
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

8-2013

The assignment problem with dependent costs. The assignment problem with dependent costs.

Ghazal Tariri
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

 Part of the Industrial Engineering Commons

Recommended Citation Recommended Citation
Tariri, Ghazal, "The assignment problem with dependent costs." (2013). Electronic Theses and
Dissertations. Paper 2267.
https://doi.org/10.18297/etd/2267

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F2267&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/307?utm_source=ir.library.louisville.edu%2Fetd%2F2267&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/2267
mailto:thinkir@louisville.edu

THE ASSIGNMENT PROBLEM WITH DEPENDENT COSTS

By

Ghazal Tariri

B.S., Sharif University of Technology, Tehran, Iran, 2007

M.S., Isfahan University of Technology, Isfahan, Iran, 2009

A Dissertation

Submitted to the Faculty of the

J. B. Speed School of the University of Louisville

in Partial Fulfillment of the Requirements for

the Degree of

Doctor of Philosophy

Department of Industrial Engineering

University of Louisville

Louisville, Kentucky

August 2013

Copyright 2013 by Ghazal Tariri

All rights reserved

ii

THE ASSIGNMENT PROBLEM WITH DEPENDENT COSTS

By

Ghazal Tariri

B.S., Sharif University of Technology, Tehran, Iran, 2007

M.S., Isfahan University of Technology, Isfahan, Iran, 2009

A Dissertation Approved on

July 25, 2013

by the following Dissertation Committee:

Dr. Gail W. DePuy, Dissertation Director

Dr. William Biles

Dr. C. Tim Hardin

Dr. Ming Ouyang

iii

DEDICATION

This dissertation is dedicated to the bright memory of my mother,

Ms. Fakhrieh Sabeh

Who left us soon but she was always there for me when I needed encouragement,

motivation, and strength to continue with my education

And my wonderful father,

Mr. Mohammad Ali Tariri

For his love and support

iv

ACKNOWLEDGMENTS

The author wishes to express her gratitude to her advisor, Dr. DePuy, who was

abundantly helpful and offered invaluable assistance, support, and guidance. Her

guidance and inspiration along the way were so helpful and made this dissertation

possible. Her understanding and consideration also made working with her enjoyable.

Deepest gratitude is also due to the members of my dissertation committee, Dr. Biles, Dr.

Hardin, and Dr. Ouyang. They have generously given their time and expertise to better

my work.

The author wishes to express her love and gratitude to her beloved family; and her

friends for their understanding and endless love, through the duration of her studies.

v

ABSTRACT

THE ASSIGNMENT PROBLEM WITH DEPENDENT COSTS

Ghazal Tariri

July 25, 2013

Assigning workers, each with their own skill set, to tasks which demand different

skills in an efficient manner is a challenging problem that often requires workers to

receive additional training. The training of workers is very costly with Training

Magazine’s Annual Industry Report stating 58.5 billion dollars were spent in 2007 on

employee training in the United States. Therefore assigning workers to tasks in such a

way as to minimize the overall training costs is an important problem in many

organizations.

In this research, the assignment problem with dependent cost is considered, i.e.

the training cost associated with assigning a worker to a particular task depends on the

training the worker receives for their other assigned tasks. Once a worker is trained in a

skill that training will available for any additional tasks that may be assigned. The

problem is formulated mathematically as an integer linear program. Based on past

research, high quality solutions to large-size problems are difficult to obtain. This

research develops and upper bound approach and three heuristic solution methodologies.

The basic idea of the heuristics is to form groups of tasks which require similar skills,

vi

then assign a worker to the task group. The Shortest Augmenting Path (SAP) algorithm

of Jonker and Volgenant is known to quickly find the optimal assignment of N workers to

N tasks. This SAP algorithm will be used in this research after grouping the tasks into N

groups which can then be assigned to the N workers. The task grouping heuristic

methods developed in this research were tested for several randomly generated large-

sized data sets. Results showed an average 7.34% improvement compared to previous

solution methods.

Additionally to consider workers’ preferences, a multiple-objective model is

presented for the skills management problem to maximize workers’ preferences and

aggregate training while minimizing training cost. The model is demonstrated for

randomly generated data sets.

vii

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... iv

ABSTRACT .. v

TABLE OF CONTENTS .. vii

LIST OF FIGURES .. x

LIST OF TABLES ... xi

INTRODUCTION .. 1

1.1.Problem Statement and Contribution .. 2

1.2. Outline.. 4

LITERATURE REVIEW ... 5

2.1. Introduction .. 5

2.2. The Generalized Assignment problem... 5

2.2.1. Model Formulation for GAP ... 6

2.2.2. GAP Solution Methodology ... 7

2.2.3. Modifications to GAP ... 8

2.3. Skills Management Problem .. 9

2.3.1. Model Formulation for Skills Management .. 10

viii

2.3.2. Skills Management Solution Methodology .. 12

2.3.3. Performance of Previous Techniques for Skills Management Problem 21

SOLUTION METHODOLOGIES FOR LARGE SCALE SKILLS MANAGEMENT

PROBLEMS ... 23

3.1. Introduction .. 23

3.2. Finding a Good Upper Bound .. 24

3.3. Sort Minimum to Maximum Cost Tasks (SMIMX) .. 25

3.4. Fix the most difficult task and combine tasks in new groups (MaxCT) 30

3.5. Using k-means clustering method to classify tasks.. 35

COMPUTATIONAL RESULT .. 38

4.1. Introduction .. 38

4.2. Results .. 38

MULTI-OBJECTIVE SKILLS MANAGEMENT MODEL.. 45

5.1. Introduction: ... 45

5.2. Assignment of workers to tasks under consideration of workers preferences 46

5.3. Multi-Objective Optimization Solution Methodologies .. 48

5.4. Result for small data set ... 49

CONCLUSION AND FUTURE RESEARCH ... 52

6.1. Conclusions .. 52

REFERENCES ... 55

ix

APPENDIX ... 61

MATLAB code for SAP ... 61

CURRICULUM VITAE ... 71

x

LIST OF FIGURES

Figure 1. Pseudocode for Greedy Assignment algorithm Phase 1 (DePuy et al., 2008). . 14

Figure 2. Pseudocode for Greedy Assignment algorithm Phase 2 (DePuy et al., 2008). . 15

Figure 3. Pseudocode for Meta-RaPS Greedy assignment Heuristic Phase 1 (DePuy et al.,

2009). .. 17

Figure 4. Pseudocode for Meta-RaPS Greedy assignment Heuristic Phase 2 (DePuy et al.,

2009). .. 18

Figure 5. Pseudocode for Shortest Augmenting Path Algorithm Phase 1 Only (Jackson et

al, 2008). ... 20

Figure 6. Pseudocode for the SMIMX Algorithm .. 29

Figure 7 Pseudocode for the MaxCT Algorithm .. 34

Figure 8. Percentage of the best solutions obtained by each algorithm in 26 small data

sets... 42

Figure 9 Run time comparisons for large data sets in proposed methods 44

xi

LIST OF TABLES

Table 1 Result for Data sets with varied ratio of tasks to 9 workers 40

Table 2 Result for Data sets with varied ratio of tasks to 11 workers 41

Table 3 Result for large data sets .. 43

Table 4 Run time for large data sets……………………………………………………..44

Table 5 Results for different decision makers with different values for small data sets

with 6 workers... 51

file:///C:/Users/Ghazal/Desktop/Final%20doc.docx%23_Toc363076024
file:///C:/Users/Ghazal/Desktop/Final%20doc.docx%23_Toc363076025
file:///C:/Users/Ghazal/Desktop/Final%20doc.docx%23_Toc363076027
file:///C:/Users/Ghazal/Desktop/Final%20doc.docx%23_Toc363076027

 1

CHAPTER 1

INTRODUCTION

In every company throughout the world, management teams face many

complications, including worker-task assignments. Being able to assign tasks that require

varying skill levels to workers with differing abilities is critical. Worker training

programs can be used to raise workers’ competencies but training is often expensive.

Training requires both time and money and workers must be trained in order to

understand and complete their assigned task; therefore, cost will accumulate each time a

worker must complete training. As reported by Training magazine’s annual Industry

Report, 58.5 billion dollars were spent in 2007 on employee training in the United States.

Accordingly, assignments should be made so that the required training and the total cost

are minimized.

Additional costs of delayed work and reduced quality can be incurred if poor task

to worker assignments are made. When workers are not properly assigned tasks, it is

possible the worker will not have the proper skills to complete the task and therefore, cost

the company money. It is also possible, because of poor worker-task assignments, that

qualified workers are overwhelmed with too many tasks and not enough time to complete

them.

