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ABSTRACT

PRODUCTION AND INVENTORY CONTROL IN COMPLEX PRODUCTION

SYSTEMS USING APPROXIMATE DYNAMIC PROGRAMMING

Han Wu

November 30, 2015

Production systems focus not only on providing enough product to supply

the market, but also on delivering the right product at the right price, while

lowering the cost during the production process. The dynamics and uncertainties of

modern production systems and the requirements of fast response often make its

design and operation very complex. Thus, analytical models, such as those involving

the use of dynamic programming, may fail to generate an optimal control policy for

modern production systems.

Modern production systems are often in possession of the features that allow

them to produce various types of product through multiple working stations

interacting with each other. The production process is usually divided into several

stages, thus a number of intermediate components (WIP) are made to stock and

wait to be handled by the next production stage. In particular, development of an
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efficient production and inventory control policy for such production systems is

difficult, since the uncertain demand, system dynamics and large changeover times

at the work stations cause significant problems. Also, due to the large state and

action space, the controlling problems of modern production systems often suffer

from the “curse of dimensionality”.

In this dissertation, we generalize problem associated with the controlling of

production systems as a stochastic-dynamic decision making problem for multiple

machines with intermediate products, and compare it to the classic Stochastic

Economic Lot Scheduling Problem.

To address the complexity optimizing control process of systems facing

uncertain demands, system dynamics and large changeover time, we first proposed

an adjusted (s, S) policy, and optimize it through the use of a simulation model.

Also, two advanced Approximate Dynamic Programming (ADP) methods are

proposed to handle the “curse of dimensionality”, thus helping the system to make

decisions at particular states. One of the ADP methods is based on a set of linear

regression models to approximate the value function of the state. The other ADP

method is based on an Artificial Neural Network model which is designed to capture

the features of this problem and also embed the adjusted (s, S) policy.

The proposed methods are tested on a small numerical example and also

applied to an assembly line for dishwashers which requires multiple types of wire

racks that must be fabricated and coated at different work centers before supplying

vi



the assembly lines. The near optimal production and inventory control policies are

developed through the proposed methods. These proposed methods, especially the

ADP methods, can be extended to any similar production system, or solve similar

problems in other fields.

