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ABSTRACT 

ATMOSPHERIC NITROGEN ASSIMILATION IN USTILAGO MAYDIS 

Michael R. Cooper 

November 18, 2015 

Nitrogen is an essential nutrient for all living creatures.  Ammonium is one of the 

most efficiently used and thus preferred, sources of nitrogen. As with other dimorphic 

fungi, yeast-like cells of Ustilago maydis, a fungal pathogen of maize, switches to 

filamentous growth when starved for nitrogen/ammonium. U. maydis carries two genes, 

ump1 and ump2, encoding ammonium transporters that facilitate both uptake of 

ammonium and the filamentous response to its absence. While no obvious phenotype is 

observed when ump1 is deleted, cells without ump2 are unable to filament in response to 

low ammonium, although they can still grow. Surprisingly, ump1ump2 double mutants 

can also grow on low ammonium. More amazing still, both wild-type and mutant cells 

continue to grow, even after strenuous efforts were made to remove all nitrogen sources 

from their growth media.  

To further investigate these unusual observations, we examined the growth 

character of cells in various low and no-ammonium conditions with variable glucose 

concentrations, examined isotopic enrichment employing 15N2 gas as a tracer and D-[U-

13C]Glucose, conducted PCR screenings and evaluated the possibility of an 

endosymbiont.  The ump1ump2 mutant appeared to produce longer cells than the wild-

type and achieved higher titers under 50 mM glucose with no ammonium. That mutant 
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also incorporated more 15N than the wild-type in liquid culture under low and no-

ammonium conditions. Cells passed through serial treatments of high levels of 

antibacterial compounds persisted in growth and 15N accumulation. PCR results indicated 

there was neither prokaryotic 16S rDNA nor the gene for dinitrogenase reductase, typical 

of prokaryotic diazotrophs. 

Overall our studies indicate the novel discovery of an unknown nitrogen fixation 

system in U. maydis. While the molecular mechanism remains unresolved a metabolic 

capacity to convert dinitrogen into nitrogen that is bioavailable natively in a eukaryotic 

system holds the potential to change our understanding of the biogeochemical cycling of 

nitrogen. Moreover, these findings also present a potential way to reduce the 

anthropogenic contribution of organic nitrogen that is a large contributor to the accretion 

of eutrophication, “dead zones”, in our coastal waters and large lake system. 
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CHAPTER I 

GENERAL INTRODUCTION 

Plantae and Fungi Origins 

            We live in the microbial world. Every interaction with the natural world involves 

microbial interactions from the endosymbiont that makes aerobic respiration possible to 

the thermophiles whose enzymes we’ve learned to turn into molecular tools. Even the 

evolution of sexual reproduction could have been an answer to adaptation for viral and 

microbial pathogen defense as illustrated by the Red Queen Hypothesis reflecting that our 

most essential sexual identity remains an adaptive strategy to evade pathogens. Our 

ability to assimilate carbon and micronutrients efficiently relies on a complicated 

intestinal flora community. The nitrogen that is required for all amino acids is fixed from 

atmospheric dinitrogen by diazotrophs and recycled by denitrifiers where not directly 

made available as nitrate, nitrite or ammonium. These fundamental biogeochemical 

cycles are ancient and that essential metabolic activity became established before the cell.   

Some 3.8 billion years ago (BYA) the first free-living cells are thought to have 

emerged from acellular aggregates which arose from prebiotic self-replicating systems 

contained within inorganic metal-sulfide compartments embedded within the walls of 

hydrothermal chambers. While still under investigation, these iron-sulfide-walled 

chambers contained a chemiosmotic gradient within which rudimentary 

chemolithotrophy and primitive self-catalyzing RNA could have begun the first 

metabolic cycles (Martin and Russell, 2003). The Iron-Sulfur-World hypothesis, initially 
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proposed by Wächtershäuser (Wächtershäuser, 1988) enjoys more recent support through 

work indicating that supercritical steam that would be present in hydrothermal vents does 

not interact with the pyrite (FeS2) walls as does water at STP (standard temperature and 

pressure) such that the binding sites of iron are much more exposed and available, 

including at reactive point defect sites, for proto-organic interactions (Stirling et al., 

2015). Those interactions along with sulfur-dependent fixation of carbon eventually 

resulted in the RNA World (Gesteland and Atkins, 1983), where RNA is thought to have 

evolved prior to DNA, first suggested in 1968 (Boyer, 1968; Crick, 1968; Orgel, 1968), 

though another type of self-catalytic information storage vehicle likely preceded RNA, 

perhaps a peptide nucleic acid (Egholm et al., 1992). 

From these chambers those first cells, eubacteria, are thought to have arisen and 

from those eubacteria the neomura clade to which archaebacteria and eukaryotes belong 

(Cavalier-Smith, 2002b). This transition, about 1 BYA, included the crucial incorporation 

, characterized by Cavalier-Smith as enslavement, of a photosynthetic purple non-sulfur 

-proteobacterium which became mitochondria (Cavalier-Smith, 2006). Chloroplasts are 

thought to have joined the emerging Plantae lineage some 580 (million years ago) MYA 

from a cyanobacterial symbiont (Cavalier-Smith, 2002a).  

The first eukaryotes to appear were likely substrate-associated heterotrophic 

ameboflagellates which diverged into two eukaryotic supergroups, the unikonts and 

bikonts (Cavalier-Smith, 2009). This division is characterized by whether or not the early 

proto-eukaryotes possessed a single or no emergent flagellum, the unikonts, or had two 

flagella, the bikonts. From the unikonts arose the podiates, those that evolved 

pseudopodia for benthic feeding, giving rise to Animalia and Fungi while corticates, 
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evolved from the bikont lineage that developed cortical alveoli, represent the ancestors of 

Plantae (Cavalier-Smith, 2013; Cavalier-Smith et al., 2014). The divergence between 

unikonts and bikonts is thought to have occurred some one billion years ago, at the dawn 

of Neoproterozoic (Knoll, 1992; Simon et al., 1993). Most recently the divergence of the 

Ascomycota and Basidiomycota is reported to have occurred around 642 MYA 

(Beimforde et al., 2014). Monocots and eudicot divergence is estimated at 206 MYA 

(Taylor and Berbee, 2006). From molecular analyses combined with the fossil evidence 

of arbuscular mycorrhizae associated with plant rhizomes there is strong evidence that 

green plants and fungi evolved together to cover the land. Vesicular-arbuscular 

mycorrhizae (VAM) has been dated to about 400 MYA coinciding, roughly with the 

appearance of the first land plants which has been placed at about 415 MYA (Simon et 

al., 1993); indicating that fungal-plant associations predated the emergence of vascular 

plants. This timeline is summarized in Figure 1.  
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Figure 1. Simplified overview of the evolution of Plantae and Fungi with estimated 

timings of major events. 

Fungal Plant Pathogens 

            There are an estimated 5.1 million species of fungi with an estimated 270,000 

species associated with plants (Blackwell, 2011; Gauthier and Keller, 2013). Those 

species associated with plants represent over half of all identified fungal species of which 

there are currently 513,096 records that appear in the Index Fungorum 

[http://apps.kew.org/herbtrack/search]. The vast majority of these interactions are thought 

to be symbiotic in nature as all plants in the natural environment involved have been 

found to interact with fungi, be it endophyte, mycorrhizae or both (Rodriguez and 

Redman, 2008; Rodriguez et al., 2009), there are thousands that engage in pathogenic 

interactions. Of those plant-associated species approximately 10,000 have been identified 

as causing disease, most of those belonging to the divisions Ascomycota and 

Basidiomycota (Agrios, 2005). At least 46 of those plant-pathogenic Ascomycota are also 

able to cause disease in humans; a dramatic recent example was the 2012 outbreak of 

meningitis caused by Exserohilum rostratum-contaminated methylprednisolone acetate 

produced by the New England Compounding Center (Gauthier and Keller, 2013).    

The mutualistic nature of the majority of fungal-plant interactions is perhaps best 

reflected in the current understanding of arbuscular mycorrhizal fungi (AMF) interactions 

with plants of agricultural interest. This appreciation of AMF is relatively recent and 

potentially will reap substantial benefits when employed with other sustainable farming 

practices. It is understood that AMF can enhance stress tolerance in plants as well as 

increase nutrient uptake from soil when combined with sustainable, low-tillage farming 

practices (Adesemoye et al., 2008; Lehman et al., 2012). Early symbiosis with emerging 
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vascular plant groups is thought to have had contributed greatly to success of plants. 

Symbiotes can contribute to nutrient acquisition via association with mycorrhizae, as 

mentioned, and host defense through the symbiotic endophytes found, so far, in all plants, 

mostly in the above-ground plant tissues (Faeth and Fagan, 2002). Agricultural 

application of AMF-enriched soil inoculum has also been demonstrated to increase crop 

yield, increase phosphorous mobilization as well as reduce nitrogen leaching losses 

(Bender and van der Heijden, 2015). As the climate continues to change it will likely 

become more important to understand and utilize these interactions in order to maintain 

and increase agricultural production in the face of a continually-expanding population.  

  In agriculture, fungal diseases represent the greatest economic losses as 

compared with other microbial-induced plant disease, estimated at more than $200 billion 

per year (Horbach et al., 2011). Basidiomycota, the division in which mushrooms and the 

human pathogen Cryptococcus reside, includes those pathogens that cause rusts and 

smuts. Members of sub-division Pucciniomycotina, order Pucciniales (formerly 

Uredinales (Hibbett et al., 2007)) cause rust diseases, including Microbotryum sp., while 

members of sub-division Ustilagomycotina, order Ustilaginales cause smut diseases. 

While all smuts are autoecious, completing their lifecycle in a single host this isn’t the 

case for all rusts, with many being autoecious, and some are heteroecious, having two or 

more hosts. Rusts are characterized by the appearance of pustules on leaves and, in some 

cases, other aerial parts of affected plants which are widely distributed, including trees, 

ornamental and crop plants. Within those pustules teliospores develop which produce 

basidia, completing the rust’s lifecycle when those pustules burst. Smuts, on the other 

hand, primarily affect grasses, mostly attacking the ovaries and fruit, including those of 
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commercial import such as maize, sugarcane, wheat and barley and some species induce 

gall formation in which teliospores develop and in this form over-winter, then germinate 

and eventually burst, releasing haploid basidiospores that are wind-dispersed to begin the 

next generation. 

Ustilago maydis 

The Basidiomycota Ustilago maydis is one of the smuts that are of commercial 

concern. Unlike the other fungal infections of Zea mays, infection by U. maydis results in 

an edible delicacy that is very popular in Mexico, huitlacoche, also known as cuitlacoche, 

the “Mexican truffle” or “corn truffle;” the galls are harvested approximately three weeks 

post-infection, when the galls are still puffy and white prior to turning black. Figure 2 

shows what these harvested galls look like at a market. While not entirely clear one 

possible origin for the term “huitlacoche” could be from Nahuatl, the Aztec language, 

with a root meaning “raven’s excrement.” Huitlacoche, with a taste that combines the 

flavor of mushrooms with corn, is also implicated as a possible “neutraceutical” with 

health benefits when incorporated into one’s daily diet (Valdez-Morales et al., 2010). 

Infected ears of corn sell for about fifty times that of uninfected corn in Mexico. It has 

even been employed as a labor-inducing agent by the Zuni Indians (Gilmore, 1919). 
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Figure 2. Huitlacoche at market. (photo by Maureen Gilmer, 2013) 

In the United States it has been colloquially known as “Devil’s corn” and is 

considered part of agricultural loss. In 2012 total corn production in the United States and 

Ontario was 11.1 billion bushels. Loss to disease was more than 1.3 billion bushels with 

Fusarium stalk rot figuring the most predominantly in that that total at 124 million 

bushels lost. Corn smut was responsible for an estimated 83.9 million bushels (Mueller, 

2013).  One effort to combat that loss is the development of a transgenic maize, 

expressing the Totivirus antifungal protein KP4, which is highly resistant to corn smut 

(Allen et al., 2011). This transgenic maize leverages the proteins produced by U. maydis 

infected by the ds-RNA Totiviruses which acts to kill non-infected U. maydis (Allen et 

al., 2013). On the other hand, efforts to increase commercialization of huitlacoche in the 

United States continue as production is estimated to cost approximately $6/kg whereas 

currently it sales to restaurants in the US for as much as $30 to $40/kg (Tracy et al., 

2007).  
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Aside from interests associated with agriculture U. maydis has been the subject of 

years of genetics research. The most well-known research that was conducted using U. 

maydis and Saccharomyces cerevisiae remains the now-classical work demonstrating 

homologous recombination, specifically the demonstration of the intermediate form, the 

Holliday junction (Holliday, 1964). Since then U. maydis has been found to be a more 

appropriate model system for some mammalian cellular processes that are lacking in S. 

cerevisiae such as long-distance transport, mitosis and motor-based microtubule 

organization, regulation of cell polarity and even the possession of a functional homolog 

to mammalian BRCA2  (Steinberg and Perez-Martin, 2008). From a practical perspective 

U. maydis is easily maintained in its haploid, yeast-like form, is amenable to genetic 

manipulation via homologous recombination, and is relatively easy to freeze for storage 

and to culture. The nuclear and mitochondrial genomes have been sequenced (Kämper et 

al., 2006), while work continues on annotation. 

Common to all pathogenic Basidiomycota, parasitism is obligate in order for the 

organism to complete its lifecycle. U. maydis, like other biotrophic fungi, have a 

complicated lifecycle that requires a living host in order to complete sexual reproduction. 

It can reproduce by budding in its yeast-like state, as basidiospores/sporidia which are 

readily propagated on plates or in broth, outside of a host, as illustrated in Figure 3, 

adapted from (Pataky, 2006). Compatible mating partners undergo conjugation, forming 

a dikaryon which infects the corn plant by appresorium formation, sending infectious 

hyphae into the plant where it acts endophytically, migrating to young 

leaves/reproductive tissues. When mated cells are introduced by damage to the corn 

plant, galls can and will from in any of the aerial tissues. Once tissue penetration has 



 

  9  

occurred, gall formation is induced where, as the gall matures, plant cells are replaced 

with fungal cells. Teliospores form with the galls which, in natural infections, undergo 

meiosis after overwintering to form the basidium which give rise to the haploid 

basidiospores, also known as sporidia. 

Figure 3. Ustilago maydis lifecycle, demonstrating infection trajectory. 

Mating is a critical requirement for pathogenesis (Bolker et al., 1995). Whereas S. 

cerevisiae employs a bipolar mating system dependent on a single mating-type (MAT) 

locus U. maydis utilizes a tetrapolar mating system having two MAT loci. The a locus, of 

which there are two idiomorphs, a1 and a2, where a1 encodes three genes and a2 has 

four functional genes and one pseudogene. The a1 locus is 4.5 kilobases (kb) and the a2 

locus is about 8 kb. The a1 and a2 loci each encode both a pheromone that is secreted 

and receptor for the opposite locus’ pheromone,  mfa1/2 and pra1/2, respectively. This 

approach to self, non-self recognition is analogous to what is seen in S. cerevisiae (Bolker 
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et al., 1995). Additionally the a1 locus encodes the likely mitochondrial membrane target 

Rba1 whereas the a2 locus encodes Lga2 and Rga2 along with the pseudogene rba2 

(Klosterman et al., 2007).  Lga2 interferes with mitochondrial integrity such that it plays 

a role in uniparental mitochondrial inheritance (Mahlert et al., 2009). Rga2 appears to 

provide a protective effect to the parental cell possessing the a2 locus such that 

preservation of the a2 mitochondria is favored (Fedler et al., 2009). The b locus also 

engages in self/non-self-recognition but has, reliably, about 20 alleles, requiring a bE and 

bW from different parents in order to form a functional heterodimer. Each bE product 

must have a bW product from a different allele in order to form that heterodimer 

(Klosterman et al., 2007). The b locus interactions occur after conjugation tubes fuse and 

the nuclei are in close proximity in the newly-formed dikaryon. The N terminal 

interactions between complementary bE-bW pairs, able to bind DNA using homeobox 

domains at heterodimers, is well-described; however, the nature of nuclear localization 

has yet to be precisely described. 

 This dimorphic switch that enables the transition from yeast-like sporidia to 

filamentous conjugation partner and subsequent growth is initiated by both detection of 

pheromone from the opposite mating type and induced by nutrient deprivation. While 

conjugation is possible in nutrient replete media the proportion of conjugation events 

relative to the totality of the available mating partners is very low (Bowman, 1946).  

Induction by pheromone is by the well-described mitogen-activated protein kinase 

(MAPK) pathway resulting in transcription of Prf1, a transcription factor, which 

upregulates bE/bW expression, as well as many other mating-related genes, in a post-

translational modification by c-AMP-dependent protein kinase Adr1 and MAPK Kpp2 
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phosphorylation-dependent manner (Zarnack et al., 2008). The use of activated charcoal 

media for mating assays ensures sequestration of free ammonia, which may reduce 

conjugation, though it was initially suggested that the charcoal absorbs some secreted 

effector that suppresses filamentation (Day and Anagnost.Sl, 1971). Successful mating on 

charcoal media is characterized by formation of white “fuzzy” aerial hyphae. As this 

switch is critical to pathogenicity there has been much work on various mechanisms that 

are involved, though nitrogen starvation appears to be the strongest condition. 

 Nitrogen deprivation induces filamentation in the absence of pheromone in wild-

type haploid U. maydis strains. The high-affinity ammonium transporter, Ump2, is part of 

the filamentation response such that haploid mutants lacking ump2 are unable to filament 

under low ammonium conditions (Figure 4). The low-affinity ammonium transporter, 

Ump1, is not required for starvation-induced filamentation while the double deletion of 

ump1 and ump2 results in abnormal filamentation under all conditions (Smith et al., 

2003). Smith et al. (2003) also noted that the persistent growth of ump1ump2, in low 

ammonium media suggested another unidentified mechanism for utilization of 

ammonium.  

 This transition to filamentous growth results in apical hyphal growth in which 

Golgi-derived secretory vesicles deliver cellular membrane constituents, exoenzymes, 

cell-wall synthesis enzymes to the Spitzenkörper, or vesicle supply center (VSC), from 

which secretion and extension of the hyphal tip originate (Steinberg, 2014). While this 

has specifically been studied in infectious hyphae the overall mechanisms involved in 

general hyphal growth can be expected to apply to starvation-induced filamentation. 

When grown on minimal agar media these vesicles are not readily viewable. In a minimal 
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liquid media, however, rather than discrete apical hyphal growth there is an apparent 

accumulation of large lipid-containing bodies throughout the cell (Klose and Kronstad, 

2006). Those same lipid bodies, identified by Nile red staining, correspond to the 

endocytic vacuoles identified by Lucifer Yellow assays (Steinberg et al., 1998).   

  

Figure 4.  U. maydis colonies grown on synthetic low ammonium dextrose (SLAD) 

under low nitrogen conditions. A) wild-type strain 1/2. B) ump1 mutant C) ump2 

mutant  D) ump2 complemented with wild-type copy of ump2. (Smith, 2003) 

 Ammonium Transporters 

High-affinity ammonium transporters, also called transceptors due to their 

signaling activity (Kriel et al., 2011), have been found to be necessary for the function of 
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the dimorphic switch not only in Ustilago but also in Saccharomyces cerevisiae, Candida 

albicans and Cryptococcus neoformans (Biswas and Morschhauser, 2005; Boeckstaens et 

al., 2007; Lorenz and Heitman, 1998; Rutherford et al., 2008; Smith et al., 2003). In those 

species disruption of the genes encoding the high-affinity ammonium transporter 

inhibited the ability to filament under nitrogen starvation, though this did not otherwise 

impair virulence under experimental conditions; presumably the lack of starvation-

induced invasive filamentation would reduce pathogenicity under environmental 

conditions (Biswas and Morschhauser, 2005; Boeckstaens et al., 2007; Lorenz and 

Heitman, 1998; Rutherford et al., 2008).  

This family of ammonium permeases share functional homology across all 

domains of life including the Rhesus blood group proteins. These are trimeric integral 

membrane complexes through which ammonium (NHସ
ା) molecules are electrogenicly 

transported unambiguously as determined in two Archaeoglobus fulgidus ammonium 

transporters utilizing solid-supported membrane (SSM)-based electrophysiology (Wacker 

et al., 2014). This same work determined a pH dependence on activity such that pH 

below 5.0 resulted in a drop-off of ammonium transport activity as well as high 

specificity for ammonium.  

The current hypothesis for the mechanism of transport, reviewed in (Andrade and 

Einsle, 2007) and pictured in Figure 5, based on the resolved crystal structure of A. 

fulgidus, involves the binding of ammonium in an extracellular binding pocket in each 

monomer to the conserved residues Trp 137, forming a cation- interaction with the Trp 

indole moiety, and hydrogen bonding with Ser 208. Phe 96 and Phe 204 block direct 

passage from that binding site thereby implying that conformational rearrangement is 
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required to open the channel. The channel is hydrophobic aside from two highly 

conserved histidines, so it is thought that ammonium must be deprotonated before being 

passaged and must be reprotonated following transport to be biologically useful. A 

secondary active, symporter function such that  NHଷ /H
ା  are transported across the 

membrane to the intracellular compartment seems to be the most likely model at this 

point (Andrade and Einsle, 2007). 

In various filamentous pathogens, the filamentation response tends to be reduced 

or inhibited as a function of lowering pH (Wacker et al., 2014). This trend could reflect 

the impact of pH on the ability of active transporters to function in a more hydronium-

rich environment. In contrast to that trend, haploid yeast-like budding U. maydis cells can 

be induced from the yeast-like budding form to the filamentous form under low pH 

conditions (Ruiz-Herrera and Leon, 1995).  
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Figure 5. The transport of ammonium through an AmtB monomer of Escherichia coli. 

