01, U=194, p=0.8), or 

the redness rank (mean ± SE: HC= 5.7 ± 0.66, LC= 6.7 ± 0.78, U=179.5, p=0.54). After 

12 weeks on their respective diets, male T. meeki did not differ significantly in the 

number of patches (Mann-Whitney U test, mean ± SE: HC=2.59 ± 0.16, LC= 2.57 ± SE 

0.29 U=194, p=0.8) or percent of fish covered by patches and (Mann-Whitney U tests 

mean ± SE: HC= 9.2% ± 0.01, LC= 6.8% ± 0.01, U=0.138, p=0.09, respectively). A 

Mann-Whitney U test indicated that redness rank was significantly different between HC 

and LC males (mean ± SE: HC= 8.2 ±0.40, LC= 5.9 ± 0.70 U=99.5, p=0.007, Figure 3) at 

the end of the experiment. 

Female T. meeki followed the same pattern as males (NHCF=28, NLCF= 26). Before 

the diets began, female T. meeki in the two diet groups did not differ significantly in the 

number of patches present (Mann-Whitney U test, mean ± SE: HC=1.9 ± 0.16, LC= 

2.03± 0.19, U=340.5, p=0.65), the percentage of the fish covered by patches (Mann-

Whitney U test, mean ± SE: HC=7.1% ±0.01, LC= 7.5% ± 0.01, U=327.5, p=0.53), or 

the redness rank (Mann-Whitney U test, mean ± SE: HC=5.1 ± 0.55, LC= 5.8 ± 0.53, 

U=302.5, p=0.284). After 12 weeks of HC and LC diets, females did not differ 

significantly in the number of patches (Mann-Whitney U test, mean ± SE: HC= 2.07 ± 

0.22, LC= 1.56 ± 0.25, U=275.5, p=0.1) or the percent of the fish covered by the patches 

(Mann-Whitney U test, mean ± SE: HC= 6.8% ± 0.01, LC= 4.6% ± 0.01,U=280, p=0.14). 

However, the final redness rank after 12 weeks of the experiment was significantly 
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different between the diets (Mann-Whitney U test, mean ± SE: HC= 5.8 ± 0.73, LC= 3.6 

± 0.56, U=228.5, p=0.02, Figure 3).  
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Figure 3. Both male T. meeki (gray bars) and female T. meeki (white 

bars) differ significantly in their redness rank at 12 weeks with those on 

the HC diet (Nmale = 29, Nfemale= 28) significantly redder than the LC 

diet (Nmale = 14, Nfemale = 26).  
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Discussion 

 This study confirms that integument redness is at least partially driven by dietary 

carotenoids in Thorichthys meeki and that 12 weeks on high- and low-carotenoid diets is 

an adequate time in which to obtain a quantitative dichotomy in color.  

Remarkably, varying carotenoids seems to affect only the color of patches rather 

than the distribution of redness in the individual. While color seems to be controlled via 

current circumstance—carotenoid availability, parasite load, etc.—patch location or 

number may be genetically controlled. The genetic control of color has been studied in 

detail in various cichlid species (Magalhaes & Seehausen, 2010; Takahashi et al., 2013). 

However, many of these studies focus on color morphs of the same species or sister 

species instead of variation of a trait, such as patch size, within the same species. 

Interestingly, the sexes respond differently to diets that differ in carotenoids. 

Although males increased in redness by their tenth week on the HC diet, females on the 

HC diet showed no significant change in redness over 12 weeks. The mechanism behind 

this unexpected result is unknown. It is possible that female T. meeki may have started 

the experiment at or near their most red, which could suggest that they may have a lower 

need for dietary carotenoids than do males. However, it may also be the case that females 

need longer than males do to incorporate additional carotenoids into their integument. To 

my knowledge, no studies have examined whether conspecific males and females 

assimilate dietary pigments differently, and future studies should investigate this 

possibility. However, females did respond quickly to the restriction of carotenoids, 

decreasing red coloration by 6-8 weeks on the LC diet and then maintaining 

approximately the same level of redness thereafter. Since red coloration was altered so 
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quickly in LC females, six to eight weeks of carotenoid restriction may be the better 

means of obtaining a dichotomy in color in female T. meeki. Males on the LC diet 

similarly became less red by weeks 6-8, but then became redder so that males’ red hue 

after 12 weeks on the LC diet did not differ from their color before starting the 

experiment, although they were still significantly less red than were the HC males.  

The increase in redness in males on the LC diet may be due to a use of pteridines, 

which can produce color alone or in conjunction with carotenoids in a patch (Grether et 

al.,2011; Sefc et al.,2014;Johnson & Fuller, 2015). Although the production of these 

compounds may be constrained by food availability (Grether et al., 2011), the quantity of 

food I provided may have been sufficient to enable males to produce and incorporate 

pteridines into their skin.  

Since redness changed while food availability was equal, carotenoids seem to be 

the primary pigment that alters redness in T. meeki along their ventral surface. However, 

carotenoids may not be responsible for all red display color in this species which can also 

have a red border along its dorsal fin. Johnson and Fuller (2015) demonstrated that color 

patches in various parts of a fish can be controlled via numerous means—carotenoids, 

pteridines, and structural pigments. While this red border was not examined in this 

experiment, it would be interesting to see if it is also mediated by carotenoids, pteridines, 

or a combination of the two pigments.  

 

Conclusion 

Like many other fish that display red cues, Thorichthys meeki are able to alter this 

red coloration through the ingestion and metabolism of carotenoids. A period of 12 weeks 
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on high and low carotenoid diets is sufficient to alter redness in males. Additionally, 

increasing carotenoid availability in females does not alter their redness but reduction in 

carotenoids in the diet causes the color to change dramatically by weeks 6-8. These 

findings suggest that males and females may not react identically to dietary pigments, a 

possibility that should be further investigated. Additionally, this study adds to the 

literature on the appropriate amount of time to place study organisms on diets that vary in 

carotenoids to obtain a dichotomy in color.  
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CHAPTER III 

SEEING RED: FIREMOUTH CICHLIDS HAVE A NATURAL AFFINITY 

FOR REDNESS THAT IS NOT AFFECTED BY DIETARY CAROTENOIDS 

 

Introduction 

 Cichlid fishes are well known for displaying diverse patterns of vibrant color that 

can have large effects on individual fitness. Their colors have a variety of functions, 

including differentiating species and revealing reproductive and social status. The 

functioning of these visual signals is dependent on two fundamental factors: the ability of 

the sender to produce a particular color and pattern and the ability of the fish receiving 

those signals to perceive and process the display. Many studies of cichlids have focused 

on individuals’ ability to produce signals and the adaptive significance and meaning of 

those signals. Far fewer studies have examined the ability of cichlids to perceive the 

signal, although in recent years researchers have explored color vision in African 

cichlids, a group in which color pattern diversification has sometimes been the basis of 

speciation. As one might expect, cichlid species in this group often have highly sensitive 

color vision. Although color perception varies among species, some Malawi cichlids 

possess an array of photoreceptors mediated by visual pigments that allow their visual 

sensitivity to range from ultraviolet wavelengths through the red in the visible light 

spectrum (Bowmaker, 2008; Carleton, 2009; Sabbah et al., 2010; Weadick et al., 2012). 

