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ABSTRACT

STUDIES ON EFFICIENT SPECTRUM SHARING IN COEXISTING

WIRELESS NETWORKS

Guanying Ru

June 13, 2014

Wireless communication is facing serious challenges worldwide: the severe spec-

trum shortage along with the explosive increase of the wireless communication demand-

s. Moreover, different communication networks may coexist in the same geographical

area. By allowing multiple communication networks cooperatively or opportunistical-

ly sharing the same frequency will potentially enhance the spectrum efficiency. This

dissertation aims to investigate important spectrum sharing schemes for coexisting net-

works.

For coexisting networks operating in interweave cognitive radio mode, most ex-

isting works focus on the secondary network’s spectrum sensing and accessing schemes.

However, the primary network can be selfish and tends to use up all the frequency re-

source. In this dissertation, a novel optimization scheme is proposed to let primary

network maximally release unnecessary frequency resource for secondary networks.

The optimization problems are formulated for both uplink and downlink orthogonal

frequency-division multiple access (OFDMA)-based primary networks, and near opti-

mal algorithms are proposed as well.

For coexisting networks in the underlay cognitive radio mode, this work focuses

on the resource allocation in distributed secondary networks as long as the primary

network’s rate constraint can be met. Global optimal multicarrier discrete distritbuted
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(MCDD) algorithm and suboptimal Gibbs sampler based Lagrangian algorithm (GSLA)

are proposed to solve the problem distributively.

Regarding to the dirty paper coding (DPC)-based system where multiple net-

works share the common transmitter, this dissertation focuses on its fundamental perfor-

mance analysis from information theoretic point of view. Time division multiple access

(TDMA) as an orthogonal frequency sharing scheme is also investigated for compar-

ison purpose. Specifically, the delay sensitive quality of service (QoS) requirements

are incorporated by considering effective capacity in fast fading and outage capacity in

slow fading. The performance metrics in low signal to noise ratio (SNR) regime and

high SNR regime are obtained in closed forms followed by the detailed performance

analysis.
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CHAPTER 1
INTRODUCTION

Technical innovations of mobile wireless communications are rapidly and pro-

foundly changing people’s daily lives. Fueled by the fourth generation (4G) wireless

technologies and standards, the increasing smart devices as well as the social network-

ing tools and video sharing resources forced the wireless communication experiencing

a profound revolution from all aspects. According to [1, 2], the number of 3G/3.5G

subscribers has increased to almost 1.2 billion in 2011 and will reach 4.27 billion by

2017; and according to Global System for Mobile Communications Alliance (GSMA)

Intelligence [3] the number of 4G-LTE connections will increase to 2.5 billion till 2020.

Global mobile data traffic will increase about 11-fold between 2013 and 2018, surpass-

ing 15 exabytes per month in 2018 [4]. Therefore, for future mobile communications,

high-speed high-quality data transmissions are required to support various multimedia

services.

Considering all wireless communication demands, the fundamental theory of

communications dates back to 1948, when Claude E. Shannon [5] first defined channel

capacity, which is the upper limit of reliable communication rate with respect to its

channel characteristics, specifically,

C = B log2

(
1 +

P |h|2

N0B

)
(bits/Hz),

where B denotes the channel bandwidth (Hz), P is the transmission power (Watt), |h|2

is the channel power gain between the transmitter and the receiver, and N0 represents

the noise power spectral density (W/Hz). Note that most wireless applications work in
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the radio frequency between 30 MHz to 30 GHz. The reason is because such frequency

range is not affected by the earth’s curvature and can penetrate the ionosphere. Also, the

required antenna size for good reception is to inversely proportional to the square of the

signal frequency.

With limited usable frequency resource and the pervasive communication de-

mands, the frequency scarcity has become a primary bottleneck for wireless communi-

cations. What is more, most of the usable radio frequency has been pre-regulated by

Federal Communications Commission (FCC) for different applications long time ago.

Nowadays, some spectrum bands become overcrowded while others are under-utilized.

Hence, how to improve the spectrum efficiency to accommodate the ever-increasing

communication demand becomes a main challenge for wireless communications. This

dissertation will investigate the advanced frequency sharing schemes for coexisting net-

works.

The following sections will briefly introduce the wireless communications de-

veloping history from first generation to fourth generation, followed by the main tech-

niques investigated in this dissertation. Finally, the motivation as well as the outline of

this dissertation are provided.

1.1 Wireless Communications Evolution

1.1.1 Wireless Communication History

In past decades, mobile communication networks evolved from the first gener-

ation to the fourth generation. The first generation (1G) uses analog modulation with

limited transmission rate; while the second generation (2G), which emerged in the early

1990s, is based on digital communication. The digitalization is realized by adding an

Analog to Digital (A/D) converter before the radio frequency (RF) transmitter, and a

2



Year
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Data Rate
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TD-SCDMA 
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2000 2010

2G

3G

4G

FIGURE 1.1 – The evolution of communication systems.

Digital to Analog (D/A) converter after the RF receiver. Compared to analog systems,

digital systems have better security, higher communication quality, and higher frequency

efficiency, etc. Ever since 2G communication, digital modulations play important roles

to improve the communication speed. With the development of the 2G technique and

the wide application of the cellular phone, the demands for data services were growing.

While 2G systems were designed to carry speech and low bit rate data, third genera-

tion (3G) systems target higher data rate services. The use of packet-switching for data

transmission distinguishes the 3G technology from the 2G technology. Current wireless

communications are at the beginning of the fourth generation (4G). The evolution of

digital communication systems is shown in Figure 1.1.
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1.1.2 4G Wireless Communications

Existing mobile wireless communication systems can be generalized into the fol-

lowing categories from the application perspectives: cellular networks, broadcast net-

works, WI-Fi/WiMax networks, Ad hoc networks, sensor networks and green networks,

heterogeneous network, and etc. In the 4G system, different wireless communication

standards are expected to be integrated into one unique communication system. It will

also enable a comprehensive and secure all-IP based solution, such as IP phone, ultra-

broadband Internet access, High Definition Television (HDTV) broadcast, and stream

multimedia. The 4G system will also provide full mobility and connectivity, which

requires the free roaming from standard to standard or from service to service. In July

2003, International Telecommunication Union (ITU) made a requirement for the 4G sys-

tem known as the IMT-Advanced standard: the transmission data rate should be above

1 Gbps at the stationary condition, and the transmission data rate should be above 100

Mbps at moving speed [6]. Both 3GPP long term evolution (LTE) and Worldwide Inter-

operability for Microwave Access (WiMAX) are candidates for 4G systems. So far,

LTE has better market penetration than WiMax due to its compatibility with previous

standards.

To meet the high-level performance requirement, the system structure evolution

will greatly contribute to the communication performance. One of the main differences

between the 3G network and the 4G network lies in the network structure [7]. Specifi-

cally, before 4G, Radio Network Controller (RNC) nodes controlled the radio resources

and mobility over multiple base stations. In 4G networks, RNC is no longer needed,

the evolved 4G base stations (eNB) manage the radio resource and mobility in the cell

and sector to accommodate all users’ communications, also an eNB can directly com-

municate with other eNBs. Such simplified network structure gives more capabilities

and responsibilities to eNB, as a result, the response time is reduced to meet timely

4



communication demands.

In addition to the system structure evolution, the advanced 4G technologies in-

clude:

1. Efficient modulation techniques, such as the orthogonal frequency division mul-

tiplexing (OFDM) technology which can easily combat the multipath effect in

broadband systems;

2. Intelligent systems, such as the cognitive radio that can adjust with the varying

transmission conditions;

3. Wireless access technologies, such as orthogonal frequency-division multiple ac-

cess (OFDMA) and multiple carrier code-division multiple access (MC-CDMA);

4. Multi-systems’ cooperation and convergence, e.g. hybrid broadcast and unicast

network;

5. Advanced antenna technologies, such as Multiple-Input Multiple-Output (MIMO)

techniques that can combat the interference and greatly enhance the system capac-

ity;

6. The advanced encoding and decoding techniques, such as turbo coding, low-

density parity-check codes (LDPC), dirty paper coding (DPC).

1.2 Main Technologies

The main technologies covered in this dissertation are introduced, respectively,

i.e., the OFDM and orthogonal frequency division multiple access (OFDMA) technol-

ogy, cognitive radio, DPC scheme as well as its application in hybrid broadcast and

unicast system.

5



II. OFDM and OFDMA technology 

1. OFDM modulation 

Orthogonal frequency division multiplexing (OFDM) is a multicarrier transmission 

technique to achieve high data rate in a multipath-fading environment. With the decrease 

of the bandwidth in each subchannel, the symbol duration per subchannel increases. 

Hence, the overall wideband frequency-selective fading can be treated as flat fading on 

each subchannel. At the receiver side, only a trivial frequency domain single-tap 

equalizer is needed to overcome the overall frequency selective fading. Comparing with 

the traditional FDM technique, OFDM has higher frequency efficiency by allowing the 

adjacent independent (orthogonal) subcarriers to overlap with each other without 

individual carrier guard band, as is shown in Figure 1.1. Because of its advantages, 

OFDM is widely used in many wireless communication systems (e.g., IEEE 802.16, 

IEEE 802.20, IEEE 802.22, 3GPP LTE/LTE-Advanced, and so on) [5]. 

FrequencyFrequency

AmplitudeAmplitude
ToneToneBandBand

 

Figure 1.1 Subcarrier overlap in OFDM system 

2. OFDMA accessing technology 

OFDMA is a multiuser access version of OFDM. It's the combination of OFDM and 

the frequency division multiple access (FDMA) concept. The two other versions are 

OFDM-TDMA and OFDM-CDMA; however, neither of these two can exploit the 

FIGURE 1.2 – Subcarrier overlap in OFDM system.

1.2.1 OFDM and OFDMA Technology

1.2.1.1 OFDM modulation OFDM is a multicarrier transmission technique

used to achieve high data rate in a multipath-fading environment. With the decrease

of the bandwidth in each subchannel, the symbol duration per subchannel increases.

Hence, the overall wideband frequency-selective fading can be treated as flat fading

on each subchannel. At the receiver side, only a trivial frequency domain single-tap

equalizer is needed to overcome the overall frequency selective fading. Comparing with

the traditional frequency division multiplexing (FDM) technique, OFDM has higher

frequency efficiency by allowing the adjacent independent (orthogonal) subcarriers to

overlap with each other without individual carrier guard band, as is shown in Figure 1.2.

Due to its advantages, OFDM is widely used in many wireless communication systems

(e.g., IEEE 802.16, IEEE 802.20, IEEE 802.22, 3GPP LTE/LTE-Advanced, and so on)

[8].

1.2.1.2 OFDMA accessing technology OFDMA is a multiuser access ver-

sion of OFDM. It is the combination of OFDM and the frequency division multiple ac-
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cess (FDMA) concept. The two other versions are OFDM-TDMA and OFDM-CDMA;

however, neither of these two can exploit the frequency diversity. Comparing with

OFDM-TDMA and OFDM-CDMA, OFDMA allows multiple users to transmit at the

same time on different subcarriers. Specifically, the total bandwidth is divided into

parallel subcarriers, and each subcarrier is assigned to at most one user in a given

time slot. One advantage of OFDMA is the elimination of intra-cell interference which

means users do not interfere with each other. Another intrinsic advantage of OFDMA is

capability of exploiting the multi-user diversity of diverse frequency-selective channels

through intelligent resource allocation [9].

To enhance the system capacity, in OFDMA-based wireless communication sys-

tems, resources (power, bandwidth) have to be assigned to multiple users in such a way

that the overall system capacity or power consumption is optimized. As a matter of fact,

OFDMA resource allocation has become a hot topic in the past decade and has been

studied widely in both academia [9–11] and industry.

In typical single cell mobile communication systems, a base station (BS) per-

forms resource allocation according to the channel status information (CSI), and sends

the so-called MAP information (i.e. resource allocation information) to its correspond-

ing mobile stations (MSs); MSs send or receive data using the resources allocated by

the BS. The information transmission link from BS to MS(s) is called downlink; while

the link from MS(s) to BS is called uplink. The basic system structure for the OFDMA

downlink system is shown in Figure 1.3.

1.2.2 Cognitive Radio

In recent years, the communication demands increased dramatically, which chal-

lenges the traditional fixed spectrum assignment policies such as by Federal Communi-

cations Commission (FCC). According to the present frequency usage, some licensed

7



 

Figure 1.2 OFDMA downlink structure 

III. Cognitive Radio 

In recent years, the communication demands increased dramatically, and this increase 

challenges the traditional fixed spectrum assignment policies. According to the present 

frequency usage, some licensed frequency bands are seldom used, some bands are 

partially occupied, and only part of the frequency bands are heavily used [10]. This 

indicates the fixed spectrum assignment policy greatly affects the frequency efficiency. 

Hence, cognitive radio (CR) which can use a primary network’s frequency band in an 

opportunistic way or a sharing way was proposed to improve the spectrum efficiency. 

The definition for CR given by Haykin [11] is: “an intelligent wireless communication 

system that is aware of its surrounding environment (i.e., outside world), and uses the 

methodology of understanding-by-building to learn from the environment and adapt its 

FIGURE 1.3 – OFDMA downlink structure.

frequency bands are seldom used, some bands are partially occupied, and only part of the

frequency bands are heavily used [12]. This indicates the fixed spectrum assignment pol-

icy greatly affects the frequency efficiency. Hence, cognitive radio (CR) which can use

a primary network’s frequency band in an opportunistic way or a sharing way was pro-

posed to improve the spectrum efficiency. The definition for CR given by Haykin [13]

is: “an intelligent wireless communication system that is aware of its surrounding envi-

ronment (i.e., outside world), and uses the methodology of understanding-by-building

to learn from the environment and adapt its internal states to statistical variations in the

incoming RF stimuli by making corresponding changes in certain operating parameters

(e.g., transmit-power, carrier-frequency, and modulation strategy) in real-time, with two

primary objectives in mind: 1) highly reliable communications whenever and wherever

8



needed; 2) efficient utilization of the radio spectrum.”

Cognitive radio (CR) provides a promising solution to the problem of overcrowd-

ed and inefficient wireless spectrum usage [13–17]. The main principle of the CR is to

allow the secondary users (SUs) to implement a variety of spectrum sharing techniques

such as underlay, overlay, or interweave to transmit their signals without affecting the

primary users’ (PUs) communication [14]. Particularly, the “underlay” technique con-

trols the SUs’ transmission power over the operating bandwidth in a way that SU signals

may interfere with the primary signal within a tolerable limit. The “overlay” technique

allows SU transmitter to exploit the structure of the primary message and perform in-

terference pre-cancellation (such as dirty paper pre-coding) for non-intrusive SU trans-

mission. Note that the overlay transmitter is complicated and usually requires SU to

know the PU signals in advance. Different from the first two techniques, “interweave”

technique is an opportunistic communication scheme by utilizing the spectrum holes in

the primary transmission to carry out the SU transmission.

1.2.3 Dirty Paper Coding

Dirty Paper Coding (DPC) was first introduced by M. Costa in 1983 [18]. Over

the past years, DPC technique has allowed the wireless broadband industry to approach

capacity-achieving rates [18–22].

The basic idea of DPC is illustrated in Figure 1.4. Assume v is the desired signal,

s is the interference and n is the AWGN noise. If the interference s is non-causally

known at the transmitter, the Costa’s results shows that by adding a pre-coder at the

transmitter, the receiver can demodulate source v as if the interference were not present.

That is, the capacity of interference channel is the same as that of the AWGN channel

without interference.

DPC also provides an intriguing alternative to receiver-end superposition coding.
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The significant advantage of DPC over superposition coding lies in that the interference

is precanceled at the transmitter side. It happens that in wireless downlink transmission

the interference can be considered as another modulated signal which is automatically

known by the transmitter; therefore, the interference can be easily canceled in advance

using DPC pre-coding.

The realization of DPC can be very complex in order to perfectly achieve the

DPC performance. However, the near optimal DPC pre-coding designs can be very

simple and efficient, for example, the structured DPC (SDPC) scheme proposed in [22]

can approach the promised capacity limit by only involving simple add and modulo

operations.

1.2.3.1 Hybrid Broadcast and Unicast Network One important application

of DPC pre-coding is the hybrid broadcast and unicast system proposed in [23]. The

broadcast network sends the same content over a reliable unidirectional channel to all

users simultaneously, while the unicast network refers to point to point communication

such as the cellular phone service. In the past, the broadcast and unicast evolved inde-

pendently on different frequency bands through different infrastructures. Until recently,

the pioneering work has been done to design a new hybrid broadcast and unicast network

based on DPC [23].

As mentioned in the previous session, in a cognitive radio system, the primary

users do not collaborate with the secondary users and they have higher priority than

secondary users also. Although it provides more opportunities for spectrum usage, cog-
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FIGURE 1.5 – Collaborative hybrid modem.

nitive radio is not the best option for broadcast and unicast networks. According to

broadcast and unicast characteristics, they naturally complement each other. Moreover,

with the new mobile TV (also called triple play service) as an emerging application [24],

a more intensive collaboration can be done between broadcast and unicast networks to

achieve further frequency efficiency.