 2

Turn-over is another issue that arises. Worker turn-over and product turn-over are

both problems companies face. Processes must be adjusted each time new workers have

replaced old workers. This also applies for when new tasks (products) are introduced and

or the company makes changes to the current task. These issues of extra expenses and

poor quality work motivate the need for research in this worker-task assignment or skills

management area.

It is critical to examine methods that assist with properly assigning tasks to the

workers to the proposed models. Previously, assignments like these where accomplished

manually by management teams. This method is legitimate as long as the criteria are met.

The problem with this approach is that the task assignment becomes more complex when

the number of workers and the number of tasks increase. To find high quality solutions in

a reasonable amount of time becomes increasingly difficult. Therefore, it is important to

develop an automated algorithm that finds optimal solutions or near optimal solutions for

large-scale problems.

1.1.Problem Statement and Contribution

Because workers retain their training, the training cost, in terms of both time and

money, are dependent on which tasks have been assigned to a worker and therefore, what

training the worker receives. Different tasks can include the same skill and once a worker

receives training in a skill then that training could be used for several tasks. This is the

idea of dependent costs and will be considered in this research. This skills management

problem with dependent cost is mathematically introduced by Depuy et al (2006).

 3

When defining the skills management problem, there are three terms that need to

be defined; task, skill and level. A task is a specific job to be completed. Skills are a set

of capabilities a worker must have to complete a task. Skills are also are known as a

competency framework or skills matrix. Each task requires a set of skills and multiple

tasks can require the same skills. Different workers will posses different levels of

expertise in these skills. The skill levels can be simply defined such as novice,

intermediate, and expert. Therefore, a task is a set of skills at certain levels. Workers can

receive training to increase their skill levels but training can require time and money.

Clearly a worker’s initial skill level will affect the cost associated with increasing the

level. Once a worker receives training in a particular skill, their skill level is increased

and the worker is capable of performing that skill at the trained level for any task

requiring that skill. The most useful skills management is an ongoing process where

workers assess and update their recorded skill sets regularly. A generalized example of

task can be to change a flat tire, needed skills for this task would include proficiency in

finding the required equipment, understanding of the use of a jack, ability to loosen lug

nuts with a lug wrench, knowledge of undercarriage of car, and talent for fitting the spare

tire within the wheel well. Some cars may have more complex jacks or very tight lug

nuts. These issues would require more advanced skills than others.

Previous works related to assignment problem mostly focus on methods to solve

general assignment problems and the possibility for the transfer of skills from one task to

another is never entertained. In other words, previous models have ignored the potential

to cut down on any further training needed for additional tasks that may be assigned.

Depuy et al (2006) obtained optimal solutions for small skills management problems with

 4

dependent cost using LINGO software. Depuy et al (2008) and Jackson et al (2008)

presented several heuristics algorithms to solve the skills management problem.

However, the optimal solution for larger problems still cannot be found in a reasonable

time, thereby motivating the development of the solution heuristics developed in this

research. An upper bound and three heuristic methods are developed to assign tasks to

workers in this dissertation. The k-means clustering method is used to classify tasks based

on their required skills to decrease the problem complexity. The methods are tested on

several data sets used in previous research and the results are compared.

Additionally, a revised and extended skills management model is investigated to

include considerations for worker preferences. The problem is cast as a multiple-

objective optimization problem (MOOP), which seeks to minimize training cost while

maximizing aggregate training and maximizing worker satisfaction.

1.2. Outline

The remainder of this dissertation is organized as follows:

In Chapter 2 a comprehensive literature review of assignments models and relevant

details to this application is presented. Additionally, previous solution methodologies for

the assignment problem with dependent costs are cited. In Chapter 3, an upper bound and

two solution algorithms are developed and a data clustering method is applied. Chapter 4

includes the results of these methodologies and a comparison to previous methods.

Chapter 5 demonstrates how an extended model may better explain real world

applications than previous models. Finally, Chapter 6 presents the conclusions and future

study plans for this research study.

 5

CHAPTER 2

LITERATURE REVIEW

2.1. Introduction

This chapter presents two main sections, literature and definitions relevant to the

generalized assignment problem as well as the skills management problem and solution

techniques for solving these two types of problems. Also, applications of these problems

are discussed.

2.2. The Generalized Assignment problem

The assignment problem is one of the first studied classical combinatorial

optimization problems and its history started with the work of G.Monge (1784), albeit

concealed as a continuous problem, and often called a transportation problem. The

problem was formulated in modern way by a psychologist, R. L. Thorndike (1950). In its

most general form, the problem has a number of agents and tasks. Assigning each task to

agents causes some cost. It is required to perform all tasks by assigning exactly one agent

to each task in such a way that the total cost of the assignment is minimized.

 6

The classical generalized assignment problem (GAP) is a well-known, NP-

complete combinatorial optimization problem stated as finding a minimum-cost

assignment of tasks to workers in which multiple assignments of tasks to workers are

limited by some resource (Feltl 2003). It seems the first referred GAP in literature as a 0-

1 special case was by Kuhn (1955).

GAP has been applied in many real world problems ranging from jobs assigned to

computer networks (Balachandran 1972) to machine loading in flexible manufacturing

systems (Mazolla et al., 1989.) to facility location (Ross and Soland 1977). Applications

referenced include vehicle routing, fixed charge location problems, scheduling projects,

allocating storage space, designing communication networks, scheduling payments on

accounts, assigning software development tasks to programmers, scheduling variable

length TV commercials, and assigning ships to overhaul facilities (Pentico 2007).

2.2.1. Model Formulation for GAP

The GAP can be formulated as an Integer Linear Programming (ILP) model with

binary variables. The GAP model presented by J. K.Karlof (2005) is shown below.

Parameters:

n= number of workers i= {1,2,…,n}

m= number of tasks j= {1,2,…,m}

Cij=cost of task j being assigned to worker i

Rij=amount of resource required for task j by worker i

Bi=resource units available to worker i

 7

Decision Variables:

Xij = {

The 0-1 ILP model is:

Minimize z=∑ ∑

 (2-1)

Subject to:

∑

 (2-2)

∑
 (2-3)

 (2-4)

The objective function (2-1) minimizes the total cost of the assignment.

Constraint (2-2) enforces resource limitations for each worker, and constraint (2-3)

ensures all tasks are assigned to exactly one worker. Although general purpose ILP

solvers have become more effective in solving general ILP problems, GAP still remains

difficult to solve to optimality.

2.2.2. GAP Solution Methodology

The solution methodologies for the GAP problem are various. The first formal

computational work addressing the GAP was by Ross and Soland (1975). Their solution

methodology was Branch and Bound and it was the first published instance of

Lagrangian relaxation (LGR) applied to an ILP problem. Fisher et al.(1981) formalized

the use of Lagrangian relaxation and devised a dual multiplier adjustment procedure that

tightens the initial LGR. Jornsten and Nasberg (1986) reformulated the GAP by

 8

introducing a set of auxiliary variables and coupling constraints. Through the late 1980s

the maximum size of GAP problems to be solved optimally remained at about 500 binary

variables.

In the early 1990s some heuristic approaches for solving large GAP problems

optimally were devised. Cattryese et al (1994) used a column generation/set partitioning

approach to generate good feasible solutions and mixed it by Lagrangian techniques to

reduce the gap between the lower (LB) and upper (UB) bounds. Wilson (1997) developed

a dual-type algorithm and joined it with a search strategy to find good feasible solutions.

Chu and Beasley (1997) developed a genetic algorithm-based heuristic that generates

very good feasible solutions. Yagiura et al.(2004) devised a tabu search algorithm using

an ejection chain approach to govern the neighborhood search for feasible solutions.

Another solution approach mixes heuristic and optimizing approaches. Amini et

al. (1999) developed an efficient heuristic for smaller problems and used an extensive

statistical experimental design and analysis to compare it to earlier optimizing

approaches. Savelsbergh (1997) customized a general-purpose solver, MINTO, to solve

GAP problems optimality using a column generation approach.

2.2.3. Modifications to GAP

Other researchers have expanded the GAP model to include other factors. Elastic

GAP allows agent resource capacity to be violated at additional cost (Nauss 2004). The

objective function in elastic GAP sums the costs of the assignments and the unused time

and overtime costs for agents. The additional constraints for model are to enforce

resource limitations and limits for unused time and overtime.

 9

Profit maximization is another modification of GAP in that both the assignments

of jobs to available capacitated resources (agents) and the degree of resource

consumption associated with each assignment must be determined (Rainwater et al.,

2009). The objective function maximizes total revenue received when tasks are assigned

to an agent at a specific level.

The special case of GAP which is considered in this research is the assignment

problem with dependent cost (DePuy et al., 2006). In these cases, the cost of assigning a

task to a worker is dependent upon which other tasks are assigned to the worker. There is

no similar problem in previous literature, to date.