The color perception of Neotropical cichlids—a sister group to African cichlids—has not 
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yet been well studied, although the Trinidadian pike cichlid does possess the trichromatic 

vision which is common among other teleosts (Weadick et al., 2012).  

The capability of animals to perceive color can vary even within species, and 

some researchers have recently begun accounting for this phenomenon when conducting 

behavioral analyses (Cheney et al., 2013; Johnson et al., 2013). In vertebrates, variation 

in color vision at the individual level (Toomey & McGraw, 2012) can result from 

differences in carotenoids deposited in intraocular filters such as the lens, cornea or oil 

droplets ( Heinermann, 1984; Bowmaker, 2008; Toomey et al., 2011). Since carotenoids 

must be obtained environmentally, poor diet can potentially affect how animals perceive 

visual signals, and an inability to perceive a color signal can result in poor decisions in 

agonistic interactions or reduce individuals’ ability to select high-quality mates (Ronald 

et al., 2012; Toomey & McGraw, 2012). Therefore, it is necessary to assess individual 

variation and take into account the dietary status of focal individuals when conducting 

experiments with visual cues.  

Although many researchers examine the spectral sensitivity of their focal animals 

through microspectroscopy, dissection of the retina, or electroretinograms (ERG) of a 

few individuals before conducting behavioral trials, I propose that this method should be 

reversed. Agrillo et. al (2012) developed a training procedure for studying discrimination 

learning in fish where they focused on training guppies to associate different numerosities 

with food rewards. This study uses a non-invasive, behavioral assay, modeled after 

Agrillo et al. (2012), to determine whether the firemouth cichlid Thorichthys meeki can 

distinguish between colors of similar wavelength. In this Neotropical species, both sexes 

display the coloration for which they are named ( Neil, 1984a; Neil, 1984b), a patch of 
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color that runs ventrally from mouth to anal fin, varies across individuals in size and 

degree of redness, and is an honest signal of quality ( Evans & Norris, 1996).  

The level of carotenoids in the diet affects how red or orange the integument is in 

T. meeki (Chapter II), and the degree of redness appears to be correlated with traits that 

may indicate higher fitness, at least in males. Evans and Norris (1996) demonstrated that 

redder males were more likely to win agonistic contests than their less-red counterparts, 

suggesting that redness is likely to be an important signal of fighting ability in T. meeki. 

Hodapp and Frey (1982) found that dominant males possess better territories with 

resource-rich foraging patches, which should provide dominant males with increased 

access to carotenoid-rich foods.  

Given that redness plays an important role in T. meeki interactions, individuals of 

this species may have an innate preference for red items. Research suggests that an 

underlying preference for a particular trait may be the result of a pleitropic effect (Rodd 

et al., 2002). An attraction to red items could increase foraging efficiency, as well as 

enable individuals to quickly identify intruding neighbors or potential mates. Innate 

preferences for specific traits have been examined across various behaviors such as mate 

choice (Basolo, 1990; Fuller et al., 2005), foraging (Cheney et al., 2013), and predator 

avoidance (Bruce et al., 2001). Recent studies have also examined the visual properties of 

their focal species as a parameter of exploring their sensory bias. For example, Cheney et 

al. (2013) explored response biases in the Picasso triggerfish. While they possessed a 

priori knowledge of the spectral sensitivity of their study organism, they were able to 

behaviorally confirm their ability to view color within the expected ranges. Furthermore 

they were able to use this information to determine that these triggerfish were innately 



28 
 

attracted to red and green stimuli. While a natural red preference has been documented in 

other species (Hill, 1991; Ryan & Keddy-Hector, 1992; Rodd et al., 2002; Cheney et al., 

2013), it has yet to be examined in T. meeki, even though they have been documented as 

an honest signal in this species (Evans & Norris, 1996).  

It is ideal for researchers to possess a priori information on the spectral sensitivity 

of their study organism (Cheney et al., 2013) before conducting behavioral trials, but the 

visual system of T. meeki has not been examined. Moreover, no studies to my knowledge 

examined whether carotenoids play a role in their color vision. While carotenoid-rich oil 

droplets affect discrimination in higher vertebrates, they have not been documented in 

cichlids (Hill, 1990; Toomey & McGraw, 2012); however, other intraocular filters found 

in the lens and cornea are common (Heinermann, 1984). Increasing carotenoid content in 

these areas of the eye have been shown to assist in visual acuity by reducing glare, 

improving detail vision, and reducing chromatic aberration (Heinermann, 1984). While it 

has not been shown that these intraocular filters affect color discrimination like 

carotenoid-rich oil droplets, there has been very little research on their properties. If 

carotenoids affect the vision of T. meeki, we may be able to detect a behavioral difference 

such that individuals with low-carotenoid diets are unable to differentiate between closely 

related hues that are distinct to individuals with carotenoid-rich diets.  

 The goals of this study are to determine whether T. meeki on low- and high-

carotenoid diets differed in their ability to perceive a difference in closely related hues 

and to test whether members of this species are naturally attracted to red objects. I trained 

T. meeki to associate a red or orange stimulus with a food reward over a period of four 

days. I then tested their ability to pair that stimulus with a food reward and their ability to 
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discriminate between their trained stimulus and a closely related hue. By using stimuli 

that fall within the natural coloration of T. meeki I can also determine if redder objects are 

intrinsically more attractive  

 

Methods 

Study Animal Preparation 

The Thorichthys meeki used in this study were obtained as juveniles from a local 

pet shop and maintained in groups in aquaria in the laboratory. To determine their sex, I 

examined the genital papilla of unsexed fish under a stereoscope every two weeks. After 

a fish had matured enough that I could determine its sex, I placed it into one of four 300 

L aquaria in which fish were segregated by sex and diet—high carotenoid male, low 

carotenoid male, high carotenoid female, and low carotenoid female. I used Cobalt 

Aquatics Color Flakes® for the high carotenoid (HC) diet and Cobalt Aquatics Spirulina 

Flakes® for the low carotenoid (LC) diet. All fish were fed ad libitum six days per week 

for a minimum of 12 weeks and additionally during approximately two weeks of 

acclimation and training before the experiment to provide time for diet-based color 

change (Chapter II; Evans and Norris, 1996). 

