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ABSTRACT 

GREEN LOGISTIC NETWORK DESIGN: INTERMODAL TRANSPORTATION 

PLANNING AND VEHICLE ROUTING PROBLEMS 

Xiaoren Duan 

January 19, 2016 

Due to earth's climate change and global warming, environmental consideration in 

the design of logistic systems is accelerating in recent years. In this research we aim to 

design an efficient and environmentally friendly logistical system to satisfy both 

government and carriers. In particular, we considered three problems in this dissertation: 

intermodal network design, deterministic green vehicle routing problem and stochastic 

green vehicle routing problem.  

The first problem aims to design an economic and efficient intermodal network 

including three transportation modes: railway, highway and inland waterway. The intent 

of this problem is to increase the utilization percentage of waterway system in the 

intermodal transportation network without increasing the cost to the consumer.  In 

particular, we develop a real world coal transportation intermodal network across 15 states 

in the United States including highway, railway and inland waterway. The demand data 

were obtained from the Bureau of Transportation Statistics (BTS) under the US 

Department of Transportation (DOT). Four boundary models are built to evaluate the 

potential improvement of the network. The first boundary model is a typical minimum cost 

problem, where the total transportation cost is minimized while the flow balance and 
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capacity restrictions are satisfied. An additional constraint that help obtain an upper bound 

on carbon emission is added in the second boundary model. Boundary model 3 minimizes 

the total emission with flow balance and capacity restrictions the same as boundary model 

1. Boundary model 4 minimizes the total emission with an additional current cost 

restriction to achieve a less-aggressive lower bound for carbon emission. With a motivation 

to minimize the transportation and environmental costs simultaneously, we propose multi-

objective optimization models to analyze intermodal transportation with economic, time 

performance and environmental considerations. Using data from fifteen selected states, the 

model determines the tonnage of coal to be transported on roadways, railways and 

waterways across these states. A time penalty parameter is introduced so that a penalty is 

incurred for not using the fastest transportation mode. Our analysis provides authorities 

with a potential carbon emission tax policy while minimizing the total transportation cost. 

In addition, sensitivity analysis allows authorities to vary waterway, railway and highway 

capacities, respectively, and study their impact on the total transportation cost. Furthermore, 

the sensitivity analysis demonstrates that an intermodal transportation policy that uses all 

the three modes can reduce the total transportation cost when compared to one that uses 

just two modes.  

In contrast with traditional vehicle routing problems, the second problem intends 

to find the most energy efficient vehicle route with minimum pollution by optimization of 

travel speed. A mixed integer nonlinear programming model is introduced and a heuristic 

algorithm based on a savings heuristic and Tabu Search is developed to solve the large case 

for this problem. Numerical experiments are conducted through comparison with a solution 

obtained by BONMIN in GAMS on randomly generated small problem instances to 
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evaluate the performance of the proposed heuristic algorithm. To illustrate the impact of a 

time window constraint, travel speed and travel speed limit on total carbon emission, 

sensitivity analysis is conducted based on several scenarios. In the end, real world instances 

are examined to further investigate the impact of these parameters.  

Based on the analysis from the second problem, travel speed is an important 

decision factor in green vehicle routing problems to minimize the fuel cost. However, the 

actual speed limit on a road may have variance due to congestion. To further investigate 

the impact of congestion on carbon emission in the real world, we proposed a stochastic 

green vehicle routing problem as our third problem. We consider a green vehicle problem 

with stochastic speed limits, which aims to find the robust route with the minimum 

expected fuel cost. A two-stage heuristic with sample average approximation is developed 

to obtain the solution of the stochastic model. Computational study compares the solutions 

of robust and traditional mean-value green vehicle routing problems with various settings.  
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CHAPTER I 

 INTRODUCTION 

1.1 Background 

1.1.1 Green Logistics 

A consensus in addressing environmental concerns in the design of logistic systems 

has been reached recently due to the severe emission issues of greenhouse gases, especially 

carbon dioxide. Green supply chain management is defined by Srivastava (2007) as: 

“Integrating environmental thinking into supply chain management including 

product design, material sourcing and selection, manufacturing processes, delivery 

of the final product to the consumers as well as end-of-life management of the 

product after its useful life”. 

The combination of operational decisions in a supply chain and their environment 

impact has been studied and presented in different areas of the logistics literature: inventory 

control, facility location and layout, transportation design and planning (Dekker et al., 

2012). For example, some firms focus on reducing emissions caused by physical processes, 

and recommend redesigning or replacing inefficient parts of equipment, using low-

emission or renewable energy and shipping through efficient routes 
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(Benjaafar et al., 2010). Figure 1 shows a categorization of green logistic problems 

according to classifications in different literatures, including Beltran et al. (2009), Janic 

(2011), Macharis and Bontekoning (2004), Quariguasi et al. (2009), Sasikumar et al. (2010) 

and Iakovou et al. (2010). Green logistics, with consideration of social, economic and 

environmental factors, basically focuses on reducing greenhouse gas emissions during the 

production and distribution process in a sustainable way (Dekker et al. 2012). Green 

logistics solutions may include designing distribution networks with consideration of 

environmental impact, reducing energy usage and carbon emission, and managing waste 

treatment. Compared with those ideal scenarios, a significant drawback of current supply 

chain systems is that they are not sustainable (Sbihi and Eglese, 2007). In this research, we 

focus on the distribution network design and transportation planning in green supply chains. 

Green Logistics

Transportation
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Figure 1. Classification of green logistics based on literature reviews 
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1.1.2 Intermodal Transportation 

Unlike traditional transportation models which consider alternate transportation 

modes separately, the definition of intermodal freight transport (European Conference of 

Ministers of Transport, 1993) is: “movement of goods in one and the same loading unit or 

vehicle, which uses successive, alternate modes of transportation (road, rail, water) without 

any handling of the goods themselves during transfers between modes”. There are three 

important parts in the intermodal transportation network: suppliers, carriers and intermodal 

terminals. Suppliers generate demand for freight transportation while carriers take care of 

freight distribution according to the corresponding demand. Intermodal terminal or 

facilities which include almost all types of freight terminals are used as the transfer node 

to transfer cargo from one mode to another. The responsibility of the operators of these 

intermodal facilities is providing services and strategies to decision makers by operating 

one or multiple hub locations. Figure 2 illustrates an example for a rail-truck-barge 

intermodal freight transportation chain (Bektas and Crainic, 2007). 

Railway Highway Waterway

Figure 2. A typical example of a rail-truck-barge intermodal freight transportation chain 

In this example, a shipment that leaves the suppliers’ facilities is first shipped by 

truck using highway to a rail station. Then, the containers are consolidated there and 

shipped to another rail terminal by train. Trucks are again used to transport cargo from the 

rail terminal to a port. The trucking part of the intermodal network is called drayage 
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(Macharis and Bontekoning, 2004). After that, containers are shipped from one port to 

another, and then via road or rail to the destination.  

The fundamental advantage of intermodal transportation is consolidation of 

multiple transportation modes and services together. Thus, this transfer method reduces 

damage of cargo that usually occurs in the process of freight handling. Another key benefit 

of this method is that transportation costs and greenhouse gas emissions over road networks 

are reduced. In the past three decades, intermodal freight transport, which provides an 

economic and efficient means to transport goods in supply chains, has grown to be a 

significant sector in the transport industry. Over the next few decades, environmental 

factors will still have a significant influence on operational decisions and require attention. 

Intermodal transportation provides an efficient way to change the consumption pattern, and 

thus reduce the emissions of air pollutants.  

Although researchers in the operations research field have worked on intermodal 

freight transportation for years, there are still many problems that need to be addressed 

(Macharis and Bontekoning, 2004). In this dissertation, we will focus on the transportation 

flow and logistic planning of intermodal transportation networks, and investigate the 

potential environmental benefit from a national planning perspective.  

1.1.3 Green Vehicle Routing 

The traditional vehicle routing problem (VRP) focuses on minimizing the economic 

costs for carriers. In recent years, the impact of environmental factors has received 

significant attention. Under the legislation and policies that limit the specific amount of 

emissions, individual companies and carriers are seeking new routing and scheduling 

methods to satisfy such restrictions. A variant of the traditional VRP, the green vehicle 
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routing problem (GVRP), is studied in this dissertation. Environmental and social costs are 

considered along with time window constraints. 

Touati-Moungla and Jost (2012) summarizes the related routing and scheduling 

problems in sustainable logistics into the following eight categories. 

1.  Routing of Hazardous Materials (RHM): 

The goal of this problem is to select the optimal route with minimum risk of 

population exposure when transporting hazardous materials. 

2. Routing and Scheduling in a Time-Dependent Environment (RS TDE): 

The goal of this problem is not to minimize the carbon emissions or fuel 

consumption directly. It is to reduce the travel time by considering and avoiding 

congestion on the route, thus, reducing air pollution. 

3.  Waste Collection Vehicle Routing Problem (WCVRP):  

This problem belongs to the Multi-Depot Vehicle Routing Problem with Inter-

Depot Routes (MDVRPI). The main purpose of this type of problem is to minimize 

travel cost in terms of number of vehicles, travel distance and the total travel time, 

like the traditional VRP. But for the waste collection vehicle routing problem, each 

vehicle must empty their disposal container before they visit customer nodes. 

4.  Multi-Modal Vehicle Routing Problem (MMVRP):  

This problem involves determining the optimal route for vehicles that operate in a 

multimodal transportation network. Because alternate transportation modes have 

different emission rates, this model provides choices for the environmental friendly 

transportation modes without violating other delivery constraints. 

5.  Dial-a-Ride Problem (DARP):  
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The goal of this problem is to minimize the vehicle route cost to accommodate more 

users between the origins and destinations (Cordeau and Laporte, 2003). This 

problem decreases gas emissions indirectly by minimizing the fleet size and 

congestion of the transportation route.  

6.  Pick-up and Delivery Vehicle Routing Problem (PDVRP):  

This problem, which requires simultaneous pick-up and delivery service is an 

extension of the Capacitated Vehicle Routing Problem (CVRP). It belongs to one 

of the problems of reverse logistics which aims to provide an efficient method to 

recycle the waste in the supply chain. 

7.  Energy Routing Problems (ERP):  

This problem aims to reduce the fuel consumption and pollution emissions 

generated during a tour by vehicles. This topic is relatively new. 

8.  Air Traffic Control (ATC):  

Air traffic control can reduce the emission of aircraft by controlling the air traffic 

flow efficiently. The objective of this problem is selecting the optimal path with 

minimum fuel consumption and travelling time. 

1.2 Motivation 

The research in this dissertation is conducted partially within the Logistics and 

Distribution Institute (LoDI) at the University of Louisville. Because logistics and 

distribution is identified as an important part of the US economy, especially for 

metropolitan areas, LoDI was formed to assist the government and companies in industry 

to solve logistics and distribution problems. With the growth in economic activity 

worldwide, the environmental impact has been recognized as an important global issue 



7 
 

today. Under the threat of government legislation, firms worldwide are seeking a more 

effective way to reduce their carbon emissions while their major cost (transportation cost) 

will not be increased significantly. As part of the project of a US Department of 

Transportation (DOT) project, this research focuses on intermodal transportation network 

design and green vehicle routing problems in a green supply chain system. 

Transportation, which is an importation element of supply chains, is also the most 

visible source of carbon emissions. According to the US Environmental Protection Agency 

(EPA), around 28% of all carbon dioxide emissions were due to transportation which is the 

second largest contributor in the US (EPA, 2011). Because transportation cost and time 

performance are always the main concern in most logistical systems, freight shipped only 

using highways account for about 34.6 % in US (Winston and Langer, 2006). However, at 

the same time, carbon dioxide emission on the freight road transportation has increased 

rapidly resulting from the long travel distance. With respect to the environment, over two-

thirds of the transportation carbon emissions come from road freight transportation.  

Consequently, there is a need to design an efficient and environmentally friendly 

logistical system to satisfy both the government and carriers. To improve the environmental 

condition, governments are under pressure to introduce restrictions or legislation to control 

the amount of carbon emissions. For example, government agencies may seek policies to 

increase market share of other less polluting transportation modes, such as railway and 

waterways. Meanwhile, such legislation also stimulates firms worldwide, or their carrier 

companies, to reduce carbon emissions. Without legislation, companies are usually driven 

by profit or business practices while ignoring activities that can be a potential significant 

source of emissions. Intermodal transportation provides an economic and efficient way to 
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address these issues. However, companies and governments have different perspectives 

regarding environmental issues. Naturally, government authorities tend to reduce the 

environmental emissions without threatening the benefit of carrier companies, whereas 

companies aim at pursue minimum strategies while satisfying the safety limitation set by 

the regulator. 

For example, from the perspective of a company, determining the mode of 

transportation could have an important impact on mitigating carbon emissions. How to 

choose a transportation mode is the main topic in logistical systems. Each mode has 

different transportation costs, transit times, carbon emission rates, capacity and 

accessibility. For instance, highway and air transport provides better time performance, but 

it is more expensive compared to railway and waterway. Thus, it is mainly used for time 

sensitive commodities. Waterways are the most economic and environmental friendly 

mode. However, it has many restrictions since it has lower speed compared to other modes. 

It is typically used for transporting large volumes of commodities that are time insensitive, 

e.g., coal. In the real world, the type of products and travel distance are also two key points 

that determine the choice of transportation modes. In the case of international supply chains, 

the most frequently used modes are: sea and air. For domestic supply chains, the main 

choices are truck, train, airplane or ship.  

Meanwhile, from the perspective of government, how to set legislation to stimulate 

companies to choose economical routes and low-emission modes is also important for the 

environment. Research and Innovative Technology Administration (RITA), a unit within 

the U.S. Department of Transportation (DOT), estimated that the total volume of 

intermodal truck and rail combination grew 47 percent from 118 million tons to 173 million 
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tons and the average ton-miles grew 50 percent from 160 billion to 240 billion in the past 

nine years (U.S. Department of Transportation, 1993-2002). Some predict that this trend 

will continue in 2015.  

Because the growth in intermodal transportation impacts the current traffic from 

economic and environmental aspects, it is important to study the design and operational 

aspects of the current intermodal transport network to attract freight from trucks to rail or 

water aiming at reducing traveling distance using highway and, thus, using environmental 

friendly mode. 

Similarly, determining the frequency of supply delivery and type of vehicle to use 

for delivery is also important because those decisions could also have great impact on the 

environment. According to US DOT, vehicles on the roadways accounted for 79% of 

emissions. Among these, medium and heavy duty trucks contributed almost 19% of 

transportation emissions (US DOT, 2010). Due to the new environmental legislations, 

government agencies and individual companies are seeking methods to convert their fleets 

from traditional fuel vehicles to alternative fuel vehicles. In this dissertation, based on the 

environmental strategy, a green vehicle routing problem is studied from a company’s 

perspective. 

In addition, intermodal transportation provides potential opportunities for 

collaboration of individual companies of the same transportation modes to reduce logistic 

costs. Specifically, because intermodal transport moves goods in the same loading unit, 

orders of product from different customers can be delivered at the same route by the same 

transportation mode. The collaborative distribution and planning can help companies 
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reduce operational costs considerably. Hence, in this dissertation, we present a new 

collaboration scheme for intermodal transportation based on a given route. 

1.3 Overview and Contribution 

1.3.1 Research Summary 

In this research, we consider environmental costs in the intermodal network and 

address this problem from the perspectives of two levels: the government, which sets 

policies to drive the entire transport system in a more environment-friendly manner, while 

maintaining efficiency; and the companies which make routing decisions to minimize their 

logistics cost while satisfying all practical constraints as well as the new environment 

related transportation policy. 

The first part is intermodal transportation planning considering environmental 

issues. First, we develop an intermodal transportation network system consisting of major 

US intermodal facilities (as nodes) and three modes: inland waterway, railway and highway 

(as links) using ArcGIS. Based on publications from the Bureau of Transportation Statistics 

(BTS) under US DOT, we analyze the fixed demand of each origin and destination and 

assign preliminary capacities and demands to the network. Based on the data collection 

and analysis, we address the following tasks from the entire system’s perspective.  

(1) Minimizing transportation cost without considering environmental issues. 

Based on the model solutions, we evaluate the load feasibility and establish a lower 

bound of the transportation cost in the network, and thus help to evaluate the 

efficiency of current logistics performance. 

(2) Transportation modeling with environmental cost. By assigning a weight to 

environmental factors, we perform sensitivity analysis on the environmental cost, 
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e.g. relationship between mode selection and environmental cost policy. We seek 

to determine the type of environmental cost policy that can optimize the total cost 

and how to reach the balance between on economics and environment. 

The second part looks at the green vehicle routing problem which takes into account 

micro behaviors of a single company, and thus is closer to the real world case. This problem 

will consider transportation cost and environmental cost, e.g. CO2 emissions. For example, 

a company delivers products to multiple customers (destinations), considering delivery 

cost, and demand time requirements. The given data for this problem are: distance, capacity, 

travel time between nodes in a network; demand volume and delivery time requirement of 

node; economic and environmental legislation that are provided from the first problem. 

This part includes two problems (time window constrained deterministic green vehicle 

routing problem and stochastic green vehicle routing problem) with the aim to obtain an 

optimal vehicle route with minimum carbon emission, in other words, minimum fuel 

consumption. The impacts of travel speeds, time window and travel speed limit on carbon 

emission will be studied. The solution of this problem will show companies new routing 

and cost under the new policy environment.  

Green 
Transportation 

Planning 

Green Vehicle 
Routing

Implementation

Lower bound of 
improvement

Example

Feasibility 
validation

Policy and 
environment 

data

 

Figure 3. Relationships among the two problems and implementation 

Figure 3 describes the relationship among the two problems in this dissertation and 

future implementation. The green transportation planning problem focuses on the analysis 
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of the entire logistics network of multiple states. We will spend much effort in collecting 

data and mining it to reveal the needs and potential benefit of green transportation planning. 

The resulting network optimization analysis also leads to a tax policy to encourage 

improvement. This study provides necessary environment and policy data for the green 

vehicle routing problems in the execution level. Because analysis is conducted for the 

entire system, the optimal solution of such a problem provides a lower bound on practical 

implementation of environment improvement. Study in the green vehicle routing problem 

simulates a scenario in detailed level, and thus can be treated as an example in the future 

implementation. Also, the analysis at this level and a successful routing decision according 

to the new policies also demonstrate the feasibility of the application of environmental 

policy. 

1.3.2 Contribution 

This research has practical contributions with various models, analyses and 

suggestions that can be implemented in the real world. The intermodal network modeling 

considering environmental aspects can provide government agencies legislation 

suggestions without increasing the logistical costs of individual companies. The green 

vehicle routing problem and the corresponding solution method can be implemented under 

general industrial settings. The specific contributions of this research are summarized as 

follows. 

1. Intermodal network modeling: 

A real world coal transportation intermodal network across 15 states in the US 

including highway, railway and inland waterway is conducted using ArcGIS. Four 

boundary models are built to evaluate the potential improvement of the network. The first 
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boundary model is a typical minimum cost problem, where the total transportation cost is 

minimized while the flow balance and capacity restrictions are satisfied. An additional 

constraint that help obtain an upper bound on carbon emission is added in the second 

boundary model. Boundary model 3 minimizes the total emission with flow balance and 

capacity restrictions the same as boundary model 1. Boundary model 4 minimizes the total 

emission with an additional current cost restriction to achieve a less-aggressive lower 

bound for carbon emission. With the goal to minimize the economic and environment costs 

simultaneously, we propose multi-objective optimization models to analyze intermodal 

transportation with economic, time performance and environmental concerns. A time 

penalty parameter is introduced to simulate the real coal transportation behavior through 

the mathematical model. Scenario analysis provides authorities the resulting carbon 

emission tax policy and the change of the system-wide transportation cost. The breakeven 

point for tax is suggested to provide minimum carbon emission without increasing 

transportation cost. In other words, this research provides a practical strategy for 

governmental agencies from a high level planning perspective. 

2. Green vehicle routing: 

Two green routing problems that consider environmental aspects are investigated. 

There are only a few papers in the literature that have addressed the green vehicle routing 

problem, including Kara et al. (2007), Kuo (2010), Xiao et al. (2012), Schneider et al. 

(2012), and Bektas & Laporte (2011). Bektas and Laporte (2011) include time windows in 

their PRP model. But the trade-off between environmental cost and economic cost under 

soft time window restriction has not been investigated until now. More importantly, travel 

speed is usually considered as a constant in much of the literature. However, none of these 
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papers considers environmental issues associating with stochastic speed of vehicles based 

on our knowledge. 

Given a planning horizon, green vehicle routing problems aim to determine the 

optimal route for a set of commodities with minimum carbon emission. By investigating 

the environmental impact of travel speed and time window limitation, the deterministic 

green vehicle routing models can provide routing and travel speed suggestions within a 

given range of time. The stochastic green vehicle routing model can simulate real world 

congestion and provide a robust vehicle route with minimum expected total carbon 

emission. In conclusion, the green vehicle routing models consider environmental impact 

and can be used at an operational level from individual carrier companies’ perspective. 

This model can also be used to verify the practical implementation of strategy and planning 

analysis of the first problem. 

1.3.3 Dissertation Structure 

The remainder of the dissertation is organized as follows. The comprehensive 

literature review is provided in Chapter 2, including the literature related to green logistics, 

intermodal transportation, intermodal transportation considering environmental issues and 

green vehicle routing problem. In Chapter 3, the underlying assumptions of network model 

and carbon emission calculations are presented based on a real coal transportation network. 

Several boundary models and the multi-objective intermodal transportation network model 

with economic, time performance and environmental concerns are described. Scenario 

analyses are presented to demonstrate how the model can help government agencies 

determine appropriate legislation to improve the environment without increasing system-

wide transportation cost. In Chapter 4, a deterministic green vehicle routing problem is 
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formulated as a nonlinear mixed integer program with the aim to minimize total carbon 

emission by optimization of travel speed. Sensitivity analysis based on a real world case is 

conducted to investigate the impact of travel speed, time window constraint, and travel 

speed limit. In Chapter 5, a stochastic green vehicle problem which aims to find the robust 

route with the minimum expected fuel cost is proposed. A two-stage heuristic with sample 

average approximation is developed to solve the proposed mathematical model. 

Computational study compares the solutions of robust and traditional green vehicle routing 

problems with various settings. We end with the conclusion and discussions in Chapter 6.  
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CHAPTER II 

 LITERATURE REVIEW 

2.1 Green Logistics  

Operations research models have been applied to supply chain logistics with 

consideration of environmental factors in the following areas: inventory control, facility 

location and layout, transportation design and planning (Dekker et al., 2012). There is 

extensive literature on the topic of inventory and facility design. Papers in this area 

typically consider environmental impacts which include influence of carbon emission and 

other waste from production and manufacturing operations.  

For example, Benjaafar et al. (2013) combined operational decisions in a supply 

chain and environment issues by integrating carbon emission parameters into traditional 

operations models. They evaluated how regulatory emission control policies affect cost and 

emissions. The impact of collaboration in supply chain on economic and environmental 

performance was also investigated in this paper. The authors presented several model 

formulations: production planning model for a single firm with strict carbon caps, a single 

firm with carbon tax and multiple firms with or without collaboration. In the first model, 

the author introduced three parameters to calculate carbon emission: fixed carbon emission, 

variable carbon emissions and emissions involved in the storage. They modified the first 

model by adding a parameter associated with tax paid on each unit emitted. The third model 

used the same parameters as the two 
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previous models, but assumed that each firm acted like a supplier firm for another firm in 

the supply chain. Thus, the third model had limited application in the real world. They 

found that operational adjustments could lead to significant emission reduction without 

significant cost increase. More importantly, their result highlighted the importance of 

collaboration across the supply chain.  

Elhedhli and Merrick (2012) proposed a supply chain network design model that 

included CO2 emissions to investigate the economic and environment effects. Emission 

costs associated with fixed cost, variable location and production costs were considered in 

this distribution network model. The relationship between CO2 emissions and the weight 

of vehicle was formulated as a nonlinear function according to the published data. The 

author used Lagrangian relaxation to solve the mixed integer programming model. Their 

results showed that the rigidity of the problem had a large impact on location of distribution 

centers. The distribution of costs was fairly stable when capacity levels of the distribution 

centers varied. The authors also varied the cost structure by making one of the costs 

dominant: dominant fixed costs, dominant variable costs, and dominant emissions costs. 

As expected, dominant emissions costs resulted in lower overall emission compared to the 

other components.  

