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ABSTRACT 

 

Research in face recognition deals with problems related to Age, Pose, Illumination and 

Expression (A-PIE), and seeks approaches that are invariant to these factors. Video images add a 

temporal aspect to the image acquisition process.  Another degree of complexity, above and 

beyond A-PIE recognition, occurs when multiple pieces of information are known about people, 

which may be distorted, partially occluded, or disguised, and when the imaging conditions are 

totally unorthodox! A-PIE recognition in these circumstances becomes really “wild” and 

therefore, Face Recognition in the Wild has emerged as a field of research in the past few years. 

Its main purpose is to challenge constrained approaches of automatic face recognition, emulating 

some of the virtues of the Human Visual System (HVS) which is very tolerant to age, occlusion 

and distortions in the imaging process. HVS also integrates information about individuals and 

adds contexts together to recognize people within an activity or behavior. Machine vision has a 

very long road to emulate HVS, but face recognition in the wild, using the computer, is a road to 

perform face recognition in that path.  

In this thesis, Face Recognition in the Wild is defined as unconstrained face recognition 

under A-PIE+; the (+) connotes any alterations to the design scenario of the face recognition 

system. This thesis evaluates the Biometric Optical Surveillance System (BOSS) developed at 

the CVIP Lab, using low resolution imaging sensors. Specifically, the thesis tests the BOSS 

using cell phone cameras, and examines the potential of facial biometrics on smart portable 

devices like iPhone, iPads, and Tablets.   
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For quantitative evaluation, the thesis focused on a specific testing scenario of BOSS 

software using iPhone 4 cell phones and a laptop. Testing was carried out indoor, at the CVIP 

Lab, using 21 subjects at distances of 5, 10 and 15 feet, with three poses, two expressions and 

two illumination levels. The three steps (detection, representation and matching) of the BOSS 

system were tested in this imaging scenario. False positives in facial detection increased with 

distances and with pose angles above     . The overall identification rate (face detection at 

confidence levels above 80%) also degraded with distances, pose, and expressions. The indoor 

lighting added challenges also, by inducing shadows which affected the image quality and the 

overall performance of the system. While this limited number of subjects and somewhat 

constrained imaging environment does not fully support a “wild” imaging scenario, it did 

provide a deep insight on the issues with automatic face recognition. The recognition rate curves 

demonstrate the limits of low-resolution cameras for face recognition at a distance (FRAD), yet 

it also provides a plausible defense for possible A-PIE face recognition on portable devices.  
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I. Introduction  
 

 

 

Face recognition is an important field in behavioral and applied sciences. It deals with 

understanding the information content in the face, from physically looking at people, or through 

images of them. Face recognition may be performed in absolute (i.e., observing a face) or in 

relative terms (i.e., observing faces during an action). Under each scenario, recognizing a face 

means associating with it a known reference of it (e.g., a previous picture) and verification of it 

through subsequent steps to confirm that the recognized face is genuine. Human face recognition 

is an interesting multidisciplinary area in psychology, psychiatry, computer engineering, and 

related disciplines. Understanding how the human brain recognizes faces is a fascinating, and 

still non-conclusive, art and science (Ekman and Rosenberg, 2005 [1] contains a collection of 

views on what the face reveals).  

  Machine or computer (or automatic) face recognition is a maturing field dating back to 

the early 1970’s (e.g., [2]). From an image or a video, faces are detected and a representation is 

generated for them, which is then compared with representation of people in a gallery (data base) 

in order to perform the recognition. The construction of the gallery, data structure and facial 

representations is performed a priori, and is done off-line.  Once a match between a candidate 

face (probe) and the gallery (database) is obtained, a verification step follows to authenticate that 
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the recognized face is genuine. The steps of face recognition then are three: detection, 

representation and matching. A rich theory exists for each step, and great many algorithms have 

been developed in the past two decades, which enable fast face recognition, and will continue to 

improve with recurrent progress in sensors and computation.  

As automatic face recognition starts from an image or video, the circumstances of 

acquisition of such images and videos may vary. In general, an image in the camera is an 

interaction of the individual, the lighting (imaging) condition and the camera itself. Natural, 

unconstrained, images are pose point instantiations of the people in the scene, which may be 

involved in a particular activity (e.g., working alone, interacting with a group, or in a sightseeing 

trip, etc.), and given lighting circumstances.  Poses and expression are aspects of human 

behavior; illumination is an aspect of the lighting in the environment; the three characteristics: 

Pose, Illumination and Expression (PIE) are independent. Unconstrained face recognition is the 

methodology that addresses the PIE scenarios of imaging of an individual or a group. An 

additional factor dealing with imaging condition is that of Age (time of acquisition). Hence, the 

A-PIE recognition is the most general, and is the most applicable in current development of 

automatic face recognition. Researches in A-PIE face recognition seek approaches that tolerate 

(invariant to) age, pose, illumination and expression.  

Another degree of complexity above and beyond A-PIE recognition is when multiple 

pieces of information are known about people, which may be distorted, partial, occluded, or 

disguised, and when the imaging conditions are totally unorthodox! A-PIE recognition in these 

circumstances becomes really “wild” and therefore, Face Recognition in the Wild has emerged as 

a field of research in the past few years. This thesis is on Face Recognition in the Wild! There is 

no specific  definition as yet for this “wildness” in the literature; in this thesis it will be defined 
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as Unconstrained Face Recognition Under A-PIE+; the + will connote any alterations to the 

design scenario of the face recognition system. That may include alterations in the sensors, the 

imaging environment and intended applications. An automatic face recognition system based on 

high resolution CCD cameras may be asked to work on scenarios where cameras are low 

resolution. A system designed to work in homogenous lighting conditions may be asked to work 

on open environments such as stadium or shopping malls, or on a racing track! A system that is 

bulky and heavy in terms of sensors, computers and power sources may be tested on mundane 

devices such as a smart phone. 

Perhaps, an image from the news outlets of the crowd attended the 2013 President Obama 

second term inauguration can provide a sense of variability of faces, and how an automatic face 

recognition system may be challenged (e.g., to perform law-enforcement or a public service 

function). Figure 1 is snap shot of some of the crowd that appeared by the US Capital to listen to 

Obama’s inauguration speech on January 21, 2013. 

 

FIGURE 1 - An image of a crowd in the open, illustrating the richness of faces and challenges 

for automatic face recognition in the wild (adopted from the New York Times archives, January 

21, 2013) 
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Figure 2 from the same occasion as well, shows that even in a controlled seating, the 

crowd may be difficult to recognize; necessitating help of “find a person” by the New Times. 

In this sense of “wildness”, the problem is indeed fuzzy and cannot be defined. Yet, it is 

what it is, a “digression” of unconstrained facial biometrics under A-PIE into evolving or 

unintended domains of use, or when aspects of the face recognition process (e.g., sensors, 

representations, compute engines, power requirements, networking) change. To impose a degree 

of control to the problem, one needs to start with a system designed under A-PIE assumptions, 

and then modify some aspects of it beyond the design specifications.  

 

FIGURE 2 - An image of a crowed in the open, but controlled and pre-assigned seating 

(adopted from the New York Times archives, January 21, 2013) 

 

The Computer Vision and Image Processing Laboratory (CVIP Lab) designed, built and 

tested a facial Biometric Optical Surveillance System (BOSS) based on A-PIE constraints. This 

thesis will be based on evaluating BOSS using low resolution imaging sensors and multiple 
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subjects. As cell phones, portable, networked and “cloud” computing are part of modern era; this 

thesis will challenge BOSS as such. 

 

A. Research Domain of the Thesis 
 

  Specifically, the thesis will test BOSS using low resolution cell phone cameras. The 

contribution of the thesis is on discovering portable face recognition, which may lead into 

“sensor networks” of facial biometrics units; which may be deployed in healthcare, law 

enforcement, and group activities such as camping and scouting.  

The thesis is structured as describing the following: i) the face recognition problem; ii) A-

PIE face recognition; iii) the BOSS facial biometric system; iv) describing BOSS using cell-

phone in terms of sensors and portability. The next chapter will provide a concise discussion of 

these four issues. 

 

B. Thesis Outline and Contributions 

 

The thesis is arranged as follows: Chapter 2 will cover elements of the mathematical 

foundation related to “detection,” “representation,” and “matching” of faces. The chapter will 

also discuss invariance in A-PIE Facial Biometrics as well as give a summary of the BOSS 

project. Chapter 3 will discuss the performance of the BOSS system in its current form at the 

CVIP Lab. Chapter 4 will discuss performance evaluation of BOSS using the low resolution 

camera of the iPhone 4. Chapter 5 will discuss portability of a BOSS-like system on smart 

phones, and how sensor networks of cell phones may be used for practical applications in 

security, surveillance, disaster relief and healthcare. Chapter 6 will summarize the thesis 
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contributions and will put forth suggested extensions and postulates on possible future use of 

facial biometrics on the cloud. 
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II. BASICS OF FACIAL BIOMETRICS AND THE BOSS SYSTEM 

 

 

 

A. Introduction 
 

As stated in Chapter 1, facial biometrics aims at recognizing and authenticating faces. 

Figure 3 is a representation of the face recognition process, which is formed of three major 

components: detection, representation and recognition (also called classification or matching). 

This chapter will present the basic mathematical foundation for each of these three steps, with 

focus on the approaches used in the BOSS project. 

 

FIGURE 3 - Basic components of face recognition 
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From anthropometric point of view, over 70 features have been used to describe the 

anatomical points of interest in the human face, as shown in Figure 4 [32].  Figure 5 shows the 

NIST ISO/IEC code for defining the facial features [33]. From computational point of view, 

however, the information content in the face, vis-à-vis automatic face recognition systems, lies in 

the region from chin to above the eyebrows. The forehead does not carry discriminatory 

information.  

 

FIGURE 4 - Anthropometric features/landmarks of the face [32] 

As automatic face recognition is to mimic human face recognition, in at least the ultimate 

goal of people identification, adhere is made, to the extent possible, to standard terminology used 

in human facial biometric and physiological literature.  
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FIGURE 5 - ISO/IEC 14492-2 code for facial feature points [33] 

Indeed, the anthropometric landmarks are used to guide the modeling process to generate 

the mesh of the “cropped” facial region which will be used in automatic face recognition.   
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FIGURE 6 - ISO/IEC standard for head and shoulder and head only photos [33] 

 

FIGURE 7 - The definition of pose with respect to frontal view [33] 
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B. Face Detection 

 

Given an image of a scene, the purpose of the face detection step is to identify the facial 

region(s) in the image. Various approaches in the literature have been proposed. A technique that 

is natural to apply is the template matching method [4], which creates a template for faces, and 

sweeps it through the image in a raster fashion, and calculates similarity with corresponding 

segments in the image. A face is detected if the similarity exceeds a certain threshold. Among the 

similarity measures that are common is the cross-correlation, registration using mutual 

information and other methods. As can be expected, such approach will be expensive 

computationally. 

Another approach is to use learning approaches. The Viola-Jones [5] method is very 

popular in face detection. Its main idea is the following: a) feature extraction of facial parts; b) 

train a classifier with various facial parts; and c) use a search approach to match the facial model 

with portions of the image, and mark those with high similarity value. The Adaboost algorithm is 

used to perform the training of the face detector, and a search method is used in execution of the 

detection. This chapter, highlights the components of the Viola-Jones algorithm, and refers to 

some of the modifications and enhancements that are being pursued, in order to improve the 

efficiency of the algorithm, especially, in the face recognition in the wild.  

 

1. Viola-Jones Algorithm 

 

The main idea is to scan a small window, reminiscent of a template, across the image, 

and analyze the content of the template using a series of primitive features that are sensitive to 

facial parts; e.g., eyes, nose,  and lips. In image processing/analysis, usually window-based 

operations are performed at fixed template (window) and on multiple scales of the input image; 
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e.g., in wavelet analysis. The Viola-Jones algorithm does the opposite; i.e., changes the window 

size to multiple scales and rescan the input image. In each scale change, the size of the primitive 

features change accordingly (base template is        and gets enlarged to      ,           

       then       , etc., in scale of 1.25). To reduce time in calculating the features, they 

transformed the input image into a representation called the integral image, which makes the 

scanning invariant to scale; i.e., scans are performed at same number of operations.  

Below is demonstration of the integral image and the primitive features within a template.  

 Integral image: 

The original     image  (   )   [   ]   [   ] would be transformed to   (   )   

[   ]   [   ]) such that a pixel at locations (   )  in the integral image will be sum of all 

pixels to the left and above of it. This “causal” representation codes the original information in 

the image in a suitable form for window-type computation of the primitive features, which will 

simply calculate difference between regions within the template, at different scales. 