All aquaria in this study were maintained on a 12:12 light cycle at 27° C and had 

brown gravel substrates. Aquaria that held maturing fish or fish on particular diets were 

fitted with power filters, while aquaria used for the training and testing described below 

had air stones to reduce currents but maintain sufficient oxygenation. This experiment 

was approved by the University of Louisville’s Institutional Animal Care and Use 

Committee (proposal #14094). 
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Experimental design 

For training and trials, which occurred from June through September in 2014 and 

June through July in 2015, T. meeki were housed individually in 38 L aquaria. These 

aquaria were considered to have three zones that each were 17 cm wide (Figure 4): a 

central refuge zone bounded by a choice zone on either end. The central zone contained a 

plant that served as refuge and was where fish typically stayed (personal observation), 

while the two choice zones lacked refugia. To reduce any stress caused to fish by being 

housed singly, each aquarium was juxtaposed with a neighboring aquarium containing a 

T meeki of the same sex, thus allowing only visual communication. Fish were acclimated 

for seven days prior to training. Individuals were maintained on the same HC or LC diet 

until two days prior to training when flake food was no longer provided in order to 

increase foraging motivation.  

To train fish to associate a color with a food reward, squares of acrylic (LxW: 

5.8x5.8 cm) were painted with a satin, latex-based paint and attached to the end of a 

clear, acrylic rod 33 cm in length. The training color (TC) squares were painted either red 

(TCR), with Valspar
®
 Cl221 (Hue = 0.5°), or orange (TCO), with Valspar

®
 Cl223 (Hue = 

34°). These colors were selected to fall near the range of the red and orange coloration 

displayed by T. meeki in the laboratory (Hue range = 0.8°-39.5°). An identically sized 

blue square, painted with Valspar
®
 4006 (Hue = 207°), was used a control color (CC) for 

all fish. To test for an innate red preference, half of the fish were trained to TCR while 

the other half were trained to TCO. Individuals were in four groups based on diet and 

training color—high carotenoid red (HCR), high carotenoid orange (HCO), low 

carotenoid red (LCR), and low carotenoid orange (LCO). Observations were made on all 
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training sessions for the 27 fish examined in summer of 2014. After bloodworms were 

placed in the aquarium, latency to enter choice zones, time spent in each choice zone, and 

the number of visits to each zone were recorded.  
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Figure 4: Schematic of aquarium viewed from the front. Choice zones (each 17 

cm in width) bounded the central refuge zone (17 cm), which contained a plastic 

plant as shelter for the T.meeki focal fish .  
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To eliminate the possibility of social learning, fish were visually isolated from 

their neighbor from 30 minutes prior to the first training session until the end of the day. 

Training and testing was conducted between 08:00 and 13:00. I reduced the effects of 

researcher presence during training and testing of fish by performing slow, controlled 

movements and made any such effects more consistent by wearing a laboratory coat.  

During training sessions, I lowered TC and CC squares into the right and left 

choice zones of the aquarium and simultaneously deposited a food reward (2-5 

bloodworms) with the TC square via stainless steel forceps (Figure 5). Fish were then 

allowed to forage for ten minutes, after which any remaining bloodworms were removed. 

This process was repeated four times per day with approximately one hour between each 

training session. Color location was alternated between every training session over the 

course of four days for a total of 16 training periods.  

 

Testing protocol 

Testing occurred on day five to determine whether individuals associated their TC 

with the presence of food (test 1) as well as whether they could visually discriminate 

between a red and orange stimulus—one of which was novel (test 2). On the morning of 

testing, fish underwent a training session as a reminder of the protocol and to maintain 

motivation (Agrillo et al., 2012). For test 1, the TC and CC were lowered into the choice 

zones without adding a food reward (Figure 6a). Observations were made from 4 m away 

for 10 minutes, and the number of seconds fish spent in each choice zone was recorded. 

Becuase individuals varied greatly in how active they were, the proportion of time spent 

in choice zones was calculated and used for analysis. Individuals were considered to have 
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successfully associated their TC with a food reward when they spent greater than 60% of 

their choice time in the zone with the TC. Only individuals who successfully trained 

continued on to test 2. To maintain motivation, fish were given an additional training 

period between tests 1 and 2 (Agrillo et al., 2012). The capability of T. meeki to 

discriminate between red and orange was assessed by giving individuals a choice 

between their TC and the novel training color (NTC), i.e the training color (red or 

orange) to which they had not been trained to respond (Figure 6b). In order to determine 

whether orientation affected choice, I noted which direction the focal fish was facing 

before the color squares were added. After the TC and NTC squares were placed in the 

aquarium, I observed the focal fish from a distance of 4 m for 10 minutes and recorded 

latency to entering a choice zone in seconds, the first color visited, and the number of 

seconds spent in each choice zone. Proportion of choice time in each choice zone was 

again calculated for analysis. Any individual who did not make a choice during the 10 

minutes of observation was re-tested the following day.  
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Figure 5: Training aquarium.  Two colored squares were placed in the choice 

zones while a food reward was simultaneously provided with the TC.  
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Figure 6: Schematics of testing aquaria. (a) T. meeki chooses between the 

TC and CC without the presence of a food reward. (b)  The TC and NTC 

are placed in the choice zones without the presence of a food reward.   
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Statistical analysis 

A total of 82 fish began the experiment, in which 33 individuals were 

unsuccessful in test 1 and the remaining 49 individuals successfully completed both tests 

1 and 2. Data were analyzed in SPSS 21(SPSS Inc., Chicago, IL). A Kolmogorov-

Smirnov test showed that the data differed significantly from normality (p=0.001), and 

accordingly nonparametric statistics were used.  

Test 1: The effect of diet and training color on success of training. A log-linear 

analysis was used to determine whether success was independent of diet and TC. 

Training data was analyzed from the fish that were trained in summer 2014. Mann-

Whitney U tests were used to examine whether red-trained and orange-trained fish 

differed significantly in their responses over the 16 training sessions. The responses 

tested included mean time spent near the TC, mean time spent near the CC, number of 

sessions during which fish did not visit the TC, number of sessions during which the fish 

did not visit the CC, and the percentage of time the fish approached their TC first.  