Tang et al. (2013) integrated environmental considerations in the classical 

incapacitated facility location problem which aims to minimize the economic cost and CO2 

emissions while providing strategic facility locations within a logistics network. The model 

was developed as a mixture of mathematical formulations with three objectives: minimize 

CO2 emissions, minimize economic cost and maximize customer service reliability. The 

hybrid algorithm was provided to solve the multi-objective problem. First, the ε-constraint 
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method was used to transform the multiple objectives into one. Then, the authors used a 

greedy heuristic to provide a feasible solution by deleting facilities from the solution 

greedily until further improvement cannot be achieved. Computational experiments and 

sensitivity analysis showed that CO2 emissions fall and reliability increases with more 

facilities. This result indicated that, to reduce CO2 emissions while maximizing service 

reliability, it may be more appropriate to open more logistics facilities than improving 

economic effectiveness. 

A majority of the green supply chain literature takes a carrier company’s 

perspective by focusing on problems with a single transportation mode and a single origin 

destination pair. In this review, we will not cover all aspects of logistics. Only one specific 

aspect of the green logistic problem, transportation with environment issues, is highlighted. 

Specifically, we mainly focus on the transportation mode selection and green vehicle 

routing as a method to reduce carbon emissions. This review summarized the current 

research of these aspects we mentioned above and will provide a sketch of possible 

developments in the future. 

2.2 Intermodal Transportation 

2.2.1 Intermodal Transportation 

One of the main problems in transportation is mode selection. Macharis and 

Bontekoning (2004) reviewed the application of operations research to intermodal 

transportation systems. According to this literature, operators are classified based on their 

main responsibilities in intermodal and supply chain network. Generally, network 

operators are concerned more about infrastructure planning and scheduling of 

transportation among different modes. To determine which services should be used, first, 
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how to choose the consolidation network is an important problem for the decision makers. 

Typically, there are four networks: point-to-point, hub-and-spoke, line and collection-

distribution. In most cases, a point-to-point network is the easiest method for operators. 

Then, the production model should be decided by the operator. Service frequency 

assignment, train length determination, equipment allocation and capacity planning of 

equipment are main issues for the production model.  

According to different levels of operators and planning horizons, there are three 

typical network and transportation problems: strategic, tactical and operational problems. 

In this dissertation, we only focuses on the application of OR problems on network 

operators and intermodal operators. For strategic problems in transportation, a majority of 

the studies, e.g., Short and Kopp (2005), Crainic et al. (1990), Jourquin et al. (1999) and 

Southworth and Peterson (2000), are related to long term network planning and location of 

terminals determination. The impact of capacity and cost are two important areas of 

research in infrastructure networks. However, most models only developed one mode 

without considering intermodal flows. Some papers, e.g., Loureiro (1994) and Van Duin 

and Van Ham (1998), extended unimodal network models to multi-mode model by adding 

connecting links via multiple transportation modes. For instance, Duin and Ham (1998) 

developed a methodological transportation framework which combines multiple 

qualitative factors and uncertainties from different strategy levels. The author developed 

an actor modeling language (dynamic actor network analysis) which described multi-actor 

situations. Three specific arenas were identified by combining aspects from different levels. 

Corresponding to these three arenas, three different models were developed to seek for 

solutions that optimize the main performance indicators of each arena. First, because price 
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is the most important evaluation factor at both international and national levels, a linear 

programming model was introduced to determine whether intermodal transportation was 

more efficient than road transportation based on regional transportation demand. Three 

kinds of costs were considered: shuttle cost between terminals, costs for pickup, delivery 

and transshipment at each terminal, and cost for direct road transportation between regions. 

A second detailed cost model which considered three more cost factors was developed to 

look for the exact location in this area. In the end, the author developed a simulation model 

to analyze the logistic factors for both the terminal and its customers, such as the suitability, 

timeliness and deliverance reliability of goods. 

GIS technology also provides a new way to model large multi-modal networks. For 

instance, Southworth and Peterson (2000) used GIS to develop a digital multimodal 

transportation network and apply it to in a large network of transportation system. First, to 

load a version of the intermodal network into a commercial GIS, the authors modified the 

original GIS network by converting zero length links to points. In order to make the traffic 

routable, the authors generated a formulation to search the appropriate network access and 

connections. The authors also analyzed two methods for modeling intermodal terminal 

transfers. One method made each intermodal transfer as a connection node and modeled it 

as a single network combining multiple transportation modes. The other method identified 

a specific geographic location as a transfer facility. The authors used single truck freight 

modeling to compute the shipment distances.  Costs for different route activities were 

assigned into each specific link. The relative cost of changing transport mode from one to 

another was also considered in this paper. A shortest path model was used to ensure that 

the lowest cost mode was used among network routes.  
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Some articles address the issues of selecting the best investment options for a multi-

modal network when there is a budget. For searching optimal location problems, the 

possible lowest cost route will be determined with a fixed transportation flow. The 

objective functions for these problems could be: minimize transportation cost, maximize 

terminal profit, maximize modal shift and minimize drayage distance. Another location 

analysis is about selecting optimal site using the multi-criteria analysis method. 

For tactical problems, consolidation networks are evaluated with multiple criteria. 

Some papers focus on determining service schedules and cargo shipment plans to minimize 

total cost while satisfying the capacity restrictions, such as Bostel and Dejax (1998), Taylor 

et al. (2002) and Kemper and Fischer (2000). Some papers focus on cost-related pricing 

strategies, such as Spasovic and Morlok (1993), Tsai et al. (1994) and Yan et al. (1995). 

Furthermore, most models for these problems are computationally difficult to solve. 

Decomposition, branch and bound algorithm, Lagrangian relaxation and heuristic 

algorithms were proposed to solve the minimum cost flow and shortest path problems.  

From an operational aspect, these problems can be treated as classical assignment 

problems. Feo and Gonzalez-Velarde (1995) focused on how to assign highway trailers to 

railcar hitches with a minimum cost. Powell and Carvalho (1998) extended this by 

considering full utilization of equipment. Some assignment problems can be formulated as 

logistic queuing models with the aim to provide useful decision guidance for terminal 

operators. Another problem involves planning and allocations for the empty containers of 

the train. This problem can be treated as a classic dynamic fleet management problem with 

the objective of maximizing returns.  
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Konings (2007) presented a conceptual model for barge network design considering 

the relationship between barge transport performance in the intermodal network and the 

entire supply chain. The author mentioned that, it was better to use smaller vessels if 

available transport volume was small. For large scale vessels, the method of bundling and 

cooperation would be more useful. Increasing the number of sailings would also result in 

a growth in transport volumes. Also, the number of annual roundtrips could be increased 

if the circulation time decreases. To demonstrate possible improvement using the general 

framework generated before, a case study on the Rhine River transport was presented in 

the paper. 

2.2.2 Intermodal Transportation with Environmental Concerns  

There are a large number of papers in the supply chain literature that focus on 

multiple transportation modes from a carrier company’s perspective. However, relatively 

few papers address intermodal transportation while considering environmental issues.  

Dekker et al. (2012) compared the characteristics of alternate transportation modes 

with respect to time performance, cost and environmental quality, especially emissions of 

different equipment types in his paper. They observed that water transport was carbon 

efficient because water could easily carry heavy loads, rail transport was more efficient 

than road, and air transport was not environmental friendly in terms of CO2 emission 

comparing with other transportation modes. It was also observed that there was no clearly 

difference in SO2 emissions except in air transport which emit much more than others 

modes. From an environmental point of view, it was very helpful to use OR to evaluate the 

potential benefit between alternate modes. They also determined that more research was 
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needed to consider the environmental impact on collaboration supply chain system, for 

example, transport facility sharing in green supply chain. 

Leal and D’Agosto (2011) considered the aspect of financial and socio-

environmental cost to optimizing routes for bio-ethanol transportation in Brazil. They 

conducted a field study to identify indicators to compare different transportation methods. 

It was found that the best choice was to use multimodal transportation including long 

distance pipelines. Moreover, multimodal transportation using more pipelines performed 

best relative to cost and environmental impacts if using equal weights for financial and 

socio-environmental indicators in the process of evaluation. The second best option was 

the combination of pipeline, roadway and waterway. Transporting bio-ethanol which only 

used roadway was considered the worst of the alternatives due to environmental impact. 

Bloemhof et al. (2011) investigated energy consumption and pollution emissions 

of different transportation methods and pointed out that an inland waterway system will 

provide more environmental benefits than railway and highway system. From their case 

study, it appeared that road transport was the main source of emissions. However, due to 

the innovations in recent years, the gap between road transport and rail transport, inland 

waterway system was also a major source of emission. It was estimated that emissions 

coming from waterways will exceed the total emission by all other sources by 2020. As a 

result, only sustainable and profitable resources will be widely used to reduce emissions 

and improve the environment. 

Vanek and Morlok (2000) focused on improving the energy efficiency of frequently 

used trucks, taking into account shifting cargo to rail transportation. In order to use energy 

efficiently at the commodity level, they proposed a “commodity-based” approach which 
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disaggregated freight energy and assigned it to the major commodity groups. Through 

analysis of energy usage and freight patterns for US commodity flow survey data, it was 

suggested that the ratio of energy used for manufacture to energy consumption in 

transportation varied widely for different commodity types. In addition, improvement in 

the efficiency of transportation modes may redistribute flow patterns, thus providing 

potential opportunities for saving energy. Another important aspect to improve the energy 

efficiency is enhancing the collaboration of shippers and carriers because it could improve 

the efficiency and address underlying new issues at the same time. 

Mallidis et al. (2012) introduced a multi-objective supply chain design model to 

evaluate the impact of transportation cost, environmental factors, such as carbon emissions, 

on the transport geography of a region. Waterway transportation was introduced in this 

supply chain model because it is an energy-efficient method. Because minimizing supply 

chain carbon emissions may increase transportation costs, the share of warehouses and 

transportation services were introduced to minimize supply chains costs as well as 

minimize carbon emissions. Therefore, this model also assisted managers to make 

decisions on how to choose shared warehouses and transportation in the supply chain 

network. Through an application in the South-Eastern Europe region, this model indicated 

that both cost and environmental performance would be improved using shared warehouses 

and transportation services. At the same time, the amount of CO2 and particulate matter 

(PM) emissions were also reduced through shared transportation operations. 

Blauwens et al. (2006) and Hoen et al. (2010) included an inventory perspective in 

a mode selection model while considering carbon emission limit as constraint. Based on 

the basic inventory model, Blauwens et al. (2006) calculated the freight flow of different 
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transport modes and studied modal choice for a hypothetical freight transport market. In 

order to verify which modal shifting policy is the most efficient, the impact of different 

strategies that involve different transport modes on the intermodal market, such as highway, 

combination of railroad and highway and combination of waterway and highway were 

measured. It was noticed that significantly different transportation flow, shifting from 

highway to intermodal, occurred when different policies were applied. An example was 

the speed and the reliability of alternate transport modes. Hoen et al. (2010) investigated 

the impact of regulation and limitation of carbon emission on the transportation mode 

selection. Specifically, they investigated how emission related costs affect the decision 

maker’s selection of available transportation modes. Four modes of transport were 

considered in this paper: air, rail, road and water. Their results showed that the impact of 

emission related cost need to be extremely high to stimulate the decision maker to select 

an alternate transportation mode.  

Bauer et al. (2009) considered environmental costs (greenhouse gas emissions) in 

a multimodal freight transportation network. The authors provided transportation planning 

decisions while minimizing the amount of carbon emissions. The greenhouse gas emission 

(CO2 emission) was calculated according to Ross’s analytical approximation for energy 

consumption (Ross, 1997). The expression of fuel consumption and CO2 emissions were 

modeled as linear functions of the vehicle load. A real world rail network was studied as 

an application of the proposed model. Computational experiments had been conducted to 

evaluate the solutions that were obtained under different time and carbon emission 

conditions. Computational results showed that transportation time could be reduced by 45% 

while CO2 emissions only increasing by 0.5%. Further extensions were mentioned in this 
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paper, such as: more effective solution methodologies, and consideration of various vehicle 

velocities. 

Goel (2010) combined route choice and shipment in the transportation network 

model. The value of visibility over assets was quantified and used to adjust the 

transportation flow in the multi-modal transportation network. The result showed that their 

model could improve the on-time performance by increasing the level of visibility. 

Janic (2011) examined the potential social and environmental effects by developing 

an airport into a multimodal facility, by connecting it with the railway transport network. 

The capacity of the high speed railway, airport airside congestion and the social cost for 

corresponding delays, noise, and emissions of greenhouse gases were evaluated in this 

paper. Scenario analysis indicated that the capacity of the high speed railway did not have 

much social impact for transforming the airport to multimodal transport node. The cost of 

airline and passenger delays was much higher than the environmental cost (gas emissions 

and noise). Within the environmental concerns, gas emissions had more impact than noise. 

Thus, it was suggested to increase the number of air passenger transport flights to save the 

cost. 

2.2.3 Research Gap 

Intermodal transportation has been an important method to reduce traffic 

congestion and expenses, but the incorporation of multi-commodity intermodal 

transportation and carbon emissions tax policy in supply network optimization is almost 

absent in the literature. Due to the critical environmental issue today, it has become more 

critical to integrate environmental protection problem and intermodal transportation 

optimization, especially based on real world data. The existing literature in the field of 
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intermodal transportation either considers several dummy transportation modes or focuses 

on highway and railway only. Waterway, an environment friendly transportation mode, 

also plays an important role in distribution networks in human society, but is generally 

omitted in literature. Especially, there is no existing paper applying carbon emission tax 

strategy to stimulate people use inland waterway. The comparison of intermodal 

transportation papers is shown in Table 1. 

Table 1 

Comparison of intermodal transportation papers 

Papers  Model 
Time 

horizon 

Inland 

waterway 

Environmental 

Concern 

Price 

Strategy 

Crainic et al. 

(1990), 

Jourquin et al. 

(1999), 

Southworth 

and Peterson 

(2000), 

Loureiro 

(1994) 

Network 

design 
Strategic No No No 

Van Duin and 

Van Ham 

(2001),Kempe

r and Fischer 

(2000) 

Terminal 

design 
Strategic No No No 

Spasovic and 

Morlok 

(1993), Tsai et 

al. (1994) and 

Yan et al. 

(1995), Taylor 

et al. (2002) 

Service 

scheduling 
Tactical No No Yes 

Bostel and 

Dejax 

(1998),Feo 

and Gonzalez-

Velarde (1995) 

Resource 

allocation 
Tactical No No No 

Konings 

(2007) 

Conceptual 

model 
Operational Yes No No 
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Dekker et al. 

(2012) 

Network 

design 
Strategic No Yes No 

Leal and 

D’Agosto 

(2011)  

Network 

design 
Strategic Yes Yes No 

Bloemhof et 

al. (2011)  

Comparative 

study 
Strategic Yes Yes No 

Vanek and 

Morlok (2000)  

Commodity-

based 

approach 

Strategic Yes Yes No 

Mallidis et al. 

(2012) 

Supply chain 

design 
Strategic Yes Yes No 

Blauwens et 

al. (2006) and 

Hoen et al. 

(2010) 

Network 

design with 

inventory 

Strategic Yes Yes No 

Bauer et al. 

(2009) 

Network 

design 
Strategic No Yes No 

Goel (2010) 
Network 

design 
Strategic No Yes No 

Janic (2011) 

Stochastic 

queuing 

model  

Strategic No Yes No 

 

A driving force that government can adopt to enhance people’s awareness to protect 

the environment is the carbon emission tax, which is still under study by researchers and 

has a long way to go before implementation. Few papers addressed the tax policy problem 

under the settings of an intermodal transportation system. However, the impact on 

transportation mode choice cannot be ignored. In this dissertation, we collect and conduct 

detailed data analysis on a real world network with highway, railway and waterway over 

multiple states in the US. The intermodal transportation system is optimized with 

consideration of environment impacts, and the role of waterway is highlighted. In addition, 

our theoretic and computational analyses on the impacts on transportation mode choices 

demonstrate the feasibility of implementing a tax policy, and a reasonable tax rate is 

suggested. 
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2.3 Vehicle Routing Problem 

2.3.1 Summary 

Another important aspect of transportation is the vehicle routing problem (VRP). 

There are a large number of articles about the VRP. Laporte (1992) reviewed the basic 

VRP from three aspects: the definition, exact algorithm and heuristic algorithm. Toth and 

Vigo (2002) covered the basic and the main variants of VRP developed in the last decades. 

Exact and heuristic methods are also reviewed in this book. In this dissertation, we only 

review part of the existing articles that related with our problem. 

Two typical time windows in vehicle routing problems (Cordeau et al.,2001) are 

hard time window and soft time window. A hard time window requires that the vehicle 

must arrive before the time window limitation. Late arrival is forbidden in this case. A soft 

time window allows late arrival for each customer. However, a penalty cost will occur if 

the vehicle does not arrive within the time window constraint. 

Lenstra and Rinnooy (1981) pointed out that the Vehicle Routing Problem with 

Time Windows (VRPTW) is a NP-hard problem. Desaulniers et al. (1998), develop an 

integer multi-commodity network flow model for the VRPTW considering multiple depots. 

In their problem, each customer could be served by different depots within a time interval. 

The exact waiting cost was first taken into account in this type of problem. Column 

generation with branch-and-bound was used to solve the small and medium size instances 

while a heuristic method was used for large experiments. 

Koskosidis et al. (1992) presented a formulation of the VRP that considers soft time 

window as constraints. By their definition, there was a penalty cost corresponding to 

service time of a customer. In other words, the time window could be violated at a cost. A 
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new algorithm approach was presented to solve the problem. Based on the generalized 

assignment heuristic, the problem was decomposed into an assignment problem and some 

scheduling problems. Computational study based on real world data showed that their 

algorithm can reduce the time by 50% more than some simple methods.   

Dumas et al. (1991) developed an exact algorithm to solve the pickup and delivery 

VRP problem with time windows.  This problem is concerned with minimizing the travel 

cost while satisfying the pickup and delivery requests under the time window constraints. 

The authors presented an algorithm combining a column generation scheme with a 

constrained shortest path problem. Computational experiments had been done for multiple 

depots and different kinds of vehicles. Results showed that this algorithm worked for large 

pickup and delivery problems as well.  

There are a large number of papers using Lagrange relaxation-based methods to 

solve the VRPTW. For instance, in Fisher et al. (1997), two new algorithms for VRPTW 

were presented: a variable splitting algorithm and a generalized K-tree algorithm. The first 

algorithm used Lagrange relaxation to split the main problem into several sub-problems 

that could be solved using existing methods. In the second algorithm, the problem was 

formulated as a degree constrained K-tree problem. Lagrange relaxation was used to solve 

the problem. Both approaches have been tested up to 100 customers.  

Desrochers et al. (1992) developed a new optimization algorithm to solve the 

VRPTW. First, the VRPTW was formulated as a set partitioning model. Second, column 

generation was used to solve the LP relaxation of the set partitioning problem. Dynamic 

programming was used to calculate each sub-problem to generate the feasible columns. 

Finally, the set covering model was used instead of the set partitioning formulation. The 
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solution of the set covering model provided a lower bound for the set partitioning model 

that can be solved by branch-and-bound algorithm. Computational study indicated that this 

algorithm was able to solve large problem with a large number of complex constraints. 

Solomon (1987) extended the existing VRP algorithm and designs a computational 

study for the tour-building algorithm for VRPTW. The algorithm combined the distance 

and the time dimension in the heuristic process. A set of test problems was developed to 

evaluate the computational capability of the existing algorithm. Based on the experiments, 

an insertion heuristic was recommended to combine with the hybrid sweep-insertion 

approach to get a better solution. His work was extended by Potvin and Rousseau (1993). 

Chiang and Russell (1996) developed three simulated annealing algorithms for the 

VRPTW. Two neighborhood structures were implemented in the first two algorithms and 

used as the basis for comparison. The first one was λ-interchange process developed by 

Osman (1993). The second one was k-node interchange mechanism introduced by 

Christofides and Beasley (1984). The concept of Tabu list was adopted in the third 

simulated annealing algorithm. Results showed that the first and third methods performed 

faster than the second one, although the second method provided better results. 

Ombuki et al. (2006) translated the traditional VRPTW a multi-objective VRPTW 

problem. One objective was minimizing the number of vehicles, while another was 

minimizing the total travel distance. A genetic algorithm incorporated with a Pareto 

ranking scheme was applied to solve this problem. Their result provided a good solution 

and performed well compared with other vehicle-based results in the literature. 

Bräysy and Gendreau (2005) conducted a survey of heuristic approaches for the 

VRPTW. The concept of Pareto optimality was introduced to evaluate and compare the 
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traditional heuristic methods and improved search algorithms. Characteristics investigated 

in the analysis included simplicity, flexibility and robustness. Based on the solution quality 

and time performance, the algorithms presented in Russell (1995) and Bräysy (2003) were 

found to be more efficient than other local search algorithms. 

Bouthillier and Crainic (2005) presented the parallel cooperative multi-search 

method to solve the VRPTW. The authors combined four construction heuristics from 

Bentley (1992) to generate the initial solution. Their methods included two tabu search-

based methods and two evolutionary algorithms. A post-optimization technique was 

applied to find a feasible solution.  

Azi et al. (2010) developed an exact algorithm for the VRPTW, which has two 

phases. The first phase provided feasible routes while the second phase combined some of 

these routes to create a working day schedule for a vehicle. Experiments were performed 

based on an example in Solomon (1987). The result indicated that the deadline constraint 

had a restriction impact on this algorithm. In other words, this algorithm was very sensitive 

to the time restriction. 

Ren et al. (2010) proposed a vehicle routing problem with time windows 

considering overtime and multi shifts. Shift dependent heuristic algorithms taking into 

account of overtime were developed to solve the large-scale problem. An insertion heuristic 

was used to generate the initial solution while a Tabu Search algorithm was used to improve 

the result. Their results demonstrated greater saving in terms of total cost and the number 

of vehicles compared to the method without shift dependence. El-Sherbeny (2010) 

presented a review of exact, heuristic and metaheuristics methods for VRPTW. 
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2.3.2 Green Vehicle Routing Problem 

Although there is extensive literature about the basic and the variants of vehicle 

routing problems, the Green Vehicle Routing Problem (GVRP) has only been investigated 

recently. This problem concerns reducing the energy consumption and the greenhouse gas 

emission as well as improving the current transportation efficiency, such as recharging of 

the vehicles (Lin et al. 2014). Papers on this subject with the aim of reducing energy 

consumptions include D’Agosto and Ribeiro (2004), Kara and Yetis (2007), Xiao et al. 

(2012), and Kuo (2010). Another aspect of the GVRP is pollution routing. The related 

literature includes Bektas and Laporte (2011), Maden et al. (2010), Palmer (2007), 

Fahimnia et al. (2013). 

Bektas and Laporte (2011) investigated the effect of load and speed of truck on 

carbon emissions in their pollution routing problem using a comprehensive emission model. 

Palmer (2007) integrated carbon emissions with a vehicle routing problem with various 

speeds. He developed a vehicle routing model that calculates total carbon emissions, 

transportation time and travel distance to look for more environmentally beneficial routes. 

This model provided a delivery strategy corresponding to various carbon emission 

regulations. In addition, the author took into account congestion issues in the freight vehicle 

routing model. Fuel consumption was modeled by vehicle speed. Digitized road network 

was used to evaluate the traffic volume which was then applied to estimate carbon 

emissions. Scenario analysis for traffic volume was conducted to evaluate the proposed 

method. Experimental results and sensitivity analysis showed that carbon emissions can be 

potentially reduced by almost 5% while the total transportation time for the routes increase 

by 4% and the vehicle costs increase by 0.5%.  
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Fahimnia et al. (2013) developed a non-linear optimization model to investigate the 

carbon reduction potential and the trade-off between fuel consumption and transportation 

costs. The cost of air emission and fuel consumption expressions were modeled as 

functions of travel speed and road roughness in the model. The objective of this model 

included transportation costs, backlogging/penalty cost, cost of fuel consumption and cost 

of generated air emissions. The constraints included capacity constraints for supply, 

production and distribution; balance equations; speed and pollution restrictions. Piecewise 

linearization and tangent plane approximation were used to transform the model to a mixed 

integer linear programming model. In order to approximately linearize the objective 

function, piecewise functions were used to find the carbon emission rates and fuel 

consumption rate. A series of scenarios for carbon prices were conducted to investigate the 

effectiveness of this model. Numerical results showed that the contribution of carbon price 

in overall logistics cost will not increase significantly corresponding to carbon emission 

rates. However, roughness of road surface is an important factor which has a great impact 

on fuel consumption. The improvement of it will lead to carbon emission cost reduction as 

well. 

Kwon et al. (2013) focused on the heterogeneous vehicle routing problem while 

taking carbon emissions into account. The carbon emission cost was calculated from the 

difference between the upper limit account of carbon emission and the actual carbon used 

in the logistical system. The environmental cost was incurred when carbon emissions were 

greater than the upper limit. Here, carbon emissions were estimated based on fuel burned 

and average emission factors. Then, based on the traditional heterogeneous vehicle routing 

problem (C-HVRP), the author minimized the sum of the variable operation costs while 
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incorporating the environmental cost in the objective function. Tabu search algorithms 

were used to solve the model. Numerical experiments were conducted to evaluate this Tabu 

search algorithm. The performance of TS-hybrid algorithms was better than other methods. 