vii



TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS iii

ABSTRACT v

LIST OF TABLES xii

LIST OF FIGURES xiii

CHAPTER

I INTRODUCTION 1

I.A Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

I.B Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

I.C Dissertation Organization . . . . . . . . . . . . . . . . . . . . . 5

II PROBLEM STATEMENT 7

II.A Stochastic Economic Lot Scheduling Problem . . . . . . . . . . 8

II.A.1 General Description . . . . . . . . . . . . . . . . . . . . . 8

II.A.2 Complexity of SELSP . . . . . . . . . . . . . . . . . . . . 9

II.A.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

II.B Multiple Machines with Intermediate Products . . . . . . . . . 12

II.B.1 GE Production System . . . . . . . . . . . . . . . . . . . 12

viii



II.B.2 Generalization . . . . . . . . . . . . . . . . . . . . . . . . 15

II.B.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 18

III LITERATURE REVIEW 20

III.ASequence-cycle method . . . . . . . . . . . . . . . . . . . . . . . 21

III.BBase-stock method . . . . . . . . . . . . . . . . . . . . . . . . . 23

III.CCombination of Sequence-cycle and Base-stock . . . . . . . . . . 25

IV METHODOLOGY 30

IV.A Introduction of Approximate Dynamic Programming . . . . . . 30

IV.A.1 ADP Formulation and Algorithm . . . . . . . . . . . . . 32

IV.A.2 Elements in ADP . . . . . . . . . . . . . . . . . . . . . . 36

IV.A.3 Perspectives of ADP . . . . . . . . . . . . . . . . . . . . 37

IV.B Policies in ADP . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

IV.CValue Function Approximation Scheme . . . . . . . . . . . . . . 42

IV.C.1 Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . 43

IV.C.2 Parametric Models . . . . . . . . . . . . . . . . . . . . . 44

IV.C.3 Non-parametric Models . . . . . . . . . . . . . . . . . . . 47

IV.DA Simple Example for ADP(Gosavi, 2009) . . . . . . . . . . . . 48

V MODEL FORMULATION 51

V.A Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

V.B Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

V.B.1 State S and Action a . . . . . . . . . . . . . . . . . . . . 53

ix



V.B.2 Demand Arrivals . . . . . . . . . . . . . . . . . . . . . . 55

V.B.3 Cost Function . . . . . . . . . . . . . . . . . . . . . . . . 56

VI CONTROL POLICIES AND ALGORITHMS 58

VI.AOptimization via Simulation by Adjusted (s, S) Policy . . . . . 58

VI.A.1 Optimization via Simulation . . . . . . . . . . . . . . . . 58

VI.A.2 Adjusted (s, S) Inventory Control Policy . . . . . . . . . 59

VI.B Linear Approximation with Stochastic Gradient Search . . . . . 62

VI.B.1 Linear Regression with Basis function . . . . . . . . . . . 62

VI.B.2 Linear Regression Approximation Scheme . . . . . . . . . 64

VI.B.3 Stochastic Gradient Search . . . . . . . . . . . . . . . . . 65

VI.B.4 ADP Algorithm: Stochastic Gradient Search by Approxi-

mate Value Iteration . . . . . . . . . . . . . . . . . . . . 67

VI.CArtificial Neural Network with Temporal Difference Learning . . 70

VI.C.1 Artificial Neural Network Model . . . . . . . . . . . . . . 70

VI.C.2 ANN Approximation Scheme . . . . . . . . . . . . . . . . 72

VI.C.3 Temporal Difference Learning . . . . . . . . . . . . . . . 77

VI.C.4 ADP Algorithm: Artificial Neural Network by Temporal-

Difference Learning . . . . . . . . . . . . . . . . . . . . . 79

VII NUMERICAL EXAMPLE 80

VII.A Example Description . . . . . . . . . . . . . . . . . . . . . . . 80

VII.B Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

x



VIII GE PROBLEM SOLUTION 89

VIII.A Problem Description . . . . . . . . . . . . . . . . . . . . . . . 89

VIII.B Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

IX SUMMARY AND FUTURE RESEARCH 97

IX.ASummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

IX.B Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . 99

REFERENCES 101

CURRICULUM VITAE 111

xi



LIST OF TABLES

TABLE Page

1 Rack Model or Color at each Work Center. . . . . . . . . . . . . . . . 13

2 13 Types of Coated Rack. . . . . . . . . . . . . . . . . . . . . . . . . 14

3 An Overview of the Classification for Literature. . . . . . . . . . . . . 29

4 Table of Notations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Parameters for Finished Product. . . . . . . . . . . . . . . . . . . . . 81

6 Parameters for Intermediate Product. . . . . . . . . . . . . . . . . . . 81

7 Parameters for Machine. . . . . . . . . . . . . . . . . . . . . . . . . . 81

8 Measures of (s, S) and ANN for 2-2-2 Example. . . . . . . . . . . . . 84

9 Parameters for Finished Product. . . . . . . . . . . . . . . . . . . . . 90

10 Parameters for Intermediate Product. . . . . . . . . . . . . . . . . . . 91

11 Parameters for Machine. . . . . . . . . . . . . . . . . . . . . . . . . . 91

12 Optimal (s, S) policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

13 Measures of (s, S) and ANN for Real Case. . . . . . . . . . . . . . . . 95

xii



LIST OF FIGURES

FIGURE Page

1 The General System of the Stochastic Lot Scheduling Problem. . . . 8

2 Production Process and Facilities Layout. . . . . . . . . . . . . . . . . 12

3 The Generalization of the GE System . . . . . . . . . . . . . . . . . . 17

4 A Basic ADP Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Support Vectors Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Two-State MDP with (x, y, z) on Each Arc Denoting the Action x,

Transition Probability y, and Immediate Reward z Associated with

the Transition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7 The (s, S) policy with trigger variable. . . . . . . . . . . . . . . . . . 62

