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ABSTRACT

SPARSE FEATURE LEARNING FOR IMAGE ANALYSIS IN SEGMENTATION,

CLASSIFICATION, AND DISEASE DIAGNOSIS

Ehsan Hosseini-Asl

January 28, 2016

The success of machine learning algorithms generally depends on intermediate

data representation, called features that disentangle the hidden factors of variation in

data. Moreover, machine learning models are required to be generalized, in order to

reduce the specificity or bias toward the training dataset. Unsupervised feature

learning is useful in taking advantage of large amount of unlabeled data, which is

available to capture these variations. However, learned features are required to capture

variational patterns in data space. In this dissertation, unsupervised feature learning

with sparsity is investigated for sparse and local feature extraction with application to

lung segmentation, interpretable deep models, and Alzheimer’s disease classification.

Nonnegative Matrix Factorization, Autoencoder and 3D Convolutional Autoencoder

are used as architectures or models for unsupervised feature learning. They are

investigated along with nonnegativity, sparsity and part-based representation

constraints for generalized and transferable feature extraction.
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CHAPTER I

INTRODUCTION

The performance of machine learning methods is heavily dependent on the choice

of data representation (or extracted features) on which they are applied. Therefore,

much of the actual effort in training machine learning algorithms spent on the design of

preprocessing pipelines and feature extraction that result in a representation of the

data that can support effective machine learning. Such feature engineering is important

but labor-intensive and highlights their inability to extract and organize the

discriminative features from the data. Moreover, feature engineering is a way to use the

domain expert and prior knowledge to compensate for that weakness [12].

Therefore, designing a fully trainable machine learning algorithm that learns the

appropriate data representation, by extracting discriminative features is a key success

toward Artificial Intelligence (AI). On the other hand, there is plenty of data without a

label available, and employing an algorithm which can extract a set of comprehensive

features is the crucial part of AI. Unsupervised feature learning includes a family of

algorithms to automatically extract features without using information of domain

experts. In this work, selected unsupervised feature learning algorithms, i.e.

Nonnegative Matrix Factorization (NMF) [13], autoencoders (AE) and convolutional

networks [4, 14, 15] are investigated. NMF is employed for feature extraction from lung

Computed Tomographic (CT) images for lung segmentation [1, 2, 6]. Then image

classification is investigated for understandable feature extraction in deep networks

based on AE [16] and Convolutional Autoencoder (CAE). Finally, a 3D Convolutional

Neural Network (CNN) is proposed for features extraction of brain Magnetic

Resonance Imaging (MRI) for Alzheimer’s Disease (AD) classification [17].

1



CHAPTER II

UNSUPERVISED FEATURE LEARNING METHODS

Feature learning comprises a set of algorithms to transform labeled or unlabeled

data to a new space, where it can capture the parameters and patterns of variation by

disentangling the hidden features. Features are learned through supervised and

unsupervised learning scheme. Numerous unlabeled data is available in each domain,

e.g. images, text data, speech, which contain several patterns of variation that can

easily be collected for feature extraction, e.g. from Internet. The task of feature

extraction from unlabeled data is known as unsupervised feature learning. Several

algorithms have been developed for this task, e.g. NMF, Independent Component

Analysis (ICA), and deep learning. In this section, the details of NMF and deep

learning methods are addressed.

A Matrix decomposition

Data-adaptive representations are dependent on the statistics of data. Such

representations are learned directly from the observed data by optimizing some measure

that quantifies the desired properties of the representation [18]. This class of methods

include Principal Component Analysis (PCA), ICA, Sparse Coding (SC), and NMF.

Assume that the observed data are in the form of a large number of i.i.d.

random vectors an, where n is the sample index. Arranging these into the columns of a

matrix A, then linear decompositions describe this data as,

A ≈WH (1)

where the matrix W is called the mixing matrix, and contains as its columns the basis

vectors (features) of the decomposition. The rows of H contain the corresponding

2



Figure 1. Unsupervised feature learning based on matrix factorization.

hidden components that apportion the contribution of each basis vector in the input

vectors. A practical problem with linear decomposition methods is that both the

learning W and H are computationally expensive, especially when a new data sample

is introduced. Unsupervised feature learning is an efficient alternative to manual

feature engineering, especially in case of high-dimensional images. However,

generalization of feature learning is imposed by different constraints. Sections 1 and 1

cover the developed constraint to learn generalize features from training data.

1 Sparse coding

In linear sparse coding [19, 20], the goal is to find a decomposition in which the

hidden components are sparse, meaning that they have probability densities which are

highly peaked at zero and have heavy tails. This basically means that any given input

vector can be well represented using only a few significantly non-zero hidden

coefficients. Combining the goal of small reconstruction error with that of sparseness,

one can arrive at the following objective function to be minimized,

J (W,H) =
1

2
∥ A−WH ∥2 +λ

∑

ij

f (hij) (2)

where λ is a penalty term which controls the trade-off between accurate reconstruction

and sparseness.
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2 Nonnegative Matrix Factorization (NMF)

In standard sparse coding, the data is described as a combination of elementary

features involving both additive and subtractive interactions. The fact that features

can cancel each other out using subtraction is contrary to the intuitive notion of

combining parts to form a whole. Thus, Lee et al. [13, 21] suggested the non-negative

representations. The motivation for non-negative representations come from biological

modeling [13], where such constraints are related to the non-negativity of neural firing

rates. These non-negative representations assume that the input data A, the basis W,

and the hidden components H are all non-negative.

To find an approximate factorization, the cost function D(A|WH) that

quantifies the quality of the approximation should be defined [13]. Given a data matrix

A ∈ Rm×n and a positive integer k < m, nonnegative factorization of A into matrices

W ∈ Rm×k and H ∈ Rk×n is computed as,

min
W,H

D(A|WH) subject to W ≥ 0,H ≥ 0 (3)

where the notation A ≥ 0 expresses nonnegativity of the entries of A and D(A|WH)

indicates the factorization loss, such that,

D(A|WH) =
m∑

i=1

n∑

j=1

d(aij|(WH)ij) (4)

where d(x|y) is a scalar cost function as known in the literature [22]. Several cost

functions are defined in the literature. Most of them belong to the Bregman divergence

family [23]. Generally, a divergence function is defined as,

Dα(a, b) =

⎧
⎪⎨

⎪⎩

αaα−bα

α + bα(b− a) : α ∈ (0, 1]

α(log a− log b) + (b− a) : α = 0
(5)

where α is chosen to define the type of the divergence function. Accordingly,

D1(a, b) = (a− b)2 measures the Euclidean distance, and D0(a, b) defines the

KullbackLeibler (KL) divergence [24], as below,

DEuclidean(A|WH) =
m∑

i=1

n∑

j=1

1

2
(aij − (WH)ij)

2 (6)
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DKL−divergence(A|WH) =
m∑

i=1

n∑

j=1

(aij log
ai,j

(WH)ij
− aij + (WH)ij) (7)

A key issue of NMF factorization is to minimize the cost function while

constraining the elements of W and H matrices to be nonnegative. Another challenge

is the existence of local minima due to non-convexity of D(A|WH) in both W and H.

Moreover, a unique solution to NMF problem does not exist, since for any invertible

matrix B whose inverse is B−1, a term WBB−1H could also be nonnegative and also a

solution. This is probably the main reason for non-convexity of D(A|WH)

function [24]. In [13], NMF is applied to face images, yielding features that can

decompose face into interpretable parts, e.g. lips, nose, eyes, etc. This was contrasted

with the holistic representations learned by PCA and vector quantization. Hosseini-Asl

et al. [25] studied different optimization algorithms of NMF, described in the following

sections, for document clustering. The performance of the algorithms were tested on

Reuters Document Corpus for document clustering. The most efficient algorithms in

terms of accuracy, entropy, purity, computational time and RMSR were identified.

Multiplicative algorithm

The multiplicative gradient descent approach is equivalent to updating each

parameter by multiplying its value from previous iteration by the ratio of the negative

and positive parts of the gradient of the cost function with regard to the updating

parameter [21, 26]. The typical multiplicative algorithm originated by Lee et al. [13] for

Euclidean and KL-divergence cost functions in Eq.(8) and Eq.(9), respectively,

hij ←− hij
(WTA)ij

(WTWH)ij
, wij ←− wij

(AHT )ij
(WHHT )ij

(8)

hij ←− hij

∑
i wiaail/(WH)il∑

k Wka
, wia ←− wia

∑
l halail/(WH)il∑

v hav
(9)

Sparse NMF

SC [18] and Sparseness Constraint (SpC) [27] are developed to impose sparsity

on H matrix. Using the SC method, Euclidean cost function is penalized by the

elements of H matrix,
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DSP (A|WH) =
m∑

i=1

n∑

j=1

1

2
(aij − (WH)ij)

2 + λ
∑

ij

hij (10)

where λ ≥ 0 is the sparseness constant. In the SpC method, a Sparseness measure is

computed based on ℓ1 and ℓ2-norm for a vector x,

Sparseness(x) =

√
n− (

∑
|xi|)/

√∑
x2
i√

n− 1
(11)

where n is the dimensionality of x. Eq.(11) to unity iff x contains only a single

non-zero component, and takes a value of zero iff all components are equal (up to

sign), interpolating smoothly between the two extremes. Using this definition, Eq.(6) is

minimized under additional constraints,

sparseness(wi) = Sw, ∀i (12)

sparseness(hi) = Sh, ∀i (13)

where wi is the i-th column of W and hi is the i-th row of H. Here, Sw and Sh are the

desired sparsenesses of W and H, respectively. These two parameters are set by the

user.

Hybrid algorithm

In this approach, the multiplicative method is used at each iterative step to

approximate only the basis vector matrix W. Then, H is calculated using a

constrained least squares (CLS) method to penalize the non-smoothness and

non-sparsity of H. The hybrid algorithm is denoted as Gradient Descent with

Constrained Least Squares (GD-CLS) [28].

Alternating Least Square (ALS) algorithms

In this family of algorithms, a least squares step is followed by another least

squares step in an alternating fashion, thus giving rise to the ALS name, as shown in

Eq.(14) and Eq.(15),

min
W

D(A|WH) subject to W ≥ 0 (14)
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min
H

D(A|WH) subject to H ≥ 0 (15)

ALS algorithms exploit the fact that, while the optimization problem of Eqs.(6)

and (7) is not convex in both W and H, it is convex in either W or H, corresponding

to Eqs.(14) and (15), respectively. Thus, given one matrix, the other matrix can be

found with a simple least squares computation. However, the least square problem

should result in nonnegative W and H, which means least square algorithm should be

of class of nonnegative least square. Several algorithms have been proposed to keep

nonnegativity constraint in ALS algorithm. The basic ALS algorithm uses

nonnegativity threshold on elements of W and H matrices, to remove the nonnegative

elements [29]. ALS method based on Projected Gradient Method (ALS-PGD) was

proposed in [30], which contains nonnegativity constraint in the gradient based update

algorithms.

An Alternating Nonnegative Least Square method (ANLS) based on Active Set

(ANLS-AS) and Block Pivoting method (ANLS-BP) are proposed to solve nonnegative

constrained least squares problem in a fast way [31, 32]. Using ANLS-AS, the following

ANLS problem with multiple right hand side,

min
W>0

∥ HTWT −AT ∥2 (16)

min
H>0
∥WH−A ∥2 (17)

are converted to the form of Eq.(18), alternately,

min
G>0
∥ BG−Y ∥2 (18)

where B ∈ Rp×q and Y ∈ Rp×l. Then Eq.(18) is decoupled into l independent

Non-Negative Lease Square (NNLS) problem each with single right-hand side as,

min
G>0
∥ BG−Y ∥2= min

g1>0
∥ Bg1 − Y ∥2, . . . ,min

gl>0
∥ Bgl − Y ∥2 (19)

where G = [g1, . . . , gl] ∈ Rq×l and Y = [y1, . . . , y1] ∈ Rp×l. Then each independent

NNLS problems is solves using Active Set algorithm proposed in [32].
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Using ANLS-BP method, a single right-hand side problem is solved using Block

Principle Pivoting algorithm proposed, and it was generalized for multiple right-hand

side problem [31]. These methods have also been developed to include sparsity and

regularity inside the NNLS problem.

NMF based on β-divergence

The β-divergence is a family of cost functions parameterized by a single shape

parameter β. This cost function could takes the form of Euclidean distance, KL

divergence, and Itakura-Saito divergence as special cases (β = 2, 1, 0, respectively).

dβ(x|y) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
β(β−1)(x

β + (β − 1)yβ − βxyβ−1) : β ∈ R(0, 1)

x log x
y − x+ y : β = 1

x
y − log x

y − 1 : β = 0

(20)

Fevotte et al. [22, 33] proposed algorithms, which are based on a surrogate auxiliary

function (a local majorization of the criterion function). They developed a

majorization minimization algorithm that leads to multiplicative updates, and a

Majorization Equalization (ME) algorithm. The ME algorithm is used for NMF based

on β-divergence (Beta-ME) in the experiment section.

NMF based on Correntropy

The correntropy cost function is defined as,

DCorrentropy(A|WH) = −
m∑

i=1

n∑

j=1

exp(
−(aij − (WH)ij)2

2σ2
) (21)

where σ is a parameter of correntropy measure [34, 35]. The optimization algorithms

try to minimize the correntropy, since it is a measure of similarity instead of distance

between two elements. Ensari et al. [36, 37] used the general algorithm of Constrained

Gradient Descent (CGD) method [38] for minimizing the correntropy function, and

compared the results with the projected gradient descent method of Euclidean cost

function. The major disadvantage of CGD is its high sensitivity to σ value of the cost
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function. Du et al. [39] proposed a half-quadratic optimization algorithm to solve NMF

based on correntropy cost function, and developed a multiplicative algorithm to solve

NMF. Hosseini-Asl et al. [40] developed a multiplicative algorithm of NMF based on

correntropy loss for document clustering

B Deep learning

Recent studies have shown that deep architectures are capable of learning

complex data distributions while achieving good generalization performance and

efficient representation of patterns in challenging recognition tasks [14, 15, 41–44]. Deep

architecture networks have many levels of nonlinearities, giving them an ability to

compactly represent highly nonlinear complex mappings. However, they are difficult to

train, since there are many hidden layers with many connections, which causes

gradient-based optimization with random initialization to get stuck in poor

solutions [45]. To improve on this bottleneck, a greedy layer-wise training algorithm

was proposed in [46], where each layer is separately initialized by unsupervised

pre-training, then the stacked layers are fine-tuned using a supervised learning

algorithm [14,45]. It was shown that an unsupervised pre-training phase of each layer

helps in capturing the patterns in high-dimensional data, which results in a better

representation in a low-dimensional encoding space [14], and could result in more

sparse feature learning [47]. This pre-training also improves the supervised fine-tuning

algorithm for classification by guiding the learning algorithm towards local minima of

the error function, that support better generalization on training data [48,49].

There are two popular algorithms for unsupervised learning which have been

shown to work well to produce a good representation for initializing deep

structures [50]: Restricted Boltzmann Machines (RBMs) trained with contrastive

divergence [51], and different types of autoencoders [15].
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1 Autoencoders

An autoencoder network is an unsupervised learning algorithm that tries to

reconstruct its input vector in the output [50, 52]. As shown in Figure 2(a), it tries to

learn an encoding function,

x̂ = fW,b(x) ≈ x (22)

where x is the input vector, while W = {W1,W2} and b = {b1,b2} represent weights

and biases of both layers, respectively. It takes an input vector x ∈ [0, 1]n, and first

maps it to a hidden representation through a deterministic mapping, parametrized by

θ1 = {W1,b1}, and given by

h = gθ1(x) = σ (W1x+ b1) (23)

where h ∈ [0, 1]n
′
, W1 ∈ Rn′×n, b ∈ Rn′×1, and σ(x) denotes an element-wise

application of the logistic sigmoid, σ(x) = 1/(1 + exp(−x)). The resulting hidden

representation, h, is then mapped back to a reconstructed vector, x̂ ∈ [0, 1]n, by a

decoding function, parametrized by θ2 = {W2,b2},

x̂ = gθ2(h) = σ (W2h+ b2) (24)

where W2 ∈ Rn×n′
and b2 ∈ Rn×1. To optimize the parameters of the model in

Eq.(22), i.e. θ = {θ1, θ2}, the average reconstruction error is used as the cost function,

JE(W,b) =
1

m

m∑

r=1

(
1

2
∥ x̂(r) − x(r) ∥2

)
(25)

where m is the number of training samples.

By imposing meaningful limitations on parameters θ, e.g. limiting the dimension

n′ of the hidden representation h, the autoencoder learns a compressed representation

of the input, which helps discover the latent structure of data in a high-dimensional

space.

Sparse representation can provide a simple interpretation of the input data in

terms of a reduced number of parts and by extracting the structure hidden in the data.

Several algorithms were proposed to learn a sparse representation using
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Figure 2. Schematic diagram of a three-layer autoencoder.

autoencoders [46, 53]. One common method for imposing sparsity is to limit the

activation of hidden units h using the KL divergence function [54,55]. Let hj

(
x(r)

)

denote the activation of hidden unit j with respect to the input x(r). Then the average

activation of this hidden unit is:

p̂j =
1

m

m∑

r=1

[
hj(x

(r))
]

(26)

To enforce sparsity, the average activation p̂j = p is constrained, where p is the sparsity

parameter chosen to be a small positive number near 0. This also relates to the

normalization of the input to the neurons of the next layer which results in faster

convergence of training using the backpropagation algorithm [56]. To use this

constraint in Eq.(68), The KL divergence similarity between p̂j and p is minimized by,

JKL(p ∥ p̂) =
n′∑

j=1

p log
p

p̂j
+ (1− p) log

1− p

1− p̂j
(27)

where p̂ is the vector of average hidden activities. To prevent overfitting, a weight

decay term is also added to the cost function of Eq.(25) [57]. The final cost function for

learning a Sparse Autoencoder (SAE) becomes as follows:
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JSAE(W,b) = JE(W,b) + βJKL(p ∥ p̂)

+
λ

2

2∑

l=1

sl∑

i=1

sl+1∑

j=1

(
w(l)

ij

)2 (28)

where β controls the sparsity penalty term, λ controls the penalty term facilitating

weight decay, and sl and sl+1 are the index terms for nodes in adjacent layers.

