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ABSTRACT 

 

THE INVOLVEMENT OF β-CATENIN IN THE INFLAMMATORY RESPONSE 

LEADING TO AUTOIMMUNE DIABETES DEVELOPMENT 

 

Arin Zirnheld 

 

July 25, 2013 

 

 We identified and characterized a novel defect in β-catenin expression in bone 

marrow derived dendritic cells (BMDC) from NOD mice, a model for human Type I 

diabetes.  This protein is expressed at high levels throughout the lifespan of the mouse 

and correlates with increased pro-inflammatory cytokine production by the BMDC and 

IFNγ induction by T cells cocultured with the BMDC.  These defects, including a similar 

pattern of pro-inflammatory cytokine production, are also observed in human monocyte-

derived DC from diabetic patients.  After exploring several potential mechanisms 

involved in the accumulation of β-catenin in NOD BMDC, we found that β-catenin is 

phosphorylated at higher levels in NOD BMDC at two residues associated with increased 

stabilization of this protein.  Upon inhibition of the two kinases responsible for these 

phosphorylations, Akt and PKA, β-catenin expression is reduced.  Therefore, β-catenin 

accumulates in NOD BMDC through an Akt and PKA-mediated mechanism.  We also 

explored mechanisms by which β-catenin influences pro-inflammatory cytokine 

production and found that inhibition of β-catenin leads to decreased activation of the 

transcription factor NFκB, suggesting that pro-inflammatory cytokine production is 

increased in NOD BMDC through an NFκB-dependent mechanism.  Finally, we 
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performed several in vivo experiments aimed at inhibiting β-catenin activity or reducing 

β-catenin expression to reduce disease incidence and/or increase survival.  Treatment of 

NOD mice with quercetin, a β-catenin inhibitor, led to reduced disease incidence and a 

decreased inflammatory environment.  Transfer of β-catenin siRNA-treated BMDC into 

NOD mice also reduced disease incidence.  These studies reveal that β-catenin plays a 

role in the inflammation leading to diabetes development.   
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INTRODUCTION 

 

General Description of Type I diabetes  

 There are two main types of diabetes: Type I and Type II.  Although the symptoms 

are similar in these two diseases, they have very different etiologies.  While Type II 

diabetes results from a lack of insulin production or a reduction in sensitivity to insulin, 

Type I diabetes results from an autoimmune process in which the insulin-producing beta 

cells of the pancreas are destroyed by a T-cell driven inflammatory process. The World 

Health Organization estimates that about 10 percent of the 350 million people in the 

world with diabetes have Type I diabetes; most have Type II, which is associated with 

obesity and lack of exercise. 

 Type I diabetes is an autoimmune disease as demonstrated by insulitis, which is 

the presence of infiltrating cells in the Islets of Langerhans, antibodies against islet cells, 

and T cells that recognize beta cell antigens.  Moreover, the disease frequently occurs 

with other autoimmune diseases, including celiac disease, Addison’s disease, and 

autoimmune thyroid disease [1]. 

 The symptoms of Type I diabetes include thirst, frequent urination, and increased 

hunger in childhood or young adulthood [2]. There are several complications caused by 

the disease including kidney damage, eye damage and blindness, heart disease and stroke 

[2].  

Cardiovascular disease is of particular concern for Type I diabetes (TID) patients, 
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as they are highly susceptible to coronary heart disease. IL-12, the hallmark pathogenic 

cytokine in Type I diabetes development, may play a central role in these high 

cardiovascular disease rates. It has been reported that cells in atherosclerotic arteries 

produce higher levels of IL-12 than in healthy arteries. Furthermore, IL-12-induced IFNγ 

production is also known to exacerbate atherosclerosis, while blockade of IL-12 

decreases atherosclerosis in mice [3].  Additionally, Type I diabetes patients have a 

variety of elevated inflammatory biomarkers including CRP, nitrotyrosine, monocyte 

superoxide, a variety of inflammatory cytokines, VCAM, and pERK [4].  

 

Disease Induction and Progression 

 It is unknown what initial signal triggers diabetes development, but suggested 

triggers include pathogens, commensals and aberrant beta cell death [5].  Regardless of 

the nature of the initiating trigger, development of disease is preceded by cellular 

infiltration of the pancreatic islets by T cells and macrophages.  This infiltration can then 

progress to destruction of the beta cells.  Although the mechanisms for this destruction 

have not been entirely delineated, possibilities include CD8+ T cell cytotoxicity, 

macrophage-produced ROS, cytokine-induced apoptosis, and FAS-FAS ligand signaling.  

B cells, NK cells, and NKT cells may also play a role in disease development and 

progression [6]. 

Despite the variety of cells involved in infiltration, it is known that CD4
+
 and 

CD8
+
 T cells and B cells are necessary for disease.  B cell-deficient NOD mice do not 

develop disease or insulitis [7]. Disease is also delayed or reversed in NOD mice that 

underwent antibody-mediated B cell deletion [8].  However, serum from diabetic mice 
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does not transfer disease suggesting that B cells may influence disease development 

through their role as antigen-presenting cells rather than as autoantibody-producing cells 

[5].   

CD8
+
 T cells also play a pivotal role in disease development.  The presence of 

autoreactive CD8
+
 cells correlates with beta cell destruction, recurrent autoimmunity 

after islet transplant, and graft failure in humans [9].  CD8
+
 cells can kill beta cells upon 

interaction with the Class I molecules expressed on the beta cells [2].  Interestingly, NOD 

mice that have been modified to not produce Class I on beta cells do develop insulitis but 

not hyperglycemia nor subsequent disease [10].    

CD4
+
 T cells play a key role as well.  Transfer of CD4

+
 T cells into NOD SCID 

mice can initiate diabetes, although development of diabetes took twice as long following 

transfer of CD4
+
 T cells from pre-diabetic mice compared to CD4

+
 T cells from diabetic 

mice [11].  Another study found that CD4
+
 T cells are only able to initiate disease when 

CD8
+
 T cells were present [12]. CD4

+
 T cells also provide help to B cells and CD8

+
 cells 

and secrete cytokines that create the pathogenic proinflammatory environment that 

contributes to disease [2]. Overall, it appears that CD4
+
 and CD8

+
 T cells work together 

to initiate disease.   

Our understanding of disease progression is changing.  In the classic model 

proposed by George Eisenbarth, a person with a genetic susceptibility encounters an 

environmental trigger that leads to progressive beta cell destruction.  Only after the 

majority of the beta cells (90-95%) are destroyed do the symptoms of diabetes appear. 

However, a more modern model has been proposed (See Figure below) [2]. In this more 

complex model, a variety of genetic susceptibility genes and environmental triggers 
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interact with each other.  Loss of immune regulation is also included in this model.  

Additionally, the disease is no longer seen as a directly linear process in every patient.  

Instead, many patients will experience a relapsing-remitting disease in which beta cell 

mass and function fluctuates.  Indeed, as many as 60% of patients experience a 

honeymoon period in which temporary remission occurs after diagnosis [2].        

In the NOD mouse model of disease, disease progression mirrors what occurs in 

human diabetic patients.  In these mice, disease progression follows a predictable 

sequence of events: at 3-4 weeks of age, NOD mice exhibit peri-insulitis in which 

mononuclear infiltrates surround the islets but are not yet invasive; by 10 weeks of age, 

CD4
+
 and CD8

+
 cells along with NK cells, B cells, DC, and macrophages have infiltrated 

the islets resulting in insulitis [5, 13].  
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Prevention, Prediction, and Treatment of Type I diabetes  

Type I diabetes is a devastating chronic disease that requires continuous care, and 

has enormous financial and social impacts, e.g., increased divorce rates in families with 

children with the disease. Current treatments for Type I diabetes are limited to insulin 

injections or pumps [2]. Despite the impact of technological progress on diagnostics and 

treatments, the modern life style has made it more difficult for diabetic patients to control 

blood glucose levels.  However, T1D can be predicted with some accuracy which leads to 

the possibility of preventative treatments.  One study found that in individuals with risk 

factors for T1D, including having a relative with T1D and having autoantibodies against 

islet cells (ICA), glucose tolerance tests can predict the onset of disease with a 0.66 

accuracy [14]. Another study found that 89% of children with two or more different islet 

autoantibodies progressed to T1D [15]. Additionally, children with persistently high 

levels of insulin autoantibody (IAA) had a 100% chance of progression to T1D.  Other 

autoantibodies, such as those against GAD65 or IA2 (islet antigen 2)/ICA512 (islet cell 

autoantigen 512), did not show the same correlation with disease progression [15].  

Finally, genetically high-risk children, those with the DR3/4-DQ8 HLA genotype, who 

were found to have multiple autoantibodies at an early age were much more likely to 

develop diabetes than those with non-high risk HLA genotypes, only one autoantibody, or 

presence of autoantibodies at a later age [16]. 

Promisingly, various therapies have successfully prevented or cured diabetes in 

NOD mice.  Some of the various successful therapies in mice include anti-CD3 antibody 

treatment, which has resulted in remission in a variety of studies [17-19].  However, 

several studies also showed no effect of this treatment when therapy started at different 
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time points [19-22].  Additionally, TNF-α administration has resulted in disease 

protection in various studies, although at least one study found an exacerbating effect 

[23]. These conflicting findings are likely due to differences in timing and length of 

administration [23]. It does not appear that the success of preventative treatments 

depends on early administration as evidenced by the success of several treatments that 

began at more than 4 weeks of age, including some anti-CD3 antibody studies, CTLA-4 

antibody treatment, and TNFα administration [23]. Additionally oral feeding of insulin 

and GAD65 reduced diabetes incidence in NOD mice by inhibiting islet infiltration and 

IFNγ production [24]. 

Several therapies first demonstrated to be effective in NOD mice have been tried 

in human clinical trials.  These include anti-CD3 in recently diagnosed diabetic patients 

which resulted in reduced requirements for insulin and oral insulin [25-27].  Although the 

treatment was administered for a short time, its protective effects lasted for at least 4 

years.  Younger patients, between the ages of 17 and 27 years old and those patients in the 

early stages of beta cell destruction responded better to the therapy than older patients 

and those in later stages of disease [28]. Studies treating high risk pre-diabetic individuals 

with oral insulin, plasmid-encoded proinsulin, or subcutaneous GAD65 have also been 

performed.  Oral insulin treatment in individuals with anti-insulin autoantibodies reduced 

incidence, but this effect disappeared once treatment ended [29]. Pro-insulin plasmid 

treatment resulted in preservation of high C-peptide levels and reduced CD8
+
 T cell 

infiltration [30]. Subcutaneous GAD65 had no effect on diabetes incidence or levels of C-

peptide [31].    

 Interestingly, several studies have shown that Vitamin D (1α,25-dihydroxyvitamin 
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D) can modulate the immune responses in NOD mice.  High doses of Vitamin D 

administration to NOD mice reduced the incidence of diabetes to 8% [32]. 1,25-

Dihydroxyvitamin D3 has been shown to inhibit IL-12 production by activated dendritic 

cells and macrophages by downregulating NFκB activation [33].  Vitamin D has been 

used in human clinical trials as well.  However, in one study, a dose of 0.25 ug of Vitamin 

D had no effect on beta-cell function in recently diagnosed T1D patients [34]. In another 

study, pregnant women whose children were at risk for T1D were given Vitamin D 

supplements.  Supplementation was not associated with decreased risk for T1D for their 

children later in life [35].  

Additionally, there have been a variety of studies using cell-based therapies such 

as T regulatory cells (Tregs).  Treg transfer into NOD mice can reverse diabetes after 

onset [36, 37].  Similarly, in humans, administration of Tregs to recent-onset diabetic 

children led to increased C-peptide levels [38]. Various treatments aimed at restoring beta 

cell function have been tried, all with varying degrees of success.  It is likely that 

combination therapies will be necessary to fully prevent or cure T1D [2].  Despite several 

promising therapies, Type I diabetes treatment continues to consist of insulin therapy.  

Therefore, the search for effective therapies must continue. 

 

The Non-Obese Diabetic (NOD) Mouse 

 The NOD strain was established by selectively breeding a female mouse that had 

spontaneously developed polyuria, glycosuria, and weight loss. Female NOD mice 

typically have a diabetes incidence of 70-80% and onset of disease at 10 weeks, while 

males have an incidence of about 20% and onset at 20 weeks, although there is variability 
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among colonies [39].  Some of this variability may be due to differences in gut 

microbiota composition.  For example, the presence of segmented filamentous bacteria 

(SFB) has been found to correlate with protection from diabetes in NOD females as 

compared to female mice lacking SFB from the same facility [40].  The symptoms of 

disease in NOD mice include polyuria, glycosuria, hyperglycemia, insulin deficiency, 

ketonuria, and rapid weight loss.  Mice typically die within 1-2 months of onset of 

disease [39].    

 Disease pathogenesis in NOD mice is similar to humans; they exhibit the presence 

of similar pancreatic autoantigens including glutamic acid decarboxylase (GAD), insulin, 

and ZnT8 (a zinc transporter) [41].  Autoreactive CD4
+
 and CD8

+
 T cells infiltrate the 

pancreas in both the mouse model and human patients.  NOD mice are susceptible to 

other autoimmune diseases, similar to some T1D patients [13].  Additionally, NOD mice 

have a nonaspartic acid substitution at position 57 of the beta chain of their unique MHC 

molecule.  A similar substitution is seen in human susceptibility loci in the DQ beta chain 

[13].   

 

Autoimmunity, Tolerance, and Tregs in Type I diabetes  

 In healthy immune system development, most T cells that recognize beta cell self-

antigens are deleted [42].  However, self-reactive T cells against beta cells are found in 

T1D patients as well as healthy individuals.  Therefore, other mechanisms control the 

self-reactivity of these T cells: ignorance, anergy, deletion, and regulation [43].  

Suppressor cells, characterized as CD4
+
 T cells and later described as regulatory T cells, 

have been found to be capable of protecting NOD mice, a powerful mouse model for 
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T1D, from diabetes [41]. Foxp3 Tregs are the main focus of regulatory cell research, but 

other cells, such as NKT cells, can regulate autoimmunity in T1D.  For example, various 

studies found that activation of NKT cells with alpha-galactosylceramide led to a shift 

towards a Th-2 phenotype in treated mice and led to protection of islets transplanted into 

diabetic mice [44, 45]. 

 Various pieces of evidence indicate defects in Tregs are important in development 

of disease in NOD mice.  For example, B7-1 knockout mice and CD28 knockout mice 

have greatly reduced percentages of CD4
+
CD25

+
 Tregs and develop T1D very quickly 

[46].  However, disease progression can be slowed in NOD/SCID mice that have been 

induced to have diabetes with administration of CD28 deficient splenocytes by 

adoptively transferring CD25
+
 Tregs [46]. Additionally, progression of diabetes has been 

associated with both decreased percentages of Tregs in the pancreatic lymph nodes of 

NOD mice versus control mice [47] as well as decreased suppressive activity of Tregs 

[48, 49].  On the other hand, another study showed no difference in frequencies of Tregs 

[50].   However, Treg function and ability to proliferate may decline with age [49].  

Additionally, decreased suppressive activity of Tregs and decreased sensitivity to 

regulation of pathogenic T cells may contribute to disease [48, 51].   

Despite these studies that clearly indicate a protective role for Tregs in T1D in 

NOD mice, studies on Tregs in humans have given contradictory and difficult to interpret 

results [43]. For example, one study found reduced numbers of Tregs in PBMCs of 

diabetic patients [52], while others have found no differences [53-55].  Additionally, one 

study found no difference in the suppressive capacity of Tregs from diabetic patients [54], 

but several studies did find qualitative differences in T cell populations from diabetic 
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patients including reduced suppressive capacity [53, 55] and increased pro-inflammatory 

cytokine production [55]. 

 

Genetic Factors in T1D 

 A variety of genetic and environmental factors have been proposed as 

contributing to the development of Type I diabetes [6].  There are a few single locus 

genetic conditions that can result in T1D in humans.  These include IPEX and 

autoimmune polyendocrine syndrome Type I.  In IPEX, multiorgan autoimmunity, 

including that of the pancreas, occurs as a result of a mutation in the gene for Foxp3 and 

subsequent dysfunction of regulatory T cells [56].  This disease is modeled in the scurfy 

mouse [57]. Autoimmune polyendocrine syndrome results in autoimmune diabetes 20% 

of the time as a consequence of a mutation in AIRE, a protein important for expression of 

self-antigens in the thymus leading to self-tolerance [58].  

More often, however, T1D is the result of a complex interplay between multiple 

genetic loci.  In humans, the MHCII molecules HLA-DQ2 and HLA-DQ8 are the greatest 

risk factors for disease development [6] with the MHC locus contributing 40% of the 

susceptibility to T1D [41]. There is increased risk for DR3/4 as well, although the risk 

has been reported to be small [59].  Class I haplotypes, including HLA-A genotype 

A1and A2 have also been associated with T1D development.  These genes, when 

combined with high-risk Class II haplotypes, correlate with high incidence and earlier 

appearance of islet autoantibodies [60].  These MHC susceptibility genes were identified 

very early on and are found within the chromosomal region referred to as IDDM 1 

(Insulin-Dependent Diabetes Mellitus) [2].  There are also several identified HLA 
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haplotypes that confer disease protection in humans: DRB1*1501-DQA1*0102-

DQB1*0602, DRB1*1401-DQA1*0101-DQB1*0503, and DRB1*0701-DQA1*0201-

DQB1*0303 [61]. The MHC genes play a large role in disease susceptibility in NOD 

mice as well: the cells of these mice have a unique MHC II molecule called H2
g7 

[13].  

However, NOD mice with the MHC molecule from diabetic-resistant B6 mice and B6 

mice with this MHC molecule inserted do not develop diabetes, indicating that H2
 g7 

is 

not sufficient for disease development. 

Many other non-HLA genes have been associated with T1D development in 

humans indicating that the disease has a complex genetic component [62].  Other 

associated genes include the 5' flanking region of the insulin gene, the PTPN22 gene, the 

CTLA4 gene [41], the IL2RA gene, and the IFIH1 gene [2].  The insulin gene is found 

within the chromosomal region referred to as IDDM2 found on chromosome 11 [2].  It 

was reported that a polymorphic region of the insulin gene was associated with T1D in 

Caucasians [63].  The PTPN22 gene encodes the protein lymphoid protein tyrosine 

phosphatase, which dephosphorylates Lck and Zap70, Vav, CD3ε, and valosin containing 

protein, which is an important process in the negative regulation of TCR signaling [64].  

Mutations in this gene may lead to aberrant T cell signaling and subsequent 

autoimmunity. CTLA4, an important negative regulator of lymphocyte proliferation [65], 

is found within the IDDM 12 region and can play a role in T1D and other autoimmune 

diseases as well [66, 67].  It has been shown that knocking out CTLA-4 in mice leads to 

infiltration of lymphocytes in various organs, including the pancreas [65]. There are also 

variations in the alpha chain of the IL-2 receptor, which is involved in Treg 

differentiation, associated with T1D development [8, 68, 69].  Additionally, the gene for 
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IL-2 is located on chromosome 4 in an area identified as containing susceptibility genes 

[70].  Finally, several studies have indicated a link between T1D and the IFIH1 gene, 

which encodes a cytoplasmic sensor protein that recognizes picorna viruses such as 

coxsackie virus, which may play a role as a triggering factor in diabetes development [2].  