2.3. Skills Management Problem

The skills management problem addresses the effective utilization of employee

skills in a company (Ley et al. 2003). There are many issues related to skills management

concepts. Competence Performance Theory studied by Korossy (1997), uses

mathematical structures to establish prerequisite relations on the competence and the

performance level. Skills Management Information Systems (SMIS) developed by

J.Hasebrook (2001), enables the user to select learning modules according to her or his

individual demands, prior knowledge, and time schedule. The competency management

concept was initially used in align with human resource processes to fulfill human

resource constraints set and company strategy by Green (1999).

The skills management problem addressed in this research is a type of the

generalized assignment problem. In an effort to retain the current workforce, each worker

must be assigned at least one task and each task is assigned to only one worker. So each

worker may be assigned multiple tasks. As mentioned previously, each task is comprised

 10

of a set of skills at specific levels and each worker has their level of each skill. A

supervisor can determine the levels of skill set of the workers. A skills gap occurs when a

worker is assigned to task with one or more skills at a higher level than the worker

posses. Then that worker must be trained to meet the required skill level. The skills

management problem has a feasible solution when all workers can be trained for assigned

tasks and complete them in equal or less than capacity time and/or proprietary funds.

This research investigates a skills management problem with dependent cost and,

as such differs from the GAP. In this model once a worker is assigned to a task and

trained to a certain level for a specific task, their skill level is updated for all additional

future assigned task, i.e., once a worker is trained in a skill, that training will be

transferred to any further training needed for additional tasks that may be assigned.

2.3.1. Model Formulation for Skills Management

This skills management problem can be described mathematically as originally

introduced in DePuy et al. (2006).

The used parameters are:

Sik = worker i’s skill level for skill k

Rjk = required skill level for task j’s skill k

Tj = length (# hrs) of task j

Ai = capacity (# hrs) of worker i

Cklm = cost associated with raising a worker’s skill level on skill k from level l to

level m

 11

Eklm = time required (# hrs) to raise a worker’s skill level on skill k from level l to

level m

The decision variables are defined as:

Xij = {

mikSik
Z = {

Wik = {

The 0-1 ILP model is:

Minimize Training Cost: Minimize ∑ ∑ ∑
 (2-5)

Subject to:

Determine Needed Training:

 ∑

 (2-6)

 ∑

 (2-7)

All tasks assigned:

 ∑ (2-8)

All workers assigned at least one task:

 ∑ (2-9)

Worker Capacity:

∑ ∑ ∑

 (2-10)

 12

Binary Variables:

 { }
 { } { } (2-11)

The objective function, equation (2-5), minimizes the overall training cost of the

assignment. Constraints (2-6) and (2-7) determine the total training needed by a worker to

meet the skill levels required for each assigned task. Constraints (2-8) ensure that all

tasks have been assigned and that each task is assigned to only one worker. Constraints

(2-9) specify that each worker must be assigned at least one task. The (2-10) constraints

make sure the total workload assigned to a worker (i.e. task time plus training time) does

not exceed the worker’s capacity. Finally, constraints (2-11) define all decision variables

to be binary.

2.3.2. Skills Management Solution Methodology

As formulated in the previous section, the skills management model has been

solved by DePuy et al. (2006) using exact methods, a greedy algorithm, and a meta-

heuristic approach. Exact solution methods only worked for relatively small problem

sizes of 60 workers, 60 tasks, and 60 skills (DePuy et al. 2006). DePuy et al. (2009)

presented a greedy algorithm and meta-heuristic solution approach for medium sized

problems. These techniques are discussed in the following section. However, these

existing solution approaches do not obtain the desired solution quality for large sized

problems, i.e. hundreds of workers and tasks. This research project will develop solution

techniques for these large skills management problems.

 13

2.3.2.1. Greedy Assignment Algorithm

Generally a greedy algorithm makes the locally optimal choice at each stage in

the problem with no regard for the global optimal solution. The Greedy Assignment

algorithm developed by DePuy et al. (2008) for the skills management problem has two

phases. The first phase assigns exactly one task to each worker to make sure workforce

preservation is met. The second phase assigns the remaining tasks to workers with

unfilled capacity. For models with fixed assignment, those fixed assignment are made

before phase 1 and any worker involved with a fixed assignment will not be included in

phase 1 but will be considered for additional task assignments in phase 2.

In phase 1 of the DePuy et al. (2008) Greedy Assignment algorithm, each worker

is assigned one task. The total training cost for each worker to complete all the tasks is

first calculated to determine the least skilled workers, i.e. the workers with the largest

total training cost. The workers are sorted from highest to lowest total training costs (i.e.

sorted from least skilled to most skilled workers) and the workers, in sorted order, are

assigned their least training cost (i.e. easiest) task. Once a task is assigned, it is deleted

from the task list. At the end of phase 1, each worker is assigned exactly one task. The

worker capacities and skills set are updated based on these phase 1 assignments. After

phase 1, phase 2 assigns all remaining tasks to workers.

In phase 2, total training cost for all workers to complete each unassigned task is

calculated and the unassigned tasks are ordered from the most difficult task to the easiest

task (i.e. sorted from largest to smallest total training cost). These ordered tasks are

assigned to workers with each task assigned to most capable (i.e. least training cost)

 14

available worker. Once a task is assigned, it is deleted from the list and the worker’s

capacity and skills set are updated. At the end of phase 2, all tasks have been assigned.

Figures 1 and 2 show the pseudocode for phases 1 and 2, respectively, using the

Greedy Assignment algorithm (Figures 1 and 2 from DePuy et al., 2008). The Greedy

Assignment algorithm can get stuck at a local optima and therefore differ greatly from the

global optimal value. The meta-heuristic, Meta-RaPS, discussed in the next section offers

a way to prevent this Greedy Assignment algorithm from getting stuck in a local optimal.

Figure 1. Pseudocode for Greedy Assignment algorithm Phase 1 (DePuy et al., 2008).

 15

Figure 2. Pseudocode for Greedy Assignment algorithm Phase 2 (DePuy et al., 2008).

2.3.2.2. Meta-heuristic Solution Approach

Meta-RaPS (Meta-heuristic for Randomized Priority Search) is a general and high

level strategy to include randomness in greedy construction heuristics as a way to avoid

local optima (DePuy and Whitehouse, 2001; DePuy et al., 2002). It integrates sampling,

priority rules and randomness. Meta-RaPS has been applied to a variety of combinatorial

problems such as the Set Covering Problem (Lan et al., 2007), the Traveling Salesperson

Problem (DePuy et al., 2005), the Knapsack Problem (Moraga et al., 2005), machine

scheduling (Hepdogan et al., 2009) and the Resource Constrained Project Scheduling

Problem (DePuy and Whitehouse, 2001). It has demonstrated good performance in terms

of both solution quality and computation time with respect to other meta-heuristics such

 16

as genetic algorithms, neural networks, and simulated annealing. The Meta-RaPS

heuristic uses %priority and %restriction parameter to include randomness in the solution

approach.

The Meta-RaPS algorithm, using the %priority parameter determines how often

the assignment specified by the Greedy Assignment Algorithm is used versus when an

assignment that is close to the greedy assignment will be made. The rest of the time (i.e.

100%-%priority) the assignment whose cost is within %restriction of the cost of the

greedy algorithm assignment will be made. An ‘available’ list of those assignments

whose cost is within %restriction of the cost of the greedy algorithm assignment is

formed. An assignment is randomly picked from this available list. These parameters and

the randomness prevent the model from getting stuck in local optimal. The values of the

% priority and % randomness parameters are determined experimentally. The Meta-RaPS

Greedy Assignment heuristic utilizes the Meta-RaPS concept in both phase 1 and phase 2

of the Greedy Assignment algorithm. Figures 3 and 4 show the pseudocode for phases 1

and 2, of the Meta-RaPS Greedy Assignment heuristic (Figures 3 and 4 from DePuy et

al., 2009).

 17

Figure 3. Pseudocode for Meta-RaPS Greedy assignment Heuristic Phase 1 (DePuy et al.,

2009).

 18

Figure 4. Pseudocode for Meta-RaPS Greedy assignment Heuristic Phase 2 (DePuy et al.,

2009).

2.3.2.3. Shortest Augmenting Path (SAP)

The Shortest Augmenting Path (SAP) algorithm provides optimal results to the

generalized assignment problem (Jonker and Volgenant, 1987). The SAP algorithm has

been used in several applications, such as the allocation of tasks to multifunctional

workers (Corominas et al., 2006) and the solution of the minimum product rate variation

problem (Moreno, 2007).

 19

SAP was developed to find the optimal solution to the classical assignment

problem that n workers should been assigned to n tasks. Therefore the SAP was applied

to phase 1 of the skills management solution technique where each worker is assigned

one task.