In addition, sensitivity analyses were performed to the test effects of changing the upper 

limit of carbon emissions and the unit cost of carbon. Results showed that carbon trading 

can lead to significant carbon emission reduction without increasing the total operational 

cost. 

Kuo (2010) proposed a fuel consumption model for the vehicle routing problem 

with time dependent travel speeds. Meanwhile, total transportation time, transportation 

speed, loading weight and total transportation distance were also calculated while 

satisfying the ‘first-in–first-out’ property when given a particular routing plan. This model 

first divided the routing plan into sub-routes according to the loading weight of vehicles. 

Simulated annealing algorithm was applied to solve this problem. Solomon’s 100-customer 

Euclidean problem was adopted for test with four travel speeds scenarios. Computational 

study showed that the proposed method could result in a route with less fuel consumption 

but more travel time and distances. 

Since we will focus on the green vehicle routing problem considering time windows 

in this dissertation, the related literature about GVRP with time windows is discussed 

below. 

Based on the vehicle routing and scheduling problem with time windows-

probabilistic formulation in Taniguchi et al. (2001), Ando and Taniguchi (2006) presented 

an application in an actual urban distribution. Different from Taniguchi et al. (2001), which 

assumed the arrival time to be normal distributed, the actual travel time estimated based on 
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data of vehicle information communication systems was used in Ando and Taniguchi 

(2006). The block density method was applied to simulate traffic flow and to estimate the 

travel time distribution. Scenario analysis in the impact of different distributions on the 

proposed model was conducted. Environmental impacts were also compared with the usual 

operation. 

Figliozzi (2011) built a time-dependent vehicle routing model to analyze the impact 

of average travel speed, congestion level and land on carbon emissions. The model was 

based on the traditional flow-arc model proposed in Desrochers et al. (1988). Real world 

data from Portland, OR was implemented in the case study to analyze the trade-off between 

travel speed, congestion levels, demands and carbon emissions. The results indicated that 

the level of congestion has significant impact on carbon emissions. 

2.3.3 Research Gap 

The traditional VRPs generally consider objectives to minimize the total travel 

distance, with a common assumption that travel cost is a linear function of distance. In the 

real world, there are many other factors that impact on travel cost, e.g. load of vehicles, 

travel speed, drivers and tax and more. For example, the same vehicle has difference fuel 

performances at difference speeds. A model considering travel speed as a decision variable 

has significant impact on application in the real world, but the nonlinear cost function 

resulting from the consideration of such factors brings a new challenge for solving these 

models. Among the green VRP literature, the travel speed is treated as either a constant or 

a deterministic variable without constant range restrictions. In the real world, the possible 

speed limit on a particular road is not fixed. For example in a road with speed limit of 45 

mile/hour, the real speed limit when a vehicle travels on it could be only 30 mile/hour due 
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to a heavy traffic. Thus, a stochastic range for speed limit is more practical. Existing papers 

on green VRP consider the problem of minimizing fuel cost, whose results are different 

from those traditional VRP. Table 2 shows the comparison of mathematical models of the 

existing papers. To understand the benefit of a green VRP solution, much analytical work 

needs to be conducted. 

Table 2 

Model comparison of G-VRP papers 

Papers  Model Objective (Min) 
Time 

Window 

Various 

Travel 

Speed 

Kara et al. (2007) and 

Kuo (2010) 
C-VRP travel cost No No 

Schneider et al. (2012) VRPTW travel distance Yes Yes 

Maden, W., Eglese, R., & 

Black, D. (2010).  
VRPTW travel cost Yes No 

Bektaş and Laporte 

(2011) 
VRPTW carbon emission Yes 

Yes, 

assume 

travel 

speed >= 

40 

miles/hour 

Fahimnia et al. (2013)  
logistics 

planning model 
travel cost No No 

Kwon et al. (2013)  C-VRP operations cost No Yes 

Figliozzi (2011)  VRPTW fleet size  Yes Yes 

Xiao et al. (2012) C-VRP 
fuel 

consumption 
No No 

Palmer (2007) VRPTW carbon emission Yes No 

D’Agosto, M., & Ribeiro, 

S. K. (2004).  
No Model       

 

From the Table 2, we can see that there is no paper addressing G-VRP with 

objective of minimizing carbon emission while considering time window constraint and 

various travel speed. Especially, there is no existing paper talking about stochastic green 



38 
 

vehicle routing problem. This dissertation addresses this important research gap, such as 

the environment impact and trade off under other practical settings. We consider a green 

VRP with time windows, where the speed limit can be a stochastic value. Such setting is 

closer to the real world, e.g. the feasible speed limit is random and can follow a function 

of the number of traffic lights on the road. Also, we minimize both fuel and environmental 

cost. Minimizing the environmental costs and minimizing the fuel costs could be consistent, 

but since environmental issues is still an open topic for research today, we conduct a 

sensitivity analysis to evaluate the impact of travel speed and time window limitations on 

fuel/environmental cost. 
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CHAPTER III 

 MULTI-OBJECTIVE INTERMODAL NETWORK DESIGN 

3.1 Problem Statement 

3.1.1 Network Setting 

In this section, we present an intermodal network including the entire inland 

waterway systems across 15 states in the US (Minnesota, Wisconsin, Iowa, Illinois, 

Missouri, Indiana, Ohio, Pennsylvania, West Virginia, Kentucky, Arkansas, Tennessee, 

Mississippi, Alabama, Louisiana). Our study is only focused on the shipment of coal. 

According to the Department of Transportation (DOT) statistics, the primary source of our 

data, the annual transport volume within these 15 states is approximately 85,444 Ktons. 

4.3 % of these volumes are transported through highway, 15.1 % transported through 

waterway, 53.1 % shipped using railway and 27.5 % using multi-modal transportation. 

Note that the network model requires detailed information on highway, waterway and 

railway distance. AcrGIS, a geographical information system (GIS) provided an efficient 

way to estimate these parameters. We used ESRI’s ArcGIS 9.3 software to develop a GIS-

based intermodal network which consists of three transportation modes. Figures 4 and 5 

depict a subset of this network within 15 states because we only focus on OD pairs within 

these states. The red, blue and green lines represent railway, waterway and highway, 

respectively. The major interstate highways are: I10, I12, I22, I24, I26, I29, I35, I39, I40, 

I43, I44, I49, I55, I57, I59, I64, I65, I68-I86, I88, I90 and I99. The major railways are 
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BNSF, CSX, Norfolk Southern, and Union Pacific Railroad. The map generated using 

ArcGIS software provides the distance data for our primary network. In the original form, 

this network is not suitable for real world coal transportation because only a few origin and 

destination points are exactly intermodal nodes. Thus, we represent the origin and 

destination nodes by projecting them onto the closest intermodal nodes. Consequently, the 

intermodal nodes in our model include origin and destination points. Each existing highway, 

railway and waterway between a node pair is represented as an arc. The resulting network 

model of coal transportation in 15 states has 76 nodes and 8,451 arcs. 

                  

Figure 4. Railway and waterway network 
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Figure 5. Highway network 

The origins and destinations, as well as the demand of each OD pair are obtained 

from DOT records. Specifically, demand is estimated via the U.S. Department of 

Transportation OD matrix which contains coal transportation forecast for 2015. The 

regions defined by DOT are used as our origins and destinations.  As previously mentioned, 

we aggregate demand data for some regions and assign them to the nearest intermodal 

destination node in our ArcGIS model. The OD pairs that are assigned to intermodal node 

would potentially make use of the inland waterway system. 

To obtain the actual cost, we analyze the statistical data of coal transportation from 

region to region within these fifteen states for 2015. The percentages of coal flowing from 
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one region to another using different transportation modes are used to estimate the actual 

flow for 2015. The resulting transportation cost is $ 450.8 million. We assume that the unit 

transportation cost is proportional to distance. According to the literature, one gallon of 

fuel is required to ship one ton of cargo an average of 210 miles by highway, 450 miles by 

railway, and 514 miles by waterway (Wikipedia.org). We assume 1 gallon fuel costs 4 

dollars which is used to calculate the unit cost for various transportation modes. Then, the 

unit transportation cost via truck is $0.02/ton/mile, railway is $0.01/ton/mile, and waterway 

is $0.008/ton/mile. For waterway, the capacity between two nodes is assumed to be the 

minimum capacity of the locks between these two nodes. For highway, a full-width 

highway typically could carry 2,000 cars per hour, and one car can carry 25 tons. We 

assume each highway has the same capacity. The annual highway capacity between two 

nodes can now be calculated as follows: 

𝐶𝑎𝑝𝑖𝑗2 = 2,000 ∗ 25 ∗ 24 ∗ 365/1000 = 438,000𝐾𝑡𝑜𝑛𝑠 

For railway, a modern train consists of an average of 100 cars, while each car has 

a capacity of 286,000 lbs or 125.5 tons. Thus the average capacity of a train is 

approximately 12,500 tons. Suppose there is one train between two nodes per day, the 

capacity between these two nodes is calculated as: 

𝐶𝑎𝑝𝑖𝑗3 = 12,500 ∗ 365/1000 = 4,562.5𝑘𝑡𝑜𝑛𝑠 

Because we only consider coal transportation in our study, all vehicles, rail cars and 

barges are assumed to be fully loaded.  

3.1.2 Carbon Emission Functions 

The carbon emission functions for the three different transportation modes are 

derived in this section using the approach in Hickman et al., (1999). The average speed for 
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each mode is taken into consideration to estimate the emission function because we only 

consider annual demands. The notations used in the carbon emission function are shown 

in Appendix II. 

For highway, we assume there is only one type of vehicle: diesel truck without 

catalysts. Because a full truckload truck can carry 25 tons and the average speed of a full 

truckload 𝑉𝑖𝑗 is assumed to be 47 miles per hour (75.6 kilometers/hour) (including traffic 

jams or queues at intersections), carbon emission for roads can be calculated as follows: 

𝐸ℎ𝑜𝑡 = 765 − 7.04𝑉 + 0.000632𝑉3 +
8334

𝑉
 

= 765 − 7.04 ∗ 75.6 + 0.000632 ∗ 75.63 +
8334

75.6
= 616.09  

Where  

𝜀 = 1.27 −
0.483

𝑉
= 1.27 −

0.483

75.6
= 1.26 

𝐸𝑠𝑡𝑎𝑟𝑡 = 𝜔 × (𝑓(𝑉) + 𝑔(𝑇) − 1) × ℎ(𝑑) 

= 182.57 ∗ (−0.0458 ∗ 25 + 1.9163) ∗
1 − 𝑒−

3.95𝑑
0.24∗75.6+0.09

1 − 𝑒−3.95
 

= 143.58 ∗ (1 − 𝑒−0.22𝑑) 

𝑓𝐸 = ∑ ∑(𝐸ℎ𝑜𝑡𝜀 + 𝐸𝑠𝑡𝑎𝑟𝑡)𝑁𝑖𝑗𝐷𝑖𝑗

𝐽

𝑗=1

𝐼

𝑖=1

 

= (31.14 + 5.74 ∗ (1 − 𝑒−0.22𝐷𝑖𝑗𝑚)) ∗ ∑ 𝑥𝑖𝑗𝑚
𝑂𝐷

(𝑂,𝐷) ∗ 𝐷𝑖𝑗𝑚 , 𝑓𝑜𝑟 𝑚 = 1 (𝑡𝑟𝑢𝑐𝑘 𝑚𝑜𝑑𝑒)    

Where: 

𝑓𝐸: Total emission (g) 

𝐸ℎ𝑜𝑡: The emission produced when the engine is hot (g/km) 

𝑉: The average speed travelled by the each vehicle (km/h) 
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𝜀: Load correction factor function 

𝐸𝑠𝑡𝑎𝑟𝑡: The emission when the engine is cold (g/km) 

𝑁𝑖𝑗: The number of vehicles between node 𝑖 and 𝑗  

𝐷𝑖𝑗: The average distance travelled between node 𝑖 and 𝑗 (km) 

For railway, we make the following assumptions: (1) The average speed of train is 

40 miles/h; (2) The mean distance between stops is 100 kilometers; (3) the brake specific 

emission factor (BSEF) for CO2 is assumed to be 42 g/kWh (Pan et.al, 2010). Carbon 

emission of railway can thus be calculated as: 

𝑓𝐸 = ∑ ∑ 0.0036𝑊𝑆𝐸𝐶 ×
𝑇𝑘𝑚𝑖𝑗

𝑇𝑝𝑡
× 𝐵𝑆𝐸𝐹 × 𝐷𝑖𝑗

𝐽

𝑗=1

𝐼

𝑖=1

 

= 0.0036 ∗ (0.019 ∗
64.42

𝑙𝑛(64.4)
+ 63) ∗

∑ 𝑥𝑖𝑗𝑚
𝑂𝐷

(𝑂,𝐷)

0.73
∗ 42 ∗ 𝐷𝑖𝑗𝑚 

=
0.684

𝑙𝑛(100)
∗

∑ 𝑥𝑖𝑗𝑚
𝑂𝐷

(𝑂,𝐷)

0.73
∗ 42 ∗ 𝐷𝑖𝑗𝑚 + 0.2268 ∗

∑ 𝑥𝑖𝑗𝑚
𝑂𝐷

(𝑂,𝐷)

0.73
∗ 42 ∗ 𝐷𝑖𝑗𝑚 

= 17 ∑ 𝑥𝑖𝑗𝑚
𝑂𝐷

(𝑂,𝐷) ∗ 𝐷𝑖𝑗𝑚 , 𝑓𝑜𝑟 𝑚 = 2 (𝑟𝑎𝑖𝑙 𝑚𝑜𝑑𝑒)  

Where: 

𝑊𝑆𝐸𝐶: weight specific energy consumption (kj/ton-km) 

𝑇𝑘𝑚𝑖𝑗: the amount of freight transported between node 𝑖 and 𝑗 

𝑇𝑝𝑡: the load factor of the train, (tonne-freight/total train tonne) 

𝐵𝑆𝐸𝐹: brake specific emission factor of energy produced ( g/kWh) 

For waterway, the cargo capacity (maximum load) of a general cargo vessel for 

inland waterways is 3,840 ton. The fuel emission of CO2 is 3,200 kg/ton. The average speed 

of general cargo ship is 14.29 knots (26.5 kilometers/h). Carbon emission for waterway 

can be calculated as follows: 
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𝑓𝐸 = ∑ ∑ 𝑆𝑖𝑗𝐹
𝐷𝑖𝑗

24𝑉

𝐽

𝑗=1

𝐼

𝑖=1

 

= 0.8 ∗ (9.8197 + 0.00143 ∗ 3840) ∗ 3200 ∗ 1000 ∗
∑ 𝑥𝑖𝑗𝑚

𝑂𝐷
(𝑂,𝐷)

3840
∗

𝐷𝑖𝑗𝑚

24 ∗ 26.5
 

= 16.05 ∑ 𝑥𝑖𝑗𝑚
𝑂𝐷

(𝑂,𝐷) ∗ 𝐷𝑖𝑗𝑚 ,  for m=3 (river mode) 

Where: 

𝑆𝑖𝑗: Daily consumption of ship between node 𝑖 and 𝑗 

𝐹: Average emission factor 

3.2 Mathematical Models 

3.2.1 Definitions and Notations 

Consider a network 𝐺 = (𝑁, 𝐴), where 𝑁 is the set of nodes and 𝐴 is the set of arcs 

that includes waterway, highway and railway. Given a fixed demand, we not only intend 

to optimize the transportation cost for each company, but also aim to reduce the carbon 

emissions in the entire network. The optimization constraints are: (a) material flow demand 

constraints, (b) the flow balance constraints for each transportation mode, (c) the freight 

system capacity constraints, (d) the carbon emission restriction constraints, (e) the non-

negativity constraints, and, (f) the time penalty constraints. Note that the unit time penalty 

cost is defined as α which is used to simulate the actual transportation cost.  

The notation used in the models is as follows. 

N: Set of nodes in the distribution network 

𝑓𝑂𝐷: Quantity of consignment coal required to be transport from an origin node 𝑂 to a 

destination node 𝐷, 𝑂 ∈ 𝑁, 𝐷 ∈ 𝑁, 𝑂 ≠ 𝐷 

𝑀: Set of transportation modes  
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𝑐𝑚: Unit cost to transport one ton of coal one mile via mode 𝑚 

𝐷𝑖𝑗𝑚: Distance between node 𝑖 and 𝑗 when using transportation mode 𝑚, 𝑖 ≠ 𝑗 

𝐶𝑎𝑝𝑖𝑗𝑚: Maximum capacity between node 𝑖 and 𝑗 when using transportation mode 𝑚, 𝑖 ≠

𝑗, 𝑖 = 1,2 … 𝑁, 𝑗 = 1,2 … 𝑁 

ℎ𝑖𝑗𝑚 = {
1, 𝐶𝑎𝑝𝑖𝑗𝑚 > 0

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

𝑣𝑚: Average travel speed in mode 𝑚 

𝑥𝑖𝑗𝑚
𝑂𝐷 : Quantity of coal representing the (𝑂, 𝐷) consignment that is transported from node 𝑖 

to 𝑗 using mode 𝑚,  𝑖 ≠ 𝑗 

𝛼: Unit time penalty cost 

𝛽: Carbon tax (dollars per ton)  

3.2.2 Boundary Models 

For the network described in Section 3.1, the transportation cost is 𝐶0 = $ 454,3 

million, and carbon emission volume, 𝐸0 = 915,957 tons. They are calculated based on 

the collected data.  

We first consider a typical minimum cost problem, where the total transportation 

cost is minimized while the flow balance and capacity restrictions are satisfied. The model 

is formulated as (1) – (6). Model 1 would provide a lower bound on the transportation cost 

in the network, and thus help to evaluate the efficiency of current logistics performance.  

Model 1:  

Min. 

∑ ∑ ∑ ∑ 𝑐𝑚𝐷𝑖𝑗𝑚𝑥𝑖𝑗𝑚
𝑂𝐷

𝑚∈𝑀𝑗∈𝑁𝑖∈𝑁(𝑂,𝐷)                                                   (1) 

S.T.    
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∑ ∑ 𝑥𝑖𝑗𝑚
𝑂𝐷

𝑚∈𝑀𝑗∈𝑁 = 𝑓𝑂𝐷 ,   ∀ 𝑖 = 𝑂, 𝑖 ≠ 𝑗, ∀(𝑂, 𝐷) 𝑝𝑎𝑖𝑟                                             (2) 

∑ ∑ 𝑥𝑖𝑗𝑚
𝑂𝐷

𝑚∈𝑀𝑖∈𝑁 = 𝑓𝑂𝐷 ,   ∀ 𝑗 = 𝐷, 𝑖 ≠ 𝑗, ∀(𝑂, 𝐷) 𝑝𝑎𝑖𝑟                                             (3) 

∑ ∑ 𝑥𝑗𝑖𝑚
𝑂𝐷

𝑚∈𝑀𝑗∈𝑁 = ∑ ∑ 𝑥𝑖𝑗𝑚
𝑂𝐷

𝑚∈𝑀 ,𝑗∈𝑆  ∀ 𝑖 ≠ 𝑂, 𝑖 ≠ 𝐷, 𝑎𝑛𝑑 𝑖 ≠ 𝑗, ∀(𝑂, 𝐷) 𝑝𝑎𝑖𝑟          (4) 

∑ 𝑥𝑖𝑗𝑚
𝑂𝐷

(𝑂,𝐷) ≤ 𝐶𝑎𝑝𝑖𝑗𝑚, 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗, 𝑚 ∈ 𝑀                                                         (5) 

𝑥𝑖𝑗𝑚
𝑂𝐷 ≥ 0, 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗, 𝑚 ∈ 𝑀, ∀(𝑂, 𝐷)                                                         (6) 

The objective function calculates the total transportation cost, which is impacted by 

the arcs that material travels on and the transportation model adopted. Constraints (2) and 

(3) guarantee that flows from the origin and to the destination are equal to the required 

consignment quantity for each OD pair respectively. Constraint (4) is the flow balance 

constraint which requires that the in-flow and out-flow are the same for every transit node. 

Note that these flow balance constraints are defined based on each O-D pair. Different O-

D pairs cannot be aggregated at a node, because the material flow of an O-D pair coming 

to a node cannot be mixed with material flow from another O-D pair. Constraint (5) restricts 

that the total material flow on an arc cannot exceed the capacity for the particular 

transportation mode. Constraint (6) guarantees the non-negativity of the flow variables. 

Based on the optimal solution of Model 1, transportation cost 𝐶1 is obtained directly 

from the objective value, and carbon emission volume 𝐸1  can be calculated as 𝐸1 =

∑ ∑ ∑ 𝑓𝐸  (𝐷𝑖𝑗𝑚, ∑ 𝑥𝑖𝑗𝑚
𝑂𝐷

(𝑂,𝐷) )𝑚∈𝑀𝑗∈𝑁𝑖∈𝑁 , where the 𝑓𝐸 is the carbon emission function as 

defined in section 3.1.2.  

Focusing on cost reduction could lead to an increase in carbon emission. Thus, a 

constraint based on current carbon emission volume will help obtain a solution with 
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potentially higher on transportation cost, but by maintaining an upper bound on carbon 

emission to current levels, see constraint (7). The total transportation cost and carbon 

emission at the optimum of Model 2 are 𝐶2 and 𝐸2 respectively. 

Model 2:  

Min. 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 (1)    

S.T.     

∑ ∑ ∑ 𝑓𝐸  (𝐷𝑖𝑗𝑚, ∑ 𝑥𝑖𝑗𝑚
𝑂𝐷

(𝑂,𝐷) )𝑚∈𝑀𝑗∈𝑁𝑖∈𝑁 ≤ 𝐸0                                                          (7) 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (2) − (6)  

From another aspect, we are also interested in how best the carbon emission can be 

controlled. Model 3 minimizes the total emission with flow balance and capacity 

restrictions the same as Model 1. At the optimum, the objective value is the carbon 

emission 𝐸3  and total transportation cost 𝐶3  can be calculated based on flows as 𝐶3 =

∑ ∑ ∑ ∑ 𝑐𝑚𝐷𝑖𝑗𝑚𝑥𝑖𝑗𝑚
𝑂𝐷

𝑚∈𝑀𝑗∈𝑁𝑖∈𝑁(𝑂,𝐷) . And 𝐸0 is calculated based on the collected data.   

Model 3:  

Min.    

∑ ∑ ∑ 𝑓𝐸  (𝐷𝑖𝑗𝑚, ∑ 𝑥𝑖𝑗𝑚
𝑂𝐷

(𝑂,𝐷) )𝑚∈𝑀𝑗∈𝑁𝑖∈𝑁                                                                       (8) 

S.T.     

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (2) − (6)  
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It is possible that Model 3 yields a solution with unrealistically low carbon emission. 

Model 4 therefore introduces constraint (9), a constraint that ensures the transportation cost 

cannot exceed a maximum, restricts the total cost of an optimal solution cannot exceed the 

budget. In fact, constraint (9) in Model 4 ensures that the transportation cost cannot exceed 

the budget that is current incurred. Model 4 minimizes the total emission with an additional 

current cost restriction to achieve a less-aggressive lower bound for carbon emission. The 

total transportation cost and carbon emission at the optimum of Model 4 are 𝐶4 and 𝐸4 

respectively.  

 

Model 4:  

Min.   𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 (8) 

S.T.    

∑ ∑ ∑ ∑ 𝐶𝑖𝑗𝑚𝑥𝑖𝑗𝑚
𝑂𝐷

𝑚∈𝑀𝑗∈𝑁𝑖∈𝑁(𝑂,𝐷) ≤ 𝐶0                                                                      (9) 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (2) − (6)  

In summary, the optimal solutions of the above four models have relationships as 

shown below. 

𝐶1 ≤ 𝐶2 ≤ 𝐶0 ≥ 𝐶4 ≤ 𝐶3 and 𝐸1 ≥ 𝐸2 ≤ 𝐸0 ≥ 𝐸4 ≥ 𝐸3. 

The gaps between current carbon emission and bound values indicate the potential 

improvement one can obtain by adjusting the material flows. Along with relationships 

between corresponding transportation costs, it is realized that opportunities may exist for 

reducing cost and emission at the same time. Detailed numerical analysis is conducted in 
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section 4. Because the current transportation flow is not optimal, a policy that reallocates 

flows to reduce the economic and environmental costs simultaneously, is studied in this 

Chapter. 