Higher levels of IFIH1 are found in the PBMCs of individuals with the susceptible 

polymorphisms of this gene [71].  Additionally, several polymorphisms of this gene have 

been found to be protective for T1D [72]. 

 The NOD mouse model has provided several insights into the genetic basis of 

T1D.  In this model, several chromosome segments have been associated with disease 

development.  These genetic loci, called Idd, include various genes associated with Type I 

diabetes.  Interestingly, Idd5 in NOD mice has been shown to contain the gene for 

CTLA4 [73].  Although the IL-2 receptor has not been associated with disease, the IL-2 

gene itself is found within the chromosomal region Idd3 in NOD mice [74]. Despite the 

fact that mutations in PTPN22 have been shown to be an important genetic risk factor for 

autoimmunity in humans, knock down of PTPN22 expression in NOD mice led to 

protection from disease [75].  

 

Environmental Factors in T1D 

Although T1D certainly has a genetic component, environmental factors also play 

an important role in disease development and incidence.  This is evidenced by twin 

studies in which monozygotic twin concordance rates are low at around 50% indicating a 

strong environmental component [76].  Additionally, Type I diabetes incidence has been 

increasing in recent years.  For example, in Finland incidence has increased from 
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20/10
6
/year in 1972 to 65/10

6
/year currently [41]. In Auckland, New Zealand, incidence 

increased from 7.6 per year in 1990-1991 to 8.9 a year in 2008-2009 [77]. These large 

increases in incidence cannot be explained by genetic factors alone, and therefore there 

must be some environmental trigger. Based on epidemiology data and data generated in 

the NOD mouse model of Type I diabetes, the proposed environmental factors include 

viruses [78, 79], bacterial pathogens, and increased hygiene standards.  

Epidemiological data points to a role for viral infection.  In a meta-analysis of 33 

studies, it was found that enterovirus infection correlates strongly with T1D development.  

There was almost 10 times greater occurrence of enterovirus infection in children with 

T1D as compared to control children [80].  Maternal infection with coxsackie virus 

during pregnancy was also found to correlate with T1D development in the children [81-

83].  Beta cells can be directly infected by coxsackie virus, and infection by this virus 

correlated with loss of beta cell function [84][[85].  Interestingly, a molecule found in the 

cocksackie virus is very similar to GAD, one of the identified autoantigens in T1D, 

suggesting that molecular mimicry may play a role in T1D [86].  However, another study 

reported that infection of NOD mice with coxsackie virus before disease onset may 

actually be protective suggesting that timing is key in the protective versus causative 

effect of the virus [87].  

One study reported an increase in HLA Class I molecule and IFNα expression in 

the islets of T1D children, suggesting a role for viruses in the disease [88].  Other viruses 

have been implicated in T1D as well: cytomegalovirus [89], parvovirus [90], 

encephalomyocarditis virus [91], and rotavirus [92]. However, in patients, it is difficult to 

determine if viruses are a causative disease agent or if increased susceptibility to viral 
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infections is a consequence of the disease.  Additionally, in humans it has been shown 

that various factors relating to cleanliness and decreased antigenic stimulation are 

associated with TID.  The hygiene hypothesis postulates that increases in various 

hygienic factors, including the absence of an older sibling [47], lack of exposure to viral 

infections [93] and lack of helminth infections [94], lead to increased susceptibility to 

Type I diabetes as well as other autoimmune diseases. Although this contradicts the data 

showing a link between particular viruses and Type I diabetes, it is possible that certain 

infections trigger disease, while others are protective.  Additionally, it has been shown 

that there are differences in the intestinal microbiota between autoantibody-positive 

children and autoantibody-negative children. Autoantibody-positive children had 

particularly low levels of lactate and butyrate-producing bacteria, suggesting that the 

composition of the entire microbiota, not one particular organism, may influence disease 

[95].  A second study showed that the ratios of various groups of bacteria in diabetic 

children were significantly different than in healthy children [96]. Other non-pathogenic 

factors have been associated with the development of T1D in humans.  These include 

ingestion of cow’s milk [97, 98] and gliadin and Glb1, both proteins found in wheat [99, 

100]. 

 Various data generated with animal models of T1D also support an environmental 

effect in Type I diabetes.  NOD mice raised in pathogen-free environments have higher 

rates of diabetes development than NOD mice raised in less clean environments [41].  

Additionally, various pathogens can protect NOD mice from disease, including viruses 

such as Coxsackie B and lymphocytic choriomeningitis virus [93, 101], and parasites 

such as Schistosoma mansoni or only the eggs [102],  and Trichinella spiralis or 
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Heligmosomoides polygyrus [103].  Finally, bacteria in the gut play an important role in 

the development of diabetes.  NOD mice raised under specific-pathogen free conditions 

and lacking Myd88 have altered microbiota composition and do not develop diabetes.  

However, germ-free mice lacking MyD88 do develop diabetes, although this can be 

attenuated by transferring the microbiota of specific germ-free NOD MyD88 knockouts 

indicating a role for te microbiota in disease development [104].  

 

Defects in APC in T1D  

 A variety of defects in antigen presenting cells (APC) have been associated with 

T1D development in both human patients and NOD mice.  In one study, dendritic cells 

from type I diabetic patients exhibited decreased maturation, reduced ability to cluster, 

and reduced ability to stimulate autologous and allogeneic T cell responses [105]. In 

another study, the yield of DC cultured from monocytes was lower in relatives of T1D 

patients as compared to control cells.  A lower proportion of DC from T1D relatives 

expressed CD1a, B7-1, and B7-2 when compared to control cells, and the expression of 

these molecules was lower in relatives' cells.  Overall, cells from relatives of Type I 

diabetes patients had defects similar to those found in Type I diabetic patients [106]. In a 

study performed on twins discordant for Type I diabetes, B cells from the diabetic twin 

displayed increased turnover of MHC Class II at the cell surface, inadequate 

glycosylation of MHC II, and reduced display of antigens resulting from decreased 

expression of li p35, which brings MHC Class II to the cell surface [107].  

Studies using NOD APC have also reported a variety of defects.  NOD BMDC 

showed low expression of MHC Class I and Class II and low levels of B7.1 and B7.2 and 
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CD40 as compared to BMDC from non-diabetic B6 mice.  NOD BMDC cultures also 

yielded fewer mature cells than B6 cultures. There was also a higher ratio of DC: 

responder T cells needed to induce proliferation with NOD BMDC (1:10) than with B6 

BMDC (1:100).  Additionally, NOD BMDC produced lower levels of IL-12 than B6 cells 

upon LPS stimulation [108].   

 Several other studies have found defects in NOD APC. Proliferation of T cells in 

response to antigen (hen egg lysozyme) was lower in NOD cells than in NOR cells 

(diabetes-resistant) due to a defect in APC activation in NOD mice.  NOR macrophages 

produced more intracellular GSH (a reducing agent that breaks disulfide bonds in antigen 

molecules) resulting in more antigen processing than in NOD mice [109].  Another study 

found that NOD bone marrow cells proliferated and matured at lower levels in the 

presence of CSF-1 as compared to cells from non-diabetic mice.  MHC-I expression was 

also lower in NOD macrophages compared to control cells [110]. 

 

Involvement of IL-12 and IFNγ in infection 

IL-12 has a very important role in clearing infection resulting from bacteria, 

intracellular protozoa, and fungi by helping to generate a proinflammatory Th1 response.  

IL-12 induces this proinflammatory environment by stimulating T cells and NK cells to 

produce GM-CSF, TNF, and IFNγ.  In a healthy immune system, IFNγ activates 

phagocytes, such as macrophages, to destroy pathogens.  Cells that produce IL-12 include 

DCs, macrophages, monocytes, and neutrophils.  IFNγ can also be produced by NKT 

cells, CD8
+
 T cells, gamma delta T cells, macrophages, DC, and B cells [111].  

IL-12 is a heterodimer composed of two chains: p35 and p40 [112].  IL-12 is 
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produced in response to recognition of pathogens through TLRs.  Stimulation of TLR7 

with R848 and TLR9 with CpG DNA results in robust production of IL-12 from BMDC.  

Stimulation of TLR4 with LPS and TLR 3 with Poly(I:C) results in IL-12 production, but 

at lower levels than in response to TLR7 or TLR9 stimulation [113].   TLR11 and TLR12 

have also been found to be involved in IL-12 production in response to T. gondii 

infection.  TLR12 was found to be important in the recognition of this pathogen by 

plasmacytoid DC, whereas both TLR11 and 12 were necessary for recognition by DC and 

macrophages.  Signaling through TLR12 in pDC induced IL-12 and IFN production 

which in turn induced IFN production by NK cells [114].  Additionally, it has been 

shown that use of IFN and CD40 stimulation can increase TLR-stimulated IL-12 

production [115]. 

Once IL-12 is produced, it binds the IL-12 receptor, found mainly on activated T 

cells and NK cells, but on other cell types as well.  This receptor has two chains: IL-

12Rβ1 and IL-12Rβ2.  Signaling through the receptor activates the Jak-STAT signaling 

pathway, which results in STAT4-induced production of IFN [111]. 

 

Inflammatory cytokines and induction of pathogenic cells in T1D   

Several lines of evidence implicate inflammatory cytokines, especially IL-12 and 

IFNγ as mediators of T1D development. Genetic studies have found an association 

between the IL-12 gene and T1D.  One study found that certain alleles for the IL-12B 

gene, which encodes the p40 subunit of IL-12, have been associated with T1D risk.  

While various IL-12B polymorphisms don't necessarily correlate with susceptibility in all 

people, an allele encoding higher IL-12 production does correlate with increased risk for 
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disease in a subset of T1D patients [116].  Another study identified IDDM18, a genetic 

locus near the IL-12p40 gene as contributing to T1D resulting from a polymorphism in 

the 3' untranslated region of the gene.  Individuals with the susceptible allele have 

increased IL-12 production [117]. 

 Studies in NOD mice also provide support for an important role for IL-12 and 

IFNγ in disease development.  IL-12 administration to NOD mice accelerates disease and 

is associated with infiltration of T cells into the pancreatic islets and loss of islets.  More 

importantly, these T cells produce high levels of IFNγ upon stimulation [118].  In 

addition, NOD mice deficient in IL-12p40 have reduced incidence of disease as 

compared to control NOD mice and show almost complete lack of cellular infiltration in 

the pancreas.  Even after LPS stimulation, NOD mice deficient in IL-12 have 5% the 

IFNγ serum levels of their IL-12 replete counterparts [112]. 

 A variety of APC, including macrophages from NOD mice have been found to 

produce aberrant levels of IL-12.  Upon stimulation, macrophages from prediabetic NOD 

mice produce high levels of IL-12 when compared to diabetes resistant strains of mice 

[119]. One study found this may result from defective tyrosine phosphorylation of the c-

Rel protein, a member of the NFB family.  Rel proteins bind to sites in the IL-12p40 

promoter, influencing IL-12 production [120, 121]. IL-12 mRNA was also elevated in 

NOD mouse macrophages [120]. In another study, a site within the p40 promoter was 

found to bind Rel proteins upon stimulation with several molecules derived from IL-12-

inducing pathogens including LPS and LTA in macrophages [122]. Bone marrow derived 

and splenic-derived DC from NOD mice were also found to be more sensitive to 

particular stimuli such as IL-12, anti-CD40 Ab, TNFα, and LPS and secrete more IL-12 
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than DC from diabetes-resistant mice. [121]. In another study, transfecting BMDC from 

NOD mice with siRNA against NFB resulted in reduced NFB binding to the DNA and 

the suppression of IL-12 production upon LPS stimulation.  Administering cells treated 

with this siRNA to NOD mice at 6-7 weeks of age resulted in protection from diabetes. 

At 30 weeks of age, treated mice had markedly reduced islet infiltration as compared to 

control-treated mice [50].  Injecting NOD mice with IL-12 also accelerates disease [118].  

Contradictorily, intermittent intraperitoneal dosing of IL-12 can reduce diabetes in NOD 

mice [123].  These results likely stem from differences in dosage and timing. 

 

β-catenin and the Wnt signaling pathway 

The first Wnt protein, a group of secreted signaling glycoproteins, was identified 

in Drosophila and named Wingless [124].  Wingless signaling induces nuclear 

translocation of an intracellular protein named Armadillo or β-catenin in vertebrates 

[124]. The Wnt pathway is involved in development, tissue specification, and cellular 

migration [125].  Mutations in this pathway are associated with cancer, especially colon 

and breast cancer, due to this pathway’s role in cell survival and growth [125-127].  Wnt 

proteins bind to frizzled receptors. Various proteins bind to Wnt proteins and block their 

interactions with their receptors [128]. There are canonical Wnt pathways that result in 

activation of β-catenin signaling and non-canonical Wnt pathways that do not activate -

catenin signaling. There are a variety of Wnt proteins, receptors, and coreceptors which 

allow for a large diversity of responses [125]. 

-catenin, an important intracellular protein involved in the Wnt signaling 

pathway, has 12 ARM domains, each of which is comprised of a specific 42 amino acid 
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motif.  These ARM repeats form a long positively charged groove that allows -catenin 

to bind to other proteins and complexes including the cadherin complex at the cell 

membrane, the degradation complex in the cytoplasm, and transcription factors in the 

nucleus [8]. In resting cells, -catenin complexes with E-cadherin at the cell membrane 

and plays a role in maintaining cell junctions.  Excess -catenin not bound to E-cadherin 

forms complexes with several other proteins in the cytoplasm to form a multiprotein 

destruction complex. These other proteins include axin, APC, and GSK3.  In the 

absence of Wnt signaling, -catenin is phosphorylated by casein kinase I at Ser45 and 

subsequently phosphorylated by GSK3 on the serine/threonine residues 41, 33, and 37 

[129].  TCRp then ubiquitinates -catenin, targeting it for proteasomal degradation 

[130].  In contrast, upon Wnt signaling, Dishevelled recruits GBP/Frat-1 which displaces 

GSK3 and allows -catenin to escape degradation [131].  Upon stabilization, -catenin 

accumulates in the cytoplasm and can then translocate to the nucleus where it binds to 

TCF/LEF transcription factors and influence transcriptional activity in the cell [132].  

-catenin and Wnt signaling have been associated with metabolic regulation and 

Type II diabetes development.  Components of the Wnt pathway have been found to be 

involved in beta cell proliferation, cholesterol metabolism, insulin secretion, and 

production of GLP-1 (glucagon-like peptide-1).  Additionally, TCF4, a transcription 

factor that binds to β-catenin, has been identified as a susceptibility gene for Type II 

diabetes [133]. Interestingly, the human LRP5 gene, which codes for one of the Frizzled 

coreceptors LRP5, is associated, although not strongly, with Type I diabetes.  This gene is 

found within IDDM 4, a chromosome region associated with Type I diabetes and is 

involved in insulin-secretion [107].  
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Modulation of β-catenin at the cell membrane 

β-catenin plays an important role in cell adhesions due to its ability to complex 

with E-cadherin at the cell membrane.  Binding of-catenin to E-cadherin protects E-

cadherin from degradation [79].  Additionally, the interaction between these two proteins 

helps regulate -catenin signaling in the cell: one study found that overexpressing 

cadherins resulted in sequestration of the cytosolic pool of -catenin leading to reduced 

-catenin signaling [134].  Another study found that E-cadherin competed with LEF-1, 

one of -catenin’s transcriptional factor binding partners, for binding to -catenin.  In E-

cadherin -/- stem cells, -catenin accumulated and interacted with LEF-1 at higher levels.  

However, transfecting these cells with E-cadherin resulted in the restoration of -catenin 

to the cell membrane [135]. These studies suggest that E-cadherin recruits -catenin to 

the cell membrane and keeps it from accumulating in the nucleus where it can induce 

transcription.  

This important protein interaction is regulated through the action of several 

kinases that can phosphorylate either -catenin or E-cadherin at various residues.  These 

phosphorylations can result in increased or decreased strength of the interaction between 

the two proteins.  For example, phosphorylation of E-cadherin on Ser834, 836, and 842 

by CK2 and GSK3 enhances the affinity of E-cadherin for binding to -catenin [8].  

However, phosphorylation of E-cadherin at Ser846 by CK1 destabilizes the E-cadherin/-

catenin complex [136]. Phosphorylation of E-cadherin at Tyr831 and 860 by src kinase 

also inhibits the interaction between -catenin and E-cadherin [137]. 

Similarly, phosphorylation of -catenin on Tyr654 by Src kinase can reduce this 

interaction [8, 138]. In contrast, phosphorylation of -catenin by PKD1 at residues 
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Thr112 and 120 increases β-catenin’s interaction with E-cadherin.  One one hand, 

mutating these two residues resulted in increased nuclear translocation of -catenin and 

alteration of -catenin transcriptional activity.  On the other hand, overexpression of 

PKD1 resulted in decreased -catenin transcriptional activity and cell proliferation [113]. 

 

 

It has also been shown that the interactions between other catenins and cadherins 

can be modulated by phosphorylation.  Phosphorylation of -catenin at Tyr142 by the 

tyrosine kinases Fen or Fyn leads to disruption of the interaction between -catenin and 

-catenin, another protein important in forming cell-cell contacts [139]. This 

phosphorylation also increases binding with BCL9-2, a protein associated with nuclear 

transport of -catenin [140].  Additionally,
 

Abl kinase can phosphorylate -catenin on 

Tyr489, leading to decreased interaction with N-cadherin (a cadherin found in neurons), 

and increased nuclear translocation of -catenin [141].  

 

β-catenin modulation in the cytoplasm and nucleus 

 In addition to the -catenin found at the cell membrane, a second pool of -

catenin is found in the cytoplasm and can be modulated via degradation or stabilization.  

-catenin can form a destruction complex with several other proteins including axin, 

APC, CK1, and GSK3.  Within this complex, axin acts as a coordinator of 

phosphorylation events while APC promotes the movement of -catenin through the axin 

complex [8]. CK1 phosphorylates -catenin at Ser45 [120, 129] and primes the-catenin 

molecule for phosphorylation by GSK3 on Ser33 and 37 and Thr41 [142]. Once -

catenin is phosphorylated by GSK3, it is recognized by beta-TrCP, an Fbox protein 
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involved in ubiquitination [130].  Ubiquitinated -catenin is degraded by the proteasome 

as evidenced by one study which found that treatment of cells with proteasome inhibitors, 

including ALLN and lactacystin, resulted in accumulation of higher-molecular weight -

catenin in the cytoplasm.  These higher-molecular weight molecules indicated the 

presence of ubiquitinated -catenin.  Inhibition of the proteasome resulted in longer 

stability of -catenin in these cells.  Additionally, a site on -catenin composed of 

residues 33-45, is required for ubiquitination.  This site is the GSK3 consensus sequence 

[143].  It has also been found that PKC can phosphorylate -catenin on Ser33 and 37 

leading to its degradation [144]. 