The interested reader is referred to Jonker and Volgenant, (1987) and Jackson et

al. (2008) for the specific details of SAP and SAP as applied to the skills management

problem.

The SAP is useful for one-to-one assignments (where the number of tasks is equal

to the number of workers). Because the number of tasks usually exceeds the number of

workers, the SAP algorithm is applied in the phase 1 of assignment. However a

determination of which tasks to assign in phase 1 must be made. Jackson et al. (2008)

suggest an approach uisng Meta-RAPS to determine which tasks are assigned in phase 1

using SAP. Phase 2 of the previous method (as shown in figure 4) can be used for the

assignment of the remaining tasks. The pseudocode for phase 1 of the Meta-RaPS SAP

algorithm is shown in Figure 5 (from Jackson et al, 2008).

 20

Figure 5. Pseudocode for Shortest Augmenting Path Algorithm Phase 1 Only (Jackson et

al, 2008).

 21

2.3.3. Performance of Previous Techniques for Skills Management Problem

As mentioned previously, initially this skills management assignment problem

with dependent costs was presented by DePuy et al. (2006). The math model was an

integer program and solved using commercially available solver software, LINGO, for a

relatively small sized problem. However the solver software was unable to find a feasible

solution in a reasonable computation times for several hundred workers and tasks. It took

over 24 hours for large size problem on an Intel Pentium 4 PC with 1.00 GB of RAM.

Therefore, an alternative solution methodology needed to be developed. Some heuristics

and Meta- heuristics were presented in a previous section but a good heuristic method for

large problems to improve solution quality remains to be developed.

The three solution methodologies (Greedy Assignment Algorithm in both phases,

Meta-RaPS SAP in first phase and phase Meta-RaPS Greedy in second, Meta-RaPS SAP

in first phase and Greedy in second phase) were evaluated using large data sets ranging

from 50 to 2000 workers and 55 to 3000 tasks. As previously mentioned, the optimal

solution is not available for these data sets as they are too large to be solved in a

reasonable amount of time by commercial software. The MR SAP version attains

solution values (i.e. total training costs) much lower than those of the other methods,

averaging 4.69% lower than those of the purely greedy, 2.93% lower than the MR

Greedy.

Computer run times for these solution methodologies are obviously a function of

the problem size. For example run times for 10,000 iterations of MR Greedy for a

problem of size 9 workers, 17 tasks,and11 skills was 16.14 seconds on a Dell Inspiron

I6400 PC with 1.00 GB of RAM.

 22

In this chapter, the models, applications, methods and heuristics algorithms

pertinent to the Assignment problem are presented. The skills management problem

addressed in this research originally introduced in DePuy et al. (2006), is a type of the

generalized assignment problem. The skills management model is a NP-hard problem.

The exact solution methods only worked for relatively small problem sizes. A greedy

algorithm and meta-heuristic solution approach for medium sized problems method

suggested by DePuy et al. (2006, 2009) are investigated in this chapter. However, these

existing solution approaches do not obtain the desired solution quality for large sized

problems, i.e. hundreds of workers and tasks. In the next chapter three solution

algorithms are developed and a data clustering method is applied for these large-sized

skills management problems.

 23

CHAPTER 3

SOLUTION METHODOLOGIES FOR LARGE SCALE SKILLS

MANAGEMENT PROBLEMS

3.1. Introduction

As said in a previous chapter, feasible solutions of math models for the skills

management problem could not be found in a reasonable amount of time for large sized

problems. Therefore, developing a good heuristic solution methodology is critical for the

proposed models.

In this chapter, four solution methods are developed for the skills management

problem. The primary objective of these solution methodologies is to find high quality

solutions for large sized problems. First, a model simplified method is implemented in an

attempt to develop a good upper bound for the skills management problems. As

mentioned previously, the reasons of complexity of the model are dependent costs and

updating the skill levels in each training stage. So if this complexity could be simplified

somehow, the SAP algorithm could be used to solve the problem easily. The main idea of

the proposed heuristics methodologies is based on forming groups of tasks such that there

are the same numbers of task groups as workers at which point task groups can be easily

assigned to workers using SAP.

 24

3.2. Finding a Good Upper Bound

Changing the formulation and simplifying some of the difficult constraints (those

that cause the complexity of the problem) can lead to find a good upper bound for

objective in much less time. This upper bound helps to determine the performance of

other heuristics. One of the complexities of the skills management problem formulated in

2.3.1 is the updating of skill levels after each assignment that are shown in the (2-6) and

(2-7) constraints, repeated here, and the following decision variables related to training.

 ∑

 { } (3-1)

 ∑

 (3-2)

mikSik
Z = {

Wik = {

By changing these constraints and combining the decision variables to the following, the

complexity of the problem decreases. The simplified model determines the necessary

increase in skill level for each task, not over all tasks.

=

{

()
 () { } (3-3)

 25

Here, when worker i is assigned task j then Xij is equal to 1 and if the required skill level

k for task j (Rjk) is more than the skill level of the assigned worker i (Sik), then

has to be equal to 1.

The simplified 0-1 ILP model will be:

Minimize Training Cost: Minimize ∑ ∑ ∑
 (3-4)

Subject to:

Determine Needed Training:

()
 () { } (3-5)

All tasks assigned: ∑ (3-6)

All workers assigned at least one task: ∑ (3-7)

Worker Capacity:∑ ∑ ∑

 (3-8)

Binary Variables:

 { }
 { } (3-9)

This formulation can help to find the upper bound. Although there are more variables in

this formulation, the model is simplified by combining some variables to new ones and

disregarding updating skill levels in each worker training. It obtains an upper bound for

the skills management model.

3.3. Sort Minimum to Maximum Cost Tasks (SMIMX)

It is known that the assignment problem can be solved quickly when the number

of tasks is the same as the number of workers. When the number of tasks exceeds the

number of workers, as is often the case in reality, the complexity and, hence, the solution

time of the assignment problem grows. In these cases, grouping tasks into the same

 26

number of groups as workers and using SAP (see section 2.3.2.3) can lead to find a good

solution quickly. Several methods of grouping tasks are investigated in this research.

The first task grouping method developed is the Sort minimum to Maximum Cost Tasks

(SMIMX).

In SMIMX, tasks are grouped by similar total training costs and similar required

levels of skills. The following steps describe the proposed SMIMX procedure to

combine tasks that require similar levels of skills:

Step1: Each worker’s skill and skill level is totally ignored. Instead, the main focus is on

the nature of tasks and the required skills level to accomplish each task. The

needed parameters from the original problem for the primary stage are:

Rjk = required skill level for task j’s skill k

Cklm = cost associated with raising a worker’s skill level on skill k from level l to

level m

Tj = length (# hrs) of task j

The model has N workers and L tasks and P skills (N<L).

Step2: Calculate the total training cost of each task for a hypothetical least skilled worker

(i.e. all skill levels of worker are 1)

 Total training cost for task j

 ∑

 ……..(3-10)

 27

Step3: Sort the total training cost (ToCj) from minimum to maximum (Labeled tasks in

this order).

Step4: Consider the first N tasks with the minimum total training costs. Define a proper

capacity for the time length for new task groups: TSy (y=1, 2, …, N). This time

length is defined in this way:

TSy= ⌈

⌉* (3-11)

Step5: Define the new task groups and update the last ordered list of defined tasks in this

way:

For the each remaining (L-N) task do respectively these steps (h=N+1, N+2, …,

L)

If (Tj+Th<TSy) then do next steps:

Step5-1: Calculate new task group’s skill level k:

R
’
(j,h)k= Max{Rjk , Rhk} (3-12)

Step5-2: Calculate the new total training cost of each new task groups:

 Total training cost for new task group v is (v=1,…, N):

 ∑

 (3-13)

Step5-3: Calculate the difference between total training cost of the new task groups and

the previous defined tasks:

 (3-14)

 28

Step5-4: Choose the minimum of difference cost. The index of this minimum is assumed

“d”.

 Choose d { } (3-15)

Step5-5: Update the d
th

 task group in this way:

Td=Td+Th (3-16)

Rdk = Max {Rdk , Rhk} (3-17)

 Total training cost for new defined task group d: ∑

 (3-18)

Go back to step5.

Now there are N task groups and N workers. The SAP algorithm detailed in

section 2.3.2.3 can be used to find the optimal solution for these combined tasks. The

pseudocode for the SMIMX algorithm is shown in Figure 6. The complexity of the

SMIMX method with N workers and L tasks with p skills is O (pNL) when L is larger

than N.