Ammonium binds, and then is deprotonated. Ammonia transits through the hydrophobic 

channel and is reprotonated upon exit. (Khademi and Stroud, 2006) 

 

The Nitrogen Cycle 

 Nitrogen is an essential element for all biological systems. Integral to all proteins 

and nucleic acids, nitrogen is one of the four most abundant elements comprising all 

living things (Figure 6) and is the most abundant element in the atmosphere. The 

presence of dinitrogen (N2) in the atmosphere is thought to have been a natural 

consequence of the earliest accretion of matter that formed the Earth (Kasting, 1993) 
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originating with frozen NH3 that was then oxidized in the mantle and subsequently 

outgassed as N2 (Canfield et al., 2010). 

 

Figure 6. Proportional elemental composition by mass of a Saccharomyces cerevisiae 

cell. 

The abiotic nitrogen reactions include atmospheric nitrogen fixation (N2 to NHସ
ା) 

through lightning and human activity, as well as occurring abiotically at hydrothermal 

vents. While there is not an estimate for annual global fixed nitrogen contribution by this 

process it is significant when considering biogenesis (Wächtershäuser, 2007). Dinitrogen 

(N2) is also converted to NO, NO2 (NOx) and N2O primarily through combustion 

reactions for power generation and transportation.  The oxidation of NOx to NOଷ
ି, in the 

form of nitric or nitrous acid, occurs in the upper atmosphere. Experimental evidence has 

demonstrated that a single-step conversion of NO to NHସ
ା is possible under conditions 

thought to be prevalent in Hadeon hydrothermal vent strata (Martin and Russell, 2003), 

particularly dependent on interactions with FeS (Summers et al., 2012). Similarly 
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reduction of NOଶ
ି and NOଷ

ି to NHଷ/NHସ
ା has been observed at 120oC by interaction with 

nanometer-sized FeS particles (Gordon et al., 2013). Iron oxides (with mixed Fe(II) and 

Fe(III) species) have been found to facilitate the aqueous reduction of NOଷ
ି to NHସ

ା, 

particularly at slightly acidic pH values (Etique et al., 2014) while NOଶ
ି has been found 

to react with magnetite (Fe3O4) and goethite (a-FeOOH) yielding NOx gasses (Dhakal et 

al., 2013).  

Lightning strikes are estimated to contribute 8.6 x 106 metric tons of NO, NO2 and 

N2O to the atmosphere annually (Ott et al., 2010), which is estimated to be only 

approximately 10% of the NOx and N2O contributed by anthropogenic activity (Vitousek 

et al., 1997) which was estimated at 1.22 x 107 metric tons/year for N2O alone in 2005 

(Olivier et al., 2005). Total anthropogenic activity is estimated to contribute 2.1 x 108 

metric tons of reactive nitrogen per year (Fowler et al., 2013). Industrial production of 

ammonia, by the Haber-Bosch process, which was approximately 1.76 x 107 metric tons 

in 2014, accounts for approximately 30% of the total, worldwide fixation of nitrogen 

alone (Smith et al., 2004). According to the Ammonia Industry (ammoniaindustry.com) 

this production is expected to about 2.5 x 107 metric tons by 2018. The vast majority of 

that production capacity is for use in agricultural applications. Unfortunately that 

increased use has dramatically increased the occurrence of dead zones by virtue of 

eutrophication which is accompanied by increased frequencies of harmful algal bloom 

occurrences (Howarth, 2008).  

The metabolic pathways involved in the biotic nitrogen cycle, Figure 7, are 

represented in diverse organisms under diverse conditions. Nitrification and 

denitrification are primarily associated with ammonia-oxidizing bacteria (AOB) and  
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Figure 7. The essential biotic nitrogen cycle, adapted from (Klotz and Stein, 2008). 

nitrite-oxidizing bacteria (NOB) which oxidize ammonia to nitrite and nitrite to nitrate, 

respectively (Klotz and Stein, 2008). Nitrification is accomplished by beta- and gamma-

proteobacteria as well as marine Crenarchaeota using related ammonia monooxygenase 

(AMO) inventories (Wuchter et al., 2006) which employs hydroxylamine as an 

intermediate and, therefore, requires hydroxylamine oxidoreductase (HAO) in order to 

extract electrons for both the regeneration of AMO as well as contribution to the quinone 

pool (Sayavedra-Soto et al., 1994). Nitrification is dependent on the availability of 

oxygen with some organisms able to nitrify under anoxic conditions when supplied with 
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NO2 (Schmidt et al., 2001). The classical denitrification pathway describes the use of 

nitrate as the terminal electron acceptor in the oxidation of organic matter under suboxic 

to anoxic conditions (Brandes et al., 2007). This produces dinitrogen gas. Incomplete 

denitrification results in nitrous oxide and is the product of detoxification. Biological 

nitrogen fixation (BNF) only occurs primarily through the use of the nitrogenase enzymes 

utilized by diazotrophs (nitrogen-fixing organisms) in archaea and bacteria and is the 

primary contributor of fixed nitrogen in the nitrogen cycle, including consideration of 

anthropogenic contributions, though, just more than half the total (2.4 x 108 of 4.13 x 108 

metric tons/year) as of 2012 (Fowler et al., 2013). 

Nitrogen Fixation 

The first experimental demonstration of bacterial nitrogen fixation was reported in 

1908 by the Dutch scientist, Martinus Beijerinck, (Beijerinck, 1908), based on bacterial 

cultures initially isolated in 1888, which turned-out to be Rhizobium leguminosarum. The 

bacteria and archaea that are able to fix nitrogen are known collectively as diazotrophs. 

This capacity is very widely dispersed among very disparate prokaryotic groups and the 

primordial nitrogenase-like enzyme system is though to have had appeared more than 2.2 

billion years ago (Boyd et al., 2011).  

From that initial work, three closely-related nitrogenase complexes were 

identified. These are isozymes that differ by the metal ion cofactor that is required for 

their nitrogenase to function. Of these, Mo-Fe, Va-Fe and Fe-Fe, the Mo-Fe system has 

been characterized most thoroughly (Newton, 2007). These have been identified as 

nitrogenase-1 through nitrogenase-3, respectively and catalyze the following reactions: 

  Nଶ ൅		8eି ൅	8Hା ൅ 	16MgATP
୬୧୲୰୭୥ୣ୬ୟୱୣିଵ	ሺ୑୭୊ୣሻ
ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ሮ 2NHଷ ൅ Hଶ ൅ 16MgADP ൅ 16Pi	 
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Nଶ ൅ 12eି ൅ 12Hା ൅ 40MgATP
୬୧୲୰୭୥ୣ୬ୟୱୣିଶ	ሺ୚ୟ୊ୣሻ
ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ሮ 2NHଷ ൅ 3Hଶ ൅ 40MgADP ൅ 40Pi 

Nଶ ൅ 24eି ൅ 24Hା ൅ 48MgATP
୬୧୲୰୭୥ୣ୬ୟୱୣିଷ	ሺ୊ୣ୊ୣሻ
ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ሮ 2NHଷ ൅ 9Hଶ ൅ 48MgADP ൅ 48Pi 

The genes encoding the components of these nitrogenases are identified as nif, vnf and 

anf, corresponding to Mo-Fe, Va-Fe and Fe-Fe dependent nitrogenases. 

 All three nitrogenase complexes share the same essential arrangement. 

Nitrogenase is a complex of dinitrogenase and dinitrogenase reductase. Dinitrogenase 

reductase, the Fe protein, is the electron donor to dinitrogenase which is the catalytic core 

of the enzyme complex. In the nif structural operon, for the MoFe complex, the Fe 

protein is encoded by nifH where two NifH proteins form a dimer comprising the 

assembled Fe protein. The catalytic core, dinitrogenase, is comprised of two heterodimers 

encoded by nifD and nifK. The products of those two genes form a heterodimer with two 

heterodimers assembling to form the dinitrogenase tetramer (Schindelin et al., 1997). 

Two Fe proteins interact with the tetramer to form the nitrogenase complex such that 

those Fe proteins do not interact with each other. The activity of the Fe proteins is 

dependent on its Fe4S4 cluster while the activity of dinitrogenase is dependent on the P 

cluster which receives the electrons imparted by the Fe4S4 cluster. The site of substrate 

reduction in the dinitrogenase is referred to as the FeMo-co (Seefeldt et al., 2009).  

A fourth type of nitrogen fixing system, a superoxide dismutase-dependent 

MoFeS nitrogenase, was isolated from the thermophilic Streptomyces 

thermoautotrophicus and appears to have evolved independently of the other three 

systems (Ribbe et al., 1997).  Unfortunately only a small number of gene and amino acid 

sequences have been reported with three primary components. ST1 is thought to 

functionally correspond to dinitrogenase and is a molybdenum-containing heterotrimer. 
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ST2, a homodimeric superoxidase oxidoreductase contains manganese and is thought to 

have the same function as dinitrogenase reductase. There is a third necessary component, 

a carbon monoxide dehydrogenase labeled ST3 (Swain and Abhijita, 2013).  

The essential MoFe enzyme complex appears to have evolved within anaerobic 

archaea which was later laterally transferred to aerobic bacteria (Boyd et al., 2015). All 

three isozymes are very sensitive to oxygen such that oxygen binds irreversibly in the 

nitrogen binding site rendering that complex non-functional. Yet nitrogen fixation by 

obligate aerobes is ubiquitous among diazotrophs. Cyanobacteria, for example, in the 

genera Anabaena and Nostoc have differentiated heterocysts where nitrogen fixation is 

carried-out under oxygen-limited conditions. Cyanobacteria that do not form heterocysts 

control oxygen availability by limiting nitrogen fixation to periods of darkness. 

Diazotrophic facultative anaerobes in general have a regulatory mechanism which 

inhibits transcription of nif genes in the presence of oxygen. Among Proteobacteria NifA 

is the enhancer binding protein required to induce the conformational change in σ54 that 

allows it to transcribe the nif operon. NifA, in turn, is regulated in response to both fixed 

nitrogen and oxygen. When oxygen is present NifA is not transcribed (Martinez-Argudo 

et al., 2004). 

 Many characterized diazotrophs are engaged in symbiotic relationships with fungi 

and plants. The most well-known and characterized of these associations involve legumes 

and their root nodules in which Rhizobia species fix nitrogen, which benefits the plant, 

and receives carbon in exchange. A Burkholderia endosymbiont of the arbuscular 

mycorrhizal fungus Gigaspora margarita has been revealed to have the nif operon 

(Minerdi et al., 2001).  G. margarita has also been found to harbor endobacteria 
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exhibiting nitrogenase activity where those endobacteria were identified as Bacillus 

thuringiensis (Cruz and Ishii, 2011). 

 No evidence supporting the existence of a nitrogen-fixing eukaryote has been 

found to date. The high diversity amongst diazotrophs combined with the high degree of 

and variety in symbiotic relationships between diazotrophs and various eukaryotes 

supports the idea that those relationships represent the most evolutionarily advantageous 

strategy facilitating survival in the face of limited reactive nitrogen resources. The closest 

to something that could be called eukaryotic nitrogen fixation in the literature is the 

vertically-transmitted endosymbiont found in the fresh-water diatom Rhopalodia gibba 

which appears derived from the free-living cyanobacterium Cyanothece, and which exists 

in the diatom as a “spheroid body” (Prechtl et al., 2004).   

Research Interest and Hypothesis 

The research presented in this dissertation is based on the initial observation that 

U. maydis mutants lacking ammonium transporters by virtue of having ump1 and ump2 

deleted were able to grow at all in a minimal media having only ammonium as the source 

of nitrogen. Possible explanations for that ability include other unidentified transporters 

for assimilation of ammonium, contamination of such growth media by some other 

reactive nitrogen source, inclusion of an endosymbiont capable of fixing nitrogen or, 

more audaciously, a novel type of nitrogen fixation system that is able to facilitate the 

conversion of dinitrogen to a reactive nitrogen species able to be utilized by U. maydis. 

Evidence supporting either an endosymbiont or a novel type of nitrogen fixation 

could have wide-ranging application to agricultural technology such that reduction of the 

use of synthetic nitrogen might be possible. This is particularly important since 
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biotechnological attempts to utilize the prokaryotic nitrogen fixation systems have 

continued to fail. A nitrogen fixation system that evolved in a eukaryote would be much 

more likely to be compatible with crop plants. Having a wider variety of crop plants able 

to fix their own nitrogen would reduce the need for synthetic nitrogen applications which, 

in turn, would reduce the input of excess reactive nitrogen into waterways, possibly 

ameliorating coastal and estuarine dead zones caused by eutrophication. 
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CHAPTER II 

CHARACTERIZATION OF GROWTH 

Summary 

  Ustilago maydis is capable of growth under minimal and no-ammonium 

conditions. Its growth rate and terminal titer were found to be dependent on the 

concentration of ammonium provided in the media. Growth rates of the two strains varied 

with ammonium concentration, except that no difference was observed between no-

ammonium and 10 M ammonium. By absorbance (A600) FB1 wild-type appeared to 

have an advantage over the mutant under high glucose with 10 M ammonium but this 

was not supported by direct count. The umpumpdouble mutant grew to higher 

concentrations than the wild-type when provided high (100 mM) or medium (50 mM) 

glucose in media without ammonium. The lengths of cells varied between the two strains 

with the umpumpdouble mutant found to be longer, on average, under all 

conditions except low ammonium, low glucose where the average lengths of the double 

mutant and wild-type were the same. The umpumpdouble mutant had a more 

variable length than the wild-type under all conditions. Overall the umpumpdouble 

mutant had an advantage in both the number of cells produced and cell lengths were 

greater than those of the FB1 wild-type under lower glucose, no-ammonium conditions.  
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Introduction 

 Completion of the reproductive lifecycle, in Ustilago maydis requires the 

transition from a budding, yeast-like sporidial form to a filamentous dikaryon. The 

dimorphic switch governing that transition is induced by both the presence of pheromone 

from cells of the opposite mating type as well as nutrient deprivation. The transition of 

haploid cells to the filamentous form has been readily observed in media in the absence 

of pheromone, particularly when that medium is nutrient deficient (Bowman, 1946).   

 A key component of this dimorphic switch of haploid cells to the filamentous 

form has been found to be dependent on the ability of U. maydis to respond to available 

ammonium. Homologs of the yeast methylammonium permeases (MEPs) have been 

characterized in U. maydis. The ump1 gene (UMAG_04523) was found to encode a low-

affinity ammonium transporter while the ump2 gene (UMAG_05889) was determined to 

encode the high-affinity ammonium transporter (Smith et al., 2003). The Ump2 protein 

was specifically identified as the high-affinity ammonium transporter following 

measurements of the uptake of [14C]-methylammonium (methylamine). The uptake of 

methylamine in cells deleted for ump2 was dramatically reduced whereas mutants lacking 

both ammonium transporters demonstrated a methylamine accumulation that was 

effectively zero. Further, cells deleted for ump2 failed to filament on low ammonium 

medium, in contrast to the wild-type. Mutants deleted for both the ump1 and ump2 

(umpumptend to flocculate and sink in rich media and produce unusual, 

“tangled” filamentous colonies on low ammonium (Smith et al., 2003). Remarkably the 

double-mutant remained able to grow on low ammonium. 
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 The role of these ammonium transporters in the dimorphic transition was further 

elucidated by confirmation that the signaling protein Rho1 directly interacts with both 

Ump1 and Ump2 (Paul et al., 2014). Rho1, a small GTPase, has been shown to localize at 

the growing tip and septum of U. maydis cells during cytokinesis as well as modulating 

b-induced filament formation (Pham et al., 2009). 

That surprising observation, that the U. maydis umpump double-mutant 

continued to not only be viable but also were able to grow in starvation nitrogen media 

(Holliday Salt Solution (Holliday, 1974) supplemented with 100 M NHସ
ା in the form of 

ammonium sulfate), was initially described in 2003 (Smith et al., 2003). This prompted a 

series of experiments to investigate growth and morphology im various media, including 

low (100 M, 50 M, 25 M and 10 M NHସ
ା) and no-ammonium, conditions to 

characterize this phenomenon.  

Additionally, considering the metabolic cost of nitrogen fixation and further 

considering that the ump1,ump2 double deletion mutant was demonstrated to be 

unable to transport ammonium (Smith et al., 2003), growth of that mutant was examined 

under various glucose concentrations, 100mM, 50mM, 5mM and 0.5mM. This carbon 

source restriction was predicted to reduce cell density particularly in the ump1,ump2 

mutant where ammonium was available in the media as compared to the FB1 wild-type. 

If there was a mechanism like diazotrophy (nitrogen fixation) involved in the growth of 

that mutant then it would be reasonable to conclude that such a process would impose a 

metabolic cost that may be observable.    



 

  27  

Material and Methods 

Strains and growth conditions. U. maydis strain FB1 wild-type (Banuett and 

Herskowitz, 1989) and FB1 umpump(Smith et al., 2003)cells were grown in YPD 

(1% yeast, 2% peptone, 2% dextrose) at 27 oC, overnight, shaking at 200 RPM. All 

overnight cultures that were used as inocula for growth experiments were collected as 

pellets then washed twice with sterile water. Such inocula were then used at very low 

density, 10 l of the twice-washed overnight into 5 mL broth for a 1/500 dilution for 

approximately 16,000-24,000 cells/mL. Synthetic Low Ammonium Dextrose (SLAD) 

broth (0.17% Yeast Nitrogen Base Broth, 2% glucose except where indicated). 

Ammonium sulfate and dextrose was used at the concentrations indicated; (100, 50, 25, 

10) M ammonium sulfate and (100, 50, 5) mM glucose.  

Agrobacterium tumefaciens strain CRR-14, a diazotrophic obligate aerobe, was 

utilized as a positive biological control while Dickeya chrysanthemi (Erwinia 

chrysanthemi) strain CRR-15, a diazotrophic facultative anaerobe, was employed as a 

negative biological control as it has no capacity to protect its nitrogenase from oxygen 

and so is unable to fix nitrogen in an aerobic condition. CRR-14 and CRR-15 were 

obtained from Tim Johnston’s lab at Murray State University as I characterized those 

strains while a student there, utilizing 16S rRNA DNA sequence data; CRR-14 having 

the accession number HM016242 and CRR-15 with HM016083 (Cooper, 2013). CRR-

15, Dickeya chrysanthemi and CRR-14, Agrobacterium tumefaciens, were incubated 

under similar conditions as the Ustilago strains and employed as biological controls to 

ensure there is no nitrogen source contamination in the media.  
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Absorbance (A600) and cell measurements. All A600 measurements were 

obtained on a NanoDrop™ 2000 UV-Vis Spectrophotometer [Thermo Fisher Scientific, 

Waltham, MA] and direct cell counts and measurements performed with a Spenser 

Bright-Line hemacytometer [American Optical Corporation, Buffalo, NY]. Absorbance 

measurements used three biological replicates. Measurements of length were made by 

using images of cells, captured through the ocular of a light microscope, an Olympus 

model CHB [Olympus America, Center Valley, PA], at 400x total magnification with a 

13-megapixel digital camera, the Samsung Galaxy S4 [Samsung Electronics, Ridgefield 

Park, NJ], in a hemacytometer with each small grid line measuring 40 microns. The 

lengths of cells were recorded in pixels then converted to microns relative to the known 

grid line length using the freely-available program Paint.NET™ [dotPDN LLC, Kirkland, 

WA] after determination that JImage could not be used to successfully auto analyze the 

images. 100 measurements were taken of each strain in each condition and the resulting 

data were analyzed in R [The R Foundation for Statistical Computing] version 3.0.0 

(released 4/3/2013) using single-factor ANOVA and data were plotted using the built-in 

boxplot function.   

Results 

Distinct growth observations of FB1 wild-type and ump1,ump2. As previously 

observed, FB1 wild-type grew in the “budding” phenotype, no filamentation or 

development of aerial hyphae, on nutrient replete solid media or in broth. Low to no-

ammonium media induced filamentation in the wild-type on solid media but not in liquid 

media. Also as previously observed, the umpumpmutant did not produce normal 

filaments on solid media, nutrient replete or SLAD with minimal to no-ammonium. In 
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broth the haploid cells did not tend to develop filaments, though the 

umpumpmutant did tend to cluster and fall to the bottom of a resting broth as 

observed previously (Smith et al., 2003). Cells of both strains contained a series of 

vacuoles under nitrogen limitation. Figure 8 depicts the irregular morphology in both 

strains. The mutant umpumpdid appear to have more cells of irregular length and 

arrangement than FB1 wild-type, though this is not obvious from this figure. 

 

Figure 8. Cellular morphology of U. maydis strains FB1 and ump1,ump2 in SLAD 
 under various low-ammonium and glucose concentrations.  
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Growth characteristics as assayed by absorbance (A600). Under a gradient of 

ammonium the FB1 wild-type achieved, as depicted in Figure 9, approximately the same 

stationary-phase A600 under 100, 50 and 25 M ammonium. There was no significant 

difference in stationary-phase A600 between 0 and 10 M ammonium.  

Figure 9. FB1 wild-type growth curves in SLAD with 2% glucose under various 

ammonium concentrations. (n=3) 

At the upper ammonium concentration, wild-type FB1 produced a final average A600 of 

0.27, while at the no and lowest ammonium concentrations, cells achieved a final 

stationary phase average A600 of 0.079. This corresponded to approximately 5.4x106 and 

1.58x106 cells/mL, respectively. With an initial inoculum having an average A600 reading 

of 0.0074, corresponding to an estimated 1.48x105 cells/mL, this indicates about a 36-

fold and 10-fold increase in cell density. These were only conservative approximations; 

however, as spectroscopic accuracy below 0.05 is not particularly robust. 
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The umpumpmutant behaved, in Figure 10, similarly to the FB1 wild-type 

in that concentration gradient, no significant difference was observed amongst 100, 50 

and 25 M ammonium (p=0.35) nor between 0 and 10 M ammonium (p=0.16).  