In contrast, phosphorylation of other residues leads to -catenin’s stabilization.  

Activation of the PI3K pathway has been found to increase -catenin stability and 

nuclear translocation.  Upon signaling by a variety of factors including growth factors 

and insulin, PI3K becomes activated to produce 3-phosphoinositides which bind to the 

PH domain of Akt, also known as PKB.  Akt is then recruited to the cell membrane where 

it can be phosphorylated [145] at Thr308 by PDK1 or Ser473 by PDK2 [146-148], 

leading to its activation.  Akt can then phosphorylate other proteins, including GSK3 on 

Serine 21 and GSK3 on Serine 9 [149] or -catenin on Serine 552 [150].  These 

phosphorylations result in decreased activity of GSK3 [149] as well as direct stabilization 

of -catenin, respectively [150]. 

One study found that Akt phosphorylates -catenin on Ser552 which causes -

catenin to dissociate from the E-cadherin complex and allows it to accumulate in the 

cytoplasm and nucleus [150].  Additionally, mutation of PTEN (which in its non-mutated 

form inhibits PI3K activity) results in activation of Akt and leads to higher levels of -
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catenin phosphorylated at Ser552 and increased nuclear localization and transcriptional 

activity in intestinal stem cells [8].  It has also been found that prostaglandin E2 activates 

PI3K signaling which results in Akt activation.  Prostaglandin E2 treatment induced the 

dissociation of GSK3 from the destruction complex, which resulted in decreased 

phosporylation of -catenin by GSK3β and subsequent degradation. Upon PGE-2 

stimulation, -catenin can therefore accumulate in the cytoplasm, translocate to the 

nucleus, and induce transcription through an Akt-dependent mechanism  [151]. Another 

study found that LPS stimulation of human alveolar macrophages resulted in activation of 

PI3K.  Upon PI3K activation, Akt was phosphorylated at Ser473 and GSK3 was 

phosphorylated at Ser21 and 9.  This stimulation resulted in increased nuclear 

accumulation of -catenin and transcriptional activity [152]. 

PKA activity has also been implicated in the regulation of -catenin stability and 

signaling.  PKA is activated, not upon phosphorylation, but upon cAMP binding which 

results in the release of the catalytic subunits of PKA from the regulatory subunits.  

Although PKA is not activated by phosphorylation of particular residues, it has been 

found that PDK1 can phosphorylate the catalytic subunit at Thr197 resulting in optimal 

catalytic activity [153, 154].  PKA has also been shown to phosphorylate GSK3 at Ser 

21 and GSK3 at Ser9 which results in inactivation of these enzymes [155].   More 

importantly, PKA has been found to phosphorylate -catenin at Ser552 and Ser675.  

These phosphorylations resulted in increased transcriptional activity by -catenin [156]. 

Mutation of the Ser675 site reduced -catenin signaling induced by PKA activation, and 

phosphorylation of Ser675 increased the interaction between -catenin and CBP, a 

transcriptional coactivator, suggesting that PKA can activate directly -catenin via 
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phosphorylation at this residue.   

Another study found similar results for the role of Ser675 phosphorylation.  In a 

mouse model in which the gene for -catenin was modified so that it had a reduced 

affinity for E-cadherin, there was increased phosphorylation at Ser675 by PKA.  

Increased phosphorylation at Ser675 correlated with increased nuclear translocation and 

transcriptional activity of -catenin.  These data suggest that phosphorylation at Ser675 

leads to subsequent increased nuclear translocation and activity [157].  In addition to 

increasing -catenin’s transcriptional activity, it has been shown that PKA activity is also 

associated with increased nuclear and cytoplasmic accumulation of -catenin.  PKA 

phosphorylation of -catenin at Serine 675 was found to inhibit ubiquitination and 

degradation of -catenin without interfering with its ability to bind to the degradation 

complex [158].  Additionally, when APC
Min/+ 

mice were treated with a PKA antagonist, 

Rp-8-Br-cAMPs, intestinal -catenin expression, nuclear translocation, and expression of 

target genes were reduced.  The same antagonist blocked PGE2 induced phosphorylation 

of -catenin at Ser 552 and Ser 675 by PKA in a colon cancer  cell line  [159].  These 

data suggest that PKA plays a key role in stabilization and activity of -catenin.  The 

modulation of -catenin by PKA, PKB and GSK3 is summarized in the figure below. 
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Modulation of -catenin expression [159] 

 

Finally, JNK has been reported to affect -catenin stability.  Wnt signaling 

activation of Rac1 leads to activation of JNK which phosphorylates -catenin at residues 

Ser191 and Ser605.  These phosphorylations stabilized -catenin in the cytoplasm and 

result in increased nuclear translocation [160].   

 Overall, these data indicate that the stabilization or degradation of -catenin is 

regulated through a complex array of mechanisms, signaling pathways, and stimuli.   

 

β-catenin nuclear translocation and transcriptional activity 

The mechanism by which -catenin translocates to the nucleus is not well known.  

It has been shown that -catenin has no nuclear location signal (NLS) that would help it 

travel from the cytoplasm to the nucleus.  However, the protein has been found to bind to 

the nuclear envelope directly.  Additionally, translocation of -catenin is energy-
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dependent, suggesting that it can be imported into the nucleus independent of a signal 

sequence or other proteins [134]. 

Despite its suspected ability to translocate independently of a signal sequence, 

several studies have reported the involvement of other proteins in -catenin localization 

from cytoplasm to nucleus or nucleus to cytoplasm.  In one study, TCF4 and 

BCL9/Pygopus were found to recruit -catenin to the nucleus, while APC and axin were 

responsible for enrichment of -catenin in the cytoplasm.  However, all of these factors 

function to retain -catenin either in the cytoplasm or nucleus instead of acting as active 

transporters [161].  Overall, nuclear accumulation of -catenin may be the result of 

excess protein simply moving from the cytoplasm to the nucleus instead of a regulated 

transport mechanism. 

Sumoylation of -catenin is another potential mechanism regulating nuclear 

translocation since -catenin contains candidate sumoylation sites. However, no studies 

have been performed to examine -catenin sumoylation.  There are three mammalian 

SUMOs: SUMO-1, SUMO-2, SUMO-3.  n the other hand, one study has found that 

TCF4, which binds to -catenin and induces transcription along with β-catenin, is 

sumoylated.  Moreover, treatment with PIASγ, a SUMO E3 enzyme, increased -catenin 

transcriptional activity.  In contrast, Axam, a desumoylation enzyme, inhibited -catenin-

dependent TCF4 activation [107]. This study shows that sumoylation is an important 

post-translational modification in the β-catenin signaling pathway and can affect 

transcriptional activity. 

Just as -catenin can travel from cytoplasm to nucleus, it can also travel in the 

reverse direction.  Axin not only acts as a member of the degradation complex, but also 
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acts as a nuclear export shuttle for -catenin from the nucleus to the cytoplasm as 

evidence by fluorescence microscopy experiments in which Axin and -catenin 

translocated and colocalized to the cytoplasm [162]. Ranbp3, a protein found to interact 

with -catenin, was also identified as a potential nuclear exporter of -catenin. 

Overexpression of Ranbp3 led to increased accumulation of active -catenin in the 

cytoplasm versus nucleus and reduced -catenin transcriptional activity.  Furthermore, 

depletion of RanBP3 resulted in nuclear accumulation of -catenin [163]. 

Once -catenin has reached the nucleus, it binds with other transcription factors 

and coactivators to influence gene transcription.  -catenin binds to members of the TCF 

and LEF families of transcription factors.   Additionally, -catenin binds to the 

transcriptional coactivators CBP (creb-binding protein) [164, 165] and p300, two related 

acetyltransferases [165].  Phosphorylation of TCF and LEF factors enhances their binding 

affinity to -catenin, and therefore affects -catenin transcriptional activity [8]. -catenin 

signaling influences the transcription of a huge variety of genes.  For example, E-

cadherin is transcribed at lower levels upon -catenin signaling [166, 167].  Many other 

genes are upregulated in response to -catenin transcriptional activity: CTLA-4, [168], c-

Myc [153], cyclin D1 [169, 170], Tcf-1 [171], Lef-1 [172, 173], and Axin2 [174-176]. 

 Several inhibitors of -catenin transcriptional activity have been discovered.  

These inhibitors target the ability of -catenin to bind to transcription factors and 

coactivators.  One molecule, ICG-001, inhibits -catenin/TCF transcriptional activity by 

disrupting the interaction between -catenin and CBP, but not with p300.  It was found 

that ICG-001 can inhibit colon tumor growth [177] and reduce the transcription of gene 
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targets of -catenin/TCF including cyclin D1 and c-myc [178].  A second molecule, 

quercetin, was found to inhibit -catenin transcriptional activity when a constitutively 

active -catenin mutant was transfected into cell lines.  Quercetin inhibited the TCF 

complex from binding to its DNA binding-site and inhibited -catenin-TCF association 

as well as reduced -catenin nuclear translocation [179].  Another study found that 

quercetin treatment resulted in reduced β-catenin transcriptional activity and reduced 

colon cancer cell viability [180]. 

 

β-catenin and inflammation 

 There are conflicting reports regarding the role of -catenin in promoting or 

inhibiting inflammation.  On one hand, -catenin has been found to be necessary for the 

production of anti-inflammatory molecules in lamina propria dendritic cells. Lamina 

propria DCs from knockout mice had increased levels of mRNA encoding inflammatory 

cytokines such as IL-23a and IL-6 and lower levels of anti-inflammatory IL-10.    

Additionally, -catenin conditional knockout mice had lower frequencies of regulatory T 

cells and higher frequencies of Th1 and Th17 cells in the lamina propria [181].   

A few studies have shown that -catenin is involved in regulating inflammation 

induced by Salmonella in epithelial cells.  In one study, expression of constitutively 

active -catenin decreased NFB’s ability to bind DNA.  Activation of -catenin 

signaling also inhibited IL-8 production induced by Salmonella [178]. In another study, 

LiCl treatment, which inhibits GSK3 activity and leads to β-catenin accumulation, 

resulted in reduction of Salmonella-induced IL-8 production.  Moreover, cells expressing 
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constitutively active -catenin had reduced NFB activity upon Salmonella infection 

[182].       

 On the other hand, there are several reports that link -catenin expression with 

increased inflammatory cytokine production in various cell types.  In one study, treatment 

of mycobacterial products (PPD)-reactive PBMC with neutralizing antibodies against 

Wnt5a and its receptor, FZD5, resulted in reduced IL-12 production in response to PPD 

and reduced IFN production by T cells [183].  Since Wnt5a plays a role in -catenin 

signaling, these data indicate a role for -catenin in Th1 cytokine regulation. In another 

study, -catenin was found to regulate IFN production by interacting with LRRFIP1, a 

cytosolic nucleic acid sensor.  In macrophages, this sensor promoted -catenin activation 

by phosphorylating -catenin at the residue Ser552 upon infection with VSV, resulting in 

increased IFN production through the interaction of -catenin with IRF3 and subsequent 

binding to p300, leading to increased transcription of IFN[184]. Yet another study 

reported that there is an increased expression of -catenin in microglia under 

neuroinflammatory conditions, such as that found in Alzheimer's. Wnt3A stimulation of 

microglia results in the expression of proinflammatory genes and the production of IL-6, 

IL-12, and TNFα [185]. Interestingly, simultaneous activation with LPS led to 

downregulation of the inflammatory response [186], suggesting that -catenin can either 

upregulate or downregulate inflammation.  Similarly, the activation of -catenin in APC-

/- mice resulted in the induction of a pro- and anti-inflammatory environment in the liver.  

-catenin was found to directly induce expression of several genes including 

Ccl24, Cxcl2, Cxcl10, Cxcl11, IL15, IL18, and Ikkβ, and was associated with NFB 

activation.  However, -catenin also upregulated chemokine-like chemotactic factor 
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leukocyte cell–derived chemotaxin 2 (LECT2) gene, which was found to control the 

intensity of the inflammation as well as the degree of tumor aggressiveness [187].  

Overall, β-catenin’s role as an anti-inflammatory or pro-inflammatory agent 

appears to be dependent on multiple parameters, including cell type, stimulus, and 

experimental system being used.  It can therefore be assumed that β-catenin is able to 

modulate inflammation in either direction depending on the context/environment.  

However, it is unknown what role β-catenin plays in the inflammatory cytokine 

production that leads to Type I diabetes, which is the focus of this study. 
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MATERIALS AND METHODS 

 

Mice 

 C57BL/6Jg7, NOD/LtJ, and BDC2.5 NOD mice were purchased from the 

Jackson Laboratory.  All mice were maintained according to Institutional Animal Care 

and Use Committee (IACUC) guidelines.   

 

Generation of bone marrow-derived DC and human monocyte-derived DC  

 Bone marrow-derived dendritic cells (BMDC) were generated by culturing BM 

cells for 12 days with 5 ng/mL granulocyte-monocyte colony stimulating factor (GM-

CSF; PeproTech) in complete media containing RPMI (Mediatech) supplemented with 

1% 1M Hepes buffer (MP Biomedicals), 1% 100 mM sodium pyruvate, 1% 200 mM L-

glutamine, 1% 10,000 IU/mL penicillin and 10,000 ug/mL streptomycin, 1% non-

essential amino acids (Mediatech), 0.1% 50 mM 2-mercaptoethanol (Sigma-Aldrich), 

and 10% fetal calf serum (FCS) (Hyclone).  Monocytes were isolated from PBMC from 

healthy and type 1 diabetic individuals (Research Blood Components) using CD14 

microbeads and magnetic columns (Miltenyi) and were cultured for 8 days in the 

presence of GM-CSF and IL-4 (PeproTech) in complete medium as described above.  

 

Western Blot 

 Whole cell lysates were prepared using the lysis buffer and PBS+inhibitors 
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recipes from the Universal Magnetic Co-IP Kit (ActiveMotif) for whole cell lysates.  

Lysates were stored at -80ºC.  Lysates were prepared for electrophoresis with NuPage 

LDS Sample Buffer (Life Technologies) and NuPage Sample Reducing Agent (Life 

Technologies).  NuPage MES or MOPS SDS Running Buffer (Life Technologies) was 

prepared with NuPage Antioxidant (Life Technologies). Samples were electrophoresed

using the NuPAGE system using 4-12% Bis-Tris gels.  Protein was transferred onto 

PVDF membrane using NuPage Transfer Buffer (Life Technologies) with 10% methanol 

for 1.5-2 hours at 35V.  Membranes were blocked in 5% non-fat dry milk in Tris-buffered 

saline with Tween (TBST) prior to primary antibody incubation.  Membranes were 

incubated with primary antibody at a concentration of 1:1000 in 5% non-fat dry milk or 

5% BSA in TBST overnight.  Membranes were then incubated in anti-mouse or anti-

rabbit HRP-linked secondary antibody (Cell Signaling) diluted in 5% non-fat dry milk for 

1 hour before exposure. All washes were performed with TBST.  Chemiluminescent 

detection was performed using SuperSignal West Dura Chemiluminescent Substrate 

(Thermo) or SuperSignal West Pico Chemiluminescent Substrate (Thermo).  Membranes 

were exposed using a Kodak Image Station 40000MM (Eastman Kodak) or an 

ImageQuant LAS 4000 (GE Healthcare).  

 

Confocal Microscopy 

 Cells were fixed with 4% paraformaldehyde in PBS for 1 hour at room 

temperature, followed by permeabilization with 0.1% TritonX-100.  Cells were then 

labeled with anti--catenin primary antibody and AlexaFluor488 anti-rabbit secondary 

antibody followed by DRAQ5 nuclear label (Alexis Biochemicals).  Cells were 
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visualized using an Olympus FV1000 confocal microscope.     

 

Intracellular Labeling 

 Cells were incubated in Fc block, fixed in 4% paraformaldehyde at 37ºC, 

permeabilized in 90% methanol, and labeled with anti--catenin antibodies followed by 

AlexaFluor488 anti-rabbit secondary antibodies.  Cells were then acquired and analyzed 

using a FACScalibur (Becton Dickinson).   

 

Antibodies 

 Antibodies used for Western blot, including antibodies against -catenin, E-

cadherin, -actin, ubiquitin, phospho-Akt-308, phospho-Akt-473, pan Akt, phospho-

PKA-197, total PKAc, phospho-GSK3-S9, total GSK3, phospho--catenin-S552, 

phospho--catenin-S675, phospho-ERK1/2, total ERK1/2, phospho-p38, and total p-38 

were all purchased from Cell Signaling.  The anti--catenin antibodies used for confocal 

and flow cytometry were also purchased from Cell Signaling.  The AlexaFluor488 anti-

rabbit antibody was purchased from Life Technologies.   

 

Isolation of primary DC from organs 

 Spleens and Peyer’s patches were harvested, cut into small pieces, and then 

incubated in collagenase VIII (Sigma) in Hank’s Buffered Saline Solution (HBSS) for 1 

hour at 37º C.  Tissue was then homogenized by syringe, filtered, and red blood cells in 

the spleen were lysed using Tris ammonium chloride.  Mesenteric lymph nodes were 

harvested, pushed through a mesh filter with the end of a syringe plunger, and collected.  
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Dendritic cells were then purified by labeling with CD11c magnetic beads and then 

passed through a magnetic column.  Cells were then surface-labeled with CD11c-APC 

antibodies (Becton Dickinson) and labeled intracellulary for -catenin.     

 

Transfection (siRNA and plasmids) 

 Mouse BMDC were transfected with 5 μg N-TARGET PLUS siRNA catenin beta 

1.88kDa (cadherin associated protein) (DHARMACON RNA Technologies) and human 

cells were transfected with 2 μg of this siRNA.  For plasmid studies, 200 ng of pcDNA3-

S33Y -catenin (Addgene plasmid 19286) was used.  Control cells were transfected with 

siGLO RISC-Free siRNA or pcDNA3 wildtype -catenin plasmids (Addgene plasmid 

16828).  Cells were transfected using the AMAXA nucleofector system.  Experiments 

were performed on cells 72-96 hours following transfection with siRNA or 48-96 hours 

following plasmid transfection.   

 

-catenin Inhibitor Treatments 

 150,000 BMDC or human DC were pre-treated with 75 μM quercetin (Acros) or 

12.5 μM ICG-001 (Dr. Michael Kahn) for 8 or 12 hours or 50 μM Wnt3 agonist for 30 

minutes (Calbiochem) followed by stimulation with 1 μg/mL LPS for 24 hours.  

Supernatants were collected after the 24-hour LPS treatment and cells were washed three 

times before coculture as described below.    

 

Coculture experiments 

 BMDC or human DC treated as described in the “Transfection” and “-catenin 



 36 

Inhibitor Treatments” sections were cocultured with mouse or human T cells.  Mouse T 

cells were prepared from spleen or lymph nodes from BDC2.5 NOD mice.  Both types of 

cells were magnetically labeled with anti-CD4 magnetic beads and then passed through a 

CD4 T cell column (R&D).  T cells were added to the cell culture along with 100 ng/mL 

pancreatic peptide for the mouse experiments or 0.5 ug/mL human anti-CD3 antibody for 

the human experiments.  Supernatants were collected 48 hours later.    