Example:  

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 

 17 18 19 20 
 

1 3 6 10 

6 14 24 36 

15 33 44 78 

28 60 97 143 

45 95 150 210 
 

 

Original Image  (   ); (   )  [   ] 
 

Integral Image   (   )(   )  [   ] 
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 Primitive templates: 

Viola-Jones use templates reminiscent of those use in the Haar Transform, known as 

Haar features, or Haar-like features, which are sensitive to transitions in the image (i.e., nearly 

estimate the gradient). Five types are illustrated below:  

 

FIGURE 8 - Haar feature types computed within a template, at different scales, as it sweeps 

through an image. Computation is performed on the integral image 

 

These features are calculated, at a given scale, as the difference between all pixels under 

the white region and the black region. The output of these computations is used to train a 

classifier. 

Viola-Jones empirically selected base template of size       (               ). For 

each feature type, at all positions and scales, within this template, the numbers of features were 

calculated empirically to be around 160,000 (a lot more than the 576 region of support of the 

template).   

 Calculation of the primitive templates from the integral image 

The features can be computed by the integral image as follows: 

∑  (   )    ( )    ( )    ( )    ( )(   )       (2.1) 
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Therefore, the primitive features, at a given scale, will be calculated from the integral 

image by a series of computations from the corner values, which have been calcualted only once 

in the integral image (Figure 9).   

 

FIGURE 9 - Illustration of computation of areas of “causal” regions from the integral image. 

The shaded triangle will be equal to   (   )    

 

 Using the integral image, the calculations of the features is very straight forward and can 

be programmed efficiently. Each calculation results with a value which is compared to a 

threshold, and based on that, the pixel is declared “face” or “none face.” When the template is 

over a face region, these features are expected to provide large values (because the eye, nose, lip 

regions carry discriminations). An approach is needed to get the “face” features fast from among 

the many features to be calculated (again, about 160,000 features within a       region – with 

increasing scales, the same number of calculations remains, thanks to the integral image). The 

classification approach that will decipher “face” features quickly is a modification of the 

Adaboost algorithm, which is described next. 

 Adaboost classification 

Viola-Jones approach for classification is as follows: Let    (   )  [    ] represent that 

base region or scaled version of it. For each pixel in  , calculate the features as defined before. 
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Let the decision of these classifications be  ; hence, pairs of decisions can be generated as 

follows: At each pixel  (   ) and for a feature   (one of five types above) one can obtain a 

decision  ; which will conclude that the regions under the template is a face candidate or not. 

This can be written as: 

 (       )  {
                  ( )         
                                  

   (2.2) 

where   is the applied feature,   is the polarity and   is a threshold. As expected, so many 

decisions will be performed, majority would be inconclusive (weak), and the Adaboost algorithm 

consolidates these “weak” classifiers. The Adaboost algorithm "Adaptive Boosting," is a 

machine learning algorithm formulated by Yoav Freund and Robert Schapire, 1995 (see their 

1997 publication [34]). Its optimality has been studied in the machine learning literature, and 

requires good training dataset.  Viola and Jones adapted the algorithm for face detection. It is 

highlighted in Table I on the next page (see Viola-Jones, [5]). 

As stated before, Viola and Jones run the basic classifier using templates of larger scales 

than the base scale of      , each time they enhance the quality of the decision by eliminating 

non-faces. The overall decision approach is known as “Cascaded Classifier”. The Viola-Jones 

approach is trained over thousands of “face” and non-face images. In the literatures, there are 

considerable numbers of cropped face and non-face images suitable for training the algorithm, in 

order to obtain the optimum set of features, parity ( ) and thresholds ( )weights. In summary, 

the Viola-Jones algorithm performs face detection using sliding window of region at different 

scales, and in each scale a process of no-face elimination is performed. As the number of 

computations is huge (fixed per scale), the weights of the Adaboost classifier are obtained off-

line over tens of thousands of faces and no-face images (usually the number of no-face images is 
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much higher than the face images). Better training results when the face images contain lots of 

varieties, including pose and intensity variations. An implementation of Viola-Jones exists on 

OpenCV, and has been adapted in the BOSS project [19]. 

 

TABLE I: THE MODIFIED ADABOOST ALGORITHM 

 

1. Given example images and decisions: (     ) (     )  (     ), where 

     [   ] are the regions under the sliding template. Let             
corresponding to the decision of face/no face. 

 

2. Initialize the weights      {
                  
                    

  , where         are the number 

of positive (face) and negative (no face) decisions.  

 

3. For   [   ] do: 

a. Normalize the weight 
   

∑    
 
   

     

b. Select the best weak classifier with respect to the weighted error 

             ∑    (  

 

      )      

c. Define   ( )   (          ), where          are minimizers of     

d. Update the weights:               
    , where 

   {
                                             (    )
                                                    

  

and      
   

    
 

 

4. The final – strong – classifier is 

 ( )  {                    ∑    ( )      ∑  

 

   

 

   

                                                       

    

Where       
 

  
 .  

 

The output of the Viola-Jones algorithm is facial regions, which need to be cropped 

further to highlight the region that carries the most discriminatory information in the face (region 

between the chin and eyebrows).  



17 
 

C. Face Representation 

 

The faces, output of the detection stage, may be represented by various methods. As an 

image, a full representation may be through the gray level values. However, this is not robust due 

to size and the degree of redundancy in the facial information. Various descriptors have been 

proposed to describe the feature of the face image; especially those belonging to the nose, eye, 

lips regions, which carry the most of the discriminatory information in the face. Among these 

descriptors the Linear Binary Patterns (LBP) [9], Scale Invariant Feature Transform (SIFT) [10] 

and the Speed Up Robust Features (SURF) [11] descriptors. Image matching algorithms consist 

of three major parts: feature detector, feature descriptor, and feature matching. 

 This section describes some of the feature detectors and descriptors common in image 

analysis. Figure 10 shows a test image used to evaluate these object descriptors. 

 

FIGURE 10 - Test image and keypoints, used to test object descriptors 

 

1. Multi-Resolution Local Binary Pattern (LBP) 

 

The Local Binary Pattern (Ojala et al., 2002 [9]) is an operator invariant to monotonic 

changes in grayscale and can resist illumination variations as long as the absolute gray-level 
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value differences are not badly affected. The original operator labeled the pixels of an image by 

thresholding the     neighborhood of each pixel with the center value and considered the 

result as a binary number. At a given pixel position (     ), the decimal form of the resulting  -

bit word is given by the following equation:    (     )  ∑  (     ) 
  

   ; where,    

corresponds to the center pixel (     ),    to gray level values of the eight surrounding pixels and 

function  ( ) is a unit-step function. 

 The LBP operator was extended to a circular neighborhood of different radius size to 

overcome the limitation of the small original      neighborhood size failing to capture large-

scale structures. Each instance is denoted as (   ), where    refers to the equally spaced pixels 

on a circle of radius  . The parameter   controls the quantization of the angular space and    

determines the spatial resolution of the operator. An LBP pattern is considered uniform if it 

contains at most two bitwise transitions from 0 to 1 and vice-versa, when the binary string is 

circular. The reason for using uniform patterns is that they contain most of the texture 

information and mainly represent texture primitives. The operator is derived on a circularly 

symmetric neighbor set of   members on a circle of radius   denoting the operator as      
   . In 

the multi-resolution analysis the responses of multiple operators realized with different (   ) are 

combined together and an aggregate dissimilarity is defined as the sum of individual log-

likelihoods computed from the responses of individual operators.   The notation      
   used here 

refers to the extended LBP operator in a (   ) neighborhood, with only uniform patterns 

considered.  
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Figure 11 shows readings of the LBP for some keypoints on the test image in Figure 10 

under the effect of blur, noise, rotation and scale. In general, the LBP descriptor works well 

when the neighborhood around the keypoints have reasonable texture content. 

 

FIGURE 11 - The plot of the LBP descriptor performance on the test image under different 

blur, noise, rotation, and scale levels at the same selected point on transformed images 
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2. Scale Invariant Feature Transform (SIFT) 

 

As detailed in Lowe, 2004 [10], SIFT consists of four main steps: (1) scale-space peak 

selection, (2) keypoint localization, (3) orientation assignment, (4) keypoint descriptor. 

 Scale space selection:  

The scale space  (    ) is constructed by the linear convolution of the image  ( )  with a 

cylindrical Gaussian kernel   (    ) which can be viewed as a stack of 2D Gaussians one for 

each band. The scale is discretized as         where        and 

  {           
   (    )  

       
}. Scale-space extrema detection is perfromed through searching 

over all scales    and image locations    (   )   in order to identify potential interest points 

which are invariant to scale and orientation. This can be efficiently implements using Difference-

of-Gaussians  (    ) which takes the difference between consecutive scales, i.e.  (    )  

   (    )   (      ), where for a spectral band    , a point   is selected to be a candidate 

interest point if it is larger or smaller than its       neighborhood system defined on 

  (        )  (      )  (        ) , where    is marked to be the scale of the point  .  

This process leads to too many points some of which are unstable (sensitive to noise); 

hence removal of points with low contrast and points that are localized along edges is 

accomplished. 

 Keypoint localization:  

 In order to obtain a point descriptor which is invariant to orientation, a consistent 

orientation should be assigned to each detected interest point based on the gradient of its local 

image patch. Considering a small window surrounding  , the gradient magnitude and orientation 
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can be computed using finite differences. Local image patch orientation is then weighted by the 

corresponding magnitude and Gaussian window. Eventually the orientation is selected to be the 

peak of the weighted orientation histogram. 

 

FIGURE 12 - Examples of keypoints detection using the SIFT detector with moderate rotation 

and blurring. The original image is upper left 

 

 Building a point descriptor: 

  The process of building a descriptor around a key point is similar to orientation 

assignment. A       image window surrounding the interest point   is divided into sixteen 

    sub-window, an 8-bin weighted orientation histogram is computed for each sub-window, 

ending up with            descriptors for each interest point. Thus each detected interest 

point can now be defined at location, specific scale , certain orientation   and a descriptor vector 

as              . 



22 
 

 Figure 13 shows the plot of the 128 values of the SIFT descriptor under different blur, 

noise, rotation and scale levels at the same selected point on transformed images in Figure 12. 

 

FIGURE 13 - SIFT descriptor under different blur, noise, rotation and scale levels at same 

selected point on transformed images 
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 Interest point matching: 

Interest point matching is performed to provide correspondences between the given 

images. Two points   
  and   

     with SIFT descriptors   
  and   

    are said to be in 

correspondence, if: 

     
(  

    
   )  √‖  

    
   ‖

 
 is minimum. 

 This measure is computed as by: 

     
(  

    
   )  (∑     

   |   
     

   |
 
)
   

.  

  

3. The Speeded-Up Robust Features (SURF) 

 

 The (SURF) descriptor (Bay et al., 2008 [11])  is a distribution of Haar-wavelet responses 

within the neighborhood of interest. The SURF descriptor consists of several steps; a square 

region is constructed around the interest point and oriented either in a rotation invariant method, 

where the Haar-wavelet response in the    and y  directions are computed and weighted with a 

Gaussian centered at the interest point, or a non-rotation invariant method. The wavelet 

responses in both directions are then summed-up over each sub-region. The total number of 

descriptors for each point is 64. SURF uses mainly the texture information concentrated around 

interest points. Principle component analysis (PCA) and linear discriminate analysis (LDA) are 

used to project the extracted SURF descriptors to a low-dimensional subspace where noise is 

filtered out. 

  A plot of the 64 values of the SURF descriptor under different blur, noise, rotation and 

scale levels at the same selected point on transformed images is shown in Figure 14. 



24 
 

 

FIGURE 14 - The plot of the SURF descriptor under different blur, noise, rotation and scale 

levels at the same selected point on transformed images 

 

 The comparison of the three descriptors is shown in the following subsections. In general, 

the LBP works better with high textural contents, whereas the SIFT provides better performance 

with robust definition of keypoints.  
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4. Performance Evaluation on Test Images 

 

The test image in Figure 12 is used to test the performace of the three descriptor (SIFT, 

SURF, and LBP). 46 points keypoints were selected manualy from the original image. The 

location ground trouth location of these points are calculated on every transformed image based 

on the transformation applied to generate this image.The descriptors are clculated at these points 

for all the images. The number of correct matched points are used as an evaluation criteria. The 

results are shown in Figure 15. The LBP showed a more robust performance with respect to 

noise,  while the SIFT was more robust to rotation.  

 

FIGURE 15 -  The number of correspondences under different blur (upper left), noise (upper 

right), rotation (lower left) and scale levels (lower right)  for the SIFT (solid curves), SURF 

(dashed curves), and LBP (dotted curves) descriptor 
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 The above descriptors have been used for face recognition research by a great many 

researchers. For example, Ahonen et al., 2006 [35] used the LBP descriptor for face recognition, 

Bicego et al., 2006 [36], used the SIFT algorithm, while Dreuw et al., 2009 [37] used the SURF 

descriptor.  In the BOSS project, both the LBP and a version of the SIFT descriptor are used 

(e.g., [38][20]).  