 29

Figure 6. Pseudocode for the SMIMX Algorithm

 The SMIMX algorithm is developed to decrease problem complexities and form

the problem in a way to use SAP for problem solving. But the feasibility of the problem

cannot be ensured in the new format and in some cases, SAP does not find a feasible

solution to the newly formed problem when the original problem may have feasible

solutions. In some cases, the SMIMX defines new task groups that none of the workers

can do them because of the time limitation. But the original problem may still have a

feasible solution. So developing another new method considering workers capacities for

 30

defining the new task groups may increases the chances of finding a feasible solution to

the original problem.

3.4. Fix the most difficult task and combine tasks in new groups (MaxCT)

Grouping similar tasks with considering workers time limitation is the general

idea of MaxCT method. In this procedure, N task groups are formed where N is the

number of workers. The groups will initiate with the maximum total training cost tasks.

The remaining tasks will be added to these N groups by considering changes to training

costs and finding at least one worker who can be assigned to that group considering the

worker’s time limitation. At the end, having the same number of workers and tasks, the

problem at hand can be solved by SAP algorithm (see section 2.3.2.3) to optimally assign

the newly defined task groups to workers. The needed parameters from the original

problem for the primary stage are:

Sik = worker i’s skill level for skill k

Rjk = required skill level for task j’s skill k

Tj = length (# hrs) of task j

Ai = capacity (# hrs) of worker i

Cklm = cost associated with raising a worker’s skill level on skill k from level l to

level m

Eklm = time required (# hrs) to raise a worker’s skill level on skill k from level l to

level m

The model has N workers and L tasks and P skills (N<L).

 31

The following steps describe the MaxCT procedure to combine tasks under some

assumptions:

Step1: Define a hypothetical difficult task to use in step2 for sorting workers. The skill

levels of this task are defined in this way:

IRk: the required level for kth skill= Max j {Rjk } (3-19)

Step2: Sort workers from the most skilled to the least in this way:

 Total training cost of worker i to be skilled:

 ∑

 (3-20)

Here, the worker with the lowest total training cost will be the most skilled

(Labeled workers in this order).

Step3: Calculate the total training cost of each task for a hypothetical least skilled worker

(i.e. all skill levels of worker are 1).

Total training cost for task j:

 ∑

 (3-21)

Sort the total training cost from maximum to minimum (Labeled tasks in this

order).

Step4: Form N task groups. First put task number 1 (the most difficult) in the first task

group.

 32

Step5: Consider the top 50% percent of most skilled workers. Define the new task groups

and update the previous task groups in this way:

For each remaining ungrouped task do these steps respectively:

Step5-1: Combine tasks with the previous task groups that are defined till now in this

way and calculate their total training cost:

New task group’s skill level k: R
’
(j,f)k= Max{Rjk , Rfk} (3-22)

Total training cost of task group: ∑

 (3-23)

 (Groups that are defined till now), j=f+1,…, L

Step5-2: Calculate the time of new task groups by summation of all time tasks in that

group.

Step5-3: Check the top 50% of workers, consider their time limitation. If at least one

worker can be found to be assigned to the new task groups, combine the tasks in the

following sub steps otherwise go to step 6.

Step5-4: Calculate the difference between total training cost of the new task groups (the

task groups that could have been found to assign some workers to) and the

previous task group:

 Difref = TtC’f – TtCf (3-24)

Step5-4: Choose the minimum of difference cost. The index of this minimum is assumed

“a”:

 33

Choose a { } (3-25)

Step5-5: Update the task groups in this way:

Ta=Tj+Ta (3-26)

Ta will be the new task group’s time.

Rak = Max {Rak , Rfk} (3-27)

 Total training cost for new defined task group a: ∑

 (3-28)

Go back to step 5.

Step6: Put task in the next empty task groups and go back to step5. If there are no empty

task groups, then randomly choose 2 task groups and swap tasks until can find

workers to assign. If this cannot be done, the procedure is failed.

Step7: After each ⌈

⌉ ⌈

⌉ iteration, remove the top worker from the checking list

and add another worker instead to the list. This process increases the accuracy of the

whole procedure by not assigning workers to more than one task group.

Now when the MaxCT procedure results in N task groups then there are N tasks

and N workers. The SAP algorithm can be used to find the optimal solution for these

combined tasks. The pseudocode for the MaxCT algorithm is shown in Figure 7.

 34

 Figure 7 Pseudocode for the MaxCT Algorithm

Sort workers from smallest to largest total_training_cost doing tasks

Consider the top 50% of most skilled workers in check list

Calculate total training cost for each task over a hypothetical least skilled worker

Sort from hardest to easiest task

Fix N positions for new tasks and put the hardest task in the first position

Do Until all tasks fill positions

Define a new task by select the maximum level skill of each pair

If a worker from the check list can be found to assigned

Select minimum change in cost

Update the task time

Update the skill levels

Else

If there is another empty position fill it

Else

If can find a worker to assign

 Choose randomly 2 positions and swap tasks

 End If

Else Stop

 End If

 End If

After each ⌈

⌉ ⌈

⌉ iteration, remove the top worker from the checking

list and add another worker instead to the list

Loop

USE SAP for N workers and N tasks

 35

 The MaxCT algorithm is also developed to decrease problem complexities and

form the problem in a way to use SAP. The ability of the procedure to find feasible

solutions was increased with checking list of workers in sub step 5-3. The MaxCT is not

guaranteed to find a feasible solution assuming one exists.

The method accuracy will increase in following cases:

1. Tasks are more similar to one another,

2. Number of skill levels are big,

3. Number of tasks are much more than number of workers,

4. Workers are at the same level of skills and not various in skills.

The problem is difficult to solve with this method when has the following characteristics:

1. Tasks are very different in their skills levels,

2. Skills and their levels are very different,

3. Workers are varied in their

4. Number of tasks and number of workers are close.

The complexity of the MaxCT method with N workers and L tasks with p skills is

O(pNL).

3.5. Using k-means clustering method to classify tasks

 Clustering is another method to group tasks into N groups (where N is number of

workers) so that SAP can be used to do assignment of task groups to workers.

Clustering is a method of grouping data in such a way that objects will be similar

(or related) to one another and dissimilar (or unrelated) to objects in other groups. It can

 36

be formulated as a multi objective optimization problem. The proper clustering algorithm

and parameter settings depend on the data set in hand and intended use of the results.

There are many clustering algorithms that the most appropriate clustering algorithm for a

particular problem often needs to be chosen experimentally, unless there is a

mathematical reason to prefer one cluster model over another.

 The "k-means" clustering algorithm is described in detail by Hartigan (1975). The

k-means clustering method is a cluster analysis which partitions m object with p feature

into k clusters. This k is specified by the user. The algorithm then randomly chooses k

points from objects; these objects are the initial centers of the clusters. Each object is

assigned to the center it is closest to. The k-means method is numerical, non-

deterministic, and iterative. The problem is NP-Hard; but there are heuristic algorithms

that can solve the problems quickly to a local optimum. It always has k clusters and each

cluster has at least one object. The clusters are non-hierarchical and they do not overlap.

Tasks in the proposed assignment problem can be defined as a dataset with L

objects. Each object has p features (here skills). The dataset is clustered into N clusters

equal to the number of workers, and then SAP can be used to solve the assignment

problem of N clusters of tasks to N workers. Although the clusters that are formed may

not lead to a feasible solution, it may be helpful in large datasets. In this section, k-means

clustering in MATLAB is used for the problem to cluster tasks with similar skills.

The data set with L tasks and p skills is given to the MATLAB to group tasks into

N clusters (i.e. number of workers). L tasks with p skills are partitioned into N clusters by

 37

heuristics method defined in MATLAB. The syntax used in MATLAB for k-mean is as

follows:

[IDX, C, sumd, D]= kmean (X, N)

It partitions the points in the L-by-p data matrix X (L tasks with p skills) into N groups. It

returns distances from each point (task) to every centroid in the L-by-N matrix D. Then

the minimum element of each row (row’s number indicates the index of task) in D is

selected to group that task in the proper group. At the end, the problem is converted to

one to one assignment problem and can be solved with the SAP algorithm. The

complexity of this method with N workers and L tasks with p skills is the same as the

previous ones, O (pNL). It should be noted, none of the proposed methods is not

guaranteed to find a feasible solution assuming one exists.

 38

CHAPTER 4

COMPUTATIONAL RESULT

4.1. Introduction

In chapter 3, four solution methods were developed. The upper bound, SMIMX,

MaxCT, and k-means clustering discussed previously. The new methods are tested for

randomly generated data sets (DePuy et al. 2007) and the results are compared with the

previous results obtained from discussed methodologies in Chapter 2. Due to the

problems’ size, the optimal solution cannot be found for these data sets.