  

ELISA 

 Supernatants were collected and stored at -20ºC.  Kits for IL-12 and IFN were 

purchased from Biolegend and used according to the manufacturer’s instructions. 

 

Delivery of -catenin inhibitors in vivo 

 For oral gavage delivery, a 25 mg/kg dose was give to each mouse three times a 

week.  For each mouse, 0.5 mg quercetin dihydrate (LKT labs) was dissolved in 10 uL 

ethanol, filter sterilized and diluted 1:10 in sterile corn oil.  For the vehicle, sterile ethanol 

was added to sterile corn oil at a 1:10 dilution.  100 uL of these solutions were given to 

each mouse.     

 For intraperitoneal delivery, a 5 mg/kg dose was given to each mouse twice a 

week.  For each mouse, 5 mg quercetin was diluted in 10 uL DMSO, filter sterilized, and 

then diluted 1:1000 in water.  For the vehicle, DMSO was diluted in water at a ratio of 

1:1000.  200 uL of these solutions were injected into each mouse.     
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Adoptive transfer of transfected DC 

For the adoptive transfer experiments, 0.5 million BMDC/well were transfected 

with 1 g of -catenin or control siRNA using the Amaxa system. One million treated or 

control BMDC were then transferred intravenously to female 3 week-old NOD mice. To 

determine diabetes incidence, urine glucose was tested beginning at 10 weeks of age.  

Upon a positive test for urine glucose, blood glucose was taken and recorded.  Mice were 

considered to have diabetes after two consecutive blood glucose readings >300 mg/dL.  

 

Urine and Blood Glucose Testing of NOD mice 

 Mice were tested once a week beginning at 10 weeks of age.  Urine glucose was 

first tested using Diastix (Bayer).  Once the Diastix indicated that glucose was present in 

the urine, blood glucose testing began.  Blood glucose testing was performed on blood 

from the tail using a human blood glucose monitor system from Walgreens.  Blood 

glucose was recorded and mice were considered to have diabetes after two consecutive 

readings of > 600 mg/dL.    

 

Real time RT-PCR 

 RNA was isolated from BMDC using an RNeasy Mini Kit (Qiagen).  cDNA was 

then prepared using the Quantitect Reverse Transcription Kit (Qiagen) and Quantitect 

SYBR Green Kit (Qiagen).  PCR was performed using a real time PCR machine (Applied 

Biosystems).   
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Coimmunoprecipitation 

 Coimmunoprecipitation experiments were performed using the Universal 

Magnetic Co-IP Kit (ActiveMotif) for whole cell lysates.  Pulldown antibodies 

recognizing -catenin and E-cadherin were purchased from Cell Signaling. 

 

Proteasomal Degradation Experiments 

 BMDC were pre-treated with a 50 μM dose of MG-132 (Tocris) for 12 hours.  

The cells were washed and a 2 ug/mL dose of cycloheximide or DMSO vehicle was 

added for 1, 2, 6, or 10 hours.  Cells were washed and lysates prepared using the lysis 

buffer from the Universal CoIP kit from ActiveMotif. 

 

Akt/PKA Pathway Inhibitor and Activator Treatments 

 BMDC were treated with a 40 μM dose of the PKA inhibitor H89 (EMD 

Millipore or LC Labs) or a 25 μM dose of the PI3K inhibitor LY294002 (Tocris) for 4 

hours.  Cells were then washed and lysed using the lysis buffer from the Universal CoIP 

kit from ActiveMotif.     

 

NFKB Activation Assay 

Cells were treated with a 75 μM dose of quercetin (Acros) or a 12.5 μM dose of 

ICG-001 (provided by Michael Kahn).  Nuclear lysates were prepared using the Nuclear 

Extract Kit (Active Motif).  Nuclear lysates were then analyzed using the TransAm NFkB 

Family Assay Kit (Active Motif).   
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Statistical Analysis 

 All data were analyzed using the student’s t test.  Statistical significance was 

achieved when p<0.05. 
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RESULTS 

 

GOAL 1: CHARACTERIZING β-CATENIN EXRESSION AND ITS ROLE IN 

PRO-INFLAMMATORY CYTOKINE PRODUCTION 

Our lab has previously observed a novel defect in -catenin expression in BMDC 

from adult NOD mice as compared to BMDC from diabetic-resistant adult B6.g7 

mice.  Therefore, we aimed to 1) characterize the expression of β-catenin in BMDC from 

both NOD mice and human diabetic patients, in various NOD congenic strains, and in 

primary DC from different organs and to 2) explore the correlation between -catenin 

expression and pro-inflammatory cytokine production.  To accomplish these goals, we 

examined -catenin expression at various time points in disease progression, looking at 

whole cell, nuclear, and cytoplasmic fractions by Western blot, FACS analysis, and 

confocal microscopy.  We also examined -catenin expression in Idd4 and Idd3/5 mice 

through Western blot and in primary DC through FACS analysis.  We used anti--catenin 

siRNA treatment and -catenin inhibitors to inhibit expression and activity of -catenin 

and measured resulting pro-inflammatory cytokine production and IFNγ induction in T 

cells.  Finally, we used -catenin plasmids and Wnt agonist treatment to induce -catenin 

expression and activity in BMDC from non-diabetic mice and measured cytokine 

production.   
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In which cellular compartments is -catenin overexpressed in NOD BMDC at 

different stages of disease? 

Our lab has previously observed a defect in -catenin expression in BMDC from adult 

NOD mice as compared to BMDC from diabetic-resistant adult B6.g7 mice.  Diabetes 

follows a predictable pattern of progression in NOD mice.  At 3 weeks of age, peri-

insulitis, in which infiltrating cells surround the islets, is observed.  By 6 weeks of age, 

insulitis begins to develop.  Beginning around 10 weeks of age, mice test positive for 

high blood glucose, which reflects the destruction of their -islet cells, and are considered 

to be diabetic.  In order to examine the expression of -catenin at different time points 

during disease progression, we performed Western blot, FACS analysis, and confocal 

microscopy using bone marrow-derived DC (BMDC) from 3 weeks, 6 weeks, and 10+ 

weeks old mice.   

 Upon performing Western blot, we found that NOD BMDC express higher levels 

of -catenin than B6.g7 BMDC at all disease stages examined (Figure 1A-F).  We 

confirmed our findings through FACS analysis and found a larger shift in -catenin 

positive cells in the NOD BMDC compared to B6.g7 BMDC when compared to 

unlabeled cells at all ages examined (Figure 1G-I).   

To determine whether -catenin translocates to the nucleus where it can influence 

gene transcription, we examined -catenin levels in the nuclei of NOD and B6.g7 

BMDC.  We found that NOD BMDC express higher levels of -catenin in the nucleus at 

all disease stages (Figure 1 J-O), suggesting that high levels of -catenin may influence 

the transcription of pathogenic proteins, such as IL-12, in type I diabetes.   

Next, we performed confocal microscopy in order to examine the localization of 
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-catenin in the cytoplasm and nucleus of NOD and B6.g7 BMDC.  We found 

statistically significant higher levels of -catenin in both the nucleus and cytoplasm of 

NOD BMDC at both 3 and 6 weeks of age (Figure 1 P-U). Overall these data indicate 

that -catenin is overexpressed in both the cytoplasm and nucleus of NOD BMDC during 

the peri-insulitis, insulitis, and full-blown disease stages of diabetes development.  This 

suggests that -catenin is overexpressed even before disease onset and may be useful as a 

prognostic marker.  Additionally, the presence of higher levels of -catenin in the nuclei 

of NOD BMDC indicates a possible role for this protein in transcription of other 

important disease-associated genes. 

 

Is -catenin overexpressed in primary dendritic cells from NOD mice? 

 Although we have found higher expression of -catenin in NOD BMDC, these 

cells are cultured from bone marrow for a considerable length of time before use and 

therefore are not necessarily representative of dendritic cells in vivo.  To address this 

issue, we examined -catenin levels in DC from the spleen, mesenteric lymph node, and 

Peyer’s patches from both NOD and B6.g7 mice using flow cytometry.  DC from each 

organ were isolated using magnetic columns to separate the CD11c positive cells.  Cells 

were then labeled with CD11c-APC surface antibodies followed by intracellular labeling 

with anti--catenin antibody and AlexaFluor488 antibody, and -catenin expression was 

examined through FACS analysis.  We found that DC from each organ expressed -

catenin, although at very low level, but there was very little difference in expression 

between NOD and B6.g7 cells for any of the three organs examined (Figure 2 A-C).   

It is possible that we could not see any difference because the expression of -
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catenin in DC from the chosen sites is very low.  Other organs that are known for 

containing -catenin-expressing DC such as lamina propria [181] should be tested in the 

future and may allow us to distinguish the level of -catenin expression between NOD 

and B6g7 DC.   

 

Is -catenin overexpressed differentially in NOD and B6 congenic strains expressing 

protective or disease-inducing loci from B10 or NOD mice, respectively? 

 Various sections of the NOD genome have been identified as conferring 

susceptibility to diabetes.  In our lab, we maintain B6Idd4 and NODIdd3/5 congenic 

strains.  Idd4 is a region identified on chromosome 11 which contains the candidate 

diabetic-inducing genes platelet activating factor acetylhydrolase Ib1, nitric oxide 

synthase-2, and CC chemokine genes [188].  The Idd4 mouse is a B6 mouse containing 

the inserted Idd4 locus from NOD mouse but is resistant to diabetes development.  Idd3 

is found on chromosome 3 and contains the candidate gene for IL-2 [74], while Idd5 is 

found on chromosome 1 and contains the candidate genes CTLA-4 and ICOS [189].  The 

Idd3/5 mouse is an NOD mouse with the Idd3 and Idd5 regions from a B10 mouse 

inserted into its genome which renders it diabetes-resistant. Although β-catenin is found 

on the mouse chromosome 9, β-catenin may interact with other genes within these loci to 

influence diabetes development.  Therefore, we determined β-catenin expression in these 

two strains of mice by Western blot (Figure3A-B).  We found that BMDC from Idd3/5 

overexpress β-catenin at levels similar to the NOD mouse, whereas BMDC from Idd4 

mice have low levels as seen in the B6.g7 BMDC.  Therefore, the overexpression of β-

catenin is not linked to these three loci. As shown previously for other molecules 
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associated with disease development, e.g., Iag7, a defect in β-catenin expression is not 

sufficient to initiate diabetes in diabetes-resistant Idd3/5 mice.  Instead β-catenin may be 

one of several genes that contribute to diabetes risk.  

 

Is there a correlation between -catenin levels in DC and pro-inflammatory cytokine 

production in mice? 

 Inflammatory cytokines, especially IL-12 and IFN, have been shown to play 

important roles in diabetes pathogenesis [112].  Additionally, several recent studies have 

linked -catenin with inflammatory cytokine production [183-185, 187].  In light of these 

studies, we investigated a role for -catenin overexpression in the pathogenic production 

of IL-12 and IFN in NOD mice.   

 First, we explored the abilities of two -catenin inhibitors, quercetin and ICG-

001, to reduce pro-inflammatory cytokine production.  Quercetin reduces the ability of 

the -catenin/TCF complex to bind to its target DNA sequence and also reduces -catenin 

nuclear translocation [179].  ICG-001, on the other hand, reduces the ability of-catenin 

to bind to CBP [177].  Upon pre-treatment with either inhibitor, followed by LPS 

stimulation of the NOD BMDC, we found that both inhibitors significantly reduced IL-12 

production by the BMDC (Figure 4A and C).  Next we cocultured the treated BMDC 

with T cells from BDC2.5 mice. These mice contain T cells with a specific T cell receptor 

that recognizes a pancreatic peptide [190].  Upon culture with antigen presenting cells 

(the BMDC) and pancreatic peptide, these T cells differentiate into IFN-producing cells.  

We found that treatment of the BMDC with either inhibitor also reduced IFN production 

by these T cells (Figure 4B and D).   
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Next, we knocked down -catenin expression by transfecting cells with anti--

catenin siRNA and effectively reduced expression of -catenin (Figure 4E).  Following 

siRNA treatment, cells were stimulated with or without 1 μg/mL LPS and the 

supernatants tested for IL-12.  Knockdown of -catenin significantly lowered IL-12 

production (Figure 4F).  We finally incubated the treated cells with T cells from BDC2.5 

mice.  We found that BDC2.5 T cells incubated with anti--catenin siRNA-treated 

BMDC produced significantly less IFN than T cells incubated with control siRNA-

treated BMDC (Figure 4G).  These results suggest that -catenin overexpression in NOD 

BMDC does in fact play a role in the pathogenic production of inflammatory cytokines 

that contribute to disease in these mice.   

 In a second set of experiments, we examined the ability of inducing 

overexpression of -catenin in B6.g7 BMDC to increase pro-inflammatory cytokine 

production.  First, we treated the BMDC from B6.g7 mice with a Wnt agonist, which 

effectively increased the levels of nuclear -catenin as compared to the vehicle control 

treatment (Figure 5A).  We found that this treatment also resulted in increased IL-12 

production by the B6.g7 BMDC (Figure 5B) as well as increased IFN production by the 

BDC2.5 T cells cocultured with the treated BMDC (Figure 5C).   

 Additionally, we transfected B6.g7 BMDC with either a -catenin plasmid 

encoding a degradation-resistant form of -catenin or with a control plasmid.  

Transfection with the -catenin plasmid effectively increased the level of nuclear -

catenin in these cells (Figure 5D).  Using the same experimental system described above, 

we found that treatment with this plasmid resulted in increased IL-12 production by the 

B6.g7 BMDC (Figure 5E) as well as increased IFN production by the BDC2.5 T cells 
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cocultured with these treated BMDC (Figure 5F).  These data suggest that overexpressing 

-catenin leads to increased IL-12 production.  Overall, it appears that -catenin clearly 

has a role in the regulation of pro-inflammatory cytokine production which may 

contribute to Type I diabetes pathogenesis in NOD mice.   

 

Is there a correlation between -catenin levels in DC and pro-inflammatory cytokine 

production in humans? 

 Because we had found a correlation between overexpression of -catenin in NOD 

BMDC and their ability to induce potential pathogenic cells, we wondered whether a 

similar trend would also observed in cells from type 1 diabetic patients.  First, we 

established that mo-DC from T1D patients also express high levels of -catenin as 

compared to cells from healthy controls through Western blot (Figure 6A). We confirmed 

these results by FACS (Figure 6B) and confocal microscopy (Figure 6C). We then 

examined the effect of knocking down -catenin expression and inhibiting -catenin 

activity in these cells.  First, we stimulated mo-DC from healthy and T1D donors with 

LPS for 24 hours and measured levels of IL-12 production.  Mo-DC from T1D patients 

produced significantly higher levels of IL-12 as compared to cells from healthy donors 

(Figure 6D).  Next, we treated mo-DC with quercetin, the -catenin inhibitor, and 

measured IL-12 production.  As in mice, this treatment led to a reduction in IL-12 

production (Figure 6E).  Finally, we examined the effect of knocking down -catenin 

expression with siRNA on pro-inflammatory cytokine expression.  Similar to the results 

found using mouse BMDC, we found that knocking down expression of -catenin led to 

reduced IL-12 production by the moDC upon LPS stimulation for 24 hours (Figure 6F).  
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Following LPS treatment, we added human T cells to the DC for 48 hours and measured 

IFN production.  We found that knockdown of -catenin in mo-DC also reduces IFN 

production by the T cells (Figure 6G).  These data therefore confirm in human cells the 

observations made using NOD BMDC. 
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Figure 1. NOD BMDC express higher levels of -catenin than B6.g7 BMDC in the 

cytoplasm and nucleus and whole cell.  Whole cell lysates were prepared from BMDC 

from 3-week old (A), 6-week old (C), or adult (E) NOD or B6.g7 mice and Western blot 

performed using anti--catenin and anti--actin antibodies.  The band intensities were 

quantified and expressed as fold change for 3-week old mice (B), 6-week old mice (D), 

and adult mice (F).  BMDC from 3-week old mice (G), 6-week old mice (H), and adult 

mice (I) were labeled with anti--catenin primary antibody and AlexaFluor488 secondary 

antibody and analyzed by FACS.  Nuclear lysates were prepared from 3-week old (J), 6-

week old (L), or adult (N) NOD or B6.g7 BMDC and Western blot performed using anti-

-catenin and anti-LSD1 or anti-histone antibodies.  The band intensities were quantified 

and expressed as fold change for 3-week old (K), 6-week old mice (M), and adult mice 

(O).  BMDC from 3-week old (P), 6-week old (R), or adult (T) were labeled with anti--

catenin primary antibodies and AlexaFluor488 secondary antibody and DRAQ5 nuclear 

label and visualized by confocal microscopy.  Relative intensities of -catenin are shown 

for the nucleus and cytoplasm of BMDC from adult mice (Q), 6-week old mice (S), and 

3-week old mice (U).  * indicates p<0.05; *** indicates p<0.0001. Data are 

representative of two or more independent experiments. 
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Figure 2: Expression of -catenin by primary DC from NOD and B6.g7 lymphoid 

organs.  DC were isolated from various organs, treated with Fc block, surface labeled 

using anti-CD11c-APC conjugated antibodies and labeled intracellularly using anti--

catenin primary antibodies or IgG isotype control antibodies and AlexaFluor488 

secondary antibodies.  Cells were analyzed through FACS. The histograms show the -

catenin-labeled cells in black and the isotype control-labeled cells in gray for each organ 

in B6.g7 (A-C) and NOD (D-F).  The overlay of --catenin labeled NOD cells in black 

over --catenin labeled B6.g7 cells in gray is shown for the MLN (G), Peyer’s patches 

(H), and spleen (I).    