  

D. Face Recognition 

 

The gallery is stored in the representation of choice in a data structure that is efficient for 

search. This is performed offline. Given a candidate face (probe), detected by the face detector, 

its representation is computed. The recognition process becomes a simple comparison between 

the representation of the probe and the gallery. The recognition is declared based on ranking 

scores in the matching algorithm. Various efficient search methods are used to expedite search, 

especially when the galley is large. 

Ignoring the age issue for a moment, the representation of data for a typical face 

recognition system will have pose, illumination, and expression (PIE) variations. 

 Given a gallery (database) of subjects, a pictorial representation may be as shown in 

Figure 16. A typical recognition strategy, as stated above, is formed of three steps: face 

detection, facial information representation, and matching, as illustrated in Figure 17. We briefly 

discuss each step below. 

Figure 16 highlights two presentations for the images forming a gallery. The upper part 

of the figure shows that images will be represented by row (or column) concatenation. The 

bottom is an illustration of a general PIE representation, where the function   (     ) represents 
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the pose, illumination and expression for each subject. Such representation can be used in 

various computational scenarios to exploit the redundancies involved in the facial information 

(all faces have two eyes, one nose, lips, and two cheeks) and a specific number of features have 

been shown to hold the major discriminatory power (around the tip of the nose, corner of the lips 

and eyes regions). We will examine the issues of facial feature extraction and recognition later 

on in the thesis.  

 

FIGURE 16 - Gallery arrangement with pose, illumination and expression (PIE) variations 

(adapted from Terzopoulos [3]) 
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FIGURE 17 – Basic components of face recognition 

 

E. A-PIE Face Recognition 

 

There is no approach that fits all scenarios of image acquisition, and among the vast 

literature that exists on face recognition, we cannot pick a method that is optimal. Hence, a vast 

and comprehensive listing of methods would be a futile effort. Instead, we refer to sample 

literature that covers the A-PIE facial biometrics; many of which focuses on only a particular 

aspect of the problem. 

 

1. Age Models 

 

Aging affects the human face, in size, texture and overall appearance. Therefore, it is 

expected that aging will affect the accuracy of automated face recognition, especially is pictures 

were taken years apart. This is the conclusion of Ling et al., 2007 [13]. However, they also point 

out that “experiments show that, although the aging process adds difficulty to the recognition 

task, it does not surpass illumination or expression as a confounding factor.” Wang et al., [14] 
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simulated the effects of aging on face recognition, while Sue et al., 2006 [15] discuss a model to 

simulate the aging.  Park, et al., 2010 [16] proposed a 3D aging modeling technique to 

compensate for the age variations to improve the face recognition performance. The technique 

adapts view-invariant 3D face models to a given 2D face aging database, on which recognition is 

performed.  

 

2. Pose-Invariance 

 

Dislodging the effects of illumination and expression, pose-invariant face recognition has 

been shown to be possible, even in systems performing face recognition at a distance. For 

example, Mostafa et al., [2012] have developed two approaches for pose-invariant face 

recognition at a distance. The first one is called dynamic weighting of facial features [17]. In this 

approach, the similarity measure between the face signature of the probe image (query image) 

and face signature of gallery images is the sum of similarity measures of feature vectors of the 

patches around facial feature points. Since some facial feature can be partially occluded with 

head pose angle, a dynamic weight for these facial features was proposed. Dynamic weights are 

assigned for each facial feature at each pose based on the overlapping scores which is based on 

the number of pixels in the patch in the frontal gallery image and captured pose image that are 

corresponded to the same vertices in the 3D of the person. 

The second approach is a hybrid 2D-3D, where a 3D shape from the single frontal gallery 

face image is constructed for each person [18]. The 3D shape and the texture from gallery image 

for each person are used to synthesis other face images at different poses. The gallery in this 

approach consists of multiple images for the person at different poses that are generated from 
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single frontal pose face image. Then, the face image is represented by the appearance in patches 

around facial feature points. Therefore, we have multiple face signatures for each person. 

Combinations of these two approaches were used for stereo-based face recognition with 

the BOSS project at the CVIP Lab [19]. Instead of using one training sample per person at 

frontal pose in the gallery, two images are used at frontal pose per person. The two images are 

captured simultaneously with stereo camera to enable us to construct 3D shape for the face using 

geometric stereo algorithms. This 3D shape with the texture from gallery face images are used to 

synthesis other face images at different poses to solve the pose problem [20]. This approach is 

similar to Hybrid 2D-3D approach. The difference is that 3D shape is constructed from single 

image. A comparison between the stereo-system for pose invariant face recognition and other 

proposed approaches from single is done to study the importance of geometric stereo face 

recognition. 

One of the challenges in geometric stereo imaging, the two cameras should be pointed to 

the person at the same time. Once one of the cameras is decided to capture one subject, the other 

camera should be pointed to the same subject. This problem is called camera steering in camera 

network. A solution of this problem is proposed based on using human face biometric measures 

to infer an approximate estimate of the subject’s distance to the first camera that can be used to 

steer the other camera [21].  

 

3. Illumination Modeling 

 

Illumination research is very popular in the computer graphics and the computer vision 

literature. In terms of face recognition, the pioneering work of Kriegman and Belhumeur [22] is 

a good building block. They addressed the following question: what is the set of images of an 
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object under all lighting conditions and pose? For the set of images of an object under variable 

illumination, including multiple, extended light sources and shadows, they proved that the set of 

n-pixel images of a convex object with a Lambertian reflectance function, illuminated by an 

arbitrary number of point light sources at infinity, forms a convex polyhedral cone in 

illumination domain (i.e., for column or row-concatenated representation of n pixels, the cone 

will be in     space). They also showed that the dimension of this illumination cone equals the 

number of distinct surface normals. Furthermore, the illumination cone can be constructed from 

as few as three images. In addition, the set of n-pixel images of an object of any shape and with a 

more general reflectance function, seen under all possible illumination conditions, still forms a 

convex cone in   . 

Great many studies since then focused on simulation of the illumination cone, and 

various mathematical models were introduced for illumination, through rendering and synthesis 

(computer graphics perspective) [23] or image formation (computer vision perspective) [24].  

Modeling the image formation process addresses the object surface characteristics, the 

camera and the light source.  Elhabian and Farag, 2013 [25] developed an analytic formulation 

for low-dimensional subspace construction in which shading cues lie while preserving the natural 

structure of an image sample. Using the frequency space representation of the image irradiance 

equation, the process of finding such subspace is cast as establishing a relation between its 

principal components and that of a deterministic set of basis functions, termed as irradiance 

harmonics. Representing images as matrices further lessen the number of parameters to be 

estimated to define a bilinear projection, which maps the image sample to a lower dimensional 

bilinear subspace. This approach links the illumination model to irradiance; thus from a given 
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image we can synthesis multiple illuminations.   Logical expansion of this work is to expand it 

into multiple poses.  

 

4. Expression Modeling 

 

This is by far the toughest part of facial biometrics. As the face contains scores of 

muscles, one would expect that the number of expressions would be too many; some are related 

to cultural and ethnic upbringing (e.g., [1]). The facial action coding system (FACS [27]), Izard, 

et. al., 1983, is a human-based system designed to detect such subtle changes in isolated facial 

features through viewing a videotaped facial behavior in slow motion and manually recording 

the FACS code of all possible facial changes which are referred to as actions units. FACS 

consists of 44 action units, where thirty are related to the contraction of a specific set of facial 

muscles and the other 14 are referred to as miscellaneous since their anatomic basis is not 

specified. Ekman and Friesen [26] proposed that specific combinations of FACS action units 

represent prototypic expressions of emotion, however, emotion-specific expressions are not part 

of FACS, they have a separate coding system such as the emotional facial action system 

(EMFACS [28]). Henceforth, FACS is purely descriptive coding system where there is no 

inferential information provided such as joy or anger.   

The study of Tian, Kanade and Cohn, 2001 [29] performed analysis of  facial expressions 

based on both permanent facial features (brows, eyes, mouth) and transient facial features 

(deepening of facial furrows) in a nearly frontal-view face image sequence. The system 

recognizes fine-grained changes in facial expression into action units (AU) of the Facial Action 

Coding System (FACS), instead of a few prototypic expressions. The authors used multistate 

face and facial component models for tracking and modeling the various facial features, 
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including lips, eyes, brows, cheeks, and furrows. During tracking, detailed parametric 

descriptions of the facial features were extracted. With these parameters as the inputs, a group of 

action units (neutral expression, six upper face AU and 10 lower face AU) are recognized 

whether they occur alone or in combinations. The system has achieved average recognition rates 

of 96.4 percent (95.4 percent if neutral expressions are excluded) for upper face AU and 96.7 

percent (95.6 percent with neutral expressions excluded) for lower face AU. 

Various computational studies for modeling of expression and for performing face 

recognition under expression variation have been introduced in the past decade. Some of these 

models are based on morphable (e.g., Blanz [30]) models active appearance (e.g, Theobald, et 

a;., 2007 [31]). The BOSS system of the University of Louisville enables group face recognition, 

and would be convenient prototype for facial expression analysis of a group [19]. 

 

F. The BOSS System 

 

This section will discuss the BOSS system in terms of design, modes of operation, and 

software. Understanding the system’s components is crucial to devise an evaluation procedure, 

which will be the subject of Chapter 3. The literature about BOSS exists in the forms of technical 

reports, evaluation meetings, conference proceedings, and other communiques that required 

major efforts to describe in a short concise format. The section will not dwell into years of efforts 

of many researchers and engineers involved in the BOSS system; rather, it will include only 

glimpses of these efforts as pertaining to the overall purpose of this thesis. 

Digging through the design papers of BOSS revealed considerable number of documents 

that have been exchanged by the CVIP Lab, EWA Government Systems, and the Government 
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evaluators. In this section, specific technical reports that dealt with design of the BOSS will be 

referred to. The technical reports will be referred to by the dates they were published. Again, 

only bare minimum of essential details about the system will be described in this chapter. 

 

1. Overall System Components 

 

The BOSS (Biometric Optical Surveillance System) project builds on past developments 

at the CVIP Lab in the domain of biometrics and computer vision systems. At the heart of the 

BOSS project is a trilogy: image acquisition, leading to capturing objects in the field of view of 

the sensor; reconstruction, leading to mapping the captured objects into a form suitable for the 

final recognition step; which identifies the detected objects by correspondence with a dynamic 

database.  

Specifically, 1) the acquisition step is based on parallel skin detection and multichannel 

tracking, in order to enable unambiguous facial detection of a group. 2) The reconstruction step 

will involve simultaneous statistical modeling of multichannel information in order to enable 

parallel sparse reconstruction of facial features for recognition. 3) The identification will employ 

parallel networks of search algorithms and state-of-the-art methods of database access using 

proper representation of facial information. The  hardware include special lenses to allow 

maximum possible range of identifiable pictures of a group, a range sensor for calibration and 

focusing, an IR sensor to add additional biometric information to enhance the sensitivity and 

specificity of BOSS performance as measured by improvements in acquisition and identification. 

The system will allow imaging of humans under changes of lighting and various environmental 

conditions. In addition, the system will allow intelligent capturing and discrimination of subjects, 
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within a group, under dynamical conditions of typical activities.  Figure 18 illustrates the main 

components of BOSS. 

 

FIGURE 18 - The BOSS system components for performing face recognition at a distance. 

The system works on image-based (single channel) or stereo-based (dual channel) modes 

 

BOSS is essentially three components as shown below; the three steps, not inherently 

serial: Acquisition, Processing and Recognition.  
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FIGURE 19 - Three components to the BOSS 

 Acquisition: 

Images may be captured by cameras or obtained from a database. Databases may be 2D 

images or 3D representations.  

 Processing: 

Cropped facial region is produced and two modes of processing may be conducted; 

Single channel (one image) or Dual channels (two or more images of the face, related to each 

other; e.g., a stereo pair).  

A. Processing of single channel may be performed in two scenarios: 2D and 3D. The 2D 

processing produces shape and texture images, and the approaches for 2D Face 

Recognition may be the classical Eigen faces, Eigen tensors and various similarity 

measures that compare the processed image to a database of similar attributes. The 3D 

processing provides a 2D to 3D mapping using a priori information (e.g., a database of 

shape and texture information such as the University of South Florida database), which 

results in estimates of the shape and albedo using Statistical Methods (e.g., statistical 

shape from shading, spherical harmonics, etc.).  
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B. Processing of dual channel mode provides a direct metric shape estimate; e.g., depth from 

stereo followed by a 3D mesh fit to the surface, which can be sparse or dense.  The 

features for recognition using shape information (obtained directly from dual channel 

processing or by estimation from the single channel processing) may provide various 

features for recognition, including geometric moments. The output of the Processing step 

provides the Biometric Signature, which includes texture, shape, and spares shape 

meshes.  