4.2. Results

The results from three previous solution methodologies, Greedy Assignment

algorithm, Meta-RaPS Greedy Assignment and Meta-RaPS Shortest Augmenting Path

(MR SAP) are included in tables 1 and 2 and 3 as well as the results from the proposed

solution methods of upper bound (for small data sets), SMIMX, MaxCT, and k-means

clustering.

In table 1 and 2, to investigate the performance of the solution methodologies for

various ratios of workers and tasks, 26 small data sets were generated by DePuy et al.

(2007). These data sets have 9 workers and 9 to 36 tasks with 11 skills and 5 skill levels

and the other ones are randomly generated for 11 workers and 11 to 33 tasks with 13

 39

skills and 5 skill levels. The seven solution methodologies were evaluated using these

small data sets. The results are not very different for the new proposed methods in these

small data sets. The differences in the solution values are not large and the average

improvement is 0.3% for the new methods developed in this research. Figure 8 shows

that in these small data sets, MaxCT outperforms the others. The best solution value of

the proposed methods compared to upper bound results shows a good performance in the

solution. On average, for the data set with 9 workers, the results are 16.02% better than

the upper bound value and in the data set with 11 workers, this number is 18.49%.

 40

 T
A

B
L

E
 1

R
es

u
lt

s
fo

r
D

at
a

se
ts

 w
it

h
 v

ar
ie

d
 r

at
io

 o
f

ta
sk

s
to

 9
 w

o
rk

er
s

 41

T
A

B
L

E
 2

R
es

u
lt

s
fo

r
D

at
a

se
ts

 w
it

h
 v

ar
ie

d
 r

at
io

 o
f

ta
sk

s
to

 1
1
 w

o
rk

er
s

 42

Figure 8. Percentage of the best solutions obtained by each algorithm in 26 small

data sets

The proposed methods have been coded in MATLAB 7.12.0(R2012a). Computer

run times for these solution methodologies are obviously a function of the problem size.

As reported in previous literature, Jackson et al (2008), run times for 10,000 iterations of

MR Greedy and MR SAP for a problem of size 9 workers, 17 tasks, and 11 skills was

16.14 seconds and 16.43 seconds respectively on a Dell Inspiron I6400 PC with 1.00 GB

of RAM. Run times for suggested methods, SMIMX and MaxCT, for the same problem

was 0.32 and 0.46 seconds respectively on a Dell Precision T1600 PC with 4.00 GB of

RAM.

Table 3 shows results for 12 medium and large data sets ranging from 50 to 2000

workers and 75 to 3000 tasks. As previously mentioned, the optimal solution is not

available for these data sets as they are too large to be solved in a reasonable amount of

time by a commercial solution. Table 3 shows that even with large sized problems, the

34.62%

19.23%

42.31%

7.69%

38.46%

46.15%

15.38%

MR-SAP,
Greedy

Greedy,
Greedy

MR-SAP,
MR-Greedy

Upper
Bound

SMIMX MaxCT K-mean
clustering

 43

MaxCT method still maintains its dominance over the other methods. This can be seen in

the results for each tested large data set. The MaxCT attains solution values lower than

those of the other methods. When comparing previous methodology to the MaxCT and

SMIMX methods, it can be seen that they attain values averaging 7.34% lower than other

previous methods. This is a good improvement and allows for great potential savings. As

it can be seen the MaxCT outperforms in 67% and SMIMX in 33% cases. So overall,

MaxCT outperforms the others in all data sets. Run times for large data sets on a Dell

Precision T1600 PC with 4.00 GB of RAM using the proposed methods are shown in

table 4. For example for a problem with 2000 workers and 2200 tasks and 50 skills, run

times for SMIMX, MaxCT and k-mean clustering are 744, 878 and 323 seconds

respectively. As shown in table 4, run times for MaxCT is more than other methods and

K-mean clustering is faster. Figure 9 shows the run time comparison between these

methods.

TABLE 3 Result for large data sets

 44

Table 4 Run time for Large Data Sets

Figure 9 Run time comparisons for large data sets in proposed methods

 45

CHAPTER 5

MULTI-OBJECTIVE SKILLS MANAGEMENT MODEL

5.1. Introduction:

 The assignment of workers to tasks can lead to inefficient and ineffective job

performance for several reasons. In the proposed skills management model, workers are

assigned to tasks according their skills and trained to ensure effective and efficient job

performance. But assigning workers to tasks against their preferences regarding the

general condition of tasks may easily lead to reluctance. Consideration of skills and

training workers and their preferences leads to higher motivation since workers are

normally more interested to complete tasks related to their preferred abilities. The

problem can be formulated as a multiple-objective problem, at once minimizing training

costs and maximizing aggregate training subject to the previous constraints, and at the

same time trying to maximize workers’ preference to do tasks. In this chapter, multiple-

objectives will be presented for the skills management problem to maximize workers

preferences and aggregate training while minimizing training cost.

 46

5.2. Assignment of workers to tasks under consideration of workers preferences

In companies throughout the world, an efficient assignment is an assignment that

leads to the maximization of the preferences of workers. The presented model in this

section seeks to develop assignments for workers to tasks according to their preferences

and also aggregate training. Adding to previous parameters for the skills management

model presented in 2.3.1, the preference of doing a task for each worker is defined by the

workers themselves. The parameters for this model will be:

Prfij = worker i’s preference to assign at task j

Other parameters are similar to the previous model, they are presented here again:

Sik = worker i’s skill level for skill k

Rjk = required skill level for task j’s skill k

Tj = length (# hrs) of task j

Ai = capacity (# hrs) of worker i

Cklm = cost associated with raising a worker’s skill level on skill k from level l to

level m

Eklm = time required (# hrs) to raise a worker’s skill level on skill k from level l to

level m

The decision variables are defined as similar to the previous model:

Xij = {

 47

mikSik
Z = {

Wik = {

The multi-objective model being proposed is:

Minimize Training Cost: Minimize ∑ ∑ ∑
 (5-1)

Maximize Aggregate Training: Maximize ∑ ∑ ∑ (5-2)

Maximize Workers preferences: Maximize ∑ ∑

 (5-3)

Subject to:

Determine Needed Training:

 ∑

 { } (5-4)

 ∑

 (5-5)

All tasks assigned:

 ∑ (5-6)

All workers assigned at least one task:

 ∑ (5-7)

Worker Capacity:

∑ ∑ ∑

 (5-8)

Binary Variables:

 { }
 { } { } (5-9)

 The problem is solved for each of the three objectives (equations 5-1, 5-2, 5-3)

and the decision maker is presented with all three decisions from which to choose.

 48

Objective (5-2) maximizes the aggregate training for raising skill levels for workers and

objective (5-3) maximizes the overall worker priority level

5.3. Multi-Objective Optimization Solution Methodologies

There are two general techniques to solve multi objective problems (Deb 2001).

One approach is to combine all objectives into a single function or move all except one

objective to the constraint set. The other approach is to generate a subset of efficient

solutions or determine an entire Pareto optimal solution set (a set of solutions that are

non-dominated by each other). The second method allows the decision maker to choose

and evaluate the solutions.

There are many ways to transform a multi-objective problem to a single objective

problem, including goal programming, weighted-sum approach, and ε-constraints

programming.

Goal Programming was presented by Charnes et al. (1955). It attempts to find

specific goal values of the objectives. The most commonly-used classical method is the ε-

constraints method proposed by Chankong and Haimes (1983). It reformulates the multi-

objective optimization problem to a single objective function.

As the name suggests, the weighted-sum approach changes a multi-objective

optimization problem to a single-objective optimization problem by pre-multiplying each

objective with a decision maker-supplied weight (Deb, 2001). This method is the simplest

approach. It is probably the most widely used classical method.

In more detail, this method minimizes a positively weighted convex sum of the

objectives and the solution depends on the importance of each objective in the context of

the problem and a scaling factor. The scaling effect can be avoided somewhat by

 49

normalizing the objective functions. After the objectives are normalized, a composite

objective function can be formed by summing the weighted normalized objectives and

the problem is then converted to a single-objective optimization problem as follows:

 ∑

 (5-10)

The second general solution approach for multi-objective optimization is to

determine a representative subset solution, rather than get a single solution from every

single run using the first general methods. The most widely-used heuristics methods for

multi-objective optimization problem are genetic algorithms, simulated annealing, and

tabu search. The algorithms of the above heuristics methods were initially developed for

the single objective optimization problem, and are fit to solve multi-objective

optimization.

5.4. Result for small data set

 This multi-objective model is tested for some randomly generated data sets for

small sized problems of 6 workers and 11 skills and 5 skill levels and 9, 10, 11, 12, 13

tasks. Also workers preferences are generated randomly. The results are compared for

different hypothetical decision makers with different desire for objectives.