 

 

 

 

 

 

 

 

 

 

 

Mesenteric 

lymph node

Peyer’s Patches Spleen

Overlay

β-catenin

I

β-catenin

H

β-catenin

G

NOD

β-catenin

D

β-catenin

E F

B6.g7

β-catenin

A

β-catenin

B

β-catenin

C

Mesenteric 

lymph node

Peyer’s Patches SpleenMesenteric 

lymph node

Peyer’s Patches Spleen

Overlay

β-catenin

I

β-catenin

H

β-catenin

G

NOD

β-catenin

D

β-catenin

E F

B6.g7

β-catenin

A

β-catenin

B

β-catenin

C

Overlay

β-catenin

I

β-catenin

H

β-catenin

G

Overlay

β-catenin

I

β-cateninβ-cateninβ-catenin

I

β-catenin

H

β-cateninβ-cateninβ-catenin

H

β-catenin

G

β-cateninβ-cateninβ-catenin

G

NOD

β-catenin

D

β-catenin

E F

NOD

β-catenin

D

β-cateninβ-cateninβ-catenin

D

β-catenin

E

β-cateninβ-cateninβ-catenin

E FF

B6.g7

β-catenin

A

β-catenin

B

β-catenin

C

B6.g7

β-catenin

A

β-cateninβ-cateninβ-catenin

A

β-catenin

B

β-cateninβ-cateninβ-catenin

B

β-catenin

C

β-cateninβ-cateninβ-catenin

C



 51 

 

 

 

 

 

 

 

 

 

Figure 3. Idd3/5 mice, but not Idd4 mice overexpress -catenin. BMDC from B6.g7, 

Idd3/5, Idd4, and NOD mice were lysed, and Western blot was performed using anti--

catenin and anti--actin antibodies (A).  The fold change for -catenin expression is 

shown (B). Data are representative of two independent experiments.  
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Figure 4. Inhibiting the activity of or knocking down expression of -catenin in NOD 

BMDC leads to reduced IL-12 production and IFN induction of T cells.  NOD 

BMDC were pretreated with 75 μM quercetin or vehicle (A-B) or 12.5 μM ICG-001 or 

vehicle (C-D) for 12 hours, washed, and stimulated with 1 μg/mL LPS for 24 hours.  The 

supernatants were collected and the presence of IL-12 was detected by ELISA (A, C).  

Quercetin-treated BMDC (B) or ICG-001-treated BMDC (D) were then washed and 

cocultured with 1x10
5 

T cells from BDC2.5 mice for 48 hours along with 100 ng/mL of 

pancreatic peptide.  Supernatants were collected and tested for the presence of IFN by 

ELISA (B, D). NOD BMDC were transfected with 5 ng of -catenin siRNA or control 

siRNA and 96 hours later lysed.  Western blot was performed with anti--catenin and -

actin antibodies and the bands quantified by densitometry analysis (E).  Transfected cells 

were treated with or without 1 μg/mL of LPS for 24 hours. Supernatants were collected 

and tested for the presence of IL-12 through ELISA (F).  Transfected and LPS-treated 

cells were cultured with BDC2.5 T cells and 100 ng/mL pancreatic peptide for 48 hours.  

Supernatants were collected and tested for the presence of IFN through ELISA (G). 

*indicates p<0.005. 
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Figure 5: Increasing the activity or expression of -catenin in B6.g7 BMDC leads to 

increased IL-12 production and IFN induction of T cells.  B6.g7 BMDC were treated 

with 50 μM Wnt agonist.  Nuclear lysis was performed followed by Western blot using 

anti--catenin and anti-histone antibodies. The band intensities were quantified and 

expressed as relative intensities (A).  Following treatment, cells were washed and treated 

with 1 μg/mL LPS for 24 hours.  Supernatants were collected and tested for the presence 

of IL-12 by ELISA (B).  BMDC were then washed and cocultured with 1x10
5 

T cells 

from BDC2.5 mice for 48 hours along with 100 ng/mL of pancreatic peptide.  

Supernatants were collected and tested for the presence of IFN by ELISA (C). 

B6.g7 BMDC were transfected with -catenin or control plasmid, lysed, and subjected to 

Western blot using anti--catenin and anti--actin antibodies. The band intensities were 

quantified and expressed as relative intensities (D).  Following transfection, cells were 

treated with 1 μg/mL LPS for 24 hours.  Supernatants were collected and tested for the 

presence of IL-12 by ELISA (E).  BMDC were then washed and cocultured with 1x10
5 

T 

cells from BDC2.5 mice for 48 hours along with 100 ng/mL of pancreatic peptide.  

Supernatants were collected and tested for the presence of IFN by ELISA (F). * 

indicates p<0.005. 
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Figure 6: Human monocyte-derived DC express higher levels of -catenin than 

moDC from non-diabetic donors, and inhibiting the activity of -catenin in human 

monocyte-derived DC leads to reduced pro-inflammatory cytokine production.  
Western blot was performed on whole cell lysates from DC from 10 different patients and 

healthy donors using anti--catenin and anti--actin antibodies.  The densities of the 

bands were quantified and expressed as a ratio for each sample (A).  moDC from diabetic 

human patients were labeled with isotype control or anti-β-catenin antibody followed by 

secondary antibodies and analyzed by FACS (B) or labeled with nuclear dye and 

analyzed by confocal microscopy (C). moDC from healthy donors and diabetic patients 

were stimulated with or without LPS for 24 hours and the supernatants collected and 

tested for the presence of IL-12 by ELISA (D).  moDC from diabetic patients were pre-

treated with quercetin for 12 hours followed by LPS treatment for 24 hours.  Supernatants 

were collected and tested for the presence of IL-12 by ELISA (E).  moDC from diabetic 

patients were treated with anti--catenin or control siRNA, followed by stimulation with 

or without LPS for 24 hours.  Supernatants were collected and tested for the presence of 

IL-12 by ELISA (F).  siRNA-treated cells were then cocultured with human T cells for 48 

hours.  Supernatants were collected and tested for the presence of IFN by ELISA (G).  * 

indicates p=0.05; ** indicates p<0.0387; *** indicates p<0.005. 
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GOAL 2: PREVENTING AND/OR TREATING TYPE I DIABETES BY 

REDUCING THE INFLAMMATORY ENVIRONMENT IN VIVO 

 Because pathogenic cytokine production by NOD BMDC can be reduced with β-

catenin inhibitors or siRNA, as outlined in Goal 1, we sought to determine the ability of 

1) the β-catenin inhibitor, quercetin, to reduce disease incidence, prolong survival, and 

reduce inflammation in NOD mice and 2) β-catenin siRNA-treated BMDC transfer to 

reduce disease incidence and prolong survival.  Therefore, we performed a series of in 

vivo experiments in which quercetin was delivered for various amounts of time and 

through different routes. 

 

Can direct delivery of -catenin inhibitors reduce inflammation and inhibit diabetes 

development and mortality in vivo? 

In light of our in vitro data showing that β-catenin is overexpressed in NOD 

BMDC, we sought to examine the effect of inhibiting β-catenin on disease incidence, 

survival, and pro-inflammatory cytokine production in vivo. First, we examined the effect 

of a -catenin inhibitor, quercetin, on disease incidence and survival in NOD mice.  

Although quercetin inhibits several molecules, it has been found to inhibit -catenin 

nuclear translocation as well as -catenin transcriptional activity [179, 180].  Therefore, 

we delivered quercetin or vehicle both orally and intraperitoneally to NOD mice.  In the 

first of two experiments, a 25 mg/kg dose of quercetin or vehicle was 

delivered three times a week orally beginning at 3 weeks of age (Figure 7A and B).  
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Treatment continued until sacrifice, which occurred after two high blood glucose 

readings (>300 mg/dL).  In the second experiment, mice were allowed to die naturally 

(Figure 7C and D).  For both experiments, it appears that incidence may be slightly 

increased and survival slightly decreased with quercetin treatment as compared to vehicle 

treatment in each experiment, suggesting that oral delivery of quercetin is ineffective at 

preventing disease.    

Because it appears that oral quercetin treatment had little effect on disease 

incidence or survival in NOD mice, next we designed an experiment in which a 5 mg/kg 

dose of quercetin or vehicle was injected intraperitoneally two times a week for 18 weeks 

based on a previous study showing that this dosage was effective at reducing 

proliferation in a breast cancer model when used in combination with other polyphenols 

[191].  Mice were allowed to die naturally.  In the first of two experiments, treatment 

significantly delayed disease incidence and slightly increased survival (Figure 8A and B).  

Additionally, it appeared that incidence in the quercetin-treated group increased sharply 

upon discontinuation of the treatment at 21 weeks of age. However, in the second 

experiment, quercetin treatment had no effect on incidence or survival (Figure 8C and D).  

We also performed another experiment in which quercetin treatment continued for the life 

of each mouse (Figure 9A and B).  However, lifetime treatment was not more effective 

than 18 week treatment in reducing incidence or increasing survival rates.  There is a 

possibility that the discrepancy between the data from the different experiments is due to 

the potential inactivation of quercetin between the first intraperitoneal experiment and the 

two other experiments which were started 5 months later. To ease the solubilization of 

quercetin, some quantity was kept at 30ºC possibly for the entire period between the 
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experiments.  However, storage at this temperature is not recommended for more than 

afew weeks.  We are currently performing experiments in which fresh quercetin is used to 

prepare the treatments over the course of the experiment. 

We also examined if intraperitoneal injection of quercetin into NOD mice had an 

impact on the in vivo production of IFN.  Therefore, we treated a separate group of NOD 

mice with quercetin intraperitoneally twice a week starting at 3 weeks of age and 

harvested the spleens of mice at 14 weeks of age, after approximately 10 weeks of 

treatment.  Two quercetin-treated and two vehicle-treated mice were used, one of which 

had tested positive for high blood glucose and one of which was healthy in each group.  

Spleen cells were stimulated with anti-CD3 or left untreated and supernatants collected 

and analyzed for IFNγ production through ELISA.  After both 72 and 96 hours of 

stimulation, the spleen cells from the quercetin-treated mice produced much less IFNγ 

than spleen cells from vehicle-treated mice regardless of disease state (Figure 8E and F). 

This suggests that quercetin treatment does reduce the pathogenic inflammatory 

environment that contributes to Type I diabetes development in NOD mice.  However, 

systemic reduction of IFNγ may not be a good indication of disease status, suggesting 

that pancreatic lymph nodes and pancreas may be better organs to test. Other disease 

mechanisms are most likely still at play.   

 

Can -catenin siRNA treated-BMDC transfer reduce disease incidence and 

mortality in vivo? 

We have found that downregulating -catenin expression with siRNA treatment is 

effective in reducing IL-12 production in BMDC and subsequent IFN induction by T 
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cells co-cultured with the siRNA-treated BMDC in vitro.  Therefore, we hypothesized 

that adoptive transfer of DC treated with anti--catenin siRNA would be effective in 

reducing disease incidence and/or increasing survival by reducing the pro-inflammatory 

environment that contributes to Type I diabetes.    

We found that a single transfer of BMDC in which -catenin expression had been 

knocked down resulted in delayed disease incidence and increased survival as compared 

to transfer of control siRNA-treated BMDC (Figure 10A and B).  This suggests that even 

though the BMDC do not persist in the mouse, this reduction in -catenin may be enough 

to reduce the inflammatory environment contributing to Type I diabetes and impact 

disease and/or induce long-term tolerance.   
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Figure 7. Oral gavage in vivo delivery of quercetin does not delay disease incidence 

or increase survival in NOD mice.  In A) and B) female NOD mice were orally gavaged 

with a 25 mg/kg dose of quercetin in oil or vehicle three times a week beginning at three 

weeks of age and continuing throughout the lifespan of each mouse.  Urine glucose was 

tested beginning at 10 weeks of age.  Mice were considered to have diabetes after two 

consecutive high (>300 mg/dL) blood glucose readings and were sacrificed.  Incidence 

A) and survival B) are shown.   In C) and D), mice were orally treated with quercetin or 

vehicle beginning at three weeks of age and continuing for 18 consecutive weeks.  Mice 

were allowed to die naturally.  Testing was performed as in A) and B).  Incidence C) and 

survival D) are shown. n=5 for both experiments. 
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Figure 8. Intraperitoneal injection of quercetin may delay disease incidence and 

increase survival by reducing the pathogenic inflammatory environment that 

contributes to Type I diabetes.  Female NOD mice (n=5) were injected intraperitoneally 

with a 5 mg/kg dose of quercetin or vehicle two times a week beginning at 3 weeks of 

age and continuing for 18 consecutive weeks. Urine glucose was tested beginning at 10 

weeks of age.  Mice were considered to have diabetes after two consecutive high (>300 

mg/dL) blood glucose readings.  For the first experiment, incidence is shown in A) and 

survival in B).  For the second experiment, incidence is shown in C) and survival in D).  

Spleens from a third group of treated mice were harvested after 10 weeks of treatment 

and cells were stimulated with a 0.5 μg/mL dose of anti-CD3 or no stimulation.  Two 

quercetin-treated and two vehicle-treated mice were used.  Supernatants were collected at 

72 hours E) and 96 hours F).  Supernatants were probed for IFN through ELISA.  
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Figure 9. Lifetime intraperitoneal treatment with quercetin does not increase 

survival or reduce disease incidence as compared to 18-week treatment.  Female 

NOD mice were injected intraperitoneally with a 5 mg/kg dose of quercetin or vehicle 

two times a week beginning at 3 weeks of age and continuing for the duration of the 

experiment (n=5). Urine glucose was tested beginning at 10 weeks of age.  Mice were 

considered to have diabetes after two consecutive high (>300 mg/dL) blood glucose 

readings.  Incidence is shown in A) and survival in B).   
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Figure 10. Adoptive transfer of -catenin siRNA-treated DC reduces disease 

incidence and slightly increases survival.  A) BMDC were transfected with -catenin 

siRNA or control siRNA and one million cells were then transferred intravenously to 

female 3 week-old NOD mice (n=5). Urine glucose was tested beginning at 10 weeks of 

age. Mice were considered to have diabetes after two consecutive high (>300 mg/dL) 

blood glucose readings.  Incidence is shown in A) and survival in B).   
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GOAL 3: EXPLORING THE MECHANISMS BY WHICH -CATENIN 

ACCUMULATES AND INFLUENCES PRO-INFLAMMATORY 

CYTOKINE PRODUCTION 

 In Goal 1, we demonstrated that NOD BMDC overexpress β-catenin and this 

overexpression correlates with increased pro-inflammatory cytokine production.  

Therefore, in this study, we aimed to 1) determine the mechanism of accumulation of β-

catenin in NOD BMDC and 2) determine the mechanism by which β-catenin infuences 

pro-inflammatory cytokine production.  We performed a series of experiments to 

determine defects that might lead to accumulation including transcription rate, 

interactions between β-catenin and E-cadherin, proteasomal degradation and 

ubiquitination, GSK3β phosphorylation, and stabilizing phosphorylations of β-catenin.  

Finally, we examined differences in MAPK pathway activation and NFκB activation as 

potential mechanisms leading to increased pro-inflammatory cytokine production. 

 

1. Why does β-catenin accumulate at high levels in NOD BMDC? 

Due to the complexity of β-catenin regulation within the cell, there are several 

possible mechanisms by which β-catenin may accumulate in the cytoplasm of BMDC 

from NOD mice.  These mechanisms include increased transcription, defective 

sequestration by E-cadherin, defective proteasomal degradation of β-catenin, defective

ubiquitination of β-catenin, and defective phosphorylation of β-catenin.  The figure 

shown on page 26 of the introduction provides an excellent overview of the various 
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points at which β-catenin expression is regulated within the cell [159]. In this study, we 

examined each of these mechanisms by comparing NOD BMDC to B6.g7 BMDC.     

 

1.1 Does an elevated level of β-catenin transcription play a role in -catenin 

accumulation of β-catenin in NOD BMDC? 

 Because transcriptional rates can vary and lead to differences in protein 

expression, we first examined defects in transcription in NOD BMDC. To identify defects 

in transcription of β-catenin mRNA, we compared mRNA levels between NOD BMDC 

and B6.g7 BMDC by real time RT-PCR.  In two independent experiments, there was no 

difference in β-catenin mRNA levels observed between the NOD and B6.g7 cells (Figure 

11A).  This indicates that β-catenin accumulation is the result of some other mechanism 

independent of transcriptional rate. 

 

1.2 Does defective sequestration of β-catenin by E-cadherin play a role in 

accumulation of β-catenin in NOD BMDC?  

β-catenin plays an important role in cell adhesions due to its ability to complex 

with E-cadherin at the cell membrane.  The interaction between these two proteins helps 

regulate -catenin signaling in the cell: several studies suggest that E-cadherin recruits -

catenin to the cell membrane and keeps it from accumulating in the nucleus where it can 

induce transcription [134, 135].  Defects in the interaction between β-catenin and E-

cadherin could therefore result in the accumulation of β-catenin in NOD BMDC. 

We first examined the expression of these two proteins in BMDC by Western blot 

using anti-β-catenin and anti-E-cadherin antibodies. We observed that NOD BMDC 
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express not only more β-catenin, but more E-cadherin as well (Figures 11B and C).  

Therefore, we chose to perform a co-immunoprecipitation experiment in which protein 

from whole cell lysates was pulled down with either a β-catenin antibody or an E-

cadherin antibody.  In these coimmunoprecipitation experiments, the ratio of E-cadherin 

to β-catenin was not significantly different in the two cell types when using either a β-

catenin or E-cadherin precipitating antibody (Figure 11D-G). This data indicates that 

there is no difference in the interaction between E-cadherin and β-catenin in NOD 

BMDC compared to B6.g7 BMDC.  Therefore, excess accumulation of β-catenin in the 

NOD BMDC cannot be attributed to defective sequestration at the cell membrane. 

 

1.3 Does defective proteasomal degradation or ubiquitination play a role in 

accumulation of β-catenin in NOD BMDC? 

 β-catenin is a protein that is prone to degradation and for this reason difficult to 

study in normal primary cells.   In the cytoplasm, β-catenin forms a destruction complex 

with several other proteins including axin, APC, and GSK3.  CK1 phosphorylates -

catenin at serine 45 [120, 129] which primes the-catenin molecule for phosphorylation 

by GSK3 on Ser33 and 37 and Thr41 [142]. Once -catenin is phosphorylated by 

GSK3, it is ubiquitinated and degraded by the proteasome [130]. Decreases in β-catenin 

ubiquitination and proteasomal degradation could therefore explain the accumulation of 

cytoplasmic β-catenin in NOD BMDC. 

 We assessed degradation rate of β-catenin in NOD and B6.g7 cells BMDC upon 

overnight pre-treatment with MG-132, a proteasome inhibitor.  This treatment, by 

inhibiting proteasomal degradation, results in accumulation of β-catenin, allowing for 
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easier detection and quantification of this protein in the B6.g7 cells, which as we have 

shown do not express much β-catenin.  After MG-132 treatment, the cells were washed 

and cycloheximide, a protein synthesis inhibitor, or the corresponding vehicle control was 

added for various time-points: 1, 2, 6, or 10 hours.  Cells were lysed and the lysates 

probed with anti-β-catenin antibodies (Figure 11H).  The amount of β-catenin left at each 

time point was calculated as a percentage of the original amount for each cell type, 

plotted on a logarithmic plot, and linear regression performed.  The T1/2 value was 

calculated using the equation of the line by solving for time when 50% of β-catenin was 

left (Figure 11I and J).  It appears that degradation rate of β-catenin is much slower in 

B6g7 BMDC, in which the T1/2 value was 6.2 hours with cycloheximide and 6.5 hours 

with vehicle only, than in NOD, in which the T1/2 value was 3.3 hours with cycloheximide 

and 5.3 hours with vehicle only.  The quicker degradation of β-catenin in NOD BMDC is 

puzzling, but may be the result of differences in the activity of other degradation 

pathways, such as the lysosomal pathway.  Despite this unexpected result, these data 

suggest that differences in proteasomal degradation rate do not play a role in the 

accumulation of β-catenin in NOD BMDC.   