Test 2: Do firemouths prefer red? To rule out the possibility that the initial 

orientation of individuals played a role in the first color approached, a Chi-square test of 

association was used. I used a log-linear analysis to determine whether the first color 

approached was dependent on TC or diet and a binomial test to examine whether one 

color was approached first more often than the other. Friedman tests were used to 

determine if diet or TC affected the latency to either red or orange choice zone. I also 

used Friedman tests to determine if diet or TC affected proportion of choice time spent in 

the red choice zone. This test was not run on the proportion of choice time spent in the 

orange choice zone because this value is dependent on the proportion of choice time 
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spent in the red choice zone. To determine if there was an overall preference for red or 

orange, I used a Mann-Whitney U test. 

 

Results  

Test 1: Success of training. A log-linear analysis showed that training success 

was independent of diet (Χ
2
=0.528, d.f.=1, p=0.467) but not TC (Χ

2
=4.63, d.f.=1, 

p=0.031). Individuals trained to red were more likely to succeed than those trained to 

orange (Figure 7), with 80% of 38 individuals trained to red successfully associating their 

training color with a food reward but only 57% of the 44 fish trained to orange 

succeeding. 

Although the probability of training success depended on training color, fish that 

trained to the two colors responded similarly during training. When examining a subset of 

individuals trained (N=27), I found that red-trained (N=14) and orange-trained (N=13) 

fish responded similarly to training. The mean time near the TC (red=120.8 s, orange= 

109.0 s) or CC (red= 38.0 s, orange= 32.2 s) did not differ between the two training 

colors (U = 78, p = 0.55 and U = 90, p = 0.981, respectively). There was no significant 

difference in the number of times training fish failed to visit either its TC (red= 4 visits, 

orange= 4.3 visits) or the CC(red= 7.7 visits, orange= 8.2 visits) (Mann-Whitney U: U = 

85, p = 0.79 and U = 86, p = 0.83, respectively) during training sessions. The percent of 

times the TC was the first zone visited was high for both training colors (mean±SE = 

82% ± 2.4) and did not differ between them (Mann-Whitney U: U = 79, p = 0.58) 
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Figure 7. Those trained to red (N=38) were significantly more likely to 

succeed in pairing the stimulus with a food reward than those trained to 

orange (N=44). 



40 
 

 Test 2: Do firemouths prefer red? T. meeki are naturally attracted to red objects 

demonstrated by approaching the red stimulus first regardless of training color or diet. 

The orientation of fish at a trial began did not affect the direction the fish initially moved 

(Chi-square: Χ
2
 = 5.018, d.f. = 4, p = 0.22) indicating that individuals did not only 

approach the colored square they were facing. The first color approached was 

independent of diet and TC (Log-linear analysis:Χ
2
=0.355, d.f.= 1, p = 0.552 and Χ

2 
= 

1.633, d.f. = 1, p = 0.201, respectively). When diet and TC were pooled, a binomial test 

showed that the red stimulus was approached first significantly more often (69% of 

individuals) than the orange stimulus (31% of individuals; p = 0.009).  

Latency to the red choice zone was not affected by diet (Friedman test: Χ
2
 (1)= 

0.429, p = 0.51, Figure 8) or TC (Friedman test: Χ
2
 (1) = 0.2, p = 0.66, Figure 8). I also 

found that latency to the orange choice zone was similarly not affected by diet (Friedman 

test: Χ
2
 (1) = 2.273, p = 0.13, Figure 8) or TC (Friedman test: Χ

2
 (1) = 1.0, p = 0.32, 

Figure 8). The proportion of choice time individuals spent in the red zone—and 

consequently the orange choice zone—was independent of diet (Friedman test: Χ
2
 (1) = 

0.8, p = 0.37, Figure 9) and TC (Friedman test: Χ
2
 (1) = 2.333, p = 0.13, Figure 9). To 

determine if there was a preference for the red or orange stimulus, fish were pooled 

across diet and training color. Individuals spent a significantly greater proportion of 

choice time in the red choice zone than in the orange (Mann-Whitney U=217, p=0.03).  
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Figure 8: Average latency (±SE) to the red and orange choice zones was 

independent of diet and TC. (N for each group: HCR = 14, HCO = 12, LCR = 

12, LCO = 11) 
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Figure 9. The average proportion of choice time in the red choice zone 

(±SE)( and subsequently the orange choice zone (±SE)) was 

independent of diet and TC (N for each group: HCR = 14, HCO = 12, 

LCR = 12, LCO = 11) 
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Discussion 

Thorichthys meeki can clearly distinguish between red and orange, regardless of 

the level of carotenoids in their diet, and they prefer red. Individuals tended to approach 

the red stimulus first, regardless of TC, and overall spent a significantly greater 

proportion of their choice time near the red stimulus than near the orange one. Individuals 

thus appear to be attracted to red objects, suggesting there may be an innate attraction to 

red in this species. This is unsurprising since both male and female T. meeki display 

vibrant red color that is an honest signal in males (Evans & Norris, 1996). If individuals 

can quickly detect the presence of a red object entering their territory, they may also be 

able to identify quickly whether the object is a conspecific, an intruder or potential mate. 

Rapid identification of intruders and mates would reduce response time and thus reduce 

the time and energy spent fighting (Arnott & Elwood, 2009) or searching for mates. 

Further studies need to be done to examine the extent of this affinity and to rule out that it 

is not purely a result of small sample size. 

Interestingly, red-trained individuals were more likely than their orange-trained 

counterparts to succeed in associating their TC with a food reward. It does not seem to be 

the training process itself because red-trained and orange-trained fish did not differ 

significantly in their motivation to train. While orange-trained fish did not differ in their 

motivation to train, they may need longer to associatively pair this color with a food 

resource. It has been shown that signals that are advantageous to survival and fitness are 

easier to pair (Wisenden & Harter, 2001). Since T. meeki has an affinity for red objects, it 

may be easier to build upon this innate preference and associate its presence with a food 

reward more quickly.  
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The use of behavioral criteria to determine non-human color vision has been used 

in a variety of taxa (Kelber et al.,2003). To my knowledge, this is the first study to use 

this technique as an initial step in examining visual discrimination in cichlids. While 

physiological techniques such as microspectrophotometry, retinal dissection, and ERG 

are essential to fully understand the visual spectrum and retinal composition of a study 

species, behavioral trials give researchers the ability to examine their focal animals’ 

perception. Confirming that the animals can perceive the signals the experimenter is 

manipulating is essential for researchers. I propose that this should be tested first as it is 

less invasive than other common techniques. Bowmaker (2008) noted that behavioral 

studies to confirm spectral sensitivity are sparse and should not be overlooked. He 

suggests that while many organisms have been found to possess various photoreceptors, 

few species have been examined behaviorally to determine how the perception via these 

photoreceptors is biologically relevant to the organisms.  