The proposed hybrid broadcast and unicast (or say hybrid cellular) model by [23]

is to allow broadcast and unicast transmitting simultaneously on the same frequency

band using the dirty paper coding (DPC) technique. Specifically, the hybrid transmitter

designed based on OFDM modulation and DPC precoding is shown in Figure 1.5. This

hybrid cellular transmitter simultaneously sends the broadcast and unicast signals on the

same channel. Since these signals are known “interference” to each other, the DPC is

used to pre-cancel the broadcast interference for unicast users. In contrast to cognitive

radio, this new form of collaboration can further enhance the spectrum efficiency.

1.3 Motivation

Considering the frequency sharing schemes between multiple coexisting net-

works, it can be generalized into three working modes:

1. Mode I: Multiple networks sharing the common frequency resource orthogonally.
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2. Mode II: Multiple networks transmit on the same frequency simultaneously, and

different networks interfere with each other.

3. Mode III: Multiple networks transmit on the same frequency simultaneously, how-

ever the interference is pre-canceled/post-canceled according to encoding/decoding

techniques.

In cognitive radio, the three modes are named interweave mode (for mode I),

underlay mode (for mode II), and overlay mode (for mode III). Due to the operational

simplicity and effectiveness, the interweave mode and underlay mode are the most wide-

ly accepted working mode. However, the overlay mode may suffer from intolerable

information exchange between the primary and secondary network.

The third mode requires encoding/decoding techniques to cancel the interfer-

ence. DPC pre-coding has been proved for its capacity achieving performance [25].

The DPC-based scheme requires huge amount of information exchange when transmit-

ters are at different locations, such as overlay cognitive radio systems, cooperative Ad

hoc networks and distributed MIMO systems [26, 27]. However, when the DPC-based

system has common transmitter sends signals to different systems, unbearable informa-

tion exchange can be avoided, such as the hybrid cellular system introduced in Section

1.2.3.1.

This dissertation will investigate the interweave and underlay cognitive radio

systems, as well as the DPC-base systems when multiple networks sharing the same

transmitter for coexisting networks.

1.4 Outline

The rest of this dissertation is organized as follows:

Chapter 2 studies the resource allocation in interweave cognitive radio systems.

The frequency saving problem is proposed for the primary network to save its required

12



frequency resource under QoS provisions. The optimization problems are formulated

for both uplink and downlink OFDMA-based primary networks. Efficient algorithms

are proposed to solve this problem near optimally. As a result, the secondary network

may be able to sense the potential increase of available spectrum holes when the primary

network is not heavily loaded.

Chapter 3 focuses on the underlay cognitive radio system, where we investi-

gate the resource allocation in a distributed secondary network. The total utility of the

secondary network under individual link’s power constraint and primary user’s rate con-

straint is maximized. Based on Gibbs sampling tools, the optimal algorithm and near

optimal algorithm are provided to update the secondary users’ power distributively.

Chapter 4 investigates the performance of the DPC-based hybrid downlink sys-

tem in contrast to the TDMA-based downlink system. The delay sensitive QoS require-

ments are considered by using effective capacity in fast fading and outage capacity in

slow fading. The low SNR metrics (minimum energy per bit and the wideband slope)

and high SNR metrics (high SNR slope and power offset) are obtained in closed forms.

The impact of the QoS requirements on the performance, the optimal cancellation order

of the DPC scheme, and etc, are also provided. Further investigations and conclusions

are drawn for Rayleigh fading channels. Sufficient simulation and numerical results are

provided as well.

Finally, this dissertation is summarized in Chapter 5 with future research topics.
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CHAPTER 2
FREQUENCY SAVING SCHEME FOR OFDMA-BASED INTERWEAVE

COGNITIVE NETWORKS

In this chapter, the interweave mode cognitive radio is investigated. Most of

the current research on interweave cognitive radio focuses on how can secondary net-

works effectively sense and access spectrum holes [14, 28, 29]. However, the primary

network’s involvement has been neglected. Hence, this chapter will introduce a new

concept which can enhance the cognitive system’s overall performance from the per-

spective of the primary network’s resource allocation schemes. Specifically, a novel

optimization objective has been proposed for the primary network: minimizing required

frequency resource, on the premise that both the power constraints and users’ quality

of service (QoS) demands can be met. With the frequency saving objective, the prima-

ry system can release the unnecessary frequencies for secondary users. For OFDMA-

based primary networks, the problem is formulated to minimize the required number of

subcarriers for both uplink and downlink with certain power constraints and QoS rate

requirements. This problem is a mixed-NP hard problem, and efficient near optimal

solutions are proposed for both downlink and uplink transmission.

2.1 Background and Motivation

Due to the increasing communication demands, multiple wireless networks’ (multi-

radio) coexistence [13] has become an inevitable trend. Meanwhile, a hot research topic

has always been how to improve the resource (frequency and power) utilization efficien-

cy.
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Under the context of multi-network co-existence, the existing resource allocation

methods can be classified into three categories:

1. Single network dynamic resource allocation. It assumes each network indepen-

dently allocates its resource without considering the other co-existing networks.

The resource allocation within this category mainly consists of margin adaptive

(MA) and rate adaptive (RA) approaches [30, 31]. The objective of MA is to

minimize the total transmission power with the constraints of bandwidth and in-

dividual user’s QoS requirements, and the objective of RA is to maximize the

system throughput under the available power and bandwidth constraints.

2. Spectrum sharing in cognitive radio (CR) [13]. For the interweave mode, it allows

the secondary users to share the spectrum in an opportunistic way when the pri-

mary users are silent. However, the primary system is unaware of the existence of

the secondary users.

3. Joint resource allocation with inter-network cooperation. In this approach mul-

tiple networks jointly allocate the shared resources to achieve mutual benefits.

For example, [23] proposed a collaborative hybrid network that supports both

TV broadcasting and cellular data access on a single-frequency platform that can

greatly enhance the aggregate capacity.

Intuitively, it is expected that the combination of the above three approaches

can further improve the resource utilization efficiency. However, under the context of

multi-network co-existence, most existing optimization objectives are either too selfish

or unrealistic. Consider a primary and secondary network, and secondary users can only

access the idle frequency of the primary network. With dynamic resource allocation, the

primary cellular users tend to use all the frequency resource to maximize their perfor-

mance according to the MA or RA optimization objective. As a result, the performance
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of the secondary network can be jeopardized due to an insufficient amount of available

frequencies. Meanwhile, these two coexisting networks cannot be cast into the collab-

orative hybrid structure in [23] because they do not share the same transmitter. In this

case, if the primary network is aware of the existence of the secondary network and

the latter is willing to somehow share the cost, at least some limited coordination can

be performed between the two networks. As is well known, the scarcest resource in

wireless communications is the radio spectrum. A fundamental question in multi-radio

coexistence is: how to minimize the required frequency resource of a primary network

without sacrificing its performance (i.e., guaranteed QoS to its users)?

To date, most existing research on OFDMA resource allocation focuses on either

single cellular networks (see [23, 31–33] and references therein) or on secondary sys-

tems [13] [34, 35], without inter-network coordination. In this chapter, a new resource

allocation objective is proposed to minimizes the required number of subcarriers in an

OFDMA-based primary network, on the premise that both the power constraints and the

users’ QoS requirements can be met. The motivation of such a frequency saving objec-

tive can be found in many applications. In addition to the cognitive system where the

subcarriers saved by the primary network can be used by the secondary users, the cel-

lular system itself can also benefit from the frequency savings (For example, the saved

frequencies can be used by other cellular applications such as mobile TV broadcasting).

The main contributions of this chapter are summarized as follows:

1. In contrast to the existing RA and MA optimization objectives, a new frequency

saving optimization problem is established for both uplink and downlink primary

networks;

2. In the downlink case, the “bisection search and feasibility test algorithm for multi-

user frequency adaptive optimization” (BF-MUFA) is proposed, which has near

optimal performance;
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3. For the uplink, low complexity greedy methods to obtain very tight upper bound

and lower bound for multi-user frequency adaptive optimization is derived. The

proposed greedy methods can also be easily adapted to the downlink case to elim-

inate the bisection searching scope.

2.2 System Model and Problem Formulation

2.2.1 System Model

The proposed hybrid cognitive radio system is shown in Figure 2.1 which is

consist of a primary network and a secondary network. The primary network is the tra-

ditional centralized network where primary base station (PBS) can manage the wireless

resource allocation to meet primary users’ requirements; and the co-existing secondary

network can be either centralized or distributed. For example, the secondary network

can be a cognitive Femtocell system with a small base station [36] or a distributed Ad

hoc network [37]. Also assume there is a dedicated (wired or wireless) control channel

to exchange the control information, as described in [36]. When the secondary network

has a communication requirement, the 1-bit request information REQ (1 or 0) is sent

through the control channel to the primary base station.

When the primary network is overloaded, i.e., not all PUs’ QoS constraints can

be met, the admission control should be carried out to maximize the primary network’s

effective user number. If all users’ QoS constraints can be met, the primary network

checks if there is any request from the secondary network. If REQ = 0, PBS carries

out the traditional resource allocation algorithm to maximize its own performance, such

as MA or RA. If REQ = 1, PBS will minimize the number of required subcarriers in

the primary network. Accordingly, the ideal operational procedure for PBS is shown in

Figure 2.2. This chapter mainly focuses on the case when REQ = 1, and the admission
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FIGURE 2.1 – Proposed cognitive system model.

control is beyond the research scope. For details on admission control, please refer to

[38–41].

2.2.2 Problem Formulation

Specifically, consider the OFDMA-based primary network with K users and N

subcarriers. The subcarrier bandwidth is B. Assume this priamry network receives a

request from the secondary network, i.e. REQ = 1. Let Pk,n denote the power allocated

to the k-th user. Then the maximum achievable data rate of the k-th user on subcarrier

n is:

Ck,n = B log2

(
1 + Pk,n ·

|Hk,n|2

σ2
k,n

)
, (2.1)

where Hk,n is the instantaneous frequency response of user k on subcarrier n, and Hk,n

is assumed to be known at both the transmitter and receiver; σ2
k,n is the corresponding

noise power which is assumed to be the same for all users on all subcarriers. Define

channel signal to noise ratio (SNR) |Hk,n|
2

σ2
k,n

as ek,n . Denote matrix X as the subcarrier
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FIGURE 2.2 – Operational procedure of PBS.

allocation schedule, i.e. the (k, n)-th element ofX is:

Xk,n =


1 subcarrier n is assigned to user k

0 otherwise
(2.2)

Hence, the overall maximum rate for user k in this system is:

Ck =
N∑
n=1

Xk,nCk,n (2.3)

Assume user k’s QoS requirement is specified by its transmission rate Rk. Thus, the

frequency minimization problem can be formulated as follows:

P0 : min f =
K∑
k=1

N∑
n=1

Xk,n (2.4)
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For downlink transmission where the signals are sent by the base station to all users, the

objective (2.4) is subject to:

Downlink:
K∑
k=1

Xk,n ≤ 1, ∀ n; (2.5a)

Xk,n ∈ {0, 1}, ∀ n, k (2.5b)

Ck ≥ Rk,∀ k (2.5c)

Pk,n ≥ 0, ∀ n, k (2.5d)
K∑
k=1

N∑
n=1

Xk,nPk,n ≤ PT (2.5e)

where (2.4) is the objective function. The OFDMA constraints (2.5a) indicate that each

subcarrier can be used by no more than one user at any time slot to avoid multi-user

interference; conditions in (2.5b) restrict Xk,n either equal to 1 or 0; inequalities (2.5c)

make sure each user’s QoS demand is met; inequalities (2.5d) restrict the power from

being negative. For the downlink case, the transmission is subject to a total transmission

power constraint (2.5e).

For the uplink transmission, the multiple users are transmitting different signals to the

base station; hence, each user is subject to an individual constraint. Accordingly, the

objective (2.4) is subject to:

Uplink:
K∑
k=1

Xk,n ≤ 1, ∀ n; (2.6a)

Xk,n ∈ {0, 1}, ∀ n, k (2.6b)

Ck ≥ Rk,∀ k (2.6c)

Pk,n ≥ 0, ∀ n, k (2.6d)
N∑
n=1

Xk,nPk,n ≤ Pk, ∀ k (2.6e)

Note that the only difference between uplink constraints (2.6) and downlink constraints

(2.5) lies its individual the power constraints for each user in (2.6e).
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2.3 Frequency Saving Algorithms

In this section, near optimal algorithms for downlink and uplink OFDMA are in-

vestigated, respectively. In the downlink case, the bisection and feasibility test combined

algorithm for multi-user frequency adapting optimization (BF-MUFA) is proposed, and

the original problem is decomposed into two sub-problems. In the uplink, low complex-

ity greedy algorithms are proposed to obtain both a tight lower bound and a tight upper

bound.

First, this section begins with the single user optimization. Followed by the

multi-user downlink optimization, and multi-user uplink optimization.

2.3.1 Optimal Solution for Single User System

If the system has only one user, i.e., point-to-point transmission (downlink and

uplink optimization are reduced into the same question), then problem P0 is trivial. Ob-

viously, with the given power, the user rate is a mono-increasing function of the num-

ber of subcarriers. Hence, the optimal solution can be easily obtained by the bisection

method combined with the traditional single user waterfilling algorithm.

Recall that the traditional single user waterfilling algorithm is casted into a con-

vex optimization problem as follows:

max
N∑
n=1

B log2(1 + Pn
|Hn|2
σ2
n

) (2.7)

subject to:
N∑
n=1

Pn ≤ PT

Pn > 0 ∀ n

To find the optimal power allocation, form the Lagrangian as follows:

L(P) =
N∑
n=1

B log2(1 + Pn
|Hn|2

σ2
n

) + λ(PT −
N∑
n=1

Pn) (2.8)
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Next differentiate the Lagrangian and set the derivative equal to zero:

∂L(P)

∂Pn
=

B/ ln 2

1 + Pn
|Hn|2
σ2
n

|Hn|2

σ2
n

− λ = 0 (2.9)

Hence, solving the above equations with the constraint that Pn ≥ 0, the power allocation

on subcarrier n can be denoted as:

Pn =


B

λ ln 2
− 1
|Hn|2
σ2
n

if B
λ ln 2

> 1
|Hn|2
σ2
n

0 otherwise

(2.10)

Combining with the total power constraints, let
N∑
n=1

Pn = PT , i.e.,

N∑
n=1

( B

λ ln 2
− 1
|Hn|2
σ2
n

)+
= PT , (2.11)

can yield that:

λ =
NB(

PT +
N∑
n=1

1
|Hn|2
σ2
n

)
ln 2

(2.12)

Plug (2.12) into (2.10), the optimal power allocation scheme on each subcarrier can be

obtained.

Note that the objective of the traditional water-filling algorithm is to maximize

the user’s throughput under the total power constraints. Regarding to the problem P0,

in order to minimize the total occupied subcarriers under the user’s rate constraint, the

single user frequency adapting algorithm (SUFA) is introduced as follows (Algorith-

m 2.1). Let e be the channel SNR array with this user’s SNR on n-th subcarrier as en,

other parameters are as defined in problem formulation section. Note that in Step 3, the

waterfilling algorithm is described as above in (2.7) – (2.12) which can easily obtain the

global optima for single user resource allocation.
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Algorithm 2.1 Single user frequency adapting algorithm (SUFA).
Input: PT , R, e;

Output: f ,X;

Step 1: Initialize fmin = 1 and fmax = N ;

E ← sort subcarriers according to SNR e in the descending order;

Step 2: f = int
(
(fmin + fmax)/2

)
;

Step 3: [C,X]← waterfilling
(
PT , E(1 : f)

)
;

Step 4: If C ≥ R, then set fmax = f ; else set fmin = f ;

Step 5: If fmin = fmax, stop; otherwise ↓ Step 2;

2.3.2 Downlink OFDMA Frequency Optimization (Multi-User System)

From the former analysis, the bisection method can be used to derive the optimal

solution for the single user OFDM system. However, in the multi-user case, the opti-

mization problem P0 is nontrivial, and to solve this problem optimally needs a brutal

forth search. Hence, a low complexity optimization algorithm for multi-user system is

important for practical purpose. Inspired by the single user case, the question is brought

up: “Can a similar method be used for the multi-user case?”.

To answer this question, Lemma 2.1 provides a shed on the relationship between

minimum required power and minimum required frequency.

Lemma 2.1. In a given OFDMA system with K users and N possible subcarriers, the

minimum total power required to satisfy all users’ QoS requirements is the monode-

creasing function of f , where f is the number of subcarriers that are allowed to use.

Proof. In the single user case, this lemma was proved in the Appendix A of literature

[42] mathematically. Also, by discovering the internal logic, this lemma can be proved

as follows. Suppose the single-user system is using f number of subcarriers, the total

power required to fulfill its rate requirement is Pmin. Given one more subcarrier s′,

and assume this new subcarrier s′ has better channel gain than any of the existing sub-
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carrier s, then the water-filling solution from (2.10) implies that only strong channels

will be used, hence this new subcarrier will be used. According to Shannon capacity

expression, the power required by s′ to achieve the previous capacity gained on s will

be reduced. Therefore, when having this new subcarrier in the pool, the minimum total

power required will be reduced or at least remain the same.