 We also determined if there were differences in the amount of ubiquitinated -

catenin as a proportion of total β-catenin in NOD and B6.g7 cells.  First we quantitatively 

analyzed the expression of ubiquitinated β-catenin observed in Figure 1H in the previous 

experiment upon MG132 treatment.  Ubiquitination will result in bands of heavier 

molecular weight due to attachment of ubiquitin molecules (approximately 8.5 kDa). 

Previous studies have identified this higher molecular weight β-catenin as mono-

ubiquitinated β-catenin that accumulated in the presence of the ubiquitin ligase β-TrCP or 
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proteasome inhibitors [192, 193].  Additionally, we only see this higher molecular weight 

band following MG-132 treatment, suggesting that this band represents ubiquitinated β-

catenin as opposed to phosphorylated β-catenin or another protein.  However, we cannot 

definitively rule out this heavier band as representing phosphorylated β-catenin unless we 

treated the cells with phosphatase in the experimental setup.  We found that the amount of 

mono-ubiquitinated β-catenin was very similar between B6.g7 and NOD for each time 

point examined (Figure 11K).  

 

1.4 Does defective phosphorylation of β-catenin play a role in accumulation of -

catenin in NOD BMDC? 

 β-catenin degradation and stabilization are regulated by its phosphorylation at 

various residues: phosphorylation at some residues leads to destabilization of β-catenin, 

while phosphorylation at other residues leads to its stabilization as illustrated in the figure 

on page 26.  GSK3phosphorylation of β-catenin at Ser33, Ser37, and Thr41 results in 

its ubiquitination [142] and degradation by the proteasome [130].  In contrast, upon 

phosphorylation of β-catenin at Ser552 by PKA [156] or Akt [150] or at Ser675 by PKA 

[158], β-catenin degradation is inhibited allowing β-catenin to accumulate in the 

cytoplasm and nucleus of cells. In light of these data, we hypothesized that lower 

destabilizing phosphorylation, or higher stabilizing phosphorylation may be responsible 

for the accumulation of β-catenin in NOD BMDC.  

Lower levels of GSK3 activity in NOD BMDC could lead to lower -catenin 

degradation and its accumulation. Because GSK3β is known to phosphorylate -catenin 

at residues Ser33, Ser37, and Thr41, which marks -catenin for ubiquitination and 
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proteasomal degradation [130, 142], we hypothesized that downregulation of GSK3β 

activity may be responsible for -catenin accumulation in NOD BMDC.  We examined 

levels of phosphorylation of GSK3 at serine Ser9, an inhibitory phosphorylation [149].  

We hypothesized GSK3 may be phosphorylated at higher levels at this residue in NOD 

BMDC resulting in reduced activity and reduced -catenin degradation [149].  It appears 

that GSK3 from B6.g7 BMDC is phosphorylated at slightly higher levels than in NOD 

BMDC, although the differences are very small (Figure 12A and B).  These  data 

suggests that GSK3 activity is normal in NOD BMDC and thereby does not lead to 

reduced degradation of -catenin in NOD BMDC and does not contribute to -catenin 

accumulation, confirming the previous degradation experiments (Figure 11H).  

Accumulation of -catenin in NOD BMDC must therefore occur through some other 

mechanism. 

Since decreased destabilizing phosphorylation are not responsible for 

accumulation of β-catenin, increases in the phosphorylation level of β-catenin at residues 

Ser552 and Ser675 may be responsible for the stabilization and accumulation of β-catenin 

in NOD BMDC.  Western blot analysis of NOD and B6.g7 BMDC using anti-phospho-β-

catenin antibodies for Ser675 (Figure 12C-F) and Ser552 (Figure 12G-J) shows that there 

is a greater proportion of -catenin phosphorylated at these two residues as well as a 

greater amount of phosphorylated -catenin as a proportion of total protein in NOD 

BMDC as compared to B6.g7 BMDC.  This suggests that these stabilizing 

phosphorylations may be partly or wholly responsible for the accumulation of -catenin 

in NOD BMDC. We therefore examined the impact of inhibiting Akt and PKA on β-

catenin phosphorylation and expression.  NOD BMDC cells were treated with a 25 μM 
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dose of LY294002, a PI3K inhibitor, a 40 μM dose of the PKA inhibitor H89 or vehicle 

for four hours.  Cell lysates were prepared and Western blot was performed using anti-β-

catenin and anti-β-actin antibodies (Figure 12K).  Both of these inhibitors resulted in 

decreased phosphorylation of -catenin at Ser552 (Figure 12L) and -catenin expression 

(Figure 12M) suggesting that Akt and PKA may stabilize-catenin and lead to its 

accumulation in NOD BMDC.  

Because Akt and PKA appear to mediate accumulation of -catenin in NOD 

BMDC we wondered whether expression and/or activity of Akt and PKA is higher in 

NOD BMDC. First we examined expression levels of total PKA and total Akt in NOD 

and B6.g7 BMDC. Western blot analysis using anti-PKA and anti-Akt antibodies showed 

no difference in expression for either PKA (Figure 13A and B) or Akt (Figure 13C and D) 

between NOD and B6.g7 BMDC.  Next, we assessed the level of activation of PKA and 

Akt.  We measured Akt phosphorylation at Thr308 and Thr473, two known activating 

residues, after 30 minutes of stimulation with a 1 μg/mL dose of LPS. For Akt Thr308, 

we found higher levels of phosphorylation in unstimulated NOD BMDC in 2 out of 3 

experiments (Figure 13 E and F).  Upon LPS stimulation, we found more 

phosphorylation in B6.g7 BMDC in 3 out of 4 experiments (Figure 13 G and H).  

Therefore it appears that this residue is constitutively phosphorylated at higher levels in 

NOD BMDC but upon stimulation, it is phosphorylated and activated at higher levels in 

B6.g7 BMDC.  This higher level of phosporylation under non-stimulation conditions may 

explain the higher levels of phosphorylated -catenin in NOD BMDC.  In contrast, we 

found higher levels of phosphorylation of Akt at Thr473 in B6.g7 BMDC (Figure 13I and 

J) with and without LPS stimulation, in most of the experiments.  Therefore, it is unlikely 
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that increased activation of Akt through phosphorylation at Thr473 is responsible for the 

increased phosphorylation of -catenin at Ser552 in NOD BMDC. We finally examined 

levels of phosphorylation of PKA at Thr197, a residue that has been associated with 

optimal enzymatic activity [153, 154].  However, it appeared that PKA was 

phosphorylated at similar levels in B6.g7 and NOD BMDC (Figure 13 K and L).   

 

2. Why does β-catenin accumulate in the nucleus of NOD BMDC but not B6.g7 

BMDC? 

There are several possible mechanisms by which β-catenin may accumulate in the 

nucleus of the BMDC from NOD mice.  These include defects in sumoylation, defects in 

phosphorylation by Pyk2, or simply defects in degradation that allow excess β-catenin to 

accumulate and translocate to the nucleus. 

 

2.1 Does defective sumoylation play a role in nuclear accumulation of β-catenin in 

NOD BMDC? 

 Sumoylation of proteins has several biological functions: repression of 

transcriptional activity, such as in the case of sumoylation of p300, a transcriptional 

coactivator of β-catenin; activation of transcriptional activity, such as in the case of Tcf-4, 

another transcriptional coactivator of β-catenin; ordering of chromatin structure; DNA 

repair; nuclear transport and retention; and inhibition of NFκB-mediated inflammatory 

responses [194]. 

Because-catenin contains candidate sumoylation sites and accumulates at higher 

levels in the nucleus of NOD BMDC, we hypothesized that differences in sumoylation of 
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β-catenin may contribute to the differences observed in nuclear β-catenin levels.  

Therefore, we performed coimmunoprecipitation experiments to examine the amount of 

sumoylated β-catenin in NOD and B6.g7 BMDC.  However, we were unable to detect 

any sumoylated β-catenin in any of the experiments performed (data not shown).  This 

may be due to several factors: proteins are typically sumoylated at low levels, and 

desumoylation is usually rapid.  Therefore, it is difficult to conclude anything other than 

sumoylation of β-catenin may not be occurring and/or there may be undetectable 

differences in sumoylation of β-catenin in NOD and B6.g7 BMDC. 

 

2.2 Does defective expression of Pyk2 or defective phosphorylation of β-catenin by 

Pyk2 play a role in nuclear accumulation of β-catenin in NOD BMDC? 

 It has been shown that Pyk, a tyrosine kinase, phosphorylates β-catenin at tyrosine 

residues [195, 196].  This phosphorylation is associated with decreased attachment to E-

cadherin and increased stability and nuclear translocation of β-catenin [197].  Therefore, 

we examined Pyk2 expression, Pyk2 activity, and the ability of Pyk2 to interact with β-

catenin in NOD and B6.g7 BMDC. 

 Upon probing the cytoplasmic fraction after cell lysis, we were unable to detect 

Pyk2 expression in the cytoplasm of either B6.g7 or NOD BMDC (data not shown).  

Additionally, following coimmunoprecipitation with an anti-β-catenin antibody, we did 

not detect any Pyk2 interaction with β-catenin (data not shown).  Finally, we found that 

treatment with AG17, a Pyk2 inhibitor, did not result in a decrease in β-catenin nuclear 

translocation when compared to vehicle-treated cells (data not shown).  Although we can 

not rule out that the experimental conditions were not optimal, these data suggest that 
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Pyk2 phosphorylation of β-catenin may not be an important contributor to β-catenin 

nuclear translocation in NOD BMDC. 

  

3. What are the mechanisms by which β-catenin induces pro-inflammatory cytokine 

production? 

 It is well-established that NOD dendritic cells produce aberrant levels of pro-

inflammatory cytokines [119, 121, 198].  Additionally, we have established that β-catenin 

is overexpressed in NOD BMDC as compared to B6.g7 BMDC.  Therefore, we examined 

several mechanisms by which β-catenin might directly influence the level of pro-

inflammatory cytokine production in BMDC.  The mechanisms explored include an 

interaction between β-catenin and the MAPK pathway and an interaction between β-

catenin and the NFκB pathway.  

 

3.1 Does β-catenin activate the MAPK pathway to induce pro-inflammatory 

cytokine production? 

MAP kinases are serine/threonine kinases that phosphorylate transcription factors 

in order to modulate gene expression.  There are three major groups of MAP kinases: 

JNKs, ERKs, and p38 MAP kinases [199].  There is crosstalk between these pathways 

and several other signaling pathways.  For example, Akt and PI3K can abnormally 

activate the ERK pathway in cancer [200]. It has also been shown that there is crosstalk 

between the MAPK pathway and the β-catenin signaling pathway.  In one study ERK was 

found to be activated by Hepatitis B viral infection.  This activation resulted in the 

inhibitory phosphorylation of GSK3β at Ser9 and subsequent accumulation of β-catenin 
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[201]. 

Interestingly, the MAPK pathways have been shown to be involved in the 

production of IL-12, although the data is contradictory.  Depending on the cell type, 

stimulation, and experimental system being used, ERK and p38 have a direct relationship 

with IL-12 production in which stimulation of these pathways increases production or 

inhibition decreases production [202-204], or an inverse relationship with IL-12 

production in which stimulation decreases production and inhibition increases production 

[205-207].  Yet another set of studies demonstrate that ERK and p38 may have reciprocal 

functions in which activation of ERK results in suppression of the pro-inflammatory 

response while activation of p38 results in increased inflammation [150, 208].  

 In light of these data, we hypothesized that there may be crosstalk between β-

catenin signaling and the MAPK pathway in BMDC.  β-catenin overexpression may lead 

to increased ERK or p38 activity in NOD BMDC, resulting in altered pro-inflammatory 

cytokine production.  In order to test this hypothesis, we stimulated NOD and B6.g7 

BMDC with a 1 g/mL dose of LPS for various time points and examined the resulting 

p38 and ERK1/2 activation.  As shown in Figure 14, there was no statistically significant 

difference in phosphorylation of ERK at p42/p44 and in NOD cells compared to B6g7 

cells after LPS stimulation. Additionally, there were no differences in p38 activation.  

Therefore, the excess pro-inflammatory cytokine production observed in NOD BMDC 

does not appear to be the result of defects in MAPK activity. 
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3.2 Does β-catenin interact with the NFκB pathway to induce pro-inflammatory 

cytokine production? 

It has been well-established that activation of the NFκB pathway induces pro-

inflammatory cytokine production, including the production of IL-12 [209, 210]. The 

NFκB family includes RelA (p65), RelB, and c-Rel, and NFkB-1 (composed of p105 and 

p50) and NFκB-2 (composed of p100 and p52).   NFκB proteins are usually rendered 

transcriptionally inactive in the cytoplasm by IκB proteins in the cytoplasm.  Upon 

phosphorylation by IKK proteins, the IκB proteins undergo proteasomal degradation, 

thereby releasing the NFκB proteins, allowing for them to become transcriptionally active 

[211].  Additionally, it has been shown that DNA binding by NFκB is higher in NOD 

BMDC than BMDC from control mice.  Moreover, LPS stimulation also resulted in 

increased NFκB nuclear translocation rates in NOD BMDC than in control cells [121]. 

Interestingly, β-catenin can physically interact with NFκB.  One study found that upon 

association of the two proteins, NFκB binding to DNA and target gene expression was 

reduced in human colon and breast cancer cells [212]. 

In light of these data, we hypothesized that a defect in the interaction between the 

β-catenin and NFκB pathways in NOD BMDC was responsible for the excess IL-12 

production by these cells. To test this hypothesis, we treated NOD BMDC with two β-

catenin inhibitors, ICG-001 and quercetin, at 0, 10, 30, and 60 minutes and measured the 

level of NFκB p50 and p65 activation by ELISA (Figure 15).  We found that both 

inhibitors reduced the amount of activated p50 and p65 as compared to the vehicle 

treatment for all time points.  This suggests that the β-catenin pathway interacts with the 

NFκB pathway, and this interaction may influence pro-inflammatory cytokine expression 
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in NOD BMDC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 76 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

0

0.5

1

1.5

2

2.5

3

B6.g7 NOD

B6.g7
NOD

R
e

la
ti

v
e

 m
R

N
A

 l
e

v
e
ls

 

(n
o

rm
a
li

z
e

d
 

-c
a

te
n

in
:G

A
P

D
H

)

 

A

0

0.5

1

1.5

2

2.5

3

B6.g7 NOD

B6.g7
NOD

R
e

la
ti

v
e

 m
R

N
A

 l
e

v
e
ls

 

(n
o

rm
a
li

z
e

d
 

-c
a

te
n

in
:G

A
P

D
H

)

 

D

B6.g7 NOD

E-cadherin

IP: E-cadherin

IB:
β-catenin

E

0

1

2

3

4

1 2

E-cadherin Pulldown

R
e

la
ti

v
e

 I
n

te
n

s
it

ie
s

 

(
-c

a
te

n
in

:E
-c

a
d

h
e
ri

n
)

B6.g7  NOD

B6.g7  NOD

β-catenin

E-cadherin
IB:

F

IP:  β-catenin

G

0

0.5

1

1.5

2

R
e

la
ti

v
e

 I
n

te
n

s
it

ie
s

 

(E
-c

a
d

h
e
ri

n
:

-c
a

te
n

in
)

-catenin Pulldown

B6.g7  NOD

E-cadherin

β-actin

B6.g7  NODB

0

0.5

1

1.5

2

F
o

ld
 C

h
a

n
g

e

B6.g7  NOD

C

D

B6.g7 NOD

E-cadherin

IP: E-cadherin

IB:
β-catenin

E

0

1

2

3

4

1 2

E-cadherin Pulldown

R
e

la
ti

v
e

 I
n

te
n

s
it

ie
s

 

(
-c

a
te

n
in

:E
-c

a
d

h
e
ri

n
)

B6.g7  NOD

D

B6.g7 NOD

E-cadherin

IP: E-cadherin

IB:
β-catenin

D

B6.g7 NOD

E-cadherin

IP: E-cadherin

IB:
β-catenin

E

0

1

2

3

4

1 2

E-cadherin Pulldown

R
e

la
ti

v
e

 I
n

te
n

s
it

ie
s

 

(
-c

a
te

n
in

:E
-c

a
d

h
e
ri

n
)

B6.g7  NOD

E

0

1

2

3

4

1 2

E-cadherin Pulldown

R
e

la
ti

v
e

 I
n

te
n

s
it

ie
s

 

(
-c

a
te

n
in

:E
-c

a
d

h
e
ri

n
)

B6.g7  NOD

B6.g7  NOD

β-catenin

E-cadherin
IB:

F

IP:  β-catenin

G

0

0.5

1

1.5

2

R
e

la
ti

v
e

 I
n

te
n

s
it

ie
s

 

(E
-c

a
d

h
e
ri

n
:

-c
a

te
n

in
)

-catenin Pulldown

B6.g7  NOD

B6.g7  NOD

β-catenin

E-cadherin
IB:

F

IP:  β-catenin
B6.g7  NOD

β-catenin

E-cadherin
IB:

F

IP:  β-catenin

G

0

0.5

1

1.5

2

R
e

la
ti

v
e

 I
n

te
n

s
it

ie
s

 

(E
-c

a
d

h
e
ri

n
:

-c
a

te
n

in
)

-catenin Pulldown

B6.g7  NOD

G

0

0.5

1

1.5

2

R
e

la
ti

v
e

 I
n

te
n

s
it

ie
s

 

(E
-c

a
d

h
e
ri

n
:

-c
a

te
n

in
)

-catenin Pulldown

B6.g7  NOD

E-cadherin

β-actin

B6.g7  NODB

0

0.5

1

1.5

2

F
o

ld
 C

h
a

n
g

e

B6.g7  NOD

C

E-cadherin

β-actin

B6.g7  NODB

E-cadherin

β-actin

B6.g7  NOD

E-cadherin

β-actin

B6.g7  NODB

0

0.5

1

1.5

2

F
o

ld
 C

h
a

n
g

e

B6.g7  NOD

C

0

0.5

1

1.5

2

F
o

ld
 C

h
a

n
g

e

B6.g7  NOD

C



 77 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Lack of difference in -catenin mRNA levels, in the interaction between 

β-catenin and E-cadherin, and in the degradation rate and ubiquitintion of β-

catenin between B6.g7 and NOD BMDC. RNA was isolated from B6.g7 and NOD 

BMDC and real time rt-PCR was performed to determine the amounts of β-catenin 

mRNA relative to the amount of mRNA for the housekeeping gene, GAPDH.  The data 

includes two independent experiments, one of which included two separate samples (A). 