  

 

Figure. 10 umpumpgrowth curves in SLAD with 2% glucose under various 

ammonium concentrations. (n=3) 

The final stationary phase average A600 reading for the upper ammonium treatments was 

0.24 for an estimated 4.8x106 cells/mL and the no and lowest dosage average A600 of 

0.076 for an estimated 1.52x106 cells/mL. 

Comparing the growth curves between strains under the various ammonium 

conditions (Figures 11-13) demonstrated that while FB1 wild-type appeared to achieve a 

higher stationary phase A600 than umpumpmutant under 25 M ammonium, but 

this difference was not statistically significant, whereas the stationary phase A600 of FB1 
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wild-type was significantly higher than that of the umpumpmutant when no 

ammonium was provided (p=0.02). The stationary phase A600 of the 

umpumpmutant trended higher under 10 M ammonium, though this difference 

was not statistically significant. 
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Figure 11. Comparative growth curves between strains in SLAD with either 100 or 50 

M ammonium. 



 

  34  

 

Figure 12. Comparative growth curves between strains in SLAD with either 25 or 10 M 

ammonium. 
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Figure 13. Comparative growth curves between strains in SLAD with no ammonium. 

Direct counts of cells. Based on the observation of irregular cell sizes, depicted in Figure 

6, direct cell counts were used as an alternative to A600 measurements. Figure 14 provides 

comparisons of cell counts for FB1 wild-type and the umpumpdouble mutant 

grown in medium either with no or low (100 M) ammonium, with glucose 

concentrations also being varied for each ammonium concentration; high (100 mM), 

medium (50 mM) and low (5 mM). A glucose concentration of 0.5 mM was attempted 
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under low and no-ammonium conditions. No growth was observed after 72 hours. These 

experiments revealed that, under no-ammonium conditions, there was a higher density of 

cells in the cultures of umpumpcells with concomitant high and medium glucose 

levels as compared to the FB1 wild-type under the same conditions (Figures 14 and 15). 

Overall, there was a higher density of cells under low ammonium as compared to no-

ammonium media, and this was not different between strains for each glucose condition. 

Interestingly, while there was no significant difference over the gradient of glucose under 

the no-ammonium condition for umpumpthere was not a statistically significant 

trend towards increased cell counts in low ammonium as glucose concentrations in the 

media increased. When considering the counts of cells by strain and ammonium across 

the glucose gradient there was no significant difference between low and no-ammonium 

conditions by strain under 5 mM glucose though there was a trend towards higher cell 

density under low ammonium. Under 50 mM or 100 mM glucose there was no significant 

difference between strains under the low ammonium condition. There was a significant 

difference between the strains in no-ammonium with umpumpachieving a higher 

overall density that wild-type at 50 mM (p=0.03) and 100 mM glucose (p=0).  
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Figure 14. Direct counts, by hemacytometer, of strains grown in SLAD broth with 100 

M or no-ammonium by glucose concentrations.  



 

  38  

 

Figure 15. Direct counts, by hemacytometer,  of strains grown in SLAD broth by glucose 

concentrations with 100 M or no-ammonium. 
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Cell lengths under various conditions. Table 1 summarizes the means and standard 

deviations of measurements obtained by strain as well as by ammonium and glucose 

concentrations. The double-mutant tended to be longer than the wild-type under each 

glucose condition in the presence or absence of ammonium (Figures 16-18) with the 

exception of low (5 mM) glucose as indicated in Figure 18. Glucose concentration did 

not have a statistically significant effect on cell length in either the low or no-ammonium 

condition within each strain (Figure 19).  

Table 1. Summary of Cell Lengths by Strain, Ammonium and Glucose 

Concentrations. 

Strain ammonium 
(M) 

glucose
(mM) 

average 
length (m) 

standard 
deviation (m) 

number of 
measures 

FB1 wild-type 100 100 11.45 2.89 200 

umpump 100 100 12.81 4.3 200 

FB1 wild-type 100 50 11.92 2.59 100 

umpump 100 50 12.91 3.75 100 

FB1 wild-type 100 5 12.18 3.03 100 

umpump 100 5 12.16 2.66 100 

FB1 wild-type 0 100 10.21 1.94 100 

umpump 0 100 13.65 4.44 100 

FB1 wild-type 0 50 10.63 2.14 100 

umpump 0 50 14.6 6.04 100 

FB1 wild-type 0 5 10.46 2.31 100 

umpump 0 5 13.98 5.74 100 
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Figure 16. Comparison of cell length distributions between strains in SLAD with 100 

mM glucose under low (100 M) and no-ammonium concentrations. The p values 

indicate the result of a single-factor ANOVA between strains based on length (n=200). 
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Figure 17. Comparison of cell length distributions between strains in SLAD with 50 mM 

glucose under low (100 M) and no-ammonium concentrations. The p values indicate the 

result of a single-factor ANOVA between strains based on length (n=100). 
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Figure 18. Comparison of cell length distributions between strains in SLAD with 5 mM 

glucose under low (100 M) and no-ammonium concentrations. The p values indicate the 

result of a single-factor ANOVA between strains based on length (n=100). 
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Discussion 

 In this Chapter we found that while U. maydis was capable of growth under no-

ammonium conditions, that growth never approached the same density as under less 

restrictive nitrogen conditions. Whether this was due to a lack of some 

 

Figure 19. Comparison of cell length distributions within each strain in SLAD broth 

under glucose concentrations by ammonium.  The p values indicate the result of a single-

factor ANOVA based on length by glucose concentrations (n=100 except for 100 M 

ammonium, 100 mM glucose in each strain where n=200). 
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micronutrient/trace element or specific cellular response to starvation remains 

undetermined. 

The difference in cell lengths made interpretation of A600 data potentially 

problematic with respect to cell numbers but was still useful for assaying rough biomass. 

That difference could contribute to the conflicting results between A600 and direct counts 

between strains under no-ammonium with high glucose conditions. Our results for A600 

indicated a higher overall biomass in FB1 wild-type than umpumpwhereasdirect 

counts did not show a difference. Those results taken together with the net increase in 

average cell length indicated that the umpumpmutant has a slight advantage 

relative to the FB1 wild-type under lower glucose conditions. 

The umpumpdouble deletion mutant has been found to be unable to 

transport ammonium in any significant amounts (Smith et al., 2003) yet that mutant was 

able to grow to densities approximately the same as the FB1 wild-type, as measured by 

absorbance, which was higher than that achieved under no-ammonium when provided 

2% glucose. Without ammonium, by direct counts, the growth density of 

umpumpwas unaffected by the changes in glucose concentration. However, while 

in low ammonium, glucose concentration played a role in the densities achieved by the 

mutant. Since ammonium was limiting there was either another sensor other than the 

Ump1 or Ump2 able to detect ammonium levels and relay that signal such that there was 

a corresponding response in the cell cycle or there is an alternative mechanism for the 

transport of ammonium that is not able to similarly transport methylamine. 

Thus, the hypothesis for some type of canonical nitrogen fixation was not 

supported, at least by our experimental approach. As the umpumpmutant was 
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unable to transport ammonium it was reasonable to anticipate that the mutant could be 

disadvantaged in, at least, stationary phase growth density as compared to the FB1 wild-

type. On the contrary, those umpumpcells averaged to be statistically significantly 

larger than the wild-type cells. That indicated that, at the very least, the possibility for an 

increased net biomass in the umpumpcells relative to the wild-type cells. 

More highly variable cell lengths in the mutant were to be expected considering 

that in the absence of Ump1p and Ump2p the colonies produce a disorganized 

filamentous response. It should be noted that with one exception (Lovely et al., 2011), 

neither wild-type nor any other U. maydis haploid mutant filament in liquid media, unless 

as a response to low pH (Ruiz-Herrera et al., 1995). Among all the cells measured for the 

data collected above there were a few rare examples in a field of what appeared to be 

hyphal elongation particularly in the no-ammonium, low glucose condition, but they did 

not appear to be representative of the observed population. There were many examples of 

overly-long and apparently “Y” or sea star-shaped arrangements reminiscent of a 

multiple-budding phenotype, particularly across the no-ammonium condition, similar to 

that observed for umpde1 and ubc1 mutant strains (Agarwal et al., 2013). 

Overall it was clear that haploid cells unable to transport ammonium were able to 

grow in these starvation-like conditions. Under the most nutrient-deprived conditions the 

FB1 wild-type and the umpumpmutant performed similarly. While it remained 

possible that the umpumpmutant was able to transport ammonium in a way 

undetected by the methylamine assay (Smith et al., 2003) another possibility is that there 

was some conversion of other ever-present but generally biologically-unavailable 

nitrogen such as dinitrogen in the atmosphere. A third alternative, that there was some 
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other source of nitrogen present in the form of contamination in the form of free, airborne 

ammonium has been suggested as a possible explanation for the growth in nitrogen-free 

media, of organisms not know to be diazotrophs (Hill and Postgate, 1969). We found that 

very unlikely through our use of biological controls, particularly CRR-15, which is fully 

capable of nitrogen fixation but only in an anaerobic environment (Cooper, 2013). 
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CHAPTER III 

CHARACTERIZATION OF ATMOSPHERIC NITROGEN 

ASSIMILATION 

Summary 

 Stable Isotope Ratio Mass Spectrometry (SIRMS) has been for decades a 

ubiquitous tool to investigate the relationship between nitrogen fixing organisms 

(diazotrophs) and the communities associated with them. The natural abundance of 15N 

relative to 14N has been used to determine an organism’s relative trophic level, 

particularly in heterotrophs, as well as how closely plants have been associated with free-

living or symbiotic diazotrophs. The use of labeled stable isotopes has allowed for more 

fine discriminations in metabolic utilization of substrates. In this work SIRMS was used 

to demonstrate that 15N2 was incorporated into cells, including discrete inclusion into 

protein biomass in both the Ustilago maydis FB1 wild-type and the 

umpumpmutant. The extent of such incorporation depended on both genotype of 

the strain and ammonium concentration in liquid media; similar results were obtained in 

one experiment on solid media, but there the differential effect of strain genotype on the 

magnitude of 15N2 incorporation disappeared. In contrast, the filamentation character of 

colonies differed between genotypes tested. 13C supplied as D-[U-13C]Glucose was also 

found to be incorporated into both whole cell biomass and proteins with a differential 
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appropriation between nutrient replete and no-ammonium conditions that did not vary by 

strain.  

These results demonstrated both that dinitrogen gas was being transformed by 

some means into a form usable by the cells and showed that differential incorporation of 

13C reflected differential appropriation of glucose dependent on the nutrient conditions of 

the media.   

Introduction 

 Stable Isotope Ratio Mass Spectrometry (SIRMS) represents a reliable method to 

assay the isotopic ratios between these commonly measured elements: Cଵଶ  and Cଵଷ , Nଵସ  

and Nଵହ  as well as between Oଵ଺  and Oଵ଼ . The ratio of Nଵସ  to Nଵହ  is commonly used in 

ecological surveys of soil or plant biomass to indicate the primary source of fixed 

nitrogen made available in that system since Nଵହ  tends to accumulate both higher up the 

food chain and when recycled by saphrophytes where dead organic matter is converted to 

a form usable by both those organisms and shared, as in the relationship between 

arbuscular mycorrhizal fungi (AMF) and plants.  

15N values are calculated by the formula ߜ Nଵହ ൌ ቀ
൫ୖೞೌ೘೛೗೐ିRೞ೟ೌ೙೏ೌೝ೏൯

ୖೞ೟ೌ೙೏ೌೝ೏
ቁ ∗ 1000 ‰ 

(per mille), where R ൌ ൬
஺௧% Nభఱ

஺௧% Nభర ൰	for which the standard is the ratio of 15N/14N of 

atmospheric dinitrogen. Here the standard is an atmospheric percentage (At%) of 

0.3663033, where At%15N is calculated by ൬
Nభఱ

Nభర ା Nభఱ ൰ ∗  This formula is used to .%ݐܣ	100

indicate the fraction of 15N accumulation in a sample relative to air. Terrestrial plants 

have ߜ Nଵହ  values ranging between 0 and 10‰, with those in tight associations with 
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diazotrophs, such as legumes, being closest to 0‰. Herbivores have a ߜ Nଵହ  value about 

3‰ greater than the plants upon which they feed while carnivores about 3‰ greater than 

that (Edwards and Vandenabeele, 2012).  

A common method employed to assay nitrogen fixation remains the acetylene 

reduction assay (ARA) (Capone, 1993). The ability of nitrogenase to reduce acetylene to 

ethylene has been leveraged since 1966 to quantify not only the presence of nitrogenase 

activity but also nitrogen fixation rates (Dilworth, 1966). Dinitrogen tracer assays, by 

SIRMS, have been found to be more accurate than ARA, though ARA is still commonly 

employed (Montoya et al., 1996).  

For these reasons stable isotope ratio analysis using Nଶ
ଵହ  tracer was utilized to 

investigate the observations of growth of Ustilago maydis in media lacking ammonium or 

other provided nitrogen sources. U. maydis strains FB1 wild-type and FB1 

umpumpwere tested to determine whether or not the observed growth was 

facilitated by nitrogen acquired from atmospheric dinitrogen.  

The diazotrophs CRR-15, Dickeya chrysanthemi (Erwinia chrysanthemi, Dickeya 

dadantii) and CRR-14, Agrobacterium tumefaciens were employed as controls. CRR-14 

has been determined to be able to fix nitrogen under aerobic conditions whereas CRR-15 

is only able to fix nitrogen under anaerobic conditions, though the precise maximal 

partial pressure of oxygen under which fixation can occur has not been determined 

(Cooper, 2013). The whole genome of Agrobacterium sp. H13-3 (Wibberg et al., 2011) 

has been found to very closely match the completed, though as of yet unpublished, whole 

genome sequence of CRR-14. 
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Cଵଷ  in the form of D-[U-13C]Glucose was also introduced to confirm that any 

observed change in nitrogen isotope ratios were from newly-grown biomass. Here we 

present evidence that both wild-type and the mutant U. maydis cells incorporate nitrogen 

available in the atmosphere.  

Material and Methods 

Strains and growth conditions. U. maydis strains FB1 wild-type (Banuett and 

Herskowitz, 1989) and FB1 umpump(Smith et al., 2003) were grown in YPS (1% 

yeast, 2% peptone, 2% sucrose) broth at 27 oC, overnight, shaking at 200 RPM. All 

inocula for stable isotope experiments were taken from the aforementioned overnight 

cultures in YPS; these cultures were pelleted by centrifugation and then washed twice in 

sterile dH2O that had been autoclaved twice. Synthetic Low Ammonium Dextrose 

(SLAD, 0.17% Yeast Nitrogen Base Broth, 2% glucose) was utilized in all minimal 

media applications either with or without 2% agar for solid media or broth, respectively. 

YPD (1% yeast, 2% peptone, 2% dextrose) broth, or plates with 1.5% agar was used for 

all nutrient replete media applications. Ammonium sulfate was used at the concentrations 

indicated. CRR-15, Dickeya chrysanthemi (alternatively Erwinia chrysanthemi or 

Dickeya dadantii (Samson et al., 2005)) (Cooper, 2013) and CRR-14, Agrobacterium 

tumefaciens, were each incubated under similar conditions as the Ustilago strains and 

employed as biological controls to ensure there was no nitrogen source contamination in 

the media. It was expected that CRR-14 would grow without ammonium provided in the 

medium, whereas CRR-15 would not fix nitrogen or be able to grow under aerobic 

conditions lacking ammonium (Cooper, 2013).  
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૛ۼ
૚૞  tracer application and sample preparation. Stable isotope ratio experiments 

were conducted in both liquid and on solid media. Liquid media, SLAD or YPD, was 

used for minimal or nutrient replete conditions, respectively, with the SLAD 

supplemented with ammonium sulfate at the indicated concentrations in minimal media. 

These were inoculated and incubated in 120 mL septum bottles, which were cleaned 

before each usage with alcoholic potassium hydroxide (2M KOH in 95% ethanol). We 

used 80 mL of media which was sterilized and deaerated by a standard liquid autoclave 

cycle, leaving 40 mL of head space. The septum bottles were inoculated with 10 l of 

twice-washed overnight cultures yielding approximately 16,000-24,000 cells/mL. 

Following culture inoculation the bottles were sealed with aluminum crimp caps and then 

injected with 0.15 l of dinitrogen gas tracer [ Nଶ
ଵହ , Cambridge Isotope Laboratories, 

Tewksbury, MA, cat. #NLM-363-PK], raising the ߜ Nଵହ  to approximately 13.2‰. 

Incubation was at 27 oC, shaking at 200 RPM for up to 14 days per trial. Agar plates were 

incubated in a modified GasPak™ EZ Large Incubation Chamber [BD Biosciences, 

Franklin Lakes, NJ, cat. #10-260672]. The chamber was modified by the addition of a gas 

injection port with an isolation valve with the chamber penetration coated on each side by 

three coats of a silicone sealant. The seal integrity was verified by simple fermentation by 

Saccharomyces cerevisiae in two liters of YPS. Plates were inoculated with 100 l of 

cells from overnight cultures, washed twice in sterile dH2O for approximately 160,000-

240,000 cells, then distributed across the surface of the agar with a plate spreader. After 

securing the lid of the chamber 2 mL of tracer was injected raising the ߜ Nଵହ  to 

approximately 10.3‰. ܥଵଷ  was added to solid media in the form of D-[U-13C]Glucose 

[Sigma-Aldrich, St. Louis, MO, cat. #389374] to a proportion 0.05% of the 2% glucose. 
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 Following incubation the liquid media cultures were filtered by vacuum, then 

dried in microcentrifuge tubes. For growth on solid medium, plates were scraped then 

dried in microcentrifuge tubes. Those samples utilized in protein analyses were processed 

as described in the next section prior to drying. All samples were then crushed and 

weighed into large tin (Sn) sample capsules [Costech Analytical Technologies, Valencia, 

CA, cat. #041073] which were then crushed and shipped for analysis.     

Protein extraction and precipitation. Protein extraction was based on a post-alkaline 

extraction protocol (Kushnirov, 2000). Cells were harvested from plates or recovered 

from liquid media by centrifugation and thoroughly suspended in sterile water. The 

mixture was pelleted in a microcentrifuge, resuspended in 100 l dH2O. 100 l of 0.2M 

NaOH was added and the mixture was allowed to incubate for 5 minutes at room 

temperature. After incubation the mixture was pelleted, and the supernatant discarded. 

The pellet was resuspended in 50 l SDS sample buffer (0.06M Tris-HCl at pH 6.8, 5% 

glycerol, 2% SDS and 2% -mercaptoethanol). This mixture was then boiled for 3 

minutes and subsequently centrifuged, and, the supernatant was saved for precipitation. 

Acetone precipitation, adapted from Thermo Scientific protocol TR0049.1, was 

accomplished by adding 200 l of -20oC acetone (i.e., four times the sample volume). 

The sample was vortexed then incubated at -20oC for one hour. Centrifugation for 10 

minutes at top speed in a microcentrifuge followed, and then the supernatant was 

decanted. The pellet was dried, and then processed as the whole-cell biomass for addition 

to tin sample capsules.   

Stable Isotope Ratio Analysis (SIRMS). Two facilities were used for SIRMS. 

The Stable Isotope Research Unit at the Department of Crop and Soil Science in the 
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College of Agricultural Sciences at Oregon State University (OSU) utilized a PDZ-

Europa 20/20 Isotope Ratio Mass Spectrometer using a Sercon GSL with Gilson gas 

autosampler. The point of contact was David Myrold; as of last contact their 

spectrometers were off-line. The other facility, the Mass Spectrometry Facility in the 

Department of Chemistry and Biochemistry at Southern Illinois University (SIU) in 

Carbondale, IL used continuous flow EA-IRMS on a Thermo Delta V Plus IRMS with a 

Costech ECS 4010. The analyses were conducted by Mihai Lefticariu. The standard 

employed for δ Nଵହ  is air. The standard for ߜ Cଵଷ 	is based on Pee Dee Belemnite (PDB) 

derived from fossils found in the Pee Dee Formation in South Carolina. This material has 

an unusually high Cଵଷ  content such that most samples have a negative ߜ Cଵଷ  value. 

Organic material tends to have a ߜ Cଵଷ  value of about −25‰. 

Results 

Pilot experimental comparison of tracer to no-tracer. The initial experiment compared 

samples that had tracer added to those that did not using whole-cell biomass in SLAD 

broth without ammonium added. This analysis was conducted at OSU. The FB1 wild-

type with tracer had not grown sufficiently to be included in this analysis. The 

experiments with U. maydis umpumpand CRR-14 both indicate significant 

incorporation of tracer, which, conservatively, is any value over 4‰ of that from samples 

analyzed without tracer (Montoya et al., 1996). 

Table 2. SIRMS Comparing tracer vs. no-tracer of strains in SLAD broth with no-

ammonium. 

Sample* Tracer Weight (mg) At% N૚૞ ࢾ  N૚૞  (‰) 

FB1 wild-type none 1.2 0.356936 -1.00734 
umpump none 1.8 0.366403 0.273637 
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CRR-14 none 1.5 0.366428 0.342326 
CRR-14 + 1.1 0.386411 55.10754 

umpump + 1.2 0.390874 67.33956 
*FB1 wild-type failed to provide sufficient cell density in SLAD when tracer was added 
to be included in this analysis.  
Incorporation of ۼ૛

૚૞  tracer under different media conditions across strains in 

liquid media.  As seen in Figure 20, the FB1 wild-type, umpumpand CRR-14 

were all found to incorporate Nଵହ  under minimal and no-ammonium conditions. CRR-15, 

as a facultative anaerobe lacking the ability to fix nitrogen in an aerobic environment, did 

not grow under the no-ammonium conditions. It did, however, demonstrate very high 

ߜ Nଵହ  values under low ammonium. Considering the high cell density found in those 

bottles it stands reasonable to speculate that sufficient ammonium was available to 

support aerobic growth; after depletion of available oxygen this strain was then able to fix 

nitrogen in the sealed septum bottles. Additionally the umpumpmutant 

incorporated far more Nଵହ  than did the FB1 wild-type. This analysis was also conducted 

at OSU; the remaining analyses were conducted at SIU. 
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Figure 20. Comparison of 15N values across liquid media conditions. 