 Recognition: 

Is preformed based on the features extracted. Algorithms for recognition measure an 

optimum similarity between the biometric signatures and the reference databases.   

 

2. Hardware 

 

 The BOSS System is used to collect images for identifying individuals. It consists of two 

sub-systems: the BCU (Biometric Collection Unit) and the REPS (Remote Processing System). 

A BCU consists of a high-resolution digital camera and a pan/tilt unit that is mounted to an 

adjustable tripod and is capable of subject tracking. The BOSS system is typically deployed in a 

stereo configuration of two BCU's (Figure 20). The full hardware equipment list is provided in 

Appendix A. 

  Each BCU collects a digital image of a subject and transmits that data to the REPS via 

fiber optic cable. The REPS is a high-end computer built from off-the-shelf components which 

runs software that transforms the image data into a 3-D biometrical signature of the subject. The 

signature can then be stored in a database and/or compared against existing signatures to return 

results for the closest matches.  
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 The system can accept or acquire either a stereo-pair or a single digital image. The BOSS 

system requires a high-resolution imaging sensor with an available SDK (Software Development 

Kit). Other necessary features include live-view functionality, auto/manual focus capability, and 

an interchangeable lens mount. For a given focal length a greater resolution makes identification 

at longer ranges possible. An interchangeable lens mount ensures the system can be outfitted for 

a versatile range of standoff distances.   

 

FIGURE 20 - BOSS System at a testing site, February 2012 

 

3. System Modes of Operation 

 

BOSS has two modes of operation:  (1) Offline mode: where an offline database is 

constructed by BOSS setup and processed offline at the CVIP Lab. This database is divided into 

probes and gallery in order to assess the overall performance of the BOSS system. (2) Online 

mode: where a probe is captured and processed online then matched against a pre-determined 

gallery. 
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 The following subsections discuss the process of data acquisition, database construction 

and a brief discussion of the 2D and 3D recognition strategies used.  

 

4. Data Collection 

 

Figure 21 illustrates a generic dual-channel (with one individual at a time) data 

acquisition setup. At a given roll, pitch and yaw angles, single and stereo-pair image sets are 

collected.  This protocol can be employed in online and offline operating modes. 

 

FIGURE 21 - A Dual-Channel data collection setup 

TABLE II: RELATION BETWEEN A DISTANCE AND ITS CORRESPONDING 

BASELINE RANGE IN METERS 

 

Since the scenarios intended for evaluating BOSS are intended to be flexible and real 

world in nature, hence, the algorithms need to be able to function as such. While it is virtually 
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impossible to perceive every possible scenario for pose, illumination and expression variations, 

and a representative ensemble of the “real world face recognition” may be generated by data 

acquisition at multiple yaw, pitch and roll angles, at various environmental conditions. Ideally, 

large number of subjects with variations in skin color, age, pose, illumination and expressions 

should be collected in order to establish the design thresholds for the system. The data structure 

used is similar to Figure 22. 

  

FIGURE 22 - Database arrangement for BOSS data collection used in system design 

Metadata includes: 

o the subject ID 

o geometry of stereo setup (baseline B, pan and tilt angles for left and right units)  

o distance 

o pose 

o Environment (e.g., outdoor status: cloudy, sunny or rainy, temperature, etc.) 

o Biographic (e.g., name, gender, ethnicity, age, etc.) 

The database is divided into a gallery and probes. As indicated in the BOSS terminology 

document, gallery refers to the collection of biometric representations of enrolled individuals in 

the database, whereas the probe is a biometric representation of an individual to be compared 

against the gallery.  

According to the training and performance requirement, the gallery is chosen as follows: 
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- The set of the subject sessions for all participants at certain pose and certain distance 

(e.g., at distance 20 meter, and pose (0, 0, 0), as illustrated in green column in Figure 22).  

- The set of the subject sessions for all participants at certain pose and for all distances 

(e.g., at distances 20-100 meter, and pose (15, 0, 0), as illustrated in brown slab in Figure 

22).  

- The set of the subject sessions for all participants at certain distance and some poses (e.g., 

at distance 40 meter, and all pose, as illustrated in blue slab in Figure 22).   

While using all these combinations gives a more comprehensive database, a smaller database 

may be constructed and can constitute the shell of the comprehensive database.   

 Figure 23 shows a pictorial illustration of data collection. The figure illustrates the 

dilemma of data collection for design and testing of biometric system; the number of images is 

very large per individual! The robustness of the system comes in place if only few poses, per 

subject, are needed, and if the system is tolerant to small expressions and minor changes in 

illuminations. 

 Designing a system that is “invariant” to all A-PIE circumstances is simply unreachable; 

hence, the deployment scenarios should be exploited while designing the system.  
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FIGURE 23 - Illustration of data collection per individual in design phase of BOSS 

 

5. BOSS Algorithms 

                

a. Face Detection and Cropping.  This is performed by adapting the Viola-Jones 

algorithm to detect face candidates; each candidate is then cropped using a mesh generated by 

the active appearance modeling approach [19][42].  System starts by detection an individual in 

the field of view (FOV) of the camera, take an image, by the two cameras (right and left images). 

After the image acquisition (has faces and non faces), the Algorithm starts the face detection 

phase. The face detection phase uses the Viola-Jones algorithm in order to find the faces within 

the captured image and to output an image with these detected faces encased in a square. The 
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face detection phase uses the Viola-Jones algorithm for face detection which has a pre-

processing step and a post processing step. 

 The algorithm works on analyzing an image using different scaling factors in order to 

detect possible faces. Each input image is subject to different scaling factors, a window is then 

scanned over the scaled image in order to specify an area where a possible face lies. The image is 

then scaled again in order to search for other possible face areas, as well as refine the previous 

found face area. By this, the face detection algorithm is capable to detect all the faces in the 

image, even if there are different face sizes in the image; such as when a subject is closer to the 

sensor than a subject who is further away. The left side of Figure 24 depicts this change in 

scaling factors. These ratios are needed to be adjusted based on the input image resolution. The 

original setting for the BOSS uses these scaling factors for the Canon EOS 7D images (1/6, 1/7, 

and 1/8 of original image); and these scaling factors for mug shot images (1, 1/2, and 1/3 of 

original image). 

This algorithm is also used as a facial feature detector, such as an eye detector as well as 

a nose and mouth detector. 

Once the faces and facial features have been found in the two images; the system passes 

these candidate faces to the next step which is used to reject the false positive samples. A scoring 

algorithm was developed in order to take the detected faces, from both the left and right image 

(captured by the stereo setup cameras) and rank their possibility of being an actual face. This 

ranking was achieved by adding the number of facial features (eyes and mouth) found in each 

candidate face in order to decide whether it in fact belonged to an actual face. If the candidate 
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face had a score of 2 or more (2 facial features found), than it is more probable that it is actually 

a face (Figure 24). 

 

FIGURE 24 – Example of stereo setup ranking system in BOSS 

 

Upon removal of the false positive candidates, the detected faces become an input to the 

facial feature detector, which will output facial feature points. Using the Adaboost classifier as a 

facial point detector, trained to find specific points, the system detects 9 points on the face along 

with some other steps for fitting of a global model to these points. The Active Shape Model 

(ASM) is then used to detect more points, making the initial 9 points into 68 points. These 

outputs of 68 facial feature points are consisted of such things as the eye corners, mouth corners, 

nose tip, and boundary points. There are various algorithmic details to carry out this step, 

including isolating the eye, nose and lips region (e.g., Farag et al, 2012 [19]).  

b. Face Representation.  The third step in the BOSS is to detect/reconstruct a 

signature around the previously found 68 points. Using the points found in previous step as an 

input, they are put through three different signature extraction techniques. These signature 
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extractors will be used to detect a feature vector, and this feature vector will be used to match 

between probe faces and enrolled faces. These three signature extraction techniques are 

composed of two 2D signature extractors along with one 3D signature extractor. The 2D 

signature extractors used are the Gabor wavelet signature extractor and the Local Binary Pattern 

(LBP) signature extractor; the 3D signature extractor is the sparse 3D points’ reconstruction for 

2D points. So the 68 points found previously are used to create a 3D reconstruction.   

Another use of the Gabor signature found is in another false positive reduction step for 

the dual channel setup. Using the Gabor signatures found from the left and right images 

captured, the system is able to match candidate faces from the left image to faces in the right 

image in order to find which face in the left image corresponds to which image in the right image 

(Gabor signature from a face in the left image is used to compare with the Gabor signature from 

a face in the right image in order to find a match, which means they are the same face). The 

system is capable of removing false positives further by comparing a non-face that was detected 

in left image to the right image, if the right image did not detect this non-face as well, the system 

will discard it. 

The BOSS has a database of enrolled subjects that stores the feature vectors from the 

three signature extractors described above. Once the three feature vectors are computed from 

each of the three signature extractors above, for the new probe subject input, it is passed to a 

minimum distance classifier to select the nearest neighbor for each subject. In other words, the 

system compares the feature vector for a probe subject with the feature vectors from the gallery 

(enrolled) pictures stored in the database.  
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c. Face Recognition.  The current implementation of BOSS uses a minimum 

distance (k-NN) classifier. The feature vector per probe is compared to the entire database 

through a distance measure. The system subtracts the sparse 3D reconstruction feature vector of 

the probe from the feature vector of an individual in the database and sums the absolute value of 

the difference giving a distance measure (call the error/difference the “distance measure”). 

Similarly, the system also gets the distance measure for the Gabor feature vector and the LBP 

feature vector for the entire database.  

The database is sorted based on the distance measure for each feature vector. Then 

combine the decision; get the decision from the Gabor +decision of LBP + decision of 3D points 

weighted with a vector. Weight for Gabor is 50%, LBP is 48%, and 3D is 2%. This will give you 

the final decision; based on this final decision you will sort the database from the closest subject 

to the probe to the furthest.  

 

G. Summary 

 

This chapter discussed some of the terminologies and standards of facial biometrics, and 

the major elements of the theory of face recognition, which is formed of a trilogy of steps: 

detection, representation and recognition. The common threads in the literature at the 

fundamental level are presented, without sinking into the details of the applications and the 

various competing algorithms. In particular, the chapter contains a concise description of the 

popular Viola-Jones algorithm for face detection, which produces candidate facial regions. A 

subsequent step is performed to crop the facial regions holding the discriminatory information. 

The later part of this chapter described the BOSS project developed by the CVIP lab in its 

entirety. 
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 As unconstrained face recognition involves various uncertainties in the imaging process, 

the need for more accurate detection, representation and recognition will continue to persist. 

 As this thesis deals with evaluating an existing system by relaxing the sensors and the 

imaging scenarios, the immense theory and algorithms involved and the efforts to put them 

together into work, cannot go unnoticed. Even learning some of these methodologies and 

describing them in this thesis is an extremely difficult undertaking. In the subsequent chapters, 

the thesis will focus on the performance evaluation of BOSS.  
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III. BOSS EVALUATION 
 

 

 

The previous chapter discussed the BOSS project as well as described the mathematical 

foundations and algorithms it uses. In this chapter, the performance of the aforementioned BOSS 

project will be discussed. 

 

A. Performance Evaluation 

 

The BOSS system was officially evaluated at a number of settings by a third party. The 

results of one setting are described in this section. The purpose is to study the evaluation process 

that BOSS was evaluated against in an open environment, face recognition at a distance practical 

scenario. Understanding this process will guide the evaluation procedure to be used when the 

BOSS software will be evaluated using low-resolution cameras, as described in Chapter 4.  

The total number of images received from the baseline data taken in Washington State by 

PNNL was 178 stereo pair; 47 of them were excluded due to either the lack of ID cards or 

blurred images; i.e., 131 useful stereo pairs containing 11 different subjects were used in the 

testing. The header file of each image included the subject ID and the range which is the distance 

between the cameras and the subject. Different probes were created from these stereo pairs 
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categorized by the range. The ranges were 30, 50, 80, 100 and 150 meters. Table 3 illustrates the 

number of stereo pairs we have for every range. Outside of this table, 16 stereo pairs of groups of 

subjects and 8 images for one subject with different yaw angles starting from -90 to 90 through -

45, -30, -15, 15, 30 and 45. 

TABLE III: NUMBER OF STEREO PAIRS AT EACH RANGE 

Range Number of stereo pairs 

30 21 

50 20 

80 24 

100 24 

150 18 

Total 107 

 

1. Component-wise Performance Evaluation 

 

In the following subsections, we present the system’s results based on three main 

processes: (1) Face Detection, (2) Face Cropping, and (3) Face Recognition. 

a. Face Detection.  Given an arbitrary image, the goal of face detection is to 

determine whether there are any faces in the image and, if present, return the image location and 

extent of each face. Up to this point, we are dealing with face localization, which aims to 

determine the image position of a single face; this is a simplified detection problem with the 

assumption that an input image contains only one face. After detecting faces, the system detects 

the two eyes and the mouth. These face features are used in following stages to complete the 

recognition process. 