NOD and B6.g7 BMDC were lysed, and Western blot was performed using anti-E-

cadherin and anti-β-catenin antibodies (B). The fold change of E-cadherin to β-catenin is 

shown (C). Coimmunoprecipitation was performed with anti-E-cadherin (D) or anti-β-

catenin (F) antibodies to pull down protein from the cell lysate from NOD or B6.g7 

BMDC.  Western blot was then performed using anti-β-catenin and anti-E-cadherin 

antibodies. The average ratios of β-catenin to E-cadherin or E-cadherin to β-catenin for 3 

experiments after using an anti-E-cadherin pulldown (E) or anti-β-catenin (G) pulldown 

antibody, respectively, are shown.  Cells were treated with 50 uM of MG132 for 12 

hours, washed and treated with 2 ug/mL of cycloheximide or vehicle then lysed. Western 

K

-0.05

0

0.05

0.1

0.15

0.2
B6.g7

NOD

R
e

la
ti

v
e

 I
n

te
n

s
it

y
 

(M
o

n
o

 U
b

-
-c

a
te

n
in

: 

N
o

n
 U

b
-

-c
a

te
n

in
)

CTL  0     1     2    6    10    1     2    6    10
           _________  _________

                 Vehicle             Cyclo

K

-0.05

0

0.05

0.1

0.15

0.2
B6.g7

NOD

R
e

la
ti

v
e

 I
n

te
n

s
it

y
 

(M
o

n
o

 U
b

-
-c

a
te

n
in

: 

N
o

n
 U

b
-

-c
a

te
n

in
)

CTL  0     1     2    6    10    1     2    6    10
           _________  _________

                 Vehicle             Cyclo

1

10

100

1000

0 2 4 6 8 10 12

NOD
B6g7

y = 80.597 - 5.7677x   R= 0.88158 

y = 100.11 - 7.6875x   R= 0.93869 

Time (hours)

%
 

-c
a

te
n

in
 R

e
m

a
in

in
g

 

(a
s

 %
 o

f 
ra

ti
o

 a
t 

0
 h

o
u

rs
)

T
1/2

 NOD = 5.3 hours

T
1/2

 B6.g7 = 6.5 hours

Vehicle
I

β-catenin

β-catenin

β-actin

β-actin

Mono Ub-β-catenin

Mono Ub-β-catenin

H

Hrs: 0    1    2    6   10   1    2    6   10    

Vehicle             Cyclo

B6.g7

NOD

1

10

100

1000

0 2 4 6 8 10 12

NOD
B6g7

y = 72.35 - 6.75x   R= 0.83306 

y = 99.23 - 7.9657x   R= 0.89641 

Time (hours)

%
 

-c
a

te
n

in
 R

e
m

a
in

in
g

 

(a
s

 %
 o

f 
ra

ti
o

 a
t 

0
 h

o
u

rs
)

T
1/2

 NOD = 3.3 hours

T
1/2

 B6.g7 = 6.2 hours

T
1/2

 NOD = 3.3 hours

T
1/2

 B6.g7 = 6.2 hours

Cycloheximide
J

1

10

100

1000

0 2 4 6 8 10 12

NOD
B6g7

y = 80.597 - 5.7677x   R= 0.88158 

y = 100.11 - 7.6875x   R= 0.93869 

Time (hours)

%
 

-c
a

te
n

in
 R

e
m

a
in

in
g

 

(a
s

 %
 o

f 
ra

ti
o

 a
t 

0
 h

o
u

rs
)

T
1/2

 NOD = 5.3 hours

T
1/2

 B6.g7 = 6.5 hours

Vehicle
I

1

10

100

1000

0 2 4 6 8 10 12

NOD
B6g7

y = 80.597 - 5.7677x   R= 0.88158 

y = 100.11 - 7.6875x   R= 0.93869 

Time (hours)

%
 

-c
a

te
n

in
 R

e
m

a
in

in
g

 

(a
s

 %
 o

f 
ra

ti
o

 a
t 

0
 h

o
u

rs
)

T
1/2

 NOD = 5.3 hours

T
1/2

 B6.g7 = 6.5 hours

Vehicle
I

β-catenin

β-catenin

β-actin

β-actin

Mono Ub-β-catenin

Mono Ub-β-catenin

H

Hrs: 0    1    2    6   10   1    2    6   10    

Vehicle             Cyclo

B6.g7

NOD

1

10

100

1000

0 2 4 6 8 10 12

NOD
B6g7

y = 72.35 - 6.75x   R= 0.83306 

y = 99.23 - 7.9657x   R= 0.89641 

Time (hours)

%
 

-c
a

te
n

in
 R

e
m

a
in

in
g

 

(a
s

 %
 o

f 
ra

ti
o

 a
t 

0
 h

o
u

rs
)

T
1/2

 NOD = 3.3 hours

T
1/2

 B6.g7 = 6.2 hours

T
1/2

 NOD = 3.3 hours

T
1/2

 B6.g7 = 6.2 hours

Cycloheximide
J

β-catenin

β-catenin

β-actin

β-actin

Mono Ub-β-catenin

Mono Ub-β-catenin

H

Hrs: 0    1    2    6   10   1    2    6   10    

Vehicle             Cyclo

B6.g7

NOD

β-catenin

β-catenin

β-actin

β-actin

Mono Ub-β-catenin

Mono Ub-β-catenin

H

Hrs: 0    1    2    6   10   1    2    6   10    

Vehicle             Cyclo

B6.g7

NOD

β-catenin

β-catenin

β-actin

β-actin

Mono Ub-β-catenin

Mono Ub-β-catenin

β-catenin

β-catenin

β-actin

β-actin

Mono Ub-β-catenin

Mono Ub-β-catenin

H

Hrs: 0    1    2    6   10   1    2    6   10    

Vehicle             Cyclo

B6.g7

NOD

B6.g7

NOD

1

10

100

1000

0 2 4 6 8 10 12

NOD
B6g7

y = 72.35 - 6.75x   R= 0.83306 

y = 99.23 - 7.9657x   R= 0.89641 

Time (hours)

%
 

-c
a

te
n

in
 R

e
m

a
in

in
g

 

(a
s

 %
 o

f 
ra

ti
o

 a
t 

0
 h

o
u

rs
)

T
1/2

 NOD = 3.3 hours

T
1/2

 B6.g7 = 6.2 hours

T
1/2

 NOD = 3.3 hours

T
1/2

 B6.g7 = 6.2 hours

Cycloheximide
J

1

10

100

1000

0 2 4 6 8 10 12

NOD
B6g7

y = 72.35 - 6.75x   R= 0.83306 

y = 99.23 - 7.9657x   R= 0.89641 

Time (hours)

%
 

-c
a

te
n

in
 R

e
m

a
in

in
g

 

(a
s

 %
 o

f 
ra

ti
o

 a
t 

0
 h

o
u

rs
)

T
1/2

 NOD = 3.3 hours

T
1/2

 B6.g7 = 6.2 hours

T
1/2

 NOD = 3.3 hours

T
1/2

 B6.g7 = 6.2 hours

Cycloheximide
J



 78 

blot was performed on cell lysates with anti-β-catenin and anti-β-actin antibodies (H). 

The percentages of β-catenin remaining at each time point were plotted on a logarithmic 

scale and linear regression performed for vehicle (I) and cycloheximide treatments (J).  

The equations of the lines are shown in blue (B6.g7) and red (NOD).  The T1/2 values are 

also displayed on the graphs. The fold change for mono-ubiquitinated β-catenin as a ratio 

of non-mono-ubiquitinated-β-catenin is shown (K).  Data are representative of two or 

more independent experiments. 
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Figure 12: β-catenin accumulates in NOD BMDC through stabilizing 

phosphorylations through an Akt and PKA-dependent mechanism.  NOD and B6.g7 

BMDC were stimulated with 1 μg/mL LPS for 0, 30, 60, or 120 minutes. Cells were then 

lysed and Western blot was performed on cell lysates with anti-phospho-GSK3β and total 

GSK3 β antibodies (A).  The fold changes for the ratios of phospho-GSK3β to total 

GSK3β are shown (B). NOD and B6.g7 BMDC were stimulated with 1 μg/mL LPS for 0, 

30, 60, or 120 minutes. Cells were then lysed and Western blot was performed on cell 

lysates with anti-phospho-β-catenin-S675, anti--catenin, and anti-β-actin antibodies (C) 

The ratios of phospho--catenin to total -catenin (D) and the ratios of phospho--

catenin to -actin (E) are shown for each time point and for the average of three 

independent experiments without LPS stimulation (F).  NOD and B6.g7 BMDC were 

lysed and Western blot was performed using anti-phospho-β-catenin-S552, anti--

catenin, and anti-β-actin antibodies (G).  The fold changes for the ratios of phospho--

catenin to total -catenin (H) and the ratios of phospho--catenin to -actin (I) are shown.  

The average fold change of phosphorylated -catenin on residue S552 from three 

independent experiments from NOD and B6.g7 BMDC is shown (J). NOD and B6.g7 

BMDC were treated with LY294002, H89, or a combination of both or DMSO vehicle 

for 4 hours and then lysed.  Western blot was performed using anti-phospho--catenin, 
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anti-total--catenin, and anti--actin antibodies (K). The ratios of phospho--catenin to 

-actin (L) and total -catenin to -actin (M) are shown. Data are representative of two or 

more independent experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 81 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D

Akt
β-actin

--- LPS   

N
O

D
B

6
.g

7

B
6

.g
7

N
O

D
C

A

PKA

β-actin

--- LPS   

N
O

D
B

6
.g

7

B
6

.g
7

N
O

D

0

0.2

0.4

0.6

0.8

1

1.2

F
o

ld
 C

h
a

n
g

e
B6.g7  NOD   B6.g7  NOD ______  ______

no LPS             LPS

0

0.2

0.4

0.6

0.8

1

1.2

F
o

ld
 C

h
a

n
g

e

B6.g7  NOD   B6.g7  NOD ______  ______
no LPS             LPS

D

Akt
β-actin

--- LPS   

N
O

D
B

6
.g

7

B
6

.g
7

N
O

D
C

A

PKA

β-actin

--- LPS   

N
O

D
B

6
.g

7

B
6

.g
7

N
O

D

0

0.2

0.4

0.6

0.8

1

1.2

F
o

ld
 C

h
a

n
g

e
B6.g7  NOD   B6.g7  NOD ______  ______

no LPS             LPS

0

0.2

0.4

0.6

0.8

1

1.2

F
o

ld
 C

h
a

n
g

e

B6.g7  NOD   B6.g7  NOD ______  ______
no LPS             LPS

Akt
β-actin

--- LPS   

N
O

D
B

6
.g

7

B
6

.g
7

N
O

D
C

Akt
β-actin

--- LPS   

N
O

D
B

6
.g

7

B
6

.g
7

N
O

D
--- LPS   

N
O

D
B

6
.g

7

B
6

.g
7

N
O

D

N
O

D
B

6
.g

7

B
6

.g
7

N
O

D
C

A

PKA

β-actin

--- LPS   

N
O

D
B

6
.g

7

B
6

.g
7

N
O

D

A

PKA

β-actin

--- LPS   

N
O

D
B

6
.g

7

B
6

.g
7

N
O

D

PKA

β-actin

--- LPS   

N
O

D
B

6
.g

7

B
6

.g
7

N
O

D

--- LPS   

N
O

D
B

6
.g

7

B
6

.g
7

N
O

D

N
O

D
B

6
.g

7

B
6

.g
7

N
O

D

0

0.2

0.4

0.6

0.8

1

1.2

F
o

ld
 C

h
a

n
g

e
B6.g7  NOD   B6.g7  NOD ______  ______

no LPS             LPS

0

0.2

0.4

0.6

0.8

1

1.2

F
o

ld
 C

h
a

n
g

e

B6.g7  NOD   B6.g7  NOD ______  ______
no LPS             LPS

B6.g7 NOD

PKA-P (T197)

PKA

K

Akt 473

Total Akt

--- LPS   

N
O

D
B

6
.g

7

B
6

.g
7

N
O

D

I

0

0.2

0.4

0.6

0.8

1

1.2

F
o

ld
 C

h
a

n
g

e

B6.g7      NOD

L

J

0

0.2

0.4

0.6

0.8

1

1.2

F
o

ld
 C

h
a

n
g

e

B6.g7  NOD   B6.g7  NOD ______  ______
no LPS             LPS

B6.g7 NOD

PKA-P (T197)

PKA

K
B6.g7 NOD

PKA-P (T197)

PKA

K

Akt 473

Total Akt

--- LPS   

N
O

D
B

6
.g

7

B
6

.g
7

N
O

D

I

0

0.2

0.4

0.6

0.8

1

1.2

F
o

ld
 C

h
a

n
g

e

B6.g7      NOD

L

J

0

0.2

0.4

0.6

0.8

1

1.2

F
o

ld
 C

h
a

n
g

e

B6.g7  NOD   B6.g7  NOD ______  ______
no LPS             LPS

Akt 473

Total Akt

--- LPS   

N
O

D
B

6
.g

7

B
6

.g
7

N
O

D

I

Akt 473

Total Akt

--- LPS   

N
O

D
B

6
.g

7

B
6

.g
7

N
O

D

I

Akt 473

Total Akt

--- LPS   

N
O

D
B

6
.g

7

B
6

.g
7

N
O

D

--- LPS   

N
O

D
B

6
.g

7

B
6

.g
7

N
O

D

N
O

D
B

6
.g

7

B
6

.g
7

N
O

D

I

0

0.2

0.4

0.6

0.8

1

1.2

F
o

ld
 C

h
a

n
g

e

B6.g7      NOD

L

0

0.2

0.4

0.6

0.8

1

1.2

F
o

ld
 C

h
a

n
g

e

B6.g7      NOD

L

J

0

0.2

0.4

0.6

0.8

1

1.2

F
o

ld
 C

h
a

n
g

e

B6.g7  NOD   B6.g7  NOD ______  ______
no LPS             LPS

J

0

0.2

0.4

0.6

0.8

1

1.2

F
o

ld
 C

h
a

n
g

e

B6.g7  NOD   B6.g7  NOD ______  ______
no LPS             LPS

Akt T308

pan Akt

B6.g7 NOD
E

0

0.2

0.4

0.6

0.8

1

1.2

F
o

ld
 C

h
a

n
g

e

B6.g7     NOD        

B6.g7 NOD

Akt T308

pan Akt

0

0.2

0.4

0.6

0.8

1

1.2

F
o

ld
 C

h
a

n
g

e

B6.g7     NOD

F

HG

No LPS

LPS

Akt T308

pan Akt

B6.g7 NOD
E

0

0.2

0.4

0.6

0.8

1

1.2

F
o

ld
 C

h
a

n
g

e

B6.g7     NOD        

B6.g7 NOD

Akt T308

pan Akt

0

0.2

0.4

0.6

0.8

1

1.2

F
o

ld
 C

h
a

n
g

e

B6.g7     NOD

F

HG

No LPS

Akt T308

pan Akt

B6.g7 NOD
E

0

0.2

0.4

0.6

0.8

1

1.2

F
o

ld
 C

h
a

n
g

e

B6.g7     NOD        

B6.g7 NOD

Akt T308

pan Akt

0

0.2

0.4

0.6

0.8

1

1.2

F
o

ld
 C

h
a

n
g

e

B6.g7     NOD

F

HG

Akt T308

pan Akt

B6.g7 NOD
E

Akt T308

pan Akt

B6.g7 NOD
Akt T308

pan Akt

B6.g7 NOD
E

0

0.2

0.4

0.6

0.8

1

1.2

F
o

ld
 C

h
a

n
g

e

B6.g7     NOD        

B6.g7 NOD

Akt T308

pan Akt

B6.g7 NOD

Akt T308

pan Akt

0

0.2

0.4

0.6

0.8

1

1.2

F
o

ld
 C

h
a

n
g

e

B6.g7     NOD

F

HG

No LPS

LPS



 82 

Figure 13. There is no difference in PKA or Akt expression in NOD and B6.g7 

BMDC.  BMDC were treated with or without LPS for 30 minutes.  Western blot was 

performed on these cell lysates using anti-PKA and anti--actin antibodies (A) or anti-

Akt and anti--actin antibodies (C). The fold change of PKA expression B) or Akt 

expression D) is shown.  Unstimulated (E) or LPS-stimulated (G) NOD and B6.g7 

BMDC were lysed and Western blot was performed using anti-phospho-Akt at Thr308 

and anti-pan-Akt antibodies.  The fold changes of phospho-Akt to pan-Akt are shown (F) 

and (H).  LPS-stimulated and unstimulated NOD and B6.g7 BMDC were lysed and 

Western blot was performed using anti-phospho-Akt at Ser473 and anti-pan-Akt 

antibodies (I) or anti-phospho-PKA and total PKA antibodies (K). The fold changes of 

phospho-Akt to pan-Akt (J) or phospho-PKA to total PKA (L) are shown.  Data are 

representative of two or more independent experiments. 
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Figure 14: There are no differences in MAPK pathway activation in B6.g7 and NOD 

BMDC.  There are no differences in MAPK pathway activation in B6.g7 and NOD 

BMDC.  B6.g7 and NOD BMDC were stimulated with 1 μg/mL of LPS for 0, 5, or 15 

minutes (A-B) or 0, 5, 15, 30, or 60 minutes (C-F) and whole cell lysates extracted.  

Western blot was then performed using anti-phospho-p38 and anti-p38 antibodies (A-B) 

or anti-phospho-ERK1/2 and anti-ERK1/2 antibodies (C-D). The fold changes for p38 

(B) or p42 and p44 (D) activation is shown. Data are representative of two or more 

independent experiments. 
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Figure 15: The β-catenin inhibitors quercetin and ICG-001 reduce NFκB activation 

in NOD BMDC.  NOD BMDC were treated with a 75 μM dose of quercetin (A), a 12.5 

μM dose of ICG-001 (B) or respective vehicles for 0, 10, 30, or 60 minutes.  Nuclear 

lysates were prepared and NFκB activation was measured for both p50 and p65. 
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DISCUSSION 

 

The complex role of -catenin in inflammation 

In this study, we have shown that -catenin is more highly expressed in NOD 

BMDC than in BMDC from diabetes-resistant B6.g7 mice and in monocyte-derived DC 

from diabetic patients as compared to mo-DC from healthy controls. In NOD mice, this 

defective overexpression occurs in both the cytoplasm and nucleus at various stages of 

disease including peri-insulitis, insulitis, and full-blown diabetes according to Western 

blot, confocal microscopy, and FACS analysis, although FACS analysis shows a 

progressively defective level of β-catenin expression as the disease progresses suggesting 

that an increasing number of cells overexpress -catenin over the life span of the mice in 

addition to higher levels of protein being expressed.  Overall, these data indicate this 

novel defect in -catenin expression may be a potential prognostic indicator for the 

development of Type I diabetes.   

Additionally, we have shown that inhibition of -catenin expression or activity in 

NOD BMDC results in reduced IL-12 production, while forced expression of -catenin 

or induction of activity in B6.g7 BMDC results in increased IL-12 production. Moreover, 

in vivo experiments demonstrate that treatment with quercetin, a β-catenin inhibitor, can 

reduce diabetes incidence and reduce the inflammatory environment that contributes to 

disease development.  These data demonstrate a potentially important role for -catenin 
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in the production of a pathogenic cytokine that plays a key role in diabetes development.  

Therapeutic reductions in the accumulation of -catenin or in its transcriptional activity 

may therefore reduce the pathogenic inflammation important in Type I diabetes.    