Similarly, in a multi-user system, it is safe to assume two cases with f = f1 and

f = f2, while f2 = f1 + 1. Denote the total minimum power required when f = f1 and

f = f2 as PT1 and PT2, respectively. By the contradiction method, suppose Lemma 2.1

is not true, which means PT2 > PT1. For f = f2, assume all users maintain their

subcarrier schedule as when f = f1, except for user k who has one more subcarrier

to use. Therefore, to meet all users’ QoS, user k’s power requirement decreases, while

other users’ remain the same; hence, PT2 ≤ PT1, which results in a contradiction of this

assumption. Above all, Lemma 2.1 is proved.

Note that the number of subcarriers f is in one-dimensional space, and the

total power constraint is also in one-dimensional space. Supported by Lemma 2.1,

the following bisection feasibility test combined method is proposed to solve the opti-

mization problem P0 (Algorithm 2.2). The BF-MUFA contains mainly an outer loop

and an inner loop. The outer loop adjusts the number of subcarriers by the bisection

method, and it chooses the best subcarriers from the subcarrier pool (Step 2 and Step 3);

the inner loop tests the feasibility of meeting users’ QoS with the given power constraint

for the chosen subcarrier group of the outer loop by comparing the minimum power re-

quired to meet QoS demands with the available total power (Step 4 and Step 5). Let R

be the set that contains all users’ rate requirements, and fopt be the optimal number of

subcarriers.

The aforementioned procedure contains two sub-problems (S1 and S2) which

take up most of the computational complexity. Especially, the subproblem S2 is to

minimize the total power required with individual user’s rate constraint, which is proved
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Algorithm 2.2 Bisection and feasibility test combined algorithm for multi-user frequen-

cy adapting optimization (BF-MUFA).
Input: PT ,R, e;

Output: f ,X;

Step 1: Initialize fmin = 0 and fmax = N ;

Step 2: f = int
(
(fmin + fmax)/2

)
;

Step 3: Find the best f number of subcarriers Ef , such that if f ≥ fopt, Ef ⊇ Eopt;

Step 4: [Pmin,X]← min power(R, Ef ) according to S2;

Step 5: If Pmin ≤ Pt, then set fmax = f ; else set fmin = f ;

Step 6: If fmin = fmax, stop; otherwise ↓ Step 2;

to be NP-complete in section 2 of [43]. Consequently, the problem P0 can be proved as

NP-hard.

S1: Find the best f number of subcarriers-set Ef , such that if f ≥ fopt, Ef ⊇

Eopt, where Eopt represents the optimal set of subcarriers.

To meet S1’s requirement, an exhaustive search is required. So a suboptimal

method is derived. Among all possible N subcarriers, select f number of subcarriers

with the highest weight. Weigh each subcarrier s by
K∑
k=1

αk,sek,s. The parameter αk,s is

determined by the possibility that it will be used by user k. In this work, it is assumed

αk,s = Rk/|R|, where |R| is the norm-1 of the vectorR.

S2: Total power minimization:

Pmin = min
K∑
k=1

N∑
n=1

Xk,nPk,n (2.13)
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Subject to :
K∑
k=1

Xk,n ≤ 1, ∀n; (2.14a)

Xk,n ∈ {0, 1}, ∀ n, k (2.14b)
N∑
n=1

Xk,nB log2(1 + Pk,nek,n) ≥ Rk, ∀ k (2.14c)

Pk,n ≥ 0, ∀ n, k (2.14d)

Sub-problem S2 is the traditional MA optimization, though it is proved to be NP-

complete [43, 44]. Among all the existing algorithms for MA optimization, the dynamic

programming based resource allocation (DPRA) [42] is a recent method with low com-

plexity and good performance. Specifically, the DPRA method is shown as Algorithm

2.3:

Algorithm 2.3 The dynamic programming based resource allocation algorithm (DPRA).
Input: R, e;

Output: Pmin,X;

Step 1: For each subcarrier n, find e∗n = max
1≤k≤K

ek,n,

rearrange the channel indexes, such that e∗1 > e∗2 > ... > e∗N .

Step 2: Initialize iteration counter i = 0,

let the initial serving channel set of each user k as all subcarriers, i.e.,

X
(0)
k = 1, 2, ..., N .

Step 3: (N-level of deletion decisions) For n = 1 : N

Step 3.1: decide the best user k∗ on sorted subcarrier n:

if the total power required to meet all users’ rate requirements when n

is allocated to k∗ instead of other users can be minimized;

Step 3.2: update the serving subcarriers for other users k 6= k∗, i.e.,

X
(n)
k = X

(n−1)
k rule out subcarrier n;

However, the DPRA method is a single loop method, and it cannot be refined

simply by repeating it. Inspired by [42] and [45], a new algorithm based on the La-
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grangian dual decomposition method is proposed in this chapter, which uses the DPRA’s

result as the initial solution and achieves better performance with low complexity.

The Lagrangian expression of the total power minimization problem S2 is as

follows:

L(P ,X,λ) =

K∑
k=1

N∑
n=1

Xk,nPk,n +
K∑
k=1

λk
(
Rk −

N∑
n=1

Xk,nB log2(1 + Pk,nek,n)
)

(2.15)

Subject to :
K∑
k=1

Xk,n ≤ 1, ∀n; (2.16a)

Xk,n ∈ {0, 1}, ∀ n, k (2.16b)

Pk,n ≥ 0,∀ k, n (2.16c)

λk ≥ 0 ∀ k (2.16d)

Then the Lagrangian dual objective function can be denoted as:

g(λ) = min
P ,X

L(P ,X,λ) =
N∑
n=1

gn(λ) +
K∑
k=1

λkRk (2.17)

subject to the constraints in (2.16), wherein

gn(λ) = min
Pk,n

K∑
k=1

Xk,nPk,n −
K∑
k=1

λkXk,nB log2(1 + Pk,nek,n). (2.18)

(2.17) is a relaxation of S2 because:

1. By removing the constraint
K∑
k=1

Xk,nB log2(1 + Pk,nek,n) ≥ Rk, ∀ k relaxes the

feasible space of S2.

2. L(P ,X,λ) < Pmin always holds because in the original space for all k,
(
Rk −

K∑
k=1

Xk,nB log2(1+Pk,nek,n) ≤ 0
)

and the Lagrange multiplier λk is non-negative.

In the OFDMA system, each subcarrier can be used by at most one user. Hence,

(2.18) can be further denoted as:

gn(λ) = min
k,Pk,n

{
Pk,n − λkB log2(1 + Pk,nek,n)

}
. (2.19)
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The subcarrier n is allocated only to user k∗ such that:

k∗ = arg min
k

{
Pk,n − λkB log2(1 + Pk,nek,n)

}
. (2.20)

With fixed λk, the problem (2.19) is a convex function of Pk,n. Thus, let the

derivative of (2.19) over Pk,n equal to 0, and the optimal power allocation to user k on

subcarrier n can be expressed as:

P ∗k,n =
(
λkB loge 2− 1

ek,n

)+
. (2.21)

Finally, the Lagrangian dual variable λk can be obtained from:

∑
n∈Sk

B log2

(
1 +

(
λkB loge 2− 1

ek,n

)+
ek,n

)
= Rk, (2.22)

in which Sk represents the set of subcarriers given to user k with Pk,n > 0. Hence:

λk = 2t/(B|Sk|)/(B ln 2), (2.23)

where t = Rk −
∑
n∈Sk

B log2 ek,n.

To optimally update this dual variable is nontrivial. Because of the discontinuity in

the power allocation by (2.19), the existing methods, e.g. the ellipsoid method and

subgradient based method, will result in slow convergence or even no convergence.

Hence, by observing the above equations’ structures, an efficient suboptimal algorithm

is provided in Algorithm 2.4.

2.3.3 Uplink OFDMA Frequency Optimization (Multi-User System)

In the uplink OFDMA system, each user has an individual power constraint;

hence, the former BF-MUFA with the total power constraint for the feasibility test is not

applicable to the uplink case. However, low complexity greedy algorithms are obtained

to find the upper bound and lower bound of the minimum number of required subcarriers

for the uplink case. The general idea of the greedy algorithm is: rank users according to
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Algorithm 2.4 Lagrangian dual decomposition based margin adaptive optimization

(LDD-MA)
Input: R, e;

Output: Pmin,X;

Step 1: Initialization.

Initialize the iteration counter i = 0, and preassign subcarriers according to

the DPRA algorithm;

Step 2: For n = 1 to N , do the following computations

Step 2.1: Let Xk,n = 1, ∀k;

Step 2.2: derive λk from (2.23);

then obtain P ∗k,n by plugging λk into (2.21) ∀k;

Step 2.3: Select the best user k∗ for subcarrier n:

k∗ ← arg min
k

{
Pk,n − λkB log2(1 + Pk,nek,n)

}
;

Step 2.4: for k 6= k∗, let Xk,n = 0, Pk,n = 0, and update λk by (2.23).

Step 3: P (i)
min ← sum(Pkn);

Step 4: If P (i)
min − P

(i−1)
min ≥ ξ, then i = i+ 1, and ↓ Step 2; otherwise, stop;
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their QoS requirements 1, and then minimize the number occupied subcarriers for each

subscriber using SUFA from the first user to the last one, until all users’ QoS demands

have been met. To obtain the upper bound, each subcarrier can be used by one user at

most; to obtain the lower bound, each subcarrier is allowed to be shared among multiple

users. The detail to attain the upper bound is presented in Algorithm 2.5.

Algorithm 2.5 Upper bound for multi-user frequency adapting optimization (UB-

MUFA)
Input: P ,R, e;

Output: fUB,XUB;

Step 1: {k∗} ← sort(QoS);

Step 2: For k∗ = 1 to K

Xk∗ ← SUFA(Pk∗ , Rk∗ , ek∗), if Xk∗,n = 1, rule out subcarrier n; ∀k 6= k∗, ∀n;

Step 3: fUB ← count(Xk,n = 1);

Step 4: If all users’ QoS requirements are satisfied, output fUB,XUB;

Note that in this greedy algorithm, whenever multiple users compete for a same

subcarrier, this subcarrier is assigned to the user with the lowest rate requirement. More

importantly, the selected subcarriers consist a sufficient subcarriers-set Ef for the opti-

mal solution, i.e. Ef ⊇ Eopt. The reason is that: if no subcarrier has been ruled out

in Step 2, which means all users need distinct subcarriers to minimize the required fre-

quency, then the greedy solution is the optimal solution; however, if some subcarriers

are ruled out in Step 2, these subcarriers actually have already been given to the current

user which means that they are already included as candidates for the optimal solution.

Similar to the UB-MUFA, a greedy algorithm is proposed as Algorithm 2.6 to

obtain the lower bound. LB-MUFA differs from UB-MUFA in the following manner:

give all frequency resource to each user, and no subcarrier is ruled out even if multiple

1The purpose is to serve the user with low QoS requirements first, in case any demanding user use too

much system resource and jeopardies other users.

30



users occupy the same subcarrier; what is more, multi-user interference is not consid-

ered. Owing to the way that subcarriers are chosen for each user, the subcarriers selected

from this approach are the necessary subcarriers to meet the users’ requirements.

Algorithm 2.6 Lower bound for multi-user frequency adapting (LB-MUFA)
Input: P ,R, e;

Output: fLB,XLB;

Step 1: For k = 1 to K,Xk ← SUFA(Pk∗ , Rk∗ , ek∗);

Step 2: fLB ← count(Xk,n = 1);

Step 4: If all users’ QoS requirements are satisfied, output fLB,XLB;

Furthermore, for the downlink case, the UB-MUFA and LB-MUFA can also be

used to eliminate the searching scope. For simplicity, assume each user has the equal

power constraint as PT/K in the UB-MUFA algorithm to obtain the upper bound; also,

assume each user has PT in the LB-MUFA as the power constraint to obtain a rough

lower bound of minimum number of subcarriers. With the lower bound and upper bound

being considered, the searching scope of BF-MUFA can be reduced greatly.

2.4 Experimental Results

This section provides simulation results to validate the algorithms proposed in

Section III. For an OFDMA system with 20 users and 128 subcarriers, Figure 2.3 com-

pares the novel LDD-MA algorithm and the DPRA algorithm proposed in [42]. After

extensive simulations, the observation is whenever the system has more users, high-

er QoS requirements, or fewer subcarriers, the more improvement of LDD-MA from

DPRA can be achieved.

Figures 2.4 and 2.5 are the typical numerical results of downlink OFDMA, which

show the number of required subcarriers as a function of SNR and number of users K,

respectively. In Figures 2.4 and 2.5, “Random” represents the results obtained by first

31



2.2 and 2.3, “Random” represents the results obtained by first predefining each user has 

equal total available power and then randomly assigning subcarriers to users until their 

QoS demands are met; “BF-MUFA” is our aforementioned algorithm using the bisection 

search and feasibility test. In Figure 2.2, we assume the 128 subcarriers are shared 

between 20 users, and each user has a random rate requirement. In Figure 2.3, we assume 

each user has the same rate requirement, and SNR=10.  
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Figure 2.2 SNR vs. No. of required subcarriers in downlink OFDMA 

5 7 9 11 13 15
0

100

200

300

400

500

600

SNR (dB)

P
o

w
e

r

 

 

LDD-MA

DPRA

5 10 15
20

25

30

35

40

45

SNR (dB)

N
o

. 
o

f 
re

q
u

ir
e

d
 s

u
b

c
a

rr
ie

rs

Downlink OFDMA

 

 

Random

BF-MUFA

 

FIGURE 2.3 – Comparison between LDD-MA and DPRA.

predefining each user has equal total available power and then randomly assigning sub-

carriers to users until their QoS demands are met; “BF-MUFA” is the aforementioned

algorithm using the bisection search and feasibility test. Simulation for Figure 2.4 as-

sumes the 128 subcarriers are shared between 20 users, and each user has a random rate

requirement. For Figure 2.5, it is assumed that each user has the same rate requirement,

and SNR = 10 dB.

For the uplink, extensive simulations have shown that the upper bound and lower

bound are extremely close so that the proposed UB-MUFA algorithm is almost always

optimal, as is shown by Figures 2.6 and 2.7. Figure 2.6 and 2.7 show the relationship

between SNR and the number of required subcarriers, as well as the number of users vs.
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search and feasibility test. In Figure 2.2, we assume the 128 subcarriers are shared 

between 20 users, and each user has a random rate requirement. In Figure 2.3, we assume 
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FIGURE 2.4 – SNR vs. No. of required subcarriers in downlink OFDMA.

the number of required subcarriers, respectively. In all cases, the proposed algorithms

can significantly save the number of required subcarriers.

2.5 Conclusion

In this chapter, a novel spectrum optimization model is proposed, and the prob-

lem formulated for OFDMA-based primary systems to minimize the required number of

subcarriers under the individual user’s QoS constraint and the power constraint(s). The

proposed model is effective to secondary networks when the primary network is not sat-

urated. To solve this NP-hard mixed optimization problem efficiently, the BF-MUFA

algorithm for downlink OFDMA and greedy algorithms for the uplink OFDMA system
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For the uplink, extensive simulations have shown that the upper bound and lower 

bound are extremely close so that our algorithm for upper bound is almost always optimal, 

as shown by Figure 2.4 and 2.5. Figure 2.4 and 2.5 show the relationship between SNR 

and the number of required subcarriers, as well as the number of users vs. the number of 

required subcarriers, respectively. In all cases, our proposed algorithms can significantly 

save the number of required subcarriers. 
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FIGURE 2.5 – K vs. No. of required subcarriers in downlink OFDMA.

are proposed and investigated. Simulation results show that the proposed algorithms

can significantly save the number of required subcarriers. To solve the MA subprob-

lem, the LDD-MA algorithm is proposed to greatly refine the existing DPRA algorithm;

therefore, the performance of BF-MUFA algorithm for the downlink OFDMA system is

guaranteed. The simulation results of UB-MUFA and LB-MUFA for the uplink OFD-

MA system show the tightness of both bounds. Hence, the UB-MUFA algorithm can be

used to obtain near optimal results for the uplink OFDMA system.
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Figure 2.4 SNR vs. No. of required subcarriers in uplink OFDMA 
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CHAPTER 3
DISTRIBUTED OPTIMAL POWER CONTROL FOR UNDERLAY

MULTICARRIER COGNITIVE SYSTEMS

In this chapter, the power optimization of the multicarrier secondary network

underlying the primary network is investigated. Especially, when secondary network is

distributed without a central infrastructure, the power optimization problem becomes

more complicate. This chapter studies the interference coupled secondary network

under individual secondary user’s power constraint and primary user’s rate constrain-

t. A multicarrier discrete distributed (MCDD) algorithm based on Gibbs sampler is

proposed. Although the problem is nonconcave, MCDD is proved to converge to the

global optimal solution. To reduce the computational complexity and convergence time,

the near-optimal Gibbs sampler based Lagrangian algorithm (GSLA) is proposed. Sim-

ulation results are provided to show the effectiveness of the proposed algorithms.

3.1 Background and Motivation

As is introduced in Chapter 1, cognitive radios can work in three different modes:

underlay, overlay, and interweave. The former frequency saving algorithms in Chapter 2

are effective for the interweave mode since the cognitive users only access the spectrum

holes in the primary transmission. However, the “underlay” technique allows secondary

users’ (SUs) to transmit simultaneously with the primary user in a way that SU signals

may affect the primary signal within a tolerable limit. Among all these techniques, the

underlay technique has great potential to improve the spectrum efficiency with reason-

able cost, and it has recently attracted a lot of research attention [15, 32]. However,
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one of the main challenges of the underlay approach has not been fully investigated.