 I have determined that T. meeki fed diets with different concentrations of 

carotenoids do not display a behavioral difference in the ability to discern closely related 

hues. The ability to associatively learn the difference between two colors has been 

examined before in fish in a study that focused on learning novel colors (Colwill et 

al.,2005). However, this study focused on the ability to learn rather than the ability to 

discriminate similar colors. My study focused on the ability of T. meeki to distinguish 

colors relevant to the biology of my study organism. The choice to use TC hues that fell 

within the natural variation of this species was essential to the significance of this study 

and to similar future studies.  
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Altering carotenoid availability is often used by researchers as a fast way to 

produce a dichotomy in carotenoid-dependent color (see Chapter II). This alteration is 

oftentimes the initial step to examining if this color plays a role in mate choice (Toomey 

& McGraw, 2012) and agonistic interactions (Evans & Norris, 1996). However, 

researchers take this step without considering the broad implications of using a 

biologically important compound such as carotenoids which are essential for more than 

just ornamentation (reviewed in Olson & Owens, 1998). 

In some organisms the broad effects of manipulating carotenoids have been 

studied in detail. For example, a series of experiments in the house finch document how 

manipulating carotenoid availability affects traits spanning plumage coloration, 

circulating carotenoid concentrations, significance of the color, the effect on vision and 

the implications of this effect (Hill, 1991; Hill & Montgomerie, 1994; Hill et al., 2009; 

Toomey & McGraw, 2012). Attempting to possess a full understanding of the role of 

carotenoids in a species is a daunting task and exceeds the scope of this dissertation. 

However, my goal is to add to the literature on the vast role of carotenoids and redness as 

a signal in T. meeki. 
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CHAPTER IV 

ACTIVITY LEVEL INSTEAD OF COLOR IS MORE ATTRACTIVE IN A MATE 

FOR THORICHTHYS MEEKI 

 

Introduction 

 Female mate choice has been studied exhaustively in taxa ranging from fish to 

primates. Because females tend to be the choosier sex in many species, their preferences 

and choices have been the focus of reproductive behavioral research. Until recently, 

males were often ignored with respect to mate choice. However, males often incur costs 

during mating or providing parental care. This incurred cost would suggest that males 

would want to selectively mate as well (Rundus et al.,2015). While studies have been 

conducted in systems with the sex-roles reversed (where males provide more parental 

care than females (Bahr et al.,2012; Roth et al.,2014)), male mate choice has also been 

documented in species that possess conventional sex roles (Jones et al., 2014; MacLeod 

& Andrade, 2014; Baxter et al.,2015; Ala-Honkola et al.,2015; Rundus et al.,2015; 

Wittman & Fedorka; 2015). However, male and female mate choices are not mutually 

exclusive. Currently, mutual mate choice has been an area of increasing interest to 

researchers. Thus far, mutual mate choice has been examined in a variety of vertebrates 

including zebra finches (Holveck et. al, 2011), gobies (Myhre et. al, 2012), and sea 

horses (Bahr et. al, 2012).  
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There are various courtship strategies that can be used to attract and select a mate. 

Some of these strategies provide direct benefits to the individual making the choice such 

as physical resources. For example, nuptial gifts are used by numerous insect species as a 

form of courtship (Vahed, 1998; Rooney & Lewis, 2002; Engels & Sauer, 2006). In some 

species, the gift contains nutritional content upon which the female will feed such as 

body parts of the courting male or a spermatophore—a gift containing nutrient-rich 

secretions in addition to ejaculate (Vahed, 1998). Nutritional gifts provide numerous 

benefits including an increase of fecundity because the female can allocate 

spermatophore nutrients to her offspring (Rooney & Lewis, 2002).   

Another way of choosing a suitable partner is by discerning the quality of a 

potential mate. This quality can include health (Olson & Owens, 1998; Nordeide et 

al.,2013; Wittman & Fedorka, 2015) relatedness (Ala-Honkola et al.,2015), or whether 

the potential mate contains “good genes” that can be passed on to future offspring thus 

increasing their survival and reproductive success. The attracting mate needs to signal to 

potential mates that he or she possesses these good genes. For example, the exaggerated 

tail of a peacock signals that he is able to avoid predation with the apparent handicap 

(Zahavi, 1975). The handicap as a result of producing an exaggerated tail allows this to 

be an honest signal of quality (Zahavi, 1977).  

Honest signals result from constraints such as a physical inability to produce a 

signal or where the cost of cheating is greater than the reward. Carotenoid-mediated color 

has been examined as an honest indicator of individual quality. While carotenoids are 

essential for immune function and vision, it is also used in ornamental coloration. These 

compounds are important to vertebrates however, they are unable to produce carotenoids 
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and must obtain them from the environment (Kodric-Bown, 1998; Olson & Owens, 1998; 

Hill & Johnson, 2012). Thus, in order to produce yellow, orange, or red coloration, 

individuals must be good foragers or hold territories rich in carotenoids and be in good 

health (Olson & Owens, 1998; Grether, 2000). Additionally, producing colors such as 

yellow, orange, and red makes individuals more conspicuous to predators (Reznick & 

Endler, 1982). Therefore, carotenoid-mediated signaling is an honest indicator of mate 

quality; they are healthy, good foragers, who are able to avoid predation with the 

handicap of vibrant coloration.  

Thorichthys meeki is known by aquarium enthusiasts as the “firemouth cichlid”. 

This fish is aptly named for its vibrant, red coloration that runs ventrally from mouth to 

anal fin in both males and females (Baerends & Baerends-Van Roon, 1950; Neil, 1984a). 

This color has been demonstrated to be affected by carotenoid consumption and is used 

by males in agonistic interactions to indicate a superior fighter—ie. dominant males 

(Chapter II; Evans & Norris, 1996). Hodapp and Frey (1982) demonstrated that dominant 

males hold better territories that contain more foraging patches. Since carotenoid-

dependent redness requires access to high-quality food resources, we can predict that 

dominant males are also redder due to their high-quality patches.  

 Neil (1984a) indicated that T. meeki breeding territories are established in one of 

two ways. Established pairs will find and defend a suitable breeding site or a male will 

defend a territory and actively court single females. Cichlid reproductive behavior is 

sometimes difficult to interpret because it appears aggressive. For example, the initial 

response of substrate brooding males to a potential mate in his territory is identical to the 

response elicited by an encroaching male (Baerends & Baerends-Van Roon, 1950). Since 
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T. meeki have been described as monogamous substrate breeders, they have similar, 

aggressive courting behaviors.  