3.2.3 Multi-objective Intermodal Transportation Model 

To control the carbon emission associated with transportation, one possible 

approach is for authority to collect a pollution tax. Before studying the impact of a pollution 

tax, we first need to understand and model decision maker behavior. Without any carbon 

tax, it is possible that a transportation company might simply choose the least cost route. 

However, the least cost route might require more transportation time. With an assumed 

time penalty parameter, model 5 simulates decision maker choice in the transportation 

network. 

Model 5:  

Min.    

∑ ∑ ∑ ∑ 𝑐𝑚𝐷𝑖𝑗𝑚𝑥𝑖𝑗𝑚
𝑂𝐷

𝑚∈𝑀𝑗∈𝑁𝑖∈𝑁(𝑂,𝐷) + 𝛼 ∑ ∑ ∑ ∑ (
𝐷𝑖𝑗𝑚

𝑣𝑚
−𝑚∈𝑀𝑗∈𝑁𝑖∈𝑁(𝑂,𝐷)

min
𝑚

{
𝐷𝑖𝑗𝑚

ℎ𝑖𝑗𝑚𝑣𝑚
}) 𝑥𝑖𝑗𝑚

𝑂𝐷                                                                                                         (10) 

S.T.    𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (2) − (6)  

Objective (10) minimizes the distance based transportation cost and the time cost 

simultaneously. If people do not choose the fastest way on an arc, there is extra time penalty 

cost generated. Even though different individuals may have different time preferences, a 

unique 𝛼 value represents an average level to simulate the behavior of the entire group. 

The proper 𝛼 value can be obtained by comparing the actual transportation cost and the 

resulting value of the first term in the objective (10) at optimum.  
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With a fixed unit time penalty, the impact of pollution policy can be evaluated based 

on Model 6. Assume that tax is linear on the carbon emission volume with a coefficient 𝛽. 

Objective (11) in Model 6 additionally considers the environmental cost that people have 

to pay, and aims to minimize it with transportation as well as time costs. 

Model 6:  

Min.    

∑ ∑ ∑ ∑ 𝑐𝑚𝐷𝑖𝑗𝑚𝑥𝑖𝑗𝑚
𝑂𝐷

𝑚∈𝑀𝑗∈𝑁𝑖∈𝑁(𝑂,𝐷) + 𝛼 ∑ ∑ ∑ ∑ (
𝐷𝑖𝑗𝑚

𝑣𝑚
−𝑚∈𝑀𝑗∈𝑁𝑖∈𝑁(𝑂,𝐷)

min
𝑚

{
𝐷𝑖𝑗𝑚

ℎ𝑖𝑗𝑚𝑣𝑚
}) 𝑥𝑖𝑗𝑚

𝑂𝐷 + 𝛽 ∑ ∑ ∑ 𝑓𝐸(𝐷𝑖𝑗𝑚, ∑ 𝑥𝑖𝑗𝑚
𝑂𝐷

(𝑂,𝐷) )𝑚∈𝑀𝑗∈𝑁𝑖∈𝑁                                 (11) 

S.T.    𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (2) − (6)  

The optimum transportation cost and carbon emission for Model 6 are 𝐶6 and 𝐸6 

respectively. By adjusting 𝛽, a tax policy based on 𝛽 can be obtained with an expectation 

that 𝐸6 < 𝐸0 and 𝐶6 + 𝛽𝐸6 ≤ 𝛾𝐶0, where 𝛾 is a subjective tolerance of the decision maker 

and 𝛾 ≥ 1. Detailed numerical analysis is conducted in section 3.3.4. 

3.3 Numerical Results Based on Model 1 

3.3.1 Example 1:3x3 OD pairs 

We use 3x3 OD pairs to verify this model. The network model is presented in Figure 

6. The optimal result of total transportation cost is $ 58,057.02. The material flow of each 

arc is shown in Table 1. 
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Figure 6. 3x3 OD pairs network 

Table 3 

Result of 3x3 OD pairs 

  

Original 

Node 

Destination 

Node 

Fixed 

Demand 

(Ktons) 

Transportation 

mode 

Transportation 

Path   Value 

  O D   m i j (Ktons) 

X 1 2 10,000 1 1 2 10,000 

X 1 3 3,000 1 1 2 3,000 

X 1 3 3,000 1 2 3 2,768 

X 1 3 3,000 2 2 3 232 

X 2 1 2,000 1 2 1 2,000 

X 2 3 9,000 1 2 3 9,000 

X 3 2 4,000 1 3 2 4,000 

 

From Table 3, we can see that this lower level (the base model which minimizes 

the transportation cost) model can help each individual select the most economical way to 

ship their commodities. For example, for node 1 to node 2, the fixed demand is 10,000 

ktons, the most economic transportation method is to ship all commodities from node 1 to 

node 2 using waterway. For node 1 to node 3, the fixed demand is 3,000 ktons. The most 

economical way is to first ship 3,000 ktons from node 1 to node 2 using waterway, then 
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ship 2,768 ktons from node 2 to node 3 using waterway while shipping 232ktons from node 

2 to node 3 using highway. 

3.3.2 Example 2: Ohio River Case 

In Figure 7, nodes A through I represent eight ports along the Ohio River, where 

highway, railway and waterway are considered in this example. Note that Railway exists 

only between Cincinnati and Louisville.  

The optimal result of this case is $ 2,410,038 while the material flow of each arc is 

shown in Appendix I. 

 

Figure 7. Ohio River Network 

3.3.3 Sensitivity Analysis Based on Ohio River Case 

There are three variables to change, and each of them has seven scenarios. These 

variables and their levels are: the waterway capacity was increased 0%, 5%, 10%, 15%, 

20%, 25%, 30%; the highway capacity was increased 0%, 5%, 10%, 15%, 20%, 25%, 30%; 

Highway 

Inland Waterway 

Highway 

Highway 
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the railway capacity was increased 0%, 5%, 10%, 15%, 20%, 25%, 30%. We will 

implement these scenarios to the models in section 3.2. 

The scenarios and outcomes for increasing capacity of waterway, highway and 

railway are shown in Table 4-6 respectively. 

Table 4 

Outcomes for increasing waterway capacity 

  

Percent Increase 

in Waterway 

Capacity 

Percent Increase 

in Highway 

Capacity 

Percent 

Increase 

in 

Railway 

Capacity 

Total 

Transportation 

Cost 

Scenario 1 0% 0% 0% 2,410,038 

Scenario 2 5% 0% 0% 2,405,633 

Scenario 3 10% 0% 0% 2,401,227 

Scenario 4 15% 0% 0% 2,396,835 

Scenario 5 20% 0% 0% 2,392,451 

Scenario 6 25% 0% 0% 2,388,067 

Scenario 7 30% 0% 0% 2,383,683 

 

Table 5 

Outcomes for increasing highway capacity 

  

Percent Increase 

in Waterway 

Capacity 

Percent 

Increase 

in 

Highway 

Capacity 

Percent 

Increase in 

Railway 

Capacity 

Total Transportation 

Cost 

Scenario 1 0% 0% 0% 2,410,038 

Scenario 2 0% 5% 0% 2,410,038 

Scenario 3 0% 10% 0% 2,410,038 

Scenario 4 0% 15% 0% 2,410,038 

Scenario 5 0% 20% 0% 2,410,038 

Scenario 6 0% 25% 0% 2,410,038 

Scenario 7 0% 30% 0% 2,410,038 
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Table 6  

Outcomes for increasing railway capacity 

  

Percent Increase 

in Waterway 

Capacity 

Percent Increase 

in Highway 

Capacity 

Percent 

Increase 

in 

Railway 

Capacity 

Total 

Transportation 

Cost 

Scenario 1 0% 0% 0% 2,410,038 

Scenario 2 0% 0% 5% 2,409,655 

Scenario 3 0% 0% 10% 2,409,272 

Scenario 4 0% 0% 15% 2,408,888 

Scenario 5 0% 0% 20% 2,408,505 

Scenario 6 0% 0% 25% 2,408,122 

Scenario 7 0% 0% 30% 2,407,739 

 

The strategies are compared in Figure 8. From Figure 8, we can see that with 

percent of capacity increasing, total transportation cost decreases significantly when 

waterway capacity is increased. Thus, the investment in waterways reduces transportation 

cost. In this network, waterway and railway are both fully utilized while highway is not. 

When capacity of waterway is increased to 30%, the total transportation cost becomes 

$ 2,383,683 which was greatly reduced compared to investment on other transportation 

modes.  
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Figure 8. Strategies comparison 

3.4 Scenario Analysis 

3.4.1 Boundary Cases 

The optimal solution indicates the total transportation cost can be reduced to 

$ 340.3 million, and the corresponding emission is 727,183 tons. More specifically, 30.4 

percent cargo is transported using railway, 2.4 percent using highway and 67.2 percent 

using multi-modal transportation. This is the optimal solution of model 1 without 

considering a carbon tax and time penalty cost. This is the ideal situation that the 

government agencies may prefer to achieve. The reason for that is that inland waterway 

transport is a more economical and environmentally friendly mode than railway and road 

transportation.  In simpler terms, the government can reduce carbon emission by 188,774 

tons if 67.2 percent of coal is transported using multi-modal transportation, whereas, carrier 

2380000

2385000

2390000

2395000

2400000

2405000

2410000

2415000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

To
ta

l T
ra

n
sp

o
rt

at
io

n
 C

o
st

Percent Increase

waterway

Highway

Railway



57 
 

companies can save $ 114.03 million compared to the actual cost. The example of optimal 

route of model 1 is shown in Figure 9 and Table 7. 

From Figure 9 and Table 7, it can be seen that, if the demand between Charleston 

to Louisville is 2,590 Ktons, the company can first ship 2,590 Ktons from Charleston to 

Huntington using railway; then ship 2,590 Ktons from Huntington to Cincinnati using 

waterway; finally transport these cargo from Cincinnati to Louisville using waterway. 

Similarly, if the demand between Columbus to Louisville is 896 Ktons, the resulting 

optimal route is: first using highway from Columbus to Cincinnati, then using waterway 

from Cincinnati to Louisville using waterway. 

 

Figure 9. Model 1 optimal route snapshot 
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Table 7 

Model 1 optimal solution associated with Figure 9 

 

 Origin Destination 

Fixed 

Demand 

(Ktons) 

Intermodal Node Mode 
Value 

(Ktons) 

x Charleston Louisville 2,589.978 

Charleston Huntington R 2,589.98 

Huntington Cincinnati W 2,589.98 

Cincinnati Louisville W 2589.98 

x Columbus Louisville 895.507 
Columbus Cincinnati H 895.51 

Cincinnati Louisville W 895.51 

 

However, the reality is that many companies may not choose the optimal route due 

to various reasons. Among these, time performance is a critical one. In the next section, we 

first use unit time penalty parameter to simulate the actual cost of carrier companies. Based 

on the estimated actual transportation routes, the trade-off between total costs 

(transportation cost and environment cost) and carbon emission is presented. When the 

carbon tax changes, the freight route choice and corresponding mode sharing in the 

intermodal system also change. 

3.4.2 Carbon Emission Tax Policy 

To find the best time penalty coefficient to simulate the real world route selection 

decision, we ran the optimization of Model 5 multiple times with different 𝛼 values. As 𝛼 

changes, the model solution yields different network flows with varying transportation 

costs (the first term of objective (10); without time penalty cost). Figure 10 shows that 

increasing the 𝛼 value will drive the solutions away from the optimal solution of Model 1. 

When 𝛼 equals to 1.65, the resulting transportation cost is the same as the actual total cost. 



59 
 

Then, the optimal solution of Model 5 with 𝛼 = 1.65 is treated as the real network situation 

for the following tax policy analysis. 

 

Figure 10. Unit Time Penalty Cost Estimation 

Table 8 

Estimation of carbon emission tax policy 

Tax 

($/ton) 

TC 

(M) 

EC 

(M) 

Time 

Penalty   

(M) 

Time 

Penalty 

Increase 

Payable 

Cost 

(M) 

Payable 

Cost 

Change 

Emission 

(ton) 

Emission 

Decrease 

0 454.3 0 0.1 0 454.3 0 915,956 0 

1 442.9 0.9 0.1 9.9% 443.8 -2.32% 900,520 -1.69% 

2 442.9 1.8 0.1 9.9% 444.7 -2.12% 900,520 -1.69% 

3 442.9 2.7 0.1 9.9% 445.6 -1.93% 900,520 -1.69% 

4 442.9 3.6 0.1 9.9% 446.5 -1.73% 900,520 -1.69% 

5 442.9 4.5 0.1 9.9% 447.4 -1.53% 900,520 -1.69% 

6 442.9 5.4 0.1 9.9% 448.3 -1.33% 900,520 -1.69% 

7 442.9 6.3 0.1 9.9% 449.2 -1.13% 900,520 -1.69% 

8 442.9 7.2 0.1 9.9% 450.1 -0.93% 900,520 -1.69% 

9 442.9 8.1 0.1 9.9% 451 -0.74% 900,520 -1.69% 

10 442.9 9 0.1 9.9% 451.2 -0.54% 900,520 -1.69% 

11 442.9 9.9 0.1 9.9% 452.8 -0.34% 900,520 -1.69% 

12 442.5 11 0.1    10.3% 453.2 -0.23% 899,884 -1.76% 

13 442.5 12 0.1   10.3% 454.2 -0.04% 899,884 -1.76% 

14 442.5 13 0.1   10.3% 455.1 0.16% 899,884 -1.76% 

 (TC: Transportation Cost; EC: Environmental Cost) 
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Model 6 is used to estimate the trade-off between payable cost (transportation cost 

and environmental cost) and carbon emission. We varied the carbon tax from $0 to $14/ton 

based on the actual transportation route. With the introduction of carbon tax, the 

government can force the carriers to consider alternative transportation routes when 

shipping cargo. 

The solutions of Model 6 with 𝛼 = 1.65 and different carbon emission tax are 

shown in Table 8 (X. Duan and S. Heragu, 2015). The first row is the same as the optimal 

solution of Model 5, which is the case without carbon emission tax. As the tax 𝛽 changes, 

network flows are selected differently. All the percentages are calculated by comparing 

with the case of  𝛽 = 0. Due to the properties of network, network flows will not change 

until changes achieve a certain amount. For instance, when tax 𝛽 increases from $0 to 

$1/ton, there was a decrease in the overall amount of transportation cost (from $454.3 

million to $442.9 million), payable cost (from $454.3 million to $443.8 million, 2.321%) 

and carbon emission (from 915,956 tons to 900,520 tons, 1.685%). Meanwhile, time 

penalty cost increase 9.923% compared to the base model 5. However, when tax 𝛽 

increases from $1/ton to $11/ton, there is no significant difference in the transportation cost 

and carbon emission. Until carbon tax reaches $12/ton, the transportation cost continuous 

to decrease from $ 442.9 million to $442.4 million. 

The payable cost does not exceed the current transportation cost until the carbon 

tax increases to $14/ton. Thus, a tax of $13/ton does not necessarily bring more costs to 

people if more routing optimization work is involved. At the same time, the carbon 

emission has been reduced by 1.755% directly, and government collects $11.7 million in 

taxes, which again can be used for environment improvement. The only disadvantage is 
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the delivery time delay of 10.29%. This actually may not generate penalty cost, because an 

elastic margin of the delivery time in the current real case always exists. Where delivery 

times are important, a tax of $11/ton is a policy option, which has the same time delay as 

the case of $1/ton but would generate more tax revenue. On the other hand, if more time 

delay tolerance is allowed and people can accept an increase in total payable costs, the 

carbon tax can be more than $13/ton. 

3.5 Summary 

In this chapter, we analyzed a real world intermodal network, which includes 

highway, railway and inland waterway and covers 15 states in the US. Current 

transportation pattern choice, network flows and corresponding carbon emission data are 

collected and reported. With the classic carbon emission function, a set of mathematical 

programming models are built for further analysis. Four boundary models are built to 

evaluate how much an extra policy can potentially improve the network flows in terms of 

economic and environmental costs, and motivate us to seek a policy that can improve both 

simultaneously. The analytical results are also demonstrated by data-based scenario 

analysis. An intermodal transportation model is thus built with the objective of minimizing 

the economic cost, time penalty and carbon emission together. The time penalty is 

introduced to simulate the real world group behavior through the mathematical model, and 

a proper penalty coefficient is found via numerical study. The sensitivity analysis of carbon 

emission tax policy shows that multiple taxes apply for improving the economic 

transportation cost and controlling the carbon emission. The breakeven point for carbon 

emission tax is $13/ton, which can minimize environmental impact without increasing 

transportation costs. 
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CHAPTER IV 

 DETERMINISTIC GREEN VEHICLE ROUTING 

4.1 Problem Statement 

In this chapter, we address the environmental issue using operations research from 

a operational perspective. There are many variants of vehicle routing problem: the 

Capacitated Vehicle Routing Problem (CVRP), Vehicle Routing Problem with Time 

Windows (VRPTW), Green Vehicle Routing (GVRP), and so on. In this dissertation, we 

proposed a green vehicle routing problem with the objective of minimizing the fuel 

consumption. This problem is related with Pollution Routing Problem (PRP) which was 

first proposed by Bektas and Laporte (2011). 

There are two types of factors that affect the cost of each route according to Bektas 

and Laporte (2011). The first type includes travel distance, vehicle loads, travel speed and 

so on. The second type of factor is related to salary of drivers, taxes and other related factors. 

In much of the VRP literature, the objective is to minimize travel distance which is 

considered the most important factor that is directly related with transportation cost. There 

are only a few papers on fuel consumption optimization. For example, Xiao et al. (2012) 

considered fuel consumption rate in the basic capacitated vehicle routing problem. 

However, time windows are not considered in this paper. Time planning is important 

according to Palmer (2007). It is pointed out that carbon emission can be reduced up to 5% 
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based on time planning. Bektas and Laporte (2011) include time windows in their PRP 

model. But the trade-off between environmental cost and economic cost under soft time 

window restriction has not been investigated until now. More importantly, travel speed is 

usually considered as a constant in much of the literature. However, Lin et al. (2014) 

highlight that impact of the speed of vehicle on emission reduction should not be ignored. 

Based on the real traffic condition, the vehicle can avoid congested roads. Thus, a new 

environmental-friendly route is generated while the total greenhouse emissions can be 

reduced as well. To the best of our knowledge, there is no paper concerning stochastic 

speed of vehicles among existing literature that is related with green vehicle routing 

problem. 

In this chapter, we present a green vehicle routing optimization model which is an 

extension of the recent studies of pollution routing problem with the objective of 

minimizing fuel consumption. The first model is developed to determine the optimal 

delivery route under the given time window restriction and vehicle capacities while 

minimizing total carbon emission. This model extends the work of Xiao et al. (2012) by 

considering time window restrictions. The fuel consumption formulation is developed 

based on the weight of the vehicle, travel speed and distance while the speed of vehicle is 

not included in Xiao et al. (2012). The impact of time windows on fuel consumption is 

investigated by the comparison of results of sensitivity analysis experiments based on 

model 1. The expected value of the travel speed is adopted in model 1 and the basic models 

while stochastic travel speed is considered in Chapter 5. The trade-off between routes with 

the shortest distance and the least fuel consumption is investigated under three models.  
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These models provide an extensive analysis between economic cost and environmental 

cost from an operational perspective. 

4.2 GVRP Models 

4.2.1 Problem Formulation 

Consider a vehicle routing problem defined over a network 𝐺 = (𝑉, 𝐴) where 𝑉 =

{0,1,2, … , 𝑛} is the node set, 0 is the depot and 𝐴 = {(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗} is the set of arcs. 

We consider a set of vehicles, each of which has certain capacity limitation. Each customer 

has different demands and specified time windows that need to be satisfied. If a vehicle 

does not arrive within the time window as a customer requested, a penalty cost is incurred.  

Parameters and Notations: 

𝑑𝑖𝑗 is the distance from node 𝑖 to node 𝑗, 

𝑉𝑖𝑗 is the speed limit of traveling from node 𝑖 to node 𝑗, 

𝑞𝑖 is the demand of node 𝑖, 

𝑡𝑠𝑖 is the service time spent at node 𝑖, 

𝑇𝑖 is the desired time of arrival at node 𝑖 (Note that the starting time at the depot is 

0), 

𝑁 is the number of vehicles (trucks), 

𝐶0 is the weight of an empty vehicle, 

𝐶 is the weight capacity of a vehicle, 

𝑓(𝑑𝑖𝑗, 𝑦𝑖𝑗, 𝑣𝑖𝑗) is the carbon emission formula, the fuel consumption is assumed to 

be proportional to carbon emission, 

The parameters for emission function is:  

𝐸𝑖𝑗
ℎ𝑜𝑡 is the emission produced when the engine is hot from node 𝑖 to node 𝑗, 
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𝜀𝑖𝑗 is load correction factor function from node 𝑖 to node 𝑗, 

𝐸𝑖𝑗
𝑠𝑡𝑎𝑟𝑡 is the emission when the engine is cold from node 𝑖 to node 𝑗, 

𝜔𝑖𝑗 is the reference excess emission from node 𝑖 to node 𝑗 (at 20 °C and 20 km/h), 

T𝑖𝑗 is the temperature (°C), 

𝑔𝑖𝑗(T𝑖𝑗) is the temperature function, 

ℎ𝑖𝑗(d𝑖𝑗) is the distance function, 

Decision variables: 

𝑥𝑖𝑗 is a binary variable indicating whether or not the arc from node 𝑖 to node 𝑗 is 

selected, 

𝑦𝑖𝑗 is the total weight of a vehicle when it travels from node 𝑖 to node 𝑗, 

𝑣𝑖𝑗 is the travel speed from node 𝑖 to node 𝑗, 

𝑡𝑖 is the arrival time at node 𝑖. 

Model 1 

Min 

∑ ∑ 𝑥𝑖𝑗𝑓(𝑑𝑖𝑗, 𝑦𝑖𝑗 , 𝑣𝑖𝑗)𝑗𝑖    

S.T.  

∑ 𝑥𝑖𝑗
𝑛
𝑗=0,𝑗≠𝑖 = 1,∀ 𝑖 = 1, … , 𝑛                                                                                            (1) 

∑ 𝑥0𝑗
𝑛
𝑗=1 ≤ 𝑁                                                                                                                      (2) 

∑ 𝑥𝑖𝑗
𝑛
𝑗=0,𝑗≠𝑖 − ∑ 𝑥𝑗𝑖

𝑛
𝑗=0,𝑗≠𝑖 = 0, ∀ 𝑖 = 0, … , 𝑛                                                                    (3) 

∑ 𝑦𝑗𝑖
𝑛
𝑗=0,𝑗≠𝑖 − ∑ 𝑦𝑖𝑗

𝑛
𝑗=0,𝑗≠𝑖 = 𝑞𝑖, ∀ 𝑖 = 1, … , 𝑛                                                                   (4) 

𝑦𝑖𝑗 ≤ (𝐶0 + C)𝑥𝑖𝑗, ∀ 𝑖, 𝑗 = 0, … , 𝑛, (𝑖 ≠ 𝑗)                                                                        (5) 

𝑦𝑖𝑗 ≥ 𝐶0𝑥𝑖𝑗, ∀ 𝑖, 𝑗 = 0, … , 𝑛, (𝑖 ≠ 𝑗)                                                                                  (6) 
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𝑡𝑖 + 𝑡𝑠𝑖 +
𝑑𝑖𝑗

𝑣𝑖𝑗
− 𝑡𝑗 ≤ 𝑀(1 − 𝑥𝑖𝑗), ∀ 𝑖 = 0, … , 𝑛 , 𝑗 = 1, … , 𝑛, (𝑖 ≠ 𝑗)                                (7) 

𝑡0 = 0                                                                                                                                 (8) 

0 ≤ 𝑡𝑖 ≤ 𝑇𝑖, ∀ 𝑖 = 1, … , 𝑛                                                                                                  (9) 

0 ≤ 𝑣𝑖𝑗 ≤ 𝑉𝑖𝑗, ∀ 𝑖, 𝑗 = 0, … , 𝑛, (𝑖 ≠ 𝑗)                                                                             (10) 

𝑥𝑖𝑗 ∈ {0,1}, ∀ 𝑖, 𝑗 = 0, … , 𝑛                                                                                              (11) 

where 𝑀 is a large constant. 

The objective of this model is to minimize carbon emission. Constraints (1), (2) and 

(3) are classical VRP constraints, which guarantees all tours start from and end at the depot. 

Constraint (4) ensures the demand flow is balanced at each customer node. The loaded 

truck weight has a range as restricted in constraints (5) and (6), according to the vehicle 

capacity and empty vehicle weight. Constraint (7) enforces the time window restriction. 

Constraint (8) models the arriving time at each node with 0 as the starting time at the depot. 

The position of 𝑣𝑖𝑗 in the objective (the carbon emission formula) and constraint (7) lead 

this model to be nonlinear. The nonlinearity in the objective depends on the carbon 

emission formula. 