The role of -catenin in inflammation appears to be complex: several studies have 

pointed to an anti-inflammatory role for -catenin [181, 186, 213] while others have 

demonstrated a clear pro-inflammatory role for this protein [183-185, 187, 214].  On one 

hand, -catenin has been found to play a role in the production of anti-inflammatory 

molecules in lamina propria dendritic cells. [181].  Another group of studies have shown 

that -catenin reduces Salmonella-induced inflammation in epithelial cells through an 

NFB-dependent mechanism [178] or a mechanism involving inhibition of 

GSK3mediated degradation [182].  On the other hand, -catenin is also associated 

with increased inflammatory cytokine production in various cell types. In one study, 

neutralizing antibody treatment against Wnt5a in mycobacterial products (PPD)-reactive 

PBMC resulted in reduced IL-12 production by PBMC and reduced IFN production by 

T cells [183], suggesting a role for β-catenin in Th1 cytokine regulation.  Other 

inflammatory cytokines appear to be regulated by -catenin signaling as well.  -catenin 

modulates IFN production in macrophages in response to VSV infection [184]. Yet 

another study found that Wnt3A stimulation of microglia, which increases -catenin 

expression, results in the expression of proinflammatory genes and the production of IL-

6, IL-12, and TNFα [185].  Interestingly, the activation of -catenin in APC-/- mice 

resulted in the induction of a simultaneously pro- and anti-inflammatory environment in 

the liver [187].  

Finally, a group of studies coming from the Halleskog lab have shown that -
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catenin may be pro-inflammatory or anti-inflammatory even in the same cell type.  In 

these studies, Wnt3a signaling leading to -catenin stabilization in microglia was found 

to be associated with Alzheimer’s-associated neuroinflammation [185]. However, in 

another study, the same lab showed that pre-treating mouse microglia with LPS followed 

by Wnt3a or Wnt5a treatment reduced the inflammatory cytokine response produced by 

the LPS-treatment, even though Wnt3a or Wnt5a treatment alone induced a pro-

inflammatory response [186].  Therefore, -catenin may act as an important master 

regulator that modulates the pro- versus anti-inflammatory response depending on the 

cell type, stimulus, and interactions between various stimuli.  

 

 

 

 

 

 

 

 

 

 

Figure 16. β-catenin as a master modulator of pro-inflammatory versus anti-

inflammatory responses. 

 

 

BMDC 

from NOD 

mice and 

T1D

Type I Diabetes

IL-12 & IFNγ

lamina 

propria DC

Salmonella in 

epithelial 

cells

Control of IBD

Inflammation-cateninInflammation

Wnt3a 

treatment in 

microglia

Liver tumor 

model 

VSV  in         

macrophages

Infection 

clearance

Infection 

clearance

mycobacterial

products/PBMC

IFNβ
IL-12 & IFNγ

IL-12, IL-6, 

TNFα

chemokines,

IL15, IL18, 

and Ikkβ
Alzheimer’s Control of 

tumor 

progression

Reduced 

pathogenicity

IL-8
Treg, IL-10, 

IL-23, IL-6 

Liver tumor 

model

Control of 

tumor 

progression

Wnt3a/LPS 

treatment 

in microglia

Control of 

neuroinflammation

Lect2 Cox2, 

IL-6, 

TNFα

BMDC 

from NOD 

mice and 

T1D

Type I Diabetes

IL-12 & IFNγ

BMDC 

from NOD 

mice and 

T1D

Type I Diabetes

IL-12 & IFNγ

BMDC 

from NOD 

mice and 

T1D

Type I Diabetes

IL-12 & IFNγ

BMDC 

from NOD 

mice and 

T1D

BMDC 

from NOD 

mice and 

T1D

Type I Diabetes

IL-12 & IFNγ

lamina 

propria DC

Salmonella in 

epithelial 

cells

Control of IBD

Inflammation-cateninInflammation

Wnt3a 

treatment in 

microglia

Liver tumor 

model 

VSV  in         

macrophages

Infection 

clearance

Infection 

clearance

mycobacterial

products/PBMC

IFNβ
IL-12 & IFNγ

IL-12, IL-6, 

TNFα

chemokines,

IL15, IL18, 

and Ikkβ
Alzheimer’s Control of 

tumor 

progression

Reduced 

pathogenicity

IL-8
Treg, IL-10, 

IL-23, IL-6 

Liver tumor 

model

Control of 

tumor 

progression

Wnt3a/LPS 

treatment 

in microglia

Control of 

neuroinflammation

Lect2 Cox2, 

IL-6, 

TNFα

lamina 

propria DC

Salmonella in 

epithelial 

cells

Control of IBD

Inflammation-cateninInflammation

Wnt3a 

treatment in 

microglia

Liver tumor 

model 

VSV  in         

macrophages

Infection 

clearance

Infection 

clearance

mycobacterial

products/PBMC

IFNβ
IL-12 & IFNγ

IL-12, IL-6, 

TNFα

chemokines,

IL15, IL18, 

and Ikkβ
Alzheimer’s Control of 

tumor 

progression

Reduced 

pathogenicity

IL-8
Treg, IL-10, 

IL-23, IL-6 

lamina 

propria DC

lamina 

propria DC

Salmonella in 

epithelial 

cells

Control of IBD

Inflammation-cateninInflammation

Wnt3a 

treatment in 

microglia

Liver tumor 

model 

VSV  in         

macrophages

Infection 

clearance

Infection 

clearance

mycobacterial

products/PBMC

IFNβ
IL-12 & IFNγ

IL-12, IL-6, 

TNFα

chemokines,

IL15, IL18, 

and Ikkβ
Alzheimer’s Control of 

tumor 

progression

-catenin-cateninInflammation

Wnt3a 

treatment in 

microglia

Liver tumor 

model 

VSV  in         

macrophages

Infection 

clearance

Infection 

clearance

mycobacterial

products/PBMC

IFNβ
IL-12 & IFNγ

IL-12, IL-6, 

TNFα

chemokines,

IL15, IL18, 

and Ikkβ
Alzheimer’s Control of 

tumor 

progression

Inflammation

Wnt3a 

treatment in 

microglia

Liver tumor 

model 

VSV  in         

macrophages

Infection 

clearance

Infection 

clearance

mycobacterial

products/PBMC

IFNβ
IL-12 & IFNγ

IL-12, IL-6, 

TNFα

chemokines,

IL15, IL18, 

and Ikkβ

Inflammation

Wnt3a 

treatment in 

microglia

Wnt3a 

treatment in 

microglia

Liver tumor 

model 

Liver tumor 

model 

VSV  in         

macrophages

VSV  in         

macrophages

Infection 

clearance

Infection 

clearance

mycobacterial

products/PBMC

mycobacterial

products/PBMC

IFNβIFNβ
IL-12 & IFNγIL-12 & IFNγ

IL-12, IL-6, 

TNFα

IL-12, IL-6, 

TNFα

chemokines,

IL15, IL18, 

and Ikkβ

chemokines,

IL15, IL18, 

and Ikkβ
Alzheimer’s Control of 

tumor 

progression

Reduced 

pathogenicity

IL-8IL-8
Treg, IL-10, 

IL-23, IL-6 

Treg, IL-10, 

IL-23, IL-6 

Treg, IL-10, 

IL-23, IL-6 

Liver tumor 

model

Control of 

tumor 

progression

Wnt3a/LPS 

treatment 

in microglia

Control of 

neuroinflammation

Lect2 Cox2, 

IL-6, 

TNFα

Liver tumor 

model

Liver tumor 

model

Control of 

tumor 

progression

Wnt3a/LPS 

treatment 

in microglia

Wnt3a/LPS 

treatment 

in microglia

Control of 

neuroinflammation

Lect2Lect2 Cox2, 

IL-6, 

TNFα

Cox2, 

IL-6, 

TNFα



 88 

Interactions between -catenin and other signaling pathways in inflammation and 

Type I diabetes 

The interactions between -catenin and other signaling pathways, such as the 

NFB pathway and the MAPK pathways are complex.  It has been shown that Wnt3a 

stimulation of microglia can induce inflammatory responses through the stimulation of 

both -catenin signaling as well as ERK1/2 activation, but through distinct mechanisms 

[214]. Wnt3a stimulates β-catenin stabilization through the canonical pathway through 

the protein Disheveled while also stimulating the MAPK pathway through Phospholipase 

C.  Furthermore, Wnt5a can stimulate ERK activation and inflammation through -

catenin-independent mechanisms in microglia [215].  Additionally, phosphorylated p38 

was observed in infiltrating CD4
+
 T cells in the pancreas of NOD mice.  Treating NOD 

mice with a p38 inhibitor reduced IFNγ production by spleen cells and reduced diabetes 

incidence without affecting islet infiltration [216].  This study suggests that the p38 

pathway may be involved in the pathogenic pro-inflammatory cytokine production that 

leads to diabetes.  However, we found no differences in either p38 or ERK1/2 activation 

between NOD and B6.g7 BMDC, suggesting that the pro-inflammatory effect of -

catenin is not mediated through a MAPK-dependent mechanism. 

 While some studies have shown an inhibitory effect of -catenin on NFB 

activation [212], others have shown a stimulatory effect [187]. Interestingly, several 

studies have shown that NFB signaling is defective in NOD mice leading to increased 

pro-inflammatory cytokine production [121, 217].  Our data suggests a new role for -

catenin in promoting NFB transcriptional activity in NOD mice.  Additionally, our in 

vivo experiments suggest that inhibiting the activity or expression of -catenin can 
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downregulate pathogenic pro-inflammatory cytokine production and reduce disease 

development.   

 

Mechanisms of accumulation of -catenin in NOD BMDC 

Determining the mechanisms that result in the accumulation of -catenin in NOD 

BMDC may allow us to identify new targets for the development of therapies for Type I 

diabetes.  We have explored a variety of mechanisms that could lead to -catenin 

overexpression in NOD BMDC.  First, we found no differences in mRNA levels, 

suggesting a lack of transcriptional defect.  It has been previously shown that cells in the 

submandibular glands of NOD mice overexpress E-cadherin, suggesting that defective 

sequestration of -catenin at the cell membrane may be responsible for the accumulation 

of -catenin in NOD BMDC [218].  However, we found no differences in the interaction 

between these two proteins in NOD BMDC compared to control BMDC.  Additionally, 

when we examined GSK3 phosphorylation at Ser9, which inhibits the ability of the 

kinase to phosphorylate -catenin at the degradation-targeting residues Ser33, Ser37, and 

Thr41, we found no differences levels of inhibitory phosphorylation between NOD and 

B6.g7 BMDC. Concordantly, we found no decrease in proteasomal degradation rates in 

NOD BMDC.  In fact it appears that -catenin degrades more quickly in NOD BMDC in 

the presence of a proteasomal inhibitor, suggesting that other degradation pathways, such 

as the lysosomal pathway, may be involved.  Therefore it does not appear that -catenin 

accumulation in NOD BMDC results from a defect in the GSK3-mediated degradation 

mechanism that regulates -catenin expression in the cell.   

 β-catenin can be phosphorylated at other residues that lead to stabilization, as 
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opposed to degradation.  Akt phosphorylates β-catenin at Ser552 [150] and PKA 

phosphorylates β-catenin at Ser552 and Ser675 [156].  Both of these phosphorylations 

lead to accumulation of β-catenin and increased transcriptional activity [150, 156]. We 

did find that a higher proportion of -catenin in NOD BMDC was phosphorylated at the 

stabilizing residue Ser552 and Ser675 than in B6.g7 BMDC.  Interestingly, inhibition of 

PKA and/or Akt resulted in decreased abundance of phospho-β-catenin and -catenin, 

indicating that the stabilizing activity of these two kinases are responsible for β-catenin 

accumulation in NOD BMDC.   

Very few studies on the role of the PI3K/Akt and PKA pathways in Type I 

diabetes development have been performed.  However, one study found that treatment of 

NOD mice with a PI3K inhibitor, AS605240, led to prevention and reversal of diabetes.  

Inflammatory cytokine production and IFN-production by splenic cells was decreased 

while Tregs were expanded with this treatment.  Additionally, high levels of 

phosphorylated total Akt were observed in NOD splenocytes [219]. Interestingly, we 

found that Akt was phosphorylated at residue Thr308 at higher levels in NOD as 

compared to B6.g7 BMDC, while Ser473 was phosphorylated at higher levels in B6.g7 

cells.  The role of phosphorylation of Akt at Thr308 and Ser473 is controversial.  It 

appears that phosphorylation at both Thr308 and Ser473 is necessary for full activity 

[147, 193]. Phosphorylation at Thr308 may be essential for Akt activity as demonstrated 

by mutation of this residue leading to low Akt activity [220].  However, another study has 

shown that phosphorylation at Ser473 may precede and prepare the kinase for 

phosphorylation at Thr308 [221]. In this study, mutation of Ser473 led to reduced 

phosphorylation at Thr308.  Additionally, phosphorylation at Ser473 may negatively 
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regulate phosphorylation at Thr308 as evidence by the fact that knocking out Rictor in the 

beta cells of mice reduces the level of phosphorylation at Ser473 and greatly increases the 

level of Thr308 phosphorylation [222].  This high level of phosphorylation at Thr308 and 

low level at Ser473 correlated with reduced beta cell mass and insulin secretion. Our data 

points to a negative regulatory role for Ser473 in which lower levels of phosphorylation 

of Akt at Ser473 in NOD BMDC may allow for high levels of Thr308 phosphorylation 

and increased Akt activity.  The downstream effect of this increased activity is enhanced 

stabilization and accumulation of -catenin through Ser552 phosphorylation. 

 Further studies need to be performed to determine the upstream mechanisms 

leading to these high levels of phosphorylation at Thr308.  Possible explanations include 

defects in expression or activity of PDK1, which is responsible for phosphorylation at 

Thr308 [147] and/or defects in expression or activity of mTOR, which is responsible for 

phosphorylation at Ser473 [148]. Additional studies needed to elucidate the mechanisms 

leading to increased phosphorylation by PKA include examining defects in the levels of 

cyclic AMP, the molecule responsible for activation of PKA’s catalytic subunits.  There 

are also possibly defects in the expression and/or activity of adenylyl cyclase, the protein 

which converts ATP to cAMP.  Finally, in vivo studies using various PKA or Akt 

inhibitors in NOD mice need to be performed.  If Akt and/or PKA activation are 

responsible for -catenin accumulation in NOD BMDC, inhibiting the activity of these 

molecules in vivo should lead to decreased incidence, increased survival, and a decreased 

inflammatory environment. 

 It remains unknown how Akt and/or PKA activity leads to increased 

phosphorylation of β-catenin at Ser552 and Ser675 without leading to increased 
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phosphorylation of GSK3β at the inhibitory phosphorylation Ser9 in NOD BMDC.  

However, it has been proposed that there are two distinct pools of GSK3β in the cell: a 

pool of free GSK3β that is susceptible to inhibitory phosphorylation by Akt and an axin-

complexed pool that is protected from phosphorylation by Akt [223].  It is possible that 

BMDC contain high levels of Axin-complexed GSK3β that is not available for 

phosphorylation by Akt and/or PKA.  This would allow for phosphorylation and 

stabilization of β-catenin by highly active Akt and PKA without affecting the level of 

phosphorylated GSK3β at Ser9. 

 

Unexplored mechanisms of β-catenin accumulation in NOD BMDC 

There are other mechanisms that we did not explore that may also contribute to -

catenin accumulation and enhanced transcriptional activity in NOD BMDC, including -

catenin acetylation, defective lysosomal degradation of -catenin, and defective 

exosomal export of -catenin.  Several studies have shown acetylation of -catenin at 

various residues.  Acetylation of Lys4 has been linked to negative regulation of 

transcriptional activity of -catenin [224], while acetylation of Lys345 results in 

increased affinity of -catenin for Tcf4, which could contribute to increased 

transcriptional activity of -catenin [225].  A third study showed that high glucose 

treatment of cells increased -catenin acetylation at Lys345 which resulted in increased 

nuclear accumulation and transcriptional activity [226].  -catenin in NOD BMDC may 

have defects in acetylation at either of these residues leading to increased nuclear 

translocation and increased transcriptional activity resulting in increased pro-

inflammatory cytokine production.     
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Another possible mechanism by which -catenin may accumulate includes 

defects in lysosomal degradation.  Several studies have documented the ability of the 

lysosome to degrade -catenin in a GSK-3/proteasome-independent mechanism.  In one 

study, a tea polyphenol induced lysosomal accumulation of excess -catenin in a colon 

cancer model [227].  Another study demonstrated that Notch signaling in stem cells 

resulted in negative regulation of active -catenin (non-phosphorylated at Ser33, 37 and 

Thr41) through a lysosomal-dependent pathway [228]. Colocalization studies of -

catenin and the lysosome may reveal decreased lysosomal targeting of -catenin in NOD 

BMDC or reduced ability of the lysosome to degrade excess -catenin.   

Additionally, it has been shown that CD82 and CD9 induce -catenin export from 

HEK239 cells and dendritic cells through exosomes [229].  Therefore, NOD BMDC may 

have defects in exosomal export of excess -catenin as compared to B6.g7 cells. 

 

β-catenin in human monocyte-derived DC and human Type I diabetes 

-catenin is also overexpressed in human mo-DC from diabetic patients as 

compared to healthy controls.  Similar to the experiments in NOD mice, we found that 

inhibiting the expression of -catenin with siRNA or the activity of -catenin with 

quercetin resulted in decreased pro-inflammatory cytokine production.  These data 

indicate that -catenin may play an important role in human patients as well as in mice 

and suggests that treatments targeting -catenin could be effective for human patients.  

Because we could only delay diabetes in NOD mice treated with quercetin or -catenin 

siRNA-transfected DC, simply reducing the inflammatory environment in Type I diabetes 

individuals may not be sufficient.  Therefore it may be necessary to reduce -catenin 
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accumulation or activity in combination with other treatments, such as those aimed at 

increasing tolerance.  These possible treatments include administration of Lactobacilli 

that induce the regulatory cytokine IL-10 [230] or transfer of Tregs [231], or anti-CD3 

treatment [21].  However, inhibiting pathways upstream of-catenin may achieve both as 

shown in the study inhibiting PI3K [219].  Inhibiting-catenin expression or activity as a 

therapeutic strategy for preventing or treating Type I diabetes may provide several 

advantages, including the specific reduction of IL-12, the hallmark pathogenic cytokine 

involved in Type I diabetes. 

 

Conclusion 
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Figure 17. A scenario leading to β-catenin accumulation and pro-inflammatory 

cytokine production in NOD BMDC but not B6.g7 BMDC. 

Overall, we have found that overexpression of -catenin in NOD BMDC leads to 

increased pathogenic pro-inflammatory cytokine production and inhibiting -catenin 

activity in vivo leads to a decrease in the pro-inflammatory environment.  -catenin 

accumulates as a result of increased phosphorylation of Akt at Thr308, which leads to 

increased phosphorylation of -catenin at the stabilizing residue Ser552 and Ser675.  

Additionally, -catenin accumulation leads to increased pro-inflammatory cytokine 

production through an NFκB-dependent mechanism.
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