A unique feature of this species’ reproductive behavior, as compared with other 

fishes, is that both parents provide care for the brood for approximately three months 

(Neil, 1984a). The drawback of providing a prolonged period of care is the loss of 

additional potential mating events. This cost should be particularly high for males as they 

don’t require extra time and energy to produce viable gametes. Therefore it would be 

adaptive to selectively mate with the best potential partner. Since the prolonged care is 

provided by both parents, we would expect to see mutual mate selection to evolve. 

It is easy to inadvertently interchange the terms mate choice or selection with 

mate preference as one is often dependent upon the other. Wagner (1998) describes mate 

choice as differential mating as a result of interactions between environmental conditions, 

mating preferences, and sampling strategies. While Wagner’s definition was with respect 

to female mate choices, this working definition can apply to mutual mate choice 

situations. The aim of this study is to examine mutual mate preferences which could lead 

to mutual mate choice with respect to redness and behavior of the potential mates.  

Redness has already been demonstrated as an important signal in T. meeki 

(Chapter III, Evans & Norris, 1996) but has yet to be examined in the realm of mating. 

Baerends and Baerends-Van Roon (1950) described the mating behaviors of T. meeki in 

detail but fish were not given a choice in their mate. It was noted that not all pairings 

were successful; some females fled the territory under highly aggressive attacks by the 

male. No studies on T. meeki have examined which aspects of a potential mate increase 
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the likelihood of successful pairings, be it color or some behavioral aspect of the courting 

male or visiting female.  

 

Methods 

Study Animal Maintenance  

The Thorichthys meeki used in this study were obtained as juveniles from a local 

pet shop and maintained in a 300-L aquarium in the laboratory. To determine their sex, I 

examined the genital papilla of unsexed fish under a stereoscope every two weeks. After 

a fish had matured to the point of sex determination, I placed it into one of four 300-L 

aquaria in which fish were segregated by sex and diet—high carotenoid male (HCM), 

low carotenoid male (LCM), high carotenoid female (HCF), and low carotenoid female 

(LCF). I used Cobalt Aquatics Color Flakes
®
 for the high carotenoid (HC) diet and 

Cobalt Aquatics Spirulina Flakes
®
 for the low carotenoid (LC) diet. All fish were fed ad 

libitum six days per week for a minimum of 12 weeks before the experiment to create 

diet-based color change (Chapter II; Evans and Norris, 1996). 

All aquaria in this experiment contained a gravel substrate and various refugia. 

Water temperature was held at approximately 27° C via aquarium heaters and power 

filters were used to aerate and filter aquaria. This experiment was approved by the 

University of Louisville’s Institutional Animal Care and Use Committee (proposal 

#12040). 

 

 

 



51 
 

Experimental Design 

To determine if both males and females showed a preference for individuals of 

the opposite sex that varied in dietary status, both males and females served as focal fish 

during their respective experiments and as such their protocols are identical. A HC focal 

fish and two choice fish (one HC and one LC) of the opposite sex were size matched (+/- 

8% SL) for each trial.  

The experimental set up was a 200-L aquarium divided into three compartments 

by clear and opaque dividers (Figure 10). The choice fish (one HC and one LC) were 

placed into the lateral compartments of the aquarium while the focal fish was placed in 

the center compartment (Figure 10). The locations of HC and LC fish were alternated 

every trial. The central compartment had two choice zones and a neutral zone. A choice 

zone began 10 cm from the clear divider which was roughly two body lengths of T. 

meeki. The remaining area of the central compartment was considered neutral or no 

choice. All fish were physically and visually separated via opaque dividers and allowed 

to acclimate for two days prior to observation.   
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Figure 10. Schematic of experimental aquarium. A 208-L aquarium was divided 

into three zones via clear and opaque dividers. The center zone was additionally 

partitioned into choice and neutral zones. A focal fish was placed in the center 

compartment while HC and LC choice fish were placed in the lateral 

compartments.  A piece of slat angled on a flower pot provided refuge in all 

compartments for the fish. After acclimation, the opaque dividers were removed  

in the direction of the arrows for observations to be made.   
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Observations  

The opaque dividers were removed allowing the focal fish visual access to the 

lateral compartments. Observations were recorded directly to an external hard drive with 

a Canon Vivia HV30 camcorder via firewire for two hours. Video was later processed 

with time-budgeting data collected from the focal fish including the amount of time spent 

in the choice zones, the number of visits to either fish, and the average visit length with 

either fish. Every 30 minutes, 10 minutes of behavioral data were collected from the 

choice fish resulting in a total of 30 minutes of behavioral observations. The type (Table 

1) and length of each behavior was recorded as well as the overall number of behaviors 

performed.  
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Behavior Description 

Charge* Rapid swimming towards another fish 

Flare** Raising of brachiostegal membrane 

Lateral Display** Displaying the flank towards another fish with median fins 

erect 

Nip Biting at the clear divider 

Nosedown* Body inclined with the head toward the substrate at an angle of 

at least 30 degrees, median fins erect 

Tailbeat* Exaggerated tailwags accompanied by little to no forward 

movement 

Quiver** Sideways trembling, often performed with the head facing the 

substrate 

Table 1. Behaviors examined and their descriptions.  

* Behaviors as described in Neil, 1984a.  

** Behaviors as described in Baerends and Baerends-Van Roon, 1950. 
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Statistics 

 The experiment was repeated 30 times consisting of 15 focal female trials and 15 

focal male trials. All data were analyzed in SPSS 21(SPSS Inc., Chicago, IL). Normality 

was determined with Kolmogorov-Smirnov tests. While the time-budget data were able 

to be transformed to a normal distribution with a square root +1 transformation, 

behavioral data was unable to be transformed. Therefore, the behavioral data was 

analyzed using non-parametric tests.  

 To determine whether male and female T. meeki prefer to associate with redder 

potential mates, 2-way ANOVAs were carried out on the time spent in either choice zone 

and mean visit length for each zone. A Friedman’s test examined whether focal fish sex 

and choice diet affected the number of visits to either choice zone.  

There was variation in the activity level of choice fish and thus preferences were 

categorized according to the proportion of choice time spent near either HC or LC fish. 

Individuals who spent greater than 55% of their choice time near either HC or LC fish 

was considered to have a preference. When examining how choice fish behaved during 

the experiment, three trials (1 female, 2 male) were removed as these fish showed no 

preference for either HC or LC fish.  