2 Deep networks based on stacked autoencoder

Many hidden layers with many connections makes it difficult to train deep

networks. The gradient-based optimization with random initialization tends to get

stuck in poor solutions [45]. To overcome this problem, a greedy layer-wise training

algorithm was proposed in [46], where each layer is separately initialized by

unsupervised pre-training, then the stacked layers are fine-tuned using a supervised

learning algorithm [14,45]. It was shown that an unsupervised pre-training phase of

each layer helps in step-wise capturing of patterns in high-dimensional data, which

results in better representation in low-dimensional encoding space [14], and more sparse

feature learning [47]. It was also shown that it improves the supervised fine-tuning

algorithm for classification by guiding the learning algorithm towards basins of

attraction of minima, which supports better generalization from the training data

set [48, 49].

The greedy layer-wise approach for pre-training a deep network works by

training each layer in step-wise manner. A stacked autoencoder is a neural network

consisting of multiple encoding layers of autoencoders stacked on top of each other. Let

{Wk
1 ,b

k
1} and {Wk

2,b
k
2} denote the set of encoding and decoding parameters of k-th

autoencoder, respectively. Then the encoding step for the k-th stacked autoencoder is

computed by forward propagation of data through encoder layer,

hk = σ
(
zk
)

(29)

zk+1 = Wk
1h

k + bk
1 (30)
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The hierarchical features extracted in sequence through layers k = [1, . . . , L] are

capturing the patterns of variations in the input x. As shown in Figure 3, the features

from the stacked autoencoder can be used for classification problems by forwarding hL

to a softmax classifier.

Figure 3. Architecture of (a) autoencoder and (b) stacked autoencoder deep network [3].

3 Convolutional Autoencoder and Networks (CAE/CNN)

The conventional method for unsupervised feature extraction from a dataset is

based on encoding-decoding scheme, i.e. autoencoder. In this model, the data is

transformed into a low-dimensional space (in the hidden layer) and reconstructed back

(in the output layer) to the original space. To train the autoencoder to extract features

capturing patterns of variation, the reconstruction error is reduced using

back-propagation algorithm, while some properties of the low-dimensional space are

constrained. In case of high-dimensional images, it is computationally expensive to

extract global features (input weights) from image, since the number of weights in the

input and output layers of network grows very large, and also needs a large training

data [4]. Moreover, a fully connected autoencoder tries to learn global features,
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whereas local features are more suitable for extracting patterns from high-dimensional

images. To overcome this problem, an autoencoder based on nodes with locally

connected and shared weights (CAE) is used to extract unsupervised local features

from high-dimensional 2D images [58–60]. Using this method a 2D image is reduced

using hierarchical layers of CAE, where the hidden activities (feature map) of each

CAE is used as a training for the lower-layer CAE.

Locally connected layers

Inspired by the localized receptive field of neurons in the visual cortex [61], it

was proposed to restrict the connection between the hidden units and the input units,

allowing each hidden unit to span only to a local neighboring input units [4]. In other

words, each hidden neuron only connects to a small number of neighboring nodes of the

input vector, as shown in Figure 4(a).

(a)
(b)

Figure 4. Construction of convolutional neural network by (a) locally connected neuron,
and (b) convolution over feature maps [4, 5].

Convolutional neural networks

Each receptive field in CNN, known as convolutional filter, Wk, is shared across

local neurons belonging to the same featuremap, as shown in Figure 4(b). As

exemplified in Figure 4 (a), three hidden units belonging to the same featuremap are

depicted. Weights of the same color are shared, i.e. constrained to be identical.

Conceptually, a feature map is obtained by convolving the input image with a

linear filter, adding a bias term and then applying a non-linear function. Let hk
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denotes the k-th featuremap at a hidden layer, whose parameters, i.e. filter and bias,

are determined by the weights Wk and bias bk, respectively. Then the feature map hk

is computed as,

hk
ij = σ

((
Wk ∗ x

)
ij
+ bk

)
(31)

where (∗) indicates convolution operation.

To capture different patterns of variation in high-dimensional images, the hidden

layers in CNN are composed of multiple featuremaps, {h(k), k = 0, . . . , K}. An

exemplified two-layered CNN is shown in Figure 4(b).

LeCun et al. [4] suggested a CNN model for digit recognition, as depicted in

Figure 5. The lower layers are comprised of stacked convolutional and subsampling

layers, e.g. max-pooling, mean-pooling, etc. Following several layers of convolution and

subsampling, the input data dimension is reduced. Subsequently, several fully

connected layers are stacked on top of lower layers with softmax regression layers as an

output, to perform classification.

Figure 5. Architecture of LeNet-5 model for digit recognition [4].

C Unsupervised and Transfer Learning

Supervised learning requires enough labeled data to achieve good performance

on the given task. However, with limited labeled data, the classifier could benefit from

additional knowledge, i.e. from similar learning task, rather than the provided dataset.

To achieve such a generalized classifier, transfer learning is used that employs the
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already absorbed knowledge, e.g. deep network weights, from a similar learning task,

and uses them for initialization of the goal classification task [62–65].

Domain adaptation [66–68] refers to the knowledge transfer, by learning a

classifier from a source data, and using the trained model on the target data. In

supervised learning, where data X is drawn i.i.d from a distribution DS, the goal is to

learn a hypothesis h : X −→ Y with minimization of a loss function L. In domain

adaptation, however, with given source domain Ds and the target domain Dt, the goal

is to learn hypothesis h : X −→ Y to minimize the loss L on target domain, by

transferring knowledge from source domain. To boost the prediction performance of

deep model, leveraging the unsupervised feature learning is considered by transferring

the trained features (knowledge) to the target domain [69].
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CHAPTER III

MOTIVATIONS AND RESEARCH GOALS

This work is investigating the use of unsupervised feature learning for developing

image segmentation, classification, and disease diagnosis models. This overview chapter

provides motivations and summary of research goals for the reader of remaining

chapters.

A Image segmentation

For image segmentation, lung segmentation from CT scans is investigated. NMF

is chosen as the unsupervised feature learning technique with the following goals:

NMF-based method for lung segmentation

Each voxel can be defined as a feature vector using its neighborhood pixels.

NMF can be used as an unsupervised feature learning to extract low-dimensional

features to discriminate between voxels.

High-dimensional 3D lung segmentation using NMF

3D images contain large number of voxels, and implementing NMF is unfeasible

due to time-consuming large matrix operations, i.e. inverse, transpose. This part

focuses on developing an NMF-based approach for high-dimensional 3D images using

online learning that addresses the issue of high computing costs.

Automatic detection of pathology using NMF

Identifying the number of organs/pathologies in lung CT images is usually left

to the human expert which provides the information to CAD systems. This aspect of
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work investigates a model that automatically detects the number of distinguishable

organs in the CT scans through NMF online learning. The investigation and results are

covered in Chapter IV.

B Image classification

The image classification part of this work focuses on improving the

interpretability in unsupervised feature learning method. The study is divided in two

parts: (i) Autoencoder and (ii) Convolutional Autoencoder.

Interpretability in autoencoder

In Chapter V-A and Chapter V-B, the interpretability in deep network for

autoencoders is investigated in context of deep models classification performance with

the following goals:

• An autoencoder is used as unsupervised feature learning to pretrain deep models

for classification and recognition. To improve interpretability in classification

models to discriminate between different objects, it should be able to distinguish

between parts across object. Training an autoencoder to extract part-based

features is a crucial step toward introducing interpretability in deep models.

• Pretrained deep model of autoencoder is fine-tuned by the labeled data. To

maintain the interpretability in stacked layers of autoencoders during fine-tuning,

a modified learning algorithm based on back-propagation should be developed.

This part investigate the possible solution in developing an interpretable and

accurate deep model using an interpretable autoencoder.

Interpretability in convolutional autoencoder

To expand the investigation of feature extraction in AE into CAE model, the

part-based feature extraction is further studied with following objectives:
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• Convolutional networks preserve the local and spatial correlation in featuremaps

due to convolution. To extract discriminative and compressed feature from

high-dimensional images, the features should be sparsified. This part focuses on

the sparsification of feature learning in CAE.

• To introduce interpretability in CAE models, the featuremaps should be learned

in a way to decompose parts of objects across themselves. This part investigates

how sparsity can be applied to improve interpretability in CAE models.

• Convnets are complex models composing several convolutional filters to achieve

good classification. CAE as the core models of Convnets are used for pretraining.

This part investigates how to simplify CAE models using sparsity.

The investigation and results are covered in Chapter V-D.

C Disease diagnosis

For disease diagnosis, the AD classification is selected for investigation. The

goals are:

A 3D deep network for MRI-based AD classification

Accurate AD classification is highly dependent on detecting the AD biomarkers

across different regions of brain. Most developed CAD systems employ human

knowledge to design a pipeline to extract AD biomarkers and train classifiers on top of

the extracted features. This part focuses on developing a fully-trainable model for AD

feature extraction and classification, and to reduce the use of domain expert’s

knowledge.

Transfer learning for improved AD classification

Different CAD systems can be trained on different datasets for AD classification.

To leverage the access to different datasets for better AD diagnosis, transfer learning

has been employed to share the extracted and trained features from different datasets.
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This will require investigation on how to share the extracted features between datasets

to improve the classification. The investigation and results are covered in Chapter VI.
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CHAPTER IV

LUNG SEGMENTATION BASED ON UNSUPERVISED FEATURE

LEARNING

Accurate automated segmentation of lung tissues from CT images is of profound

importance for developing non-invasive computer-assisted system for early diagnosis of

lung cancer and other pulmonary diseases [70–75]. This problem is challenging due to

differences in CT scanners and scanning protocols, inhomogeneities of lungs, and lack

of a strong pixel/voxel-wise discriminatory signal between tissues surrounding the lungs

and pulmonary structures, such as arteries, veins, bronchi, and bronchioles, etc. Most

lung segmentation techniques employ adaptive signal thresholding [76], evolving

parametric [77], geometric (level-set based) [78], and geodesic deformable boundaries

(active contours, or snakes), including active contours with a shape prior defining a

stopping criterion [79] or guiding forces [80–82], and low-order Markov-Gibbs random

field models of CT images [83–85].

Most of these techniques have notable drawbacks. Different image acquisition

protocols and scanner types, as well as signal inhomogeneities in pulmonary structures

hinder signal thresholding. Deformable models are excessively sensitive to

initialization. Their conventional external forces depending on, e.g., edges, gradients,

and other local signal properties fail to capture natural lung inhomogeneities and

therefore the model towards a true lung boundary. More flexible active contours based

on shape priors depend on how accurately the prior is aligned to the input image.

Markov random field models usually take no account of high-order spatial signal

dependencies, which are necessary to accurately describe complex lung appearances.

Compared to all these approaches, the recent segmentation by NMF [1,2, 86–88]

demonstrated its ability in feature extraction from the image and using them for
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discriminating between different objects/modalities.

Based on the literature, the NMF is rarely used for segmentation, especially, in

application to medical images. The advantages include extracting one or more

characteristic basis feature vectors per each region of interest; projecting each initial

pixel/voxel-wise vector onto the feature space, and associating every projection with

the most relevant feature(s). Xie et al. [86] applied the NMF to extract from diffusion

tensor images (DTI) of rat brains the basis images of spinal cord, corpus callosum, and

hippocampus regions. Then the image sites were stratified by the K-means

clustering [89] of their projections in the decomposition matrix H. To segment a

multispectral barley grain cross-section, Lazar et al. [87] decorrelated the image dataset

with the Principal Component Analysis (PCA) and performed the NMF of the

decorrelated data. The data samples were classified by their closeness to the features

found, where the closeness being evaluated by the maximum coefficient in the

corresponding decomposition vector of the matrix H. Sandler et al. [88] divided a

texture mosaic into non-overlapping rectangular blocks, described each block with a

vector of outputs of linear Gabor, or wavelet filters. The NMF based on the Earth

mover’s distance was used to find the representative basis features and classify each

pixel using the Bayesian maximum a posteriori (MAP) decision rule.

To extract unsupervised features for lung segmentation, three frameworks for

segmentation of 3D lung images are proposed, where the spatial information of the

image is defined based on novel features that are extracted using NMF, Incremental

NMF (INMF), and Incremental Constrained NMF (ICNMF). To perform the

segmentation, the new extracted NMF spatial features is proposed in order to

discriminate between lung and chest voxels [2]. The following sections explain the

details of each algorithm.

A NMF-based segmentation

In this section, a novel frameworks are proposed for lung image segmentation,

which consists of four steps as shown in Figure 7. In the first step, the CT image

volume is preprocessed to remove its background. Then, an NMF-based visual
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appearance modeling is applied to extract novel image features. In the third step, the

lung data is segmented based on the extracted features of the image. Finally, the

segmentation is refined using a 3D region growing approach to produce the final

segmentation. These steps are discussed in detail in the folowing section.

1 Preprocessing

Due to the similarity between background and gray values of the lung voxels, the

first step of the proposed framework is to remove the background from the CT image

using a 3D region growing method. An illustration for removing the background using

this method is shown in Figure 6.

Figure 6. Original 3D image slices (a) before and (b) after removing their background
by 3D region growing from a seed at the 3D image corner.

2 NMF-based visual appearance modeling

The traditional way to model the spatial interaction of the image voxels is to

take into account their neighboring voxels. In this section, a new spatial interaction

model is developed for the lung data by extracting new spatial features based on NMF.

Let GNx,y,z ∈ QIx×Iy×Iz be the image signals of the neighborhood of the voxel (x, y, z).

By including the image signals of the neighborhood of all voxels, a 4D matrix

G ∈ QXY Z×Ix×Iy×Iz is composed. In the literature, different methods were proposed for

decomposition of G. For example, the Tucker1 Nonnegative Tensor Decomposition
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Figure 7. The developed framework for 3D lung segmentation from CT images using
NMF.

(NTD) was applied to decompose a multi-dimensional matrix [90]. However, this

method is computationally complex for large matrices (since it is computed using

iterative steps of multi-dimensional matrix product and division), which is the case for

the 3D lung data (i.e., G ∈ QXY Z×Ix×Iy×Iz). To overcome this limitation, NMF is used

instead of NTD. In this way, the decomposition computation becomes less complex due

to replacing multi-dimensional matrix computation by 2D matrix computation. Using

NMF, the input data matrix A ∈ QIxIyIz×XY Z can be factorized into two matrices:

A ≈WH (32)

where W ∈ R+IxIyIz×J contains the basis vectors of the new feature space, and the

vectors of H ∈ R+J×XY Z represent the new features of the voxels that model the visual

appearance of the image [13]. To process the 3D lung data using NMF, the spatial

feature GNx,y,z , for each voxel (x, y, z) is converted to the vector gNx,y,z
in the input

data matrix A (see Figure 7). To estimate W and H from Eq.(32), the Euclidean cost

function

D(A|WH) =
1

2
∥ A−WH ∥2 (33)

is minimized. Since the advent of NMF, several optimization algorithms have been

developed for minimizing Eq.(33). Multiplicative, ALS, and Projected Gradient

Descent (PGD) are examples of basic algorithms developed for minimization of
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Eq.(33) [29]. In this section, the ANLS-AS method [31]. The reason for using this

method is that the convergence of the ANLS-AS is faster than the other methods in

terms of cost function minimization [25,31]. Therefore, ANLS-AS results in

factorization in lesser iteration. In this method, the optimal G ∈ Rq×l in a general cost

function of the form of Eq.(34) is solved,

arg min
G>0

∥ BG−Y ∥2 (34)

where B ∈ Rp×q and Y ∈ Rp×l are given. Using ANLS-AS method, Eq.(34) can be

decoupled into l independent sub-problems:

arg min
G>0

∥ BG−Y ∥2=

arg min
g1>0

∥ Bg1 −Y ∥2, . . . , arg min
gl>0

∥ Bgl −Y ∥2
(35)

where G = [g1, . . . ,gl] ∈ Rq×l and Y = [y1, . . . ,yl] ∈ Rp×l, and each sub-problem is

solved independently. To implement ANLS-AS for Eq.(33), this cost function is

minimized by alternately solving:

arg min
W>0

∥ HTWT −AT ∥2 (36)

arg min
H>0

∥WH−A ∥2 (37)

where at each iteration, Eq.(36) and Eq.(37) are converted to the form of Eq.(34)

alternately, and then solved by Eq.(35). When the convergence criterion is satisfied,

each column in W defines a basis of visual appearance, and each column of H encodes

each voxel in the new feature (J-dimensional) space. As a result, H is expressing a new

set of visual appearance. The basic steps of the proposed NMF-based visual

appearance modeling is shown in Algorithm 1.

3 Segmentation

At this step, an initial segmentation for the lung is generated. First, the

K-means clustering algorithm is used to cluster the voxels in the new feature space H

in two groups. Euclidean distance is used as a measure of distance between voxels.
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Algorithm 1 NMF-based Visual Appearance Modeling

1. Create GNx,y,z for each voxel, then generate matrix A by including gNx,y,z
of all

voxels.
2. Compute NMF, A ≈WH, based on ANLS-AS method as follows:

(a) Convert Eq.(36) and Eq.(37) alternately, to the corresponding form in Eq.(34)

(b) Solve the resulting cost functions based on Eq.(35) to compute the H and W
matrices

(c) Iterate Steps 2-(a) and 2-(b) until convergence criterion satisfied, to obtain H
which represents the NMF-based visual appearance model for the 3D image.

Then ℓ2-norm of centers of clusters is measured to determine the lung cluster.

Therefore, the cluster which its center is closer to the origin is assumed to be the lung

cluster. The reason is that the gray value gx,y,z of lung voxels is smaller than chest

voxels, which results in smaller feature vector, in terms of ℓ2-norm, in H. Finally,

segmented image of the lung is generated from its cluster.

At the final step, the initial segmented lung is refined in two stage. In the first

stage, the 3D region growing algorithm is used to remove the mis-clustered voxels, by

choosing an initial seed point inside the segmented lung. At the second stage, the 2D

region growing algorithm is employed to keep connectivity inside the lung region. This

step is executed by choosing an initial seed point outside the segmented lung, where

the whole voxels inside the lung is assumed as lung’s voxels The proposed method of

lung segmentation is outlined in Algorithm 2.

Algorithm 2 Lung Segmentation Using NMF-based Visual Appearance Model

1. Preprocess image for removing background
2. Extract NMF-based visual appearance model of the 3D image using Algorithm 1
3. Cluster voxels into two groups of lung and chest using K-means clustering algorithm
4. Refine segmented lung using 3D and 2D region growing to remove mis-clustered
voxels, and keeping connectivity inside lung regions

B INMF-based automatic segmentation of pathological lungs

The main limitation of the conventional NMF model [13] is that it works only

when the actual number of clusters, J , is known prior to the segmentation process.
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Moreover, due to the slice-wise segmentation, the inter-slice signal dependencies were

taken into account only implicitly, via the context. This limitation was overcome in [1]

by decomposing the entire 3D context image in a voxel-by-voxel mode with a

computationally more efficient Multiplicative Update Rule (MUR)-based INMF [91].