That is, how to allocate SU power across different cognitive links to maximize the SU

transmission rate while guaranteeing the interference to PU signals is under the tolera-

ble threshold? Such problem becomes more complicated when the secondary network

operates in a distributed manners. Note that when multiple users with the OFDM mod-

ulation access the same subcarrier, it belongs to the multicarrier technique in general. In

this chapter, multicarrier and OFDM are used interchangeably.

When multiple users simultaneously transmit on the same frequency, the opti-

mization problem is typically nonconcave and more complicated because of the coupled

interference across multiple transmitters. In the case of infrastructure-based networks,

where the control processing is performed at a central node such as base station, the

optimal power allocation has been studied in [46]. The key idea is to reformulate the

weighted throughput maximization problem and then construct a sequence of shrinking

polyblocks that gradually approximate the global optimal solution. On the other hand,

the problem of power allocation in Ad hoc networks is more challenging due to the dis-

tributed and unsynchronized operation among users. In fact, cooperation may exist in

Ad hoc based networks to allow information exchange among devices [16]. Further-

more, in multicarrier systems, the optimization becomes even more complex because it

creates another degree of freedom over frequencies.

In multicarrier systems, the optimization problem is in general NP-hard. Up

to date, many distributed power control strategies have been proposed for interference

coupled multicarrier systems. The well-known Iterative Water Filling (IWF) algorithm

originally proposed by [47] maximizes the sum rate with individual power constraints,

and the Nash equilibrium can be achieved under certain conditions [48]. However, in I-

WF each user only maximizes its own rate without considering the overall system profit.

Later on, [49] proposes distributed algorithms that can achieve global optima when the

number of subcarriers goes to infinity; nevertheless, its high computational complexity
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is unbearable for practical usage. In [50], global optimal is obtained by the centralized

MARL algorithm in interference coupled multicarrier system. Unfortunately, those al-

gorithms cannot be extended to Ad hoc based cognitive networks. For cognitive radio,

a price based IWF with sum rate consideration is proposed by [51], which can reach

Pareto optimal Nash equilibrium. Recently, [52] also proposes a game theory based

algorithm in which each SU updates its power allocation based on the history of its

counterpart. However, none of these algorithms can reach global optima distributively.

This chapter will investigate the interference coupled multicarrier cognitive net-

work, where SUs underlay the primary system with limited information exchange. The

concept of Gibbs sampler is used to optimize the power allocation in secondary network-

s. Gibbs sampler is a well studied optimization tool that originates in image processing

[53] and gains popularity in statistics. Inspired by [54] which first used the Gibbs sam-

pling method to optimize the single carrier interference coupled system, in this work

Gibbs sampler is applied to the multicarrier CR network. To facilitate cooperative op-

timization, similar to [54], secondary users are allowed to broadcast their channel and

power information instantly to the network. The proposed algorithms can distributive-

ly and asynchronously update power, based on the system status and estimated power

probability distribution. In particular, the main contributions include:

1. The multicarrier discrete distributed algorithm (MCDD) is proposed with the

proof of its global optimality;

2. Due to the high complexity of calculating the probability distribution and the long

convergence time of MCDD, the suboptimal Gibbs sampler based Lagrangian

algorithm (GSLA) is proposed to get a near optimal solution.
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3.2 System Model and Problem Formulation

In this work, consider an Ad hoc secondary network consisting of M cogni-

tive links that underlay the primary network. The primary network uses multicarrier

transmission technology, such as OFDMA; and at any time during the operation, each

subcarrier is assigned to at most one primary user. Hence, the system has no interference

among PUs. Therefore, for simplicity, consider one primary user transmits onK subcar-

riers, and many SUs transmit simultaneously on these subcarriers with PU’s minimum

transmission rate being guaranteed.

Each cognitive link i consists of the transmitter Ti and the receiver Ri. Define

Gij(k) as the channel power gain of the communication link between transmitter Ti and

receiver Rj on subcarrier k; nik is the noise power of link i on subcarrier k which also

include the interference from the primary user to link i on subcarrier k. Note that when

the receiver Ri decodes its information on link i, all received signals from other links

are considered as noise. In addition, denote Ii(k) as the normalized channel power gain,

which is defined as the ratio of the channel power gain between Ti and the PU over the

channel power gain of the PU on subcarrier k. The system model is denoted as in Figure

3.1.

In this work, assume that all the nodes in the network form a complete graph in

which each transmission is reliably received by other nodes. In particular, the secondary

receivers exchange their channel information and overhear the primary user’s channel

gain during the network operation. The channel gain is assumed to be constant compared

to the convergence time of the resource allocation algorithms.

Define the power profile of link i as pi , [pi1, . . . , piK ]T, where pik denotes

the transmission power of the transmitter Ti on subcarrier k. Further, define p−i ,

[p1, . . . ,pi−1,pi+1, . . . ,pM ] as the power profile of all other links except link i; and

define p = [p−i,pi] as the power profile of the secondary network. Each transmitter Ti

has the maximum transmission power constraint. For the primary user, define the power
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FIGURE 3.1 – Cognitive radio system model.

profile as si , [s1, . . . , sK ]T, assume s is fixed regardless of the SUs’ transmission

strategy; and denote nk as the noise power on subcarrier k. With that said, the signal to

interference plus noise ratio (SINR) of link i on subcarrier k is

SINRi(k) =
Gii(k)pik

nik +
∑
j 6=i

Gji(i)pjk
, (3.1)

According to Shannon capacity, the maximum achievable rate on link i over all K sub-

carriers is given by

Ri(p) =
K∑
k=1

log
(
1 + SINRi(k)

)
. (3.2)

As described in (3.2), the maximum achievable rate of each cognitive link de-

pends on its power allocation, interference from all other links, and interference to the

PU. Finding an optimal power allocation is challenging, due to the network dynamics

and interference coupling between transmission links. Therefore, the main focus of this
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work is to find a power allocation scheme p∗ to maximize the sum Shannon capacity

over all the cognitive links. Mathematically, the optimization problem is denoted as

follows:

P0 : max
p

R =
M∑
i=1

Ri(p) (3.3)

Subject to :
K∑
k=1

pik ≤ Pmax
i ,∀i ∈ {1, 2, . . . ,M} (3.4a)

K∑
k=1

log

(
1 +

sk

nk +
M∑
i=1

Ii(k)pik

)
≥ Rth (3.4b)

Where (3.4a) accounts for the constraint on the maximum transmission power

of each cognitive transmitter, and (3.4b) accounts for the constraint on the guarantee

of the minimum rate of the primary user. Due to the nonconcave objective function

and SINR coupling structure, finding an optimal solution to this optimization problem

is challenging even for the simple scenario of single carrier. Notice that in the case of

centralized control, Qian et al. [46] proposes an algorithm that maximizes the network

weighted throughput. However, for the multicarrier distributed cognitive systems, the

global solution is still unsolved.

3.3 Distributed Power Allocation Algorithm

This section will investigate the distributed power allocation schemes to solve

the problem (P0). Particularly, two distributed scheduling algorithms are proposed to

allocate the transmission power for each cognitive link. The first scheme is based on the

Gibbs sampler to stochastically select the transmission powers for the cognitive links

following some distribution. Then the convergence of this proposed method is proved

to converge to the optimal solution. Furthermore, to reduce the time complexity and

convergence time of the first scheme, the Gibbs sampler based Lagrangian method is

proposed in which the searching space is decreased which can still achieve the near

optimal performance.
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3.3.1 Multicarrier Discrete Distributed Algorithm

Assume a link i on subcarrier k can only take discrete power values pik from

the set Pik = {0,∆Pik, 2∆Pik, . . . , P
max
ik }, where Pmax

ik varies according to the power

allocation in the previous state and the optimization constraints. Let each link i indepen-

dently update its transmission power; therefore, with probability 1, no two links update

at the same time [54].

To update power allocation on link i, the power allocation can be updated ei-

ther on one random-selected subcarrier at a time or on all subcarriers at the same time.

More specifically, the Gibbs sampler method is applied to update the power on different

cognitive links asynchronously. The main principle of this method is to select the opti-

mal parameter set by a sequence of transitions that leads to a desired distribution of the

variable. In this chapter, the distribution function is adopted from the one proposed in

[53, 54].

3.3.1.1 Case 1– Update on One Random Selected Subcarrier Each Time For

the case of random-selected subcarrier update method, the power of user i on subcarrier

k is updated at random time epochs {eik1, eik2, . . .}. Particularly, user i iteratively and

asynchronously updates each pik according to a probability distribution where the larger

total utility R has a higher probability of being selected. Specifically, at the time epoch

eikn, transmission power is updated to pik(eikn) according to the following probability

distribution

Pr(pik|p−ik,p−i) =
exp

(
− β

R(pik,p−ik,p−i)

)∑
p′ik∈Pik

exp
(
− β

R(pik,p−ik,p−i)

) , (3.5)

where β is related to the temperature of the simulated annealing algorithm [53], p−ik is

the transmission power of user i on other subcarriers, and p−i represents the transmis-

sion power allocation of other links right before time eikn. Recall that in the set Pik,

Pmax
ik varies according to the optimization constraints, as well as p−ik and p−i. In the

MCDD algorithm, instead of calculating Pmax
ik which does not have a closed form, let
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P ′ik =
{

0,∆Pik, . . . , P
max
i −

∑
l 6=k

pil
}

, then use the feasibility test to obtain the feasible

set Pik ⊆ P ′ik.

Then the proposed MCDD algorithm is denoted in Algorithm 3.1.

Algorithm 3.1 MCDD Algorithm-Case 1.
For any link i, at time epoch eikn

Step 1: Keep sensing information broadcast by other links;

Step 2: For all pik ∈ P ′ik, test if the constraints (3.4a) and (3.4b) can

be met:

–if not, pik /∈ Pik;

–if yes, calculate Pr(pik|p−ik,p−i) according to (3.5)

Step 3: Update power pik(eikn) according to its distribution function;

Step 4: Broadcast updated power in the cognitive system.

3.3.1.2 Case 2 – Update on All Subcarriers Each Time For the case of up-

dating all subcarriers at the same time, the power profile of user i on all subcarriers is

assumed to be updated at time epochs {ei1, ei2, . . .}. Let P i represent the set of overall

power allocation schemes of user i. The power profile of link i is updated to pi(ein)

according to the following distribution,

Pr(pi|p−i) =
exp

(
− β

R(pi,p−i)

)∑
p′i∈Pi

exp
(
− β

R(p′i,p−i)

) , (3.6)

Similar to the first case, the closed form for P i cannot be obtained. Let user i

exhaustively search all the possible power allocation schemes P ′i, then test the feasibility

to obtain P i. The proposed MCDD algorithm is summarized in Algorithm 3.2.

3.3.1.3 Optimality of MCDD In this subsection, the convergence and opti-

mal performance of the MCDD algorithm is proved.

Theorem 3.1. Starting from any initial power allocation, the MCDD algorithm con-
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Algorithm 3.2 MCDD Algorithm-Case 2.
For any link i, at time epoch ein

Step 1: Keep sensing information broadcast by other links;

Step 2: For all pi ∈ P ′ik, test if the constraints (3.4a) and (3.4b) can

be met:

–if not, pi /∈ P ik;

–if yes, calculate Pr(pi|p−i) according to (3.6) ;

Step 3: Update power pi(ein) according to its distribution function;

Step 4: Broadcast updated power in the cognitive system.

verges to a stationary distribution

Π =
exp

(
− β

R(p)

)∑
p′∈P

exp
(
− β

R(p′)

) , (3.7)

where P = {p|pi ∈ Pi,∀i}.

Let P∗ denote the set of optimal solutions to the problem (P0), when β →∞

lim
β→∞

Π =


1
|P∗| , p ∈ P∗

0, otherwise
(3.8)

where |P∗| denotes the cardinality of P∗.

Proof. According to the MCDD algorithm, at time t, the power allocation scheme p(t)

only depends on the previous power allocation scheme p(t − 1). Hence, the power

updating of the cognitive system can be modeled as a Markov chain. Note that for any

state p(t), all links have equal probability 1/M to update to this state since each link

can update at any time independently. Also, no two links update at the same time with

probability 1.

This theorem is proved in two cases:

Case 1: If link i updates power of one arbitrary subcarrier at a time, then pow-

er adjustment on any subcarrier has equal probability 1/K to update to p(t). There-
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fore, the MCDD can be modeled as a Markov Chain with the transition matrix Ω =

[Ω(p(t),p(t− 1)),∀p(t),p(t− 1) ∈ P ], and

Ω =
1

M ×K

M∑
i=1

K∑
k=1

Ωik, (3.9)

where Ωik = [Ωik(p(t)|p(t− 1),∀p(t),p(t− 1) ∈ P ] with

Ωik(p(t)|p(t− 1)) = (3.10)
Pr
(
pik(t)|p−ik(t− 1),p−i(t− 1)

)
, if p−ik(t− 1) = p−ik(t)

and p−i(t− 1) = p−i(t)

0, otherwise

(3.11)

Case 2: If link i updates power on all subcarriers at the same time, then the

transition matrix can be modeled as:

Ω =
1

M

M∑
i=1

Ωi, (3.12)

where

Ωi(p(t)|p(t− 1)) =


Pr
(
pi(t)|p−i(t− 1)

)
, if p−i(t− 1) = p−i(t)

0, otherwise
(3.13)

To prove the convergence behavior of this MCDD algorithm, the Markov Chain denoted

in (3.9) and (3.12) should have stationary distributions. Note that updating for certain

amount of times, all links will have updated their transmission powers at least once

on all subcarriers. Thus, all the elements of the transition matrices (3.9) and (3.12)

will be nonzero till certain time epochs. That is the Markov chains are irreducible,

positive recursive, and aperiodic. Thus, the Markov chains converge to the stationary

distributions. In particular, the stationary distribution is given as:

Π =
exp

(
− β

R(p)

)∑
p′∈P

exp
(
− β

R(p′)

) . (3.14)
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Furthermore,

Π =
exp

(
− β

R(p)

)∑
p′∈P∗

exp
(
− β

R(p′)

)
+

∑
p′∈P−P∗

exp
(
− β

R(p′)

)
=

exp
(
− β

R(p)−R(p∗)

)∑
p′∈P∗

1 +
∑

p′∈P−P∗
exp

(
− β

R(p′)−R(p∗)

)
β→∞→


1
|P ∗| , if p ∈ P∗

0, otherwise
(3.15)

Theorem 3.1 is proved.

Remark 3.1. The first approach that each link updates power on one subcarrier each

time will result in very slow convergence. Intuitively, each link only updates one subcar-

rier at a time which requires a long time to converge.

Remark 3.2. The second approach that each link updates power on all subcarriers at

a time converges much faster than the first method. However, to obtain the distribution

function needs exhaustive search of the whole space that increases exponentially with

the quantization level and the number of subcarriers.

The performance differences between Algorithm 3.1 and Algorithm 3.2 are:

Performance MCDD–Case 1 MCDD –Case 2

Convergence Speed Slow Fast

Searching Space Small Large

In the following sections, a near optimal algorithm is proposed by reducing the search-

ing space of the Algorithm 3.2.
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3.3.2 Gibbs Sampler Based Lagrangian Algorithm

In this subsection, in order to reduce the complexity and the convergence time of

the MCDD algorithm, a Gibbs sampler based Lagrangian algorithm is proposed which

approximates the optimal solution.

In the well-known single user waterfilling algorithm [47], without the constrain-

t (3.4b), each user only maximizes its own utility with the same “waterlevel” for all

subcarriers. In the cognitive scenario, if each time only one link i adjusts its power to

maximize its individual rate while treating other users’ interference as noise; then the

Lagrangian function of user i can be written as:

Li =
K∑
k=1

log
(
1 +

Gii(k)pik

∆
(1)
ik

)
+λi

(
Pmax
i −

K∑
k=1

pik
)

+ ηi

( K∑
k=1

log
(
1 +

sk

Ii(k)pik + ∆
(2)
ik

)
−Rth

)
,(3.16)

where ∆
(1)
ik , nik+

∑
j 6=i

Gji(k)pjk, ∆
(2
ik , nk+

∑
j 6=i

Ij(k)pjk, λi and ηi are the nonnegative

Lagrangian multipliers.

Take the derivative of Li with respect to pik, and set it equal to zero, (3.17) is

obtained:

Gii(k)∆
(1)
ik

∆
(1)
ik +Gii(k)pik

− λi + ηi
( −Ii(k)sk

(∆
(2)
ik + Ii(k)pik + sk)(∆

(2)
ik + Ii(k)pik)

)
= 0. (3.17)

Unfortunately, the closed form of pik is not obtainable from (3.17). Further,

the two-dimensional exhaustive search of Lagrangian parameters λi and ηi are required

to obtain the whole value space of pik. Note that when condition (3.4a) is active and

(3.4b) is inactive, the searching space can be obtained by setting ηi = 0, so only a

one-dimensional search of λi is required. Similarly, when condition (3.4b) is active and

(3.4a) is inactive, only a one-dimensional search of ηi is required. Hence, let link i

use the combination of two one-dimensional searches to obtain its current power space.