 Considering the variation in activity level of T. meeki in this experiment, there 

were a few trials that had time-budgeting data, but no behavioral data—ie. they visited 

either choice zone during the experiment, but did not receive any behavioral displays 

during the observation times. Therefore, these trials were removed from analysis 

reducing my sample sizes to 12 focal female trials and 11 focal male trials. Mann-

Whitney U tests were used to determine if choice males and choice females differed 
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behaviorally. Since they did not differ significantly in any variables examined, sex was 

pooled to increase the power of the analysis. 

 To examine if preferences were driven by behavioral differences, Mann-Whitney 

U tests were used to determine if the number of behaviors performed and the percent of 

visit time spent behaving differed between preferred and non-preferred fish. To determine 

if preferred and non-preferred fish differed in the types of behaviors performed, the 

number of discrete behaviors was compared using Mann-Whitney U tests.  

 

Results 

 A 2-way ANOVA examining the effect of diet and sex on choice time showed 

that male and female Thorichthys meeki do not differ significantly in the amount of time 

spent near either HC or LC choice fish (F(1,56) = 0.3, p = 0.59 and F(1,56) = 0.06, p = 

0.80, respectively, Figure 11). Additionally, there is no interaction between sex and diet 

on choice time (F(1,56) = 0.039, p = 0.84) . Male and female T. meeki did not differ in 

the number of times they visited the HC and LC choice fish (Friedman Test: Χ
2
 (1) = 

0.533, p = 0.47 and Χ
2
 (1) = 0.034, p = 0.95, respectively, Figure 12). A 2-way ANOVA 

examining the effect of diet and sex on average visit length found similar results (Figure 

13). Focal males and females did not differ significantly in average n (F(1,56) = 0.004, p 

= 0.95) nor did choice diet affect average visit length (F(1,56) = 0.134, p = 0.72). There 

was no interaction found of sex and diet on average visit length ( F(1,56) = 2.531, p = 

0.12).  
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Figure 11. Male (N=15) and female (N=15) T. meeki do not differ significantly in the 

mean time (±SE) they spend near HC and LC choice fish. 
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Figure 12. Male (N=15) and female (N=15) T. meeki visit HC and LC choice fish 

equally (mean±SE).  
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Figure 13. Average visit length (±SE) to HC and LC choice fish does not differ 

between male (N=15) and female (N=15) T. meeki. 
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 Behavioral data was examined for only individuals who showed a preference for 

either HC or LC choice fish. Male and female choice fish showed no difference in the 

number of behaviors performed or the percent of the focal fish’s visit time spent behaving 

(Mann-Whitney U tests: U = 222, p = 0.35and U = 218, p =0.31, respectively, Figure 14). 

Since sex had no role in the overall behaviors, they were pooled to examine behavioral 

differences between preferred and non-preferred fish. 

 Mann-Whitney U tests showed that preferred fish (N=23) performed more 

behaviors than non-preferred fish (N= 23) and spent a greater percent of the focal fish’s 

visit time behaving (U = 165.5, p = 0.029 and U = 165, p = 0.028, respectively, Figure 

15). When discrete behaviors were examined between preferred and non-preferred fish, 

the nosedown behavior was the only one that differed significantly between the groups 

(Mann-Whitney U: U = 163.5, p = 0.013, Figure 16). 
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Figure 14. Preferred choice fish performed significantly more behaviors towards the 

focal fish than did the non-preferred fish (mean ±SE). 
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Figure 15. Preferred choice fish spent a greater percentage of the focal fish’s visit 

performing behaviors than did the non-preferred fish (mean ±SE).  
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Figure 16. The behaviors displayed (mean ±SE ) by preferred and non-preferred fish 

did not differ significantly with the exception of the “nosedown” behavior (p=0.013). 

While other behaviors such as “lateral display” and “tailbeat” seem to be trending in 

the same direction as “nosedown”, significance was not found.  
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Discussion 

 Most focal male and female Thorichthys meeki preferentially associated with 

potential mates. However, they did not prefer to associate with a potential mate based on 

redness. Instead, preferences were determined according to how choice fish behaved. 

Preferences and behaviors did not differ between male and female T. meeki. Preferred 

fish, regardless of sex or color, were more active than the non-preferred fish. They spent 

a greater proportion of the focal fish’s visit time behaving and had an overall greater 

number of behaviors than the non-preferred fish. When examining mate preference, 

caution needs to be extended when using time-budgeting data as a means of 

measurement. Time in proximity to a potential mate does not always denote a preference 

for that mate (Fuller, 2003). Aspects such as behavior or other biologically relevant 

variables should be noted as well, especially in previously unstudied taxa (Fuller, 2003). 

This is why activity level and behavioral observations were essential in this study.  

However, it is also important to note if the focal fish visits both choice fish when 

examining behavioral data. For example, a focal female could have been attracted to one 

male because he was  the first to behave. The focal fish’s choice could then be dependent 

on her continually interacting with him because he was the first to initiate contact, not 

necessarily that he was a better potential mate. 

 While the activity level of the preferred fish could be the driving force for mate 

preference in T. meeki it is interesting that the “nosedown” behavior is significantly 

different between preferred and non-preferred fish. This behavior is often performed as a 

non-contact, agonistic display (Baerends & Baerends-Van Roon, 1950; Neil, 1984a; Neil 

1984b). However, the significant difference of its frequency suggests that it may play a 
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role in courtship. This follows logically because Baerends and Baerends-Van Roon 

(1950) describe courtship in T. meeki as increasing in intensity over time leading to 

breeding. The final behaviors performed before breeding are nipping off a breeding 

surface—which has the fish in a nosedown position—and quivering in a nosedown 

position.  

 The “lateral display” behavior and “tailbeat” behavior also seem to be 

approaching significance when graphed (Figure 16). However, the data were unable to be 

transformed and significance was not detected using non-parametric statistics. With an 

increased sample size, or more behavioral data collected, it would not be surprising if 

these behaviors differed significantly as well because these behaviors are common at the 

beginning of courtship (Baerends & Baerends-Van Roon,1950). 

 What I find most interesting is that redness is innately attractive to T. meeki and is 

an honest indicator of quality yet it plays no role in attractiveness as a mate (Chapter II; 

Chapter III; Evans & Norris, 1996). However, signals are rarely unimodal (Sargent et al., 

1998; Ronald et al.,2012). There may have been other signals the choice fish produced 

that overtook the visual signal such as olfactory or auditory cues. While visual cues have 

been used in various mate choice experiments in fishes, experiments looking at olfactory, 

auditory and multimodal cues with respect to choice are becoming more common 

(Guevara-Fiore et al.,2010; Verzijeden et al.,2010; Ronald et al.,2012; Passos et al., 

2013; Estramil et al.,2014).  