After removing an irrelevant image background by simple 3D region growing, as

detailed in Section 1, the MUR-based INMF was applied to simultaneously estimate, in

the space of decomposition vectors H, an initially unknown number of clusters

representing main objects, such as lungs, chest tissues, veins, arteries etc. Then all the

decomposition vectors were reassigned to the darkest lung cluster and the brightest

chest cluster, and the resulting 3D region map was refined by the 3D connected

component analysis. Using this method, the number of image clusters in a pathological

lung is estimated in an automatic iterative mode.

1 INMF-based visual appearance modeling

INMF is an online algorithm which is based on updating W and H matrices

iteratively, when a new data sample (e.g. the neighborhood vector of the new voxel) is

added to data matrix A. By including all voxels’ neighborhood vectors into matrix A,

the basis vector W is trained and H can be directly calculated from Eq.(32). The

details of the INMF algorithm for visual appearance modeling is illustrated in

Algorithm 3.

2 Segmentation

In this step, a two-step clustering approach is used to obtain the segmentation of

the lung fields. First, the K-means clustering approach is applied on voxels in the H

space using J clusters. Then the ℓ2-norm of each cluster centroid is calculated. Since

the signals of the lung voxels are darker (smaller values) than those of the chest, the

centroid with the smallest ℓ2-norm is classified as the lung cluster centroid and the

largest one as the chest cluster centroid. Second, the K-means approach is applied to

all data points to classify them as lung or chest based on the nearest distance to lung

and chest centroids. To refine the segmentation, 3D connected component analysis is
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Algorithm 3 INMF-based Visual Appearance Modeling

1: Initialization

(i) Initialize A by the neighborhood vector gN0,0,0

(ii) Set the number of clusters to 1 (i.e. J = 1)

(iii) Initialize W and H randomly and set the first cluster centroid (c1 = h1)

2: Incremental Iterations: For each voxel (x, y, z) ∈ R

(i) Add the neighborhood vector of the voxel gNx,y,z
as ak =

{ai,n : i = 1, . . . , IxIyIz;n = k} to the data matrix, which compose Ak.

(ii) Perform alternative update of Wk and hk = {hj,n : j = 1, . . . , J ;n = k} itera-
tively for j = 1, . . . , J and i = 1, . . . , IxIyIz:

(hk)j ←− (hk)j
(Wk

Tak)j
(Wk

TWkhk)j
(38)

(Wk)ij ←− (Wk)ij
(AkHk

T + akh
T
k )ij

Wk(Hk−1Hk−1
T + hkh

T
k )ij

(39)

(iii) Compute dist = min
cj
∥ hk − cj ∥ : j ∈ [1, . . . , J ]

– If dist is less than a given threshold, update the closest cluster centroid
cj ←− 1

k ((k − 1)cj + hk)

– Otherwise, increase the rank ofWk by adding a randomly generated column
(J = J + 1) and update hk and Wk iteratively using (38) and (39)

(iv) Stop when all voxels are added. J represents the final number of clusters and
W represents the new computed basis of the data

3: Output: Solve (32) to output H matrix that represents the new visual appearance
of the image

applied to select the largest component as the final segmentation of the lung field. The

proposed method of lung segmentation is outlined in Algorithm 4.

C ICNMF-based 3D lung segmentation

The INMF approach used voxels-wise incremental learning to determine the

number of clusters, which is computationally expensive for large 3D images. Moreover,

the number of clusters are highly sensitive to the distance parameter of algorithm,

which is directly related to the sparseness and smoothness of the decomposition space

H. These drawbacks are overcome in [6] by using an introduced below ICNMF, which
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(a)

(b)

Figure 8. (a) The developed framework for automatic lung segmentation from CT images,
(b) 2-step clustering for pathological lung case, where three clusters are detected by
INMF method, and two clusters (lung and chest) are extracted [1].

combines basic ideas of the INMF [91] and Constrained NMF (CNMF) [93,94]. The

ICNMF decomposes every large data matrix A in a slice-by-slice mode, such that

factorization of each next axial CT slice in a 3D CT image is initialized with the basis

and decomposition matrices, having been already obtained from all the preceding slices.

To minimize the reconstruction error in Eq.(33) for a large matrix A in a

computationally feasible way, the INMF forms the goal matrices W and H

incrementally, using the iterative MUR ,that at each computational step, converge to

the closest local minimum [91]. After each next data vector is added to A, the already

computed matrices W and H initialize the next step, thus reducing the overall INMF

complexity. However, the INMF by itself does not guarantee smooth and sparse data
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Algorithm 4 Automated Lung Segmentation Using INMF-based Visual Appearance
Model
1: Preprocess image for removing background
2: Extract INMF-based visual appearance model of the 3D image using Algorithm 3
3: Cluster image voxels into J groups (calculated in step 2) using the K-means clustering

algorithm [92], (as shown in step 1 in Figure 8.(b))
4: Assign smallest cluster centroid in terms of ℓ2-norm as lung cluster and the maximum

centroid as the chest cluster
5: Use K-means to classify data points into lung or chest classes based on the nearest

distance to lung and chest centroids (as shown in step 2 in Figure 8(b)).
6: Refine the segmented lung fields using a 3D connected component analysis

representation, obtained by the CNMF due to the constrained matrix factors. The

ICNMF combines these main ideas of the INMF and CNMF.

1 Incremental Constrained NMF (ICNMF)

Let Ak = [a1 a2 . . . ak]; Wk; Hk; Fre:k, and Fk, denote the data matrix with the

initial k data samples, the corresponding basis and decomposition matrices, the

reconstruction error, and the constrained reconstruction error, respectively:

Fre:k =∥ Ak −WkHk ∥2;

Fk = Fre:k + λW ∥Wk ∥2 +λH ∥ Hk ∥2
(40)

The INMF [91] assumes that every new sample, ak+1, does not significantly

affect the current basis Wk, optimized for the previous k samples, so that their

decomposition vectors, Hk, need not be updated. Then the first k columns of Hk+1

remain equal to Hk, i.e., Hk+1 = [Hk hk+1], and only the basis, Wk+1 and the last

decomposition column vector, hk+1 have to be updated [91]. To reach a local minimum

of the constrained reconstruction error of Eq.(40) after adding the new sample, ak+1,

these updates:

Fre:k+1 =∥ Ak+1 −Wk+1Hk+1 ∥2;

Fk+1 = Fre:k+1 + λW ∥Wk+1 ∥2 +λH ∥ Hk+1 ∥2
(41)

are converted into an incremental form separating the previous samples from the new

one:

Fk+1
∼= F̂re:k+ ∥ ak+1 −Wk+1hk+1 ∥2

+λW ∥Wk+1 ∥2 +λH ∥ hk+1 ∥2
(42)
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Here, F̂re:k is the reconstruction error for the first k samples, which has been updated

for the current k + 1 samples:

F̂re:k =
∑m

i=1

∑k
j=1(aij − (Wk+1Hk+1)ij)2

∼=
∑m

i=1

∑k
j=1(aij − (Wk+1Hk)ij)2

(43)

Therefore, after adding the next sample ak+1, the conditional minimization of Eq.(42)

is rewritten to

Fk+1 = ∥ Ak −Wk+1Hk ∥2 +

∥ ak+1 −Wk+1hk+1 ∥2 +

λW ∥Wk+1 ∥2 +

λH (∥ Hk ∥2 + ∥ hk+1 ∥2)

(44)

optimizes the basis, Wk+1, and adds the new column, hk+1, to the decomposition

matrix, Hk+1 = [Hk hk+1]. A conditional local minimum of the error in Eq.(44) is

found by a gradient-like iterative search [95]:

(hk+1)q ← (hk+1)q − αq
∂Fk+1

∂(hk+1)q
;

(Wk+1)iq ← (Wk+1)iq − βiq
∂Fk+1

∂(Wk+1)iq
;

q = 1, . . . , r; i = 1, . . . ,m

(45)

where αq and βiq are specific steps for updating the elements (hk+1)q and (Wk+1)iq,

respectively, and the partial derivatives follow from Eq.(45):

∂Fk+1

∂hk+1
= −2WT

k+1 (ak+1 −Wk+1hk+1)

+2λHhk+1;

∂Fk+1

∂Wk+1
= −2 (Ak −Wk+1Hk)HT

k

−2 (ak+1 −Wk+1hk+1)hT
k+1

+2λWWk+1

(46)

As shown in [95], the required adaptive steps result in the multiplicative updates,

ensuring the factors Wk and Hk, which initially (for k = 1) were nonnegative, remain
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nonnegative at every updating iteration, and hence at every step, k = 2, . . . , n: for

q = 1, . . . , r and i = 1, . . . ,m

αq =
(hk+1)q

(WT
k+1Wk+1hk+1)q

;

(hk+1)q ← (hk+1)q
(WT

k+1ak+1)q
(WT

k+1Wk+1hk+1+λHhk+1)q
;

βiq =
(Wk+1)iq

Siq
;

(Wk+1)iq ← (Wk+1)iq
(AkHT

k+ak+1hT
k+1)iq

Siq

(47)

where Siq = (Wk+1HkHT
k +Wk+1hk+1hT

k+1 + λWWk+1)iq and Wk+1 is initialized with

Wk, when the new sample ak+1 is added. The updates of Eq.(47) provably guarantee

that iterations at every step k converge to a local minimum of the reconstruction

error [21, 95].

Computational complexity of the ICNMF (like the INMF) is O(mr2) per

iteration, comparing with O(nmr) for the NMF with the running time depending

linearly on the number n of samples. The independence of the running time from the

number of samples, makes the ICNMF and INMF more suitable for learning the matrix

factors W and H for representing a large collection of data samples. Moreover, as

follows from Eq.(47), the computations for the learning process can be simplified by

taking into account that both matrices Ak and Hk do not change after adding every

new data sample ak+1. Thus, instead of keeping separately the growing matrices Ak

and Hk, only their fixed-size products AkHT
k and HkHT

k have to be stored.

The above updating process holds (with mostly notational changes), if the data

matrix Ak is appended at each step k+1 with not a single data vector, but a small-size

matrix ak+1, e.g., a context image for the next 2D slice in the lung segmentation case.

2 ICNMF-based visual appearance modeling

The proposed lung segmentation in a 3D CT chest image is outlined in Figure 9

and Algorithm 5: (i) removing an image background by conventional 3D region

growing (Figure 6); (ii) modeling visual appearance of the remaining chest-lung image

with the ICNMF, and (iii) extracting 3D lung voxels by data clustering and cleaning

the region map. The last two stages are detailed below.
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Figure 9. The developed framework for 3D lung segmentation based on ICNMF [6].

Algorithm 5 3D Lung Segmentation by ICNMF-based Visual Appearance Modeling.

1: Preprocessing: Remove a background of an input 3D CT image g.
2: Apply Algorithm 6 to the remaining 3D context image to describe its visual appear-

ance by r-dimensional voxel-wise decomposition vectors in matrix H.
3: Assign the voxel descriptors to a prescribed number, K, of objects by the K-means

clustering [89].
4: Discriminate between the lung and chest clusters by characterizing their relative

brightness with the Frobenius norms of their centroids in H-space.
5: Refine the segmented 3D lung regions by analyzing 3D connected components.

To model the visual appearance of objects-of-interest with the ICNMF, the

context image [96] is built from the original 3D image

g = {gx,y,z : (x, y, z) ∈ R; gx,y,z ∈ Q}. Here,

R = {(x, y, z) : x = 0, . . . , X; y = 0, . . . , Y ; z = 0, . . . , Z} is a finite arithmetic lattice

supporting 3D digital images and their region maps, and Q is a finite set of integer

voxel-wise intensities, or gray values. Each voxel (x, y, z) of the context image is

described with the context vector a, which contains the intensities for this voxel and its

nearest 3D neighbors in the original image g, e.g., the 27 intensities in total for the

nearest 3× 3× 3 neighborhood.

To minimize the constrained reconstruction error of Eq.(42) after adding the

context vector ak+1 for every next voxel k+ 1, the details in Section 1, ICNMF uses the
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Algorithm 6 The ICNMF-based Visual Appearance Modeling

1: Initialization

(i) Given an image g, form the data matrix Az=0 from the context vectors of the first slice z = 0.

(ii) Set the number r of data clusters characterizing visual appearance of the image.

(iii) Initialize randomly the factors W0 and H0.

(iv) Update H0 and W0 until convergence:

(H0)qj ← (H0)qj
(WT

0A0)qj
(WT

0W0H0+λHH0)qj
;

(W0)iq ← (W0)iq
(A0H

T
0)iq

(W0(H0HT
0)+λWW0)iq

(48)

(v) Set A0:0 = A0 and H0:0 = H0.

2: Slice-wise increments: For each slice z = [1, . . . , Z],

(i) Form the matrix Az from the context vectors of the slice z and extend the joint data matrix
A0:z = [A0:z−1 Az].

(ii) Initialize the slice-wise decomposition matrixHz randomly and extend the joint decomposition
matrix H0:z = [H0:z−1 Hz].

(iii) Initialize the basis matrix Wz = Wz−1 and iteratively update Hz and Wz until convergence:

(Hz)qj ← (Hz)qj
(WT

zAz)qj
(WT

zWzHz+λHHz)qj
;

(Wz)iq ← (Wz)iq
(A0:z−1H

T
0:z−1+AzH

T
z)iq

(Wz(H0:z−1HT
0:z−1+HzHT

z)+λWWz)iq

(49)

3: Output: The joint decomposition matrix H0:Z describing visual appearance of the image g as a
mixture of the r clusters specified by the basis matrix WZ .

multiplicative algorithm of Eq.(47) that converges iteratively to the goal descriptor

hk+1 of this voxel and the updated basis matrix W. However, a very large size of the

3D CT image makes repetitive computations for all the image voxels too expensive. To

reduce the computational complexity, all the voxels of every CT slice are added to the

matrix A at the same time, while the slices are processed sequentially. The above

ICNMF algorithm remains almost the same, apart of considering ak+1 and hk+1 as

matrices, rather than vectors (Az and Hz). In this case, the already computed optimal

basis Wz of the previous z slices, initializes updating the basis Wz+1 for the z + 1

slices. Algorithm 6 outlines the proposed version of the ICNMF.

3 Segmentation

After modeling visual appearance with the ICNMF, the K-means clustering is

applied to the voxels in the H0:Z-space in order to form a prescribed number, K, of
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data clusters (in this case K = 2: the lungs and the chest tissues). The Frobenius norm

of each cluster’s centroid helps to identify the goal lungs, by their relative brightness in

the image: the brighter the voxel and its neighborhood, the farther their descriptor

from the H-space origin, so that the darker (low-intensity) contexts have the smaller

norms. Then the 3D connected component analysis refines the segmentation by

removing isolated voxels from another cluster inside each large segmented region.

To highlight capabilities of the ICNMF in revealing characteristic inter-voxel

dependencies, Figure 10 compares the voxel distribution in the original 27-dimensional

space for the 3× 3× 3 voxel neighborhoods to the same distribution in the reduced

r-dimensional decomposition space (H-space) formed by the ICNMF. Since the lung

voxels are much better separated from the chest voxels in the latter space, it yields

more accurate data clustering and segmentation.

Figure 10. Signal distributions for segmented voxels in the original 27-dimensional space
(a) and the r-dimensional spaces reduced with the NMF (b) and ICNMF (c) visualized
using the t-SNE projection [7]. The better ICNMF performance is exemplified by signal
distributions and segmentation results for pathologies on the lung-chest border [6].
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D Experiments with synthetic and real data

This section starts with evaluating ICNMF method and compare the

performance of three developed methods at the end. The developed algorithms in the

previous sections were evaluated on both real (in-vivo) and synthetic data using three

common performance metrics: (i) the Dice Similarity Coefficient (DSC) [97], (ii) the

Modified 95-percentile Hausdorff distance (MHD) [98], and (iii) the Absolute Lung

Volume Difference (ALVD). Synthetic 3D phantoms [85] simplify initial performance

tests, because accurate lung borders on real CT images are very difficult to obtain

manually, due to the observers’ variability. The phantom images mimic visual

appearance of the real 3D CT data by Gibbs sampling of a learned generalized 3D

Gauss-Markov random field model [99].

The in-vivo CT image data sets for 17 patients have been acquired with a

multi-detector GE Light Speed Plus scanner (General Electric, Milwaukee, USA) using

the following scanning protocol: the 2.5mm-thick slices reconstructed every 5 mm; the

scanning pitch of 1.5; 140 KV; 100 MA; and F.O.V of 36 cm and the size of

512× 512× 390 voxels of each 3D test data set. The CT image segmentation separated

two objects: the darker lung tissues and the brighter chest tissues.

Table 1 explores impacts of the sparseness and smoothness constraints of

Eq.(40) on the segmentation accuracy in the DSC terms for a real data set, showing

the decreased accuracy for the INMF-based modeling, i.e., for zero constraint weights

(λW = λH = 0) in Eq.(40). The ICNMF-based modeling resulted in the more accurate

TABLE 1. Segmentation accuracy for different weights in Eq.(40).
λW

λH 0 0.1 0.3 1 3 10 30 100 300
0 0.821 0.930 0.892 0.898 0.961 0.955 0.947 0.941 0.955
0.1 0.850 0.942 0.940 0.935 0.953 0.936 0.928 0.953 0.955
0.3 0.839 0.953 0.952 0.940 0.953 0.953 0.953 0.953 0.959
1 0.847 0.953 0.953 0.953 0.952 0.947 0.953 0.958 0.962
3 0.851 0.953 0.952 0.951 0.953 0.953 0.952 0.953 0.957
10 0.848 0.953 0.951 0.953 0.952 0.952 0.953 0.953 0.955
30 0.848 0.952 0.952 0.953 0.953 0.953 0.954 0.951 0.955
100 0.849 0.949 0.953 0.952 0.953 0.952 0.953 0.952 0.957
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Figure 11. Original 2D CT slices (a) and 3D lungs segmented using 3×3×3 (b), 7×7×3
(c), 11× 11× 3 (d), and 15× 15× 3 (e) neighborhood size, and projected onto the axial
(A), sagittal (S), and coronal (C) 2D planes for visualization.

segmentation, as the sparseness of H affecting the accuracy more, than the smoothness

of W. At the same time, the accuracy varies insignificantly for many weight

combinations, so that selecting the best pair requires a too long experimentation.