Incorporation of N૚૞  and C૚૜  in liquid media. Each strain demonstrated, in Table 3, 

incorporation of both Nଵହ  and Cଵଷ , with the umpumpmutant incorporating 

significantly more Nଵହ  than FB1 wild-type particularly under the lower ammonium 

condition. The Cଵଷ  incorporation showed utilization of the C଺
ଵଷ -glucose anabolically 

such that significant incorporation into newly produced macromolecules was observed. 

At 100 NHସାthe wild-type FB1 has a higher ߜ Nଵହ (‰) than the ump1,ump2 

mutant; in contrast, at 10 NHସା the ump1,ump2 mutant showed nearly twice the 
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incorporation of Nଶ
ଵହ  as wild-type. Under nutrient replete media there was no significant 

indication of Nଶ
ଵହ 	incorporation in the FB1 wild-type. The ߜ Cଵଷ (‰) value for FB1 wild-

type corresponded closely to the average value for organic material as this sample 

excluded the ܥ଺
ଵଷ -glucose tracer. The inclusion of ܥ଺

ଵଷ -glucose under all minimal media 

conditions were clearly significant relative to the FB1 wild-type without ܥ଺
ଵଷ -glucose. 

Table 3. Incorporation of N૚૞  and C૚૜  in liquid media. 

Strain Media Tracer ( N૚૞ , C૚૜ ࢾ ( N૚૞ ࢾ (‰)  C૚૜  (‰) 

FB1 wild-type nutrient replete +, - 1.26 -22.02 
 +100 NHସା +, + 38.81 150.48 
 +10 NHସା +, + 46.44 185.80 

ump1,ump2 +100 NHସା +, + 26.78 197.94 
 +10 NHସା +, + 85.59 167.46 

 

Incorporation of N૚૞  and C૚૜  in cells grown on solid media. The growth plates 

incubated in the modified anaerobic chamber all included ܥ଺
ଵଷ -glucose. Both 

ߜ Nଵହ 	values and ߜ Cଵଷ  values were determined for strains grown on nutrient replete 

(YPD, 1.5% agar) conditions and no-ammonium (SLAD, 2% agar) (Table 4) Under these 

conditions there was a significant difference between nutrient replete and no-ammonium 

with ߜ Nଵହ  about 6 times higher accumulation into whole cell biomass than under nutrient 

replete media for both wild-type and mutant U. maydis strains. There was no significant 

difference either between strains or in ߜ Nଵହ  values between whole cell biomass or 

protein extractions, although the ump1,ump2 mutant did have a higher ߜ Nଵହ (‰) than 

wild-type for incorporation into protein when grown without ammonium. ߜ Cଵଷ (‰) 

values in protein samples did appear to be greater in nutrient replete conditions. This 

difference was not dependent on strain genotype and no corresponding difference was 
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seen comparing nutrient replete and no-ammonium media by ߜ Cଵଷ (‰) values for whole-

cell biomass.  

Table 4. Incorporation of N૚૞  and C૚૜  on solid media. 

Strain Sample Type Media ࢾ N૚૞ ࢾ (‰)  C૚૜  (‰) 

FB1 wild-type whole biomass nutrient replete 4.12 157.64 
 whole biomass no-ammonium 27.51 166.68 
 protein nutrient replete 4.94 71.48 
 protein no-ammonium 25.27 39.89 

ump1,ump2 whole biomass nutrient replete 4.57 161.75 
 whole biomass no-ammonium 24.81 166.05 
 protein nutrient replete 4.61 74.68 
 protein no-ammonium 37.8 47.79 

 

Discussion 

 Overall these results indicate that U. maydis incorporates N2 into cellular biomass 

including proteins. In the experiments employing liquid media the umpumpmutant 

incorporated significantly more Nଶ
ଵହ  than FB1 wild-type, although both incorporated 

more as a function of decreasing available ammonium. This difference all but 

disappeared when tested from cultures grown on solid media. In liquid media, under 

minimal conditions, neither strain was able to significantly filament, remaining in the 

“budding” yeast-like form. The only condition under which significant filamentation had 

been observed in liquid media was in response to low pH (Ruiz-Herrera and Leon, 1995). 

The primary morphological difference between cells grown in YPD broth versus SLAD 

or HSS broth is the appearance of large vacuoles under minimal media. On agar both 

strains do switch from budding to filamentous under minimal media conditions, but the 

filamentous character of the mutant is abnormal and reflects a likely dysregulation of the 

signaling that allows wild-type to filament in response to low ammonium (Smith et al., 

2003). Perhaps the large vacuoles are accumulating material for filamentation, leaving 



 

  58  

the cells restrained in that transitionary moment, unable to actually extend filaments but 

continuing to accumulate cell wall synthesizing materials. Since the 

umpumpmutant has already been observed having an abnormal filamentous 

phenotype relative to the wild-type more cellular resources may be devoted to attempted 

filamentation, meaning more cellular constituents are being accumulated. As observed in 

Figure 8, in Chapter 2, the Ustilago cells appear distended, more so in the 

umpumpmutant, though this observation on the size of the vacuoles and degree of 

distention has not been quantified.  

As with the growth experiments in Chapter 2, CRR-14 and CRR-15 were 

employed as biological controls. Interestingly the stable isotope work involving minimal 

ammonium (100 M) was sufficient for the CRR-15 to be able to scavenge the available 

oxygen and subsequently fix nitrogen as indicated by the incorporation of tracer into 

cellular biomass as depicted in Figure 14. CRR-14 also incorporated N2 tracer, though to 

a lesser degree than the Ustilago strains.  

The marked difference in total 15N accumulation between the FB1 wild-type and 

the umpumpmutant also indicated that the ammonium transporters play a role in 

this metabolic activity, at least in the cells in liquid media, apparently unable to switch to 

filamentous growth, as demonstrated in Figure 8. More stable isotope experiments are 

needed to determine if the lack of difference in ߜ Nଵହ  values between strains on solid 

media is consistent under no-ammonium conditions as well as minimal ammonium 

conditions. 

The ߜ Cଵଷ  values in Table 4 present an interesting possibility. While there was no 

apparent difference between samples taken from whole-cell biomass there did appear to 
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be a differential partitioning of 13C between media conditions in protein samples with 

roughly half the ߜ Cଵଷ  values in samples grown under no-ammonium conditions as 

compared to protein samples derived from nutrient replete media. This could reflect a 

difference in gross metabolic glucose utilization as apportioned into protein synthesis 

between budding and filamentous cells. Filamentous colonies devote more metabolic 

resources to cell wall and membrane constituents than do budding cells. Alternatively 

that difference could be explained by sequestration of carbon under low-ammonium 

conditions. A useful future experiment to compare these 13C values would be to 

compare agar-grown strains under no-ammonium conditions to the vacuole-filled “locked 

budding” phenotype exhibited by strains grown under nitrogen limitation in liquid media. 

These results presented a very intriguing possibility. The simplest explanation for 

these SIRMS results would be the presence of a prokaryotic diazotroph, and this 

hypothesis was examined in Chapter IV. The alternative explanation describes a novel 

nitrogen fixation system in a eukaryote. The potential for evidence supporting the 

existence of a novel, eukaryotic nitrogen fixation system would overturn decades of work 

predicated on the hypothesis that only prokaryotes represent the biogenic nitrogen input 

from atmospheric nitrogen into the nitrogen cycle. The existence of such a system would 

explain why multiple studies have failed to find nitrogenase genes in environmental 

samples and why acetylene reduction assays in some of the same studies revealed no 

reduction of acetylene (detailed in Chapter V). This could also account for deficits in 

nitrogen budgets attributed to uncharacterized diazotrophs. 

Even if this fixation system were to be demonstrated to occur in mitochondria, the 

implications for potential reductions in the agricultural use of anhydrous ammonia could 
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have wide-ranging impacts. Reduction of nitrate inputs to local waterways could reduce 

the expansion of zones of eutrophication in lakes and coastal waters. A wider range of 

crop plants able to be supported with a fungal endophyte or directly modified by 

transgenic methods could even contribute to enhanced agricultural success in nitrogen-

poor soils. This has been the goal in work attempting to adapt the MoFe nitrogenase to be 

expressed and utilized in plants, with no success to date. 
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CHAPTER IV 

POTENTIAL PROKARYOTIC SYMBIOSIS 

Summary 

  The possibility of a prokaryotic endosymbiont to explain apparent 

atmospheric nitrogen assimilation by Ustilago maydis was explored. U. maydis strains 

were grown with high concentrations of antibacterial compounds and passaged multiple 

times under these conditions. These treatments were used in an attempt to “cure” the cells 

of possible endosymbiotic prokaryotes. Successful curing was assessed by both PCR 

screening for prokaryotic target sequences and assaying growth in no-ammonium media. 

Passaged cells continued to be able to grow under no-ammonium conditions and 

demonstrated assimilation of isotope tracers including 15N2, into proteinacious mass. 

Potential PCR product, if any, of approximately correct sizes for prokaryotic targets were 

sequenced and found not to represent prokaryotic sequences, either 16S rDNA or the nifH 

characteristic of the vast majority of diazotrophs. These results suggest that if U. maydis 

cells do harbor endosymbionts, such prokaryotes are not required for assimilation of 

atmospheric nitrogen. 

Introduction 

 In Chapter II, it was demonstrated that Ustilago maydis is able to grow 

under both low and no-ammonium conditions, whether or not it has functional 

ammonium transporters. In Chapter III, I showed that inorganic dinitrogen has been 
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transformed into organic nitrogen and incorporated as biomass, including proteins. The 

only known mechanism for this is nitrogen fixation primarily by FeMo nitrogenase and 

the more rare superoxidase-dependent MoFeS nitrogenase observed in Streptomyces 

thermoautotrophicus (Ribbe et al., 1997). Therefore the simplest explanation for these 

observations is the presence of a prokaryotic diazotroph associated with U. maydis. In 

fact, Ruiz-Herrera et al. (Ruiz‐Herrera et al., 2015) recently reported the existence of just 

such an endosymbiont in U. maydis.  

Considering the possibility of biological contamination of the growth media or 

strain sources with a free-living diazotroph or a novel endosymbiont, a series of 

experiments were devised to either confirm or deny the presence of a prokaryotic 

diazotroph associated with U. maydis. Initially PCR screenings for characteristic 

prokaryotic genes were conducted for DNA sequences such as 16S rDNA and nifH which 

are present in all known diazotrophs and which would therefore be diagnostic of such 

organisms in our samples. In the event that PCR detected any such products of 

approximately the expected sizes, such products were purified and their sequences 

analyzed.  

In an effort to ensure no free-living or endosymbiotic diazotroph could survive in 

our cultures, Ustilago strains were subjected to a series of passages through very high 

concentrations of a variety of antibacterial compounds. The resulting cured strains were 

then evaluated for growth in no-ammonium medium and accumulation of 15N as 

measured by Stable Isotope Ratio Mass Spectrometry (SIRMS), and retested by PCR. 

Finally to estimate the lowest of detection of 16S rDNA in FB1 wild-type 

chromosomal DNA, a screening by PCR was conducted in separate reactions with 
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various concentrations of CRR-15 chromosomal DNA. Since the U. maydis genome is 

19.68 megabases (Mb) and the Dickeya chrysanthemi genome is 4.67 Mb, by raw 

nucleotide numbers it would require about 4.21 D. chrysanthemi cells to be equivalent to 

a single U. maydis cell; this ratio was utilized to develop a dilution range such that at 10-6 

dilution there would be one hypothetical D. chrysanthemi cell to about 247,000 U. 

maydis cells. In this way, we intended to evaluate a lowest detection threshold for the 

presence of endosymbiont DNA in our samples.      

Material and Methods 

Growth Conditions, SIRMS. Primary inocula were grown and partitioned as conducted 

for the experiments in Chapter III. Stable isotope samples were derived from solid media 

cultures grown in the modified anaerobic chamber also as indicated in Chapter III. The 

additional Ustilago maydis strains FB2 (Banuett and Herskowitz, 1989) and 1/2 

(Kronstad and Leong, 1989) used in this study were provided by José Ruiz-Herrera.  

Curing U. maydis. Serial passages of U. maydis strains through very high concentrations 

of antibacterial compounds were conducted in YPS (1% yeast, 2% peptone, 2% sucrose) 

broth at 27 oC. Incubation was for over 72 hours, shaking at 250 RPM. The Ustilago 

strains employed included FB1 wild-type, ump1,ump2, FB2 wild-type (provided by 

the José Ruiz-Herrera lab). The first two passages utilized ampicillin at concentrations of 

1000 g/mL and 2000 g/mL. The third passage was with trimethoprim at 1500 g/mL. 

The fourth passage used streptomycin at 1000 g/mL. The fifth passage was with 

tetracycline at 1500 g/mL, while the final passage used ampicillin at 500 g/mL, 

trimethoprim at 100 g/mL, streptomycin at 100 g/mL and tetracycline at 150 g/mL. 

DNA Extraction and Precipitation. Overnight cultures of 4 mL were grown in YPS and 
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verified as U. maydis without observable contaminants by microscopic examination. 

Cultures were pelleted by microcentrifugation at 14,000 rpm for 1 minute and the 

supernatant discarded. Cells were washed by resuspending in dH2O, pelleting and then 

the supernatant was discarded. Cells were resuspended in lysis buffer (0.5M NaCl, 0.01M 

EDTA at pH 8.0, 0.2M Tris-Cl at pH 7.5, 1% SDS) and 0.3 g of 0.5 mm glass beads was 

added. Next, 250 L PCI (25:24:1 v/v phenol:chloroform:isoamyl alcohol) was added. 

The mixture was vortexed for 5 min and centrifuged at 14,000 rpm for 3 minutes. The 

upper phase was collected, and added to 800 L isopropanol which was then centrifuged 

for 15 minutes and supernatant discarded. The DNA pellet was dried, after which it was 

resuspended in 10 to 100 L of either water or TE (pH 8.0), that volume dependent on 

how obvious the DNA pellet appeared in the microcentrifuge tube during precipitation. 

Assessment of DNA concentration and purity was obtained using a NanoDrop™ 2000 

UV-Vis Spectrophotometer [Thermo Fisher Scientific, Waltham, MA]. 

PCR Screenings. Genomic DNA was used as template in PCR. The primers used in this 

effort are found in Table 5. 16S rDNA PCR amplification was performed using bacterial 

primers 68F (Borneman et al., 1996a) and 1392R (Amann et al., 1995a) for identification 

of prokaryotic sequences (Brosius et al., 1981). These primers amplify a 1324 base pair 

(bp) fragment of bacterial 16S rDNA. The initial nifH PCR amplification was performed 

using the degenerate primers nifHF and nifHR  (Zehr and McReynolds, 1989). These 

primers have been shown to amplify a 360 bp fragment of nifH, specifically the DNA 

coding for the nitrogenase iron-binding domain of dinitrogenase reductase (Zehr and 

McReynolds, 1989). Based on communication between Michael Perlin and José Ruiz-

Herrera Azospirillium-specific nifH primers were used as well. The primers a38F and 
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a39R should produce an amplicon from within nifH of 205 base pairs (Shime–Hattori et 

al., 2011). As a control primers for the U. maydis, locus UMAG_00037, the primers i37F 

and i37R were used, which amplify an expected amplicon of 614 bp and this pair has no 

apparent affinity for prokaryotic sequences as assayed by both BLAST search (Altschul 

et al., 1990) including specific searches against Agrobacterium sp. and Dickeya 

chrysanthemi whole-genome sequences.  

Table 5. Primers to interrogate Ustilago for a diazotroph. 

Name Sequence (5’ to 3’) Target Source 
68F TWAWACATGCAAGTCGAKCG prokaryotic 16S (Borneman et al., 1996b) 
1392R ACGGGCGGTGTGTRC rRNA (Amann et al., 1995) 
nifHF TGYGAYCCNAARGCNGA nifH (Zehr and McReynolds, 

1989) 
nifHR ADNGCCATCATYYCNCC  (Zehr and McReynolds, 

1989) 
a38F GACCCGCCTGATCCTGCACG Azospirillium (Shime–Hattori et al., 

2011) 
a39R GTTCTCTTCCAGGAAGTTGATCGA nifH (Zehr and McReynolds, 

1989) 
p3F AGAGGTTTGATCCTGGCTCAG Bacillus 

pumilus 
(Ruiz‐Herrera et al., 
2015) 

p4R CTACGGRTACCTTGTTACGAC 16S rRNA (Ruiz‐Herrera et al., 
2015) 

p5F ACCCGCCTGATCCTGAACTCGAAGGCGC Bacillus 
pumilus 

(Ruiz‐Herrera et al., 
2015) 

p6R GGCCGCGTACATCGCCATCATCTCGCCGG nifH (Ruiz‐Herrera et al., 
2015) 

i37F ATGCCGACAAGGTTACCTGG U. maydis locus this study 
i37R TTGGTAGCGGGAGAAACACC UMAG_00037 this study 
IUPAC nucleotide code: D=A or G or T, K=G or T, N=any, R=A or G, W=A or T, Y=C or T  

   

The primers identified here as p3F and p4R as well as the primer set p5F and p6R were 

used in an attempt to replicate the results reported by José Ruiz-Herrera (Ruiz‐Herrera et 

al., 2015). The p3F/p4R primer pair amplified an expected fragment size of 1485 bp 

matching the Bacillus pumilus 16S ribosomal RNA gene while the p5F/p6R amplified an 

expected fragment size of  323 bp matching the Bacillus pumilus nifH gene, both as 

determined by BLAST (Altschul et al., 1990).  
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The amplification mixtures included 100 ng of chromosomal DNA, 1 μl of Apex® 

Taq DNA polymerase (1.25 unit/50 μl) [Genesee Scientific, San Diego, CA], 0.2 μM of 

each primer pair (Table 5), 200 μM of dNTP mix, 1X Ammonium PCR Buffer, 1X Taq 

PCR Buffer, and 1.5 mM MgCl with nuclease-free H2O [Thermo Fisher Scientific, 

Waltham, MA] for a final volume of 50 μl. Reactions were run in a PTC-200 Peltier 

Thermal Cycler [Bio-Rad, Hercules, CA] using a Hot+ protocol. The reaction conditions 

were as follows: initial denaturation step at 94 °C for 90 seconds followed by thirty 

seconds, annealing at 58 °C (unless otherwise noted) for 30 seconds, extension at 72°C 

for 1.5 min. Thirty-five cycles total with a final extension at 72 °C for five minutes. 

PCR products were separated by gel electrophoresis on a 0.8% agarose gel in 

TAE with ethidium bromide (EtBr). Hi-Lo™ DNA Marker [Minnesota Molecular, 

Minneapolis, MN] was used as the size standard. Images were captured using a Gel Logic 

112 with a UV Transilluminator (UVP) [Carestream, Rochester, NY]. The Carestream 

Molecular Imaging Software (v. 5.0.7.22) [Carestream] was used to collect and export gel 

images.  

DNA Sequencing. PCR products were extracted from agarose using the Zymoclean™ 

Gel DNA Recovery Kit [Zymo Research, Irvine, CA] and purified for direct sequencing 

or cloned into pCR®2.1 TOPO® [Thermo Fisher Scientific, Waltham, MA] with plasmids 

extracted by alkaline lysis (Maniatis et al., 1982). The resulting DNA was quantified 

using the NanoDrop® 2000 [Thermo Fisher Scientific] then used with the Applied 

Biosystems® BigDye® Terminator v3.1 Cycle Sequencing Kit [Thermo Fisher Scientific]. 

These reactions were assembled in 20 L volumes. Each reaction included 2 L of 

Reaction Mix, 4 L of Sequence Buffer (5x), 1 L of 20 M sequencing primer, 2 L of 
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template and 11 L dH2O. The primers used were either M13(-21)F (5’- 

TGTAAAACGACGGCCAGT-3’), for cloned fragments or 68F/1392R, nifHF/nifHR for 

PCR products. Despite the degeneracy inherent in those primers it has been found that 

direct sequencing of PCR amplicons using primers up to 512-fold degeneracy resulted in 

sequences that were over 99% identical to sequences from cloned fragments (Santos and 

Ochman, 2004).   

 Samples were run in the Bio-Rad PTC-200 Thermal Cycler [Bio-Rad, Hercules, 

CA] with a 30 second denaturation at 96oC followed by a 15 second annealing step at 

50oC then a 4 minute elongation step at 60oC. Those steps are repeated 25 additional 

times. Following that amplification the samples were purified and precipitated using 

ethanol as follows. 

 To each sample was added 2 L of 3M sodium acetate (NaOAc at pH 5.2) and 60 

L of ice cold 100% ethanol. Samples were mixed and quick-spun then incubated at  

-20oC for thirty minutes. Tubes were then centrifuged at maximum speed in a 

microcentrifuge for 10 minutes. Following aspiration, 200 L of ice cold 70% ethanol 

was added to wash the DNA which was then spun for five minutes, aspirated and dried.  

 Prepared samples were then analyzed at the Center for Genetics and Molecular 

Medicine (CGeMM) DNA Facility Core using an ABI automated sequencer that 

employed capillary gel electrophoresis.   