Specifically, link i first sets ηi = 0; then applies a one-dimensional exhaustive search on
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λi and obtains all corresponding values of pik for each subcarrier as follows:

pik = max
{∆

(1)
ik

λi
− ∆

(1)
ik

Gii(k)
, 0
}
. (3.18)

Then link i sets λi = 0, and obtains all possible values of pik from (3.23) through the

exhaustive search of ηi. Specifically,(3.17) now becomes:

Gii(k)∆
(1)
ik

∆
(1)
ik +Gii(k)pik

= ηiIi(k)sk

(∆
(2)
ik +Ii(k)pik+sk)(∆

(2)
ik +Ii(k)pik)

(3.19)

i.e., (3.20)

1
1

Gii(k)
+

pik

∆
(1)
ik

= ηiIi(k)sk

pik2Ii(k)2+pik

(
skIi(k)+2∆

(2)
ik Ii(k)

)
+∆

(2)
ik

2

+sk∆
(2)
ik

(3.21)

Furthermore, it can be denoted as:

pik
2Ii(k)2 + pik

(
skIi(k) + 2∆

(2)
ik Ii(k)− ηiIi(k)sk

∆
(1)
ik

)
+

∆
(2)2

ik + sk∆
(2)
ik −

ηiIi(k)sk
Gii(k)

= 0 (3.22)

Let ∆A = Ii(k)2, ∆B =

(
skIi(k) + 2∆

(2)
ik Ii(k)− ηiIi(k)sk

∆
(1)
ik

)
, and ∆C = ∆

(2)2

ik +

sk∆
(2)
ik −

ηiIi(k)sk
Gii(k)

,

pik =

(
−∆B ±

√
∆B

2 − 4∆A∆C

2∆A

)+

. (3.23)

Intuitively, from (3.18) the channel with the lower interference has higher power;

according to (3.23) the channel with stronger interference to the primary system has

lower power.

Different from the MCDD algorithm which searches the whole space of the pow-

er allocation scheme, the size of the searching space is greatly reduced by allowing one

user to adjust its power on all subcarriers at the same time using two one-dimensional

searches according to (3.18) and (3.23). Without loss of generality, let vi = 1/λi, and as-

sume vi and ηi of user i take discrete values from Vi = {vmin
i , vmin

i +∆vi, . . . , v
max
i } and

Hi = {ηmin
i , ηmin

i + ∆ηi, . . . , η
max
i } respectively; wherein set vmax

i = maxk
( ∆

(1)
ik

Gii(k)

)
+

Pmax
i , vmin

i = mink
( ∆

(1)
ik

Gii(k)

)
, ηmax

i = maxk
(
1 +

2Pmax
i Ii(k)+2∆

(2)
ik

sk

)
, and ηmin

i = 0. Then,
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the entire space of p derived from (3.18) and (3.23) belongs to P̂ i if and only if con-

straints (3.4a) and (3.4b) can both be met. Note that P̂ i is the subset of P i for the MCDD

algorithm. Each user i updates its power pi iteratively and asynchronously according to

the following probability distribution

Pr(pi|p−i) =
exp

(
− β

R(pi,p−i)

)∑
p′i∈P̂i

exp
(
− β

R(p′i,p−i)

) , (3.24)

Pseudo code of the proposed GSLA is summarized as follows.

Algorithm 3.3 GSLA Algorithm.
For any link i, at time epoch ein

Step 1: Keep sensing information broadcast by other links;

Step 2: For all vi ∈ Vi, ηi ∈ Hi,

Obtain the corresponding pi from (3.18) and (3.23);

Test if both (3.4a) and (3.4b) are met:

–if not, pi /∈ P̂ ik);

–if yes, calculate Pr(pi|p−i) according to (3.24);

Step 3: Update power pi(ein) according to its distribution function;

Step 4: Broadcast pi(ein) in the cognitive system.

Theorem 3.2. The GSLA algorithm converges to a stationary distribution.

Proof. This can be proved similarly as the proof of Theorem 3.1.

Note that, the convergence performance of GSLA algorithm can be proved, how-

ever it is still a suboptimal algorithm because the reduced searching space may miss the

optimal solution.

Remark 3.3. The GSLA algorithm is preferred when dealing with a large number of

subcarriers. This is because its convergence speed is much faster compared to the first
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case of the MCDD algorithm; also the searching space of the second case of MCDD is

greatly reduced.

3.4 Simulations

This section will evaluate the proposed algorithms via simulations. In particular,

consider a secondary system consisting of five cognitive communication links, i.e.,M =

5. The PU and SUs are randomly located in a 10 m×10 m area. The channel power

gains in the secondary network independently belong to exponential distributions with

mean values as 1/d2
i,j , where di,j denotes the distance between the SU transmitter i and

receiver j; and the channel power gains between SUs and PU are drawn similarly. In

addition, set the transmission power for all subcarriers of the primary user as the same

and sk = 1 mW. The power noises nik and nk are set equal to 1 µW for all users

and subcarriers. Although from Theorem 3.1 large β is preferred, this simulation set

β as 2000 because very large β could result in numerical problems in calculating the

probability distribution.

The first experiment simulates a scenario where five cognitive communication

links share two subcarriers with the primary user. Set the primary user’s rate threshold

as 5 bps and the secondary users’ maximum power equal to 1 mW. The throughput

of the secondary network using different technique is indicated in Figure 3.2. Note

that the MCDD algorithm shown in Figure 3.2 is obtained by allowing a link updating

the power over all subcarriers at a time. As expected, all the techniques converge to

their stable value after a small number of iterations. In particular, IWF results in the

worst performance as the transmitter of each cognitive link selfishly maximizes its own

transmission rate. Consequently, it increases the interference to the other links; thus,

overall it decreases the sum throughput of the network. On the contrary, the MCDD

technique achieves the best performance by adjusting the transmission power based on
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Theorem 1 large   is preferred, we set  as 2000 because very large   could result in 

numerical problems in calculating the probability distribution.   

In the first experiment, we simulate a scenario where five cognitive communication 

links share two subcarriers with the primary user. We set the primary user's rate threshold 

as 5bps and the secondary users' maximum power equal to 1mw. The throughput of the 

cognitive radio using different technique is indicated in Figure 3.1. Note that the MCDD 

algorithm shown in Figure 3.1 is obtained by allowing a link updating the power over all 

subcarriers at a time. As expected, all the techniques converge to their stable value after a 

small number of iterations. In particular, IWF results in the worst performance as the 

transmitter of each cognitive link selfishly maximizes its own transmission rate. 

Consequently, it increases the interference to the other links; thus, overall it decreases the 

sum throughput of the network. On the contrary, the MCDD technique achieves the best 

performance by adjusting the transmission power based on the overall system utility.  

 

Figure 3.1  Throughput of a 5-link cognitive network with 2 subcariers. 
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FIGURE 3.2 – Throughput of a 5-link cognitive network with 2 subcariers.

the overall system utility.

The second experiment considers a scenario consisting of five cognitive commu-

nication links that share twenty subcarriers with the primary user. The primary user’s

rate threshold is set to 50 bps . Further, assume each secondary user has a maximum

power as 5 mW. Since the MCDD algorithm performs on a very large searching space,

which increases exponentially with the number of subcarriers, this simulation focuses

only on comparing the performance gain of the GSLA algorithm with that of IWF and

the Improved IWF algorithms. Figure 3.3 depicts the sum throughput of the cognitive

network using different techniques. As seen, the IWF results in the worst performance.

On the other hand, GSLA achieves the best performance. The intuition is that GSLA
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In the second experiment, we consider a scenario consisting of five cognitive 

communication links that share twenty subcarriers with the primary user. The primary 

user's rate threshold is set to 50bps . Further, assume each secondary user has a maximum 

power as 5mw . Since the MCDD algorithm performs on a very large search space, which 

increases exponentially with the number of subcarriers, we focus only on comparing the 

performance gain of the GSLA algorithm with that of IWF and the Improved IWF 

algorithms. Figure 3.2 depicts the sum throughput of the cognitive network using 

different techniques. As seen, the IWF results in the worst performance. On the other 

hand, GSLA achieves the best performance. The intuition is that GSLA operates on a 

larger search space, i.e., combination of two one-dimensional spaces, while Improved 

IWF performs only a simple one-dimensional search. 

 

Figure 3.2 Throughput of a 5-link cognitive network with 20 subcariers. 
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FIGURE 3.3 – Throughput of a 5-link cognitive network with 20 subcariers.

operates on a larger searching space, i.e., combination of two one-dimensional spaces,

while the Improved IWF performs only a simple one-dimensional search.

3.5 Conclusion

This chapter investigated the problem of optimal power allocation in an inter-

ference coupled multicarrier cognitive network, which subjects to the primary user’s

rate constraint. In particular, several distributed algorithms were proposed with limited

information exchange between the cognitive nodes in order to approximate the opti-

mal solution of the nonconcave objective problem. The proposed MCDD algorithm has
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been proven to converge to the global optimal solution. In addition, in order to increase

the convergence rate and decrease the complexity of the MCDD algorithm, the GSLA

algorithm was proposed by reducing the searching space while still obtaining a high

performance. Simulation results were provided to show the performance gains of the

proposed schemes.
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CHAPTER 4
DPC VERSUS TDMA IN DELAY SENSITIVE COMMUNICATION OVER

BROADCAST FADING CHANNELS

In the previous chapters, the underlay mode and the interweave mode of the cog-

nitive radio systems were investigated, where the primary network and the secondary

network are using different transmitters. However, as is mentioned in Chapter 1, when

multiple coexisting networks are transmitting on the same frequency simultaneously,

advanced dirty paper coding (DPC) scheme can be used to precancel the interference

for better performance. As mentioned in Chapter 1, the DPC-based systems with mul-

tiple distributed antennas will suffer from unbearable amount of information exchange;

however, when multiple networks are converged into a hybrid network using the com-

mon transmitter, e.g, the hybrid broadcast and unicast system proposed by [23], the side

information can be avoided.

Therefore, this chapter will investigate a DPC-based hybrid system that has com-

mon transmitter serving different networks. For comparison purpose, the time division

multiple access (TDMA) scheme is also investigated. Furthermore, the QoS require-

ments are considered by using effective capacity for a user in fast fading scenario and

outage capacity for a user in slow fading scenario. Note that the abstract mathematical

model will apply for users that working in different networks and in the same network

as well. Specifically, the performance of DPC and TDMA schemes are studied over

the two-user broadcast channel in low SNR regime and high SNR regime, respectively;

in low SNR regime, the minimum energy per bit and the wideband slope region are the

main performance metrics; in high SNR regime, the high SNR slope and the power offset
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are considered as the main metrics.

4.1 Background and Motivation

This chapter focuses on the transmission schemes for multiuser broadcasting

(downlink) systems, i.e., the common transmitter sends signals to several different users

that belong to the same network or different networks. What is more, it is assumed that

the instantaneous channel state information is not available at the transmitter side.

In mutiluser wireless communications, time division multiple access (TDMA)

and dirty paper coding (DPC) are two primary multiple access techniques. Specifically,

TDMA is an orthogonal spectrum sharing scheme where multiple users transmit on

different time slots to avoid multi-user interference. Due to its simplicity in system

implementation, TDMA has been widely used in practical wireless systems. DPC is

a non-orthogonal spectrum sharing scheme where multiple signals are pre-coded and

transmitted on the same frequency at the same time. Despite its added complexity, DPC

is becoming an emerging wireless multiple access scheme due to its well known capacity

achieving performance in downlink channels [25]. From information theoretic point of

view, a number of existing studies on TDMA and DPC can be found in the literature

[55–59], where Shannon capacity was used as the performance metric to unveil the

fundamental limits of these two multiple access schemes.

It is well known that the classic Shannon capacity is a physical layer metric that

cannot capture the upper layer quality of service (QoS) requirements. Particularly, with

the increasing communication demand, many wireless services are delay sensitive [60–

62]. Along a different line, the delay limited capacity (a.k.a zero-outage capacity) en-

forces zero delay bound violation probability, which restricts the system to operate pes-

simistically in fading channels (e.g. the delay limited capacity becomes zero in Rayleigh

fading channels). To balance the requirements on delay and transmission rate, effective
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capacity was proposed as the maximum constant arrival rate that can be supported by a

stochastic service process with a probabilistic delay constraint [63]. While the effective

capacity can well capture the delay requirement in fast fading channel, it becomes very

small in slow fading channel due to relatively large channel coherent time. For slow

fading channel without CSIT, outage capacity defines the maximum data transmission

rate that the received data are decoded with certain outage probability. By allowing the

system to lose some data in the event of deep slow fading, the received data can be de-

coded instantly to meet the delay requirement. Therefore, effective capacity and outage

capacity are used in this work as the performance metric for fast fading channel and

slow fading channel, respectively. For tractability, the delay sensitive multiuser capacity

region in both low and high SNR regimes as well as the impact of delay requirements

on system performance will be investigated.

For a point-to-point channel, it is well known that the minimum received energy

per bit is -1.59 dB, which is achieved as the spectral efficiency (bits/s/Hz) approaches

zero. However, in [64] Verdú pointed out the spectral efficiency must be nonzero in

practical systems, and he proposed the wideband slope concept to characterize the sec-

ond order approximation of the spectral efficiency. Thereafter, minimum energy per bit

and wideband slope together are often used to characterize the low SNR performance

[55, 65–70]. In high SNR regime, Lozano et al. pointed out that high SNR slope only

captures the scaling effect but cannot assess the power required for a certain capacity, so

they proposed the concept of power offset as a complementary metric [71]. Since then,

most studies on high SNR capacity analysis, e.g. [66, 72], adopt both high SNR slope

and power offset as the performance metrics.

Existing works on effective capacity in low or high SNR are available in [65–

68]. For point-to-point transmission, [65] investigated the performance of SISO system

using effective capacity in low SNR regime; [66] investigated the performance of MI-

MO system using effective capacity in both low SNR regime and high SNR regime. For
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multiuser communication system in low SNR regime, [67] and [68] studied the energy

efficiency for multiple access channel and interference channel respectively, where each

user has an individual power constraint. To the best of our knowledge, effective capacity

has not been studied in downlink channels. With regard to outage capacity of multiuser

systems, existing works are available for both low SNR case [69] and high SNR case

[72]. For users with different performance metrics, recent work [70] investigated a hy-

brid cellular system in low SNR regime, where effective capacity and outage capacity

are used for unicast users and broadcast users, respectively. This chapter will investi-

gate the effective capacity of multiuser downlink systems in both low SNR and high

SNR regimes. Moreover, the heterogeneous QoS constraints will also be investigated

by extending previous work [70] to general cases in low and high SNR regime.

The original contributions of this work are:

1. In low SNR regime, the closed form minimum energy per bit and the wideband

slope for DPC and TDMA are obtained regarding to effective capacity region as

well as hybrid capacity region.

2. In low SNR regime, the impact of the QoS requirements on the performance,

turning points on wideband slope, performance comparison between DPC and

TDMA, optimal cancellation order of the DPC scheme, as well as the near-optimal

resource allocation are provided, respectively.

3. In high SNR regime, the high SNR slope and power offset for DPC and TDMA

are obtained regarding to sum effective capacity as well as sum hybrid capacity.

4. In high SNR regime, the impact of the QoS requirements, the optimal DPC can-

cellation order, the impact of the resource sharing factor on sum effective/hybrid

capacity are investigated.

5. For Rayleigh fading channel model, further investigations are provided for both
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high SNR and low SNR regimes.

The rest of this chapter is organized as follows. Section 4.2 provides system

model and capacity region for different transmission scenarios. Then, Section 4.3 focus-

es on performance analysis of DPC and TDMA in low SNR regime, where the minimum

energy per bit and the wideband slope in both fast fading and hybrid fading (fast fad-

ing + slow fading) are thoroughly studied. For high SNR regime, rigorous performance

analysis of DPC and TDMA is presented in Section 4.4, where the high SNR slope

and power offset are used as the performance metric. Finally, a conclusion is drawn in

Section 4.5.

4.2 System Model and Problem Formulation

4.2.1 System Model

This work focuses on a two-user broadcast fading channel, given the mathemat-

ical model as follows:

Y1 = h1X + n1 (4.1a)

Y2 = h2X + n2 (4.1b)

where Yi is the received signal of user i; X represents the transmitted signal; ni denotes

the Gaussian noise of user i; hi is the channel gain of user i.

In this downlink transmission, the transmitter is subject to a total power con-

straint P which is shared between two users. Denote the channel noise power spectral

density as N0 and the channel bandwidth as B; as a result, the signal-to-noise ratio

can be expressed as SNR = P
N0B

. Assume the transmitter only knows the statistical

channel state information and receivers have perfect channel state information. For the

TDMA scheme, the information for user 1 and user 2 will be transmitted separately in
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different time periods without mutual interference. In contrast, for the DPC scheme, the

transmitter sends two users’ encoded signal simultaneously in time and frequency.

4.2.2 Effective Capacity and Outage Capacity

This subsection introduces the effective capacity as the performance metric for

error free transmission in fast fading channel and outage capacity as the performance

metric that bears error in slow fading channel, respectively. The main difference be-

tween effective capacity and outage capacity is: effective capacity describes an error

free capacity and has a QoS exponent which directly reflects the statistical delay re-

quirement; while the outage capacity bears error, which is preferred for deep slow fading

channel.