Based on a few additional experiments, the weights have been set in the experiments to

λW = 1 and λH = 100.

The segmentation accuracy was also tested for different numbers, r ∈ {2, 4, 6, 8},

of the basis vectors, the best result having been achieved for r = 4. Obviously, the

accuracy depends also on the neighborhood size and shape. Comparative experiments

with the (3× 3× 3), (7× 7× 3), (11× 11× 3), and (15× 15× 3) voxel neighborhoods

in Figure 11 have shown that the more expanded the neighborhood, the lesser the

segmentation accuracy. The increasing segmentation errors highlighted in green and

yellow can be explained in part by higher similarity between the larger neighborhoods

for the adjacent voxels along the lung-chest boundary. Also, a number of the CT scans

of patients with different lung diseases [100] were segmented in order to evaluate the

performance of Algorithm 5 in the case of severe lung pathologies. The eight CT scans

selected in Figure 12 demonstrate diverse pulmonary patterns, such as, e.g., caused by

airspace or diffuse consolidation; cancer; different nodules, including juxtapleural ones,

etc. Algorithm 5 adapts successfully to such pathologies.

Table 2 confirms the higher accuracy of Algorithm 5 based on the ICNMF w.r.t.
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Figure 12. Lungs segmented with Algorithm 5 using the 3 × 3 × 3 neighborhood on pulmonary CT in the cases of airspace
consolidation (a); tree-in-bud and micro-nodules (b); usual nodules (c); cancer (d); ground-glass opacity and juxtapleural
nodules (e); honeycomb (f); diffuse consolidation (g), and cavity (h) [6].
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TABLE 2. Comparative segmentation accuracy (DSC) of Algorithm 5 using the (3×3×3)
context w.r.t. five other algorithms on the in vivo data sets.

Algorithm Mean±std p-value
Algorithm 5 0.969±0.010

Segm-Int [101] 0.632±0.091 0.0001
Segm-Int+S [101] 0.783±0.078 0.0001
IT [76] 0.816±0.091 0.0001
MRS [102] 0.613±0.054 0.0001
GVF [103] 0.848±0.087 0.0003

TABLE 3. Accuracy of the ICNMF-based Algorithm 5 with the (3 × 3 × 3) contexts
w.r.t. the INMF-based [1] and NMF-based [2] algorithms on synthetic and real (in vivo)
data sets: mean±std [p-value].

DSC ALVD MHD
Real data Synthetic data Real data Synthetic data Real data Synthetic data

ICNMF 0.96±0.01 0.97±0.01 0.87±0.62 0.51±0.07 9.0±0.001 4.8±0.006

INMF [1] 0.95±0.02 [0.037] 0.96±0.02 [0.76] 2.2±1.2 [0.0004] 2.2±1.7 [0.040] 9.5±0.003 [< 0.0001] 5.7±0.030 [< 0.0001]
NMF [2] 0.95±0.02 [0.027] 0.96±0.01 [0.50] 2.4±1.1 [< 0.0001] 2.4±1.1 [0.004] 9.7±0.010 [< 0.0001] 5.9±0.005 [< 0.0001]

five other segmentation algorithms, by comparing the means and standard deviations

of their DSC values using the statistical paired t-tests. The latter algorithms account

for only signal intensities (the abbreviation Segm-Int) or combined intensity and spatial

information (Segm-Int+S) [101]; perform Iterative Thresholding (IT) followed by a

sequence of morphological operations [76] or Multiple Resolution Segmentation

(MRS) [102], or evolve a deformable boundary guided by the Gradient Vector Flow

(GVF) [103].

Table 3 compares the proposed ICNMF-based Algorithm 5 with two developed

NMF- and INMF-based segmentation algorithms [1, 2] on the 17 real and 7 synthetic

data sets, using the three aforementioned performance metrics. By the DSC accuracy,

all three algorithms differ insignificantly for the synthetic data, whereas for the real

data, Algorithm 5 demonstrates a small, but statistically significant improvement (the

DSC 0.96±0.01 vs. 0.95±0.02). At the same time, by the ALVD and MHD accuracy, the

proposed algorithm outperforms the other two algorithms both on the real and

synthetic data sets.

The sensitivity of the proposed segmentation algorithm against selecting its

weights, the number of the basis vectors, and the neighborhood size, was evaluated
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using Receiver Operating Characteristic (ROC) statistics, in particular, the area under

the ROC curve (AUC). The AUC for λH, λW, r and the neighborhood size (Nx,y,z)

was, respectively, 0.98, 0.98, 0.97, and 0.99, demonstrating good performance and low

sensitivity of the algorithm. Also, as was shown experimentally, different arrangements

of the 3D context voxels in the data vector a, do not affect the segmentation results.

TABLE 4. Overlaps with the true left (LL) and right lungs (RL) for Algorithm 5 (A5)
w.r.t. a human expert and the most (rank 1), median (rank 8), and least accurate (rank
15) LOLA11 segmentation of the 55 data sets : the mean, standard deviation (std),
minimum (min), 25%-quartile (Q1), median (med), 75%-quartile (Q3), and maximum
(max) overlaps.

Algorithm Object mean std min Q1 med Q3 max
A5[rank 5] Average score: 0.965

LL 0.965 0.108 0.205 0.981 0.988 0.992 0.998
RL 0.964 0.133 0.010 0.982 0.988 0.991 0.997

Human Average score: 0.984
LL 0.984 0.031 0.782 0.987 0.992 0.996 0.998
RL 0.984 0.047 0.662 0.988 0.995 0.997 0.999

Rank 1 [104] Average score: 0.973
LL 0.974 0.097 0.277 0.987 0.992 0.995 0.999
RL 0.972 0.135 0.000 0.991 0.994 0.996 0.999

Rank 7 [100] Average score: 0.955
LL 0.957 0.137 0.034 0.979 0.987 0.995 0.999
RL 0.952 0.151 0.000 0.984 0.990 0.997 0.999

Rank 13 [105] Average score: 0.939
LL 0.929 0.154 0.083 0.945 0.974 0.983 0.995
RL 0.950 0.121 0.150 0.960 0.978 0.988 0.994

To demonstrate its applicability to the data collected by various scanning

protocols, Algorithm 5 was also tested on 55 real chest 3D CT scans provided by the

Lobe and Lung Analysis 2011 (LOLA11) challenge (www.lola11.com) and acquired at

different places with several scanners, scanning protocols, and reconstruction

parameters. To evaluate the results using the LOLA11 dataset, the trachea and main

bronchi are removed, and if needed, separated the lung by finding a maximum cost

path in connected axial slices as in [106]. Table. 4 presents the results in comparison

with the best, median, and worst results for the 13 lung segmentation algorithms

participated in the LOLA11 challenge for 2011 - 2014. Selected examples of the lung
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Figure 13. 3D visualization of segmented lungs from selected LOLA11 subjects (“s”
indicates the scan).

region maps obtained by Algorithm 5 are shown in Figure 14. To further demonstrate

the algorithm’s performance, Figure 13 visualizes the segmented 3D lungs for selected

subjects.

It should be noted that several pathologies in the LOLA11 data set are far

outside capabilities of the proposed simple visual appearance descriptors accounting for

only the nearest-neighbor relations of the voxels. Accurate segmentation of such

pathological lungs requires much more profound lung and chest models. Moreover,

there is no consensus of the medical imaging community on whether the pleural fluid

should be considered as a part of the lung field as it is done in the LOLA11 ground

truth [100]. Because our ICNMF-based Algorithm 5 does not include the pleural fluid

to the lungs, by the overall accuracy of 0.965 (the relative overlap with the ground

truth) it has the 5th rank among all the LOLA11 contestants. However, without the

relevant nine pathological subjects from the LOLA11 data set it achieves the top-rank

accuracy of 0.986 for the remaining 46 subjects.

In terms of the algorithm complexity, the proposed ICNMF-based segmentation

extracts voxel-wise features in a completely unsupervised mode, using only a few

parameters, such as, e.g., λW, λH, r, and Nx,y,z, whereas the conventional top-ranked

techniques [100,104,107] comprise specific feature engineering steps, which require

proper initialization and parameter tuning.
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E Conclusions

The experiments with both in-vivo and synthetic images confirmed that the

proposed ICNMF-based 3D lung segmentation outperforms NMF- and INMF-based

segmentation algorithms by its DSC-, ALVD-, and MHD-accuracy. Its better

performance stems from a more accurate compressed description of characteristic

spatial signal dependencies in every input image, by revealing smooth features

(columns of the basis nonnegative matrix W) and encoding them with sparse

descriptors (columns of the nonnegative decomposition matrix H) of a corresponding

context image. To make the description computationally feasible for a typically very

large 3D CT image, the ICNMF combines the conventional INMF and CNMF, i.e., the

optimal basis and decomposition matrices are estimated incrementally, while their

constrained Frobenius norms enforce their smoothness and sparseness, respectively.

Testing on the 3D chest CT images provided by the LOLA11, collected by different

scanners, scanning protocols, and reconstruction parameters, indicated that the

proposed algorithm is scored sufficiently high among 13 other state-of-the-art methods.
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Figure 14. 3D lungs segmented with Algorithm 5 using the (3× 3× 3) context: the CT
slice (“s” and “f” indicate the scan and slice numbers, respectively) vs. the corresponding
lung region map (white) in the LOLA11 dataset [6].
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CHAPTER V

PART-BASED REPRESENTATION FOR DEEP LEARNING

This chapter will demonstrate how to achieve a meaningful representation from

data that discovers the hidden structure of high-dimensional data based on

autoencoders [12, 16,108] and convolutional autoencoder [58]. Inspired by the idea of

sparse coding [20,53,109] and NMF [13,110], learning features that exhibit sparse

part-based representation of data is expected to disentangle the hidden structure of

data. It will be shown that these features result in good generalization ability for the

trained model, and improve the reconstruction error.

Using NMF, the features and the encoding of data are forced to be nonnegative,

which results in part-based additive representation of data. However, while sparse

coding within NMF needs an expensive optimization process to find the encoding of

test data, this process is relatively fast in autoencoders [47]. Therefore, training an

autoencoder which could exploit the benefits of part-based representation using

nonnegativity is expected to improve the performance of a deep learning network.

In Section A, a new approach is developed to train an autoencoder by

introducing a nonnegativity constraint into its learning, in order to learn a sparse,

part-based representation of data. The training is then extended in Section B to train a

deep network with stacked autoencoders and a softmax classification layer, while

constraining the weights of the network to be nonnegative. The goal is two-fold:

part-based representation in the autoencoder network to improve its ability to

disentangle the hidden structure of the data, and producing a better reconstruction of

the data. It is shown that these criteria improves the prediction performance of a deep

learning network.

Convolutional net (Convnet) [4] have shown to be powerful models in extracting
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rich features from high-dimensional images. They employ hierarchical layers of

combined convolution and pooling to extract compressed features that capture the

intra-class variations between images. The purpose of applying pooling over neighbor

activations in featuremaps of Convnet is to break the spatial correlation of neighboring

pixels, and to improve the scale and translation invariant features learned by Convnet.

This also helps in learning filters for generic feature extraction of low-mid-high level of

concepts, such as edge detectors, geometric shapes, and object class [111–114]. Several

regularization techniques have been proposed to improve feature extraction in Convnet

and to overcome overfitting in large deep networks with many parameters. A dropout

technique in [115] is based on randomly dropping hidden units with its connection

during training to avoid co-adaption or redundant filter training. This method

resemble averaging over ensemble of sub-models, where each sub-model is trained based

on a subset of parameters. A maxout neuron is proposed in [116] while a maxout

neuron, is taking the maximum activity across featuremaps of Convnet, similar to

max-pooling. Maxout networks have shown to improve the classification performance

by building a convex an unbounded activation function, which prevents learning dead

filters (delta-shape filters). A winner-take-all method is employed in [59] to reduce or

eliminate redundant and delta type filters in pretraining of Convnet using CAE, by

taking the maximum activity inside featuremap in each training step.

Bach et al. [117] organize ℓ1 sparsity in a structured form to capture

interpretable features and improve prediction performance of the model. In this work,

a novel Structured Model of sparse feature extraction in CAE that improves the

performance of feature extraction by regularizing the distribution of activities inside

and across featuremaps. In Section D, the idea of sparse filtering [9] is employed, to

regularize the activity across featuremaps and to improve sparsity within and across

featuremaps. The model uses ℓ2 and ℓ1 normalization, as in [9], on the featuremap

activations to implement part-based feature extraction.
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A Nonnegativity Constrained Autoencoder (NCAE)

Ideally, part-based representation is implemented through decomposing data

into parts, which produce the original data when combined. However, the combination

of parts here is only allowed to be additive [13]. As shown in [118] that demonstrates

part-based representation in neural networks, the input data can be decomposed in

each layer into parts, while the weights in W are constrained to be nonnegative [118].

Intuitively, to improve the performance of the autoencoder in terms of

reconstruction of input data, it should be able to decompose data into parts which are

sparse in the encoding layer, and then combine them in an additive manner in the

decoding layer. To achieve this goal, a nonnegativity constraint is imposed on the

connecting weights W. This means that the column vectors of W are coerced to be

sparse, i.e. only a small portion of entries per column is non-zero.

To encourage nonnegativity in W, the weight decay term in Eq.(28) is replaced

and a quadratic function [119,120] is used. This results in the following cost function

for NCAE:

JNCAE (W,b) = JE (W,b) + βJKL(p ∥ p̂)

+
α

2

2∑

l=1

sl∑

i=1

sl+1∑

j=1

f
(
w(l)

ij

) (50)

where

f(wij) =

⎧
⎨

⎩
w2

ij wij < 0

0 wij ≥ 0
(51)

and α ≥ 0. Minimization of Eq.(50) would result in reducing the average

reconstruction error, increased sparsity of hidden layer activations, and reduced

number of nonnegative weights of each layer. To update the weights and biases, the

gradient of Eq.(50) used in the backpropagation algorithm is computed:

w(l)
ij = w(l)

ij − η
∂

∂w(l)
ij

JNCAE(W,b) (52)

b(l)i = b(l)i − η
∂

∂b(l)i
JNCAE(W,b) (53)
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where η > 0 is the learning rate. The derivative of Eq.(50) with respect to the weights

consists of three terms as shown below,

∂

∂w(l)
ij

JNCAE(W,b) =
∂

∂w(l)
ij

JE (W,b)

+ β
∂

∂w(l)
ij

JKL (p ∥ p̂)

+ αg
(
w(l)

ij

)

(54)

where

g(x) =

⎧
⎨

⎩
wij wij < 0

0 wij ≥ 0
(55)

The derivative term in Eq.(53) and the first two terms in Eq.(54) are computed using

the backpropagation algorithm [3,121].

B Deep learning using NCAE

A greedy layer-wise training algorithm is used to build a deep network, with

each layer pre-trained separately by unsupervised feature learning [46]. In this section,

a deep network is pretrained using an NCAE network, i.e., several layers of the

autoencoder are trained step by step, with the hidden activities of the previous

autoencoder used as input for the next autoencoder. Finally, the hidden activities of

the last autoencoder is used as an input to a softmax regression classifier to be trained

in a supervised mode. In the proposed approach, the nonnegative weights of the

softmax classifier during training is constrained, as described for training NCAE. The

misclassification cost function of the softmax classifier is,

JCL (W) = − 1

m

[
m∑

r=1

k∑

p=1

1
(
y(r) = p

)
log

ew
T
p x(r)

∑k
l=1 e

wT
l x(r)

]
(56)

where k is the number of classes, W is the matrix of input weights of all nodes in the

softmax layer, and wp is the p-th column of W referring to the input weights of the

p-th softmax node. Therefore, the cost function of Nonnegativity-Constrained Softmax
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Figure 15. Schematic diagram of a deep network

is defined as,

JNC-Softmax (W) = JCL (W) +
α

2

sL∑

i=1

k∑

j=1

f
(
w(L)

ij

)
(57)

where sL denotes the number of hidden nodes of the final autoencoder, f(·) is as in

Eq.(51) to penalize the negative weights of the softmax layer. The final step of

greedy-wise training is to stack the trained NCAE and softmax layers, and fine-tune

the network in supervised mode to improve the classification accuracy of the

network [46]. Only the negative weights of the softmax layer are constrained during

fine-tuning. The cost function for fine-tuning the Deep Network (DN) is given by

JDN (W,b) = JCL (WDN ,bDN) +
α

2

sL∑

i=1

k∑

j=1

f
(
w(L)

ij

)
(58)

where WDN contains the input weights of the NCAE and softmax layers, and bDN is

the bias input of NCAE layers, as shown in Figure 15.

A batch gradient descent algorithm is used, where the Limited-memory BFGS

(L-BFGS) quasi-Newton method [122] is employed for optimization of Eq.(50), Eq.(57),

and Eq.(58). The L-BFGS algorithm computes an approximation of the inverse of the

Hessian matrix, which results in less memory to store the vectors which approximate

the Hessian matrix. The details of the algorithm and the software implementation can
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be found in [38].

C Feature extraction by NCAE

This section tests the performance of the proposed method in learning

unsupervised features for three benchmark image data sets and one text dataset. A

deep network using NCAE as a building block is trained, and its classification

performance is evaluated. The MNIST digit data set is used for handwritten digits [4],

the ORL face data set [123] for face images, and the small NORB object recognition

dataset [124]. The Reuters 21578 document corpus is used from text to evaluate the

ability of the proposed method in learning semantic features.

1 Unsupervised feature learning

A three-layer Autoencoder with NCAE using Eq.(50) was trained. In the case of

image data, the input weights of hidden nodes W1 are rendered as images called

receptive fields. The results of the NCAE method are compared to the receptive fields

learned by a three-layer SAE of Eq.(28), NNSAE [8], and the basis images learned by

NMF. The multiplicative algorithm has been used to compute the basis images W of

NMF [13]. In the case of text data, W1 represents the group of words to evaluate the

ability to extract meaningful features connected to the topics in the documents.