Cloning for Subsequent Sequencing. Cloning of PCR products was accomplished using 

TOPO pCR2.1 vector into commercially-competent Invitrogen Escherichia coli strain 

TOP10 [Thermo Fisher Scientific, F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 

ΔlacX74 nupG recA1 araD139 Δ(ara-leu)7697 galE15 galK16 rpsL(StrR) endA1 λ-]. 
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Ligation reactions were transformed into TOP10 cells, plated on 100 g/mL ampicillin 

LB plates with Xgal for routine blue-white screening. 

 Plasmid extraction was performed by alkaline lysis. Isolated (white) colonies 

were grown overnight in Circlegrow® broth. Cells pelleted and resuspended in Cell 

Resuspension Solution (50mM Tris-HCl, 10 mM EDTA, 100 g/mL Rnase A, pH at 

7.5), the Lysis Solution (1% SDS, 0.2M NaOH) was added, cells were gently mixed; 

after 5 minutes Neutralization Solution (1.32M KAc at pH 4.8) was added. Cells were 

then centrifuged at maximum speed for 15 minutes (typical protocol calls for 3-5 

minutes). The supernatant was decanted into isopropanol for precipitation as described 

under DNA Extraction and Purification, above. 

DNA Dilution. The ratio of FB1 wild-type to CRR-15 was calculated based on genome 

size such that the total DNA from a single FB1 wild-type cell was estimated as equivalent 

to about 4.21 CRR-15 cells. The concentration of purified FB1 wild-type chromosomal 

DNA used was 100 ng/l. The concentrations of CRR-15 chromosomal DNA used 

included the serial dilution range of 10-3 to 10-6, stepwise in 1:10 dilutions. At 10-6 the 

calculated concentration of CRR-15 DNA was 4.03 pg/l, which would be expected to be 

the equivalent DNA yield from an estimated 159.5 CRR-15 cells (Based on a genome 

size of 4.67 Mb with a GC content of 57% for an estimated DNA mass per cell of 

0.02527 pg) per microliter. At that same dilution there would be an estimated 247,000 

FB1 wild-type cells to a single CRR-15 cell. 

 The PCRs were performed in a T100™ Thermal Cycler [Bio-Rad, Hercules, CA] 

with an initial denaturation at 95oC for 1 minute followed by 30 seconds at 95oC, 

annealing for 30 seconds at 58oC, extension for 1.5 min at 72oC for 35 total cycles and a 
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5 minute final extension. The amplification mixtures included 1 μl of Taq DNA 

polymerase (1.25 unit/50 μl) (Apex), 0.2 μM of each primer pair (Table 4), 200 μM of 

dNTP mix, 1X Ammonium PCR Buffer, 1X Taq PCR Buffer, and 1.5 mM MgCl with 

nuclease-free H2O (Fisher) for a final volume of 50 μl. Two l of template at the 

indicated dilutions were added such that the concentration of U. maydis DNA was 

constant at 100 ng/l while the concentrations of CRR-15 DNA in each reaction 

decreased as described above. 

Results 

Growth persists of cured Ustilago under no-ammonium conditions. By absorbance 

measurements (A600) the cured Ustilago strains, Figure 21, were able to grow in 

 no-ammonium SLAD (additionally confirmed to be nitrogen-free by the lack of observed 

growth by CRR-15) at A600 values slightly greater than that of the uncured strains. 

Figure 21. Absorbance (A600) of cured versus uncured U. maydis strains in no-
ammonium SLAD broth. (n=2) 
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SIRMS 15N, 13C values. Protein samples extracted from biomass collected from no-

ammonium SLAD plates that were incubated in the modified anaerobic chamber, as 

described in Chapter III, were sent to SIU for analysis resulting in the values indicated in 

Table 6. 15N (‰) values indicated 15N2 was incorporated into cellular biomass in both 

wild-type and umpumpcells. 13C (‰) values further indicate that 13C6-glucose 

was also incorporated into proteinacious biomass, though those values were found to be 

curiously variable between the uncured and cured FB1 wild-type as well as the uncured 

and cured umpumpmutant.  The FB2 cured 15N (‰) value was lower than that of 

the FB2 uncured, but still of sufficient value, 7.41‰, to indicate 15N2 incorporation. The 

umpumpcured mutant also returned a 15N (‰) lower than that of the 

umpumpmutant that had not been passaged 

Table 6. SIRMS values from protein samples derived from chamber-grown no-
ammonium SLAD agar plates. 

Strain ࢾ N૚૞ ࢾ (‰)  C૚૜  (‰) 

FB1 wild-type 25.27 38.89 
FB1 cured 21.23 100.43 

FB2 wild-type 18.95 89.24 
FB2 cured 7.41 92.85 

umpump 37.8 47.79 
umpumpcured 13.21 120.33 

 

PCR Screenings. For interrogations with universal, degenerate primers where there was 

an amplicon of the appropriate size, those fragments were sequenced and the results were 

summarized in the following section with sequence data in the Appendices. 

 The initial PCR screening of CRR-14, CRR-15, along with U. maydis strains FB1 

and FB2 with the nifH primers nifHF and nifHR (Figure 17) revealed a fragment of about 

360 bp amplified from CRR-15. The CRR-14 fragment between 1000 and 1440 base 
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pairs approximated results from previous work (Cooper, 2013). No amplicon was 

observed from either FB1 or FB2.  

The use of the i37F/i37R primers on those same templates resulted in fragments 

of approximately 600 bp from FB1 and FB2 with no corresponding fragments from CRR-

14 or CRR-15. This reaction demonstrated that the genomic DNA from FB1 and FB2 

was of sufficient quality that any nifH that might have had been present could have been 

amplified. 

When primers recommended for the amplification of Azospirillium nifH 

a38F/a39R were used, Figure 22, under a slightly lower annealing temperature, 56oC, 

multiple fragments were observed using CRR-15 as a template. This included a fragment   
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Figure 22. Gel electrophoresis results following PCR using CRR-14, CRR-15, U. maydis 

FB1 and FB2 strains as templates with nifHF/nifHR and i37F/i37R primer combinations. 

 

of approximately 200 bp which matched the anticipated fragment size from 

Azospirillium. The nifHF and nifHR primers under those same conditions revealed 

fragments from CRR-15 and U. maydis strains FB1 and FB2 between 300 and 400 bp. 

The fragment from CRR-15 was directly sequence while the fragment from FB1 was 

cloned and then sequenced (Table 7). 
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 The universal prokaryotic 16S rDNA primers 68F and 1392R amplified a 

fragment from CRR-15 of approximately 1300 bp. No amplicon was observed from the 

same reaction attempted with U. maydis FB1 or FB2 (Figure 23).   

 

Figure 23. Gel electrophoresis results following PCR using CRR-15, U. maydis FB1 and 

FB2 strains as templates with a38F/a39R, nifHF/nifHR and 68F/1392R primer 

combinations. The annealing temperature was 56oC. 

 

 Additional PCR screenings using primers designed for the Bacillus pumilus 16S 

rRNA gene and nifH were performed (Figure 24). The primer set p5F/p6R was expected 

to amplify a fragment of 323 bp. No amplicon was observed from reactions with FB1 or 

FB2. Reactions using CRR-14 and CRR-15 templates did produce visible fragments 



 

  74  

where both had at least one fragment near that target size. The primer set p3F/p4R was 

expected to amplify a fragment of 1485 bp. Again, no amplicon was observed using 

either FB1 or FB2 genomic DNA as a template or curiously, even the genomic DNA of 

CRR-15, though CRR-14 did have a fragment near that expected size. Meanwhile 

amplification with the nifHF/nifHR primer set also failed to amplify DNA fragments 

from FB1 or FB2 as well as from CRR-14. Strain CRR-15 again demonstrated 

amplification of a band with the expected size, about 360 bp. 

 

Figure 24. Gel electrophoresis results following PCR using CRR-14, CRR-15, U. maydis 

FB1 and FB2 strains as templates with nifHF/nifHR, p3F/p4R and p5F/p6R. Annealing 

temperature was 60oC. 

Sequence Data. Amplified DNA fragments obtained from PCR were either sequenced 

directly from PCR product or following cloning. Cloning was employed after a number 

of sequencing reactions yielded no usable DNA sequence information. Table 7 

summarizes the useful sequence data that was obtained. 
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 Initial DNA sequences derived from 16S rDNA amplification reactions in U. 

maydis strains did reveal some 16S ribosomal RNA gene matches. The Staphylococcus 

aureus matches from DNA fragments amplified with 16S primers from the U. maydis 

strains 1/2 and FB2 as well as the sequence match to Pseudomonas synxantha were most 

Table 7. Summary* of BLAST search results on obtained sequence data. 

Source Fragment Primer(s) Size (bp) Match Identity 
CRR-15 16S-like 68F 1009 Erwinia chrysanthemi strain 

CRR-15 16S rRNA gene 
97% 

CRR-15 nifH-like nifHF 360 Dickeya dadantii 3937, nifH 72% 
FB1 WT 16S-like 68F 1025 Pseudomonas synxantha strain 

A1 16S rRNA gene 
95% 

FB1 WT nifH-like M13(-21)F 382 UMAG_05454 98% 
ump1,ump2 16S-like M13(-21)F 901 UMAG_02524 99% 
ump1,ump2 nifH-like M13(-21)F 556 UMAG_10959 99% 
ump1,ump2 nifH-like M13(-21)F 477 UMAG_05454 99% 

1/2 16S-like M13(-21)F 1484 Staphylococcus aureus subsp. 
aureus, 16S rRNA 

99% 
  M13R   

FB2 16S-like M13(-21)F 1506 Staphylococcus aureus strain 
XN108, 16S rRNA 

93% 
  M13R   

*Complete entries for these results are in the Sequence Data included in the Appendices. 
 
likely derived from contaminating DNA as those PCR results failed to be replicated in 

subsequent amplification attempts. The DNA sequences obtained from CRR-15 

amplicons matched their expected targets for both 16S rDNA and nifH. 

 The DNA sequence data from the FB1 wild-type and ump1,ump2 mutant 

matched, to high identities, various Ustilago maydis loci. None of those loci have been 

characterized beyond predicted amino acid sequences and putative protein domains, 

however, none of those loci matched either nifH or 16S rDNA. 

 DNA Dilution. The dilution of CRR-15 chromosomal DNA into U. maydis strain FB1 

wild-type chromosomal DNA, Figure 25, revealed that 16S rDNA would still be 

accessible by PCR. Relative band densities appeared to indicate potential competitive 

interference by U. maydis chromosomal DNA. 
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Figure 25. Dilution series using universal, prokaryotic 16S rDNA primers. There 

appeared to be some competitive interference from FB1 chromosomal DNA, but the 

expected-sized fragment was consistently detected. 

Discussion 

The elimination of a prokaryotic endosymbiont from a eukaryotic host has been 

successfully accomplished in the elimination of Wolbachia from the springtail species 

Folsomia candida (Pike and Kingcombe, 2009) through the use of antibiotic treatments. 

Similar treatments were used to eliminate endosymbionts from the rove beetle species 
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Paederus sabaeus (Kellner, 2001). The arbuscular mycorrhizal fungus (AMF) Gigaspora 

margarita had been cured of its endobacteria by use of serial single-spore in vitro inocula 

technique (Lumini et al., 2007). Two passages through single antibiotic treatments of U. 

maydis that were claimed to harbor endosymbionts failed to eliminate the ability to grow 

in no-ammonium media, but was reported to reduce growth in nitrogen-free media in the 

first and second passage (Ruiz‐Herrera et al., 2015). Therefore we attempted serial 

passages through very high doses of antimicrobial compounds as a way to further ensure 

loss of any putative endosymbiont prokaryote species. In contrast to those observations, 

we found not only continued growth in no-ammonium conditions but two of the passaged 

U. maydis strains, the FB1 umpumpmutant and FB2 (obtained from José Ruiz-

Herrera) achieved higher stationary-phase absorbance (A600) values (Figure 18). While 

that observation could be an artifact of selection by the passaging protocol, where a small 

volume (10 L) of vigorously growing cells was transferred serially over the course of a 

week, the ability to continue to grow without ammonium could suggest that any potential 

endosymbiont that had been present induced a growth deficit rather than contributing to 

growth in a no-ammonium condition. Additional work is being conducted to reassess this 

result with particular emphasis on a higher number of replicates. The 15N values derived 

from SIRMS, unfortunately, lacked replication for the cured and uncured FB1 and FB2 

wild-types and the umpumpmutant, making it difficult to draw a conclusion 

regarding differences that could be attributed to the “curing” process. Those values did 

demonstrate, though, that 15N2 was still being incorporated into proteinacious biomass 

regardless of treatment status, as with the passaged cell growth results this will be 

examined in more detail with replication.  
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Considering that no PCR results confirmed the presence of the nifH gene in any 

U. maydis strains with or without serial antimicrobial compound treatment, PCR could 

not be used to confirm that the passaged U. maydis cells had, indeed been cured of any 

potential endosymbiont. While multiple PCR results indicated that no 16S rDNA-sized 

fragments were found, the 16S rDNA sequence data recovered from U. maydis was not 

replicated and most likely represented contamination by normal bacterial flora, though it 

was clear in the DNA dilution experiment that it was still possible to detect that gene 

from Dickeya dadantii even at very low copy numbers particularly in relation to the 

number of copies of available U. maydis FB1 DNA in those reactions. (Of note, the 

Dickeya dadantii Ech703 complete genome shows seven copies of the 16S ribosomal 

RNA genes.)    

Our initial contact with the Ruiz-Herrera lab followed the presentation of some of 

the data reported in both Chapter II and III as well as some of the data reported in this 

chapter to the Ustilago satellite meeting at the 27th Fungal Genetics Conference at 

Asilomar, CA (Cooper and Perlin, 2013). José Ruiz-Herrera contacted Michael Perlin 

relaying their observations and were convinced that there was an endosymbiont involved. 

Working with their U. maydis 1/2 and FB2 strains we were unable to replicate their 

results, not finding evidence of either prokaryotic 16S rRNA genes or nifH, the most 

commonly assayed structural gene in the nifHDK operon. 

 Absent evidence of an endosymbiont from our experiments, along with the lack of 

the ubiquitous nitrogenase operon, leaves the possibility of a novel type of nitrogen 

fixation. Moreover neither the U. maydis genome sequence (Kämper et al., 2006), nor 

subsequent RNA-Seq experiments have identified gene expression indicative of a 
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canonical nitrogenase as would be found in an endosymbiont. For example, in our lab, 

RNA-Seq of wild-type and ump2 mutants in nutrient replete and low-ammonium media 

did not reveal transcripts for components of the classical nif operon, even when 

considering unmapped reads that matched prokaryotes (Wallen, M, unpublished data). 

Additionally, this capacity was also not related to the unique MoFeS nitrogenase 

system found in Streptomyces thermophiles (Ribbe et al., 1997). Considering the 

sensitivity of the Mo-Fe, Va-Fe and Fe-Fe nitrogenases to oxygen, some mechanism 

would need to be present to prevent inhibition of a hypothetical nitrogen fixation system 

in U. maydis if it was at all similar to those nitrogenases. Perhaps the numerous vacuoles 

that form in nitrogen starved cells (Figure 8) could satisfy such a requirement for low 

oxygen. The future for this line of research may fundamentally alter our understanding of 

biogeochemical nitrogen cycling, but also could lead to agricultural improvements which 

could dramatically reduce anthropogenic contributions to deleterious ecological impacts 

such as eutrophication. 
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CHAPTER V 

GENERAL CONCLUSION 

 

 Overall our results point to a previously unidentified metabolic capacity to 

convert atmospheric dinitrogen to biologically-available nitrogen that was incorporated 

into Ustilago maydis biomass. We demonstrated that this ability is related to genotype, 

particularly in the FB1 umpump mutant which consistently incorporated more 

atmospheric dinitrogen as compared to the FB1 wild-type in liquid media. 

While it would be easy to conclude that there is an endosymbiont utilizing 

canonical nitrogen fixation through the MoFe nitrogenase system these data do not 

support that conclusion. This leaves more than one alternative explanation for the 

observed incorporation of 15N2 tracer into cellular biomass. These alternatives include a 

novel prokaryotic nitrogen fixation system that does not rely on nitrogenase and is 

employed by an endosymbiont with a cryptic 16S rDNA sequence unable to be reliably 

amplified by PCR, a eukaryotic nitrogen fixation system that, also, bears no close 

homology to either the superoxidase-dependent nitrogen fixation system in Streptomyces 

thermophiles or the canonical nitrogenases, or that, perhaps, these observations could be 

explained by an alternative metabolic pathway in the Ustilago maydis, perhaps in the 

mitochondria. Any of those alternatives would prove very interesting. 
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 The extant S. thermophiles sequences suggested to be part of its superoxidase-

dependent nitrogenase, a combination of amino-acid and DNA sequences, was obtained 

from a graduate thesis written by a student of Ortwin Meyer, Carla Hofmann-Findeklee, 

presented at Bayreuth University, in Bayreuth, Germany. While her dissertation is 

available online, her thesis is not. Those sequences were communicated to me via email 

by Cory Tobin, a graduate student of Biology at Caltech on February 13, 2014. None of 

those sequences bore any significant homology to any U. maydis DNA sequences. They 

are, however, included in the Appendices.     

Additional support for a novel nitrogen pathway is found in the results involving 

the Agrobacterium strain CRR-14 which has been confirmed to incorporate 15N tracer. 

That particular strain was sequenced (the two chromosomes, linear and circular, and an 

accessory plasmid) with no sequences matching any nitrogenase-related gene (Johnston, 

T, Murray State University, unpublished data). Attempts at assaying acetylene reduction 

using CRR-14 also failed; the acetylene concentration fell with no detection of an 

ethylene peak, though other work had found positive acetylene reduction results in 

another A. tumefaciens strain (Kanvinde and Sastry, 1990). The CRR-14 whole genome 

sequencing project contradicted the results I had obtained in detecting nifH but without 

the ability to amplify any other portion of that nif operon. For that work the tentative 

conclusion was reached that MoFe nitrogenase was present, but either in a novel operon 

arrangement or persistently unable to be amplified and cloned from the CRR-14 

background due to the amplification of other, non-nitrogenase related Agrobacterium 

sequences despite repeated attempts at PCR using a variety of primers as well as 
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temperature and magnesium chloride concentration gradient optimizations. Inverse PCR 

was also attempted, and failed to recover relevant sequence data (Cooper, 2013).  

Interestingly subsequent work by Kanvinde revealed a 29,000 bp region between 

the his19 and trp20 genes, including “nif” genes (The “nif” designation is what they 

referred to these genes in their work as the “Agrobacterium nitrogenase” despite the lack 

of hybridization to nif DNA probes.) In that work they transferred that region of DNA by 

recombination to a nitrogen-fixation incompetent Rhizobium meliloti (nifH-, nifK-) which 

was then demonstrated to be able to fix nitrogen including enabling the growth of Alfalfa 

in sterilized vermiculite (Shoushtari et al., 2010). No open reading frames in that his-trp 

region, as obtained from the H13-3 genomic DNA sequences, bore any significant 

homology to any U. maydis sequences. 

Extant literature describing evidence for diazotroph activity in all types of 

conditions generally relies on PCR using primers for nifH fragments. Usually that work is 

based on DNA obtained directly from terrestrial soils or sediments underlying freshwater 

bodies and directly from seawater samples. Along with PCR attempts experiments 

utilizing 15N tracer, and stable isotope ratio analysis (SIRMS) in this work (Montoya et 

al., 1996) isotope dilution using 15NOଷ
ି or similarly labeled ammonium are also 

commonly employed, where the lower the 15N values the more the nitrogen in the 

sample was incorporated from N2 (Barraclough, 1995; Boddey et al., 1996; Busse, 2000; 

Chalk, 1985). The isotope dilution method is better-suited to field applications as it does 

not require sealed incubators into which 15N2 can be delivered.  In estimations of the 

marine nitrogen fixation budget dissolved 15N2 in seawater, rather than addition as a gas 

has been found to be more accurate (Mohr et al., 2010) and, as the samples are already 
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liquid, readily accomplished.  Future work seeking to identify nitrogen fixation rates in 

U. maydis in liquid media may benefit from that approach. The acetylene reduction assay 

(ARA) (Capone, 1993) is still commonly employed, sometimes with SIRMS. Those three 

methods, PCR screening, ARA and SIRMS represent the primary methodological 

approaches for all current and past work investigating diazotrophy. 

Much of that work is done directly with environmental samples, with no attempt 

to isolate potential diazotrophs in pure culture. Considering the unculturable nature of the 

estimated majority of microorganisms (Kamagata and Tamaki, 2005) that represents a 

current limitation in the discrete characterization of specific diazotrophs. That is 

particularly true considering the prevalence of the lateral gene transfer of nifH genes as 

compared to 16S rDNA sequences (Zehr et al., 2003b). Of studies that have obtained and 

tested isolates there are some interesting exceptions to the essential nifH, ARA and 

SIRMS results reported in most work indicating the possibility of an, as of yet, 

uncharacterized type of nitrogen fixation. Table 8 lists some of these studies. In these 

Table 8. Studies involving subcultured isolates cultivated using N-free media. 

Isolates  PCR ARA 15N2 Tracer Reference 
5 na 0 negative  (Hill and Postgate, 1969) 

251 701 311 na (Ozawa et al., 2003) 
11 1 1 na (Dalton et al., 2004) 
7 0 0 positive2 (Hoefsloot et al., 2005) 
3 3 0 na (Chou et al., 2008) 
17 7 5 na (Doty et al., 2009) 
178 11 11 na (Montanez et al., 2009) 
534 23 233 na (Jin et al., 2011) 
47 0 0 na (Bentzon-Tilia et al., 2014) 
231 34 343 na (Kumar et al., 2014) 
11 2 na na (Burbano et al., 2015) 
30 na 28 na (Santos et al., 2015) 
60 10 113 na (Sarathambal et al., 2015) 

na: not applicable, that test was either not utilized or not reported in that study. 
1 Some were found to have nifH and not reduce acetylene and vice-versa. 
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2 As assayed in the sugarcane from which those isolates were derived. 
3 Only the nifH + isolates were tested by ARA. 