8 Stochastic Gradient Search by Approximate Value Iteration. . . . . . 69

9 A Basic Artificial Neural Network Model (Kantardzic, 2011) . . . . . 70

10 A Complex Architecture of an Artificial Neural Network (Kantardzic,

2011) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

11 Mechanism of ANN Model. . . . . . . . . . . . . . . . . . . . . . . . . 72

12 ANN Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

13 ANN Updating Procedure. . . . . . . . . . . . . . . . . . . . . . . . . 76

14 Artificial Neural Network by TD Learning Algorithm. . . . . . . . . . 79

xiii



15 2-2-2 example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

16 Comparing the Convergences of Average Cost for 2-2-2 Example. . . 85

17 Learning Difference for Linear Model and ADP-ANN. . . . . . . . . . 88

18 Comparing the Convergences of Average Cost for (s, S) Policy and

ADP-ANN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

19 Learning Difference for Linear Model and ADP-ANN. . . . . . . . . . 96

xiv



CHAPTER I

INTRODUCTION

I.A Background

The basic focus of most organizations is to provide goods and services or

more generally to fulfill the needs of customers, and meanwhile lower the costs of

these goods and services to enhance the competitive strength of the company. This

is accomplished through the use of a production system, which can be defined as the

set of resources and procedures involved in converting raw material into products

and delivering them to customers (Askin and Goldberg, 2002). An enterprise which

provides better products at lower cost than their competitors can make more profit

than these competitors. One approach for reducing production cost involves

improving the control of the production system.

Inventory cost always occupies a substantial portion of the manufacturing

cost, often 20% or more (Askin and Goldberg, 2002). Hence, the development of an

optimal control policy would be an overall consideration of the interactions between

the elements in the system, rather than only considering the reduction of the energy

cost, machine idle time or the inventory level independently.

Production systems are becoming increasingly complex, as a result of the
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various types of systems (e.g., parallel, rework, and JIT structures) in existence and

the dynamics of their operations (e.g., involving machine breakdowns and

changeovers). These complexities make such systems extremely difficult to design

and operate. Although researchers have attempted to formulate and analyze these

complex production systems via analytical models, it is rather difficult to capture

the dynamics and uncertainties with these analytic models and analyze the

corresponding systems accurately.

Flexibility of machines or work stations is one of the important

characteristics in modern manufacturing systems. Investing in a machine which is

flexible to produce more than one type of product or for multiple processes usually

will reduce cost. Moreover, the smaller batches of various product types not only

meets the increasing need for current customers, but could also reduce the inventory

cost considerably. However, the significant changeover times between different kinds

of products would always make a optimal control scheme difficult to develop for the

production system.

Many companies have changed their production control strategies from a

“push” strategy (e.g., MRP, MRP-II, and ERP) to a “pull” (e.g., Kanban and

CONWIP). Compared to the “push” strategies, the “pull” strategies maintain lower

work-in-process (WIP) inventory levels in the system, thus requiring less space for

accommodating fluctuation and minimizing congestion. Although the “pull”

strategy can significantly reduce the cost waste on inventory, the uncertain demands

of customers make the inventory control of modern manufacturing systems much

2



more complicated. The managers will need some refined policies to better control

the production systems and to respond to customers’ demands faster and more

precisely.

The stochastic economic lot scheduling problem, (SELSP), is a dynamic

production problem involving risk and uncertainty. The SELSP deals with the

make-to-stock production of multiple standardized products on a single machine

with limited capacity under random demands, possibly random setup times and

possibly random production times (Winands et al., 2010). Even the deterministic

economic lot scheduling problem has been proven to be NP-hard, and due to the

complexity and lack of an analytical method, the research on the SELSP started

relatively recently (No research found in the literature mentioned it before Winands

et al. 2010). However, there are many production systems with multiple machines

producing multiple products which have problems similar to the SELSP. Finding an

optimal or near-optimal policy for these systems would be more difficult than

solving the typical SELSP.

I.B Motivation

To develop a method to find optimal actions to control a dynamical system

with numerous states and stochastic aspects is an interesting topic not only in the

area of production, but also in the areas of finance, transportation, energy, medical,

etc. We might call this kind of problem as a stochastic-dynamic decision problem.

In stochastic-dynamic decision problems, we need to make a series of decisions over

3



multiple periods facing some level of uncertainty. Normally, these problems can be

modeled as Markov Decision Processes (MDPs). However, when the space of states,

actions and/or outcomes becomes large, the difficulty involved in solving these

problems increases dramatically. This situation is known to be the “three curses of

dimensionality”.

No doubt, the classic SELSP suffers from the three curses of dimensionality

even for a small problem with only a few product types. (One needs to deal with

the huge space of states which arises from the combination of machine status and

inventory level of each product), not mention the fact that production system has

multiple machines and product types.

To break down the notorious three curses of dimensionality, a method called

approximate dynamic programming (ADP) has been studied by several scholars.