4.2.2.1 Effective Capacity Effective capacity is a probabilistic delay con-

strained capacity defined for small scale fading channel by Wu and Negi[63]. Accord-

ing to [63], effective capacity C(θ) describes as the maximum constant arrival rate that

a given service process can support in order to guarantee a statistical delay requirement

(i.e. delay violation probability).

Let D(t) represents the delay that a source packet is experiencing at time t,

assume the probability of steady state delay D(∞) exceeding a delay bound Dmax is

required to be no greater than ε:

Prdelay = Pr{D(∞) ≥ Dmax} ≤ ε. (4.2)

As is shown in [73] that the delay violation probability is related to the buffer overflow

probability as follows:

Pr{D(∞) ≥ Dmax} ≤ c
√
Pr{Q(∞) ≥ Qmax}, (4.3)

where c is some positive constant, Q(∞) is the steady state queue length of the buffer,

and Qmax = C(θ)Dmax. Therefore, the statistical delay requirement in (4.2) can be
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upper-bounded by a buffer overflow probability requirement:

Pr{Q(∞) ≥ Qmax} ≤
ε2

c2
. (4.4)

According to [74], for a queuing system with stationary ergodic arrival and ser-

vice processes, and under certain conditions, the queue length process Q(t) converges

to a random variable Q(∞) in a distribution that satisfies

− lim
Qmax→∞

loge
(
Pr{Q(∞) > Qmax}

)
Qmax

= θ,

i.e. lim
Qmax→∞

Pr{Q(∞) > Qmax} = lim
Qmax→∞

e−θQmax , (4.5)

where Q(∞) is the stationary queue length, and θ is the asymptotic decay rate of buffer

occupancy. Smaller θ represents looser delay requirement, and larger θ corresponds to a

more strict delay requirement. The statistical delay constraint of the traffic will be met

if the measured decay rate of the buffer occupancy θ̂ is greater than the required θ.

Let r(τ) represents the instantaneous service rate of a wireless system at time τ ,

then Q(t) = C(θ)t−
∫ t

0
r (τ) dτ . According to the large deviation principle (LDP):

Pr{Q(∞) ≥ Qmax} = lim
t→∞

Pr

{
C(θ)t−

∫ ∞
0

r (τ) dτ ≥ Qmax

}
= lim

t→∞
Pr

{∫ ∞
0

r (τ) dτ ≥ −C(θ)t+Qmax

}
LDP

==== lim
t→∞

E{e−θ
∫∞
0 r(τ)dτ}

e−θC(θ)t+θQmax

= lim
t→∞

E{e−θ
∫∞
0 r(τ)dτ}

e−θC(θ)t
e−θQmax (4.6)

Based on (4.5) and (4.6), the effective capacity C(θ) can be denoted as:

C (θ) = − lim
t→∞

1

θt
loge E[e−θ

∫ t
0 r(τ)dτ ] ∀θ ≥ 0 bits/s, (4.7)

wherein E{·} denotes the expectation. Note that, when θ = 0, the effective capacity

approaches ergodic capacity E{r} [75].

Furthermore, assume that the users are experiencing block fading with block

length T and having different requirements on the asymptotic decay rate of buffer oc-

cupancy as θ1 and θ2. As a result, the effective capacity normalized with bandwidth B
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(also called the spectrum efficiency with regard to effective capacity) for user i can be

written as [75]:

Ci (θi) = − 1

θiTB
loge E[e−θiTri ] bits/s/Hz. (4.8)

According to (4.8), in slow fading scenario, i.e., when T is large, effective capacity can

be very small due to the stringent delay requirement [76]. Therefore, effective capacity

if often used for fast fading channels.

4.2.2.2 Outage Capacity As mentioned above, using effective capacity is

too conservative for slow fading channel. Hence, in slow fading where the instantaneous

SNR is assumed to be constant for a large number of symbols, the widely adopted outage

capacity is considered as the figure of merit. The outage capacity defines the maximum

data transmission rate that can be decoded with certain outage probability. Specifically,

the outage capacity Roc is expressed as:

Roc : Pr {R(t) ≤ Roc} = qo, (4.9)

where qo denotes the outage probability. Corresponding to this outage probability, for

given SNR at the transmitter side, there is a channel power gain threshold zth as [77]:

zth : Pr{z ≤ zth} = qo. (4.10)

4.2.3 Effective Capacity Region and Hybrid Capacity Region

The following sections will investigate the fast fading scenario where both users

are experiencing the fasting fading and using effective capacity, as well as the hybrid

fading scenario where one user is in fast fading using effective capacity and the other

user is in slow fading using outage capacity. Note that the case when both users are

using outage capacity has been studied in [69].

In broadcasting channel, total wireless resource (power and time) needs to be

shared between two users. Using the DPC scheme, signals for different users are sent
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simultaneously, and the total power is shared between two users; while in the TDMA

scheme, signals for different users are transmitted with full power on different fraction

of time slot. Let α be the percentage of resource scheduled for user 1, and 0 ≤ α ≤ 1

(α denotes the power sharing factor for DPC and the time sharing factor for TDMA,

respectively). Let zi denote the instantaneous channel power gain for user i, i.e., zi =

|hi|2.

4.2.3.1 Effective Capacity Region When both users are experiencing the fast

fading channels, for the DPC scheme, consider the interference from user 2 to user

1 is pre-canceled (also called as: user 2 is precanceled from user 1 for simplicity).

Accordingly, the normalized effective capacity region for DPC is denoted as (4.11).

⋃
α∈[0,1]

{
CDPC

1 (θ1) ≤ − 1
θ1TB

logeE
[
e−θ1TBlog2(1+αz1SNR)

]
,

CDPC
2 (θ2) ≤ − 1

θ2TB
logeE

[
e
−θ2TBlog2

(
1+

(1−α)z2SNR
1+αz2SNR

)]}
. (4.11)

On the other hand, the normalized effective capacity region for TDMA can be

represented as (4.12).

⋃
α∈[0,1]

{
CTDMA

1 (θ1) ≤ − 1
θ1TB

logeE
[
e−θ1TBαlog2(1+z1SNR)

]
,

CTDMA
2 (θ2) ≤ − 1

θ2TB
logeE

[
e−θ2TB(1−α)log2(1+z2SNR)

]}
. (4.12)

4.2.3.2 Hybrid Capacity Region When user 1 is experiencing fast fading

and user 2 is in slow fading, use effective capacity for user 1 and outage capacity for

user 2. For user 2, assume the maximum allowable outage probability is qo, recall from

(4.10), its power gain threshold zth is denoted as:

zth : Pr{z2 ≤ zth} = qo. (4.13)

For simplicity, use R2 to denote user 2’s outage capacity.

For the DPC scheme, still consider the interference from user 2 to user 1 is pre-
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canceled, and the normalized hybrid capacity region can be denoted as:

⋃
α∈[0,1]

{
CDPC

1 (θ1) ≤ − 1
θ1TB

logeE
[
e−θ1TBlog2(1+αz1SNR)

]
,

RDPC
2 ≤ log2

(
1 + (1−α)zthSNR

1+αzthSNR

)}
. (4.14)

The normalized TDMA hybrid capacity region can be expressed as:

⋃
α∈[0,1]

{
CTDMA

1 (θ1) ≤ − 1
θ1TB

logeE
[
e−θ1TBαlog2(1+z1SNR)

]
,

RTDMA
2 ≤ (1− α) log2 (1 + zthSNR)

}
. (4.15)

4.3 DPC and TDMA Performance Analysis in Low SNR Regime

Either bandwidthB →∞ or total power P → 0 can result in low SNR; however,

different approaches will have different impacts on the performance [78]. The essential

difference is that they impact the behavior of propagation delays differently. The case

that P → 0 has the much smaller propagation delay than the symbol duration, in contrast

B →∞ results in large propagation delay compared with symbol duration. In this work,

the low SNR analysis will focus on the case that P → 0 while the bandwidth is fixed

and finite.

This section will first introduce the two performance metrics in low SNR regime,

i.e., minimum energy per bit and wideband slope. Next, the performance when both

users are using effective capacity will be investigated. Specifically, the closed form

minimum energy per bit and wideband slope region are obtained, followed by the per-

formance comparison of TDMA and DPC, turning point on the slope region, optimal

cancellation order of the DPC scheme, the low SNR resource allocation scheme, also

the results are further investigated in Rayleigh fading channels. Next, similar perfor-

mance investigations are carried out for hybrid capacity region in low power regime.
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4.3.1 Minimum Energy Per Bit and Wideband Slope

Denote C as the general normalized capacity (bits per second per hertz), which

can refer to either effective capacity or outage capacity. In the low SNR regime, the

capacity C increases linearly with SNR and can be further expanded as:

C (SNR) = Ċ(0)SNR +
1

2
C̈(0)SNR2 + o

(
SNR2

)
, (4.16)

where Ċ(0) and C̈(0) respectively represent the first and second order derivative of C

regarding to SNR at SNR = 0.

The performance in low power regime is characterized in terms of minimum

energy per bit and wideband slope. Specifically, according to [64], the minimum trans-

mission energy per bit is defined as follows:

E

N0 min

= lim
SNR→0

SNR
C (SNR)

=
1

Ċ(0)
, (4.17)

where Ċ(0) represents the first order derivative of C(SNR) regarding to SNR at SNR =

0.

The wideband slope S, defined by Verdú in [64], measures the increase of spec-

trum efficiency per 3dB of signal energy achieved at Ei
N0 min

, specifically:

S = lim
Eb
N0
↓Eb
N0 min

C
(
Eb
N0

)
10log10

Eb
N0
−10log10

Eb
N0 min

10log102

= −2(Ċ(0))
2

C̈(0)
loge2 (bits/s/Hz/3dB), (4.18)

where C̈(0) represents the second order derivative of C(SNR) at SNR = 0.

As mentioned previously, the minimum energy per bit and wideband slope are

defined at low SNR and approximated by derivatives at SNR = 0. Note that, small

minimum energy per bit and large wideband slope are always desired in the system

design in terms of energy efficiency.
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4.3.2 Analysis of Effective Capacity Region in Low Power Regime

This subsection will investigate the performance of DPC and TDMA scheme in

low power regime when both users are using effective capacity as performance metrics.

First calculate the minimum transmission energy per bit defined as (4.17) for

both schemes, according to their achievable DPC effective capacity region in (4.11) and

TDMA effective capacity region in (4.12), respectively.

Theorem 4.1. For all k = C1(θ1)/C2(θ2), the minimum transmission energy per infor-

mation bit for the broadcasting channel achieved by both DPC and TDMA are:

E1

N0

DPC

min

=
E1

N0

TDMA

min

=

(
1

E {z1}
+

1

kE {z2}

)
loge2, (4.19)

E2

N0

DPC

min

=
E2

N0

TDMA

min

=

(
k

E {z1}
+

1

E {z2}

)
loge2. (4.20)

Proof. Enforcing the constraint that C1 (θ1) /C2(θ2) = k on the achievable rate region

(4.11) or (4.12), the resource sharing parameter α becomes a function of SNR, denoted

as α(SNR). The explicit solution for α(SNR) is difficult to obtain. Fortunately, α(SNR)

at SNR = 0 can be obtained by taking the first order derivative of C1(θ1) and C2(θ2) at

SNR = 0,

ĊDPC
1 (θ1)|SNR=0 = ĊTDMA

1 (θ1)|SNR=0 =
α(0)

loge 2
E {z1} , (4.21)

ĊDPC
2 (θ2)|SNR=0 = ĊTDMA

2 (θ2)|SNR=0 =
1− α(0)

loge 2
E {z2} . (4.22)

Since C1(θ1)
C2(θ2)

= k for all SNR, Ċ1(θ1)

Ċ2(θ2)
|SNR=0 = k holds for both DPC and TDMA schemes.

Therefore, α(0) can be obtained as:

α(0) =
kE {z2}

E {z1}+ kE {z2}
. (4.23)

Finally, by substituting (4.21), (4.22) and (4.23) into (4.17), Theorem 4.1 is proved.
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Remark 4.1. According to Theorem 4.1, both DPC scheme and TDMA scheme have the

same minimum energy per bit Eb
N0min

, which is not affected by users’ delay requirements.

Furthermore, for user 1, the minimum transmission energy per bit decreases with rate

ratio k (k = C1 (θ1) /C2(θ2); while for user 2, it increases with k.

The minimum transmission energy per bit alone cannot tell which transmission

scheme is more advantageous in terms of energy efficiency. Therefore, the slope re-

gions of DPC and TDMA schemes are investigated. According to the wideband slope

expression in (4.18) and the achievable effective capacity regions in (4.11)-(4.12), the

following theorems are obtained.

Theorem 4.2. In the DPC mode, for any k = CDPC
1 (θ1)/CDPC

2 (θ2), the slope region

for broadcast transmission in the low-power regime is:{(
SDPC1 , SDPC2

)
: 0 ≤ SDPC1 ≤ 2k (A+ k)

k2A1 + kA2 + A3

,

0 ≤ SDPC2 ≤ SDPC1

k

}
, (4.24)

whereA = E{z1}
E{z2} ; A1 = θ1TB

(
E{z12}
E{z1}2

− 1

)
+

E{z12}
E{z1}2

loge2; A2 = 2
E{z22}
E{z2}2

loge2; A3 =

θ2TB
E{z1}
E{z2}

(
E{z2

2}
E{z2}2

− 1

)
+ E{z1}

E{z2}
E{z2

2}
E{z2}2

loge2.

Proof. Taking the second order derivative of CDPC
1 (θ1) and CDPC

2 (θ2) over SNR at

SNR = 0, the following results are obtained:

C̈DPC
1 (θ1) |SNR=0 =

2α̇(0)

loge2
E {z1} −

α(0)2

loge2
E
{
z1

2
}
− θ1TBα(0)2

(loge2)2 Var {z1} , (4.25)

C̈DPC
2 (θ2) |SNR=0 = −2α̇(0)

loge2
E {z2} − 1−α(0)2

loge2
E {z2

2}

− θ2TB(1−α(0))2

(loge2)2 Var {z2} . (4.26)

Similar to the proof of Theorem 4.1, by enforcing the constraintCDPC
1 (θ1)/CDPC

2 (θ2) =
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k, the derivative of α(SNR) at SNR = 0 i.e., α̇DPC(0) is denoted in (4.27).

α̇DPC(0) =

α(0)2E{z12}+
θ1TBα(0)2

loge2
Var{z1}− kθ2TB(1−α(0))2

loge2
Var{z2}−k(1−α(0)2)E{z2

2}
2E{z1}+2kE{z2} . (4.27)

Theorem 4.2 follows by plugging (4.21)-(4.23), (4.25)-(4.27) into (4.18).

Theorem 4.3. In the TDMA mode, for any k = CTDMA
1 (θ1)/CTDMA

2 (θ2), the broadcast

slope region in the low-power regime is:{(
STDMA

1 , STDMA
2

)
: 0 ≤ STDMA

1 ≤ 2k(A+k)
k2A1+kA4+A3

,

0 ≤ STDMA
2 ≤ STDMA

1

k

}
, (4.28)

where A4 =

(
E{z2

2}
E{z2}2

+
E{z12}

E{z1}E{z2}

)
loge2, and other coefficients are the same as in The-

orem 4.2.

Proof. Following the same approach as the proof of Theorem 4.2, first take the second

order derivative of CTDMA
1 (θ1) and CTDMA

2 (θ2) over SNR at SNR = 0,

C̈TDMA
1 (θ1) |SNR=0 =

2α̇(0)

loge2
E {z1} −

α(0)

loge2
E
{
z1

2
}
− θ1TBα(0)2

(loge2)2 Var {z1} , (4.29)

C̈TDMA
2 (θ2) |SNR=0 = −2α̇(0)

loge2
E {z2} − 1−α(0)

loge2
E {z2

2}

− θ2TB(1−α(0))2

(loge2)2 Var {z2} . (4.30)

Then the derivative of the time sharing parameter α(SNR) at SNR = 0 for TDMA

scheme can be obtained as (4.31).

α̇TDMA(0) =

α(0)E{z12}+
θ1TBα(0)2

loge2
Var{z1}− kθ2TB(1−α(0))2

loge2
Var{z2}−k(1−α(0))E{z2

2}
2E{z1}+2kE{z2} . (4.31)

Plug (4.21)-(4.23) and (4.29)-(4.31) to (4.18), Theorem 4.3 is proved.
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Remark 4.2. From Theorem 4.2 and 4.3, the slope region for both DPC scheme and

TDMA scheme are decreasing when any user’s delay requirement becomes more strin-

gent.

Based on the above theorems, the more detailed performance analysis of DPC

and TDMA are provided next.

4.3.2.1 Turning Point on Wideband Slope From Theorem 4.2 and 4.3, each

point on the slope region corresponds to a rate ratio k between user 1 and user 2. By

investigating the relationship between wideband slope and rate ratio k, the observations

are as follows. For DPC scheme:

• User 1’s wideband slope: when A2 ≥ AA1, user 1’s wideband slope is a mono-

increasing function of k; otherwise, user 1’s wideband slope first increases with k

till k1, and then decreases with k, where k1 =
A3+
√
A3

2−AA3(A2−AA1)

(AA1−A2)
.