Olfactory cues have been shown to play a role in finding a receptive mate 

especially in turbid waters (Guevara-Fiore et al.,2010; Passos et al., 2013). Guevara-

Fiore et al. (2010) found that male guppies increase searching behavior when presented 
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with olfactory cues of receptive females. Additionally, the olfactory cues presented by a 

receptive female increased her attractiveness than when the male was presented visual 

cues alone. Some cichlid species use acoustic signals (Amorim et al., 2004; Amorim & 

Almada, 2005; Verzijden et al., 2010; Estramil et. al, 2014). While it is unknown whether 

T. meeki uses auditory communication, other cichlid species have been found to use it in 

addition to visual and olfactory cues as a multimodal signal for mate choice (Verzijden et 

al., 2010; Estramil et. al, 2014).  

In this experiment, the lateral compartments were not water tight because the 

clear dividers were designed to be removable. This would allow for olfactory and 

auditory cues to be easily passed to the focal fish. Since these modalities have yet to be 

studied in T. meeki it is possible that they play a role in mate preference. T. meeki can be 

found in waters that vary in turbidity and have been shown to increase the brightness of 

their coloration when in more turbid waters (Neil, 1984a; Soria-Barreto & Rodiles-

Hernández, 2008). It is possible that they also use other cues in these instances as well 

since olfactory and auditory signals are easier to transmit through turbid water than visual 

signals (Endler, 1992; Passos et al.,2013). 

 This study emphasizes that a signal utilized in one area of an animal’s behavioral 

repertoire doesn’t necessarily mean that it will play an important role in others. It has 

been demonstrated that organisms which have similar ornamentation across the sexes do 

not necessarily use the ornamentation in the same way (Murphy, et al., 2014). This 

concept needs to be examined in monomorphic species such as T. meeki to parse apart the 

importance, or lack thereof, of various signals. It is evident that T, meeki preferentially 

associates with potential mates it is unclear that behaviors alone are the deciding factor. 
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Future studies need to be conducted with olfactory and vibratory isolation to rule out 

those cues. 

While some studies show that association preferences predict the likelihood of 

reproduction, this needs to be tested in T. meeki (Walling et al., 2010). Since courtship in 

cichlids is so aggressive, there are instances in which a fish will flee from a territory if 

aggression is too high (Baerends & Baerends-Van Roon, 1950). Focal and choice fish in 

this experiment were physically separated from each other and did not experience the 

more aggressive behaviors such jaw-locking, ramming, and chasing. It is possible that 

this inability may skew results towards preferring a mate that might not lead towards 

reproduction. Future experimentation with added interactions between the pairs need to 

be done to determine if the more aggressive behaviors play a significant role in 

reproductive success of T. meeki.  

This is the first study of mutual mate preference in a Neotropical cichlid. Many 

cichlids within this group provide some length of parental care so it is surprising that this 

is the first time it has been documented. While the specific mode of preference has yet to 

be determined, this research has provided a starting point to look into multimodal 

signaling and more detailed behavioral interactions.  
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CHAPTER V 

SUMMARY AND FUTURE DIRECTIONS 

 

 While dietary carotenoids have been studied extensively throughout the years, we 

now understand the need to examine their role from multiple perspectives. This is 

particularly important when examining how these pigments are used in signals for intra- 

and interspecific communication. Here I have demonstrated that a period of 12 weeks on 

a high- and low-carotenoid diet is sufficient to alter redness in male Thorichthys meeki. 

Unexpectedly, I found that females did not respond in the same manner as males. Female 

redness did not increase when provided more dietary carotenoids while decreasing the 

availability of carotenoids significantly altered their color by 6-8 weeks. This odd result 

warrants further investigation into how carotenoids are differentially absorbed and used 

by the sexes.  

 Furthermore, dietary carotenoids are utilized for more than color (Olson & 

Owens, 1998) and have been shown to affect vision in other vertebrates (Toomey & 

McGraw, 2012). I have demonstrated behaviorally that dietary carotenoids play no role in 

color discrimination in T. meeki. While behavioral assays are a noninvasive way to 

examine vision, more intensive research is necessary to fully understand the visual 

spectra of this species. Research on color vision in Neotropical cichlids is seriously 

lacking. The next step in understanding vision in T. meeki is to conduct specific 

experiments on the visual spectrum through microspectrophotometry and histological 



69 
 

examination of the eyes themselves. By performing dissections of T. meeki eyes over the 

course of a high or low carotenoid diet we can determine if carotenoids are deposited in 

the eye and used as an intraocular filter. Little is known about what alters intraocular 

filters (Heinermann, 1989). Dissections like this will give insight into whether 

carotenoids are being deposited in the eye, where they are being deposited, and how long 

it takes for their presence to play a role in vision—if any were to occur. 

 My first two experiments were essential for examining how redness is used as a 

signal for mate preference in T. meeki. Here, I found that males and females have no 

preferential association with potential mates who are redder, but who are more actively 

displaying. While displays by choice fish seem to be driving the preferences of the focal 

fish, we do not understand what specifically makes a potential mate attractive. I intend to 

further examine the behaviors of the choice fish and reciprocal interactions between the 

choice and focal fish. This will allow me to parse apart what the preferred fish is 

specifically doing that the non-preferred fish is not.  

Furthermore, the potential for multimodal signaling needs to be examined in this 

species. In addition to the visual signals produced, choice fish could be providing 

auditory or olfactory cues making them more attractive to the focal fish. This can be 

easily tested by isolating the various modes of signaling via separate, juxtaposed aquaria. 

Signaling pathways can then be examined individually or in combination. For example, I 

will have two aquaria, one holding the focal fish while the other remains empty or holds a 

choice fish. By placing a choice fish in the second aquarium I can examine visual cues 

alone. While the choice fish is displaying, a microphone in its aquarium can record any 

auditory cues produced and water samples can be taken from this aquarium which may 
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hold olfactory cues. We can then observe the choice fish’s behaviors when provided the 

auditory and olfactory cues alone (when presented an empty tank) or in conjunction with 

visual cues (when presented a choice fish). 

In conclusion, this dissertation takes an encompassing approach to the role of 

carotenoids on redness and subsequent behaviors in the firemouth cichlid, Thorichthys 

meeki. This provides a starting point for further, in-depth studies of color, vision, and 

multimodal signaling in Neotropical cichlids.  
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