Table 4 summarizes the results of the face detection rates. For every range, the number of 

stereo pairs is multiplied by two, because for the face detection step these stereo pairs are two 

separate images. The face detection rate is then calculated as the ratio between the correctly 
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detected images and the total number of images for that range. After that, the face features 

detection rates are calculated similarly but with respect to the correctly detected images not the 

total number of images for that range. 

TABLE IV: FACE AND FACE FEATURES DETECTION RATE 

Range 

Number 

of  

Stereo 

pairs 

Number 

of 

images  

Face  

detection rate 

Left eye 

detection rate 

Right eye  

detection rate 

Mouth  

detection rate 

30 m 21 42 40/42=95.24% 39/40=97.5% 40/40=100% 38/40=95% 

50 m 20 40 38/40=95% 38/38=100% 38/38=100% 38/38 =100% 

80 m 24 48 40/48=83.33% 40/40=100% 38/40=95% 34/40=85% 

100 m 24 48 32/48=66.67% 32/32=100% 31/32=96.88% 28/32=87.5% 

150 m 18 36 17/36=47.22% 16/17=94.12% 16/17=94.12% 
15/17 

=88.24% 

 

 

 

 

 

FIGURE 25 - Face detection (left) and Facial Part (right) success rates as a function of 

distance from the camera 

The system succeeded in detecting the faces in many challenging stereo pairs. Most of 

these images were challenging because of the sun effect. Some of them had occlusions like 

subjects wearing caps and sun glasses. Also some of the subjects had moustaches, beards or even 

a strand of hair hiding part of the face (Farag, et al., 2012 [19]). Figure 26 shows sample results. 
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FIGURE 26 - Face detection challenges (a) sun effect (b) hair strand (c) closed eyes (d) cap 

and sunglasses (e) beard (f) moustache and cap. The first two columns show the left and right 

images, respectively, with face detection results overlaid on them. The last two columns show a 

zoomed in view for the detection results 
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Combining these difficulties for different subjects on different ranges led to some errors 

that will be illustrated in the next subsection. In addition, the effect of the range will be 

illustrated. However, there are face and facial features detection have encountered some 

challenging problems. 

For both the 30 meters and the 50 meters images, the face detection failed in only one 

stereo pair in each group. The failure was for the same reason in both of them; the subject was 

wearing a cap and eye glasses that combined with the effect of the sun resulting in that failure. 

For the 30 meters case, part of the face was detected in the right image but failed with detecting 

the face features and for the left image the face wasn’t detected at all. For the 50 meters case, the 

face was not detected in both the right and the left images. The results are shown in Figure 27(a) 

and (b) for 30 and 50 meters respectively. The same subject without eyeglasses and reversing the 

cap was detected successfully and the result is shown in Figure 27(c).  

For the 80, 100 and 150 meters the errors in face detection took two forms either the 

system failed to detect the face at all or the system detected the face in a wrong place. This is 

illustrated in Figure 28. For some images, the face was not detected in both stereo pair images 

but for most of them, the face was detected correctly in the left image but failed in the right 

image. Figure 29 shows other face detection errors that are due to occlusion either with 

sunglasses and cap or with hair strands.    
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FIGURE 27 - (a) and (b) Face detection failures at 30 and 50 meters respectively (c) same 

subject detected correctly after taking off the eyeglasses and reversing the cap. The first two 

columns show the left and right images, respectively, with face detection results overlaid on 

them. The last two columns show a zoomed in view for the detection results 

 

 

FIGURE 28 - Face detection errors at 80 and 100 and 150 meters 
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FIGURE 29 - Other face detection errors due to sunglasses, cap and hair strands. The first two 

columns show the left and right images, respectively, with face detection results overlaid on 

them. The last two columns show a zoomed in view for the detection results 

For face features, there were some errors in detecting the position of the eyes and the 

mouth. As illustrated previously, the mouth detection rates were lower than eyes detection rates. 

Figure 30 shows some of the errors in detecting face features. Errors in detecting eyes were due 

to sunglasses or hair strands on eyes combined with sun effect. Errors in mouth were mostly due 

to moustache and beard. 

b. Facial Cropping.  Facial cropping starts with facial features that have been 

detected in the face detection module. These features are used to initialize the facial mesh used 

for cropping, which is fitted based on the active appearance model trained by samples drawn 

from the CVIP-EWA database. Figure 31 and Figure 32 shows the initial and final cropping of 

two sessions in the PNNL database. The first session has acceptable final face cropping, while 

the latter one has inaccurate cropping due to occlusion presented by facial hair.  
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FIGURE 30 – Errors in detecting eyes and mouth. The first two columns show the left and right 

images, respectively, with face detection results overlaid on them. The last two columns show a 

zoomed in view for the detection results 

 

 

FIGURE 31 - The output in each step in face cropping for a good candidate in initial and final 

face cropping 
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FIGURE 32 - The output in each step in face cropping for a good candidate in initial and bad in 

final face cropping 

 

Table 5 shows percentages for acceptable facial cropping for the visual inspection 

viewpoint (Farag et al, 2012 [19]).  It can be inferred that the result of final cropping is worse 

than the initial cropping at each distance, which means that the distance is not the issue. First, we 

explain what is initial and final cropping. Initial cropping is affine wrapping given three 

correspondence points; left and right eye and mouth. Therefore, the initial cropping will fail if 

one of these point correspondence has been detected wrong. The final cropping is applying 

Active Appearance model (AAM) on initial cropping [42]. The reason that the results of final 

cropping are worse than initial cropping is the algorithm diverges. The divergence is due to the 

AAM algorithm depends on the training data.    

Among the possible enhancements for BOSS are the following: (1) Training AAM on 

uncontrolled environment database. (2) Investigating 3D-based mesh fitting algorithms, such as 

the work by Kanade [46] which propose a real-time combined 2D+3D active appearance models 

to solve the problem of pose and occlusion.  (3) Investigating improvement in AAM algorithm to 

improve speed and robustness against illumination [47].   
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TABLE V: PERCENTAGES OF ACCEPTABLE FACIAL CROPPING (BASED ON VISUAL 

INSPECTION) AT DIFFERENT DISTANCES 

 

Distance 
No. of face detected 

session 

Acceptable initial 

cropping 

percentage 

Acceptable final 

cropping percentage 

30 meter  18 sessions (36 

images) 

94.44% 50% 

50 meter  18 sessions(36 

images) 

94.44% 88.89% 

80 meter  19 sessions(38 

images) 

78.95% 50% 

100 

meter  

12 sessions(24 

images) 

83.33% 66.67% 

150 

meter  

5 sessions(10 images) 80% 60% 

 

c. Recognition.  A new gallery is constructed from the 11 subjects (10 from the 30 

meter data and 1 from the 50 meter data). Four probe sets are also constructed at 30, 50, 80, 100, 

and 150 meters using sessions with faces successfully detected and cropped. For 30-meter probe, 

we have 18 sessions for 11 subjects. Figure 33 shows the recognition performance multi-

classifier approach versus using each classifier alone. The recognition rate is 72.22 % at rank 1 

from the three classifiers, 66.66 % at rank 1 from the dense classifier, 55.55 % at rank 1 from the 

sparse classifier, and 27.77 % at rank 1 from the texture classifier. 
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FIGURE 33 - Cumulative matching curves for 30-meter probe 

 

For 50-meter probe, we have 17 sessions for 11 subjects. Figure 34 shows the recognition 

performance multi-classifier approach versus using each classifier alone. The recognition rate is 

82.26 % at rank 1 from the three classifiers, 52.94 % at rank 1 from the dense classifier, 47.05 % 

at rank 1 from the sparse classifier, and 82.26 % at rank 1 from the texture classifier. 
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FIGURE 34 - Cumulative-matching curves for 50-meter probe 

For 80-meter probe, we have 19 sessions for 11 subjects. Figure 35 shows the recognition 

performance multi-classifier approach versus using each classifier alone. The recognition rate is 

52.63 % at rank 1 from the three classifiers, 21.05 % at rank 1 from the dense classifier, 31.57 % 

at rank 1 from the sparse classifier, and 57.89 % at rank 1 from the texture classifier. 
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FIGURE 35 - Cumulative-matching curves for 80-meter probe 

For 100-meter probe, we have 12 sessions for 11 subjects. Figure 36 shows the 

recognition performance multi-classifier approach versus using each classifier alone. The 

recognition rate is 83.33 % at rank 1 from the three classifiers, 16.66 % at rank 1 from the dense 

classifier, 25.00 % at rank 1 from the sparse classifier, and 100.00 % at rank 1 from the texture 

classifier. 
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FIGURE 36 - Cumulative-matching curves for 100-meter probe 

For 150 meter probe, we have 3 sessions for 11 subjects. Figure 37 shows the recognition 

performance multi-classifier approach versus using each classifier alone. The recognition rate is 

66.67 % at rank 1 from the three classifiers, 33.33 % at rank 1 from the dense classifier, 33.33 % 

at rank 1 from the sparse classifier, and 33.33 % at rank 1 from the texture classifier. 
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FIGURE 37 - Cumulative-matching curves for 150-meter probe 

As expected, the performance deteriorates with severe imaging conditions and as distance 

increases.  

 

2. Holistic/Overall System Performance 

 

The above details about the database construction and testing mechanisms provides a 

glimpse of what it is involved in design, test and evaluate a facial biometric system designed for 

conduct face recognition at a distance in an open environment. An overall evaluation could be a 

“binary” decision or a ranked one. In addition, if the person is not in the gallery, a decision 

would be two-stage: Imposter/Genuine, then Binary or Ranked if the person is enrolled into the 
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gallery.  Of course, evaluations can also be performed by adding uncertainties to the probe; e.g., 

altering the image quality, adding occlusion, etc.  

 

B. Summary 
 

This chapter examined testing strategies, as well as an evaluation, of the BOSS system in 

a dual-channel setup using high resolution cameras. In the following chapter the BOSS 

evaluation will be performed using low-resolution cameras.  The next chapter will also discuss 

differences using the BOSS between a dual-channel setup compared to a single channel setup. 

This thesis will consider face recognition in low resolution images that have different poses, 

illuminations, distances, and expressions. Farag et al., 2012 [19] and various other literature 

listed in this document detail the system performance and implementation details.  
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IV. IMPLEMENTATION (BOSS LOW RESOLUTION CAMERA/TESTING) 

 

 

 

The previous chapter studied the BOSS facial biometric system in use with high 

resolution cameras. The main issues in design, test and evaluation of facial biometric systems 

were discussed. In this chapter, the BOSS will be evaluated using low resolution cameras, 

specifically the iPhone 4 camera. The system will be evaluated for its performance against 

varying poses, illuminations, distances, and expressions.  

 

A. Motivation and Challenges 

 

Resolution, when pertaining to cameras, is what is considered to be the most important 

aspect when talking about crispness of an image. It corresponds with the amount of detail that 

can be seen in an image captured by a camera. 

Resolution - a measure of the sharpness of an image or of the fineness with which a 

device (as a video display, printer, or scanner) can produce or record such an image, 

usually expressed as the total number or density of pixels in the image. 

 A common way to describe resolution is through the number of pixels an image contains, 

usually seen as a megapixel rating. A megapixel rating describes how many pixels in a photo. 
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For example, if the photo measures 4,000 by 3,000 pixels, simply multiplying the two numbers 

gives 12 million, or a 12-megapixel (MP) photo.  

In the previous BOSS setup, the CVIP lab gathered images in a stereo setup (using two 

Canon EOS 7D cameras to capture an image), which provides a total of 18 MP per camera. 

These images consisted of 5184 pixels wide by 3456 pixels high (5184*3456 = 17,915,904 ≈ 

18MP). The images gathered from these cameras are of high-resolution; they provide crisp 

picture quality. The BOSS system has been analyzed and evaluated using these high resolution 

images; hence, a logical question is:  how would the system perform with low resolution images? 

This question was one of the motivations behind this thesis. This issue would motivate 

investigating the use of smart phones and portable devices, in general, for facial biometrics. This 

thesis, along with its test parameters and data collection, have revolved around using the iPhone 

4 which boasts a low resolution camera which generates a 5 MP (2592*1936) image; this should 

not to be confused with the iPhone 4s which boasts an 8 MP camera.  

Apart from resolution, there are other parameters which are challenging for a facial 

recognition system. These challenges include varying pose (pitch, roll, and yaw), illumination, 

expression, and occlusion, in addition to the distance of the subject from the camera. 