Basic Model 1: Minimize Carbon Emission 

Min  

∑ ∑ 𝑥𝑖𝑗𝑓(𝑑𝑖𝑗, 𝑦𝑖𝑗 , 𝑣𝑖𝑗)𝑗𝑖   

S.T. Constraints (1) – (6) and (11) 

Where the decision variables are: 𝑥𝑖𝑗, 𝑦𝑖𝑗 

Basic Model 2: Minimize Travel Distance 

Min  

∑ ∑ 𝑥𝑖𝑗𝑑𝑖𝑗𝑗𝑖   
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S.T. Constraints (1) – (6) and (11) 

4.2.2 Carbon Emission Estimation 

Fuel consumption and carbon emission for each vehicle depends on several factors: 

load, travel speed, travel distance. Fuel consumption is assumed to be proportional to 

carbon emission. 

As in Chapter 3, we assume the vehicle type is diesel truck without catalysts and 

its workload is around 25 tons. Also, the temperature is assumed to be 25℃. The carbon 

emission can be calculated as follows: 

𝐸𝑖𝑗
ℎ𝑜𝑡 = 765 − 7.04v𝑖𝑗 + 0.000632v𝑖𝑗

3 +
8334

v𝑖𝑗
 

𝜀𝑖𝑗 = 1.27 −
0.483

v𝑖𝑗
 

𝐸𝑖𝑗
𝑠𝑡𝑎𝑟𝑡 = 𝜔𝑖𝑗 × (𝑓(v𝑖𝑗) + 𝑔(T𝑖𝑗) − 1) × ℎ(d𝑖𝑗) 

Where 

𝜔𝑖𝑗 = 182.57 

𝑓(v𝑖𝑗) = 1 

𝑔(T𝑖𝑗) = −0.0458T𝑖𝑗 + 1.9163 = −0.0458 ∗ 25 + 1.9163 = 0.7713 

ℎ(d𝑖𝑗) =
1 − 𝑒

−
3.95d𝑖𝑗

0.24∗v𝑖𝑗+0.09

1 − 𝑒−3.95
 

The starting emission, which is the emission when the vehicle engine is cold, only happens 

at the beginning of a trip. For a routing problem, it becomes constant regardless of the route 

options. Thus, we only consider the running emission 𝐸𝑖𝑗
ℎ𝑜𝑡 in the objective of a vehicle 

routing formulation. 
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𝑓𝑖𝑗 = 𝐸𝑖𝑗
ℎ𝑜𝑡𝜀i𝑗𝑁𝑖𝑗𝐷𝑖𝑗 

= (765 − 7.04v𝑖𝑗 + 0.000632v𝑖𝑗
3 +

8334

v𝑖𝑗
) (1.27 −

0.483

v𝑖𝑗
) ∗ 𝑦𝑖𝑗 ∗ 𝑑𝑖𝑗 

4.3 Solution Approach 

 Because the objective function is a nonlinear function based on distance, travel 

speed and vehicle load, this problem becomes one of a class of challenging optimization 

problems, as it involves optimization of nonlinear functions along with integer variables. 

According to Bonami et al. (2012), a mixed integer nonlinear problem (MINLP) is an NP-

Hard problem. Even if we restrict our model to have only nonlinear functions without 

integer variables, most nonlinear problems (NLP) are also known to be NP-hard (B. 

Murtagh and M. Saunders, 1993).  To solve the problem, it is important to investigate the 

convexity of the nonlinear problem. In particular, it is necessary to find the conditions 

under which the carbon emission function is convex. 

4.3.1 Convexity Analysis 

  To analyze the convexity of the nonlinear problem, we calculate the derivative of 

the objective function. First, it is clearly to understand the linearity on 𝑦𝑖𝑗  and 𝑑𝑖𝑗 , 

respectively. Then, we only need to consider 𝑓𝑖𝑗(v𝑖𝑗). The plot of 𝑓 is shown in Figure 11. 

𝑓𝑖𝑗(v𝑖𝑗) = (765 − 7.04v𝑖𝑗 + 0.000632v𝑖𝑗
3 +

8334

v𝑖𝑗
) (1.27 −

0.483

v𝑖𝑗
) 
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Figure 11. Plot of function of travel speed 

The first derivative is: 

𝜕𝑓

𝜕𝑣
= −8.9408 +

8050.64

𝑣3
+ 0.00240792𝑣2 −

10214.7

𝑣2
− 0.000610512𝑣

+
4.44089 × 10−16

𝑣
 

The second derivative is: 

ℎ =
𝜕2𝑓

𝜕𝑣𝜕𝑣
= −0.000610512 −

24151.9

𝑣4
+

20429.4

𝑣3
−

4.44089 × 10−16

𝑣2
+ 0.00481584𝑣 

It can be calculated that, 
𝜕2𝑓

𝜕𝑣𝜕𝑣
> 0 when 𝑣 > 1.18221. Note, the emission formula 𝐸𝑖𝑗

ℎ𝑜𝑡 is an 

experimental formula which is meaningful only for certain practically reasonable speed 

range. And, 1.18221 mph is a value small enough to be a reasonable lower bound of the 

practical speed range. In summary, the emission objective function is convex within the 

0 50 100 150
500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Travel Speed

F
u
n
c
ti
o
n
 o

f 
T

ra
v
e
l 
S

p
e
e
d



70 
 

practically reasonable speed range, i.e. when 𝑣 > 1.18221. Moreover, the plot of second 

derivative of 𝑓 is shown below. 

 

 Figure 12. Plot of derivative of function 𝑓 

According to Figure 12, the second derivative of 𝑓 is non-negative when 𝑣 ∈

(1.18221, ∞). In addition, the second derivative of 𝑓 is always non-negative regardless of 

the value of 𝑑 and 𝑦. Thus, it can be proved that 𝑓 is convex when travel speed is greater 

than 1.18221 kilometers/hour because we do not consider the condition that 𝑣 is less than 

1.18221  kilometers/hour. Because 𝑦  is non-decreasing, according to the properties of 

convex function, the objective function is convex on 𝑦 ∈ (0, ∞) ,  𝑑 ∈ (0, ∞)  and 𝑣 ∈

(1.18221, ∞). 
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4.3.2 Heuristic Algorithms for Large Scale Optimization Problems 

In this section, we develop an algorithm to solve the deterministic green vehicle 

routing problem. The complicating factor in the solution procedure is the variability in the 

travel speed. To improve the route, we have to check the capacity constraint and time 

window constraint first. However, the time window constraint depends upon the travel 

speed. At that point, we have to assign a proper value to travel speed. Heuristics that are 

used to solve the classical VRP cannot be directly applied for our problem. We therefore 

solve the problem by ordering the arc based on the product of the weight and distance. The 

reason is that carbon emission formulation depends largely on weight multiplied by 

distance. Then we assign value to travel speed on the arc with largest product of weight 

and distance until the time window constraint is not satisfied.  

The initial route is generated based on a savings heuristic. The first part of this 

algorithm is to generate an initial solution based on the Clarke and Wright savings 

algorithm (Clarke and Wright, 1964) with additional restriction of time window and 

capacity constraints. In the traditional savings algorithm, the savings are calculated based 

on distance and time. In this paper, we calculate the savings based on fuel consumption 

and carbon emission. The second part of the algorithm is to improve the initial solution 

using Tabu search.  

The algorithm for initial solution is shown below: 

1. Set 𝑣𝑖𝑗 =  𝑣𝑖𝑗 ∗ (𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑠𝑝𝑒𝑒𝑑 𝑜𝑛 𝑡ℎ𝑎𝑡 𝑟𝑜𝑎𝑑) 

2. Calculate the saving for each pair (𝑖, 𝑗) of demand points: 

 𝑠(𝑖, 𝑗) =  𝑓(𝑑(𝐷, 𝑖), 𝑣(𝐷, 𝑖), 𝑦(𝐷, 𝑖)) +  𝑓(𝑑(𝐷, 𝑗), 𝑣(𝐷, 𝑗), 𝑦(𝐷, 𝑗))  −  𝑓(𝑑(𝑖,

𝑗), 𝑣(𝑖, 𝑗), 𝑦(𝑖, 𝑗))  
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3. Rank savings in the descending order of magnitude to create a "savings list." 

Repeat step 4 for each saving 𝑠(𝑖, 𝑗) in the list, beginning with the largest one. 

4. If no constraint is violated by including (𝑖, 𝑗) in a route, and  

(a) If neither 𝑖 nor 𝑗 is contained by any existing route, a new route is created with 

link (𝑖, 𝑗) as the initial arc; 

(b) If one and only one of these two points, 𝑖 or 𝑗, is contained by an existing route 

and the visiting order from the depot in the route is the same as the order of traversal of 

points, link (𝑖, 𝑗) is added to the corresponding route. 

(c) If both 𝑖 and 𝑗 are contained by two different existing routes and the visiting 

order from the depot in the route is the same as the order of traversal of points, these two 

routes are merged with link (𝑖, 𝑗). 

5. After the savings list of 𝑠(𝑖, 𝑗) has been exhausted through steps 3 and 4, each 

point that has not been assigned creates a single route that starts from the depot and visits 

the particular unassigned point and finally ends at the depot. 

6. A solution of the VRP consists of the routes created in steps 3-5. Based on this 

solution, calculate 𝑓(𝑑(𝑖, 𝑗), 𝑣(𝑖, 𝑗), 𝑦(𝑖, 𝑗))  = 𝑚𝑖𝑛(𝑓𝑛(𝑑(𝑖, 𝑗), 𝑣𝑛(𝑖, 𝑗), 𝑦(𝑖, 𝑗)), 𝑛 =

1 … 𝑛) for each arc. 

In the second stage, we use a Tabu search algorithm to improve the route. The 2-

opt algorithm is used to generate the neighborhoods. For each iteration, Tabu search moves 

to the best neighbor. The evaluation criterion is based on the objective function (the total 

carbon emission). The improvement algorithm is illustrated in Figure 13 and explained 

next. 
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1. Initialize parameters, i.e., initial tour, incumbent cost, current cost, Tabu list, 

maximum saving, maximum move. The initial tour is generated based on the savings 

algorithm. The current cost is calculated based on the initial tour.  

2. Generate a route using 2-opt algorithm based on the initial tour. 

3. Calculate weight of loaded vehicle for each arc on the initial route. 

4. If the capacity constraint is satisfied, go to step 5. Otherwise, go to step 2. 

5. Set the travel speed equal to the travel speed limit. If the time window constraint 

is satisfied, go to step 6. Otherwise, go to step 2. 

6. Rank the arcs in the route under consideration in descending order of the product 

of weight and distance. Save each arc in weight*distance list based on that order. 

7. Choose a proper speed for an arc starting from the largest weight multiply by 

distance. The evaluation criteria for choosing a proper speed is the objective function 

(choosing a speed with smallest carbon emission). Assign the chosen speed to that arc.  

8. If the time window constraint is satisfied, delete the arc from the weight*distance 

list and go to step 7. Otherwise, set the travel speed of the latest chosen arc equal to the 

travel speed limit and go to step 9. 

9. Calculate the cost of the route. If the current move is not in the Tabu list and 

current cost minus neighbor cost is greater than the maximum savings, set the maximum 

savings equal to the current cost minus the neighbor cost. Record that move as the 

maximum move and record the neighbor route as the new tour. If the current move is in 

the Tabu list, set the maximum savings equal to the current cost minus neighbor cost if 

neighbor cost is less than incumbent cost and the current cost minus neighbor cost is greater 
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than the maximum savings. Record that move as the maximum move and record the 

neighbor route as the new tour.  Go to step 2 until 2-opt algorithm is terminated. 

10. Set the final new tour as the current route and the current cost minus the 

maximum savings as the current cost. Add the maximum move into the Tabu list. If the 

current cost is less than incumbent cost, set the incumbent cost equal to the current cost 

and let the incumbent tour equal to the current tour. 

11. Repeat this algorithm until CPU time exceeds a preset threshold. 
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Figure 13. Algorithm for G-VRP 

To investigate the quality of the solution obtained from our heuristic algorithm, we 

also solve our problem using GAMS. The solver that is used to solve MINLP in GAMS is 

BONMIIN (Basic Open-source Nonlinear Mixed Integer Programming), which is an open 
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source solver that is used to solve mixed integer nonlinear program problems. The 

BONMIIN was developed by Carnegie Mellon University and IBM Research (Rosenthal, 

R. E., 2004). It implements branch-and-bound, branch-and-cut, and outer approximation 

algorithms. The default algorithm is branch-and-bound.  

4.4 Computational Study and Sensitivity Analysis 

This section presents the results of numerical experiments designed to assess the 

performance of our proposed heuristics by comparing them with solutions obtained by 

GAMS on randomly generated small problem instances. First, we describe the parameters 

used in the proposed methods and the generation of the test instances. Then, the 

computational results are presented to compare the quality of the solution obtained by our 

proposed heuristic and GAMS. At the end of this section, a real world case is introduced 

and sensitivity analysis of the impact of time window constraints, travel speed, speed limit 

on the solution are conducted based on the real world case.  

Analyses are carried out with real world cases based on two basic models. In one 

of them, the travel speed is fixed and in the other, there is no time window constraint. 

Further analyses are conducted to study the impact of different parameters based on the 

proposed model where travel speed is considered as variable and time window constraint 

is included. 

All experiments are performed on a processor with 2.67 GHz speed and 4GB RAM. 

CPLEX 12.0 with default settings is used to solve the basic models with deterministic travel 

speed. GAMS win64 24.3.1 is used to solve Model1. All algorithms are coded in C#.   
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4.4.1 Parameter Setting 

For the experiments, test instances are generated based on the consideration of the 

impact of the time window constraint and the travel speed limit. Six sets of ten instances 

each are generated which result in a total of 60 instances. We use seven nodes which 

represent randomly selected depot and customers in the US. The location information 

which includes longitude and latitude is randomly generated based on a uniform 

distribution. The road distance is obtained based on the longitude and latitude of each node. 

The weight of the empty vehicle is set to 6,000 lb. The capacity of each vehicle is set to 

4,259 lb. The service time at each node is assumed to be 2 hours for each node. The demand 

of each customer is randomly generated between 0 and 1,000 1b according to a uniform 

distribution. We consider three types of time window constraints in this experiment: no 

time window, loose time window and tight time window. To explore the impact of travel 

speed limit on the heuristic algorithm, we consider two types of speed limit. The first speed 

limit is set according to the actual speed limit. The second type of speed limit is generated 

randomly between 10 miles/hour and 70 miles/hour. Thus, there are six general scenario 

categories in our experiment. The small instance general structure is shown in Table 9. 

This table presents the lower bound and upper bound of time windows and the type of 

speed limit for each scenario. The proposed algorithm was implemented in C#. We ran the 

algorithm 100 times with 1,000 iterations for each instance. The solver used in GAMS is 

BONMIN. The parameters that used in the experiments are given in Table 10. 
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Table 9  

Small instance general structure 

Scenario Time window (hours) Speed Limit 

Lower Bound Upper Bound 

S1 0 600-900 Maximum  

S2 0 6-48 Maximum 

S3 0 3-36 Maximum 

S4 0 600-900 Random 

S5 0 6-48 Random 

S6 0 3-36 Random 

 

Table 10  

Parameter setting 

Notation Description 

Typical 

Values 

C Capacity Vehicle (lb) 6,000 

N Vehicle Number 5 

𝐶0 Capacity of Empty Vehicle (lb) 4,259 

ω 

The reference excess emission (at 20 °C and 20 

km/h) 182.57 

T The temperature (°C) 25 

 

4.4.2 Heuristic Performance 

This section presents the performance of the deterministic vehicle routing problem 

using our heuristic algorithm. Computational experiments are conducted to compare the 

quality of solutions obtained by our proposed heuristic algorithm with the solutions 

obtained through commercial software GAMS. The computational results are shown in 

Table 11-15. We compared three measures of the solution quality obtained by GAMS with 

BONMIN solver, revised savings algorithm and improved Tabu search. In these tables, the 

objective function value and average running time (in seconds) that is required to solve all 

instances of each set are summarized. We also listed the differences between the revised 

savings algorithm, improved Tabu search and GAMS respectively. The initial solution 
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obtained by the revised savings algorithm and the improved solution obtained by the 

improved Tabu Search are compared with GAMS via absolute percent error. In some 

scenarios, especially cases with tight time window constraint, there is no feasible solution. 

We only present results with feasible solution in these tables.  

Table 11 

Heuristic performance for a tight time window with maximum speed limit 

Node 

GAMS 
Revised Saving 

Algorithm 
Improved Tabu Search 

Obj. 
Run 

Time 
Obj. Diff. 

Run 

Time 
Obj. Diff. 

Run 

Time 

1 16,611.8 1,002.1 17,729.2 6.7 0 14,947.9 
-

10.0 
8.5 

2 10,615.7 90.5 11,174.8 5.3 0 10,547.6 -0.6 24 

3 11,259.0 196.6 16,894.1 50.1 0 11,014.8 -2.2 20 

4 10,561.9 123.3 12,204.1 15.6 0 10,445.4 -1.1 9.8 

5 15,398.1 100.0 19,056.2 23.8 0 16,065.6 4.3 2.3 

6 11,701.3 151.6 14,655.0 25.2 0 11,726.1 0.2 3.3 

7 17,137.7 460.1 18,913.3 10.4 0 17,549.8 2.4 8.4 

8 14,420.5 144.0 17,282.5 19.9 0 14,420.6 0.0 7.4 

9 12,819.6 207.9 15,137.2 18.1 0 12,074.5 -5.8 19 

10 12,520.5 241.3 14,570.6 16.4 0 12,457.8 -0.5 11 

Avg.  271.7  19.1   -1.3 11.4 

 

Table 12 

Heuristic performance for a loose time window with maximum speed limit 

Node 

GAMS 
Revised Saving 

Algorithm 
Improved Tabu Search 

Obj. 
Run 

Time 
Obj. Diff. 

Run 

Time 
Obj. Diff. 

Run 

Time 

1 20,239.2 1,001.0 16,633.8 -17.8 0 14,514.5 -28.3 3.7 

2 N/A 2,304.1 13,588.4 N/A 0 13,588.4 N/A 0.0 

3 11,138.7 100.9 12,638.7 13.5 0 11,935.3 7.2 5.1 

4 11,483.1 123.8 12,469.4 8.6 0 11,477.4 -0.1 21.1 

5 13,384.4 1,006.5 12,798.0 -4.4 0 12,410.8 -7.3 3.5 

6 10,679.3 203.3 12,569.9 17.7 0 10,598.0 -0.8 11.9 

7 15,731.1 1,005.0 16,642.3 5.8 0 15,654.0 -0.5 4.8 

8 31,610.8 1,034.4 17,400.2 -45.0 0 16,102.3 -49.1 6.5 
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9 16,217.1 263.0 17,246.5 6.4 0 16,472.0 1.6 6.6 

10 9,282.3 340.0 11,042.8 19.0 0 9,282.3 0.0 6.4 

11 13,163.4 55.8 15,561.1 18.2 0 13,106.9 -0.4 4.9 

Avg.   676.2    2.2     -7.8 6.8 

 

Table 13  

Heuristic performance for no time window with maximum speed limit 

Node 

GAMS 
Revised Saving 

Algorithm 
Improved Tabu Search 

Obj. 
Run 

Time 
Obj. Diff. 

Run 

Time 
Obj. Diff. 

Run 

Time 

1 13,205.6 56.6 16,899.2 28.0 0 13,205.6 0 29.9 

2 8,193.7 72.9 10,205.7 24.6 2 79,17.08 0 20.8 

3 11,153.3 39.9 11,985.9 7.5 0 11,153.4 0 15.8 

4 11,486.1 84.5 14,287.7 24.4 0 11,486.2 0 20.1 

5 12,448.1 59.6 17,823.3 43.2 0 12,448.2 0 19.9 

6 10,509.4 49.5 12,052.2 14.7 0 10,286.7 0 24.3 

7 12,560.8 223.7 13,386.9 6.6 0 12,560.8 0 38.8 

8 13,327.6 87.7 14,187.2 6.5 0 14,074.7 0 33.9 

9 16,768.4 63.9 18,036.0 7.6 0 16,565.5 0 26.8 

10 13,937.1 125.8 14,689.8 5.4 0 13,413.1 0 15.7 

Avg.   86.4   16.8     0.0       24.6 

 

Tables 11, 12 and 13 show the scenarios of combination of maximum speed limit 

and tight time window, loose time window, no time window constraints respectively. It is 

noted that the performance of the improved Tabu Search is better than GAMS in all 

instances, on average with gap of 7.76%, 1.33%, 0.00%. The difference of the three 

scenarios listed in Table 11-13 is that S1 problems have a tight time window, S2 problems 

have a loose time window while S3 problem have no time window. For scenarios with tight 

time windows, the improved heuristic performs best with the average reduction of 7.76%. 

For scenarios with loose time windows and no time windows, the performance of improved 

Tabu search and GAMS are almost same. For the cases that GAMS cannot find the feasible 

solution which are not shown in these tables, the proposed heuristic also performs well.  In 
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general, the revised savings algorithm performs worse than both GAMS and improved 

Tabu search. As we can see from Tables 11-13, the revised saving algorithm is faster than 

GAMS and improved Tabu search. The improved Tabu search has the second best 

performance in terms of running times. Tables 11-13 also reveal that CPU time for GAMS 

is almost 10 times as the improved Tabu Search. Scenario 4 is not shown here because 

GAMS did not provide a feasible solution in any of the cases.  

Table 14  

Heuristic performance for loose time window with random speed limit 

Node 

GAMS 
Revised Saving 

Algorithm 
Improved Tabu Search 

Obj. 
Run 

Time 
Obj. Diff. 

Run 

Time 
Obj. Diff. 

Run 

Time 

1 16,573.7 83.7 17,149.2 3.5 0 16,570.0 0 3.2 

2 12,058.4 672.1 12,463.4 3.4 0 12,038.7 0 2.4 

3 14,111.9 913.5 14,272.9 1.1 0 13,882.3 0 4.9 

4 12,130.2 53.5 16,018.0 32.1 0 11,690.6 0 6.7 

5 12,994.4 200.0 13,801.7 6.2 0 12,721.9 0 8.3 

6 14,137.7 918.7 16,561.2 17.1 0 14,183.2 0 6.7 

7 12,399.1 126.7 14,310.4 15.4 0 13,166.1 0 9.4 

8 10,736.1 121.8 13,702.0 27.6 0 10,736.1 0 9.2 

9 12,035.8 108.5 12,924.7 7.4 0 11,606.0 0 3.7 

10 10,236.8 38.6 11,186.9 9.3 0 10,558.9 0 6.4 

Avg.    323.7   12.3     0       6.1 

 

Table 15  

Heuristic performance for no time window with random speed limit 

Node 

GAMS 
Revised Saving 

Algorithm 
Improved Tabu Search 

Obj. 
Run 

Time 
Obj. Diff. 

Run 

Time 
Obj. Diff. 

Run 

Time 

1 14,846.1 84.6 15,803.4 6.5 0.0 14,257.7 0.0 9.5 

2 11,958.9 105.1 13,186.4 10.3 0.0 11,948.4 0.0 8.7 

3 10,013.2 66.7 10,013.3 0.0 0.0 10,011.9 0.0 15.8 

4 16,564.6 102.4 17,487.2 5.6 0.0 16,339.0 0.0 9.2 

5 16,109.5 73.9 16,962.3 5.3 0.2 15,625.9 0.0 17.4 
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6 11,271.5 80.0 12,388.3 9.9 0.0 11,270.0 0.0 9.5 

7 14,310.0 67.7 14,441.8 0.9 0.0 14,292.9 0.0 14.8 

8 15,940.9 74.3 18,047.4 13.2 0.0 15,922.4 0.0 13.2 

9 12,739.7 117.8 12,750.7 0.1 0.0 12,415.9 0.0 16.2 

10 12,947.4 91.6 13,678.4 5.7 0.0 13,016.9 0.0 6.9 

Avg.    86.4   5.7     0.0     12.1 

 

Tables 14 and 15 show the comparison of performance of improved heuristic with 

GAMS based on scenarios 4-6. It is shown that average difference between improved Tabu 

search and GAMS is very small for these three scenarios. For the small-scale (7-node) 

problems, the carbon emission is on average 0.01 lower than that obtained from GAMS for 

scenario 6. However, the performance of the revised savings algorithm is worse than 

GAMS for all scenarios. The run time of GAMS is still the largest.  

From Tables 14 and 15, it is noticed that the computational time of GAMS is 

sensitive to the problem data. For instance, the computational time of GAMS varies from 

38.57 seconds to 918.68 seconds. On the contrary, our improved Tabu search is very fast. 