 

works SIRMS was not widely used. While growth using N-free media is not an indication 

of nitrogen fixation, it is widely used as an initial screening of potential diazotrophs. 

The suggestion that contamination of media by ammonia secretion, even into gas-

tight containers (Hill and Postgate, 1969), is the reason bacterial isolates are able to grow 

in N-free media is difficult to countenance. Possible contamination by other sources of 

nitrogen seems much more reasonable, but perhaps not for every study providing 

evidence of growth in N-free media without detection of nifH by PCR or ethylene in 

ARA. There is also a potential confounding effect on the detection and elucidation of 

nifH by PCR and RT-PCR as, under many conditions, it is possible to amplify nifH 

fragments from negative controls and reagent blanks (Zehr et al., 2003a), leading to the 

very real possibility of false positive results. This could have had been a factor in those 

results reported in Table 8. Compounding that potential source of error is the discovery of 

contamination of 15N2, as tested with gas from both Sigma-Aldrich and Cambridge 

Isotopes (Dabundo et al., 2014). Those results do not impact the interpretation of any data 

presented here as the maximal value observed for 15N was 5‰ in samples where 15N2 

was added. In that series of experiments 2 mL of 15N2 was added to a 20 mL serum vial 

with 10 mL of 10 m/L sodium nitrate which is at least 2 order of magnitude higher 

tracer addition than any experimental additions of 15N2 tracer in our work.   

An alternative description of organisms able to grow without significant nitrogen 

was briefly in the literature until about 1980 (Fedorov and Kalininskaya, 1959; 

Kvasnikov et al., 1971; Line and Loutit, 1973; Mal'tseva and Ivanitskaia, 1980; Sarić, 
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1978), following its initial use by Martinus Beijerinck (Beijerinck, 1901) to apparently 

describe nitrogen-fixing organisms, or at least organisms that appear to be able to grow 

under very low ammonium. (There is an exception from 2002, though it appears that 

those authors meant to use the term “oligotrophic” rather than “oligonitrophilic” 

(Hamelin et al., 2002).) 

Our work did not support the conclusions reached in Ruiz-Herrera (Ruiz‐Herrera 

et al., 2015). We did not find evidence supporting the presence of an endosymbiont 

related to Bacillus pumilus having a canonical nif MoFe nitrogenase or, indeed, for any 

endosymbiont. Even testing their U. maydis strains FB2 and 1/2 gave disparate findings 

between our two labs.   

In U. maydis multiple attempts were made during this work to create mutants 

deficient in selected putative genes to see if a distruption of those genes would result in 

an effect on the growth of U. maydis in low to no-ammonium conditions. Finding a gene 

involved in this atmospheric nitrogen assimilation pathway would be convincing 

evidence supporting this atmospheric dinitrogen assimilation (ANNA) in U. maydis. 

Potential targets were selected primarily based on the potential of those putative genes’ 

involvement in nitrogen metabolism based on predicted amino acid sequences. 

Considering how necessary the dinitrogenase reductase is to the nitrogenase complex, 

predicted proteins having iron-sulfur (Fe2S4)-containing domains were of particular 

interest. Methodological considerations included examining the flanks of putative genes 

for adequate non-coding sequence, about 1,000 bp, as well as restriction enzyme sites 

within the gene and those flanks were also involved. While a number of transformants of 

U. maydis were obtained, none had lost the targeted gene.  
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 Any conclusion that involves a nitrogen-fixation system that is directly 

compatible with eukaryotic metabolism has the very exciting potential to be incorporated 

into agricultural cultivars such that a reduction in synthetic nitrogen fertilization would be 

possible. While this goal has been approached utilizing canonical nitrogenases it has 

remained elusive. This could, eventually, at least, contribute to a reduction in 

eutrophication as well as being incorporated into emerging sustainable farming practices. 

In looking for a possible symbiotic interaction a pilot growth experiment was also 

conducted comparing Zea mays (golden bantam) fertilized in a sand substrate using 

Hoagland’s Solution either with or without nitrogen, that was either uninfected or 

infected with two different titers of U. maydis strain SG200 (Bolker et al., 1995). Those 

results are not reported here formally as the method followed to measure the dry mass of 

the plants after two weeks of growth appeared too imprecise to offer clear resolution. 

Summary of this experiment appears in the Appendices. This particular experiment could 

merit a repetition as, even with the loss of accuracy found in obtaining the masses of 

dried plants in envelopes, there did appear to be more biomass in the infected, nitrogen-

free plants than in the uninfected, nitrogen-free plants. That experimental approach using 

15N2 and using SIRMS on plant tissues could provide a much more definite answer. 
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APPENDICES 
 

Primers 

These primers were designed for use in qPCR experiments but were not used. 

Table 9. Unused Primers for qPCR 

using primer3plus set for qpcr (verified no similar targets by BLAST) 
Pair/Size Name Size Tm GC% sequence (5’ to 3’) 
um01714 um01714F 20 60.3 50 GTATGATCCGATTGCCAAGG 
amp: 113 bp um01714R 20 59.7 50 TGCGGAAGATGTGGTATGAG 
um02414 um02414F 20 60 50 GCGAAAGAATTCAGCAGGAC 
amp: 74 bp um02414R 20 59.6 50 TACGTCCCACGCTCATATTG 
um02908 um02908F 20 59.5 50 CGTCTTGCTGTTCAACTTGG 
amp: 73 bp um02908R 20 60.4 50 AAGGATCAACTGAGCGATGC 
um03264 um03264F 20 59.9 50 TGCTTGACCCTACCCAATTC 
amp: 91 bp um03264R 20 60 50 TCTTGCGAGTCAAACGTGTC 
um03351 um03351F 20 59.9 50 TTGTCAACTCGGACAAGTGC 
amp: 125 bp um03351R 20 59.9 50 CGAGATAAAGGCGATCTTGC 
um03557 um03557F 20 60.1 50 CATCATCATCACCGAGCAAC 
amp: 125 bp um03557R 20 60.1 50 AGGACGAGCATATGGATTCG 
um04962 um04962F 20 60.1 50 ACCGTCAAAGGACGAATCAG 
amp: 123 bp um04962R 20 59.8 50 TTCTCTTCGCTTGCCTCTTC 
um05632 um05632F 20 60 50 TGTCTTTGGTGCTGCTGTTC 
amp: 88 bp um05632R 20 60.5 50 GAGGAACGATCCAACATTGC 
um05947 um05947F 20 61.3 50 TCCAAGATTCAGCCGAGATG 
amp: 145 bp um05947R 20 60.1 50 AGAATGCCAACCAGAGGATG 
um10086 um10086F 20 60.1 50 TACCCGAATGCAAGCTATCC 
amp: 115 bp um10086R 20 59.9 50 TCACGTCGATACCTTTGCTG 
um11448 um11448F 20 58.9 50 ATTGTCGAGACGCAGAACAC 
amp: 121 bp um11448R 20 59.3 50 CGTAGATGTTGGCTGCAATC 
um11098 um11098F 20 61.2 50 TTGTCCTTGCCGAATGCTAC 
amp: 83 bp um11098R 20 59.1 50 CTGGGTCATGATCTTGTTGC 
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Sequence Data 

CRR-15 16S 
Size (bp) Sequencing Primer    
1009 68F     

Significant Match Score Expected Identities Gaps 
HM016083.1 1467 0.0 991/1020 23/1020 
Erwinia chrysanthemi strain CRR-15 16S ribosomal RNA gene, partial sequence 
Sequence (FASTA)     
>CRR-15 16S 
GGCGCTGAGTGCATTCTGATCTACGATTACTAGCGATTCCGACTTCATGGAGT
CGAGTTGCAGACTCCAATTGGACCTGACGTACTTTATGAGGTCCGCTTGCTCT
CGCGAGGTCGCTTCTCTTTGTATACGCCATTGTAGCACGTGTGTAGCCCTACT
CGTAAGGGCCATGATGACTTGACGTCATCCCCACCTTCCTCCAGTTTATCACT
GGCAGTCTCCTTTGAGTTCCCGACCGAATCGCTGGCAACAAAGGATAAGGGT
TGCGCTCGTTGCGGGACTTAACCCAACATTTCACAACACGAGCTGACGACAG
CCATGCAGCACCTGTCTCAGAGTTCCCGAAGGCACCAAGGCATCTCTGCCAA
GTTCTCTGGATGTCAAGAGTAGGTAAGGTTCTTCGCGTTGCATCGAATTAAAC
CACATGCTCCACCGCTTGTGCGGGCCCCCGTCAATTCATTTGAGTTTTAACCT
TGCGGCCGTACTCCCCAGGCGGTCGATTTAACGCGTTAGCTCCGGAAGCCAC
GCCTCAAGGGCACAACCTCCAAATCGACATCGTTTACAGCGTGGACTACCAG
GGTATCTAATCCTGTTTGCTCCCCACGCTTTCGCACCTGAGCGTCAGTCTTCGT
CCAGGGGGCCGCCTTCGCCACCGGTATTCCTCCAGATCTCTACGCATTTCACC
GCTACACCTGGAATTCTACCCCCCTCTACGAGACTCTAGCTTGCCAGTTTTGA
ATGCAGTTCCCAGGTTAAGCCCGGGGATTTCACATCCAACTTAACAAACCGC
CTGCGTGCGCTTTACGCCCAGTCATTCCGATTAACGCTTGCACCCTCCGTATT
ACCGCGGCTGCTGGCACGGAGTTAGCCCGGTGCTTCTTCTGCGAGTAACGTC
ATCAACAAGGTTATACTACTGCTTCTCTCGCTGAAGTGCTTACACCGAGCTTC
CTCACACACGCGCATGGCTGCATCAGCTGCCCCATTGTGCAATATTCCCCACT
GCCTGCCT 
 

CRR-15 nifH 
Size 
(bp) 

Sequencing 
Primer 

    

360 nifHF     

Significant Match Score Expected Identities Gaps 
CP002038.1 82.4 5e-12 123/172 2/172 
Dickeya dadantii 3937, complete genome 
Sequence (FASTA)     
>CRR-15 16S 
GCGAAATCTCGGATCGCACACACATTATGGAATGATCGATCACGTCGGTTCA
GTTGAAGACCGCGAAATGGGAGACGGTTTGCCTGACGGCTATGGCAACGGGC
GCTGTGCCGAATTCAATGGCCCGGAGCCGGGTGTGGGCTGTGACCTACGCTC
AATGACCACCGCCGTCCACTTCCTGTAAGAAGTTTTTGCCGGGAGGAAGATC
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TTGATATTTGCGCTGATCACCGCTTGCCGTGCTATCGCCAATACACTATCGGC
GTTATGATTACCAATGGAAGTGCGAAGAGATTAACCTTGGGCGCTCCGCGGA
GATGATGATGGTAGTCCGGTGCGGCTGTGGCGGGAAGATAGAGCTAA 
 

FB1 wild-type 16S-sized fragment 
Size 
(bp) 

Sequencing 
Primer 

    

1025 68F     

Significant Match Score Expected Identities Gaps 
GQ900609.1 1555 0.1 970/1022 26/172 
Pseudomonas synxantha strain A1 16S ribosomal RNA gene, partial sequence 
Sequence (FASTA)     
>CRR-15 16S 
GGGGCGGTCGCGATTCTGATTCGCGATTACTAGCGATTCCGACTTCACGCAGT
CGAGTTGCAGACTGCGATAGGAAACAATCGGTTTTATGGGATTAGCTCCACC
TCGCGGCTTGGAAACCCTCTGTACCGACCATTGTAGCACGTGTGTAGCCCAG
GCCGTAAGGGCCATGATGACTTGACGTCATCCCCACCTTCCTCCGGTTTGTCA
CCGGCAGTCTCCTTAGAGTGCCCACCATAACGTGCTGGTAACTAAGGACAAG
GGTTGCGCTCGTTACGGGACTTAACCCAACATCTCACGACACGAGCTGACGA
CAGCCATGCAGCACCTGTCTCAATGTTCCCGAAGGCACCAATCTATCTCTAGA
AAGTTCATTGGATGTCAAGGCCTGGTAAGGTTCTTCGCGTTGCTTCGAATTAA
ACCACATGCTCTTCCGCTTGTGCGGGCCCCCGTCAATTCATTTGAGTTTTAAC
CTTGCGGCCGTACTCCCCAGGCGGTCAACTTAATGCGTTAGCTGCGCCACTAA
AAGCTCAAGGCTTCCAACGGCTAGTTGACATCGTTTACGGCGTGGACTACCA
GGGTATCTAATCCTGTTTGCTCCCCACGCTTTCGCACCTCAGTGTCAGTATTA
GTCCAGGTGGTCGCCTTCGCCACTGGTGTTCCTTCCTATATCTACGCATTTCAC
CGCTACACAGGAAATTCCACCACCCTCTACCATACTCTAGTCAGTCAGTTTTG
AATGCAGTTCCCAGGTTGAGCCCGGGGATTTCACATCCAACTTAAACAAACC
ACCTACGCGCGCTTTACGCCCAGTAATTCCGGATTAACGGCTTGCACCCCTCT
GTATTACCGGCGGCTGCTGGCACAGAAGTTTAGCCGGTGCTTATTTCTGTCGG
TAACGTCAAAATTGCACAAATATAGACGTTGACCCCCTTCCTTCCCCACATAA
GGTCTTACAATTCGAAGACTTCTACACGCGGCATGCTGATTCAGCTTTCGCCC
AATGTGGTCCAAATATTTCCCCA 
 

umpump16S 
Size 
(bp) 

Sequencing 
Primer 

    

901 M13(-21)F     

Significant Match Score Expected Identities Gaps 
XM_011390636.1 1510 0.0 860/869 7/1020 
Ustilago maydis 521 hypothetical protein partial mRNA, locus UMAG_02524 
Sequence (FASTA)     
>DUMP1216SFRAGMENT 
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GTGTGCCTCGACTTGCGCGATCTGCCATGGCGGCTCTTGCATCTGGAGTTGCA
TCGATCGCCCCCAAGAGGGCAGTGAGGACGTAGATGGTCATCTCATCGTACG
TTTCTGCCGAGACGGCAGCCAGCCAACGGAGGATGGCCAAAATGTTGGAGGT
TGTTAGAAGAGACGAGATGGACAGCAAGTAAAGCAGGTGACCAAGTTCGCG
TCGTTCTTCGCGCAGCCATCCAAGACGGTCAAGTTGGATCTCATCGCTGAGTC
TGCCACCGCTGGCAGTGGATGTGGATGATGGCTGTTTTGCGGTTTGGCTACTA
CCAAGACCGAAGAAGTTGGACGTTTGTGTCTGGATGCCTTGATTTGCGATGTT
GGAGCCAGGCGATTCGAGAGATGCCTTGACATGTGCAGTGGACTGTTTGACG
TTGTCAATTTCAGCGAGGATCCTTTCGGCAAGCGTGAGCTTGCGTGTGGATGT
GGAAGTGGAGCCGACCGAAGCCTCGATGCTGACGAGCGATTCGACGAGTTGT
TCCATCTTGAGACCCATGCGTTGGGCTTCTAGGTCTTCGTCAAAAGGCATGGT
GAGTGCATTACGGAGTAGCTCCTTGAGGCACGCAAGCAATGCAAGTCGTTCG
CGGTGATAGAGGATGCAAGCGACCTCGACGGCGGGACGGCCCCATTTTGCAC
GACCAGCAAGACCTTGCTGGAGCAAAGAAGCAGCAAAGTGCTCCGAGACGA
CCAATTCGCGAGCCAGCAAGAGCGACTGCTGCGCAAAGTCAGGGTTGAGGCT
TTGCGTGTTGCCGCTGATTGTGATCTTGCCGGACTCGATCTCTTTGGCGCCTC
GACATCGGAATGGGTGGGACGGAACCCTTGCCCGGAGGGTTCTCGGCCAAAA
GTTCCAAGAAAG 
 

umpumpnifH-1 fragment 
Size 
(bp) 

Sequencing 
Primer 

    

556 M13(-21)F     

Significant Match Score Expected Identities Gaps 
XM_011388406.1 205 1e-48 113/113 0/113 
 161 1e-35 92/94 0/94 
Ustilago maydis 521 hypothetical protein partial mRNA, locus UMAG_10959 
Sequence (FASTA)     
>DUMP12NIFH1FRAGMENT 
TACTCGTATAGGGCGATTGGGACCTCTAGATGCATGCTCGAGCGGCCGCCAG
TGTGATGGATATCTGCAGAACCGCCCTTTGCGACCCGAAGGCCGATCGTCGT
GCTCAGAGAAGTATTCGATATGCAGCTGGGGTGAGATACTCTGCATGACGAT
GGAGCGCAGTAGTGTGTCCGCGTGCTGTAAGTGGTGTGTTTGCGGTCCAGGA
CGTCTTGGGCGAAGGGAACAACAGATTAGCGTGTTCTGCAAGCGACGACGCC
AGAAGTGCACAGAGCCTGAGCTGGGATCAAGGACATGATCGGCATTCCACCT
TAAGTGATCGTACAGGATTGGCAGAGTATTGAGCAGGTGACGGTTGAGGGCG
AAAGGCTCCATGACTTGGCTTCTCGACCAACAAGGGGGCGAGTGATCTCAAC
AAGGGTGGTGGGACGAAGGGTCGCCGTAGGTGTCTCCTCGCAATGGACAGGA
CAATGTGTGAGTCTAGGCGGGATGATGGCATTAAGGGCGAATTCCAGCACAC
TGGCGGCCGTTACTAGTGGATCCGAGCTCGGTACCA 
 

umpumpnifH-2 fragment 
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Size 
(bp) 

Sequencing 
Primer 

    

477 M13(-21)F     

Significant Match Score Expected Identities Gaps 
XM_011393498.1 619 1e-173 348/351 0/351 
Ustilago maydis 521 putative Splicing factor 3b,  partial mRNA, locus UMAG_ 05454 
Sequence (FASTA)     
>DUMP12NIFH2FRAGMENT 
GAATCCTTTTGGGGGAACAATGGGGCCCTCCACATGCATGTGCGAGCGGTCG
CCAGTGTGATGGATATAAGAGAACACCCCTGTCCCCTGGGGCCTACTGGGCA
AAAGCGGCTGCTCCAAAACAAACGAGGCATCGAAAAGCCTGCTTACCAACTA
CCCTCGTACATCGCCGAAACCCGCATAGCCACCATCAAGGACGCGCTCAACG
AAAAGGAAGCCGACTACTCACTCAAACAAAAAACGCGCGATCGCGTGCAGC
CCAAGATGGGCAAGATCGAAATCGACTACCAGAAGCTCTACGATGCGTTTTT
CAAGTTTCAGAGCAAACCATCGCTCAGCATGTACGGCGACGTTTACTACGAA
GGCAAGGATTTCGAGACAAAGTACAAGGATAAGCGACCGGGCCAGTTGAGC
TCCGAGCTGATCGAGGCGCTCTCCATCCTACCACTCGCACCTCCGCCTTGGGG
TCGCAAAGGG 
 
 

U. maydis strain ½ 16S-like fragment 
Size (bp) Sequencing Primers    
1484 M13(-21)F M13R    

Significant Match Score Expected Identities Gaps 
BX571856.1 2358 0.0 1313/1317 0/1317 
Staphylococcus aureus subsp. aureus strain MRSA252, complete genome, 16S rRNA, 
bases 2337212-2335896 
Sequence (FASTA)     
>ONEHALF16S 
AACCATATAAGGCGAGTGGGCCAACAGATGCAAGCGCGAGCTTGCGCCGTGT
GAGGATTCTTAAACGTGAATCGAAATGGAGTGAGGAATCAGAAAAGCTTGCT
TCTCTGATGTTAGCGGCGGACGGGTGAGTAACACGTGGATAACCTACCTATA
AGACTGGGATAACTTCGGGAAACCGGAGCTAATACCGGATAATATTTTGAAC
CGCATGGTTCAAAAGTGAAAGACGGTCTTGCTGTCACTTATAGATGGATCCG
CGCTGCATTAGCTAGTTGGTAAGGTAACGGCTTACCAAGGCAACGATGCATA
GCCGACCTGAGAGGGTGATCGGCCACACTGGAACTGAGACACGGTCCAGACT
CCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGCGAAAGCCTGACG
GAGCAACGCCGCGTGAGTGATGAAGGTCTTCGGATCGTAAAACTCTGTTATT
AGGGAAGAACATATGTGTAAGTAACTGTGCACATCTTGACGGTACCTAATCA
GAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCA
AGCGTTATCCGGAATTATTGGGCGTAAAGCGCGCGTAGGCGGTTTTTTAAGTC
TGATGTGAAAGCCCACGGCTCAACCGTGGAGGGTCATTGGAAACTGGAAAAC
TTGAGTGCAGAAGAGGAAAGTGGAATTCCATGTGTAGCGGTGAAATGCGCAG
AGATATGGAGGAACACCAGTGGCGAAGGCGACTTTCTGGTCTGTAACTGACG
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CTGATGTGCGAAAGCGTGGGGATCAAACAGGATTAGATACCCTGGTAGTCCA
CGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGTTTCCGCCCCTTAGTGCTGC
AGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGACCGCAAGGTTGAAACT
CAAAGGAATTGACGGGGACCCGCACAAGCGGTGGAGCATGTGGTTTAATTCG
AAGCAACGCGAAGAACCTTACCAAATCTTGACATCCTTTGACAACTCTAGAG
ATAGAGCCTTCCCCTTCGGGGGACAAAGTGACAGGTGGTGCATGGTTGTCGT
CAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTA
AGCTTAGTTGCCATCATTAAGTTGGGCACTCTAAGTTGACTGCCGGTGACAAA
CCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGATTTGGGC
TACACACGTGCTACAATGGACAATACAAAGGGCAGCGAAACCGCGAGGTCA
AGCAAATCCCATAAAGTTGTTCTCAGTTCGGATTGTAGTCTGCAACTCGACTA
CATGAAGCTGGAATCGCTAGTATTCTTAGGTCAGCATGCTACGGTGAATGCG
TTCCCGCTAATCCTTTAACCCGTAAGGGCGAATTCCAGCACACTGGCGGCCGT
GCTAGTGGTCCGAGCTCGAGGCAGAG 
 