Weighted-sum method is used for solving the problem because this method is a

simple approach. The weights are determined by the decision makers; in this research the

weights are generated randomly. To normalize the objectives in these data sets, a scaling

factor based on the optimal solution or upper bound (see section 3.2) of the problem for

that single objective. So the final weighted single objective of the converted multi-

objective problem for these data sets is as follows:

 50

 (∑ ∑ ∑

)

 (∑ ∑ ∑)

 ∑ ∑ (5-11)

Where Fi
*

is the optimal value, if obtainable, or the upper bound as formulated in section

3.2 for the i
th

 objective individually.

 These samples from the decision maker point of view are run in LINGO 11.0 on

Dell Precision T1600 PC with 4 GB memory. The mathematical model for these samples

was solved to optimality in seconds. The results are shown in table 4. For example,

considering assignment of 6 workers to 11 tasks with 11 skills, if the decision maker's

weight preferences for minimizing training cost, maximizing aggregate training, and

maximizing workers preferences are 8, 1and 1, respectively, then the objectives will be

450, 72, and 32 respectively.

 51

 T
ab

le
 4

 R
es

u
lt

s
fo

r
d
if

fe
re

n
t

d
ec

is
io

n
 m

ak
er

s
w

it
h
 d

if
fe

re
n
t

v
al

u
es

 f
o
r

sm
al

l
d
at

a
se

ts
 w

it
h
 6

 w
o
rk

er
s

 52

CHAPTER 6

CONCLUSION AND FUTURE RESEARCH

6.1. Conclusions

In this dissertation, four solution methodologies are presented for the skills

management problem of assigning tasks to workers, solved for several randomly

generated data sets and the results compared with previous solution methods.

In the first method, upper bound, the complexity of the problem decreases by

changing and simplifying some of the constraints and combining the decision variables.

The simplified model determines the necessary increase in skill level for each task, not

over all tasks. A good upper bound can be used to measure the performance of a heuristic

method.

SMIMX and MaxCT are two other methods that decrease the complexity of the

skills management problem by grouping tasks into N groups that can then be easily

assigned to N workers. These proposed methods combine tasks that require similar levels

of skills such that there is the same number of workers as there are task groups and then

the SAP algorithm is used. Also k-means clustering is used for clustering tasks with

similar skills in N cluster equal to the number of workers.

 53

 Several large-sized datasets are used to evaluate the performance of the heuristics.

Results are compared to those of previous solution techniques as well as to the upper

bound developed in this work. The new presented methods attain values averaging 7.34%

lower than other previous methods in less than 16 minutes for large size problems.

 Additionally the assignment problem with dependent costs is formulated as a

multiple-objective optimization problem which maximizes workers preference at the

same time optimizing two conflicting objectives, minimizing training cost while

maximizing aggregate training. Several randomly generated data sets are tested for the

proposed model and the results are compared for different hypothetical decision makers

with different desire for objectives.

6.2. Future research

 The assignment problem with dependent costs is classified as NP-hard problem;

therefore there is no polynomial computational time method for solving problems. Future

studies can include the following aspects relating to decreasing the run time while finding

high quality solutions:

 Applying other heuristics and meta-heuristics to find a better solution from both

time and objective quality points of view such as Genetic algorithms and

Simulated annealing

 Improving the proposed methods, SMIMX and MaxCT, by considering workers

skills levels and their time limitations

 54

 Solving the revised multi-objective model for large data set and finding an

efficient solution for the decision maker by heuristics and meta heuristics

algorithm

 Using fuzzy membership functions for defining skill levels to have a more

realistic model, and helping to solve it

 Try different and more proper distance function in MATLAB to form clusters.

 55

REFERENCES

Amini, M., and Race, M., (1994). A rigorous computational comparison of alternative

solution methods for the generalized assignment problem, Management Science,

40(7), 868-890.

Balachandran, V., (1972). An integer generalized transportation model for optimal job

assignment in computer networks, Working Paper 34-72-3, Graduate School of

Industrial Administration, Carnegie Mellon University, Pittsbutgh.

Bozer, Y., and Carlo, H., (2007). Optimizing inbound and outbound door assignments in

less-than-truckload cross-docks, IIE Transactions, 40, 1007-1018.

Campbell, G.M., Diaby, M., (2002), Development and evaluation of an assignment

heuristic for allocating cross-trained workers, European Journal of Operational

Research ,138, 9–20.

Cattrysse, D.G., Salomon, M., and Van Wassenhove, L.N., (1994). A set partitioning

heuristic for the generalized assignment problem, European Journal of

Operational Research, 72, 167-174.

Chankong V., yy Haimes: Multiobjective Decision Making Theory and Methodology,

Elsevier Science Publishing Co., New York, 1983.

Charnes A, Cooper W W. Management Models and Industrial Applications of Linear

Programming, Volume 1. New York: John Wiley, 1961

 56

Chu, P.C. and Beasley, J.B.,(1997). A genetic algorithm for the generalized assignment

problem, Computers and Operations Research, 24, 17-26.

Corominas, A., Pastor, R., and Rodriguez, E., (2006). Rotational allocation of tasks to

multifunctional workers in a service industry, Int. J. Production Economics, 103,

3-9.

Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. Chichester:

Wiley.

DePuy, G.W., Usher, J.S., and Jackson, E. (2008). “Logistics Skills Management

Heuristics,” Final Report for 2007-2008 CELDi Membership Project.

DePuy, G.W., Whitehouse, G.E. (2001). A Simple and Effective Heuristic for the

Resource Constrained Project Scheduling Problem, International Journal of

Production Research, 39(14), 3275-3287.

DePuy, G.W., Whitehouse, G.E., and Moraga, R.J., (2002). Using The Meta-Raps

Approach to Solve Combinatorial Problems, CD-ROM Proceedings of the 2002

Industrial Engineering Research Conference, May 19-21, Orlando, Florida, 6

pages.

DePuy, G.W., Moraga, R.J., and Whitehouse, G.E. (2005). Meta-RaPS: A Simple And

Effective Approach For Solving The Traveling Salesman Problem,

Transportation Research Part E: Logistics and Transportation Review, 41(2),

115-130.

DePuy G.W., Usher, J.S., and Arterburn, B. (2006). “Workforce training schedule for

logistics skills,” CD-ROM Proceedings of the 2006 Industrial Engineering

Research Conference, May 20-24, Orlando, Florida, 6 pages.

 57

Dupont A., Linhares A., Artigues C., Feillet D., Michelon P., and Vasquez M. (2008).

“The Dynamic Frequency Assignment Problem,” European Journal of

Operational Research, 195, 75-88.36

Douglas, A.M. (2006). A Modified Greedy Algorithm for the Task Assignment Problem.

Master of Engineering thesis, University of Louisville.

Feltl. H, (2003) An Improved Hybrid Genetic Algorithm for the Generalized Assignment.

PhD thesis, Vienna University of Technology, Vienna, Austria, 2003.

Fisher, M. and Jaikumar, R., (1981). A generalized assignment heuristic for vehicle

routing, Networks, 11, 109-120.

Hasebrook, J., (2001). “Learning in the Learning Organization,” Journal of Universal

Computer Science, 1 (6), 472-487.

Hepdogan, S., R. Moraga, G.W. DePuy, and G.E. Whitehouse, (2009). “A Meta-RaPS

Solution for the Early/Tardy Single Machine Scheduling Problem,” International

Journal of Production Research, 47(7), 1717-1732.

Jackson, E., DePuy, G.W., and Evans, G.E. (2007). “Logistics Skills Management

Heuristics,”. Proceedings of the 2008 Industrial Engineering Research

Conference, May 17-21 Vancouver, Canada, 6 pages.

Jackson, E. (2009). SKILLS MANAGEMENT HEURISTICS. Master of Engineering

thesis, University of Louisville.

Jonker, R. and Volgenant, A., (1987). “A Shortest Augmenting Path Algorithm for Dense

and Sparse Linear Assignment Problems,” Computing, 38 (4), 325-340.

Kennington, J., and Wang, Z., (1992). “A Shortest Augmenting Path Algorithm for the

Semi-Assignment Problem,” Operations Research, 40 (1), 178-187.

 58

Korossy, K., (1997). Extending the theory of knowledge spaces: A competence-

performance approach. Zeitschrift fur Psychologie, 205, 53-82.37

Lan, G., DePuy, G.W. and Whitehouse G.E. (2007). An Effective and Simple Heuristic

for the Set Covering Problem, European Journal of Operational Research,

176(3), 1387-1403.

Ley, T and Albert, D., (2003). “Identifying Employee Competencies in Dynamic Work

Domains: Methodological Considerations and a Case Study,” Journal of

Universal Computer Science, 9 (12): 1500-1518.

Lorena, L.A.N, and Narciso, M.G., (1996). Relaxation heuristics for a generalized

assignment problem, European Journal of Operational Research, 91, 600-610.