Pitch refers to the head angle rotating up and down (subject looking up and looking 

down). Roll refers to the body staying straight while the head is rotated to the left and right past 

the median line of the body. Yaw refers to the head being turned to the left and right, causing 

partial occlusion of each side of the face. Figure 38 represents the different poses (see Figure 7) 
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FIGURE 38 - Different Facial Pose 

Illumination refers to varying light in a scene. Depending on where the light is in regard 

to a subject’s face. Illumination affects the performance of face recognition systems. For 

example, a light source above and behind a person would produce a shadowing of the face, 

causing facial features to be hidden and information lost; however, if light is in front of a subject 

(i.e. a spot light shining on the face) all facial features would be shown.   

Facial expression is another challenge prevalent in face recognition. On average, a human 

has 43 muscles in their face. These muscles are capable of expressing emotions ranging from 

happiness and sadness to fear and disgust. Each one of these expressions may cause a person’s 

facial features to change dramatically.  Since facial recognition is used by comparing facial 

features from a probe with features of subjects enrolled in a database (gallery), severe distortion 

of one’s face would cause failure in identification. It should be mentioned that facial expression 

has not been modeled in the BOSS. 

Occlusion refers to the full or partial covering of a face. This can be as simple as a 

female’s hair strand, to as severe as a masked robber. Occlusion causes facial features to be 

hidden; which introduces uncertainties in the facial feature extraction phase of a face recognition 

system. 
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B. BOSS Implementation (single channel imported image) 
 
 

 In Chapter 2, the BOSS was described in use with a dual channel stereo setup, where the 

input image was taken online, from two cameras connected to the system. In this section, the 

input images were taken offline by an iPhone 4 camera, and then imported to a BOSS equipped 

computer via the use of an applet called “Quickshot with Dropbox” which uploads an image 

from the smart phone into the hard disk. 

 As stated before, the BOSS is capable of importing images onto the system without the 

need of taking the picture from the GUI itself. Once an image is captured by the iPhone 4 and 

imported to the computer via the app “Quickshot,” it is then imported into the BOSS as the input 

image; this is the face acquisition step. Apart from the acquisition of the images, the pipeline 

between the stereo image and single image are very similar.  

The face detection phase is almost the same as stated in chapter 2, where the Viola-Jones 

algorithm is used in order to detect a face and used to detect facial features as well; however, 

code for the BOSS had to be modified, specifically the scaling factor ratios described previously, 

in order to properly detect faces from this new sensor, the iPhone 4 (Appendix B). For the 

current setup, the ratios were adjusted as follows:  ½ initially, then by 1/3, and lastly by ¼ the 

original image size. Before adjusting these ratios, the BOSS was incapable of detecting faces 

from an iPhone 4 input image because the face size was too small. 

Once a possible face has been detected, the scoring algorithm for false positive reduction, 

discussed in the previous section, is used.  

Apart from the modified face detection code, the main difference between the dual 

channel and single channel configuration is the lack of a second false positive reduction step in 
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the single channel configuration. Since there are not two images, the system does not use a left 

and right image Gabor signature to determine which face corresponds to one another between the 

two images. While this may increase the chance of False Positive faces when using the BOSS for 

multiple face detection, this thesis tested the BOSS in the single face detection mode (i.e. there 

was only one face present in a given image). 

Similarly to the previous chapter, once a face is detected, the Adaboost classifier is used 

in order to detect 9 facial feature points, and then ASM is used to find the output 68 facial feature 

points. Again, a feature vector is made for each of the three signatures discussed previously 

(Gabor, LBP, 3D sparse reconstruction). Each feature vector is then compared to the feature 

vectors of previously enrolled subjects and the system outputs a decision, Figure 39.  

 

FIGURE 39 – True Positive Identification; Confidence Level = 98% 

Distance = 5 feet, Illumination ON, Roll = +15° 
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Notice that apart from outputting a Confidence Level (CL) between the probe and 

identified face, the system uses two methods in order to state whether the identified face is an 

imposter (not in the database), or genuine (in the database). Method 1 is calculated by first seeing 

if Rank 1 has a CL ≥ 30%, and also if the CL between Rank 1 and Rank 2 are above a certain 

point. Method 2 is calculated by first seeing if Rank 1 has a CL ≥ 30%, and if the slope of Rank 

1, Rank2, and Rank3 is above a certain threshold. It was found that Method 2 was more accurate 

due to Rank 1 and Rank 2 being close to each other.  

 

C. Testing 

 

1. Test Set Up 

 

This thesis investigated the question: can the BOSS be used on low resolution cameras? 

In order to answer this question, a new database needed to be acquired, using low resolution 

cameras. As stated before, the low resolution camera in questions is the 5 MP camera housed on 

the iPhone 4. In order to challenge the BOSS, test parameters had to be made in order to create a 

database  of varying pose, illumination, expression, and distance similar to what would be used 

in the wild. The test setup is described in detail below.  
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FIGURE 40 - A single channel (individual) data collection setup 

Using a tripod with adjustable leg lengths, the height of the camera from the ground 

remained at a constant five feet and two inches. The tripod was perfectly level, using a leveling 

device built onto its structure. Figure 40 is a representation of the test set up. Testing was done 

on a total of 21 subjects. These subjects varied in sex, height, weight, and ethnicity. Of course, 

half male and half female were ideal for testing the system; however a lack of female 

participation/interest created the need to gather more males for testing. There were a total of 8 

female subjects along with 13 male subjects imaged. 

 

2. Test Parameters 
 

This section describes the test parameters used to challenge the BOSS. First, the subjects 

were enrolled into the BOSS database from an image taken from a distance of 5 feet away with 

0° of pose as well as Illumination ON. Once the subject was enrolled into the database, they were 
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asked to change 3 parameters of pose (pitch, roll, and yaw), which was described earlier in this 

chapter, as well as varying other parameters. 

The first parameter was varying the yaw (0°, ± 15°). The second parameter was varying 

the roll (0°, ± 15°). The third parameter was varying pitch (0°, ± 15°). It should be mentioned 

that, aside from yaw, it is very difficult to standardize these angles in variation. The subjects 

were photographed giving two different expressions for each of the aforementioned poses, the 

expressions consisted of normal (no expression) and smiling. This parameter was introduced in 

order to evaluate the BOSS performance on expression, which the system has not been modeled 

on. For each of these different pose/expression variations, the subject was introduced to the 

fourth parameter; varying illumination. This varying illumination was produced by placing a 

spotlight pointed toward the subject’s face. The fifth parameter was varying distance from the 

camera (5, 10, and 15 feet). Figure 41 is a panorama view of the testing station. In order to 

measure the varying yaw, a protractor was printed from the internet. Once the angles were 

verified to be accurate, a protractor was taped at each of the three distances. The tape lines 

represent the +15° and -15° of yaw marks. This particular image is a representation of the 10 feet 

distance, +15° of yaw, normal expression, and illumination ON image. 
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FIGURE 41 - Testing Station 

 

With seven different pictures regarding pose, two different expressions for each differing 

pose, i.e. 14 pictures for each varying illumination, or 28 pictures per varying distance, resulting 

in 84 pictures for each subject. 

 

D. Data Collection 

 

This section describes the data collection process. Once the test parameters and test set-

up was finalized, volunteers were sought out to be imaged using the CVIP Lab biometric IRB 

consent form. Each subject was then photographed using an iPhone 4 at various distances and 

varying parameters. After each subject had been photographed, the images were imported to a 

BOSS equipped computer through the applet “Quickshot with Dropbox.” Upon enrolling each 

subject into the BOSS (using the Illumination ON, No Expression, 0° pose, distance of 5 feet 

photograph), each of the remaining 83 photos were used as an input to the system. Figure 42 is a 

snap shot of 6 subjects enrolled into the database using the iPhone 4 camera.  
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FIGURE 42 - Example of Enrolled Subjects in BOSS database 

 

With each image output, an Excel spread sheet was populated (Appendix C). The output 

data collected included subject Rank as well as Confidence Level (CL). The data collected also 

stated such things as if Method 1 and Method 2 had the subject as “imposter” or “genuine.” This 

data can be translated into whether the system decision was in fact a true positive, false positive 

or false negative. This thesis was only concerned with whether a subject was properly identified 

(i.e. Rank1); therefore, data from the spread sheet was converted to binary (1 or 0). Binary 1 

refers to a true positive of Rank 1 and Method 2 properly identifying the decision as “genuine” 

(recall, Method 2 was found to be more accurate), Binary 0 was distributed to any failures in the 

system (i.e. incorrect face under Rank 1).  
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E. Results 

 

In this section, the output data collected from the BOSS on the 21 enrolled subjects is 

described. 84 images were captured from each of the 21 subjects photographed, coming out to a 

total of 1,764 input images to the BOSS. From these 1,764 images, a total of 1,176 (66.67%) 

were properly identified as true positive. Of the 588 images that the BOSS did not identify, 20 

were caused by failure in the face detection phase (i.e. face was not detected).   

Upon completion of the data collection process stated in the previous chapter, MATLAB 

was used in order to generate plots that analyzed the outcomes in many different ways. An 

example of this source code is in Appendix D. 

Figure 43 below depicts the BOSS recognition rate in regard to varying distance. While 

keeping the other parameters (pose, illumination, and expression) fixed, curves were produced to 

show how distance affected the system. As expected, recognition rate of a subject was generally 

best at the shortest distance of 5 feet (red line). When processing the data, however, it was 

unusual to see that the 10 feet distance (blue line) tended to have a worse recognition rate than 

the 15 feet distance (green line). Upon further research, this problem has been attributed to the 

lighting in the test room. In the test room, fluorescent lights were above and in front of the 

subjects at the 5 feet and 15 feet distance; however, there was no light above the subject at the 10 

feet distance. It is believed that the fluorescent light in front of the 15 feet mark caused another 

parameter that had not initially been accounted for, on the distance of 10 feet. Since there was a 

large amount of light behind the subjects, shadowing occurred on their faces, creating an 

occlusion parameter that had not been accounted for. Even though this was discovered 

afterwards, it was in itself a discovery of the effect illumination has on image quality, and did not 

warrant repeating the data acquisition at that particular distance. 
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FIGURE 43 –Effect of Distance on the BOSS. Red represents 5 feet, Blue Represents 10 feet, 

Green represents 15 feet. First Row: Illumination ON/No Expression; Second Row: Illumination 

ON/Smiling; Third Row: Illumination OFF/No Expression; Fourth Row: Illumination 

OFF/Smiling 

During the data analysis, another trend soon became apparent. Apart from the 

illumination issue at the distance of 10 feet, the recognition rate for a subject at a yaw of -15° 

was consistently less than any other parameter. Again, an unforeseen parameter was to blame for 

this low issue. Referring back to Figure 41 it is apparent that the back room illumination, or lack 

thereof, caused a complication in face acquisition. While the two issues mentioned were not 
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accounted for, they added to the “Face Recognition in the Wild” definition; image acquisition in 

“the wild” is not ideal and therefore these unaccounted parameters served as a challenge for the 

uncertainties in the imaging process. 

Along with evaluating the BOSS in regard to varying distance, it was also necessary to 

evaluate the system on the varying illumination parameters; stated in the test parameters section 

of this chapter. While keeping the parameters of pose, distance, and expression fixed, curves 

were produced to show how illumination affected the system. From Figure 44, it is apparent that 

recognition rate was very similar during the illumination ON and Illumination OFF tests. Each 

two rows of this figure represent a specified distance as well as no expression and smiling, 

respectively. While recognition rate was not consistently above 80% for these tests, the 

recognition rate did not vary significantly when varying the light. It should be noted that the yaw 

of -15° again affected the system recognition rate negatively. 
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FIGURE 44 – Effect of Illumination on the BOSS. Red represents Illumination ON, Blue 

Represents Illumination OFF. First Row: 5 ft/NO Expression; Second Row: 5 ft /Smiling; Third 

Row: 10 ft/NO Expression; Fourth Row: 10 ft /Smiling; Fifth Row: 15 ft/NO Expression; Sixth 

Row: 15 ft /Smiling 
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From the test parameters, the BOSS was also evaluated in regard to varying expression; 

these expressions were no smile and smile. As stated before, the challenge of expression has not 

been modeled on the BOSS; while this is not ideal, the statement “Face Recognition in the Wild” 

requires the system to be evaluated on varying parameters that would be present in an 

uncontrolled environment; this includes varying expression.  

Figure 45 depicts the recognition rate of the BOSS during varying expression. In order to 

evaluate the system on varying expressions, pose, illumination, and distance was held constant 

per graph.  Each two rows of this figure represent a specific distance (starting with 5 feet) and 

whether illumination was ON or OFF, respectively.  

Due to the BOSS not possessing any expression modeling, it was expected that the 

“smiling” expression would have a recognition rate less than that of the no expression parameter. 