The longest running time is only 38.8 seconds and the average running time is around 12.08 

seconds. The improved Tabu search also gives very close results to GAMS on the problems 

with loose time window constraints and for problems with no time window constraints. 

The average run time for large cases is shown in Table 16. 

Table 16  

Average run time for large cases 

Node 

Average Carbon Emission 

(ton) 

Average Running 

Time 

25 68,630.54 20.4 

30 69,784.38 20.6 

30 70,503.82 20.6 

30 119,284.67 20.6 

35 128,425.37 21.1 

40 98,355.36 21.4 
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45 145,095.20 22.5 

50 174,199.01 24.5 

55 158,795.32 25.4 

60 204,560.45 26.6 

70 273,112.27 32.6 

80 296,295.52 42.5 

90 205,503.68 53.1 

100 232,922.91 76.2 

110 420,579.65 98 

120 270,425.92 139.8 

140 522,988.66 227.5 

150 499,614.32 297.5 

200 514,588.73 763.6 

 

4.4.3 Results for instances without time window constraints 

In this section, a larger and more realistic example was devised based on a practical 

case of a chemical supply company. The depot is an actual distribution center of the 

chemical company. The locations of customers are generated based on actual customers 

around this distribution center. The parameters are given as Table 10. One depot and 13 

demand nodes are considered in the experiments. The location and demand information 

used in the experiments are given in Table 17. The demand for each node is generated 

according to a real-world, gas distribution company. We first perform experiments based 

on the two basic models. The speed is considered as constant and only one vehicle is used 

in the first basic experiment. Time window restrictions are not considered here.  

Then, we perform experiments based on our proposed model and conduct 

sensitivity analysis on the effect of travel speed, time windows and travel speed limit in the 

further experiments. The travel speed is considered as variable. The speed limit is set 

according to the actual highway speed limit. Diesel trucks without catalysts are used to 

ship cargo to the customers.  
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Table 17  

Location and demand information 

Node Latitude Longitude 

Demand 

(ib) 

0 38.586455 -90.1777 0 

1 38.359281 -91.4895 289.51 

2 37.951446 -91.7849 83.33 

3 37.6594 -91.5711 10.08 

4 38.562725 -90.4608 10.08 

5 38.2932 -90.703 10.08 

6 38.6133 -90.314 33.33 

7 38.415133 -90.4412 10.08 

8 38.63838 -90.2651 666.67 

9 38.6576 -90.5064 83.33 

10 38.652689 -90.5079 10.08 

11 38.668274 -90.6196 183.33 

12 38.67359 -90.4699 100 

13 38.232078 -90.5645 10.08 

14 38.4455 -90.4045 10.08 

 

A map of depot and customer nodes is shown in Figure 14. The circled node is the 

depot. Other nodes are the customer nodes. The depot is located in St. Louis while the 

customer nodes are created based on the location around this city.  
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Figure 14. Map of depot and customers 

 

Experiments are designed based on two scenarios: with and without time window 

constraints.  The result of scenario without time window constraint is provided in Table 18. 

We analyze the impact of travel speed by comparing the three models: two basic models 

and our proposed model. As mentioned before, we assume travel speed is constant in these 

two basic models. Based on the comparison, we intend to investigate the difference of the 

total carbon emission and travel distance. The results are shown in Table 19. 

Table 18  

Result of our proposed model without time window constraint 

Arc 
Weight 

Travel 

Speed 
Distance 

Carbon 

Emission 

(ton) (lb) (mile/h) (mile) 

0,8 5,769.08 42.25 294.86 2,493.60 

8,6 5,102.42 42.25 152.79 1,142.81 

6,12 5,069.08 42.25 432.87 3,216.57 

12,9 4,969.08 42.25 103.74 755.64 

9,10 4,885.75 42.25 19.74 141.36 

10,11 4,875.67 42.25 260.37 1,860.96 
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11,1 4,692.33 42.25 2587.67 17,799.23 

1,2 4,402.83 42.25 1918.39 12,381.45 

2,3 4,319.49 42.25 1428.15 9,042.93 

3,5 4,309.41 42.25 4086.38 25,814.27 

5,13 4,299.33 42.25 522.56 3,293.39 

13,7 4,289.25 42.25 825.18 5,188.39 

7,14 4,279.17 42.25 161.61 1,013.76 

14,4 4,269.08 42.25 489.01 3,060.22 

4,0 4,259.00 42.25 722.73 4,512.20 

    Total 14,006.05 91,716.79 

 

Table 19  

Comparison of three models 

Nodes 

Basic Model 2  Basic Model 1 Proposed Model 

Distance 

(mile) 

Carbon 

Emission 

(ton) 

Distance 

(mile) 

Carbon 

Emission 

(ton) 

Distance 

(mile) 

Carbon 

Emission 

(ton) 

14 14,006.05  135,418 14,006.05 108,782 14,006.05 91,716.79 

 

The results in Table 18 indicate that one vehicle is required to serve the 13 

customers for which no time window constraint would apply. The selected travel speed is 

42.25 miles/hour. The total carbon emission is 91,716.79 ton while the total travel distance 

is 14,006.05 miles. From Table 19, we can see that the travel distances of three models are 

almost the same. But the carbon emission of basic model 1 whose objective is to minimize 

carbon emission is 108,782 ton. Compared to the results of basic model 2 (with objective 

of minimizing distance), carbon emission is decreased by 19.67% (from 135,418 ton to 

108,782 ton). Additionally, a decrease by 15.69% in objective value is obtained when 

comparing our proposed model with basic model 1. The carbon emission is decreased by 

32.27% when comparing our model with basic model 2. 

Figure 15 shows the optimal route for the basic model 1 (consider travel speed as 

constant and without time window limitation) and our proposed model. The reason the 
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optimal route for these two models are the same is because the time window constraint is 

not included in these two models. With a loose time range, the improvement of the optimal 

solution is generated based on the optimization on the travel speed on each route. That is 

also the reason why the resulting travel speed for each arc presented in Table 18 are all 

42.25 miles/hour. We will present the speed sensitivity analysis in Figure 17. Figure 16 

show the optimal route for basic model 2 with the objective of minimizing travel distance. 

The optimal route in both Figure 15 and Figure 16 is from A to P. A is the beginning node 

while P is the end node. Node A and P are both depots and have the same location.  It can 

be shown that although the travel distance is almost the same in both figures, the route 

directions are opposite. 

 
Figure 15. Near-optimal route for basic model 1 and our proposed model 
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Figure 16. Near-optimal route for basic model 2 

Sensitivity analysis is conducted to investigate the impact of travel speed on carbon 

emission based on the basic model 1. The graph in Figure 17 indicates that as the travel 

speed increases from 0 to roughly 42 miles/hour, the total carbon emission decreases by 

almost 59.47%. However, when the travel speed continues to increase from 42 miles to 80 

miles/hour, the total carbon emission increases by almost 47.93%. This result illustrates 

that the total carbon emission depends heavily on the travel speed while 42 miles/hour will 

provide us the lowest carbon emission. Thus, it may be beneficial to treat travel speed as a 

variable and suggest appropriate travel speed for each route so that decision makers can 

minimize the total fuel consumption and carbon emission. 
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Figure 17. Sensitivity analysis on travel speed 

4.4.4 Results for instances with time window constraints 

In this section, we discuss a case with time window limitation. The location of the 

depot and customers are the same as that in section 4.3. The demand and due dates for each 

customer are provided in Table 19. The result of scenario with time window constraint is 

provided in Table 20. 

 

Table 20 

Parameter Setting 

ID Demand 
Due 

Time 

Service 

Time 

0 0 99,999 0 

1 289.51 236 2 

2 83.33 184 2 

3 10.08 182 2 

4 10.08 201 2 

5 10.08 75 2 
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6 33.33 185 2 

7 10.08 51 2 

8 666.67 52 2 

9 83.33 51 2 

10 10.08 190 2 

11 183.33 80 2 

12 100 88 2 

13 10.08 245 2 

14 10.08 90 2 

 

Table 21  

Result of proposed model with time window constraints 

Arc 
Weight 

(lb) 

Travel 

Speed 

(mile/h) 

Distance 

(mile) 

Carbon Emission 

(ton) 

0,8 5,345.83 42.25 294.86 2,310.65 

8,6 4,679.17 42.25 152.79 1,048.02 

6,12 4,645.83 42.25 432.87 2,948.00 

12,9 4,545.83 42.25 103.74 691.28 

9,10 4,462.5 42.25 19.74 129.11 

10,11 4,452.42 42.25 260.37 1,699.41 

11,4 4,269.08 42.25 565.58 3,539.46 

4,0 4,259 42.25 722.73 4,512.20 

0,14 4,682.25 45.36 827.98 5,712.74 

14,7 4,672.17 59.65 161.61 1,304.48 

7,13 4,662.09 60.00 825.18 6,688.67 

13,5 4,652 59.65 522.56 4,199.78 

5,3 4,641.92 42.25 4086.38 27,806.07 

3,2 4,631.84 42.25 1428.15 9,696.83 

2,1 4,548.51 42.25 1918.39 12,791.12 

1,0 4,259 42.25 3654.94 22,818.69 

    Total 15977.87 107,896.53 

 

The results in Table 21 indicate that two vehicles are required to serve the same 

number of customers while satisfying their due-date requirement. The total carbon 

emission is 107,896.53 tons. For the first route, the travel speeds are all chosen as 42.25 

miles/hour because the time window limitation is relatively loose. For the second route, 
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the travel speed of arcs (14, 7), (7, 13), (13, 5) are close to the travel speed limit while 

travel speed on other arcs are chosen as close as the 68 miles/hour which is the suggested 

appropriate travel speed as shown in Figure 17. The optimal route is shown in Figure 18. 

We note that the first tour shown in Figure 18 is Q-B-C-D-E-F-G-H-Q which is also 

represented as 0-8-6-12-9-10-11-4-0 in Table 21. The second tour is Q-J-K-L-M-N-O-P-Q 

which is also represented as 0-14-7-13-5-3-2-1-0.  

 

 
Figure 18. Optimal route for our proposed model with time window limitation 

We also investigate the impact of time windows in the following section. We still 

use the distance and demand data of the 14-node instance. The due –date and service time 

for each node are initially set as the same as those in Table 20. We use a multiplicative 

factor to narrow down the corresponding time window for each node. The decrease range 

is 5%-25% in the decrement of 5% to ensure that there is feasible solution when we tighten 
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the time window constraint. The results of the experiments are shown in Table 22-26. It is 

shown that there is a significant difference between the result with and without time 

window constraints. The carbon emission in Table 21 increase 17.64% comparing with the 

result in Table 18.  

With the reduction of the range of time window, the total carbon emission increases 

significantly. For example, when the time window is narrowed down to 25%, there is a 

noticeable increase in carbon emission. This observation indicates there is an opportunity 

to reduce carbon emissions when the time window constraint is loose. The optimal travel 

speed for this case will be chosen as close as the appropriate travel speed that provides us 

the lowest carbon emission as shown in Figure 17. When the time window constraint 

becomes tight, the opportunities for carbon emission reduction become small because the 

alternative solutions for travel speed and optimal route is restrictive. For instance, the result 

shown in Table 25 suggests a 13.65% carbon emission reduction compared to the result in 

Table 26. 

In particular, it is shown that the optimal routes from Table 22 to Table 26 are the 

same. The reduction of carbon emission is based on the optimization of the travel speed on 

each route. For instance, the optimal travel speed of arc (3, 2) is 60.24 miles/hour under 

20% narrowing scenario whereas the optimal travel speed of the same arc is 48.47 

miles/hour under the 5% narrowing scenario. The results shown in Table 22 indicate a 4% 

carbon emission reduction compared to the result shown in Table 25 while the total 

distances are the same.  
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Table 22  

Result when Alpha = 0.95 

Arc 
Weight 

Travel 

Speed 
Distance 

Carbon 

Emission  

(lb) (miles/h) (mile) (ton) 

0,8 5,345.83 42.25 294.86 2,310.65 

8,6 4,679.17 42.25 152.79 1,048.02 

6,12 4,645.83 42.25 432.87 2,948 

12,9 4,545.83 42.25 103.74 691.28 

9,10 4,462.5 42.25 19.74 129.11 

10,11 4,452.42 42.25 260.37 1,699.41 

11,4 4,269.08 42.25 565.58 3,539.46 

4,0 4,259 42.25 722.73 4,512.2 

0,14 4,682.25 60.00 827.98 6,740.36 

14,7 4,672.17 59.65 161.61 1,304.48 

7,13 4,662.09 60.00 825.18 6,688.67 

13,5 4,652 60.00 522.56 4,226.59 

5,3 4,641.92 42.25 4086.38 27,806.1 

3,2 4,631.84 49.09 1428.15 9,950.45 

2,1 4,548.51 42.25 1918.39 12,791.1 

1,0 4,259 42.25 3654.94 22,818.7 

    Total 15977.87 109,205 

 

Table 23  

Result when Alpha = 0.9 

Arc 
Weight 

(lb) 

Travel 

Speed 

(miles/h) 

Distance 

(mile) 

Carbon 

Emission 

(ton) 

0,8 5,345.83 42.25 294.86 2,310.65 

8,6 4,679.17 42.25 152.79 1,048.02 

6,12 4,645.83 42.25 432.87 2,948 

12,9 4,545.83 42.25 103.74 691.28 

9,10 4,462.5 42.25 19.74 129.11 

10,11 4,452.42 42.25 260.37 1,699.41 

11,4 4,269.08 42.25 565.58 3,539.46 

4,0 4,259 42.25 722.73 4,512.2 

0,14 4,682.25 60.00 827.98 6,740.36 
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14,7 4,672.17 59.65 161.61 1,304.48 

7,13 4,662.09 60.00 825.18 6,688.67 

13,5 4,652 59.65 522.56 4,199.78 

5,3 4,641.92 44.12 4086.38 27,857.2 

3,2 4,631.84 59.65 1428.15 11,428.1 

2,1 4,548.51 42.87 1918.39 12,793.4 

1,0 4,259 42.25 3654.94 22,818.7 

    Total 15977.87 110,709 

 

Table 24  

Result when Alpha = 0.85 

Arc 
Weight 

(lb) 

Travel 

Speed 

(miles/h) 

Distance 

(mile) 

Carbon 

Emission 

(ton) 

0,8 5,345.83 42.25 294.86 2,310.65 

8,6 4,679.17 42.25 152.79 1,048.02 

6,12 4,645.83 42.25 432.87 2,948 

12,9 4,545.83 42.25 103.74 691.28 

9,10 4,462.5 42.25 19.74 129.11 

10,11 4,452.42 42.25 260.37 1,699.41 

11,4 4,269.08 42.25 565.58 3,539.46 

4,0 4,259 42.25 722.73 4,512.2 

0,14 4,682.25 59.65 827.98 6,697.6 

14,7 4,672.17 60.00 161.61 1,312.81 

7,13 4,662.09 59.65 825.18 6,646.24 

13,5 4,652 60.00 522.56 4,226.59 

5,3 4,641.92 49.09 4086.38 28,533.4 

3,2 4,631.84 59.65 1428.15 11,428.1 

2,1 4,548.51 45.36 1918.39 12,858.1 

1,0 4,259 42.25 3654.94 22,818.7 

    Total 15977.87 111,400 
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Table 25  

Result when Alpha = 0.8 

Arc 
Weight 

(lb) 

Travel 

Speed 

(miles/h) 

Distance 

(mile) 

Carbon 

Emission 

(ton) 

0,8 5,345.83 42.25 294.86 2,310.65 

8,6 4,679.17 42.25 152.79 1,048.02 

6,12 4,645.83 42.25 432.87 2,948.00 

12,9 4,545.83 42.25 103.74 691.28 

9,10 4,462.50 42.25 19.74 129.11 

10,11 4,452.42 42.25 260.37 1,699.41 

11,4 4,269.08 42.25 565.58 3,539.46 

4,0 4,259.00 42.25 722.73 4,512.20 

0,14 4,682.25 60.00 827.98 6,740.36 

14,7 4,672.17 60.00 161.61 1,312.81 

7,13 4,662.09 60.00 825.18 6,688.67 

13,5 4,652.00 59.65 522.56 4,199.78 

5,3 4,641.92 55.30 4086.38 30,541.77 

3,2 4,631.84 60.00 1428.15 11,501.05 

2,1 4,548.51 47.85 1918.39 13,013.34 

1,0 4,259.00 42.25 3654.94 22,818.69 

    Total 15977.87 113,694.61 

 

Table 26  

Result when Alpha = 0.75 

Arc 
Weight 

(lb) 

Travel 

Speed 

(miles/h) 

Distance 

(mile) 

Carbon 

Emission 

0,8 5,345.83 60.00 294.86 2,740.58 

8,6 4,679.17 60.00 152.79 1,243.01 

6,12 4,645.83 60.00 432.87 3,496.52 

12,9 4,545.83 60.00 103.74 819.90 

9,11 4,462.50 60.00 258.92 2,008.88 

11,10 4,279.17 60.00 260.37 1,937.18 

10,4 4,269.08 60.00 374.04 2,776.30 

4,0 4,259.00 60.00 722.73 5,351.75 

0,14 4,682.25 60.00 827.98 6,740.36 

14,7 4,672.17 60.00 161.61 1,312.81 

7,13 4,662.09 60.00 825.18 6,688.67 
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13,1 4,652.00 60.00 3030.49 24,511.15 

1,2 4,362.50 60.00 1918.39 14,550.67 

2,3 4,279.17 60.00 1428.15 10,625.34 

3,5 4,269.08 60.00 4086.38 30,330.82 

5,0 4,259.00 60.00 1902.30 14,086.31 

    Total 16780.79 129,220.25 

 

We also investigate the impact of travel speed by conducting experiments 

comparing a fixed speed with various speeds for each arc under the time window constraint. 

Fourteen levels of constant travel speed with 5 mile/hour increment are used to design the 

experiments. The results shown in Table 27 indicate that 40 mile/hour (68 kilometers/hour) 

provides the lowest total carbon emission which is the same as the scenario without time 

window constraint. The total carbon emission of various speed in Table 21 saves 1.27% 

compared to the lowest carbon emission in Table 27. The savings is relatively small 

compared to the scenarios without time window constraint.  

Table 27 

Results of different average speeds with time window constraint 

Constant Speed 

(mile/hour) 

Carbon Emission 

(ton) 

15 351,606.09 

20 223,935.60 

25 203,145.60 

30 166,221.10 

35 115,758.73 

40 109,268.06 

45 109,392.57 

50 109,562.83 

55 115,919.32 

60 125,703.46 

65 139,155.86 

70 156,533.89 

75 178,102.01 

80 204,132.20 
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The impact of travel speed limit is investigated in Figure 19.  This experiment can 

provide a good suggestion for public agencies when they study the impact of the congestion 

on carbon emission. We note that carbon emission increases significantly when travel 

speed limit is below 30 miles per hour. The total carbon emission almost doubles when 

travel speed limit drops from 20 miles/hour to 5 miles/hour. 

This result indicates congestion has a great impact on carbon emissions in the real 

world. We will investigate the congestion on carbon emission based on a stochastic model 

in the future. 

 

 

Figure 19. Effect of Speed Limit 

4.5 Summary 

In this section, an extended Green Vehicle Routing problem is formulated based on 

the pollution routing problem. The objective of this model is to minimize the total carbon 
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distance. A heuristic algorithm based on the Clarke and Wright Savings heuristic and Tabu 

Search is proposed to solve this problem. Computational experiments are conducted to 

compare the performance of our proposed heuristic algorithm with GAMS. To investigate 

the impact of travel speed and time window constraint, six scenarios with different 

combinations of travel speed and time window ranges are introduced. The results show that 

the improved heuristic performs better than GAMS with the average reduction of 7.76%. 

A real world case is conducted to further investigate the impact of travel speed, 

time window limitation and travel speed limit (congestion). Experiments with time window 

constraint and without time window constraint are designed to conduct the sensitivity 

analysis.  Under the no time window scenario, the extended G-VRP achieves 15.69% 

carbon emission reduction compared to the basic G-VRP without significant increase in 

travel distance. A reduction of 32.27% in carbon emissions is achieved when compared to 

the basic VRP. The opportunities for carbon emission reduction are more apparent when 

the time window constraint is loose, whereas is relatively small when the time window 

range is relatively narrow. Experiments on travel speed limit indicate congestion has a great 

impact on carbon emissions which yield potential reduction of carbon emission. The 

congestion effects on carbon emission will be investigated based on a stochastic model in 

the future. 
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CHAPTER V 

STOCHASTIC GREEN VEHICLE ROUTING PROBLEM 

5.1 Problem Statement 

5.1.1 Robust GVRP Example 

To provide some insight into the importance of the stochastic green vehicle routing 

problem, we use a four-node instance with a single uncapacitated vehicle to show the 

difference between the solution of stochastic green vehicle  routing problem and the 

deterministic vehicle routing problem where the random variable is replaced by its mean 

value. As shown in Figure 20, node 0 is the depot while node 1, 2, 3 are customers. We 

assume a homogeneous demand pattern as each customer has a demand of one unit. The 

service time at depot is zero, while other node has service time of one hour. The distance 

between two adjacent nodes on horizontal or vertical lines is 62.5 miles and is 88.4 miles 

on a diagonal arc. Time window limitation is not considered in this instance, which means 

that the vehicle can travel as slow as possible within the travel speed limitation. 

 

Figure 20. Four-node instance
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If we consider a constant travel speed limit for each arc, for example, 68 mph, the optimal 

route will be (0, 3, 2, 1, 0), which leads to the minimum total distance as well as the 

minimum total cost. However, if the speed limit on each arc is random, for example, 

following a truncated normal distribution, the optimal route may be different.  Take an 

extreme instance. If the travel speed limit on arc (0, 1) is extremely small which may make 

the fuel cost of traveling on it become very large, the optimal tour will be (0, 2, 1, 3, 0). 

Consider a scenario that there are two arcs between nodes O and D with the same 

distance but different actual speed limits: the actual speed limit of the first arc is always 45 

miles per hour, and the second limit is random with mean of 45 miles per hour and standard 

deviation of 10 miles per hour. Assume that optimal speed without any limit restriction is 

40 miles per hour. For the first arc, the optimal speed is always available and thus the cost 

is 𝑓 (40). For the second arc, if the speed limit is greater than 40 in an instance, the vehicle 

will travel with speed 40 miles per hour; however, if the speed limit is smaller than 40 mph 

in an instance, the optimal speed is less than 40 mph and fuel cost raises correspondingly. 

With different distribution assumptions, the average optimal costs are shown in Table 28. 

Table 28 

The average optimal costs with different distribution assumptions 

Distribution Type          Optimal Cost 

Uniform (30, 60) 

 

𝑓(38.7) 

Truncated normal (45, 10, 30,60)                   𝑓(39.2) 

Inverse-gamma (3, 90) 

         
𝑓(36.7) 

 

In the real world, the actual speed limit 𝑉𝑖𝑗 on a fraction of path is random. For 

example, on a road with speed limit of 45 mile/hour, the actual limit may only be 30 
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mile/hour due to the heavy traffic. Assume that 𝑉𝑖𝑗 is a random value with distribution 

𝑁(𝜇, 𝜎) for each link 𝑖𝑗, we will revisit the VRPTW and analyze the solutions. 

To solve the stochastic VRPTW with fuel consumption, the problem is modeled as 

a two-stage stochastic program. The general form of two stage stochastic program can be 

formulated as follows (Birge and Louveaux, 1997): 

Minimize  

𝑐𝑇𝑥 + 𝑄(𝑥) 

Subject to 

𝐴𝑥 ≤ 𝑏, 

𝑥 ≥ 0 

The second stage problem is stated as: 

𝑄(𝑥) = 𝐸𝜉𝑄(𝑥, 𝜉) 

𝑄(𝑥, 𝜉) = min{𝑞𝑇𝑦| 𝑊𝑦 + 𝑇𝑥 ≥ ℎ} 

Where  

𝑥 is the decision variable and 𝑐 denotes the cost parameter in the first stage problem. 

𝜉 is a random vector which provides information for the decision variable y in the second 

stage problem. ℎ  and 𝑊  is a fixed vector, 𝑇  is a random matrix. 𝐸𝜉  represents the 

expectation operator. 

The two stage stochastic model is built based on the deterministic VRPTW with 

fuel consumption model in Section 4.2. The speed limit is assumed to vary. For each 

scenario 𝑠, there is an actual speed limit when we consider travel congestion in the real 

world. In the beginning of first stage model, the travel speed 𝑣𝑖𝑗 is assumed to be realized, 

and 𝑣𝑖𝑗 is equal to the posted maximum speed limit. The first stage model will provide a 



102 
 

feasible route based on the given travel speed. Let 𝑥𝑖𝑗  be a binary variable to indicate 

whether to choose the link from node 𝑖 to node 𝑗. The first stage decisions include whether 

or not to choose a link (𝑥𝑖𝑗), the amount a truck should carry in that link (𝑦𝑖𝑗), and the 

arriving time at node 𝑖 (𝑡𝑖). We do not consider the uncertainty in the travel speed in first 

stage, so we do not know whether or not the route chosen from the first stage model is 

optimal.  