2 Learning part-based representation of images

In the first experiment, an NCAE network was trained on the MNIST digit data

set. This dataset contains 60, 000 training and 10, 000 testing grayscale images of

handwritten digits, scaled and centered inside a 28× 28 pixel box. The NCAE network

contains 196 nodes in the hidden layer. Its receptive fields have been compared with

those of SAE, NNSAE, and NMF basis images in Figure 16, and decoding filters are

compared with SAE in Figure 18, with the histogram of weight distribution in

Figure 17 and Figure 19, respectively. The results show that receptive fields, learned by

NCAE, are more sparse and localized than SAE, NNSAE, and NMF. The darker pixels
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(a) SAE

(b) NNSAE

(c) NCAE*

(d) NMF

Figure 16. 196 Receptive fields learned from MNIST digit data set using (a) SAE, (b) NNSAE, (c) NCAE*, and (d) NMF.
Black pixels indicate negative, and white pixels indicate positive weights. Black nodes in (b) indicate neurons with zero weights.
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Figure 17. Encoding weight W(1) distribution histogram of (a) SAE, (b) NNSAE, (c)
NCAE*, and (d) NMF.

in SAE features indicate negative input weights. In contrast, those values are reduced

in NCAE features due to the nonnegativity constraint. Features learned by NCAE in

Figure 16 indicate that basic structures of handwritten digits such as strokes and dots

are discovered, whereas these are much less visible in SAE, where some features are

parts of digits or the whole digits in a blurred form. On the other hand, the features

learned by NNSAE and NMF are more local than NCAE, since it is harder to judge

them as strokes and dots or parts of digits. As a result, Figure 16 and Figure 18

indicate that the NCAE network learns a sparse and part-based representation of

handwritten digits that is easier to interpret, by constraining the negative weights. The

comparison of encoding weight distribution histogram to SAE, NNSAE, and NMF

method is shown in Figure 17, demonstrating the nonnegativity constraint effect. as

demonstrated by the weight histogram. To better investigate the sparsity of weights in

the NCAE network, the sparseness is measured using the relationship between the ℓ1

and ℓ2 norms proposed in [27], and the sparseness histograms are compared with other

methods in Figure 20 and Figure 21, for the receptive fields and decoding filters,

respectively. The results indicate that the nonnegativity constraints improve the

sparsity of weights in the encoding and decoding layer.

To evaluate the performance of NCAE in terms of digit reconstruction, the
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(a) SAE

(b) NCAE*

Figure 18. 196 decoding filters (W(2)) with weight histogram learned from MNIST digit data set using (a) SAE and (b) NCAE*.
Black pixels indicate negative, and white pixels indicate positive weights. Black nodes in (b) indicate neurons with zero weights.
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Figure 19. Decoding weight W(2) distribution histogram of (a) SAE, (b) NNSAE, (c) NCAE*.
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Figure 20. Histogram of the sparseness criterion (Eq.(11)) measured on 196 receptive
fields.

selected reconstructed digits and the reconstruction error of NCAE for different

numbers of hidden nodes are compared with those of SAE, NNSAE, and NMF in

Figure 22. The reconstruction of ten selected digits from ten classes is shown in

Figure 22. The top row depicts the original digits from the data set, where the

reconstructed digits using SAE, NNSAE, NCAE, and NMF algorithms are shown

below. It is clear that the digits reconstructed by NCAE are more similar to the

original digits than those by the SAE and NNSAE methods, and also contain fewer

errors. On the other hand, the results of NCAE and NMF are similar, while digits in

NMF are more blurred than NCAE, which indicates reconstruction errors. In order to

test the performance of the proposed method using different numbers of hidden

neurons, the reconstruction error (Eq.(68)) of all digits of the MNIST data set is

depicted in Figure 23. The results demonstrate that NCAE outperforms SAE and

NNSAE for different numbers of hidden neurons. It can be seen that the reconstruction

errors in NCAE and NMF methods are the lowest and similar, whereas NCAE shows

better reconstruction over NMF in one case. The results in Figure 23 demonstrate that

the nonnegativity constraint forces the autoencoder networks to learn part-based

representation of digits, i.e. strokes and dots, and it results in more accurate

reconstruction from their encodings than SAE and NNSAE.
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Figure 21. Histogram of the sparseness criterion (Eq.(11)) measured on 196 decoding
filters.

To better evaluate the hidden activities, Figure 24 depicts the sparsity measured

by the KL divergence of Eq.(27) for different numbers of hidden neurons in NCAE and

SAE networks. The results indicate that the hidden activations in NCAE are more

sparse than SAE, since JKL (p||p̂) is reduced significantly. This means that the hidden

neurons in NCAE are less activated than in SAE when averaged over the full training

set. In order to evaluate the ability of the proposed method in discovering the hidden

structure of data in the original high-dimensional space, the distributions of MNIST

digits in the higher representation level, i.e. hidden activities in SAE, NNSAE and

NCAE neural networks, and feature encoding of NMF (H), are visualized in

Figure 25(a), 25(b), 25(c), and 25(d) for SAE, NNSAE, NCAE, and NMF, respectively.

The figures show the reduced 196-dimensional higher representations of digits in 2D

space using t-distributed Stochastic Neighbor Embedding (t-SNE) projection [7]. The

comparison between these methods reveals that the distributions of digits for SAE,

NCAE, and NMF are more similar to each other than NNSAE. It is clear that manifold

of digits in NNSAE have more overlap and more twists than the other methods. On

the other hand, the manifolds of digits 7, 9, 4 in NCAE are more linear than in SAE

and NMF. The comparison between manifolds of other digits in terms of shape and
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Figure 22. Reconstruction comparison of the MNIST digits data set by 196 receptive
fields, using SAE , NNSAE [8], NCAE*, and NMF.

distance indicates that NCAE, SAE, and NMF have similar characteristics.

The second experiment is to test the performance of the proposed method on the

ORL database of faces (AT&T at Cambridge) [123]. This database contains 10 different

images of 40 subjects. For some subjects, the images were taken at different times,

with varying lighting, facial expressions, and facial details. The original size of each

image is 92× 112 pixels, with 256 gray levels per pixels. To decrease the computational

time, the input layer size of SAE and NCAE is reduced by resizing the images to

46× 56 pixels. The dataset is divided to 300 faces for training and 100 for testing.

The features learned from the ORL data are depicted in the images of receptive

fields in Figure 26(a-d) using the SAE, NNSAE, NCAE, and NMF methods,

respectively. The receptive fields of SAE indicate holistic features from different faces,

i.e. each feature is a combination of different faces of the database. On the other hand,

the receptive fields in NCAE indicate sparse features of faces, where several parts of

faces can be recognized. Most of the features learned by NCAE contain some parts of

the faces, e.g. eye, nose, mouth, etc. together. The nonnegativity constrains negative

weights in the NCAE network to become zero, as indicated by fewer darker pixels in

the receptive fields. The features learned by NNSAE and NMF indicate that most

features are holistic, whereas most face parts are visible in the basis images. In NMF
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Figure 23. Comparison of reconstruction error computed by Eq.(25).

and NNSAE, the extracted features are only nonnegative values, but it does not help in

creating sparse features, because hard constraints on negative weights force the

algorithm to learn complex receptive field of the basis image in NNSAE and NMF,

respectively. It can be concluded that NCAE was able to learn hidden features showing

part-based representation of the faces using soft constraints on the negativity weights,

whereas this is not achieved by SAE, NNSAE, and NMF. To assess the performance of

the proposed method in recovering the images, the reconstructed faces of several

subjects are shown in Figure 27. The faces reconstructed by NCAE appear more

similar to the original images than those by SAE, NNSAE, and NMF. The reason is

that NCAE could extract the hidden features, which show parts of the faces in the

encoding layer, and these features help the autoencoder network in composing the faces

from these features, e.g. eye, nose, mouth, etc., in the decoding layer. However, it is

hard to compose the original face from the holistic features created by SAE, NNSAE,

and NMF.

To investigate the effect of the nonnegativity constraint penalty coefficient (α) in

NCAE for learning part-based representation, different values of α is tested to train

NCAE. The hidden features are depicted in Figure 28. For this experiment, α is

increased logarithmically for three values in the range [0.003, . . . , 0.3]. The results

indicate that by increasing α, the resulting features are more sparse, and decompose
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Figure 24. Sparsity of hidden units measured by the KL divergence in Eq.(27) for the
MNIST dataset for p= 0.05.

faces into smaller parts. It is clear that the receptive fields in Figure 28(c) are more

sparse, and only show few parts of the faces. This test demonstrates that NCAE is able

to extract different types of eyes, noses, mouths, etc. from the face database.

In the third experiment, the NORB normalized-uniform dataset [124] is used,

which contains 24, 300 training examples and 24, 300 test examples. This database

contains images of 50 toys from five generic categories: four-legged animals, human

figures, airplanes, trucks, and cars. The training and testing sets are composed of 5

instances of each category. Each image consists of two channels, each of size 96× 96

pixels. To evaluate the performance of the method, an autoencoder is trained using 100

hidden neurons for SAE, NNSAE, and NCAE, and also NMF with 100 basis vectors.

The learned features are shown as receptive fields in Figure 29. The results indicate

that the receptive fields learned by NCAE are more sparse than SAE and NNSAE, since

they mainly capture the edges of the toys. On the other hand, the receptive fields from

SAE and NNSAE represent more holistic features. The basis images learned by NMF

also show edge-like features, however, they are more holistic than the NCAE features.
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(a) SAE (b) NNSAE

(c) NCAE* (d) NMF

Figure 25. Visualization of MNIST handwritten digits. 196 higher representation of digits computed using (a) SAE, (b) NNSAE,
(c) NCAE*, and (d) NMF are visualized using t-SNE projection [7].
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(a) SAE

(b) NNSAE

(c) NCAE*

(d) NMF

Figure 26. 100 Receptive fields learned from the ORL faces data set using (a) SAE, (b) NCAE*, and (c) NMF. Black pixels
indicate negative weights, and white pixels indicate positive weights.

Figure 27. Reconstruction of the ORL Faces test data using 300 receptive fields, using SAE (error=8.6447), NNSAE (er-
ror=15.7433), NCAE* (error=5.4944), and NMF (error=7.5653).
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(a) α = 0.003

(b) α = 0.03

(c) α = 0.3

Figure 28. 100 Receptive fields learned from ORL Faces data set using NCAE for varying
nonnegativity penalty coefficients (α). Brighter pixels indicate larger weights.

3 Semantic feature discovery from text data

In this experiment, the NCAE method is evaluated on extracting semantic

features from text data. The documents are first converted to a TF-IDF vector space

model [125]. Part-based representation in text documents is more complicated than in

images, since the meaning of document can not be easily inferred by adding the words

it contains. However, the topic of a document can be inferred from a group of words

delivering the most information. Therefore, to detect the topic of a document, the

autoencoder network should be able to extract these groups of words in its encoding

layer to generate a meaningful semantic embedding. To evaluate the proposed method,

the Reuters-21578 text categorization collection is used. It is composed of documents

that appeared in the Reuters newswire in 1987. The ModApte split is used to limit to

the 10 most frequent categories. A processed (stemming, stop-word removal) version in

bag-of-words format is used, which obtained from

http://people.kyb.tuebingen.mpg.de/pgehler/rap/.

The dataset contains 11, 413 documents with 12, 317 words/dimensions. Two

techniques were used to reduce the dimensionality of each document to contain the

most informative and less correlated words. First, words were sorted based on their

frequency of occurrence in the dataset. Then the words with frequency below 4 and

above 70 were removed. After that, the information gain with the class attribute [89]

was used to select the most informative words which do not occur in every topic. The

remaining words in the dataset were sorted using this method, and the less important
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(a) SAE

(b) NNSAE

(c) NCAE*

(d) NMF

Figure 29. 100 Receptive fields learned from small NORB data set using (a) SAE, (b)
NNSAE, (c) NCAE*, and (d) NMF. Black pixels indicate negative, and white pixels
indicate positive weights.

words were removed based on the desired dimension of documents. In this experiment,

the dimensionality of documents is reduced to the size [200, 300, 400].

To examine the features extracted in the encoding layer of NCAE, 20 words

connecting via the highest weights to each hidden neuron were examined. The

connecting weight from each word to a hidden neuron is equal to the magnitude of the

association of the word to the latent feature extracted by the hidden node. Using this

interpretation, a hidden node with the largest connecting weight of words related to a

specific topic can be assigned as a class detector for that topic. An NCAE network is

trained with 200 input neurons and 15 hidden neurons. Figure 30 depicts the selected
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Figure 30. An example of 7 most distinguishable categories, i.e., ship, crude, earn, acq, money-fx, grain and trade associated
with top 20 words (ranked by their weights) discovered from the Reuters-21578 document corpus. The charts at the bottom
row illustrate the weight impact of words on the category.

62



(a) SAE (b) NCAE*

Figure 31. Visualization of the Reuters documents data based on the 15-dimensional higher representation of documents
computed using (a) SAE and (b) NCAE*. Visualization used t-SNE projection [7].
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seven nodes showing the seven distinguishable topics of the dataset. The top row shows

the list of words with the topic inferred from the corresponding list. The bottom row

depicts the distribution of connecting weights in decreasing order. It can be concluded

that the semantically related words of a topic are grouped together in each hidden

node. To further evaluate the ability of the NCAE network to disentangle the semantic

features (topic detector) from the dataset, the distribution of documents in the hidden

layer, Figure 31(b), is compared to the SAE method, as depicted in Figure 31(a), where

topic information is used for visual labeling. It is clear that NCAE is able to group the

related documents together, whereas the topics which are meaningfully related are

closer in the semantic space.

4 Supervised learning

The next step is to investigate whether the ability of a deep network in to

decompose data into parts, with improved ability to disentangle the hidden factors in

its layers, can improve prediction performance. In this section, a deep network is

pretrained by stacking several NCAE networks, trained in the previous section. Then a

softmax classifier is trained using the hidden activities of the last autoencoder using

Eq.(57). Finally, the deep network is fine-tuned using Eq.(58) to improve the

classification accuracy. The results are compared to deep neural networks trained using

SAE, NNSAE, Denoising Autoencoder (DAE) [50], and Dropout Autoencoder

(DpAE) [126] on the MNIST, NORB, and the Reuters-21578. The classification results

are averaged over 10 experiments to mitigate the effect of initialization.

Tables 5-7 report the classification accuracy of the deep network, pre-trained

with different autoencoders. The results indicate that a deep network with NCAE

yields a significantly better accuracy than other networks before fine-tuning for all

three datasets, and after fine-tuning for two of the three data sets. For the NORB data

set, although the NCAE network was significantly superior before fine-tuning, the

classification results indicate no significant difference between NCAE, DAE, and DpAE

networks, after fine-tuning. The convergence speed of the different networks were also

compared based on the number of iterations during fine-tuning. These are listed

64



(a)

(b)

Figure 32. 200 Receptive fields of the first layer of the deep network after fine-tuning using (a) all weights constrained, and (b)
only Softmax weights constrained. Black pixels indicate negative weights, and white pixels indicate positive weights.
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Figure 33. Weight distribution of the first layer of deep network after finetuning for (a) all weights constrained, and (b)
Softmax-layer only constrained. According to histogram, 5.76% of weights become negative.

65



(a) SAE

(b) NCAE*

(c) DAE

(d) NC-DAE

(d) DpAE

Figure 34. 200 Receptive fields of the first layer of the deep network after fine-tuning using (a) SAE, (b) NCAE*, (c) DAE, (d)
DpAE on the MNIST data. Black pixels indicate negative, and white pixels indicate positive weights.
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alongside the error rates in Tables 5-7. It can be seen that NCAE network converges

faster than other methods, since it yields better accuracy before fine-tuning. Note that

all networks were trained for the same number of iterations (400) before fine-tuning.

Therefore NCAE’s superior performance is not at the cost of more iterations.

TABLE 5. Performance of supervised learning methods on MNIST dataset.
Before fine-tuning After fine-tuning

Model (784-200-20-10) Mean±SD p-value Mean±SD p-value # Iterations
Deep NCAE* 84.83±0.094 97.91±0.1264 97
Deep SAE 52.81±0.1277 <0.0001 97.29±0.091 <0.0001 400
Deep NNSAE 69.72±0.1007 <0.0001 97.18±0.0648 <0.0001 400
Deep DAE (50% input dropout) 11.26±0.14 <0.0001 97.11±0.0808 <0.0001 400
Deep NC-DAE (50% input dropout) 84.37±0.1318 <0.0001 97.42±0.0757 <0.0001 106
Deep DpAE (50% hidden dropout) 16.77.0784 <0.0001 96.73±0.1066 <0.0001 400

TABLE 6. Performance of supervised learning methods on NORB dataset.
Before fine-tuning After fine-tuning

Model (2048-200-20-5) Mean±SD p-value Mean±SD p-value # Iterations
Deep NCAE* 75.54±0.1152 87.76±0.3613 242
Deep SAE 20.00±0.1768 <0.0001 87.26±0.3109 0.0039 400
Deep NNSAE 19.93±0.2230 <0.0001 79.00±0.0962 <0.0001 400
Deep DAE (50% input dropout) 44.03±0.1553 <0.0001 88.11±0.3861 0.0508 400
Deep DpAE (50% hidden dropout) 49.49±0.1437 <0.0001 87.75±0.2767 0.9454 400

TABLE 7. Performance of supervised learning methods on Reuters-21578 Dataset.
Before fine-tuning After fine-tuning

Model (200-15-10) Mean±SD p-value Mean±SD p-value # Iterations
Shallow NCAE* 57.18±0.3639 81.15±0.1637 400
Shallow SAE 39.00±0.2255 <0.0001 78.60±0.2143 <0.0001 400
Shallow DAE (50% input dropout) 39.00±0.3617 <0.0001 76.35±0.1918 <0.0001 400
Shallow DpAE (20% hidden dropout) 39.00±0.4639 <0.0001 78.04±0.1709 <0.0001 400
Shallow DpAE (50% hidden dropout) 39.00±0.3681 <0.0001 72.12±0.2901 <0.0001 400

Figure 32 shows how far the nonnegativity property enforced during the

pretraining is preserved in unconstrained hidden layer during fine-tuning stage, by

comparing the difference when the nonnegativity constraint is added to the weights in

hidden layers. Figure 33 also depicts the deviation in weight distribution histogram due

to imposing nonnegativity constraint on softmax layer only. To relate the improved

accuracy to part-based decomposition of data, the first hidden layer of each deep

network is depicted in Figure 34. It demonstrates that the deep network based on

NCAE could decompose data into clearly distinct parts in the first layer, whereas there
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are more holistic features in other networks. This property leads to better

discrimination between classes at the next layers, thus resulting in better classification.