It can be said that expression does in fact affect the BOSS performance due to the large 

difference between the parameter’s recognition rates; a larger difference in recognition rate was 

noticed, when comparing the previous illumination parameter.  Again, the very low recognition 

rate at yaw of -15° should be noted. 
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FIGURE 45 - Effect of Expression on the BOSS. Red represents NO Expression, Blue 

Represents Smiling. First Row: 5 ft/Illumination ON; Second Row: 5 ft /Illumination OFF; Third 

Row: 10 ft/Illumination ON; Fourth Row: 10 ft/Illumination OFF; Fifth Row: 15 ft/Illumination 

ON; Sixth Row: 15 ft/Illumination OFF 
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FIGURE 46 - Recognition of Each Subject at Each Distance 

 

Figure 46 represents each subject’s recognition rate in regard to varying distance. Every 

parameter previously mentioned was used in order to calculate the overall system performance 

per subject. It is clear that the closest distance of 5 feet had the best recognition rate for each 

varying parameter, as expected. While 7 subjects had a better recognition rate at other distances 

(2 at 10 feet and 5 at 15 feet) these are considered outliers. Again, note the low recognition rate 

of the 10 feet distance. As stated above, this low performance can be attributed to the test room 

lighting.  

Comparing Figure 46 with the data collected, it is apparent that subject recognition rate 

can be low due to the subject themselves. While this thesis was intended to evaluate the BOSS 

on unconstrained scenarios, certain test parameters were made in order to test the BOSS up to a 

certain degree. While yaw was capable of being quantified easily (taping protractor to the floor), 

there was no apparent way to keep pitch and roll to ±15°.  Using the naked eye, subjects were 
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told to tilt their head more or less in a certain way to roughly estimate these two pose parameters. 

It became apparent, especially with non-experienced imaging subjects, that many were unable to 

keep their faces at 0° for one pose parameter while testing the system on another pose (i.e. 

keeping face pitch at 0° while rotating +15° of yaw. This introduced a variation of both 

parameters to the system, and can be reasons for these subjects’ low recognition rate.  

In order to evaluate the BOSS more effectively on specific parameters in the future, the 

test area would need to be moved where there is uniform lighting, in order to test the system on 

varying illumination more precisely, as well as avoiding the problems occurred at a distance of 

10 feet and yaw of -15°. In addition, it is believed that being able to precisely measure pose 

angles would greatly increase the BOSS performance. While 21 subjects may have been 

sufficient for a small sample evaluation, future evaluations of the BOSS should include many 

more subjects. The subjects ranged from varying weight, height, gender, skin color, age, and 

ethnicity. 

 

F. Summary 

 

In this chapter the BOSS pipeline was evaluated using low resolution images captured 

from an iPhone camera. The challenges of pose, illumination, expression, resolution, and 

occlusion were defined and described in detail, and their effect on image acquisition. These 

challenges were induced by photographing 21 subjects of varying sex, height, weight, and 

ethnicity, while changing parameters such as pose (yaw, pitch, and roll), illumination, 

expression, and distance. The test setup was described in great detail, as well as the data 

collection process. These subjects provided 1700+ images which were used to design, test, and 

evaluate the entire BOSS pipeline. Face detection rates were obtained, and the feature descriptors 
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for image-based and 3D reconstructions, from images, were used for facial representation. Stereo 

(dual channel) was not implemented. The system was evaluated over three distances indoors.  

Intensive testing and data analysis illustrated the challenges of fully automated face 

recognition in the wild; yet, it also motivated use of widespread devices in modern day life, such 

as smart phones, to perform useful facial biometric tasks. The following chapter will address this 

matter further. 
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V. FACIAL BIOMETRICS ON PORTABLE DEVICES & SMART PHONES  

 

 

 

A. Introduction 
 

In this chapter we discuss feasible facial biometrics on the cell phone and how cloud 

computing may be used for distributed facial biometrics in various practical applications, 

including surveillance, security, disaster relief and healthcare. We should state at the outset that 

facial biometrics in the wild is expensive in computing and one has to be modest when asking 

smart phones with limited storage and CPU power to perform like a BOSS system. Yet, the 

technology of smart phones is improving and the algorithms of facial biometrics are developing. 

References on facial biometrics on smart phones and cloud computing is sketchy at best; 

there is neither standard nor details of systems performance and scenarios of use. This thesis 

builds on the experience gained from BOSS and discovers smart phones and cloud computing in 

two respects: 1) image-based facial biometric algorithms that would be able to implement a 

“single-channel” version of BOSS on cell phones; 2) study of potential use of cloud computing 

to build a distributed biometric network. The first issue will highlight an implementation of the 

CVIP Lab approach (e.g.,   Rara et al., 2010 [48]) from generating 3D images from 2D images 
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and a database. The second issue will discuss network topologies that can incorporate cell 

phones as nodes of “smart biometrics” units. 

 

B. Building a “Single-Channel” BOSS for Cell Phones 
 

1. Image-Based Computing 
 

In his MS thesis, Rara, 2006 [51] investigated data reduction techniques for face 

recognition and suggested that principal component analysis (PCA), independent component 

analysis (ICA) and linear discriminant analysis (LDA) may be used individually or together in 

order to perform face recognition, using the Eigen faces [5.5]  or the Fisher faces approach [5.6]. 

Following the same steps in Nes, 2003 [50] and Rara, 2006 [51], the Eigen faces or the 

fisher faces approach can be executed in two steps: a) pre-processing and b) construction of the 

Eigen/Fisher faces, using a database. The recognition, based on PCA, ICA or LDA, can be then 

conducted using any distance similarity measure (e.g. Mahalanobis Distance, the cosine distance 

or the least square error distance). The quantities have been programmed in various forms (e.g., 

Matlab, C++, C#); a Java-based approach would be more suitable for cell phones. Below we 

describe the general approach. 

The preprocessing step is crucial in any face recognition system; it removes superficial 

image noise that may result in degradation of classification accuracy.  Each face image in the 

databases undergoes the following normalization procedure: (a) integer to float conversion (b) 

geometric normalization (c) masking (d) histogram equalization and (e) pixel normalization. As 

in Nes, 2003 [50], the geometric normalization consists of lining up the eye coordinates of the 

face because it is inherent for humans to tilt the face sideways when posing for a camera.  Figure 

47 shows a prototype of an unaligned and aligned face, in terms of eye coordinates.  The angle  
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in the original image can be defined as arctan (hdiff / wdiff), where hdiff is the vertical eye 

coordinates difference and wdiff is the horizontal eye coordinates difference.  A positive angle 

would require a counter-clockwise rotation while a negative angle will result into a clockwise 

rotation of the image.  The next step will be to scale the image by setting the distance between 

the eyes on a user-defined constant.  The scaling factor will be eyedistance/wdiff, where 

eyedistance is a user-defined constant and wdiff is the measured new horizontal eye coordinates.   

 

FIGURE 47 - Original (left) Image and Rotated Image (right) (adapted from [50] [51]) 
 
 

The cropping of the image follows Figure 48, with the desired size defined by 

norm_height and norm_width.  The parameter eyerow defines how many pixels in vertical 

direction above the eyes should the cropping start.  The equations for the new eye coordinates, 

following a counter-clockwise positive rotation , consists of the following: 

 
   

   
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The equations for the new eye coordinates following a clockwise negative rotation  are: 
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FIGURE 48 - Cropping of the Image (e.g., [50][51]) 

The starting coordinates for cropping are: 
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The resulting images are shown, after masking and histogram equalization, in Figure 49.  

 

FIGURE 49 -FERET Images of a Subject after Normalization Steps (Rara, 2006 [51]) 

 Of course, fancier version of cropping based on Active Appearance Modeling (AAM) 

may be implemented as well (Elhabian and Farag, 2009 [52]). This approach constructs an AAM 
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model around the landmarks, and generates a mesh, under wish the facial information is cropped 

(e.g., Figure 50). 

 

FIGURE 50 - Face cropping based on Active Appearance Modeling (AAM) (e.g., [53]) 

The advantage of AAM modeling is that it is beneficial for face synthesis using 

approaches like the Lukas-Kanade algorithm [53] (see also Mathews and Baker, 2004 [54]). 

 We could densify the mesh (increase the number of vertices) used in cropping (see Figure 

51) [55]. The PCA, ICA and LDA approaches used in Eigen Faces/Fisher Faces would 

necessitate image registration; hence, proper cropping using specified landmarks would simplify 

this process. Ideally, feature-based approaches for face recognition would be such that the 

features from the cropped regions would be normalized in a manner that is less sensitive to 

registration errors. 

 In so far as implementing the image-based approaches (e.g., Eigen/Fisher Faces), which 

is the focus of this chapter, we may use any of the well-established implementations in the 

literature and port to cell phones.  The implementation in Xi, 2012 [49] is based on Java. 
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FIGURE 51 - Densified meshes starting from level 1 to level 4. Top row shows the output of 

loop subdivision, while the bottom row shows the meshes after filtration using a cornerness 

criterion (CVIP Lab 2011 Report, pp. 12[55]) 

 

2. 3D Reconstruction 
 

The approach developed by Rara, et al., 2009 [48] at the CVIP Lab is most adequate for 

generating 3D versions of cropped facial regions. We briefly describe this approach below. 

Using the concept of spherical harmonics, we can efficiently represent the set of images 

of objects under varying illumination as a linear combination of harmonic images [56]. Then the 

image Ii of pi is: 

   ∑ ∑    
 
    

 
      (  )     (5.4) 

where pi denotes the ith point on the surface of the object, and blm(pi) are the harmonic images. 

The equations for the 1
st
 nine harmonic images are (e.g., Basri and Jacobs, 2003 [56]):  
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(5.5) 

where  denotes albedo and n = (nx, ny, nz) is the surface normal, ( ) is a component-wise 

operator, and nxy = nx   ny.  

As an example Figure 52 shows the first nine Spherical Harmonics (SPH) constructed on 

USF database ([48][57]). 

 

FIGURE 52 - Nine Spherical Harmonics generated from database of albedo and shape 

 

The goal is to reconstruct 3D facial shape from a single 2D input image of general and 

unknown lighting. Common shape-from-shading algorithms require/ estimate the light source 

direction under the assumption of single light source. However real-life applications have 

multiple and unknown light sources. Rara et al., 2010 [48] developed a new statistical shape-

from-shading framework for images of unknown illumination, we make use of recent results that 
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general lighting can be expressed using low-order spherical harmonics for convex Lambertian 

surfaces. Using Partial Least Squares, 3D face reconstruction is accomplished in a 

computationally effective manner. 

 Figure 53 shows the spherical harmonic projection images for different subjects with 

known 3D shape and albedo given an input image, where the projection images share the same 

illumination as the input image. 

 

 

FIGURE 53 - Spherical harmonics for objects under varying illumination 

 

Figure 54 illustrates the framework ([48]) for model-based shape recovery for general 

and uknown lighting. Figure 55 shows the performance of the method on the USF and Yale 

database. Visual inspection on the Yale database reconstructions reveal realistic recovered shape 

and albedo. 

This is the approach used in the BOSS project and is programmed in C++ and C#. It 

would be the most logical approach to deploy over cell phone using Java.  
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FIGURE 54 - Block diagam of our statistical-shape-from-shading 

 

 

FIGURE 55 - Experimental results, (left) using groundtruth shape and albedo of the USF 

database and (right) using the extended Yale database. 
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3. Fusion of Approaches 
 

The image based and 3D reconstruction approaches can also be fused to in order to get 

features from each approach and a decision fusion method can combine the two approaches. The 

two approaches do not require a huge database for design. Sparse 3D reconstruction may be 

optimal, as the information holding the largest discrimination are within a few landmarks; hence 

a dense mesh (see Figure 51) may not be necessary.   

A test bed to develop a cell-phone implementation would use much more data than what 

was used in Chapter 4 to evaluate BOSS using the iPhone 4 lenses. There is no standard database 

on social media (e.g., Facebook, google, etc.) that possesses the variations in illumination, pose 

and expressions required for training the 3D reconstruction approach above; yet, one expects that 

such a database would be available soon in lieu of the challenge studies held in conjunction with 

computer vision and biometric meetings. 

 

C. Summary 

 

This chapter considered image-based approaches for facial biometrics on the cell phone. 

Classical approaches using PCA, ICA and LDA used in Eigen/Fisher Faces would be possible to 

deploy on cell phones (e.g., Xi [49]); a 3D approach would be challenging for dense 

reconstruction. A sparse reconstruction approach will be most adequate. One of the issues with 

facial biometrics on cell phone is the standards and lack of availability of test databases.  Follow-

up research would need to address these issues. Deploying biometrics on the cloud is feasible, 

yet would depend on the circumstance of the networks and the intended application.  
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VI. CONCLUSIONS AND FUTURE DIRECTIONS  
 

 

 

A. Conclusions 
 

Face recognition in the wild connotes recognition of individuals unabated by age, pose, 

illumination, expression (A-PIE), and uncertainties from the imaging scenario (e.g., distance, 

crowd, action) or mechanism of imaging (still or video cameras, or partial information from non-

traditional sources, such as a newspaper photo, face-book image, etc.). In that sense of 

generality, the information content in an image of an individual is challenged to identify the 

individual, by the computer, under uncertainty.  It is a daunting task and very interesting domain 

of research. In this thesis, the term “Face Recognition in the Wild” has been defined as 

unconstrained face recognition under A-PIE+; the (+) will connote any alterations to the design 

scenario of the face recognition system. 