In reality, because the travel speed is uncertain, the travel speed 𝑣𝑖𝑗 is considered 

as the decision variable in the second stage model. The solution for the second stage model 

is the minimum fuel consumption and carbon emission for each scenario 𝑠 based on the 

given route which is obtained from the first stage model. After that, the expected value of 

the minimum fuel consumption for all scenarios will be implemented into the first stage 

model to obtain a better travel route which yields less fuel consumption and carbon 

emission. 

5.1.2 Carbon Emission Functions 

Fuel consumption and carbon emission for each vehicle depends on several factors: 

load, travel speed, travel distance. We assume the vehicle type is a diesel truck without 

catalysts and its workload is around 25 tons. Also, the temperature is assumed to be 25℃. 

The carbon emission can be calculated as follows (Hickman et al., 1999): 

𝐸𝑖𝑗
ℎ𝑜𝑡 = 765 − 7.04v𝑖𝑗 + 0.000632v𝑖𝑗

3 +
8334

v𝑖𝑗
 

𝜀𝑖𝑗 = 1.27 −
0.483

v𝑖𝑗
 

𝐸𝑖𝑗
𝑠𝑡𝑎𝑟𝑡 = 𝜔𝑖𝑗 × 𝑔𝑖𝑗(T𝑖𝑗) × ℎ𝑖𝑗(d𝑖𝑗) 

Where 
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𝜔𝑖𝑗 = 182.57 

𝑔𝑖𝑗(T𝑖𝑗) = −0.0458T𝑖𝑗 + 1.9163 = −0.0458 ∗ 25 + 1.9163 = 0.7713 

ℎ𝑖𝑗(d𝑖𝑗) =
1 − 𝑒

−
3.95d𝑖𝑗

0.24∗v𝑖𝑗+0.09

1 − 𝑒−3.95
 

𝑓𝑖𝑗 = (𝐸𝑖𝑗
ℎ𝑜𝑡𝜀𝑖𝑗 + 𝐸𝑖𝑗

𝑠𝑡𝑎𝑟𝑡) ∗ 𝑦𝑖𝑗 ∗ 𝑑𝑖𝑗 

= [(765 − 7.04v𝑖𝑗 + 0.000632v𝑖𝑗
3 +

8334

v𝑖𝑗
) (1.27 −

0.483

v𝑖𝑗
) + 143.58

∗ (1 − 𝑒
−

3.95d𝑖𝑗

0.24∗v𝑖𝑗+0.09)] ∗ 𝑦𝑖𝑗 ∗ 𝑑𝑖𝑗 

 

5.2 GVRP Models with Stochastic Speed Limit 

5.2.1 Definitions and Notations 

Consider a vehicle routing problem defined over a network 𝐺 = (𝑉, 𝐴) where 𝑉 =

{0,1,2, … , 𝑛} is the set of nodes, 0 is the depot and 𝐴 = {(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗} is the set of 

arcs. We consider a set of vehicles, each with capacity limitations. Each customer has 

different demand and specified time window that need to be satisfied. If a vehicle does not 

arrive within the time window as a customer requested, a penalty cost is incurred.  

The parameters of this stochastic model are similar as the deterministic VRPTW 

with fuel consumption model. The parameters and decision variables are summarized as 

below: 

Parameters and Notations: 

𝑑𝑖𝑗 is the distance from node 𝑖 to node 𝑗, 

𝑉𝑖𝑗
∗  is the posted maximum speed limit in the route from node 𝑖 to node 𝑗, 
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𝑉𝑖𝑗 is the actual travel speed limit from node 𝑖 to node 𝑗 when we consider travel 

congestion, and 𝑉𝑖𝑗 is a random value and 𝑉𝑖𝑗 ≤ 𝑉𝑖𝑗
∗ , 

𝑞𝑖 is the demand of node 𝑖, 

𝑡𝑠𝑖 is the service time spent at node 𝑖, 

𝑇𝑖 is the due-date at node 𝑖, where the starting time at the depot is counted as 0, 

𝑁 is the number of vehicles (trucks), 

𝐶0 is the weight of an empty vehicle, 

𝐶 is the weight capacity of a vehicle, 

𝑓(𝑑𝑖𝑗, 𝑦𝑖𝑗, 𝑣𝑖𝑗) is the fuel consumption formula. 

Decision variables for the first stage model: 

𝑥𝑖𝑗 is a binary variable to indicate whether or not to choose the link from node 𝑖 to 

node 𝑗, 

𝑦𝑖𝑗 is the total weight of a vehicle when it travels from node 𝑖 to node 𝑗, 

𝑡𝑖 is the arrival time at node 𝑖, where the starting time at the depot is counted as 0. 

Decision variables for the second stage model: 

𝑠 is a scenario of the actual speed limit with an instance of random variable 𝑉𝑖𝑗, 

𝑣𝑖𝑗
𝑠is the travel speed from node 𝑖 to node 𝑗 for scenario 𝑠, 

𝑡𝑖
𝑠 is the arrival time at node 𝑖 for scenario 𝑠, where the starting time at the depot 

is counted as 0. 

5.2.2 Models 

The two-stage stochastic model is shown below. The objective of model is to 

minimize the total fuel consumption and carbon emission.  

The first stage: 
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Min 

∑ ∑ 𝑥𝑖𝑗𝑦𝑖𝑗𝐸𝑠[𝑓(𝑑𝑖𝑗, 𝑣𝑖𝑗
𝑠)]𝑗𝑖   

S.T.  

∑ 𝑥𝑖𝑗
𝑛
𝑗=0 = 1, ∀ 𝑖 = 1, … , 𝑛                                                                                  (14) 

∑ 𝑥0𝑗
𝑛
𝑗=1 ≤ 𝑁                                                                                                        (15) 

∑ 𝑥𝑖𝑗
𝑛
𝑗=0,𝑗≠𝑖 − ∑ 𝑥𝑗𝑖

𝑛
𝑗=0,𝑗≠𝑖 = 0, ∀ 𝑖 = 0, … , 𝑛                                                      (16) 

∑ 𝑦𝑗𝑖
𝑛
𝑗=0,𝑗≠𝑖 − ∑ 𝑦𝑖𝑗

𝑛
𝑗=0,𝑗≠𝑖 = 𝑞𝑖, ∀ 𝑖 = 1, … , 𝑛                                                     (17) 

𝑦𝑖𝑗 ≤ (𝐶0 + 𝐶)𝑥𝑖𝑗, ∀ 𝑖, 𝑗 = 0, … , 𝑛, (𝑖 ≠ 𝑗)                                                          (18) 

𝑦𝑖𝑗 ≥ 𝐶0𝑥𝑖𝑗, ∀ 𝑖, 𝑗 = 0, … , 𝑛, (𝑖 ≠ 𝑗)                                                                    (19) 

𝑡𝑖 + 𝑡𝑠𝑖 +
𝑑𝑖𝑗

𝑣𝑖𝑗
− 𝑡𝑗 ≤ 𝑀(1 − 𝑥𝑖𝑗), ∀ 𝑖, 𝑗 = 0, … , 𝑛, (𝑖 ≠ 𝑗)                                   (20) 

𝑡0 = 0                                                                                                                   (21) 

0 ≤ 𝑡𝑖 ≤ 𝑇𝑖, ∀ 𝑖 = 1, … , 𝑛                                                                                    (22) 

𝑥𝑖𝑗 ∈ {0,1}, ∀ 𝑖, 𝑗 = 0, … , 𝑛                                                                                  (23) 

where 𝑀 is a large constant. 

The second stage: 

Min 

∑ ∑ 𝑓(𝑑𝑖𝑗 , 𝑣𝑖𝑗
𝑠)

𝑗𝑖

𝑦𝑖𝑗 

S.T.  

𝑡𝑖
𝑠 + 𝑡𝑠𝑖 +

𝑑𝑖𝑗

𝑣𝑖𝑗
𝑠 − 𝑡𝑗

𝑠 ≤ 𝑀(1 − 𝑥𝑖𝑗), ∀ 𝑖, 𝑗 = 0, … , 𝑛, (𝑖 ≠ 𝑗)                               (24) 

𝑡0 = 0                                                                                                                   (25) 

0 ≤ 𝑡𝑖
𝑠 ≤ 𝑇𝑖, ∀ 𝑖 = 1, … , 𝑛                                                                                   (26) 
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0 ≤ 𝑣𝑖𝑗
𝑠 ≤ 𝑉𝑖𝑗, ∀ 𝑖, 𝑗 = 0, … , 𝑛, (𝑖 ≠ 𝑗)                                                               (27) 

where 𝑀 is a large constant. 

In the first stage model, the objective is to minimize the fuel consumption and 

carbon emission by optimization on the traveling route. Constraints (14)-(23) are the first 

stage constraints. Note that we force the travel speed 𝑣𝑖𝑗 to be equal to the posted maximum 

speed limit in the first stage model. Constraints (14) ensure that for each node 𝑖 (except the 

depot node), the number of arcs from that node is equal to 1. Constraint (15) is the total 

vehicle constraint. Constraints (16) guarantee the flow balance at each customer node, i.e. 

the incoming flow is equal to the outgoing flow. Constraints (17) are demand constraints. 

Constraints (18) and (19) are vehicle capacity constraints. Constraints (20) - (22) are time 

window constraints. 

In the second stage model, the objective is to minimize the fuel consumption and 

carbon emission by optimizing the travel speed. Constraints (24) - (26) are time window 

constraints. Constraint (27) ensures the travel speed is less than the posted maximum speed 

limit. Note that, each random speed limit is considered as one specific scenario.  

5.3 Solution Approach 

5.3.1 Two Stage Heuristic Algorithm 

In this section, we develop an algorithm to solve the stochastic green vehicle 

routing problem. The complicating factor in this problem is that travel speed limit is a 

random value. Because this stochastic VRPTW with fuel consumption problem is a 

nonlinear integer program, it cannot be solved by CPLEX directly. A two stage 

decomposition method is developed to solve this problem. We first use initial parameters 

in the first stage model to obtain a feasible solution. The first stage model is solved by 
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CPLEX. Then we solve the second stage model to get a near-optimal solution and update 

the parameters in the first stage model. For the second stage model, with the given route 

that generated based on the first stage model, we use our proposed heuristic algorithm to 

obtain the proper travel speed for each random scenario. The process iterates until the 

optimal solution is reached.  

The two stage heuristic method described below. The detailed steps of the algorithm 

are: 

1. Set 𝑈𝐵 =  +∞, 𝑘 = 0. Initialize 𝑣𝑖𝑗 = 𝑉𝑖𝑗
∗  for all arc 𝑖𝑗.  

2. Solve the first stage problem. Let 𝑥1, 𝑦1 be the optimal solution, and 𝑧1 be the 

optimal objective value. If 𝑧1 > 𝑈𝐵, then terminate; otherwise, update 𝑈𝐵 =  𝑧1, go to 

step 3. 

3. Solve the second stage problem 

3.1 For each scenario 𝑠, solve the problem 𝑓(𝑑𝑖𝑗, 𝑣𝑖𝑗
𝑠) with 𝑥 = 𝑥1, 𝑦 = 𝑦1 and 

𝑉 = 𝑉𝑠. Let 𝑧𝑖𝑗
2𝑠 be the optimal value of 𝑓(𝑑𝑖𝑗 , 𝑣𝑖𝑗

𝑠) for all 𝑖𝑗. 

3.2 Calculate the average 𝑧𝑖𝑗
2 = 𝑧𝑖𝑗

2𝑠̅̅ ̅̅  as the expectation of the optimal values of the 

second stage problem. 

4. Update the first stage problem by 𝐸𝑠[𝑓(𝑑𝑖𝑗 , 𝑣𝑖𝑗
𝑠)] = 𝑧𝑖𝑗

2  and 𝑣𝑖𝑗 = 𝑉𝑖𝑗
∗  for all 𝑖𝑗, 

and go to step 2. 

In the second phase, to improve the route, we have to check time window constraint 

first. However, the time window constraint is conducted based on travel speed. At that 

point, we have to assign a proper value to travel speed. However, heuristics that are used 

to solve the classical VRP cannot be directly applied for our problem. To solve this problem, 

we order the arc by the product of weight and distance. The reason is that carbon emission 
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formulation depends largely on weight multiplied by distance. Then we choose a random 

travel speed limit based on a distribution function and treat this as one scenario. Based on 

the travel speed limit, we assign value to travel speed on the arc with largest product of 

weight and distance until the time window constraint is not satisfied. The algorithm for the 

second stage is shown as following. Figure 21 illustrates the procedure of the entire 

algorithm. 

1. Initialize parameters, i.e., initial tour, initial travel speed limit 𝑉𝑖𝑗
∗  ,the maximum 

number of scenarios, the weight of empty vehicle and weight*distance list. The initial tour 

is generated based on the first stage model.  

2. Calculate the weight of loaded vehicle for each arc on the initial route. 

3. Sort arcs of the neighbor route in descending order of the product of weight and 

distance.  

4. If the travel speed limit on arc with the largest product of weight and distance is 

equal to the initial travel speed limit, go to step 5. Otherwise, delete the arc from the 

weight*distance list and repeat step 4 until the weight*distance list is empty. 

5. Generate travel speed limits randomly based on a truncated normal distribution 

starting from that arc. Choose the speed resulting in the smallest carbon emission. Assign 

the chosen speed to that arc.  

6. If the time window constraint. is satisfied, repeat step 5 until the total running 

number is greater than the maximum number of scenarios. Calculate the average travel 

speed and average objective value for that arc. Delete the arc from the weight*distance list 

and go to step 4.  
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7. If the time window constraint is not satisfied, set the travel speed of the latest 

chosen arc equal to travel speed limit, calculate the average travel speed and average 

objective value for that arc, then delete the arc from the weight*distance list and go to step 

4. 
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Initialize parameters: UB, k, vij

Solve the first stage problem,  let z1 be 

the optimal objective value

z1>UB ?

UB=z1

No?

Yes?
Terminate

Generate random scenario, for each 

scenario, solve the second stage 

problem. Z2s be the optimal value

Calculate the average  as the 

expectation of the optimal values of 

the second stage problem

Update the first stage problem by the 

expected value of the second stage 

problem

 

  Figure 21. Algorithm for stochastic G-VRP 
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5.3.2 Sample Average Approximation 

The method proposed in section 5.1 aims to obtain a robust solution. In this section, 

we use sample average approximation (SAA) to solve the multiple scenarios of the 

stochastic problem to estimate the upper bound and lower bounds of the optimal objective 

values. Confidence intervals are then derived to evaluate the quality of the optimal 

solutions. Monte Carlo simulation can be used to approximate the optimal objective value 

for stochastic problems, especially when the random value is under continuous distribution. 

The procedure of the SAA algorithm (Santoso et al., 2005) for stochastic optimization is 

described below: 

1. For 𝑚 =  1, … , 𝑀, repeat the following steps: 

(a) Generate random scenario samples 𝑠1 … … 𝑠𝑁. 

(b) Solve the corresponding SAA problem. Let x̂𝑁
𝑚  be the solution vector of a 

scenario, and g𝑁
𝑚 be the corresponding total fuel consumption and carbon emission. 

2. Compute: 

 

�̅�𝑁,𝑀 =
1

𝑀
∑ g𝑁

𝑚

𝑀

𝑚=1

 

𝜎�̅�𝑁,𝑀

2 =
1

𝑀(𝑀 − 1)
∑ (g𝑁

𝑚 − �̅�𝑁,𝑀)2

𝑀

𝑚=1

 

3. Choose the feasible solution �̃�𝜖𝑋 with the smallest objective value, �̂�𝑁′(�̃�). 

4. Compute the estimators for the optimality gap and its estimated variance based 

on solutions from steps 2 and 3, we get:  

𝑔𝑎𝑝𝑁,𝑀,𝑁′ = �̂�𝑁′(�̃�) − �̅�𝑁,𝑀 
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𝜎𝑔𝑎𝑝
2 = 𝜎𝑁′

2 (�̃�) + 𝜎�̅�𝑁,𝑀

2  

5. Compute the confidence interval for the optimality gap as: 

[�̂�𝑁′(�̃�) − �̅�𝑁,𝑀 − 𝑧𝛼𝜎𝑔𝑎𝑝, �̂�𝑁′(�̃�) − �̅�𝑁,𝑀 + 𝑧𝛼𝜎𝑔𝑎𝑝] 

Where 𝑧𝛼 = Φ−1(1 − 𝛼), and Φ(z) is the cumulative distribution fuction of the 

standard normal distribution. 

5.4 Computational Study 

This section presents the results of numerical experiments to evaluate the 

performance the proposed heuristics for solving the green vehicle routing stochastic 

problem. We first describe the parameters that are used in the proposed methods and the 

generation of the test instances. Then, the computational results are presented to evaluate 

the solution quality against the problem size. We then demonstrate the quality of stochastic 

solution by comparing it to the solution obtained using the corresponding deterministic 

approach. At the end of this section, a real world case is introduced and sensitivity analysis 

of the impact of time window constraint and congestion on the optimal solution are 

conducted based on the real world case. All experiments are performed on a processor with 

2.67 GHz speed and 4GB RAM. CPLEX 12.0 with default settings is used to solve the 

stage one models during the A two stage decomposition method. The optimality tolerances 

of two stage decomposition method are set to 0.001%. All algorithms are coded in C#. 

5.4.1 Parameter Setting 

For the experiments, test instances are generated based on the consideration of the 

impact of time window constraint and travel speed limit. We use small size problems 

instances with 7, 10, 15 nodes which are randomly selected depot and customers from US. 

The location information which includes longitude and latitude is randomly generated 
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based on uniform distribution. The road distance is obtained based on the longitude and 

latitude of each node. The vehicle used in here is heavy-duty.  The weight of the empty 

vehicle is set to 6,000 lb. The capacity of each vehicle is set to 4,259 lb. The service time 

at each node is set as 2 hours. The demand of each customer is randomly generated between 

0 and 1,000 lb according uniform distribution. We consider three type of time window 

constraint in this experiment: no time window, loose time window and tight time window. 

Travel speed limit here is an uncertain parameter. According to actual speed distribution 

(Berry, D. S., and Belmont, D. M., 1951), we assume that the value of an uncertain 

parameter follows truncated normal distribution with uniformly distributed mean.  

To explore the impact of congestion and time window constraint on the total carbon 

emission, we consider three type of congestion conditions and two type of time window 

limitation. We ran the algorithm 100 times with 1,000 iterations for each instance. The 

parameters that used in the experiments are given in Table 29. 

Table 29 

Parameter setting 

Notation Description 

Typical 

Values 

Q Capacity Vehicle (ib) 6,000 

m Vehicle Number 5 

Q0 Capacity of Empty Vehicle (ib) 4,259 

ω 

The reference excess emission (at 20 °C and 12.43 

miles/hour) 182.57 

T The temperature (°C) 25 

 

 

5.4.2 Heuristic Performance 

(1) Scalability of the Heuristic Algorithm 
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To evaluate the scalability of the heuristic algorithm against the problem size, a set 

of computational experiments are conducted in Table 30. The column “Upper Bound” 

represents results when initial speed limit is 93.2 miles/hour (150 kilometers/hour), 

whereas “Lower Bound” represents results when initial speed limit is 42.25 miles/hour (68 

kilometers/hour). The reason that we chose this two special case is 93.2 miles/hour can 

ensure the initial solution satisfy due time when there is time window limitation, and 42.25 

miles/hour can provide the smallest carbon emission as shown in previous experiments in 

chapter 4. Thus, when there is no time window constraint, we will use 42.25 miles/hour as 

the initial value. 93.2 miles/hour will only be used when there is time window constraint 

because 93.2 miles/hour could only provide an upper bound of the optimal solution. The 

average processing time for different scenarios over 100 iterations are shown in Table 31 

respectively. 

From Table 30, it can be seen that the average gaps between two cases for all 

scenarios remains small. They are all within a small range (less than 3%) after 

approximately 30 seconds running time. For some problems, the optimality gap is very 

small, such as 7 nodes without time window constraint. Even for some problems where 

convergence is not achieved, the optimality gas remains small. Generally, the optimality 

gap for cases without time window limitation is less than cases with time window limitation. 

The impact of the problem size on optimality gap is not significant based on our 

observation. In Table 31, one can observe a dependency between problem size and the 

processing time. The second stage problem takes the majority of the time while the amount 

of time spent in solving the simplified first stage problem does not change too much with 

the number of iterations.  
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Table 30 

Optimality gap for different cases 

Problem 

Set 
Node 

Time 

Window 

Upper Bound 

(ton) 

Lower Bound 

(ton) 

Gap 

(%) 

1 7 No TW 13984.42 13982.06 0.02 

2 7 With TW 14173.73 14015.09 1.13 

3 10 No TW 18310.33 18238.11 0.4 

4 10 With TW 13150.12 12782.17 2.88 

5 15 No TW 17857.58 17855.18 0.01 

6 15 With TW 20241.18 20141.94 0.49 

 

Table 31 

Average processing time in seconds over 100 iterations 

N 

50 

scenarios 

100 

scenarios 

200 

scenarios 

400 

scenarios 

800 

scenarios 

1000 

scenario 

No 

TW 

With 

TW 

No 

TW 

With 

TW 

No 

TW 

With 

TW 

No 

TW 

With 

TW 

No 

TW 

With 

TW 

No 

TW 

With 

TW 

7 5.95 5.55 5.96 5.77 5.78 5.6 6.04 5.84 6.35 5.8 6.42 5.94 

10 19.6 17.3 19.5 17.7 19.7 18 20.1 17.9 20.6 18 20.7 18.1 

15 77.1 58.2 69.2 60.8 69.8 57 69.9 67.4 70.7 69 71.7 58.8 

 

The computational performance of upper bound and lower bound using two stage 

heuristic algorithm are shown in Figures 22 and 23. Time window constraint is not 

considered in this two cases. The initial route is generated by a heuristic algorithm based 

on Tabu Seach which can be found in Chapter 4. We can see that the solution of upper 

bound decreases and the solution of lower bound increases with the number of iterations. 

But they will converge within an optimality gap of the optimal solution. The optimality 

gap will be evaluated in next section. If the optimality gap is very small, this means that 

the algorithm could obtain a good result that is very close to the optimal solution. Results 

shown in Figure 22 is the small-scale problem (Node = 7) where both cases require 7 

iterations to converge. Similarly, in Figure 23, the medium-size problem, the upper bound 
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requires 14 iteration while lower bound require 24 iteration to reach the optimality gap. As 

the problem size increases, the number of iterations and computational time becomes larger. 

 

Figure 22. The convergence of the algorithm against iterations for 7 nodes 

 

Figure 23. The convergence of the algorithm against iterations for 15 nodes 
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5.4.3 Quality of stochastic solutions 

In this section, the value of stochastic solution is used to measure the potential 

benefit of solving the stochastic problem over the corresponding deterministic problem. 

First, we use statistical mean to replace the random value (the travel speed limit) and solve 

the corresponding deterministic model. The deterministic problem is referred as mean-

value problem. The optimal solution denoted H. Then, we compute the expected objective 

value over all scenarios which denoted E. The uncertain parameter in each scenario is 

random generated based on a particular distribution. The difference between H and E is 

called the value of stochastic solution (VSS) (Birge, J. R., 1982). 

To generate the random value for the uncertain parameter, some assumptions are 

made here: 

1. The distribution of the uncertain parameter is assumed to be truncated normal 

distribution.  

2. The mean of the truncated normal distribution is generated based on uniform 

distribution. 