The nonnegativity constraint in the DAE network (NC-DAE) has also been tested on

the MNIST dataset. The results indicate that the performance of NC-DAE improves

over DAE before and after fine-tuning, since the hidden layers of NC-DAE are able to

decompose data into parts, and also it converges faster after fine-tuning. Table 6

reports the classification results on the small NORB dataset, and demonstrates that the

deep network with NCAE outperforms the other networks before fine-tuning. However,

its performance is not significantly different from the deep networks based on DAE and

DpAE, based on the p-values. Table 7 also reports the classification accuracy computed

with several one-hidden-layer networks. It also indicates that the deep network built

with NCAE outperforms other deep networks before and after fine-tuning by a large

margin, due to their ability to extract semantic features from documents on this data.

D Structured Sparse Convolutional Autoencoder (SSCAE)

In this section, the model of Structured Sparse CAE (SSCAE) is described.

CAE consists of convolution/pooling/nonlinearity based encoding and decoding layers,

where the feature vector is represented as featuremaps, i.e. hidden output of the

encoding layer.
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(a) CAE

(b) SSCAE

Figure 35. 16 example filters (Wk∈[1,...,16] = [wij]5×5) and featuremaps (hk∈[1,...,16] =

[hk
ij]24×24), with feature vectors (hij = [hk

ij]1×16), extracted from non-whitened MNIST

with sigmoid nonlinearity and no pooling using (a) CAE, (b) SSCAE. Effect of sparse

feature extraction using SSCAE is shown w/o pooling layer. Digits are input pixelmaps

28× 28, n = 16 for this example.
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In CAE with n encoding filters, the featuremaps hk∈n are computed based on a

convolution/pooling/nonlinearity layer, with nonlinear function applied on the pooled

activation of convolution layer, as in Eq.(59).

hk∈n = f(x ∗Wk∈n + bk∈n) (59)

where Wk∈n and bk∈n are the filter and bias of k-th featuremap, respectively. f(·)

indicates the nonlinearity function, e.g. sigmoid, Rectified Linear unit (ReLu). hk
ij is

referred to as single neuron activity in k-th featuremap hk, whereas hij =
[
hk
ij

]k∈n
is

defined as a feature vector across featuremaps hk∈n as illustrated in Figure 35.

In SSCAE, the featuremaps hk∈n are regularized and sparsified to represent

three properties; (i) Sparse feature vector hij; (ii) Sparse neuronal activity hk
ij within

each of the k-th featuremap hk; (iii)Uniform distribution of feature vectors hij.

In (i), sparsity is imposed on feature vector hij to increase diversity of features

represented by each featuremap, i.e. each hk∈n should represent a distinguished and

discriminative characteristic of the input, such as different parts, edges, etc. This

property is exemplified in Figure 35(b) with digits decomposed into parts across

featuremaps hk∈n. As stipulated in (ii), sparsity is imposed on each featuremap hk∈n

to only contain few non-zero activities hk
ij. This property is encouraged for each

featuremap to represent a localized feature of the input. Figure 35(b) shows property

(i) for MNIST dataset, where each featuremap is a localized feature of a digit, wherein

Figure 35(a) shows only extracted digit shape-resemblance features, a much less

successful and non-sparse outcome compared to Figure 35(b) where most featuremaps

are sparsified. Figure 36 also depicts the technique for numerical sparsification of each

featuremap. The property (iii) is imposed on activation features hij to have similar

statistics with uniform activity. In other words, hij will be of nearly equal or uniform

activity level, if they lie in the object spatial region, or non-active, if not. Uniform

activity also improves the generic and part-based feature extraction where the

contributing activation features hij of digits, i.e. hij, fall within convolutional region of

digits and filters Wk∈n show uniform activity level, which results in generic and

part-based features.
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Figure 36. Structured Sparsity illustrated with on (a) two-dimensional and (b) three-
dimensional space for featuremaps (h1, h2, h3) of MNIST dataset. Each example is first
projected onto the unit ℓ2-ball and then optimized for ℓ1 sparsity. The unit ℓ2-ball is
shown together with level sets of the ℓ1-norm. Notice that the sparseness of the features
(in the ℓ1 sense) is maximized when the examples are on the axes [9].

To enforce the aforementioned sparsity properties in CAE models, the

combination of ℓ2 and ℓ1 normalization is used on hk∈n of Eq.(59), as proposed in [9],

and as shown in Figure 37. In SSCAE, a normalization layer is added on the encoding

layer, where the normalized featuremaps h̃k∈n and feature vectors h̃ij are imposed by

two ℓ2-normalization steps, as in Eq.(61) and Eq.(60), respectively,

ĥij =
hij

∥ hij ∥2
(60)

h̃k =
ĥk

∥ ĥk ∥2
(61)

The final normalized featuremaps h̃k∈n are forwarded as inputs to the decoding

layer of unpooling/deconvolution/nonlinearity to reconstruct the input x as in Eq.(62),

x̃ = f(
∑

k∈n

h̃k ∗Pk + ck) (62)

where Pk and ck are the filters and biases of decoding layer. In order to enforce the

sparsity properties of (i)-(iii), the ℓ1 sparsity is applied on h̃k∈n as in Eq.(64), where
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the averaged ℓ1 sparsity over n featuremaps and m training data is minimized during

the reconstruction of input x, as in Eq’s.(63), (64) and (65),

LL2rec =∥ x− x̃ ∥2 (63)

LL1sp =
1

m

1

n

∑

d∈m

∑

k∈n

∥ h̃k ∥1 (64)

LSSCAE = LL2rec + λL1spLL1sp (65)

where LL2rec, LL1sp and LSSCAE are the reconstruction, sparsity and SSCAE loss

functions, respectively. λL1sp indicates the sparsity penalty on h̃k∈n and h̃ij. Figure 36

demonstrate the steps of normalization and sparsification by selected feature maps of

MNIST data. This model has been tested on other dataset for exploring feature

extraction performance, which is described in the following section.

Figure 37. Model architecture of Structured Sparse Convolutional AutoEncoder (SS-
CAE)

E Feature extraction by SSCAE

In this section, the performance of structured sparsity in CAE network is

investigated for unsupervised feature extraction, in terms of dead filter learning,

part-based learning in featuremaps and reconstruction-based learning. The
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(a) CAE w/o pooling, select delta filter and featuremap

(b) SSCAE w/o pooling, select filter and sparse featuremap

(c) CAE w/ max-pooling, select delta filter and featuremap

(d) SSCAE w/ max-pooling, select filter and sparse featuremap

Figure 38. Comparison of 8 filters learned from MNIST by CAE and SSCAE w/o pooling
(a,b) and w/ non-overlapping max-pooling (c,d) using ReLu (max(0, x)) nonlinearity.
Select single filter and respective featuremaps shown on the digit.

performance is evaluated on MNIST and Street View House Numbers (SVHN)

datasets. ZCA normalization is also employed as whitening preprocessing step [3].

Theano [127] and Pylearn [128] are used, on Amazon EC2 g2.8xlarge instances with

GPU GRID K520 for the experiments.

1 Minimizing dead filters

In order to compare the performance of the proposed model in minimizing dead

filters by learning sparse and local filters, the trained filters of MNIST data are

compared between CAE and SSCAE with and without pooling layer in Figure 38. It is

shown in Figure 38(a)(c) that CAE with and without pooling layer learn some delta

filters which provide simply an identity function. However, the sparsity function used

in SSCAE is trying to reduce in extracting delta filters by managing the activation

across featuremaps, as shown in Figure 38(b)(d).
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(a) CAE

(b) SSCAE

Figure 39. SVHN data-flow visualization in (a) CAE and (b) SPCAE with 8 filters. The effect of structured sparsity is shown
in encoding and decoding filters and the reconstruction. No ZCA whitening [3] is applied.
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(a) CAE (b) SSCAE

Figure 40. Selected featuremap of SVHN dataset extracted by (a) CAE, and (b) SSCAE
with 8 filters of 11× 11× 3 size. No ZCA whitening is applied.

2 Improving learning of reconstruction

To investigate the effect of structured sparsity on learning of filters through

reconstruction, the performance of CAE and SSCAE is compared on SVHN dataset, as

shown in Figure 39. To show the performance of structured sparsity on reconstruction,

a small CAE with 8 filters is trained on SVHN dataset. Figure 39(a) shows the

performance of CAE after training which fails to extract edge-like filters and results in

poor reconstruction. Figure 41 also depicts the learned 16 encoding and decoding

filters on small NORB dataset, where structured sparsity improve the extraction of

localized and edge-like filters. However, SSCAE outperform CAE in reconstruction due

to learned edge-like filters. The selected featuremap of the two models are shown in

Figure 40(a)(b). The convergence rate of reconstruction optimization for CAE and

SSCAE is also compared on MNIST (Figure 42(a)), SVHN (Figure 42(b)), small

NORB (Figure 42(c)), and CIFAR-10 (Figure 42(d)) datasets, which indicate faster

convergence in SSCAE.
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(a) CAE encoding filter

(b) SSCAE encoding filter

(c) CAE decoding filter

(d) SSCAE decoding filter

Figure 41. 16 Learnt encoding and decoding filters of (a)(c) CAE and (b)(d) SSCAE on
small NORB dataset.

F Conclusion

In this chapter, two new algorithms were introduced for part-based feature

extraction.

In the first part, a new learning algorithm was developed for training a deep

autoencoder network with nonnegative weights constraints, first in the unsupervised

training of the NCAE autoencoder, and then in the supervised fine-tuning stage [16].

Nonnegativity has been motivated by the idea in NMF that promotes additive features

and captures part-based representation of data. The performance of the proposed

method, in terms of decomposing data into parts and extracting meaningful features,

was compared to the SAE, NNSAE and NMF. The prediction performance of the deep

network has also been compared to the SAE, NNSAE, DAE, and DpAE. The
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(a) (b)

(c) (d)

Figure 42. Learning rate convergence of CAE and SSCAE on (a) MNIST, (b) SVHN,
(c) small NORB, and (d) CIFAR-10 dataset using 16 filters of 11× 11× 3 size.

performance is evaluated on the MNIST data set of handwritten digits, the ORL data

set of faces, small NORB data set of objects, and Reuters-21578 text corpus. The

results were evaluated in terms of reconstruction error, part-based representation of

features, and sparseness of hidden encoding in the unsupervised learning stage. The

results indicate that the nonnegativity constraints in the NCAE method force the

autoencoder to learn features that capture a part-based representation of data, while

achieving lower reconstruction error and better sparsity in the hidden encoding as

compared with SAE and NMF. The numerical classification results also reveal that a

deep network trained by restricting the number of nonnegative weights in the

autoencoding and softmax classification layer achieves better performance. This is due

to decomposing data into parts, hierarchically in its hidden layers, which helps the

classification layer to discriminate between classes.
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In the second part, a structured sparsity model was proposed using ℓ2 and ℓ1

normalization. SSCAE was demonstrated to extract sparse features by decoupling the

spatial interaction in neighboring hidden neurons. It was also indicated that due to

structuring the distribution of neuronal activity, the problem of dead filter extraction

can be mitigated. The comparison with CAE indicated the ability of SSCAE in

simplifying the model structure and preserving the reconstruction performance.
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CHAPTER VI

DEEP NETWORK FOR ALZHEIMER’S DISEASE DETECTION

Deep learning methods have recently made notable advances in the tasks of

classification and representation learning. These tasks are important for brain imaging

and neuroscience discovery. The medical images are very high-dimensional and they

should be represented in their intrinsic dimensionality to detect patterns. On the other

hand, each image could also be identified by a smaller set of parameters that describe

shape variations and patterns that are common for a particular group of images. This

makes deep learning methods suitable for the dimension of image can be reduced in

hierarchical layer to capture anatomical variation related to clinical diagnosis [129].

CNN are supervised networks proven to preserve the inputs neighborhood

relations and spatial locality in their latent higher-level feature representations. While

the common fully connected deep architectures do not scale well to realistic-sized

high-dimensional images in terms of computational complexity, CNN do, since the

number of free parameters describing their shared weights does not depend on input

dimensionality [4]. On the other hand, CAE is a hierarchical unsupervised feature

extractor that scales well to high-dimensional 2D images [58–60]. It learns non-trivial

features using plain stochastic gradient descent, and discovers good CNN initializations

that avoid the numerous distinct local minima of highly non-convex objective functions

arising in virtually all deep learning problems.

A Alzheimer’s Disease (AD)

AD is a progressive brain disorder and the most common case of dementia in the

late life. AD leads to the death of nerve cells and tissue loss throughout the brain. AD

results in the reducing of the brain volume in size dramatically through time, and
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affects most of its functions [130], as shown in Figure 43. It is estimated that the

number of affected people will double in the next 20 years, where 1 in 85 people will

have AD by 2050 [131]. While the cost of care of AD patients is expected to rise

dramatically, the demand for developing a CAD system for early and accurate

diagnosis of AD becomes imperative [132].

(a) (a)

Figure 43. In the Alzheimer’s brain: (a) The cortex shrivels up, damaging areas involved
in thinking, planning and remembering. (b) Shrinkage is especially severe in the hip-
pocampus, an area of the cortex that plays a key role in formation of new memories.
Ventricles (fluid-filled spaces within the brain) grow larger. Copyright©2011 Alzheimer’s
Association!.

The early diagnosis of AD is primarily associated to the detection of Mild

Cognitive Impairment (MCI), a prodromal stage of AD. Though the memory

complaints and deficits of MCI do not notably affect the patients daily activities, it has

been reported that MCI has a high risk of progression to AD or other forms of

dementia [3]. The accurate diagnosis of AD plays a significant role in patient care,

especially at the early stage, because the consciousness of the severity and the

progression risks allows the patients to take prevention measures before irreversible

brain damages are shaped.
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B AD diagnosis

Several machine learning based approaches are also proposed to leverage the

multi-view information, i.e. MRI, PET, CSM modalities to predict the Alzheimer. Liu

et al. [133] extracted multi-view features of MRI subjects using several selected

template in dataset. Then subjects are clustered within each classes using generated

tissue density map of each template, and the encoding feature of each subject is

extracted. Finally an ensemble of SVM classifiers are used to compute the class of

subject.

Deep learning refers to the methods that extract the hierarchical features from

data by training several layers of feature extractors. Deep learning aims to decrease the

use of domain expert in designing and extracting discriminative features, which make

them appropriate for brain imaging, e.g. sMRI, fMRI, etc. [134]. Several deep network

based models are proposed for Alzheimer diagnosis using different image modalities

and clinical data. Suk et al. [135] used stacked autoencoder to extract features from

MRI, PET, and CSF images separately. Then a feature selection method is employed

to derive features from combination of the learned features from previous step each

with clinical scores (MMSE ADAS-cog). Finally they used a multi-kernel SVM for

Alzheimer classification using three extracted features of MRI, PET and CSF. In [136],

a multimodal Deep Boltzmann Machine (DBM) is used to extract k feature from

selected k patches of MRI and PET scans. then an ensemble of SVM classifiers are

used for Alzheimer prediction. Liu et al. [137] extracted 83 Region Of Interests (ROI)

of MRI and PET scans and used multimodal fusion to create one set of feature to train

stacked layers of denoising autoencoders. Li et al. [138] developed a multi-task deep

learning (MTL) for class, MMSE and ADAS-cog modeling by multimodal fusion of

MRI and PET features into the deep network, which is pretrained by RBM. MTL was

used to leverage the label information of MMSE and ADAS-cog for AD classification.
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C MRI imaging for AD diagnosis

To develop a CAD system, several neuroimaging biomarkers, e.g. structural

MRI (sMRI), functional MRI (fMRI), and PET, were investigated and considered as

diagnosis criteria for AD [139,140]. Among them, sMRI is recognized as a non-invasive

and a widely-available neuroimaging, which is also a good indicator of AD

progression [132,141]. sMRI can be considered the preferred neuroimaging examination

for AD because it allows for accurate measurement of the 3D volume of brain

structures, especially the size of the hippocampus and related regions. Some examples

of brain MRI images revealing the AD symptoms vs. normal patients are shown in

Figure 44

(a) (b)

Figure 44. T1-weighted MRI images. (a) Sagittal section of dilated ventricular system
of AD patient, compared to ventricular system of normal subject. (b) Coronal section
through the hippocampus. AD patients have shrunken hippocampus and enlarged ven-
tricles relative to healthy age-matched controls [10, 11].

In voxel-based features, after registration of all brain, each image is assumed as a

high-dimensional vector with each voxel as a feature. Klöppel et al. [142] used the

voxels of the gray matter (GM) as the features and trained a Support Vector Machine

(SVM) for classification of AD and NC subjects. In [143], the brain volume is

segmented to GM, white matter (WM), and cerebrospinal fluid (CSF), followed by

voxel-wise density calculation for each material. Thus, each voxel has a three-valued

feature representing tissue density of GM, WM and CSF used for classification. For

feature extraction method based on cortical thickness, Lerch et al. [144] segmented the

registered brain MRI into GM, WM, and CSF. Then GM and WM surfaces are fitted
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using deformable models. A surface deformation algorithm is then used to expands

WM surface to GM-CSF intersection to calculate the distance between corresponding

vertices of WM and GM surfaces as a measure of cortical thickness, and these features

are used for classification. In the third method, the shape characteristic of hippocamus

is modeled for feature extraction. Gerardin et al. [145] segmented the hippocampus

region and spatially aligned them among various subjects. Then the shape of the

hippocampus is mathematically modeled using a series of spherical harmonics. The

coefficients of the series are then normalized to eliminate the effects of rotation and

translation. Finally, the coefficients of the hippocampus model are used as features for

training SVM classifier.

The performance of the aforementioned feature extraction methods for AD

classification are evaluated and compared with several studies [132,146–148]. It turns

out that the developed approaches suffer from some limitations: (i) voxel-based

features generate a high-dimensional and noisy features from brain sMRI, which make

it feasible for classification only after designing a smoothing and feature clustering

method to extract higher-level features in reduced dimension [143]; (ii) feature

extraction based on cortical thickness and hippocampus modeling results in neglecting

the correlated shape variations of the whole brain structure affected by AD in other

ROI, e.g. ventricle’s volume; (iii) the appropriateness of the extracted features is

highly dependent on a preprocessing stage due to high dimensionality, registration

error, and noise, which requires the use of domain expert to design a feature

engineering algorithm; (iv) Most of the proposed machine learning models are biased

toward the dataset is used for training and testing, i.e. the feature extracted for

classification are specific to the dataset.

In this section, a new deep network is proposed to learn generic and transferable

features to detect AD biomarkers, and to predict task-specific classification of AD in

target dataset, based on stacking generic feature extraction layers and task-specific

fine-tuned layers [149]. A 3D CAE model (3D-CAE) is trained for learning generic and

transferable features which represents AD biomarkers, to overcome the aforementioned

limitations in feature extraction from brain sMRI for AD classification. It automatically
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extracts discriminative features that capture anatomical variations of AD. The trained

convolutional filters of 3D-CAE can be adapted to other domain dataset, e.g. between

CADDementia and Alzheimer’s Disease Neuroimaging Initiative (ADNI) datasets.