 The thesis used the BOSS project at the CVIP Lab as a kernel to study and evaluate face 

recognition in the wild. This chapter is a summary of BOSS, the research plan, and conclusions 

of testing it using a low resolution iPhone 4 camera. The chapter also summarizes ideas on using 

smart phones for face recognition. Finally, the chapter contains recommendations to further work 

in the domain of face recognition in the wild.  
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The thesis took a view of evaluating BOSS in a scenario different than the testing 

scenario used in summer 2012. The same BOSS project was used in this evaluation; however, 

scaling factors for input images were modified for use with smaller, low resolution images. In 

particular, the following approach for sensors and testing were used: 

-  a low resolution camera (iPhone 4) is used rather than the Canon EOS 7D high 

resolution camera; 

- portable data gathering and computing (images are transported to the hard disk using 

“Quickshot for Dropbox” applet connection) and a quad core Alienware laptop is used 

for computation, instead of the 8 CPU units on which the system was tested; 

- indoor scenario for data collection, and distance of 5, 10, and 15 feet; 

- data collected for angles (0, 1   and - 1  ) for pose, two illuminations and two 

expressions; and 

- Twenty-one subjects (mix of gender, ethnicity, and skin color). 

The same system thresholds were used in evaluating the performance. 

 The main findings of the test were: 

i. low-resolution cameras and a laptop may be used to implement a portable 

version of BOSS; 

ii. performance degrades with distance; 

iii. moderate pose did not degrade the performance significantly;  

iv. moderate expression led to some degradation in the performance but not 

significantly; and  
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v. large gallery reduces the speed of execution; hence, the need for optimal 

search methods. 

Given the findings of this thesis, a smart phone option may be feasible, given the 

constraints of the distance and the imaging conditions.  Chapter 5 studied basic ingredients of 

face detection, cropping and recognition using smart phones.    

 

B. Future Directions 

 

The research under detection, facial feature representation and matching is ongoing 

elsewhere, and the literature is quite rich; in fact, there are a number of journals and annual 

meetings on biometrics. The research trend in facial biometrics exploits all advances in related 

fields such as image analysis, computer vision and machine learning. The applications of facial 

biometrics dictate focus on particular frameworks suitable for the circumstances of data, desired 

accuracy levels, and speed of execution.  

From the biometrics technology prospective, sensors will always improve in accuracy 

and miniaturization; hence, portable facial biometrics will evolve and will improve in accuracy 

and speed of performance.  

With the use of Cloud computing, the perceived applications of facial biometrics on cell 

phones is their deployment in scenarios such as disaster relief, crowd control, law enforcement 

on highways, and in surveillance of certain individuals. Healthcare applications and telemedicine 

may also include biometrics for verification of individuals, and even prescription of medicine. 

This would require proper use of network topologies and standards. Smart phone biometrics 

could also be capable of performing useful home-based medical services, which would benefit 

the elderly, people with special needs, and in fighting drug abuses.  
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APPENDIX A: BOSS Hardware List 

Hardware Equipment List: 

 

1. Canon EOS 7D digital SLR camera, with live view  

2. All the software described in this document is written in C#, C++, or MATLAB with 

compiled code as well as source code delivered to customer. Some code were developed 

in Matlab and later translated to C++ or C#.   

3. PC processor: an Intel i7-3960X Extreme Edition Sandy Bridge-E 3.3 GHz Processor, 

with 32GB is memory installed. 

4. Pan Tilt Unit: PTU D100E manufactured by FLIR Systems, Inc. With a maximum 

payload of 25lbs and an angular resolution of 0.0075˚ the D100E provides an ideal 

platform for accurate and smooth positioning of the optics. 

5. A V-Infinity model supplying 24VDC @ 8.3A was chosen to power the PTU’s. 

 

 

Camera: The imaging hardware chosen for the BOSS system is a Canon EOS 7D digital SLR 

camera. The 7D has a maximum image resolution of 18 megapixels, auto white balance, auto 

focus, and live view functionality among other features. The SDK allows for the development of 

custom software to control and access theses pertinent features making the 7D an ideal choice for 

software controlled, semi-automatic long-range facial recognition application system. The wide 

variety of prime and zoom lenses that are compatible with the 7D allows BOSS to be configured 

for a wide range of standoff distances.  

 

PTU: A high resolution PTU (Pan-Tilt Unit) (PTU) is required to accurately position the 

cameras of the BOSS system. An emphasis was placed on the angular resolution capability of the 

PTU given the large standoff distances required for the BOSS system deployment. The PTU 

would also have to be rated for the load of the 7D digital camera and largest lens anticipated for 

maximum standoff distance.  

 

The unit found to be most appropriate was the PTU D100E manufactured by FLIR Systems, Inc. 

With a maximum payload of 25lbs and an angular resolution of 0.0075˚ the D100E provides an 

ideal platform for accurate and smooth positioning of the optics. It is a serial device 

communicating via the RS232 protocol through a protocol converting USB adapter. A built-in 

command set offers both ASCII and binary formats. This command set supports real-time control 

at up to 60 commands/second with very low and predictable latencies that are ideal for subject 

tracking.  

 

Power Supplies: The BCU (Biometric Collection Unit) requires a power supply for the camera, 

pan-tilt unit, and data transmission module. Power supplies can be large and heavy making it 

critical to choose one that is not over -designed for the application. The power supply needed to 

convert 110-120VAC to DC. The pan-tilt unit is the highest voltage component of the BCU, 

therefore it was necessary to choose a power supply that would support this requirement. Voltage 

requirement for other devices would be met by designing a simple circuit board to step down and 

regulate the power supply's output to the appropriate voltages. Although this introduces inherent 

inefficiencies in the system regarding power loss, it is preferred over incorporating multiple 

power supplies. In addition, since the power is ultimately supplied from an outlet, the source is 
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effectively not limited. The power distribution circuit was designed to be as efficient as possible. 

A V-Infinity model supplying 24VDC @ 8.3A was chosen to power the BCU. This model has a 

built-in fan drive to power DC fans for convective cooling of the housing that contains the data 

transmission module, circuit board components and the power supply itself. There is an over 

temperature shut down feature to protect the unit from catastrophic damage.  

 

CPU: The processing unit will dictate how fast instructions are processed and ultimately, how 

quickly a result is presented to the user. Since the application deals with many large images and 

ultimately very large amounts of data, memory for the system is also very important. Because of 

this, the fastest single package processor was selected along with an ample amount of RAM. The 

processing power for the system comes from an Intel Core i7-3960X Extreme 3.3GHz Six-Core 

CPU. This rests inside of an ASUS P9X79 over-clockable motherboard. Memory for the system 

is provided by 32GB of G. Skill Ripjaws 240-Pin DDR3 SDRAM and a Corsair Force Series 3 

480GB Solid State Hard Drive. The system has been overclocked with the BIOS tool to run 

stable at ~4.2 GHz. Graphics are rendered and displayed through the EVGA GeForce GTX 580 

1536MB 384-bit GDDR5 Graphics Card which supports CUDA development. Power to each 

component is supplied by the Thermaltake Toughpower 1475W Power Supply. All components 

are housed inside a Mid Tower Silverstone Kublai KL04W computer case to help minimize the 

size and reduce shipping costs. 
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APPENDIX B: Modified BOSS Code 

 

        public void FaceDetectGray_Illum_Skin(Image<Bgr, byte> imC, out List<FaceData> Faces, out List<FaceData> 

MaxFace, string xml_fnameF, 

            string xml_fnameL, string xml_fnameR, string xml_fnameM, Matrix<float> smodel) 

        { 

            Image<Gray, byte> im = imC.Convert<Gray, byte>(); 

            Faces = new List<FaceData>(); // Init 

            MaxFace = new List<FaceData>(); 

 

            // Multiresolution params 

            Matrix<Single> Ratio = new Matrix<Single>(3, 1); 

            Matrix<Single> params2 = new Matrix<Single>(6, 3); 

            if (imC.Width < 1000) 

            { 

                Ratio[0, 0] = 1; Ratio[1, 0] = 2; Ratio[2, 0] = 3; 

                params2[5, 0] = 1.0f; params2[5, 1] = 2.0f; params2[5, 2] = 3.0f; 

            } 

            else 

            { 

                Ratio[0, 0] = 6; Ratio[1, 0] = 7; Ratio[2, 0] = 8; 

                params2[5, 0] = 6.0f; params2[5, 1] = 7.0f; params2[5, 2] = 8.0f; 

            } 

            if (imC.Width < 2600) 

            { 

                Ratio[0, 0] = 2; Ratio[1, 0] = 3; Ratio[2, 0] = 4; 

                params2[5, 0] = 2.0f; params2[5, 1] = 3.0f; params2[5, 2] = 4.0f; 

            } 

 

            params2[0, 0] = 1.1f; params2[0, 1] = 1.1f; params2[0, 2] = 1.1f; 

            params2[1, 0] = 2.0f; params2[1, 1] = 2.0f; params2[1, 2] = 2.0f; 

            params2[2, 0] = 0.0f; params2[2, 1] = 0.0f; params2[2, 2] = 0.0f; 

            params2[3, 0] = 35.0f; params2[3, 1] = 30.0f; params2[3, 2] = 25.0f; 

            params2[4, 0] = 35.0f; params2[4, 1] = 30.0f; params2[4, 2] = 25.0f; 
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APPENDIX C: Sample of Data Sheet 

Sample of Data Analysis Spread Sheet (Illumination ON, No Expression, Varying Pose, Varying Distance): 
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APPENDIX D: Sample code for recognition rate curves 
Sample MATLAB code produced to plot recognition rate curves (15 feet, illumination off, changing expression): 

close all; 
clc; 
clear all; 
  
%15 feet, Illumination OFF, Changing Expression 
  
data_1exp = [0.714285714000000,1,0.619047619000000; 
    0.333333333000000,0.666666667000000,0.285714286000000; 
    0.666666667000000,1,0.666666667000000; 
    0.333333333000000,0.666666667000000,0.476190476000000; 
    0.904761905000000,1,1; 
    0.619047619000000,0.666666667000000,0.761904762000000;]; 
  
angles = [-15 0 15]; 
% for i = 1:2:36 
figure(1) 
i = 1; 
    plot(angles, data_1exp(i,:),'-r*','LineWidth',3,'MarkerSize', 10); hold on; 
    plot(angles, data_1exp(i+1,:),'--bs','LineWidth',3,'MarkerSize', 10); hold on; 
    axis ([-20 20 0 1.2]); 
     
    Ha = gca 
    set(Ha,'XTickMode','manual'); 
    set(Ha,'XTick',[-15 0 15]); 
    set(Ha, 'fontweight','bold', 'Fontsize', 20); 
    box off; 
     
    xlabel('Yaw angle', 'fontsize', 25); 
    ylabel('Recognition rate %','fontsize', 25); 
    saveas(gcf,'Yaw_15ft_illumOFF.jpg','jpg'); 
  
% end 
figure(2) 
i = 3; 
    plot(angles, data_1exp(i,:),'-r*','LineWidth',3,'MarkerSize', 10); hold on; 
    plot(angles, data_1exp(i+1,:),'--bs','LineWidth',3,'MarkerSize', 10); hold on; 
    axis ([-20 20 0 1.2]); 
     
    Ha = gca 
    set(Ha,'XTickMode','manual'); 
    set(Ha,'XTick',[-15 0 15]); 
    set(Ha, 'fontweight','bold', 'Fontsize', 20); 
    box off; 
     
    xlabel('Pitch Angle', 'fontsize', 25); 
    ylabel('Recognition rate %','fontsize', 25); 
    saveas(gcf,'Pitch_15ft_illumOFF.jpg','jpg'); 
     
figure(3) 
i = 5; 
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    plot(angles, data_1exp(i,:),'-r*','LineWidth',3,'MarkerSize', 10); hold on; 
    plot(angles, data_1exp(i+1,:),'--bs','LineWidth',3,'MarkerSize', 10); hold on; 
    axis ([-20 20 0 1.2]); 
     
    Ha = gca 
    set(Ha,'XTickMode','manual'); 
    set(Ha,'XTick',[-15 0 15]); 
    set(Ha, 'fontweight','bold', 'Fontsize', 20); 
    box off; 
     
    xlabel('Roll angle', 'fontsize', 25); 
    ylabel('Recognition rate %','fontsize', 25); 
    saveas(gcf,'Roll_15ft_illumOFF.jpg','jpg'); 
aa=1; 
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