U. maydis strain FB2 16S-like fragment 
Size (bp) Sequencing Primers    
1506 M13(-21)F M13R    

Significant Match Score Expected Identities Gaps 
CP007447.1 1891 0.0 1216/1301 25/1301 
Staphylococcus aureus strain XN108, complete genome, 16S rRNA, bases 1993271 to 
1994549 
Sequence (FASTA)     
>FB216S 
CTTGGGTTGGGGGCCCTTTTCCTGATCAGGCCCGAGAGCCCCCAACAACAAA
AAGCGCCCGGAAAGACCGGAGGAATTGATTGTTTTATCTGGATCGTTGAAAG
TTCTATAAAAACCCTATGTGATTACGAGACAGCGATTGCGGCTTCATGGAGC
CAGTTGGGGACTACAATCCGAACTGATAACAACTTTATGGGATTTGCTTGACC
TCGCGGTTTCGCTGCCCTTTGTATTGTCCATTGTAGCACGTGTGTAGCCCAAA
TCATAAGGGGCATGATGATTTGACGTCATCCCCACCTTCCTCCGGTTTGTCAC
CGGCAGTCAACTTAGAGTGCCCAACTTAATGATGGCAACTAAGCTTAAGGGT
TGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAA
CCATGCATCACCTGTCACTTTGTCCCCCGAAGGGGAAGGCTCTATCTCTAGAG
TTGTCAAAGGATGTCAAGATTTGGTAAGGTTCTTCGCGTTGCTTCGAATTAAA
CCACATGCTCCACCGCTTGTGCGGGTCCCCCGTCAATCCCCTTTGAGTTTCAA
CCTTGCGGTCGTACTCTCCCAGGCGGAGTGCTTAATGCGTTAGCTGCAGCACT
AAGGGGGCGGAAACCCCCTAACACTTTAGCACTCATCGTTTACGGCGTGGAC
TACCCAGGGGTATCTAATCCCTGTGGATTCCCCCACGCTTTTGTCACATCAGC
GGTCAGTGTAACACCAGAAGAATGGTCTTCGCCCACCGGGGTTCTTCCTAAA
TATCGCGCATATCTCCCCCGACACACAGAAAACCCCTCTCCTTCTTTTGCACA
CAAATGTTCCCCAGTTCCCAAAAGCCCCCCCCAGGTTGAGACCCGGAGGTTT
TTCATCTCAGACTTAAAAACACCGCCTACGCGCGCTTTACGCCCCAATAATTC
GGGATAACGCTTGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTACC
CGTGGCTTTCTGATTAGGTACCGTCAAGATGTGCACAGTTACTTACACATATG
TTCTTCCCTAATAACAGAGTTTTACGATCCGAAGACCTTCATCACTCACGCGG
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CGTTGCTCCGTCAGGCTTTCGCCCATTGCGGAAGATTCCCTACTGCTGCCTCC
CGTAGGAGTCTGGACCGTGTCTCAGTTCCAGTGTGGCCGATCACCCTCTCAGG
TCGGCTATGCATCGTTGCCTTGGTAAGCCGTTACCTTACCAACTAGCTAATGC
AGCGCGGATCCATCTATAAGTGACAGCAAGACCGTCTTTCACTTTTGAACCAT
GCGGTTCAAAATATTATCCGGTATTAGCTCCGGTTTCCCGAAGTTATCCCAGT
CTTATAGGTAGGTTATCCACGTGTTACTCACCCGTCCCCCCCAACGTCAGAGA
ACCAGCTTCTATAATTCCCACACCTTAATCAGGCGAATCCAGCACACTGGCG
GCCGTCACTAGTGGTCCGAGCGCGACCTGGAC 
 

U. maydis strain FB1nifH-like fragment 
Size (bp) Sequencing Primers    
372 M13(-21)F     

Significant Match Score Expected Identities Gaps 
XM_011393498 643 0.0 376/385 3/385 
Ustilago maydis putative splicing factor, UMAG_05454 
Sequence (FASTA)     
>FB1NIFH-LIKE 
CCAAGGGGAGGGCGAGTGGAGGGAGGGGCGCGCCTCGATCAGCTCGGAGCT
CAACTGGCCCGGTCGCTTATCCTTGTACTTTGTCTCGAAATCCTCGCCTTCGTA
GTAAACGTCGCCGTGCATGCTGAGCGATGGTTTGTTCTGAAACTTGAAAAAC
GCATCGTAGAGCTTCTGGTAGTCGATTTCGATCTTGCCCATCTTGGGCTGCAC
GCGATCGCGCGTTTTTTGTTTGAGTGTGTAGTCGGCTTCCTTTTCGTTGAGCGC
GTCCTTGATGGTGGCTATGCCGGTTTCGGCGATGTACGAGGGTAGTTGGTAA
GCAGGCTTTTCGATGCCTCGTTTGTTTTGGAGGTAGTCGCGCTTGTTGGCCCA
GTGACCAGCTTCTATAATTCCCACACCTTAATCAGGCGAATCCAGCACACTG
GCGGCCGTCACTAGTGGTCCGAGCGCGACCTGGAC 
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Golden Gate Cloning 

This method (Terfrüchte et al., 2013) was attempted numerous times in the course 

of this work. I devised a modification to the method which appears to make construct 

production reliable; however not enough time remained to fully take advantage of this 

alteration. This modification was to pre-digest the vectors pDest and pStor with SSP1, 

then gel-purify the digest prior to using the vectors in the one-pot reaction. With a 

confirmed construct several transformations of U. maydis strains FB1 and FB2 were 

attempted but none yielded transformants. Table 11 identifies the loci that were selected 

as targets for knock-outs while Table 12 lists the primers used for the construct flanks. 

 As there was no similarity found between any U. maydis DNA and either the 

canonical nif structural genes or the sequences from the putative nitrogenase-like proteins 

derived from Streptomyces thermophiles other efforts were made to identify putative 

genes that might be involved in atmospheric nitrogen assimilation. Target genes, Table 

10, were selected based on predicted interactions in the STRING network with genes 

predicted to be involved in nitrogen metabolism (Franceschini et al., 2013; Szklarczyk et 

al., 2011), predicted iron-sulfur domains, predicted involvement in nitrogen metabolism, 

changes in gene expression under nitrogen starvation as in Horst, et al., 2012 (Horst et al., 

2012), possessed of transcription factor (TF) domains either within the gene or TF 

binding regions upstream of the predicted start codon or, particularly, if those are GAL4-

like DNA binding domains that are known to be involved in nitrogen metabolic 

regulation in Saccharomyces cerevisiae  (Marzluf, 1997).  

  



 

  107  

Table 10. Top 11 Loci Selected for Use in Golden Gate Reactions. 

Locus: UMAG_00037 (um00037)  
Predicted Domains (UniProt):  
 

Gene3D 2.102.10.10. 1 hit.  
3.30.390.30. 1 hit.  
3.50.50.60. 2 hits.  

InterPro IPR023753. FAD/NAD-binding_dom.  
IPR016156. FAD/NAD-linked_Rdtase_dimer.  
IPR004099. Pyr_nucl-diS_OxRdtase_dimer.  
IPR017941. Rieske_2Fe-2S.  
[Graphical view] 

Pfam PF07992. Pyr_redox_2. 1 hit.  
PF00355. Rieske. 1 hit.  
[Graphical view] 

SUPFAM SSF50022. SSF50022. 1 hit.  
SSF51905. SSF51905. 1 hit.  
SSF55424. SSF55424. 1 hit.  

PROSITE PS51296. RIESKE. 1 hit.  

 
 
Significant predicted interactions by STRING 9.05: 
 
Nir1, nitrite reductase 
 
Comment: UMAG_00037 was selected because of the iron-sulfur cluster as well as its 

expression being differentially upregulated under no-nitrogen conditions in a mutant U. 

maydis in which expression of Nit2, a transcription factor identified as being involved in 

nitrogen catabolite repression, was obviated (Horst et al., 2012).  
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Locus: UMAG_02462 (um02462)  
Predicted Domains (UniProt):  
 

Gene3D 4.10.240.10. 1 hit.  

InterPro IPR007219. Transcription_factor_dom_fun.  
IPR001138. Zn2-C6_fun-type_DNA-bd.  
[Graphical view] 

Pfam PF04082. Fungal_trans. 1 hit.  
PF00172. Zn_clus. 1 hit.  
[Graphical view] 

SMART SM00906. Fungal_trans. 1 hit.  
SM00066. GAL4. 1 hit.  
[Graphical view] 

SUPFAM SSF57701. SSF57701. 1 hit.  

PROSITE PS00463. ZN2_CY6_FUNGAL_1. 1 hit.  
PS50048. ZN2_CY6_FUNGAL_2. 1 hit.  
[Graphical view] 

 
 
Significant predicted interactions by STRING 9.05: 
 
None 
 
Comment: UMAG_02462 is predicted to be a GAL4-like transcription factor having two 

predicted TF-like zinc finger binding domains. This could indicate involvement in 

nitrogen catabolite repression, possibly influencing atmospheric nitrogen assimilation. 
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Locus: UMAG_03264 (UM03264)  
Predicted Domains (UniProt):  
 

Gene3D 1.10.150.120. 1 hit.  
3.10.20.30. 1 hit.  
3.30.365.10. 6 hits.  
3.30.43.10. 1 hit.  
3.30.465.10. 1 hit.  
3.90.1170.50. 1 hit.  

InterPro IPR002888. 2Fe-2S-bd.  
IPR001041. 2Fe-2S_ferredoxin-type.  
IPR006058. 2Fe2S_fd_BS.  
IPR000674. Ald_Oxase/Xan_DH_a/b.  
IPR016208. Ald_Oxase/xanthine_DH.  
IPR008274. AldOxase/xan_DH_Mopterin-bd.  
IPR012675. Beta-grasp_dom.  
IPR005107. CO_DH_flav_C.  
IPR016169. CO_DH_flavot_FAD-bd_sub2.  
IPR016166. FAD-bd_2.  
IPR016167. FAD-bd_2_sub1.  
IPR002346. Mopterin_DH_FAD-bd.  
[Graphical view] 

Pfam PF01315. Ald_Xan_dh_C. 1 hit.  
PF02738. Ald_Xan_dh_C2. 1 hit.  
PF03450. CO_deh_flav_C. 1 hit.  
PF00941. FAD_binding_5. 1 hit.  
PF00111. Fer2. 1 hit.  
PF01799. Fer2_2. 1 hit.  
[Graphical view] 

PIRSF PIRSF000127. Xanthine_DH. 1 hit.  

SMART SM01008. Ald_Xan_dh_C. 1 hit.  
SM01092. CO_deh_flav_C. 1 hit.  
[Graphical view] 
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SUPFAM SSF47741. SSF47741. 1 hit.  
SSF54292. SSF54292. 1 hit.  
SSF54665. SSF54665. 1 hit.  
SSF55447. SSF55447. 1 hit.  
SSF56003. SSF56003. 1 hit.  
SSF56176. SSF56176. 1 hit.  

PROSITE PS00197. 2FE2S_FER_1. 1 hit.  
PS51085. 2FE2S_FER_2. 1 hit.  
PS51387. FAD_PCMH. 1 hit.  
[Graphical view] 

 
Significant predicted interactions by STRING 9.05: 
 
UM02943.1 hypothetical protein 
UM00672.1 Uricase 
 
Comment: UMAG_03264 is a putative xanthine dehydrogenase containing predicted 

protein domains for electron carrier activity, a 2 Fe, 2 S cluster as well as FAD binding, 

Fe-Fe binding and oxidoreductase activity. Predicted to have involvement in nitrogen 

metabolism. 

Locus: UMAG_03351 
Predicted Domains (UniProt):  
 

Gene3D 3.40.50.300. 2 hits.  

InterPro IPR017896. 4Fe4S_Fe-S-bd.  
IPR003593. AAA+_ATPase.  
IPR003439. ABC_transporter-like.  
IPR017871. ABC_transporter_CS.  
IPR013283. ABCE.  
IPR027417. P-loop_NTPase.  
IPR007209. RNaseL-inhib_metal-bd_dom.  
[Graphical view] 
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PANTHER PTHR19248. PTHR19248. 1 hit.  

Pfam PF00005. ABC_tran. 2 hits.  
PF00037. Fer4. 1 hit.  
PF04068. RLI. 1 hit.  
[Graphical view] 

PRINTS PR01868. ABCEFAMILY.  

SMART SM00382. AAA. 2 hits.  
[Graphical view] 

SUPFAM SSF52540. SSF52540. 3 hits.  

PROSITE PS51379. 4FE4S_FER_2. 2 hits.  
PS00211. ABC_TRANSPORTER_1. 1 hit.  
PS50893. ABC_TRANSPORTER_2. 2 hits.  
[Graphical view] 

 
 
Significant predicted interactions by STRING 9.05: 
 
UM06108.1 hypothetical protein 
UM06323.1 Eukaryotic translation initiation factor 3 subunit C 
 
Comment: Probably RLI1, similar to RNAseL in Candida which, in humans, degrades all 

RNA as part of the interferon-mediated antiviral response. Possible 4Fe-4S metal binding 

domain for RNAseL inhibitor, RLI and having 2 ABC transporter domains. Homologs 

present in Debarvomyces hansenii, Neorospora crassa, Yarrowia lipolytica. If this 

actually is the preinitiation complex assembly-promoting protein in U. maydis its loss 

could likely be fatal as, in Saccharomyces, it is required for the processing and nuclear 
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export of the 60S and 40S ribosomal subunits. Also possibly related to ATM1. 

Locus:  UMAG_03612 
Predicted Domains (UniProt):  
 

InterProi IPR011701. MFS.  
IPR020846. MFS_dom.  
[Graphical view] 

Pfami PF07690. MFS_1. 1 hit.  
[Graphical view] 

SUPFAMi SSF103473. SSF103473. 1 hit.  

PROSITEi PS50850. MFS. 1 hit.  
[Graphical view] 

 
Significant predicted interactions by STRING 10: 
 
UM03501.1 DNA topoisomerase 2 
UM05642.1 putative uncharacterized protein 
 
Comment: Has a GAL4-like potential binding site upstream, related to GIT1, 

glycerophosphoinositol transporter, potentially involved in mycelium development. 

Locus: UMAG_03689 
Predicted Domains (UniProt):  
 

InterPro IPR016192. APOBEC/CMP_deaminase_Zn-bd.  
IPR002125. CMP_dCMP_Zn-bd.  
IPR016193. Cytidine_deaminase-like.  
[Graphical view] 

Pfam PF00383. dCMP_cyt_deam_1. 1 hit.  
[Graphical view] 
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SUPFAM SSF53927. SSF53927. 1 hit.  

PROSITE PS00903. CYT_DCMP_DEAMINASES_1. 1 hit.  
PS51747. CYT_DCMP_DEAMINASES_2. 1 hit.  
[Graphical view] 

 
Significant predicted interactions by STRING 10: 
 
UM02015.1 Uridine kinase 
UM03873.1 hypothetical protein 
 
Comment: Differentially regulated in Horst et al., 2012 (Horst et al., 2012), 36.65-fold 

downregulated. Predicted to be related to TAD2, subunit of tRNA-specific adenosine-34 

deaminase. Also predicted to be secreted (by SignalP v. 4.0) by the 1-18 positions. 

Locus: UMAG_11104, UM03848 (nir1) 
Predicted Domains (UniProt):  
 

Gene3D 2.102.10.10. 1 hit.  

InterPro IPR007419. BFD-like_2Fe2S-bd_dom.  
IPR005117. NiRdtase/SiRdtase_haem-b_fer.  
IPR012748. Nitri_red_NirD.  
IPR006067. NO2/SO3_Rdtase_4Fe4S_dom.  
IPR006066. NO2/SO3_Rdtase_FeS/sirohaem_BS.  
IPR017941. Rieske_2Fe-2S.  
[Graphical view] 

Pfam PF04324. Fer2_BFD. 1 hit.  
PF01077. NIR_SIR. 1 hit.  
PF03460. NIR_SIR_ferr. 1 hit.  
[Graphical view] 

PRINTS PR00397. SIROHAEM.  
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SUPFAM SSF50022. SSF50022. 1 hit.  
SSF55124. SSF55124. 1 hit.  

TIGRFAMs TIGR02378. nirD_assim_sml. 1 hit.  

PROSITE PS00365. NIR_SIR. 1 hit.  
PS51296. RIESKE. 1 hit.  
[Graphical view] 

 
Significant predicted interactions by STRING 10: 
 
UM03849.1 hypothetical protein 
UM03847.1 Nitrite reductase 
UM00037.1 hypothetical protein 
 
Comment: Putative nitrite reductase, reducing nitrite to ammonia. A knock-out of this 

gene resulting a mutant still able to incorporate atmospheric nitrogen would indicate that 

nitrite is not a likely intermediate in this assimilation pathway. 

Locus: UMAG_05063 
Predicted Domains (UniProt):  
 

Gene3D 1.10.840.10. 2 hits.  

InterPro IPR000651. Ras-like_Gua-exchang_fac_N.  
IPR023578. Ras_GEF_dom.  
IPR001895. RASGEF_cat_dom.  
[Graphical view] 

Pfam PF00617. RasGEF. 1 hit.  
PF00618. RasGEF_N. 1 hit.  
[Graphical view] 

SMART SM00147. RasGEF. 1 hit.  
SM00229. RasGEFN. 1 hit.  
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[Graphical view] 

SUPFAM SSF48366. SSF48366. 5 hits.  

PROSITE PS50009. RASGEF_CAT. 1 hit.  
PS50212. RASGEF_NTER. 1 hit.  
[Graphical view] 

 
Significant predicted interactions by STRING 10: 
 
None 
 
Comment: Predicted guanine nucleotide exchange factor (GEF), RAS-like GTPase, 

perhaps involved in nitrogen catabolite repression. This has a possible GAL4-like binding 

site upstream. 

Locus: UMAG_05632 (Iron-sulfur cluster assembly protein) 
Predicted Domains (UniProt):  
 

InterPro IPR011339. ISC_FeS_clus_asmbl_IscU.  
IPR002871. NIF_FeS_clus_asmbl_NifU_N.  
[Graphical view] 

Pfam PF01592. NifU_N. 1 hit.  
[Graphical view] 

TIGRFAMs TIGR01999. iscU. 1 hit.  

 
Significant predicted interactions by STRING 10: 
 
UM05524.1 hypothetical protein 
UM05776.1 putative uncharacterized protein 
UM04428.1 hypothetical protein 
 
Comment: Homology with NifU-like N terminal domain. This domain is not directly 
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involved in nitrogen fixation and the N-terminal region specifically has similarity 

amongst many non-nitrogen fixing organisms including humans (Hwang et al., 1996). 

This domain is an iron-sulphur cluster assembly domain. 

Locus: UMAG_05820 
Predicted Domains (UniProt):  
 

Gene3D 4.10.240.10. 1 hit.  

InterPro IPR001138. Zn2-C6_fun-type_DNA-bd.  
[Graphical view] 

Pfam PF00172. Zn_clus. 1 hit.  
[Graphical view] 

SMART SM00066. GAL4. 1 hit.  
[Graphical view] 

SUPFAM SSF57701. SSF57701. 1 hit.  

PROSITE PS00463. ZN2_CY6_FUNGAL_1. 1 hit.  
PS50048. ZN2_CY6_FUNGAL_2. 1 hit.  
[Graphical view] 

 
Significant predicted interactions by STRING 10: 
 
None 
 
Comment: Another potential Gal4-like transcription factor involved in nitrogen 

metabolism. 

Locus: UMAG_10086 (UM00279) 
Predicted Domains (UniProt):  
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InterPro IPR009348. NPR2.  
[Graphical view] 

PANTHER PTHR12991. PTHR12991. 3 hits.  

Pfam PF06218. NPR2. 4 hits.  
[Graphical view] 

 
Significant predicted interactions by STRING 10: 
 
UM02998.1 hypothetical protein 
UM05022.1 hypothetical protein 
UM06340.1 hypothetical protein 
UM01612.1 Vacuolar membrane-associated protein IML1 
 
Comment: Predicted to be related to NPR2, nitrogen permease regulator. This is a more 

recent indication in the new pedant3 database. It was initially selected simply for its 

predicted involvement in nitrogen metabolism. Two NPR2 domains are predicted. In 

Saccharomyces cerevisiae a defect in that gene resulted in a strongly increased 

transcription of dur3 which is involved in urea active transport (Rousselet et al., 1995) as 

well as conditionally inhibiting TORC1(Laxman et al., 2014). 

Locus: UMAG_11379 (UM01975) 
Predicted Domains (UniProt):  
 

Gene3D 4.10.240.10. 1 hit.  

InterPro IPR001138. Zn2-C6_fun-type_DNA-bd.  
[Graphical view] 

Pfam PF00172. Zn_clus. 1 hit.  
[Graphical view] 



 

  118  

SMART SM00066. GAL4. 1 hit.  
[Graphical view] 

SUPFAM SSF57701. SSF57701. 1 hit.  