The experiment is conducted by solving M (=100) SAA problem instances with N 

(=1000). In order to study the impact of the variance of random value in quality of solutions, 

we consider two networks where each network has three different cases. The first case has 

the highest variance. The variance of the second case is two-thirds the first case. In the 

third case, the variance is half of the first case. The result is shown in Table 32. 
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Table 32 

The sensitivity of VSS to variance 

Node Var. 
𝑦 (Kton)  𝑦𝑚𝑣𝑝 (Kton)  VSS 

(%) UB LB Mean SD UB LB Mean SD 

7 

10.8 184.5 90.0 109.6 15.3 117.7 89.9 100.3 8.9 9.2 

8.1 187.3 94.8 107.3 10.5 109.4 94.5 102.4 5.2 4.8 

5.4 121.1 90.9 102.7 7.6 109.9 90.8 100.3 6.7 2.4 

10 

10.8 170.9 103.8 119.8 12.3 116.1 103.2 109.0 4.9 10.0 

8.1 156.4 97.6 116.9 13.3 125.5 97.0 110.6 8.9 5.6 

5.4 145.4 98.4 113.9 8.8 120.6 97.9 111.0 7.1 2.6 

 

In Table 32, “𝑦” indicate the solution of each scenario among 100 SAA problem 

instances with M=100. “𝑦𝑚𝑣𝑝” indicates the solution of the mean-value problem. “UB”, 

“LB”, “Mean”, “SD” are the upper bound, lower bound, mean and standard deviation of 

the corresponding solution respectively. “VSS (%)” is the percentage increase from 

average objective value to the solution of the mean-value problem. Table 32 indicates VSS 

is obvious for all nine cases which means that it is necessary to develop and solve stochastic 

green vehicle routing problem since the result of the mean-value problem cannot provide 

a robust solution when congestion is considered in the green vehicle routing problem. It is 

also noticed that VSS increases with variance for different problem size which means that 

stochastic green vehicle routing problem provides more benefits when uncertainty level of 

travel speed limit for each arc increases. For the base case with small variance, the relative 

increase is less than 3%. However, VSS increases slightly with the increase of problem 

size. For example, even with the same variance, VSS for fifteen nodes problem is larger 

than seven nodes problem. The running time for stochastic problem and mean-value 

problem is almost the same, which means that stochastic green vehicle routing problem 

can provide more benefit without increasing computational effort. 
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In Table 33, we estimate the optimality gap for different sample size M, N and N’ 

by solving the SAA problem. The statistical upper bound and lower bounds of the 90 

percent confidence interval are also presented for different set. The gap is calculated based 

on (X.X). “Max” and “Min” are the upper and lower limit for the confidence interval 

respectively. The percentage of the confidence interval is also provided here.  

Table 33 

Estimated optimality gap and confidence intervals 

 

N M N' 

Estimated optimality gap 
Gap 

SD 

90% 

confidence 

interval 

Max Var' Min Var Gap % 
   

Min 
Max 

1000 40 28000 99.0 2401.6 98.6 11.2 0.4 0.4 49.1 -80.7 81.4 

500 20 10000 100.8 16.4 99.4 4.4 1.4 1.4 4.6 -6.1 8.9 

100 10 1000 99.0 25.7 98.1 4.2 1.0 1.0 5.5 -8.1 10.0 

 

 

As shown in Table 33, the optimality gap and the confidence interval decreases as 

the sample size increase in the SAA problem. The result indicate that we can get a better 

solution quality when we increase the number of scenarios. Moreover, the result of the 

optimality gap shows that our solution is applicable to provide good suggestion for a real 

world case. For example, when we use the sample size N=500, M=20, N’ = 10000, it is 90 

percent sure that the optimal solution is within range (-6.12, 8.93). 

5.5 Conclusions 

In this chapter, we consider a robust green vehicle problem, where speed limit on 

each arc is stochastic and expected fuel cost is minimized. This is to approach practice 

since conjunction generally exists in reality. Because the mathematical model cannot be 

solved directly by CPLEX, a two-stage heuristic with sample average approximation is 
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developed and its advantage in solution quality is demonstrated through computational 

study. By comparing the solutions of robust with traditional green vehicle routing problems, 

it is found that our robust VRP solutions can reduces the expected fuel cost with small 

optimality gap. 
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CHAPTER VI  

CONCLUSIONS AND FUTURE RESEARCH 

6.1 Conclusions 

Motivated by the desire of designing an efficient and environmentally friendly 

logistics system to satisfy both government and carriers, we considered three problems in 

this dissertation: intermodal network design, the deterministic green vehicle routing 

problem and the stochastic green vehicle routing problem. These three problems were 

studied independently with detailed conclusions and discussion on future work in each 

underlying chapter.  An overview of the contributions of this dissertation work and 

potential research directions are presented in this chapter. 

The first problem is about intermodal network design. Based on the current 

transportation pattern choice and corresponding carbon emission data, we analyzed a real 

world intermodal network which covers fifteen states and the entire inland waterway 

system in US. Four boundary models were built to investigate the potential improvement 

of the network in terms of economic cost and environmental cost. With the motivation of 

seeking a policy to maximize the usage of inland waterway without increasing economic 

cost, a multi-objective intermodal network model was built to minimize the environmental 

cost, economic cost and time penalty cost simultaneously. To simulate real choice in the 

network, a time penalty parameter was introduced in the multi-objective model. Based on 

the real world distance and carbon emission data, sensitivity 
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analysis for carbon emission tax policy was conducted. The analytical results show that the 

breakeven point for carbon emission tax is $13/ton, which can maximize the improvement 

of environment without increasing actual cost.  

The second problem is an extended green vehicle routing problem which is 

formulated based on the pollution routing problem. With the consideration of various travel 

speeds, a mixed integer nonlinear programming model was formulated with the objective 

of minimizing the total carbon emission. The carbon emission function is a nonlinear 

function of travel speed, distance and load of vehicle. Because this problem is NP-Hard, a 

heuristic algorithm based on a savings heuristic and Tabu Search is developed to solve a 

large case for this problem. To assess the performance of the proposed heuristic algorithm, 

numerical experiments are conducted through comparison with solution obtained by 

BONMIN in GAMS on randomly generated problem instances. The results show that the 

improved Tabu Search performs better than BONMIN in all cases with the average carbon 

emission reduction of 7.76% and less running time. Sensitivity analysis is conducted to 

investigate the impact of a time window constraint, travel speed and travel speed limit. 

Total carbon emission increases significantly with the reduction of the range of time 

window limitation. The extensive experimental results indicate that improvement for 

environment is more apparent when the time window constraint is loose comparing with 

tight time window limitation. In addition, a real world case is conducted to further 

investigate the impact of time window limitation, travel speed and congestion. Under the 

no time window scenario, our proposed G-VRP with various travel speed could achieve 

32.27% carbon emission reduction comparing with basic VRP with objective of 

minimizing travel distance, and 15.69% carbon emission reduction comparing with basic 
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G-VRP with constant travel speed without increasing travel distance. Experiments on 

travel speed limit show that congestion has great influence on carbon emission.  

To further investigate the impact of congestion on carbon emission in the real world, 

we study a stochastic green vehicle routing problem in Chapter 5. Actual travel speed limit 

on each arc is treated as a random value based on a truncated normal distribution. The 

objective of the stochastic green vehicle routing problem is to obtain a robust vehicle route 

with minimum expected total carbon emission. A two-stage heuristic algorithm is 

developed to solve this problem and sample average approximation is used to evaluate the 

quality of solutions through computational study. The value of the stochastic solution is 

used to compare the average objective value of stochastic problem with solutions of mean-

value problem. Numerical results show that VSS is obvious for all cases which indicate 

stochastic green vehicle routing problem can provide more benefit comparing with mean-

value problem, especially when uncertainty level of random value is high. In addition, it is 

noticed that our stochastic G-VRP solution can provide a robust solution with small 

optimality gap (less than 1.5 %) which means that our solution can provide applicable 

suggestion for the real world problem.  

6.2 Future work 

Based on the current research, possible future research directions and extensions 

for this work include: 

1. Consider multiple types of cargos and larger network in the intermodal network 

design problem. In the current work, we analyzed the tax policy for a coal 

transportation network. It is necessary to extend this work to multiple types of 

cargo. In addition, we consider three transportation modes in this dissertation: 
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railway, highway and inland waterway. Future studies could consider a network 

with airlines. 

2. Improve the heuristic algorithm for the deterministic green vehicle routing 

problem. In this work, we use 2-Opt to generate neighbor routes in our heuristic 

algorithm. To improve the algorithm, different exchange rules could be used to 

generate neighbor routes, such as: K-Opt, Swap and Relocation. 

3. Develop mix vehicle green vehicle routing model. We consider homogeneous 

vehicles in this work. To extend this work, future studies could include different 

types of vehicles in the deterministic and stochastic green vehicle routing model. 

Moreover, in the stochastic problem, we use a truncated normal distribution to 

generate the random values. Comparing other different distributions is another 

research direction for future work. 

4. Use of real time models to assist dispatchers in making trade-offs between cost, 

time and carbon emissions. In our work, we have applied the aggregate problem 

to design the intermodal transportation network with the objective to minimize 

total cost and carbon emission for the entire supply chains. We could extend 

this work by considering a real time model for individual cases to help different 

decision makers  balance the trade-offs between transportation cost and carbon 

emissions. 

5. Implement of carbon emission tax in practice. In Chapter 3, we proposed a 

carbon emission tax policy for intermodal transportation. Because carbon 

emission tax could have a great impact on the economy. How to apply that 

policy in the real world is also a critical issue for future work. In general, there 
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are two different ways to implement the carbon emission tax in the intermodal 

transportation. First, we could submit the proposal to the government agents. 

Because the revenue of the government depends largely on various tax. Based 

on our analysis, if we set the breakeven point for carbon emission tax to be 

$13/ton, the total amount of revenue for the government will raise around $11.7 

million. The government can use the additional revenue to invest programs of 

improving environment, lower other taxes or as general salary income for 

government agents. Second, we could show the proposal to the some intermodal 

logistic companies, such as BNSF railway. Carbon emission tax would 

encourage companies to switch from expensive shipping method to a cheaper 

transportation method. Thus, the tax could boost the business of intermodal 

transportation. Based on our analysis, the percentage of intermodal 

transportation in the coal transportation system will increase 39.7% in an ideal 

situation. Thus, carbon emission tax policy could potentially increase the 

revenue of these logistic companies, which will encourage these companies to 

promote the implement of this policy. 
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APPENDIX 

Appendix I Result of Boundary Cases 

  

Transportation  Transportation Original 

Node 

Destination 

Node 

Value Reduced 

Path  Mode (kton) Cost 

I J M O D     

x 18 29 R 18 29 10.25 0 

x 29 44 R 29 44 2.15 0 

x 44 29 R 95 29 407.27 0 

x 61 44 R 95 29 407.27 0 

x 95 61 R 95 29 407.27 0 

x 36 40 R 95 40 2496.73 0 

x 44 36 R 95 40 2496.73 0 

x 61 44 R 95 40 2496.73 0 

x 95 61 R 95 40 2496.73 0 

x 95 60 R 95 60 9186.01 0 

x 95 115 R 95 113 1074.76 0 

x 115 116 R 95 113 1074.76 0 

x 116 113 H 95 113 1074.76 0 

x 95 247 R 95 122 7603.95 0 

x 127 122 R 95 122 7603.95 0 

x 247 127 R 95 122 7603.95 0 

x 95 247 R 95 161 6017.21 0 

x 127 145 R 95 161 6017.21 0 

x 145 161 R 95 161 6017.21 0 

x 247 127 R 95 161 6017.21 0 

x 95 247 R 95 163 4.47 0 

x 141 192 W 95 163 4.47 0 

x 182 163 R 95 163 4.47 0 

x 192 195 R 95 163 4.47 0 

x 195 182 W 95 163 4.47 0 

x 247 141 R 95 163 4.47 0 

x 95 247 R 95 183 820.03 0 

x 127 145 R 95 183 820.03 0 

x 145 175 R 95 183 820.03 0 

x 175 183 R 95 183 820.03 0 

x 247 127 R 95 183 820.03 0 

x 95 247 R 95 192 364.24 0 

x 141 192 W 95 192 364.24 0 
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x 247 141 R 95 192 364.24 0 

x 96 63 R 96 63 4155.23 0 

x 96 104 R 96 104 476.98 0 

x 96 121 W 96 120 1979.69 0 

x 121 120 R 96 120 1979.69 0 

x 96 104 R 96 183 8.85 0 

x 104 252 H 96 183 8.85 0 

x 122 139 R 96 183 8.85 0 

x 139 175 R 96 183 8.85 0 

x 175 183 R 96 183 8.85 0 

x 252 122 W 96 183 8.85 0 

x 44 29 R 104 29 3.97 0 

x 60 44 R 104 29 3.97 0 

x 86 60 R 104 29 3.97 0 

x 97 86 R 104 29 3.97 0 

x 104 97 R 104 29 3.97 0 

x 86 60 R 104 60 11.68 0 

x 97 86 R 104 60 11.68 0 

x 104 97 R 104 60 11.68 0 

x 104 63 R 104 63 236.27 0 

x 104 96 R 104 96 188.32 0 

x 104 107 H 104 107 7.80 0 

x 104 120 R 104 120 5202.77 0 

x 104 252 H 104 122 895.51 0 

x 252 122 W 104 122 895.51 0 

x 104 252 H 104 213 5.33 0 

x 122 145 R 104 213 5.33 0 

x 145 159 H 104 213 5.33 0 

x 159 170 R 104 213 5.33 0 

x 170 192 W 104 213 5.33 0 

x 192 209 R 104 213 5.33 0 

x 209 213 R 104 213 5.33 0 

x 252 122 W 104 213 5.33 0 

x 104 252 H 104 252 1992.58 0 

x 86 60 R 120 60 166.26 0 

x 97 86 R 120 60 166.26 0 

x 120 97 R 120 60 166.26 0 

x 104 63 R 120 63 3184.57 0 

x 120 104 R 120 63 3184.57 0 

x 120 121 R 120 96 9041.90 0 

x 121 96 W 120 96 9041.90 0 

x 120 104 R 120 104 4442.94 0 

x 120 121 R 120 107 1051.32 0 

x 121 107 R 120 107 1051.32 0 

x 120 121 R 120 122 2589.98 0 
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x 121 252 W 120 122 2589.98 0 

x 252 122 W 120 122 2589.98 0 

x 120 121 R 120 161 817.38 0 

x 121 252 W 120 161 817.38 0 

x 122 139 R 120 161 817.38 0 

x 139 161 R 120 161 817.38 0 

x 252 122 W 120 161 817.38 0 

x 120 121 R 120 183 121.56 0 

x 121 252 W 120 183 121.56 0 

x 122 139 R 120 183 121.56 0 

x 139 175 R 120 183 121.56 0 

x 175 183 R 120 183 121.56 0 

x 252 122 W 120 183 121.56 0 

x 120 121 R 120 247 15.96 0 

x 121 252 W 120 247 15.96 0 

x 122 127 R 120 247 15.96 0 

x 127 247 R 120 247 15.96 0 

x 252 122 W 120 247 15.96 0 

x 120 121 R 120 252 2840.34 0 

x 121 252 W 120 252 2840.34 0 

x 44 29 R 122 29 70.99 0 

x 60 44 R 122 29 70.99 0 

x 86 60 R 122 29 70.99 0 

x 107 86 R 122 29 70.99 0 

x 122 252 R 122 29 70.99 0 

x 252 107 H 122 29 70.99 0 

x 86 60 R 122 60 443.91 0 

x 107 86 R 122 60 443.91 0 

x 122 252 R 122 60 443.91 0 

x 252 107 H 122 60 443.91 0 

x 122 127 R 122 95 82.79 0 

x 127 247 R 122 95 82.79 0 

x 247 95 R 122 95 82.79 0 

x 122 252 R 122 104 2769.04 0 

x 252 104 H 122 104 2769.04 0 

x 116 113 H 122 113 4.62 0 

x 122 127 R 122 113 4.62 0 

x 127 116 R 122 113 4.62 0 

x 121 120 R 122 120 721.87 0 

x 122 252 R 122 120 721.87 0 

x 252 121 W 122 120 721.87 0 

x 122 139 R 122 161 1977.10 0 

x 139 161 R 122 161 1977.10 0 

x 122 145 R 122 170 1.11 0 

x 145 159 H 122 170 1.11 0 
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x 159 170 R 122 170 1.11 0 

x 122 139 R 122 183 5704.96 0 

x 139 175 R 122 183 5704.96 0 

x 175 183 R 122 183 5704.96 0 

x 122 145 R 122 213 168.46 0 

x 145 159 H 122 213 168.46 0 

x 159 170 R 122 213 168.46 0 

x 170 192 W 122 213 168.46 0 

x 192 209 R 122 213 168.46 0 

x 209 213 R 122 213 168.46 0 

x 122 252 R 122 252 3075.13 0 

x 161 175 R 161 122 25.88 0 

x 175 122 W 161 122 25.88 0 

x 86 60 R 183 60 558.29 0 

x 107 86 R 183 60 558.29 0 

x 122 252 R 183 60 558.29 0 

x 175 122 W 183 60 558.29 0 

x 183 175 R 183 60 558.29 0 

x 252 107 H 183 60 558.29 0 

x 170 192 W 183 163 5.99 0 

x 174 170 R 183 163 5.99 0 

x 182 163 R 183 163 5.99 0 

x 183 174 R 183 163 5.99 0 

x 192 195 R 183 163 5.99 0 

x 195 182 W 183 163 5.99 0 

x 170 192 W 183 205 476.74 0 

x 174 170 R 183 205 476.74 0 

x 183 174 R 183 205 476.74 0 

x 192 209 R 183 205 476.74 0 

x 209 205 R 183 205 476.74 0 

x 174 213 W 183 213 6.83 0 

x 183 174 R 183 213 6.83 0 

x 170 174 R 192 183 7.58 0 

x 174 183 R 192 183 7.58 0 

x 192 170 W 192 183 7.58 0 

x 213 215 R 213 215 52.78 0 

x 115 18 W 247 18 3.53 0 

x 247 115 R 247 18 3.53 0 

x 44 29 R 247 29 28.22 0 

x 61 44 R 247 29 28.22 0 

x 95 61 R 247 29 28.22 0 

x 247 95 R 247 29 28.22 0 

x 36 40 R 247 40 3.61 0 

x 115 36 W 247 40 3.61 0 

x 247 115 R 247 40 3.61 0 
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x 95 60 R 247 60 134.32 0 

x 247 95 R 247 60 134.32 0 

x 247 95 R 247 95 1037.57 0 

x 116 113 H 247 113 73.74 0 

x 247 116 R 247 113 73.74 0 

x 252 104 H 252 104 1.91 0 
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Appendix II Carbon Emission Calculation 

1. Road 

𝐸𝐻 = (𝐸ℎ𝑜𝑡𝜀 + 𝐸𝑠𝑡𝑎𝑟𝑡 + 𝐸𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑣𝑒)𝑁𝐷 

Where 

𝐸𝐻: Total emission in highway (g) 

𝜀: load correction factor function  

𝐸ℎ𝑜𝑡: The emission produced when the engine is hot (g/km) 

𝐸𝑠𝑡𝑎𝑟𝑡: The emission when the engine is cold (g/km) 

𝐸𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑣𝑒: The emission by evaporation (only for VOC) (g/km) 

𝑁: The number of vehicles 

𝐷: The average distance (km) 

(1) 𝐸ℎ𝑜𝑡 

For gasoline light duty vehicles <3.5 t, 

𝐸ℎ𝑜𝑡 = 0.0621𝑉2  −  9.8381𝑉 +  601.2 

Where  

V: The average speed travelled by the each vehicle (km/h) 

For diesel light duty vehicles <3.5 t, 

𝐸ℎ𝑜𝑡 = 0.0617𝑉2  −  7.8227𝑉 +  429.51 

For heavy goods vehicles with gross vehicle weights from 3.5 to 7.5 tonnes, 

𝐸ℎ𝑜𝑡 = 110 + 0.000375𝑉3 +
8702

𝑉
 

For heavy goods vehicles with gross vehicle weights from 7.5 to 16 tonnes, 

𝐸ℎ𝑜𝑡 = 871 − 16𝑉 + 0.143𝑉2 +
32031

𝑉2
 

For heavy goods vehicles with gross vehicle weights from 16 to 32 tonnes, 

𝐸ℎ𝑜𝑡 = 765 − 7.04𝑉2 + 0.000632𝑉3 +
8334

𝑉
 

For heavy goods vehicles with gross vehicle weights from 32 to 40 tonnes, 
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𝐸ℎ𝑜𝑡 = 1576 − 17.6V + 0.00117𝑉3 +
36067

𝑉2
 

For heavy goods vehicles with gross vehicle weights from 40 to 50 tonnes, 

𝐸ℎ𝑜𝑡 = 1.17(1576 − 17.6V + 0.00117𝑉3 +
36067

𝑉2
) 

For heavy goods vehicles with gross vehicle weights from 50 to 60 tonnes, 

𝐸ℎ𝑜𝑡 = 1.35(1576 − 17.6V + 0.00117𝑉3 +
36067

𝑉2
) 

(2) 𝜀 

For heavy goods vehicles with gross vehicle weights from 3.5 to 7.5 tonnes, 

𝜀 = 1.27 +  0.0614γ − 0.0011γ3 − 0.00235V −
1.33

V
 

Where γ is road gradient, since we assume road gradient is 0, we get, 

𝜀 = 1.27 − 0.00235V −
1.33

V
 

For heavy goods vehicles with gross vehicle weights from 7.5 to 16 tonnes, 

𝜀 = 1.26 − 2.03 ∗ 10−7𝑉3 −
1.14

V
 

For heavy goods vehicles with gross vehicle weights from 16 to 32 tonnes, 

𝜀 = 1.27 −
0.483

V
 

For heavy goods vehicles with gross vehicle weights from 32 to 40 tonnes, 

𝜀 = 1.43 −
0.916

V
 

(3) 𝐸𝑠𝑡𝑎𝑟𝑡 

𝐸𝑠𝑡𝑎𝑟𝑡 = 𝜔 × (𝑓(𝑉) + 𝑔(𝑇) − 1) × ℎ(𝑑) 

Where  

𝑉 : The average speed during the cold period (km/h); 

𝜔: The reference excess emission (at 20 °C and 20 km/h) 

𝑇: The temperature (°C) 
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𝑑: The distance travelled (km) 

ℎ(𝑑) =
1−𝑒−𝛼𝛿

1−𝑒−𝛼 ; 𝛿 =
𝑑

𝑑𝑐
 

Where  

𝛿 : The ratio of the trip distance to the cold distance, 

𝛼: Constant 

For gasoline, 

𝜔 = 144.16; 

𝑓(𝑉) = −0.0101𝑉 + 1.2024; 

𝑔(𝑇) = 1; 

𝑑𝑐 = 0.15𝑉 + 2.68 

𝛼 = 2.85 

For diesel, 

𝜔 = 182.57; 

𝑓(𝑉) = 1; 

𝑔(𝑇) = −0.0458𝑇 + 1.9163; 

𝑑𝑐 = 0.24𝑉 + 0.09 

𝛼 = 3.95 

2. Rail 

𝐸𝑅 = 0.0036𝑊𝑆𝐸𝐶 ×
𝑇𝑘𝑚

𝑇𝑝𝑡
× 𝐵𝑆𝐸𝐹 × 𝐷 

Where 

𝐸𝑅: Total emission in railway (g) 

𝑊𝑆𝐸𝐶: Weight specific energy consumption of train 𝑖 (kj/ton-km) 

𝑇𝑘𝑚 : The amount of freight transported train 𝑖  

𝑇𝑝𝑡: The load factor of the train, (tonne-freight/total train tonne) 

𝐵𝑆𝐸𝐹: Brake specific emission factor of energy produced (g/kWh) 
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(1) 𝑊𝑆𝐸𝐶 

For large freight train (600 ton empty mass), 

𝑊𝑆𝐸𝐶 = 0.019
𝑉2

ln (𝑥)
+ 63 

Where  

𝑥: Distance between two stops. 

𝑉: Average speed for train 𝑖 

For ICE train, 

𝑊𝑆𝐸𝐶 = 0.007
𝑉2

ln (𝑥)
+ 74 

For TGV train, 

𝑊𝑆𝐸𝐶 = 0.0097
𝑉2

ln (𝑥)
+ 70 

(2) 𝑇𝑝𝑡 

𝑇𝑝𝑡 =
1

1 +
𝑊𝑅

(1 − 𝑊𝑅)𝑥

 

Where 

WR: the ratio of tare weight with total weight, WR=0.27 

𝑥: The fraction of loading 

3. Waterway 

𝐸𝑊 = 𝑆𝐹
𝐷

24𝑉
 

Where 

𝐸𝑊: Total emission in waterway (g) 

𝑆: Daily consumption of ship 

𝐹: Average emission factor  

𝐷: The average distance travelled by ship (km)  

𝑡: The number of days in navigation  
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𝑡 =
𝐷

24𝑉
 

(1) 𝑆 

For solid bulk, 

𝑆 = 0.8(9.8197 + 0.00143𝐺𝑇) 

Where 

𝐺𝑇: Gross tonnage of ship 

For liquid bulk, 

𝑆 = 0.8(14.685 + .00079 ∗  𝐺𝑇) 

For general cargo, 

𝑆 = 0.8(9.8197 + .00143 ∗  𝐺𝑇) 

For container, 

𝑆 = 0.8(8.0552 + .00235 ∗  𝐺𝑇) 

For inland cargo, 

𝑆 = 0.8(9.8197 + .00143 ∗  𝐺𝑇) 

(2) 𝐹 

The average emission factor is: 

 𝐹 = 3200 kg/ton of fuel 
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