Then a 3D CNN network (3D-CNN) is developed by stacking pretrained layers of

3D-CAE, follows by fine-tuning of fully-connected layers. To boost the performance of

3D-CNN in task-specific classification, a deep supervision method [150] is employed on

fully-connected layers. Due to adaptability of learned generic features, the proposed

model is called Deeply Supervised Adapted 3D CNN (DSA-3D-CNN).

D Proposed model

The proposed model for AD diagnosis composes two part; (i) Feature extraction

of brain MRI using 3D Convolutional Autoencoder; (ii) Task-specific classification

using deep-supervised 3D Convolutional Neural Network. Section 1 explains the

architecture of 3D-CAE and the framework of AD using deeply-supervised 3D-CNN is

illustrated in Section 2.

1 3D Convolutional autoencoder

This section explains the procedure for extracting low-dimensional feature from

high-dimensional 3D image. A 3D extension of CAE in [58] is developed, as shown in

Figure 45, where 3D feature maps are extracted aiming to capture the patterns of

variation in a 3D image (i ∈ [1, 2, 3] for the diagram shown). The hidden node

activities of the input image x is computed,

hi = f
(
Wi ∗ x+ bi

)
(66)

where hi is the 3D feature map of the i-th hidden node, Wi is the 3D encoding filter

(input weights) of the i-th node convolved (∗) with x, bi is the i-node bias value, which

is propagated over the feature map. The activation function f(·) can be selected as

linear, sigmoidal or Rectified Linear unit (ReLu) functions [151]. The encoding layer

generate k feature maps, which are assumed as extracted features from the input

image. The reconstructed image x̂ is computed as
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Figure 45. Schematic diagram of 3D-CAE for feature extraction of a 3D Image based on
reconstructing the input. Note that the image dimension increases in the encoding layer
due to full convolution, and decreases to original dimension by valid convolution.

x̂ =
∑k

i=1 g (P
i ∗ hi + ci) (67)

where Pi is the 3D decoding filter (output weight) convolved with the i-th feature map

(hi), and ci is the i-th decoding bias. The 3D-CAE is trained based on minimization of

the mean squared error,

LE(θ) =∥ x̂− x ∥22 (68)

where θ is the parameters of 3D-CAE, i.e. {Pi,Wi, bi, ci}, and ∥ · ∥22 denotes the

Frobenius norm summed over all training data. To reduce the number of free

parameters in the cost function minimization of Eq.(68), the 3D-CAE is used with tied

weights, where Pi = W̃i (flip operation over all dimensions of Wi) [58]. To minimize

Eq.(68) using stochastic gradient descent, error backpropagation is used,
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∂E
∂Wi = x ∗ δhi + h̃i ∗ δx̂;

δx̂ = (x̂− x)g′(·);

δhi =
(
W̃i ∗ δx

)
f ′(·)

(69)

where δx̂ and δhi are the deltas of output and hidden activities, and g′(·) and f ′(·)

indicate the derivatives of activation functions with respect to their input.

In order to obtain translation-invariant and feature maps, a max-pooling

function is applied to hi, which downsample the feature maps by extracting the

maximum value of non-overlapping sub-regions. In order to extract higher level feature

maps with reduced dimensions which entangle the shape variation, the output of the

max-pooling function is used as the training data for CAE in the higher layer, as shown

in Figure 46. The procedure of stacking the encoding layers of 3D-CAE’s (3D-CAES)

reduces the feature map dimensionality by half in each hierarchical layer [58].

2 Deeply Supervised Adaptive 3D-CNN (DSA-3D-CNN)

In this section, a 3D-CNN is developed. The proposed 3D-CNN is based on

generalization of first layers and task-specification of final layers as proposed by Long

et al. [149]. The developed 3D-CNN is composed two parts: (i) Pretrained generic

feature extraction layers using stacked layers of pretrained 3D-CAE; (ii) Fine-tuned

fully-connected layers for task-specific classification, i.e. for multi-class or binary

classification of sMRI.

The 3D-CNN is composed of stacked encoding layer of pretrained 3D-CAE for

generic feature extraction, connected by fully-connected layers for task-specific

classification. The extracted feature maps from the encoding layer of the highest layer

of 3D-CAE are used as features yielding AD biomarkers used for classifying brain

sMRI’s. In order to create a feature vector for classification, the extracted k feature

maps of the highest layer, e.g. 3rd 3D-CAE in Figure 45(b), are vectorized and

concatenated together (as shown in concatenation layer in Figure 46). Thus, a

high-dimensional brain sMRI is represented as a low-dimensional feature vector which

possibly captures its anatomical shape variations. To discriminate between brain
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sMRI’s for AD, MCI, and NC group, several fully connected layers are stacked and fine

tuned for any task specific classification.

NLLs(θs,Ds) = −
|Ds|∑

i=0

logP (Y = y(i)|x(i), θ) (70)

where NLLs is the task-specific negative log-likelihood cost function, θs and Ds are the

weights of the fully connected layers and training data of a task-specific classification,

respectively.

In order to boost the performance of the 3D-CNN network for task-specific

classification, the method of deep supervision proposed in [150] is used, where several

negative log likelihood loss are used for fully connected and softmax layers, to improve

the discriminativeness of specific feature learning, as shown in Figure 46. Therefore,

the proposed method is called Deeply Supervised and Adapted 3D-CNN Network

(DSA-3D-CNN) and it is trained using the combined negative-log likelihood loss,

LDs(Ws) =
n∑

l=0

λ(l)NLLs(W
(l)
s ) +NLLs(W

o
s) (71)

where LDs is the loss of DSA-3D-CNN, λl is the loss penalty of l-th fully connected

layer, Wl
s and Wo

s are the weights of fully-connected and output layers, respectively.

The DSA-3D-CNN uses ReLu activation function in the convolution and fully

connected layers, and a softmax output layer (Figure 46) to predict the probability of

brain sMRI belonging to AD, MCI or NC group.

E Experiment

The performance of the proposed DSA-3D-CNN model is evaluated for

Alzheimer diagnosis of 210 subjects in ADNI dataset. The demographic information of

the selected subjects from ADNI dataset is shown in Table. 8. Five classification tasks

are considered, i.e. four binary classifications of AD vs. NC (AD/NC), AD and MCI

vs. NC(AD+MCI/NC), AD vs. MCI (AD/MCI), MCI vs NC (MCI/NC), and 3-way

classification of AD vs. MCI vs. NC (AD/MCI/NC). Ten-fold crossvalidation is used

to evaluate the test classification accuracy. Theano [127] library is used to develop the
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Figure 46. Proposed 3D-CNN network for AD.
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Figure 47. Selected slices of hierarchical 3D feature maps in (i,j,k) axial and (l) sagittal
view extracted at 3 layers of stacked 3D-CAE indicating (i) cortex thickness and volume,
(j) brain size, (k) ventricle size, and (l) hippocampus model, extracted from the brain
structural MRI. The feature maps are downsampled at each layer using max-pooling to
reduce the size and detect higher level features.

deep network, and Amazon EC2 g2.8xlarge instances with GPU GRID K520 for the

experiments.

TABLE 8. Demographic information of 210 studied subjects from the ADNI dataset.

Diagnosis AD MCI NC
Subject number 70 70 70
Male/Female 36/34 50/20 37/33
Age (Mean±SD) 75.01±7.87 75.90±7.65 74.63±6.07

Note: Values are denoted as mean ± deviation; M and F represent
male and female, respectively.

1 Generic and task-specific feature evaluation:

In order to evaluate the generalization of pretrained layers and specification of

fine-tuned layers of DSA-3D-CNN, the extracted features in each layer are visualized.

To evaluate the ability of learned generic convolutional filters in capturing features

related to AD biomarkers, e.g. ventricle size, cortex thickness, and hippocampus

model, selected slices of the three feature maps from each layer of 3D-CAES are shown
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(a) conv1 hidden (b) conv2 hidden

(c) conv3 hidden (d) fc2 hidden - AD/MCI/NC

(e) fc2 hidden - AD+MCI/NC (f) fc2 hidden - AD/NC

(g) fc2 hidden - AD/MCI (h) fc2 hidden - MCI/NC

Figure 48. Manifold visualization of training data in (a,b,c) pretrained generic layers
and (d,e,f,g,h) fine-tuned task-specific layers, using t-SNE projection [7].
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in Figure 47. The featuremaps are generated by pretrained 3D-CAE on ADNI dataset.

According to Figure 47(i), the cortex thickness is extracted in the first layer of

3D-CAES as a discriminative feature of AD. Figure 47(j,k,l) depict the brain size

(related to patient gender), ventricles size, and hippocampus model, respectively. In

each layer of 3D-CAES, the extracted feature maps of the lower layer are combined to

train higher-level features characterizing the anatomical variation in the brain sMRI.

According to Figure 47, features of ventricle size and cortex thickness are combined to

extract a conceptually higher feature in higher layers. To express the ability of the

extracted features in discriminating brain sMRI of AD patients from NC, the images

are visualized using low-dimensional features extracted at the third layer of 3D-CAES

(Figure 47), which indicates that AD brain sMRI’s are differentiated from NC images

in the low-dimensional feature space. It means that extracting higher-level features in

higher layers of 3D-CAES contributes to distinguish brain sMRI’s of AD from NC

group.

To evaluate the discriminativeness of generic and task-specific features, the

distributions of training ADNI MRI’s are visualized in hidden layers of DSA-3D-CNN

on Figure 48. The manifold distribution generated by generic layers, i.e. conv1, conv2,

and conv3 layers (Figure 48(a–c)) indicates the gradual discrimination of AD, MCI and

NC in hierarchical layers. Moreover, the subsequent layers of task-specific classification

encompass the discrimination between the target classes in the dataset, i.e. ADNI, as

shown in Figure 48(d–h). To highlight the generated task-specific features, Figure 48(e)

depicts the distribution of three classes for AD MCI vs. NC classification, where AD

and MCI brain MRI are projected in closer distances than NC data.

Finally, the manifold distribution of three classes in test mode is shown for AD

vs. MCI vs. NC classification model is shown in Figure 49, which indicates the

discriminativeness of learned features to distinguish between different classes. The

manifold distribution of subjects in Figure 49 indicates the correlation of disease

severity with the extracted features, where the most severe AD subjects are located at

the right-most of the AD manifold, and the most normal NC subjects are located to

the bottom of NC manifold.
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Figure 49. Manifold visualization of train data in (a,b,c) pretrained generic layers and (d,e,f,g,h) fine-tuned task-specific layers,
using t-SNE projection [7].
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(a) (b)

Receiver operating characteristic of AD/NC

(c)

Receiver operating characteristic of AD/MCI

MCI

(d)

(e)

Figure 50. Receiver Operating Curve (ROC) and Area Under Curve (AUC) performance
of (a) AD/MCI/NC, (b)AD+MCI/NC, (c) AD/NC, (d) AD/MCI and (e) MCI/NC task-
specific classification models.
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TABLE 9

Task-Specific Classification Models Performance for a selected fold of crossvalidation for the proposed model.

AD/MCI/NC AD+MCI/NC AD/NC AD/MCI MCI/NC
Class Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score
AD 1.00 1.00 1.00 - - - 0.88 1.00 0.94 1.00 1.00 1.00 - - -
MCI 0.60 0.80 0.69 - - - - - - 1.00 1.00 1.00 0.83 1.00 0.91
AD+MCI - - - 0.94 0.97 0.95 - - - - - - - - -
NC 0.70 0.47 0.56 0.93 0.87 0.90 1.00 0.87 0.93 - - - 1.00 0.80 0.89
Average 0.77 0.76 0.75 0.93 0.93 0.93 0.94 0.93 0.93 1.00 1.00 1.00 0.92 0.90 0.90

TABLE 10

Classification performance evaluation of the proposed model [mean(std)%]

Task ACC SEN SPE BAC PPV NPV AUC F1-score
AD/MCI/NC 94.76(2.60) − − − − − − −
AD+MCI/NC 95.72(3.10) 94.8(4.08) 97.20(3.83) 96.00(2.89) 98.40(2.19) 91.00(6.81) 96.07(2.93) 93.88(4.36)
AD/NC 99.28(1.59) 100(0) 98.60(3.13) 99.30(1.56) 98.60(3.13) 100(0) 99.28(1.95) 99.40(1.34)
AD/MCI 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0) 100(0)
MCI/NC 91.43(1.95) 86.00(5.71) 96.50(4.04) 91.25(2.02) 96.25(4.34) 87.50(4.50) 91.43(1.95) 91.81(1.65)
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TABLE 11

Performance comparison (ACC%) of the competing methods.

Task-Specific Classification [mean(std)%]
Models Modalities AD/MCI/NC AD+MCI/NC AD/NC AD/MCI MCI/NC

(1) Suk et al. [135] PET+MRI+CSF - − 0.959(0.011) − 0.850(0.012)
(2) Suk et al. [136] PET+MRI - − 95.35(5.23) − 85.67(5.22)
(3) Zhu et al. [152] PET+MRI+CSF - − 95.9 − 82
(4) Zu et al. [153] PET+MRI - − 95.95 − 80.26
(5) Liu et al. [137] PET+MRI 53.79(4.76) − 91.40(5.56) − 82.10(4.91)
(6) Liu et al. [133] MRI - − 93.83 − 89.09
(7) Li et al. [138] PET+MRI+CSF - − 91.4(1.8) 70.1(2.3) 77.4(1.7)
Proposed MRI 94.78(2.60) 95.72(3.10) 99.28(1.42) 100(0) 91.43(1.95)
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2 Classification performance evaluation

In this section, the classification performance of each task-specific classification

of the proposed model in Section 1 is evaluated and also compared to the competing

models [133,135–138,152]. Let TP, TN, FP, and FN denote, respectively, True

Positive, True Negative, False Positive, and False Negative. The classification

performance of each task-specific model is measured with seven metrics [154]:

• ACCuracy(ACC)=(TP+TN)/(TP+TN+FP+FN)

• SENsitivity (SEN) = TP / (TP + FN)

• SPEcificity (SPE) = TN / (TN + FP)

• Balanced ACcuracy (BAC) = (SEN + SPE) / 2

• Positive Predictive Value (PPV) = TP / (TP + FP)

• Negative Predictive Value (NPV) = TN / (TN + FN)

• F1-score = 2TP / (2TP+FP+FN)

• Area Under the receiver operating characteristic Curve (AUC)

Table 9 indicates the precision, recall and F1-score for each classes within each

task-specific classification of DSA-3D-CNN of a selected fold of crossvalidation. To

measure the robustness of task-specific classification models, ROC and AUC of the

selected fold is also shown in Figure 50, where it indicates the robustness and

high-confidence of predicted classes within each model. Table 10 lists the mean and

standard deviation of the seven metrics for each task-specific model, while Figure 51(a)

also depicts the values as error bar.

The ACC performance of the proposed method is compared to several

alzheimer’s diagnosis models, with the comparison of imaging modalities or clinical

data employed by each method in Table 11 and Figure 51(b). The results of the

proposed model are the average of ten-fold crossvalidation experiments. They indicate
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that DSA-3D-CNN achieves better accuracy performance in five task-specific

classifications, where a single image modality (sMRI) with no skull-stripping is used.

F Conclusion

In this chapter, a 3D-CNN is proposed for AD classification on structural brain

MRI scans. To enhance the generality of features in capturing AD biomarkers, a

transfer learning approach was used, where three stacked 3D-CAE network were

pretrained on CADDementia Dataset. Then the learned features are extracted and

used as AD biomarkers detectors in lower layers of a 3D-CNN network. Then three

fully connected layers are stacked on top of the lower layers to perform AD

classification on 210 subjects of ADNI dataset. To boost the classification performance,

negative log-likelihood loss was imposed on the fully connected hidden layers, in

addition to the output layers. The results demonstrate that hierarchical feature

extraction improved in hidden layers of 3D-CNN by discriminating between AD, MCI,

and NC subjects, (Table 10). Seven classification performance measures were computed

using ten-fold crossvalidation, were compared to the state-of-the-art models, and

demonstrated the out-performance of the proposed 3D-CNN.
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(a)

(b)

Figure 51. Averaged classification results achieved by different methods.
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CHAPTER VII

CONCLUSION AND FUTURE WORK

In this work, sparse feature learning has been evaluated for lung segmentation,

part-based feature extraction for image classification, and AD classification. The

results are summarized in Sections A, B, and C, respectively.

A Lung Segmentation

A novel lung segmentation framework was proposed using NMF as the

unsupervised feature learning part [2]. NMF was used to extract spatial features of

voxels from CT scans. The extracted features demonstrated the discrimination and

separability between lung and chest voxels in the learned space. Then a K-means

clustering algorithm was applied to group the voxels in two clusters. The group of

voxels belonging to lung was indicated by the distance of the cluster center to the

origin. Since lung voxels have lower intensity value, their cluster center in the feature

space is closer to the origin.

There are initially unknown number of clusters representing main objects in CT

scans, such as lungs, chest tissues, veins, arteries etc. The main limitation of

NMF-based approach was that the actual number of body organs should be known

prior to feature extraction and clustering. Moreover, due to the slice-wise

segmentation, the inter-slice signal dependencies were taken into account only

implicitly, via the context. To overcome the NMF-based approach limitations, a

modified incremental learning algorithm was proposed for NMF (INMF) that

automatically detect the number of clusters in the feature space using voxel-by-voxel

mode [1]. Then K-means algorithm was applied based on the computed number of

clusters by INMF, to group the voxels. The results demonstrated that different objects
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such as tumor and cancer can be detected and segmented. The final lung segmentation

was computed by merging the small clusters based on similarity distance, and forming

two major clusters representing lung and chest.

INMF-based approach turned out to be computationally expensive for large 3D

images due to voxel-by-voxel modeling. Moreover, the number of clusters are highly

sensitive to the distance parameter of the algorithm, which is directly related to the

sparseness and smoothness of the learned feature space. To overcome the INMF-based

approach limitations, a new slice-wise incremental learning was combined with

constrained NMF (ICNMF) [6]. The method applies smoothness constraints to learn

the features, which are more robust to lung tissue inhomogeneities and thus help to

better segment internal lung pathologies than the known state-of-the-art techniques.