PROSITE PS00463. ZN2_CY6_FUNGAL_1. 1 hit.  
PS50048. ZN2_CY6_FUNGAL_2. 1 hit.  
[Graphical view] 

 
Significant predicted interactions by STRING 10: 
 
None 
 
Comment: Another fungal Zn2-CY6 zinc finger-coding putative protein suggested to be 

involved in nitrogen metabolism. 

Locus: UMAG_06128 
Predicted Domains:  
 
Predicted signal peptide (SignalP v4.0, position 1-27) 
Transmembrane region, positions 7-29 
 
Significant predicted interactions by STRING 9.05: 
 
None 
 
Comment: Possible nitrate transporter. If confirmed to be a nitrate transporter it could be 

useful to knock-out and test N2 accumulation with a nitrate source. 

UMAG_01456 (UM01456 on chr 03) 

Predicted to be related to PPR1, transcription factor regulating pyrimidine pathway, as 

well as UMAG_00113, transcriptional activator acu-15. 

UMAG_02462 (UM02462, on chr 05) 

Predicted to possess GAL4-like DNA binding domains; also possibly related to PPR1. 

UMAG_03386 (UM03386, on chr 08)  
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Transcription of this gene was also differentially regulated in Horst et al., 2012 (Horst et 

al., 2012), downregulated 653.65 fold in the knock-out relative to SG200. Perhaps a 

knock-out of this gene could result in a failure to grow in N-free media. Predicted to be 

related to JLP-1, iron(2)-dependent sulfonate. 

UMAG_03613 (UM03613, on chr 09) 

Predicted zinc-finger-based TF, related to PPR1.  

UMAG_04294 (UM04294) 

Has a GAL4-like binding site upstream, predicted to be related to peroxin-11, related to 

peroxisome organization and fission. 

UMAG_06257 (UM06257, on chr 22) 

Has two predicted zinc-finger domains. 
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Table 11. Primers for Golden Gate Cloning. 

Pair/Size Name 
Size 
(bp) 

Tm 
(oC) GC% Sequence (5’ to 3’) 

0037D 0037D1 31 73.5 61.3 GGTCTCCGGCCTTTTTGTGCGATGCGGTGAG 

870 bp 0037D2 37 72.8 51.4 
GGTCTCGCTGCAATATTCCGAGTGGTGAACGAGT 
GAA 

0037U 0037U2 38 73.8 52.6 
GGTCTCGCCTGCAATATTACGGGAGATGTACGGT 
GAGA 

875 bp 0037U3 31 73.5 61.3 GGTCTCCAGGCAGACTTGTTGGTCAGCCTCG 

2462D  2462D1 31 73.5 61.3 GGTCTCCGGCCTGATACGTTCGGCATCTGCA 

557 bp 2462D2 35 73.0 54.3 GGTCTCGCTGCAATATTCATGTAGTACCAGCGCCC 

2462U 2462U2 38 73.8 52.6 
GGTCTCGCCTGCAATATTCTTGGAGCAGTTCGTGG 
CTA 

973 bp 2462U3 31 73.5 61.3 GGTCTCCAGGCCAGCGCGAAATCAACGAGAG 

3264D 3264D1 31 76.1 67.7 GGTCTCCGGCCGGTCGAGCTGAGTATGGTCG 

1006 bp 3264D2 37 72.8 51.4 
GGTCTCGCTGCAATATTACCTACCGTCTGAGGTTC 
GA 

3264U 3264U2 38 73.8 52.6 
GGTCTCGCCTGCAATATTCTGCGATACGTTGTTGC 
TGG 

1086 bp 3264U3 31 73.5 61.3 GGTCTCCAGGCTGCGATGGTCAGGAGAATCG 

3351D 3351D1 31 73.5 61.3 GGTCTCCGGCCTCATGTGTCGCCATGAGCTT 

507 bp 3351D2 37 72.8 51.4 
GGTCTCGCTGCAATATTAAAGGCGTACCCGTGTA 
GAC 

3351U 3351U2 36 72.9 52.8 
GGTCTCGCCTGCAATATTGATCACGTGCAGTC 
GACA 

1378 bp 3351U3 31 73.5 61.3 GGTCTCCAGGCGTGGCGATGAGGACAGTTGA 

3612D 3612D1 31 74.8 64.5 GGTCTCCGGCCATCGTGAGTCGTGAGTCGTG 

815 bp 3612D2 37 73.9 54.1 
GGTCTCGCTGCAATATTCCAGAAGGGAATATCGG 
GGC 

Pair/Size Name 
Size 
(bp) 

Tm 
(oC) GC% Sequence (5’ to 3’) 

3612U 3612U2 38 73.8 52.6 
GGTCTCGCCTGCAATATTCCCACAAACAGTCGAC 
TCGA 

1109 bp 3612U3 31 73.5 61.3 GGTCTCCAGGCCGAAGTCAAAGGGGAACGGA 

3689D 3689D1 31 73.5 61.3 GGTCTCCGGCCTCCTTGTTGTTTCGCGCTTC 

932 bp 3689D2 37 72.8 51.4 
GGTCTCGCTGCAATATTAGACCAGGGCAGAGAG 
TGAA 

3689U 3689U2 38 73.8 52.6 
GGTCTCGCCTGCAATATTGGTGTGCTTGGCTTTG 
AGTG 

544 bp 3689U3 31 72.1 58.1 GGTCTCCAGGCAAGAACCTCTTGTGAGCGCA 

3848D 3848D1 31 74.8 64.5 GGTCTCCGGCCTAGGCCAAGGAGTCCTGTGA 

1016 bp 3848D2 37 73.9 54.1 
GGTCTCGCTGCAATATTGTGAGAGAGCGATGGGG 
ATG 

3848U 3848U2 38 73.8 52.6 
GGTCTCGCCTGCAATATTAGACAGCGTGCTTTACC 
CTC 

1338 bp 3848U3 31 73.5 61.3 GGTCTCCAGGCCTTGCCGTACATGAGCATGC 

5063D 5063D1 31 74.8 64.5 GGTCTCGGGCCGCTTCCTTTGACCTGCTCCT 

674 bp 5063D2 36 71.7 50.0 
GGTCTCGCTGCAATATTCGTTGCAGTAGCCGT 
TGAT 
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5063U 5063U2 38 73.8 52.6 
GGTCTCGCCTGCAATATTCACGATTCAAGCATGC 
GAGG 

1176 bp 5063U3 31 72.1 58.1 GGTCTCCAGGCATGCGATGGAAGTCAGCCAA 

5632D 5632D1 31 74.8 64.5 GGTCTCCGGCCTGGTTTCGTCCGTGGGTTAG 

940 bp 5632D2 36 72.9 52.8 
GGTCTCGCTGCAATATTGTTCTGGAGTGTCAC 
CGTG 

5632U 5632U2 38 73.8 52.6 
GGTCTCGCCTGCAATATTGCCGTGTCTCAGAGAA 
CACA 

1094 bp 5632U3 31 73.5 61.3 GGTCTCCAGGCGAGTCACGAGCCACGATCAT 

5820D 5820D1 35 73.0 54.3 GGTCTCCGGCCCAGCGTCCTCTGTTTTAAATACGT 

803 bp 5820D2 40 72.5 47.5 
GGTCTCGCTGCAATATTCGAGAGCGTGTAATA 
TACCCTGT 

5820U 5820U2 36 72.9 52.8 
GGTCTCGCCTGCAATATTTTGTACTGTGCGCG 
TTGG 

1029 bp 5820U3 31 72.1 58.1 GGTCTCCAGGCATCGTAGCCTTTTGCCGTCA 

6138D 6138D1 31 74.8 64.5 GGTCTCCGGCCCCTTGTCACATTGGGCTTGC 

457 bp 6138D2 37 72.8 51.4 
GGTCTCGCTGCAATATTGTTTGTGTACCACGC 
ACCAC 

6138U 6138U2 38 73.8 52.6 
GGTCTCGCCTGCAATATTCGTCGCTGCATGTTACA 
GTG 

709 bp 6138U3 31 74.8 64.5 GGTCTCCAGGCGAGGCGGAGAGAGAAGCAAG 

6257D 6257D1 32 73.3 59.4 GGTCTCCGGCCCTGTCAACAAGCGTTCGTTGA 

311 bp 6257D2 35 71.8 51.4 
GGTCTCGCTGCAATATTATGGCGTGTGCACAG 
ACA 

6257U 6257U2 36 74.0 55.6 
GGTCTCGCCTGCAATATTGCCTCTCTGATGTG 
TCCG 

1004 bp 6257U3 30 75.0 66.7 GGTCTCCAGGCGCCAGTTAGAGGGGCAGAG 

4294D 4294D1 31 74.8 64.5 GGTCTCCGGCCCACGTTCGGTTGCGAAACTC 

      

Pair/Size Name 
Size 
(bp) 

Tm 
(oC) GC% Sequence (5’ to 3’) 

344 bp 4294D2 37 72.8 51.4 
GGTCTCGCTGCAATATTGGGGCTCAATCGTGATC 
GTT 

4294U 4294U2 38 73.8 52.6 
GGTCTCGCCTGCAATATTGTGTCATTGGTGCGCT 
GTAC 

1130 bp 4294U3 31 74.8 64.5 GGTCTCCAGGCGATGATGGAGGCGGGAAGAG 

3513D 3513D1 31 74.8 64.5 GGTCTCCGGCCTCGCTCATCCTGATTAGCCC 

160 bp 3513D2 31 74.8 64.5 GGTCTCGCTGCGTGGCTCACGGTGACAGATC 

3513U 3513U2 36 72.9 52.8 
GGTCTCGCCTGCAATATTTTCCGATTTGCCTC 
CCGA 

606 bp 3513U3 31 73.5 61.3 GGTCTCCAGGCCGTACTGGCCGACGTTGATA 

3386D 3386D1 31 74.8 64.5 GGTCTCCGGCCGTAGGATTTGGCTCGCCTGT 

385 bp 3386D2 37 73.9 54.1 
GGTCTCGCTGCAATATTCTCCTTACCGGTGC 
ACTAGC 

3386U 3386U2 38 72.7 50.0 
GGTCTCGCCTGCAATATTACACGGGTTCGAA 
ATTGGGA 

542 bp 3386U3 31 73.5 61.3 GGTCTCCAGGCTCGAATCGCAAGCTCAGACC 

2808D 2808D1 31 74.8 64.5 GGTCTCCGGCCCGGTACCAACACAAACTGCG 

729 bp 2808D2 37 72.8 51.4 GGTCTCGCTGCAATATTGACGACTTGCCCACT 



 

  122  

GTGTA 

2808U 2808U2 38 73.8 52.6 
GGTCTCGCCTGCAATATTGCCAAAGACATAGC 
TTCGCG 

214 bp 2808U3 31 73.5 61.3 GGTCTCCAGGCAAACGATGGAGACCGTGACC 

1975D 1975D1 31 74.8 64.5 GGTCTCCGGCCGGCAACGGTACACAGCAAAG 

575 bp 1975D2 37 72.8 51.4 
GGTCTCGCTGCAATATTCACAAACCAAGCCAG 
GAACG 

1975U 1975U2 38 73.8 52.6 
GGTCTCGCCTGCAATATTAAACTCCTATCGCTC 
CGCTC 

373 bp 1975U3 31 73.5 61.3 GGTCTCCAGGCACCTGATTGAGCGAAGACGG 

1456D 1456D1 31 74.8 64.5 GGTCTCCGGCCTGATCGCAGGAGTGTTCCAG 

322 bp 1456D2 37 72.8 51.4 
GGTCTCGCTGCAATATTGACCGTCTCGCCAAA 
CTCAT 

1456U 1456U2 38 73.8 52.6 
GGTCTCGCCTGCAATATTCTATGCGTCGAGAG 
CACGAT 

409 bp 1456U3 31 72.1 58.1 GGTCTCCAGGCTGGTTGGCATGCATTGTTGG 

0279D 0279D1 31 74.8 64.5 GGTCTCCGGCCCGGCATCGATCGATCCAGAT 

360 bp 0279D2 37 72.8 51.4 
GGTCTCGCTGCAATATTACCATCTCGCCAACC 
ATGAG 

0279U 0279U2 38 73.8 52.6 
GGTCTCGCCTGCAATATTCGATCGTAAGGCTT 
GGTGGT 

385 bp 0279U3 31 73.5 61.3 GGTCTCCAGGCTTCGTCGTACCACAACAGGG 

0195D 0195D1 31 74.8 64.5 GGTCTCCGGCCGTGCGTGTATCTCGGTCGAT 

400 bp 0195D2 37 72.8 51.4 
GGTCTCGCTGCAATATTACTTTACACCTCACA 
GCCCG 

0195U 0195U2 38 73.8 52.6 
GGTCTCGCCTGCAATATTCTGTTCTCAAACAC 
ACGCGG 

496 bp 0195U3 31 73.5 61.3 GGTCTCCAGGCCAAGTTGAGCGTGAACGTGG 

      

Pair/Size Name 
Size 
(bp) 

Tm 
(oC) GC% Sequence (5’ to 3’) 

0097D 0097D1 31 73.5 61.3 GGTCTCCGGCCGCTGAACGTTGCGCAAGTTA 

325 bp 0097D2 36 72.9 52.8 
GGTCTCGCTGCAATATTGTCTTTCTGCTTCGC 
CCTC 

0097U 0097U2 38 72.7 50.0 
GGTCTCGCCTGCAATATTAGTGATGATACGCG 
CCACAT 

800 bp 0097U3 31 73.5 61.3 GGTCTCCAGGCTAGGTGGAGTTCTTGCCGTG 

0023D 0023D1 31 74.8 64.5 GGTCTCCGGCCTTCTGGCTCCATCCCCTTTG 

501 bp 0023D2 36 72.9 52.8 
GGTCTCGCTGCAATATTACAAAACCTCGACCT 
CGCC 

0023U 0023U2 38 73.8 52.6 
GGTCTCGCCTGCAATATTCGTGAATGGAAGAC 
GTGAGG 

1000 bp 0023U3 31 73.5 61.3 GGTCTCCAGGCTGGACATCCCCGATACGAGT 
 

  

 



 

  123  

Table 12. Transformant Screening Primers. 

Pair/Size Name 
Size 
(bp) 

Tm 
(oC) GC% Sequence (5’ to 3’) 

internal 
00037 i37F 20 59.4 55.0 ATGCCGACAAGGTTACCTGG 

607 bp i37R 20 59.4 55.0 TTGGTAGCGGGAGAAACACC 
internal 
03848 i48F 20 59.4 55.0 ACCAACGATCGATACCTCGC 

1340 bp i48R 20 61.4 60.0 GCATCCGACTCCTCAGTAGC 
internal 
03689 i89F 20 59.4 55.0 AGAATCGTACCTCACACGCC 

914 bp i89R 20 59.4 55.0 AGTCGAGACAAGCACGAAGG 
internal 
03351 i3351F 20 59.4 55.0 AAGTTCCAGGGCACAGTACG 

533 bp i3351R 20 59.4 55.0 AAGAAGTACTGACCAGCGGC 
internal 
06138 i6138F 20 59.4 55.0 TCACCAACAACCTCGTCTCG 

752 bp i6138R 20 59.4 55.0 CTTGATTTCGCGCGGTTAGG 

hygromycin gghygF 20 59.4 55.0 CTGCTTTGCTCCGCGAATAC 

730 bp gghygR 20 57.3 50.0 ATTGACCGATTCCTTGCGGT 
external 
00037 o37F 20 57.3 50.0 TTTTTGCTTGTCCTCTGCGC 

external 
03848 o48F 20 59.4 55.0 GTTACATAGCGTTGCAGCGG 

external 
03689 o89F 20 59.4 55.0 AGCAGACAAAGAGGTGGTCG 

external 
03351 o3351R 20 57.3 50.0 AAGCTTGCATGTTGGCTGTG 

external 
06138 o6138R 20 59.4 55.0 CCGACGATTGCATGCTCTTG 
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Growth of Zea mays under nitrogen starvation 

Summary  

One tangential experiment that was conducted but is not being formally reported 

here was a brief investigation of Golden Bantam corn grown in sand supplemented with 

Hoagland’s Solution with and without a nitrogen source. This experiment was to see if 

there might be a symbiotic interaction under nitrogen starvation in infected plants as 

measured by dry plant biomass. The net effect measured indicated that nitrogen-starved, 

infected seedlings had a statistically significant higher mean dry mass as compared to 

nitrogen-starved uninfected seedlings while both were significantly lower in average dry 

mass as compared to seedlings provided with a nitrogen source. 

Introduction 

 The obligate biotrophic nature of Ustilago maydis can perhaps suggest a potential 

and previously undiscovered symbiotic interaction when its Zea mays host is stressed. As 

previously indicated it is know that some endophytes and many ectomycorrhiza 

contribute to host survival by conferring at least some resistance to stressors including 

herbivory, by virtue of toxins noxious to predators, drought and nutrient limitation. 

Considering that U. maydis is autoecious and has ability to adapt and survive under 

nitrogen starvation by a method that includes converting atmospheric dinitrogen into 

cellular biomass perhaps it also has a capacity, however limited, to support its host under 

conditions of extreme nitrogen starvation. 

 A common metric for growth success in plant work is direct measurement of dry 

biomass. Other morphometric traits measuring height or leaf length are also employed in 

general. Considering the nutrient restriction imposed in testing this hypothesis dry mass 
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appeared both the easiest to measure and more potentially representative of any change 

induced by the infection. Subsequent experiments could employ other traits, including 

stable isotope either by devising a way to use dinitrogen tracer to look for accumulation 

from atmospheric dinitrogen or very low levels of heavy, stable nitrogen introduced as 

ammonium, nitrite or nitrate and analyzing the resulting biomass for less tracer than 

uninfected treatments. The former would be more definite but more impractical to set-up 

while the latter could have its own limitations in discriminatory power but would be 

much easier to conduct. 

 What this pilot experiment cannot determine is what the source is of the change in 

biomass. Contributions to mass by developing fungal mycelium could only be guessed-at 

by the proliferation of any galls formed. Significant change, though, could indicate merit 

for conducting further work. 

Methods 

 An overnight culture of U. maydis SG200 was inoculated into YPD (1% yeast, 

2% peptone, 2% dextrose) broth and incubated at 27ºC until an OD A600 of at least 0.5 

was achieved. Those cells were centrifuged and washed in sterile water then diluted to 

either 102 or 104 cells/mL. Seedlings were inoculated with approximately 100 L of 

either 102 or 104 cells/mL, sterile water-washed SG200 cells approximately 7 days post-

germination. Golden Bantam corn [W. Altee Burpee & Co., Warminster, PA] were 

planted in 6” terracotta pots containing medium grit sand and coffee filters. These were 

placed in plastic trays in the incubator and bottom-watered using either a 1/10 dilution of 

Hoagland’s No. 2 Basal Salt Solution (606.6 mg/L potassium nitrate, 656.4 mg/L calcium 

nitrate, 240.76 mg/L magnesium sulfate, 115.03 mg/L monobasic ammonium phosphate, 
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1.81 mg/L manganese chloride*4H20, 2.86 mg/L boric acid, 0.016 mg/L molybdenum 

trioxide, 0.22 mg/L zinc sulphate*7H2O, 0.08 mg/L copper sulfate*5H2O, 5 mg/L ferric 

tartrate) [HOP01-50LT, Caisson Labs, North Logan, UT] or a 1/10 dilution of 

Hoagland’s Modified Nitrogen Free No. 2 Basal Salt Mixture (2.86 mg/L boric acid, 

554.9  mg/L calcium chloride, 0.045 mg/L copper II chloride, 33.0 mg/L EDTA, iron 

sodium salt, 240.325 mg/L magnesium sulfate, 1.81 mg/L manganese chloride*4H2O, 

0.025 mg/L molybdic acid sodium salt*2H2O, 372.7 mg/L potassium chloride, 136.025 

mg/L monobasic potassium phosphate, 0.11 mg/L zinc chloride) [HOP03-50LT, Caisson 

Labs, North Logan, UT]. Watering occurred as needed to maintain water levels in the 

tray at about 1/4” from the bottom of each pot for 28 days at which time the plants were 

collected in envelopes, dried for 48 hours then weighed. 

Results 

 There were some indications of small galls on a fraction of the infected plants; 

there was no significant evidence of disease based on infection by this solopathogenic 

strain at these inoculation levels. Plant masses were distributed as indicated in Figure 26. 

There were 30 plants in the uninfected with ammonium group (A), 85 plants in the 

uninfected without ammonium (B), 54 plants in the low-level infection (C) and 52 plants 

in the higher-level infection groups (D). A series of student T-tests on these groups 

indicated that there was a significant difference between A and B, as expected. Further a 

significant difference was found between A and C as well as A and B with C being closer 

of higher overall biomass than B. D was not significantly different from either B or C but 

was significantly different from A. 
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Figure 26. Corn biomass by nitrogen availability and infection status. 

 Discussion 

This first experiment indicated that further work to support or refute this 

hypothesis could be warranted as it did appear that corn infected with U. maydis 

solopathogenic strain SG200 achieved more average biomass than uninfected corn under 

the same nitrogen-deprived condition while not reaching the same average biomass as 

uninfected, nitrogen supplemented corn plants. A disease index was not performed 

because of the intentionally low infection levels and very few, small galls were observed 

on some infected plants; none of those were larger than a millimeter. This experiment 

could warrant repetition upon which, if these results are confirmed, additional questions 

could be investigated; primarily whether or not the observed differences are based simply 
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on growing mycelium and independent of corn growth. Adding measurements of height 

and leaf length could contribute to that analysis. 
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