• User 2’s wideband slope: when A3 ≤ AA2, user 2’s wideband slope is a mono-

decreasing function of k; otherwise, user 2’s wideband slope first increases with

k till k2, and then decreases with k, where k2 =
−AA1+

√
(AA1)2+A1(A3−AA2)

A1

Similarly, for TDMA scheme, the above results hold by replacing coefficient A2

with A4, which is defined in Theorem 4.3.

4.3.2.2 Bandwidth Expansion Factor In order to compare the performance

between DPC and TDMA in low power regime, use the bandwidth expansion factor σ,

as in [55], which is defined as the ratio of the DPC wideband slope over the TDMA

wideband slope. Specifically, for fast fading scenario, according to Theorem 4.2 and

4.3,

σ = SDPC1 /STDMA
1 = SDPC2 /STDMA

2

= 1 + k(A4−A2)
k2A1+kA2+A3

. (4.32)

where σ is the function of rate ratio k.
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Consequently, when E {z2
1} > E {z1}E {z2}, σ > 1 holds, i.e., DPC outper-

forms TMDA.

4.3.2.3 Energy Efficiency in Rayleigh Fading Channel For Rayleigh fading

channels, the channel power gain zi belongs to exponential distribution for user i. As-

sume that the probability density function of zi is f(zi) = λie
−λizi . Let x = λ2/λ1, then

the DPC slope region and TDMA slope region in fast fading scenario can be further

expressed as (4.33) and (4.34), respectively.{(
SDPC1 , SDPC2

)
:

0 ≤ SDPC1 ≤ 2k(x+ k)

k2(θ1TB + 2 loge 2) + k4 loge 2 + x(θ2TB + 2 loge 2)
,

0 ≤ SDPC2 ≤ SDPC1

k

}
. (4.33){(

STDMA
1 , STDMA

2

)
:

0 ≤ STDMA
1 ≤ 2k(x+ k)

k2(θ1TB + 2 loge 2) + k(2 + 2x) loge 2 + x(θ2TB + 2 loge 2)
,

0 ≤ STDMA
2 ≤ STDMA

1

k

}
. (4.34)

Figure 4.1 compares the envelope of the DPC slope region versus TDMA slope

region under Rayleigh fading, where x = 2. The cases when both users do not have

delay requirement i.e. θiTB = 0, and (θ1TB = 2, θ2TB = 1), as well as (θ1TB = 4,

θ2TB = 10) are investigated and compared. Note that when both users do not have

QoS requirements, the obtained slope region is consistent with the results in [55]. The

direction of the arrows indicates the increasing direction of the rate ratio k. Moreover,

the turning points for user 1 and user 2, if exist, are marked in the figure. From Figure

4.1, the slope region shrinks when user(s) delay requirements becomes more stringent.

The bandwidth expansion factor σ for Rayleigh fading becomes:

σ = 1 +
2(x− 1) loge 2

k2(θ1TB + 2 loge 2) + k4 loge 2 + x(θ2TB + 2 loge 2)
. (4.35)

The performance gap between TDMA and DPC denoted as σ increases when x increas-
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FIGURE 4.1 – Slope region under different delay requirement.

es, and σ decreases when θi increases. Figure 4.2 compares the slope region when x = 2

and x = 10 for (θ1TB = 2, θ2TB = 1). Figure 4.3 shows the bandwidth expansion fac-

tor for different scenario. From these three figures, when the delay constraints become

more stringent and/or x becomes smaller, the bandwidth expansion factor decreases (i.e.,

the performance gap between DPC and TDMA scheme shrinks).

4.3.2.4 Cancellation Order of The DPC Scheme The above results are ob-

tained based on the fixing DPC cancellation order as pre-canceling user 2 from user

1. However, this may not be optimal. For example, in Rayleigh fading channel, when

x = λ2/λ1 = 0.5, Figure 4.4 shows the DPC slope region is smaller than TDMA slope

region by canceling user 2 from user 1. Hence, it is important to investigate the optimal

cancellation order for the DPC scheme.

In this section, the energy efficiencies are compared under different cancellation
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FIGURE 4.2 – Slope region under different channel gain

orders and decide the optimal cancellation order between two users. Note that, when

canceling user 1 from user 2, the DPC capacity region for fast fading scenario becomes:

⋃
α∈[0,1]

{
CDPC

1 (θ1) ≤ − 1
θ1TB

logeE
[
e
−θ1TB log2

(
1+

(1−α)z1SNR
1+αz1SNR

)]
,

CDPC
2 (θ2) ≤ − 1

θ2TB
logeE

[
e−θ2TBlog2(1+αz2SNR)

]}
. (4.36)

Similarly, the DPC energy efficiency when canceling user 1 from user 2 can be

obtained as follows.

Corollary 4.1. For the DPC scheme, for all k = CDPC
1 (θ1)/CDPC

2 (θ2), the minimum

transmission energy per information bit when canceling user 1 from user 2 is the same

as when canceling user 2 from user 1.
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Corollary 4.2. For the DPC scheme, when canceling user 1 from user 2, for all k =

CDPC
1 (θ1)/CDPC

2 (θ2) the slope region becomes:{(
SDPC1 , SDPC2

)
: 0 ≤ SDPC1 ≤ 2k (A+ k)

k2A1 + kA5 + A3

, 0 ≤ SDPC2 ≤ SDPC1

k

}
, (4.37)

where A5 = 2
E{z2

1}
E{z1}E{z2} loge 2 and other coefficients are the same as in Theorem 4.2.

Consequently, the bandwidth expansion factor now becomes σ̂ = 1+ k(A4−A5)
k2A1+kA2+A3

.

According to Corollary 4.1 and 4.2, Lemma 4.1 is obtained.

Lemma 4.1. When broadcasting channel information is only known at the receiver side,

for effective capacity region in the low power regime, the optimal DPC cancellation or-

der is to precancel the interference from user 2 to user 1 when
E{z2

1}
E{z1} ≥

E{z2
2}

E{z2} , otherwise
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FIGURE 4.4 – Slope region with non-optimal DPC cancellation order

precancel user 1 from user 2. Moreover, using this optimal cancellation order, the DPC

scheme always outperforms the TDMA scheme.

4.3.2.5 Near Optimal Resource Allocation in Low Power Regime This sec-

tion will investigate the resource sharing principle in order to achieve the rate region

for the DPC scheme and the TDMA scheme. Specifically, this section aims to obtain

the resource sharing factor α such that C1(θ1)
C2(θ2)

|α = k, where k is the expected rate ratio

which can be any positive value, and Ci(θi) denotes the effective capacity of user i with

QoS exponent θi. The closed form of resource sharing factor α can not be obtained in

an analytical form. Hence, in the low power regime, use its first order approximation as

follows:

α(SNR) ≈ α(0) + α̇(0)SNR. (4.38)
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Recall that, α(0) and α̇(0) are derived for DPC and TDMA as the intermediate results

in (4.23), (4.27) and (4.31), respectively. Specifically, given the channel statistics and

the QoS exponents, the approximated α(SNR) can be obtained. Note that, here the DPC

scheme cancels user 2 from user 1.

In order to show the accuracy of the approximation of α, substitute the approx-

imated α into the achievable effective capacity region in (4.11) and (4.12) for DPC

and TDMA, respectively. Accordingly, the rate ratio k̂ = C1(θ1)/C2(θ2) is obtained.

For example, in the Rayleigh fading scenario, where E{z1} = 1, E{z1} = 0.5, and

SNR = −10dB, the rate ratio k̂ obtained by using the approximated resource sharing

factors is shown in Figure 4.5. From Figure 4.5, the resource sharing factor is approx-

imated by (4.38) with high precision, especially when the delay constraints are loose.

4.3.3 Analysis of Hybrid Capacity Region in Low Power Regime

This subsection will investigate the performance of DPC and TDMA when one

user is using effective capacity and the other user is using outage capacity as the perfor-

mance metrics. Similar as the previous subsection, the minimum transmission energy

per bit and slope region are obtained for both DPC and TDMA according to their achiev-

able hybrid rate region in (4.14) and (4.15).

Looking into the DPC effective capacity region in (4.11) (or (4.12) for TDMA) in

fast fading scenario, when user 2’s channel power gain z2 (random variable) is replaced

with a constant threshold zth for slow fading outage capacity, the effective capacity

region becomes (4.14) (or (4.15) for TDMA) as the hybrid capacity region. Similarly,

the results obtained for slow fading channels can be transformed to the hybrid fading

scenario.

The minimum energy per bit for both schemes in hybrid fading scenario are
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shown in Corollary 4.3.

Corollary 4.3. Suppose the rate pair (C1 (θ1) , R2) on the boundary of the achievable

hybrid rate region (4.14) (4.15) satisfies C1 (θ1) /R2 = k. Then, the minimum transmis-

sion energy per bit achieved by both TDMA and DPC are:

E1

N0

TDMA

min

=
E1

N0

DPC

min

=

(
1

kzth
+

1

E {z1}

)
loge2, (4.39)

E2

N0

TDMA

min

=
E2

N0

DPC

min

=

(
1

zth
+

k

E {z1}

)
loge2. (4.40)

Note that, though the results for hybrid fading can be derived from the fast fad-

ing scenario, the main difference is that for user 2, instead of considering the effective

capacity with QoS exponent θ2, outage capacity is used with outage probability as the

QoS metric.
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Remark 4.3. According to Corollary 4.3, both TDMA scheme and DPC scheme have the

same minimum energy per bit Eb
N0min

. The minimum energy per bit is not affected by the

user 1’s delay requirement θ1; however, it decreases with the user 2’s outage probability

qo. Furthermore, for user 1, the minimum transmission energy per bit decreases with k,

i.e. the rate ratio C1 (θ1) /R2; while for user 2, it increases with k.

The slope region of DPC and TDMA are shown in Corollary 4.4 and Corollary

4.5, respectively.

Corollary 4.4. In DPC mode, for any CDPC
1 (θ1)/RDPC

2 = k, the slope region in low-

power regime for hybrid fading scenario becomes:{(
SDPC1 , SDPC2

)
: 0 ≤ SDPC1 ≤ 2k (A′ + k)

k2A′1 + kA′2 + A′3
, 0 ≤ SDPC2 ≤ SDPC1

k

}
, (4.41)

where A′ = E{z1}
zth

, A1
′ = θ1TB

(E{z12}
E{z1}2

− 1
)

+
E{z12}
E{z1}2

loge2, A2
′ = 2loge2, A3

′ =

E{z1}
zth

loge2.

Corollary 4.5. In TDMA, for any CTDMA
1 (θ1)/RTDMA

2 = k, slope region in the low-

power regime for hybrid fading scenario is:{(
STDMA

1 , STDMA
2

)
: 0 ≤ STDMA

1 ≤ 2k (A′ + k)

k2A′1 + kA′4 + A′3
, 0 ≤ STDMA

2 ≤ STDMA
1

k

}
,(4.42)

where A′4 =

(
1 +

E{z12}
zthE{z1}

)
loge2, and other coefficients are the same as in Corollary

4.4.

These results are consistent with the previous work in [70]. Furthermore, for

hybrid fading scenario the observations are as follows.

4.3.3.1 Bandwidth Expansion Factor For hybrid fading scenario, according

to Corollary 4.4 and Corollary 4.5, the bandwidth expansion factor becomes σ′,

σ′ = 1 +

k

(
E{z12}
zthE{z1}

− 1

)
loge2

k2A′1 + kA′2 + A′3
. (4.43)

Hence, if E {z2
1} > E {z1} zth, DPC always outperforms TDMA.

77



4.3.3.2 Cancellation Order of DPC Scheme The above results for DPC is

obtained by fixing the cancellation order as canceling user 2 from user 1. However,

when the cancellation order becomes canceling user 1 from user 2, the DPC capacity

region for hybrid fading scenario becomes:

⋃
α∈[0,1]

{
CDPC

1 (θ1) ≤ − 1
θ1TB

logeE
[
e
−θ1TB log2

(
1+

(1−α)z1SNR
1+αz1SNR

)]
,

RDPC
2 ≤ log2(1 + αzthSNR)

}
. (4.44)

For all k = CDPC
1 (θ1)/RDPC

2 , the minimum energy per bit when canceling user 1 from

user 2 is the same canceling user 2 from user 1, while the DPC slope region becomes:{(
SDPC1 , SDPC2

)
: 0 ≤ SDPC1 ≤ 2k (A′ + k)

k2A′1 + kA′5 + A′3
, 0 ≤ SDPC2 ≤ SDPC1

k

}
, (4.45)

where A′5 = 2
E{z2

1}
E{z1}zth

loge 2, and other coefficients are the same as in Corollary 4.4.

Consequently, the bandwidth expansion factor now becomes σ̂′ = 1 +
k(A′4−A′5)

k2A′1+kA′2+A′3
.

Accordingly, Lemma 4.2 is obtained regarding to the optimal DPC cancellation

order.

Lemma 4.2. When broadcasting channel information is only known at the receiver side,

for hybrid capacity region in the low power regime, the optimal DPC cancellation order

is to precancel the interference from user 2 to user 1 when E {z2
1} ≥ E{z1}zth, and

vice versa. Moreover, using this optimal cancellation order, the DPC scheme always

outperforms the TDMA scheme.

4.3.3.3 Turning Point on Wideband Slope For hybrid fading, in DPC mode,

assume the optimal cancellation order is canceling user 2 from user 1, i.e., E {z2
1} ≥

E{z1}zth. When A′2 > A′A′1, the user 1’s wideband slope is a mono-increasing function

of k; otherwise, it first increases with rate ratio k till a certain threshold k0 and then

decreases with k. Specifically, k0 =
A′3+

√
A′3

2−A′A′3(A′2−A′A′1)
(A′A′1−A′2)

, where all the coefficients

are defined in Corollary 4.4; while in TDMA mode, coefficient A′2 is replaced by A′4,
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defined in Corollary 4.5. The user 2’s wideband slope is always a mono-decreasing

function of k.

4.3.3.4 Energy Efficiency in Hybrid Rayleigh Fading This subsection will

investigate the scenario when user 1 is in fast Rayleigh fading and user 2 is in slow

Rayleigh fading. Assume the probability density function of channel power gain zi

is f(zi) = λie
−λizi . Furthermore, the channel threshold for user 2 defined in (4.13)

becomes zth = − loge(1−qo)
λ2

. Let x = λ2/λ1, consequently, the slope region for DPC and

TDMA can be denoted as (4.46) and (4.47), respectively.{(
SDPC1 , SDPC2

)
: 0 ≤ SDPC1 ≤

2k(− 1
loge(1−qo)

x+k)

k2(θ1TB+2 loge 2)+k2 loge 2−x 1
loge(1−qo)

loge 2
,

0 ≤ SDPC2 ≤ SDPC1

k

}
, (4.46){(

STDMA
1 , STDMA

2

)
: 0 ≤ SDPC1 ≤

2k(− 1
loge(1−qo)

x+k)

k2(θ1TB+2 loge 2)−k x
log2(1−qo)

2 loge 2−x 1
loge(1−qo)

loge 2
,

0 ≤ STDMA
2 ≤ STDMA

1

k

}
. (4.47)

When x = 1, the slope region is shown in Figure 4.6 for user 1 and user 2 with

different QoS requirements. For DPC scheme, wideband slope region becomes small-

er when user 1’s delay requirement becomes tight or when user 2’s outage probability

requirement qo becomes loose; when using TDMA scheme, it is only proved that wide-

band slope region become smaller as user 1’s delay requirement becomes tight. Note

that here the trend of the wideband slope for user 2 may seems not reasonable; however,

the energy efficiency is determined by not only slope region but also minimum energy

per bit which decreases with user 2’s outage probability qo.

4.4 DPC and TDMA Performance Analysis in High SNR Regime

This section will investigate the performance of DPC scheme and TDMA scheme

in high SNR regime. Different from the previous sections where the capacity region is

investigated, the sum capacity is considered as many other existing works [57, 58]. First
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FIGURE 4.6 – Slope region in hybrid Rayleigh fading

of all, for fast fading scenario, where both users are using effective capacity metrics,

given power sharing factor α, the sum effective capacity using DPC scheme can be

written as (4.48):

CDPC
sum = − 1

θ1TB
logeE

[
e−θ1TBlog2(1+αz1SNR)

]
−

1
θ2TB

logeE
[
e
−θ2TBlog2

[
1+

(1−α)z2SNR
1+αz2SNR

]]
. (4.48)

Given time sharing factor α, the sum effective capacity using TDMA scheme can be

expressed as (4.49):

CTDMA
sum = − 1

θ1TB
logeE

[
e−θ1TBαlog2(1+z1SNR)

]
−

1
θ2TB

logeE
[
e−θ2TB(1−α)log2(1+z2SNR)

]
. (4.49)

Also, the hybrid fading scenario will be studied, where user 1 is in fast fading using
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effective capacity and user 2 is in slow fading using outage capacity. Given power

sharing factor α, the sum hybrid capacity in DPC mode can be written as (4.50):

CDPC
sum = − 1

θ1TB
logeE

[
e−θ1TBlog2(1+αz1SNR)

]
+

log2

(
1 + (1−α)zthSNR

1+αzthSNR

)
. (4.50)

Given time sharing factor α, the sum hybrid capacity using TDMA can be written as

(4.51):

CTDMA
sum = − 1

θ1TB
logeE

[
e−θ1TBαlog2(1+z1SNR)

]
+

(1− α)log2 (1 + zthSNR) . (4.51)

4.4.1 High SNR Slope and Power Offset

To quantify the impact of the QoS constraints on the performance in high SNR

regime, high SNR slope S∞ and power offset L∞ are investigated. Denote C as the

general normalized capacity. According to [79], S∞ denotes the high SNR slope with

unit as bits/s/Hz/3dB, and it is defined as:

S∞ = lim
SNR→∞

C(SNR)

log2 SNR
(bits/s/Hz/3dB). (4.52)

L∞ is the power offset with respect to a reference channel having the same high SNR

slope (in 3 dB units) [71], specifically it is defined as:

L∞ = lim
SNR→∞

(
log2 SNR− C(SNR)

S∞

)
. (4.53)

Note that C(SNR) represents the sum effective/hybrid capacity in this section.