Compared to the latter, the ICNMF depends less on the domain expert knowledge and

is more easily tuned due to only a few control parameters. Also, the proposed slice-wise

incremental learning with due regard for inter-slice signal dependencies decreases the

computational complexity of the NMF-based segmentation and is scalable to very large

3D lung images.

The ICNMF method was quantitatively validated on simulated realistic lung

phantoms that mimic different lung pathologies (7 datasets), in vivo data sets for 17

subjects, and 55 data sets from the LOLA11 study. For the in vivo data, the accuracy

of ICNMF segmentation w.r.t. the ground truth is 0.96 by the DSC, 9.0 mm by the

MHD, and 0.87% by the ALVD, which is significantly better than for the NMF-based

segmentation. In spite of not being designed for lungs with severe pathologies and of no

agreement between radiologists on the ground truth in such cases, the ICNMF with its

total accuracy of 0.965 was ranked 5th among all others in the LOLA11. After

excluding the nine too pathological cases from the LOLA11 dataset, the ICNMF

accuracy increased to 0.986.

B Image Classification

To improve image classification performance in deep models, interpretability was

considered as a key characteristic. Autoencoder (AE) [16,108] and Convolutional
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Autoencoder (CAE) were investigated for interpretable feature learning in deep models.

The goal was to extract meaningful representation of high-dimensional data.

Part-based feature extraction was defined as the meaningful and interpretable

characteristic of deep model, and autoencoder was employed as the core feature

extraction model [16, 108]. Inspired by the idea of sparsity and NMF, nonnegativity

was used as a constraint in learning autoencoder (NCAE). The performance of the

novel NCAE demonstrated in extracting parts of objects, e.g. digit, face, object, or

semantic features of text data. A deep model was created from stacked layers of

NCAE, and then fine-tuned using labeled data. To impose part-based decomposition in

hidden layers of deep model during fine-tuning, a nonnegativity constrained

back-propagation algorithm was proposed. The trained stacked NCAE demonstrated

better performance than deep models using stacked layers of SAE, DpAE, and DAE.

To impose part-based feature extraction in CAE, a novel structured sparsity was

proposed. Due to the convolutional layer, the learned featuremaps yield non-sparse

features, reflecting spatial interaction of neighboring neurons in hidden layer. To

overcome this problem, a structured normalization approach was proposed using ℓ2 and

ℓ1 constraints. Using the proposed SSCAE, the feature maps were normalized to have a

unit-ℓ2 norm, and ℓ1 norm of the featuremap was minimized to break the spatial

interaction of neighboring neurons in hidden featuremaps. The results demonstrated

that objects were decomposed into parts across featuremap, with improved

reconstruction and learning rate convergence than CAE.

C Disease Diagnosis

To develop an accurate AD classification, a new 3D-CNN was proposed for AD

diagnosis from structural MRI scans [17]. To incorporate a new knowledge sharing

across domains, two dataset for AD classification, i.e. CADDementia and ADNI, were

selected. CADDementia dataset was used for extracting features related to different

AD biomarkers, e.g. cortical thickness, hippocampus shape, and ventricular size.

3D-CAE was used for extracting the aforementioned features in three stacked layers.

Then, the trained 3D-CAES were used as feature extraction layers in lower layers of
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3D-CNN. Then, three fully connected layers are initialized and stacked as higher layers

to the aforementioned layers. For each task-specific classifications, i.e. AD vs NC, AD

vs MCI, MCI vs NC, and AD and MCI vs NC, the higher fully connected layers were

fine-tuned with labeled data from ADNI dataset.

Due to layer-wise training, i.e. pretraining of lower convolutional layers on

CADDementia MRI data, and fine-tuning of higher fully connected layers on ADNI

MRI data, the proposed 3D-CNN demonstrated superior performance than recently

developed models. The main advantage of the proposed 3D-CNN was the use of a

single image modality of structural MRI, compared to other multi-modality

approaches, and no skull-stripping preprocess in AD classification.

D Future work

The future application of the proposed NMF-based segmentation of lung

combined with proposed convolutional neural network for AD diagnosis can be

extended to the following problems,

• Testing the proposed segmentation and diagnosis model in other clinical studies,

such as detection of lung cancer using CE computed tomography (CE-CT)

images [70, 72, 73,75, 83,155–178], brain cancer using DCE-MRI [179–215], kidney

transplantation prediction using DW-MRI [216–237], prostate cancer detection

from DCE- and DW-MRI [238–249], and colon cancer using CE-CT images.

• A future work of this dissertation is to investigate the integration of the proposed

work with the BioImaging lab work for the detection of other brain disorders such

as autism [192,196,200,204–206,209,212–214,250–254] and

dyslexia [179,197–199,201–203,207,255].

102



REFERENCES

[1] E. Hosseini-Asl, J. M. Zurada, and A. El-Baz, “Automatic segmentation of

pathological lung using incremental nonnegative matrix factorization,” in Image

Processing (ICIP), 2015 IEEE International Conference on, 2015, pp. 3111–3115.

[2] ——, “Lung segmentation based on nonnegative matrix factorization,” in Image

Processing (ICIP), 2014 IEEE International Conference on, Oct 2014, pp.

877–881.

[3] A. Ng, “Sparse autoencoder,” in CS294A Lecture notes. URL

http://www.stanford.edu/class/cs294a/sparseAutoencoder 2011new.pdf:

Stanford University, 2011.

[4] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp.

2278–2324, 1998.

[5] Y. Bengio, I. J. Goodfellow, and A. Courville, “Deep learning,” 2015, book in

preparation for MIT Press. [Online]. Available:

http://www.iro.umontreal.ca/ bengioy/dlbook

[6] E. Hosseini-Asl, J. Zurada, G. Gimel farb, and A. El-Baz, “3D lung segmentation

by incremental constrained nonnegative matrix factorization,” Biomedical

Engineering, IEEE Transactions on, vol. PP, no. 99, pp. 1–1, 2015. doi:

10.1109/TBME.2015.2482387

[7] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE.” Journal of

Machine Learning Research, vol. 9, no. 11, 2008.

[8] A. Lemme, R. F. Reinhart, and J. J. Steil, “Online learning and generalization of

parts-based image representations by non-negative sparse autoencoders,” Neural

Networks, vol. 33, pp. 194–203, 2012.

103



[9] J. Ngiam, Z. Chen, S. A. Bhaskar, P. W. Koh, and A. Y. Ng, “Sparse filtering,”

in Advances in Neural Information Processing Systems, 2011, pp. 1125–1133.

[10] C. R. Jack, M. A. Bernstein, N. C. Fox, P. Thompson, G. Alexander, D. Harvey,

B. Borowski, P. J. Britson, J. L Whitwell, C. Ward et al., “The Alzheimer’s

disease neuroimaging initiative (ADNI): MRI methods,” Journal of Magnetic

Resonance Imaging, vol. 27, no. 4, pp. 685–691, 2008.

[11] P. Scheltens, N. Fox, F. Barkhof, and C. De Carli, “Structural magnetic

resonance imaging in the practical assessment of dementia: beyond exclusion,”

The Lancet Neurology, vol. 1, no. 1, pp. 13 – 21, 2002.

[12] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and

new perspectives,” Pattern Analysis and Machine Intelligence, IEEE

Transactions on, vol. 35, no. 8, pp. 1798–1828, 2013.

[13] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative

matrix factorization,” Nature, vol. 401, no. 6755, pp. 788–791, 1999.

[14] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data

with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[15] Y. Bengio, “Learning deep architectures for AI,” Foundations and trends in

Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[16] E. Hosseini-Asl, J. Zurada, and O. Nasraoui, “Deep learning of part-based

representation of data using sparse autoencoders with nonnegativity constraints,”

Neural Networks and Learning Systems, IEEE Transactions on, vol. PP, no. 99,

pp. 1–13, 2015. doi: 10.1109/TNNLS.2015.2479223

[17] E. Hosseini-Asl, J. M. Zurada, and A. El-Baz, “A deeply supervised adapted 3D

convolutional network for alzheimer diagnosis,” in in preparation for submission

to IEEE Transactions on Pattern Recognition and Machine Intelligence.

104



[18] P. O. Hoyer, “Non-negative sparse coding,” in Proceedings of the 12th IEEE

Workshop on Neural Networks for Signal Processing. IEEE, 2002, pp. 557–565.

[19] G. F. Harpur and R. W. Prager, “Development of low entropy coding in a

recurrent network,” Network: computation in neural systems, vol. 7, no. 2, pp.

277–284, 1996.

[20] B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete basis set:

A strategy employed by V1?” Vision research, vol. 37, no. 23, pp. 3311–3325,

1997.

[21] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,”

in Advances in neural information processing systems. MIT Press, 2000, pp.

556–562.

[22] C. Févotte, N. Bertin, and J. L. Durrieu, “Nonnegative matrix factorization with

the itakura-saito divergence: With application to music analysis,” Neural

computation, vol. 21, no. 3, pp. 793–830, 2009.

[23] I. S. Dhillon and S. Sra, “Generalized nonnegative matrix approximations with

bregman divergences,” in NIPS, vol. 18, 2005.

[24] R. Kompass, “A generalized divergence measure for nonnegative matrix

factorization,” Neural computation, vol. 19, no. 3, pp. 780–791, 2007.

[25] E. Hosseini-Asl and J. M. Zurada, “Nonnegative matrix factorization for

document clustering: A survey,” in Artificial Intelligence and Soft Computing,

ser. Lecture Notes in Computer Science, vol. 8468. Springer International

Publishing, 2014, pp. 726–737.

[26] R. Zdunek and A. Cichocki, “Non-negative matrix factorization with

quasi-newton optimization,” in Artificial Intelligence and Soft

Computing–ICAISC 2006. Springer, 2006, pp. 870–879.

105



[27] P. O. Hoyer, “Non-negative matrix factorization with sparseness constraints,” J.

Mach. Learn. Res., vol. 5, pp. 1457–1469, 2004.

[28] F. Shahnaz, M. W. Berry, V. P. Pauca, and R. J. Plemmons, “Document

clustering using nonnegative matrix factorization,” Information Processing &

Management, vol. 42, no. 2, pp. 373–386, 2006.

[29] M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J. Plemmons,

“Algorithms and applications for approximate nonnegative matrix factorization,”

Computational Statistics & Data Analysis, vol. 52, no. 1, pp. 155–173, 2007.

[30] C. J. Lin, “Projected gradient methods for nonnegative matrix factorization,”

Neural computation, vol. 19, no. 10, pp. 2756–2779, 2007.

[31] H. Kim and H. Park, “Nonnegative matrix factorization based on alternating

nonnegativity constrained least squares and active set method,” SIAM Journal

on Matrix Analysis and Applications, vol. 30, no. 2, pp. 713–730, 2008.

[32] J. Kim and H. Park, “Fast nonnegative matrix factorization: An active-set-like

method and comparisons,” SIAM J. Sci. Comput., vol. 33, no. 6, pp. 3261–3281,

2011.

[33] C. Févotte and J. Idier, “Algorithms for nonnegative matrix factorization with

the β-divergence,” Neural Computation, vol. 23, no. 9, pp. 2421–2456, 2011.

[34] W. Liu, P. P. Pokharel, and J. C. Principe, “Correntropy: properties and

applications in non-gaussian signal processing,” IEEE Trans. Signal Process.,

vol. 55, no. 11, pp. 5286–5298, 2007.

[35] K. H. Jeong and J. C. Principe, “Enhancing the correntropy MACE filter with

random projections,” Neurocomputing, vol. 72, no. 1, pp. 102–111, 2008.

[36] T. Ensari, J. Chorowski, and J. M. Zurada, “Correntropy-based document

clustering via nonnegative matrix factorization,” in Artificial Neural Networks

and Machine Learning–ICANN 2012. Springer, 2012, pp. 347–354.

106



[37] ——, “Occluded face recognition using correntropy-based nonnegative matrix

factorization,” in 11th International Conference on Machine Learning and

Applications (ICMLA), vol. 1. IEEE, 2012, pp. 606–609.

[38] M. Schmidt, “Matlab software,” URL

www.di.ens.fr/ mschmidt/Software/minConf.html, 2008.

[39] L. Du, X. Li, and Y. D. Shen, “Robust nonnegative matrix factorization via

half-quadratic minimization,” in ICDM, 2012, pp. 201–210.

[40] E. Hosseini-Asl and J. M. Zurada, “Multiplicative algorithm for

correntropy-based nonnegative matrix factorization,” Journal of Applied

Computer Science Methods, vol. 5, no. 2, pp. 89–104, 2013.

[41] Y. Bengio and Y. LeCun, “Scaling learning algorithms towards AI,” Large-Scale

Kernel Machines, vol. 34, pp. 1–41, 2007.

[42] L. Deng, “A tutorial survey of architectures, algorithms, and applications for

deep learning,” APSIPA Transactions on Signal and Information Processing,

vol. 3, p. e2, 2014.

[43] S. Bengio, L. Deng, H. Larochelle, H. Lee, and R. Salakhutdinov, “Guest editors’

introduction: Special section on learning deep architectures,” Pattern Analysis

and Machine Intelligence, IEEE Transactions on, vol. 35, no. 8, pp. 1795–1797,

2013.

[44] B. Hutchinson, L. Deng, and D. Yu, “Tensor deep stacking networks,” Pattern

Analysis and Machine Intelligence, IEEE Transactions on, vol. 35, no. 8, pp.

1944–1957, 2013.

[45] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle et al., “Greedy layer-wise

training of deep networks,” Advances in neural information processing systems,

vol. 19, p. 153, 2007.

107



[46] G. E. Hinton, S. Osindero, and Y. W. Teh, “A fast learning algorithm for deep

belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[47] M. Ranzato, Y. L. Boureau, and Y. LeCun, “Sparse feature learning for deep

belief networks,” Advances in neural information processing systems, vol. 20, pp.

1185–1192, 2007.

[48] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng, “Self-taught learning:

transfer learning from unlabeled data,” in Proceedings of the 24th international

conference on Machine learning. ACM, 2007, pp. 759–766.

[49] D. Erhan, Y. Bengio, A. Courville, P. A. Manzagol, P. Vincent, and S. Bengio,

“Why does unsupervised pre-training help deep learning?” The Journal of

Machine Learning Research, vol. 11, pp. 625–660, 2010.

[50] P. Vincent, H. Larochelle, Y. Bengio, and P. A. Manzagol, “Extracting and

composing robust features with denoising autoencoders,” in Proceedings of the

25th international conference on Machine learning. ACM, 2008, pp. 1096–1103.

[51] G. E. Hinton, “Training products of experts by minimizing contrastive

divergence,” Neural computation, vol. 14, no. 8, pp. 1771–1800, 2002.

[52] G. E. Hinton and R. S. Zemel, “Autoencoders, minimum description length, and

helmholtz free energy,” Advances in neural information processing systems, pp.

3–3, 1994.

[53] C. Poultney, S. Chopra, Y. L. Cun et al., “Efficient learning of sparse

representations with an energy-based model,” in Advances in neural information

processing systems, 2006, pp. 1137–1144.

[54] H. Lee, C. Ekanadham, and A. Y. Ng, “Sparse deep belief net model for visual

area V2.” in NIPS, vol. 7, 2007, pp. 873–880.

[55] V. Nair and G. E. Hinton, “3D object recognition with deep belief nets.” in

NIPS, 2009, pp. 1339–1347.

108



[56] Y. A. LeCun, L. Bottou, G. B. Orr, and K. R. Müller, “Efficient backprop,” in

Neural networks: Tricks of the trade. Springer, 2012, pp. 9–48.

[57] J. E. Moody, S. J. Hanson, A. Krogh, and J. A. Hertz, “A simple weight decay

can improve generalization,” Advances in neural information processing systems,

vol. 4, pp. 950–957, 1995.
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APPENDIX A

LIST OF ACRONYMS

Page

3D-CAES Stacked 3D CAE 86

3D-CNN 3D Convolutional Neural Network 84

ACC ACCuracy 96

AD Alzheimer’s Disease 1

ADNI Alzheimer’s Disease Neuroimaging Initiative 84

AE Autoencoder 1

AI Artifitial Intelligence 1

ALS Alternating Least Squares 6

ALS-PGD ALS method based on Projected Gradient Descent 7

ALVD Absolute Lung Volume Difference 36

ANLS Alternating Nonnegative Least Square 7

ANLS-AS ANLS based on Active Set 7

ANLS-BP ANLS based on Block Pivoting 7

AUC Area Under the ROC Curve 40

BAC BAlanced Accuracy 96

Beta-ME β-divergence ME 8

CAE Convolutional Autoencoder 1

CGD Constrained Gradient Descent 8

CLS Constrained Least Squares 6

CNMF Constrained NMF 22

CNN Convolutional Neural Network 1

CSF Cerebrospinal Fluid 81
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DBM Deep Boltzmann Machine 81

DpAE Dropout Autoencoder 64

DSA-3D-CNN Deeply Supervised Adapted 3D-CNN 84

DSC Dice Similarity Measure 36

DTI Diffusion Tensor Image 22

fMRI functional MRI 82

GD-CLS Gradient Descent Least Squares 6

GM Gray Matter 82

GVF Gradient Vector Flow 39

ICA Independent Component Analysis 2

ICNMF Incremental Constrained NMF 22

INMF Incremental NMF 22

KL divergence Kullback-Leibler divergence 4

LOLA11 Lobe and Lung Analysis 2011 40

MAP Maximum A Posteriori 22

MCI Mild Cognitive Impairment 80

ME Majorization Equalization 8

MHD Modified Hausdorff distance 36

MRS Multiple Resolution Segmentation 39

MTL Multi-Task Learning 81

NC-DAE Nonnegativity Constrained DAE 68

NCAE Nonnegative Constrained Autoencoder 46

NMF Nonnegative Matrix Factorization 1

NNLS Non-Negative Least Squares 7

NPV Negative Predictive Value 96

NTD Nonnegative Tensor Decomposition 24

PCA Principal Component Analysis 2

PGD Projected Gradient Descent 24

PPV Positive Predictive Value 96

RBM Restricted Boltzmann Machine 9
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ReLu Rectified Linear unit 70

ROC Receiver Operating Curve 40

ROI Region Of Interest 81

SAE Stacked Autoencoder 11

SC Sparse Coding 2

SEN SENsitivity 96

sMRI structural MRI 82

SpC Sparseness Constraint 5

SPE SPEcificity 96

SSCAE Structured Sparse CAE 68

SVHN Street View House Numbers 72

SVM Support vector Machine 82

t-SNE t-distributed Stochastic Neighbor Embedding 54

WM White Matter 82
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