Martello, S., and Toth, P., (1981). An algorithm for the generalized assignment problem,

Proceedings of the 9th INFORS Conference, Hamburg, Germany.

Mazzola, J., Neebe, A., and Dunn, C.,(1989). Production planning of a flexible

manufacturing system in a material requirements planning environment,

International Journal of Flexible Manufacturing Systems, 1, 115-124.

Moraga, R.J. (2002). Meta-RaPS An Effective Solution Approach for Combinatorial

Problems, Ph.D. thesis. Orlando, FL: University of Central Florida.

Moraga, R.J., DePuy, G.W. and Whitehouse, G.E. (2005). Meta-RaPS Approach for the

0-1 Multidimensional Knapsack Problem, Computers and Industrial Engineering,

48(1), 83-96.

Moreno, N., Corominas, A., (2007). Solving the minsum product rate variation problem

as an assignment problem, Int. J. Flexible Manufacturing Systems, 18, 269-284.38

 59

Nasberg, M. and Jornsten, K., (1986). A new Lagrangian relaxation approach to the

generalized assignment problem, European Journal of Operational Research, 27,

313-320.

Nauss, R.M., (2004). The Elastic Generalized Assignment Problem. Journal of the

Operations Research Society, 55, 1333-1341.

Oncan, T. (2007). A Survey of the General Assignment Problem and It’s Applications,”

INFORMS, 45 (3), 123-141.

Pentico, D. W. (2007), Assignment problems: A golden anniversary survey, European

Journal of Operational Research, 176, 774–793

Rainwater, C., Geunes, J., & Romeijn, H. (2009). The General Assignment Problem with

Flexible Jobs, Discrete Applied Mathematics, 157, 49-67.

Rabadi, G., Moraga, R., Al-Salem, A. (2006). Heuristics for the Unrelated Parallel

Machine Scheduling Problem with Setup Times, Journal of Intelligent

Manufacturing, 17(1), 85-97.

Ross, G.T., and Soland, R.M., (1975). A Branch and Bound Approach for the generalized

assignment problem, Mathematical Programming, 8(1), 91-105.

Savelsbergh, M., (1997)., A branch-and-price algorithm for the generalized assignment

problem, Operations Research, 45, 831-840.

Thorndike, R. L., (1950), The problem of the classification of personnel, Psychometrika,

15, 215-235.

Wilson, J.M., (1997). A simple dual algorithm for the generalized assignment problem,

Journal of Heuristics, 2, 303-312.39

 60

Yagiura, M., Ibaraki, T., and Glover, F., (2004). An ejection chain approach for the

generalized assignment problem, INFORMS Journal on Computing, 2, 16-28.

 61

APPENDIX

MATLAB code for SAP

function [rowsol,cost,v,u,costMat] = lapjv(costMat,resolution)

if nargin<2

 maxcost=min(1e16,max(max(costMat)));

 resolution=eps(maxcost);

end

 [rdim,cdim] = size(costMat);

M=min(min(costMat));

if rdim>cdim

 costMat = costMat';

 [rdim,cdim] = size(costMat);

 swapf=true;

else

 swapf=false;

end

dim=cdim;

 62

costMat = [costMat;2*M+zeros(cdim-rdim,cdim)];

costMat(costMat~=costMat)=Inf;

maxcost=max(costMat(costMat<Inf))*dim+1;

if isempty(maxcost)

 maxcost = Inf;

end

costMat(costMat==Inf)=maxcost;

v = zeros(1,dim);

rowsol = zeros(1,dim)-1; colsol = zeros(dim,1)-1;

if std(costMat(:)) < mean(costMat(:))

 63

 numfree=0;

 free = zeros(dim,1);

 matches = zeros(dim,1

 for j=dim:-1:1

 [v(j), imin] = min(costMat(:,j));

 if ~matches(imin)

 rowsol(imin)=j;

 colsol(j)=imin;

 elseif v(j)<v(rowsol(imin))

 j1=rowsol(imin);

 rowsol(imin)=j;

 colsol(j)=imin;

 colsol(j1)=-1;

 else

 colsol(j)=-1;

 end

 matches(imin)=matches(imin)+1;

 end

 for i=1:dim

 if ~matches(i)

 numfree=numfree+1;

 64

 free(numfree)=i;

 else

 if matches(i) == 1

 j1 = rowsol(i);

 x = costMat(i,:)-v;

 x(j1) = maxcost;

 v(j1) = v(j1) - min(x);

 end

 end

 end

else

 numfree=dim-1;

 [v1 r]=min(costMat);

 free=1:dim;

 [~,c]=min(v1);

 imin=r(c);

 j=c;

 rowsol(imin)=j;

 colsol(j)=imin;

 free(imin)=[];

 x = costMat(imin,:)-v;

 x(j) = maxcost;

 v(j) = v(j) - min(x);

 65

end

loopcnt = 0;

while loopcnt < 2

 loopcnt = loopcnt + 1;

 k = 0;

 prvnumfree = numfree;

 numfree = 0

 while k < prvnumfree

 k = k+1;

 i = free(k);

 x = costMat(i,:) - v;

 [umin, j1] = min(x);

 x(j1) = maxcost;

 [usubmin, j2] = min(x);

 i0 = colsol(j1);

 if usubmin - umin > resolution

 v(j1) = v(j1) - (usubmin - umin);

 else

 if i0 > 0

 j1 = j2;

 i0 = colsol(j2);

 end

 66

 end

 rowsol(i) = j1;

 colsol(j1) = i;

 if i0 > 0

 if usubmin - umin > resolution

 free(k)=i0;

 k=k-1;

 else

 numfree = numfree + 1;

 free(numfree) = i0;

 end

 end

 end

end

for f=1:numfree

 freerow = free(f);

 d = costMat(freerow,:) - v;

 pred = freerow(1,ones(1,dim));

 collist = 1:dim;

 low = 1;

 up = 1;

 67

 unassignedfound = false;

 while ~unassignedfound

 if up == low

 last = low-1;

 minh = d(collist(up));

 up = up + 1;

 for k=up:dim

 j = collist(k);

 h = d(j);

 if h<=minh

 if h<minh

 up = low;

 minh = h;

 end

 collist(k) = collist(up);

 collist(up) = j;

 up = up +1;

 end

 end

 for k=low:up-1

 if colsol(collist(k)) < 0

 68

 endofpath = collist(k);

 unassignedfound = true;

 break

 end

 end

 end

 if ~unassignedfound

 j1 = collist(low);

 low=low+1;

 i = colsol(j1);

 x = costMat(i,:)-v;

 h = x(j1) - minh;

 xh = x-h;

 k=up:dim;

 j=collist(k);

 vf0 = xh<d;

 vf = vf0(j);

 vj = j(vf);

 vk = k(vf);

 pred(vj)=i;

 v2 = xh(vj);

 d(vj)=v2;

 vf = v2 == minh;

 69

 j2 = vj(vf);

 k2 = vk(vf);

 cf = colsol(j2)<0;

 if any(cf)

 i2 = find(cf,1);

 endofpath = j2(i2);

 unassignedfound = true;

 else

 i2 = numel(cf)+1;

 end

 for k=1:i2-1

 collist(k2(k)) = collist(up);

 collist(up) = j2(k);

 up = up + 1;

 end

 end

 end

 j1=collist(1:last+1);

 v(j1) = v(j1) + d(j1) - minh;

 while 1

 i=pred(endofpath);

 colsol(endofpath)=i;

 j1=endofpath;

 70

 endofpath=rowsol(i);

 rowsol(i)=j1;

 if (i==freerow)

 break

 end

 end

end

rowsol = rowsol(1:rdim);

u=diag(costMat(:,rowsol))-v(rowsol)';

u=u(1:rdim);

v=v(1:cdim);

cost = sum(u)+sum(v(rowsol));

costMat=costMat(1:rdim,1:cdim);

costMat = costMat - u(:,ones(1,cdim)) - v(ones(rdim,1),:);

if swapf

 costMat = costMat';

 t=u';

 u=v';

 v=t;

end

if cost>maxcost

 cost=Inf;

end

 71

CURRICULUM VITAE

Ghazal Tariri

Work address: Department of Industrial Engineering

J.B. Speed School of Engineering

University of Louisville

Louisville, KY 40292

Education: PhD, Industrial Engineering

University of Louisville

2009- Defended on July 25, 2013

Master of Science, Industrial Engineering

Isfahan University of Technology

2007-2009

Bachelor of Engineering, Industrial Engineering

Sharif University of Technology

2003-2007

Language Skills: English (Fluent)

 Persian (Native fluent)

 Arabic (Fluent)

	The assignment problem with dependent costs.
	Recommended Citation

	tmp.1450887436.pdf.8Ele1