With the definitions of high SNR slope and power offset, the sum capacity in

high SNR regime can be approximated as:

C(SNR) = S∞(log2 SNR− L∞) + o(1) (bits/s/Hz). (4.54)
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4.4.2 High SNR Slope and Power Offset for Sum Effective Capacity and Sum Hybrid

Capacity

This subsection will obtain the S∞ and L∞ for DPC and TDMA scheme in fast

fading and hybrid fading scenarios, respectively. As mentioned before, the performance

of sum effective capacity for fast fading scenario and sum hybrid capacity in hybrid

fading scenario will be studied.

For DPC scheme, its high SNR performance is denoted in Theorem 4.4.

Theorem 4.4. Using DPC scheme, for given power sharing factor α (0 < α < 1), if

0 < E[z
−θ1TB log2 e
1 ] < ∞, both fast fading and hybrid fading scenario have the same

high SNR slope and power offset as follows:

SDPC∞ = 1, (4.55)

LDPC∞ =
1

θ1TB
loge E[z−θ1TBlog2e

1 ]. (4.56)

Proof. In fast fading scenario, according to the sum effective capacity denoted in (4.48),

and the definition of high SNR slope in (4.52), SDPC∞ can be calculated in (4.57). Next,

LDPC∞ can be obtained in (4.58) according to its definition in (4.53).

SDPC∞ = lim
SNR→∞

CDPC
sum

log2 SNR

= lim
SNR→∞

− 1
θ1TB

logeE
[
e−θ1TBlog2(1+αz1SNR)

]
− 1

θ2TB
logeE

[
e
−θ2TBlog2

[
1+

(1−α)z2SNR
1+αz2SNR

]]
log2 SNR

= lim
SNR→∞

− 1
θ1TB

loge E[e−θ1TB log2(αz1SNR)]− 1
θ2TB

loge E
[
e−θ2TB log2

1
a

]
log2 SNR

= lim
SNR→∞

log2 a+ log2 SNR− 1
θ1TB

log2 E[z
−θ1TB log2 e
1 ] + log2

1
a

log2 SNR

= 1 + lim
SNR→∞

− 1
θ1TB

log2 E[z
−θ1TB log2 e
1 ]

log2 SNR

= 1 (4.57)
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LDPC∞ = lim
SNR→∞

(
log2 SNR− CDPC

sum

SDPC∞

)
= lim

SNR→∞

(
log2 SNR +

1
θ1TB

logeE
[
e−θ1TBlog2(1+αz1SNR)

]
1

+

1
θ2TB

logeE
[
e
−θ2TBlog2

[
1+

(1−α)z2SNR
1+αz2SNR

]]
1

)
= lim

SNR→∞

(
log2 SNR−

log2 a+ log2 SNR− 1
θ1TB

log2 E[z
−θ1TB log2 e
1 ] + log2

1
a

1

)
=

1

θ1TB
log2 E[z

−θ1TB log2 e
1 ] (4.58)

For hybrid fading, the sum hybrid capacity is denoted in (4.50), its high SNR

slope and power offset are the same as that in fast fading scenario.

Remark 4.4. Note that this conclusion for DPC are based on canceling user 2 from user

1. Similarly, when canceling user 1 from user 2, SDPC∞ = 1 andLDPC∞ = 1
θ2TB

loge E[z
−θ2TB log2 e
2 ]

are obtained. Therefore, when 1
θ1TB

loge E[z
−θ1TB log2 e
1 ] ≤ 1

θ2TB
loge E[z

−θ2TB log2 e
2 ], the

optimal DPC cancellation order is to pre-cancel user 2 from user 1; otherwise, pre-

cancel user 1 from user 2.

Regarding to TDMA scheme, its high SNR performance is given in Theorem

4.5.

Theorem 4.5. Using TDMA scheme, in fast fading scenario, given time sharing factor α

(0 < α < 1), if conditions 0 < E[z
−αθ1TB log2 e
1 ] <∞ and 0 < E[z

−(1−α)θ2TB log2 e
2 ] <∞

are met, the high SNR slope and power offset of sum effective capacity are:

STDMA
∞ = 1, (4.59)

LTDMA
∞ =

1

θ1TB
loge E[z

−αθ1TB log2 e
1 ] +

1

θ2TB
loge E[z

−(1−α)θ2TB log2 e
2 ]. (4.60)

In hybrid fading scenario, given α (0 < α < 1), if 0 < E[z
−αθ1TB log2 e
1 ] <∞ is met, the
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high SNR slope and the power offset of sum hybrid capacity become:

STDMA
∞ = 1, (4.61)

LTDMA
∞ =

1

θ1TB
loge E[z

−αθ1TB log2 e
1 ]− (1− α) log2 zth. (4.62)

Proof. In fast fading scenario, the sum effective capacity using TDMA scheme is ex-

pressed in (4.49). According to the definition of high SNR slope in (4.52) and power

offset in (4.53), its STDMA
∞ and LTDMA

∞ can be calculated by (4.63) and (4.64), respec-

tively.

STDMA
∞ = lim

SNR→∞

CTDMA
sum

log2 SNR

= lim
SNR→∞

− 1
θ1TB

logeE
[
e−θ1TBαlog2(1+z1SNR)

]
− 1

θ2TB
logeE

[
e−θ2TB(1−α)log2(1+z2SNR)

]
log2 SNR

= lim
SNR→∞

− 1
θ1TB

logeE
[
e−θ1TBαlog2(z1SNR)

]
− 1

θ2TB
logeE

[
e−θ2TB(1−α)log2(z2SNR)

]
log2 SNR

= lim
SNR→∞

α log2 SNR− 1
θ1TB

loge E[z
−αθ1TB log2 e
1 ] + (1− α) log2 SNR

log2 SNR
+

− 1
θ2TB

loge E[z
−θ2TB(1−α) log2 e
1 ]

log2 SNR

= 1 (4.63)

LTDMA
∞ = lim

SNR→∞

(
log2 SNR− CTDMA

sum

STDMA
∞

)
= lim

SNR→∞

(
log2 SNR +

1
θ1TB

logeE
[
e−θ1TBαlog2(1+z1SNR)

]
1

+

1
θ2TB

logeE
[
e−θ2TB(1−α)log2(1+z2SNR)

]
1

)
= lim

SNR→∞

(
log2 SNR− log2 SNR +

1

θ1TB
loge E[z

−αθ1TB log2 e
1 ] +

1

θ2TB
loge E[z

−θ2TB(1−α) log2 e
1 ]

)
=

1

θ1TB
loge E[(z1)−αθ1TB log2 e] +

1

θ2TB
loge E[(z2)−(1−α)θ2TB log2 e]. (4.64)
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FIGURE 4.7 – High SNR slope approximation.

Similarly, the high SNR slope and power offset can be obtained for hybrid fading.

In Rayleigh fading channel, when E{z1} = 2, E{z2} = 1, for θ1 = θ2 = 0.1,

given α = 0.5, Figure 4.7 – 4.9 show that the approximation results obtained in Theorem

4.4 and 4.5 can well approximate the simulation results obtained from the expressions

in (4.52)-(4.54) directly.

Recall that Theorem 4.4 and 4.5 both contain conditions to reach the conclusions

on high SNR regime. For Rayleigh fading, such conditions can be further reduced to the

requirements on delay QoS exponent θi, as denoted in Lemma 4.3.

Lemma 4.3. In Rayleigh fading channels, for DPC scheme, the condition 0 < E[z
−θ1TB log2 e
1 ] <

∞ becomes θ1 <
1

TB log2 e
; for TDMA scheme, the condition 0 < E[z

−αθ1TB log2 e
1 ] < ∞

85



0 2 4 6 8 10 12 14 16 18 20
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

SNR(dB)

L ∞

 

 

TDMA Analysis Result
TDMA Simulation Result
DPC Analysis Result
DPC Simulation Result

FIGURE 4.8 – Power offset approximation.

restricts θ1 <
1

TBα log2 e
, and 0 < E[z

−(1−α)θ2TB log2 e
2 ] <∞ requires θ2 <

1
TB(1−α) log2 e

.

Proof. In Rayleigh fading channels, the channel power gain belongs to exponential dis-

tribution. Assume zi ∼ exp(λi), then E
[
zi
−ηθiTBlog2e

]
can be further expressed as

E
[
zi
−ηθiTBlog2e

]
=

∫∞
0
z
−ηθiTB log2 e
i λie

−λizidzi

(let z = λizi)========= λ
ηθiTB log2 e
i

∫∞
0
z−ηθiTB log2 ee−zdz. (4.65)

Note that for
∫∞

0
zae−zdz, 0 <

∫∞
0
zae−zdz < ∞ holds when a > −1; and∫∞

0
zae−zdz = ∞ when a ≤ −1. Hence, 0 < E

[
zi
−ηθiTBlog2e

]
< ∞, only if

ηθiTB log2 e < 1. Accordingly, the Lemma 4.3 is proved.

Lemma 4.4. Regarding to the QoS’s impact on the sum effective/hybrid capacity in high
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FIGURE 4.9 – Sum effective capacity approximation.

SNR regime:

• LDPC∞ is a non-decreasing function of QoS exponent θ1, when precanceling user

2 from user 1.

• In fast fading scenario, LTDMA
∞ in (4.60) is a non-decreasing function of the delay

QoS exponent θ1 and θ2.

• In hybrid fading scenario, LTDMA
∞ in (4.62) is a non-decreasing function of the

delay QoS exponent θ1 and is a non-increasing function of outage probability qo.

Proof. Note that 1
θTB

loge E[z−θTB log2 e] can be expressed as loge
(
E[z−θTB log2 e]

) 1
θTB .

According to Holder’s inequality that: (E{|x|m})1/m ≤ (E{|x|n})1/n for 0 < m < n,
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1
θTB

loge E[z−θTB log2 e] is a non-decreasing function of θ can be proved. Hence, Lemma

4.4 is proved.

Lemma 4.5. In high SNR regime, the approximated sum effective/hybrid capacity ob-

tained by DPC is invariant to the resource sharing factor; however, the approximated

sum effective/hybrid capacity obtained by TDMA is a function of the resource sharing

factor.

Given E{z1} = 2, E{z2} = 1 and SNR = 30 dB, numerical simulations have

been done on sum effective capacity when θ1 = θ2 = 0.1 and when (θ1 = 0.5, θ2 = 0.3).

Figure 4.10 is the sum effective capacity obtained using the DPC scheme. The sum

effective capacity decreases as the delay QoS requirements become more stringent, also

it does not change much with the power sharing factor. Figure 4.11 shows the sum

effective capacity obtained under TDMA scheme. Similarly, the sum effective capacity

decreases with the delay QoS requirements, however, it varies with the power sharing

factor drastically. It is well known that without QoS constraint, the TDMA scheme

can achieve maximum sum capacity by allocating all resource to the user with highest

channel gain. However, considering the delay requirements, wireless resource may need

to be shared between two users in order to achieve the maximum sum effective capacity.

4.5 Conclusion

This work investigated the DPC and TDMA scheme in low and high SNR regime

of a two-user broadcasting system with QoS constraints. Specifically, it considers two

cases: (1) when both users are using effective capacity (2) when one user is using effec-

tive capacity and the other user is using outage capacity. It is assumed that the receivers

have perfect CSI knowledge and the transmitter only knows statistical CSI information.

In the low power regime, minimum transmission energy per bit and wideband
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FIGURE 4.10 – DPC sum effective capacity vs α.

slope region are obtained in closed forms for effective capacity region and hybrid ca-

pacity region, respectively.

• For both users are using effective capacity, the main observations and contribu-

tions are as follows:

1. Minimum transmission energy per bit for both TDMA and DPC strategies

are the same and is not affected by the delay QoS exponents θi, however, the

wideband slope region decreases when any user’s delay constraint becomes

stringent.

2. The turning point of user 1’s and user 2’s wideband slope are provided in

closed forms.
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3. Ratio of DPC wideband slope over TDMA wideband slope (a.k.a bandwidth

expansion factor σ) are provided.

4. Results on Rayleigh fading channels are given, and more concise conclu-

sions are derived. Also, σ is shown to increase with E{z1}
E{z2} and decrease with

delay QoS requirements.

5. The optimal DPC cancellation order in low SNR regime is to precancel user

2’s interference to user 1 when
E{z2

1}
E{z1} ≥

E{z2
2}

E{z2} .

6. The resource sharing factor to achieve the rate region for DPC an TDMA are

approximated using its first order approximation, and numerical results are

also provided.
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• For hybrid capacity region (when user 1 is using effective capacity and user 2 is

using outage capacity), the main findings and contributions are:

1. Minimum transmission energy per bit for both TDMA and DPC strategies

are the same and is affected by the outage probability but not by the delay

QoS exponent θ1.

2. The bandwidth expansion factor is obtained.

3. The optimal DPC cancellation order is to cancel user 2 from user 1 when

E {z2
1} ≥ E{z1}zth.

4. When the optimal cancellation order is to precancel user 2 from user 1, user

1’s wideband slope is a mono-increasing function of k, where k is the rate

ratio between user 1 and user 2; and the turning point of user 2’s wideband

slope is provided in closed form.

5. Analysis on Rayleigh fading channels are provided.

In high SNR regime, the high SNR slope and power offset are obtained for D-

PC and TDMA in terms of sum effective capacity and sum hybrid capacity, however,

with certain conditions on limitation operations. Such conditions in Rayleigh fading are

further reduced into the constraint on the delay QoS component θi. The optimal DPC

cancellation order is to pre-cancel user 2 from user 1 when 1
θ1TB

loge E[z
−θ1TB log2 e
1 ] ≤

1
θ2TB

loge E[z
−θ2TB log2 e
2 ]. Both DPC and TDMA power offsets are proved to be non-

decreasing functions of QoS requirement. The sum effective/hybrid capacity using DPC

is invariant to the resource sharing factor, while the sum effective/hybrid capacity using

TDMA varies with resource sharing factor.
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CHAPTER 5
CONCLUSION AND FUTURE WORK

Three frequency sharing schemes for coexisting networks were investigated in-

dependently in this dissertation: (1) multiple networks coexist following the interweave

cognitive radio paradigm, i.e., the secondary network can only transmit when the pri-

mary network is “silent”; (2) multiple networks coexist as an underlay cognitive radio

system, i.e., the secondary network transmits simultaneously with the primary network

under the premise that its interference to the primary network is below certain thresh-

old; (3) multiple networks converged by using the common transmitter sending signals

simultaneously, and the interference is precanceled using DPC pre-coding.

Chapter 2 investigated the resource allocation of the interweave cognitive radio.

The novel optimization objective was proposed in this dissertation, i.e., minimizing the

primary network’s required spectrum as long as its QoS requirements can be met. With

this frequency saving objective, the primary system can release the unnecessary frequen-

cies for secondary users. Moreover, efficient near-optimal algorithms and simulations

were provided for both downlink and uplink OFDMA-based primary networks. Chapter

3 focused on the resource allocation of the distributed secondary network that underlays

the primary network. The secondary network is to maximize its overall capacity under

individual user’s power constraint and primary user’s rate constraint. The distributed

MCDD algorithm was provided and proved to converge to the global optimal solution.

To reduce the computational complexity and convergence time of MCDD algorithm,

the GSLA algorithm has been proposed to obtain a near optimal solution. Chapter 4

analyzed the performance of DPC scheme in a delay sensitive broadcasting system,
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where the common transmitter serves different users. For comparison purpose, the T-

DMA scheme is also investigated. The delay sensitive requirements were incorporated

by using effective capacity for fast fading channel and outage capacity for slow fading

channel. Extensive performance analysis was carried out in both low SNR regime and

high SNR regime.

Future work on the frequency sharing schemes towards the coexisting networks

includes but not limited to:

• Incorporate the admission control into the frequency saving optimization problem

in the interweave cognitive radio. Jointly solving the frequency saving and ad-

mission control problem at one step may reduce the operational delay and provide

further optimization gains.

• When the transmitter has imperfect CSI, the resource allocation algorithms for

both underlay and interweave cognitive radio.

• When the transmitter has perfect CSI, the performance of DPC and TDMA for

delay sensitive multiuser system.

• In general SNR regime, the performance of DPC vs. TDMA for delay sensitive

multiuser system.

• The resource allocation for the DPC scheme in delay sensitive multi-user systems.

Note that most of the work presented in this dissertation have been published in

[70, 80–84].
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