ADP arises from computer science, especially the realm of artificial intelligence

(Powell, 2011). Compared to the “backward” strategy of solving formal

deterministic dynamic programming problems, ADP steps forward and uses

iterative algorithms to estimate a value function, then finally solve the problem

which is restricted by the random environment.

Approximate dynamic programming is emerging as a powerful tool for certain

classes of multistage stochastic, dynamic problems that arise in operations research.

It has been applied to a wide range of problems spanning complex financial

management problems, dynamic routing and scheduling, machine scheduling, energy

management, health resource management, and large-scale fleet management

4



problems. It offers a modeling framework that is extremely flexible, making it

possible to combine the strengths of simulation with the intelligence of optimization

(Powell, 2008). ADP does seem to be an attractive methodology for generating a

good control policy for a complex production system.

I.C Dissertation Organization

The dissertation is organized as follows:

Chapeter II first describes the stochastic economic lot scheduling problem

(SELSP). Then the multiple machines with intermediate products problem is

introduced with an actual case from General Electric’s dishwasher production

system. The complexity of the problem is also discussed in chapter II. Chapter III

reviews the literature of classic methods for solving SELSP or similar problems. The

methodology of ADP is systematically introduced in chapter IV. A basic algorithm

of ADP is presented in section IV.A.1. Several value function approximation

schemes are presented in section IV.C and an simple example is shown in section

IV.D. The notation and assumptions are introduced in chapter V, with the

formulation of a general model for the problem discussed in section II.B. Three

methods are proposed in chapter VI: section VI.A discusses a method to solve the

problem by using optimization via simulation through an adjusted (s, S) policy;

section VI.B develops an approximate dynamic programming method by using a set

of linear regression models to approximate the value function of the system; section

VI.C proposes an artificial neural network model to capture the feature of the

5



problem and also combines the adjusted (s, S) policy to evaluate the state value,

thus controlling the production system. Two approximate dynamic programming

algorithms are developed in section VI.B.4 and in section VI.C.4 to perform the

learning process for the two approximation schemes discussed in section VI.B.1 and

in section VI.C.2. An simple numerical example is set up and the methods proposed

are studied in chapter VII. A real case arising from General Electric’s dishwasher

production system is solved in chapter VIII. Chapter IX discusses the contribution

and conclusions of this research, along with future research directions.

6



CHAPTER II

PROBLEM STATEMENT

For most production systems, the complexity associated with the problem of

developing the control and inventory policy is related to the dynamics and

uncertainties in the systems. For instance, a machine or production line may need

significant time to switch from producing one type of product to another, and the

demand of the product may be uncertain; moreover, machines in the system might

fail in a random fashion. Although the manufacturing environment may differ from

one industry to another, one needs to deal with the problem of “when to produce

how many/much of what” in order to guarantee a properly working production

system. However, the dynamics and uncertainties associated with the system make

a good answer to the problem very difficult to find. Many technologies have been

developed to find a good control and inventory policies for production systems

under different manufacturing environments. This research deals with the problem

of how to control a production system in order to produce multiple products with

significant machine setup times under a stochastic environment.

7



II.A Stochastic Economic Lot Scheduling Problem

II.A.1 General Description

The stochastic economic lot scheduling problem (SELSP) is the problem of

scheduling production of multiple products, each with random demand, in a single

facility that has limited production capacity and significant changeover times

between products (Sox et al., 1999). Figure 1 shows a general configuration of a

production system associated with the SELSP.

Machine 

A 

Machine 

B 

Product 1 

…… …… 

Product 2 

Product 3 

Product 4 

Figure 1. The General System of the Stochastic Lot Scheduling Problem.

The SELSP is one of the classic problems in production planning research.

Applications include glass and paper production, injection molding, metal stamping,

semi-continuous chemical processes, and bulk production of consumer products such

as detergents and beers, etc. Any production process with significant changeover

times between products benefits from an effective scheduling system.
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II.A.2 Complexity of SELSP

The deterministic version of economic lot scheduling problem (ELSP) has

received much attention in the literature in recent decades. The ELSP has been

proven to be NP-hard (Hsu, 1983). Two types of approaches have been developed to

solve the ELSP: an exact type of approach with optimal solutions for restricted

problems and a heuristic approach with good solutions for the general problem

(Winands et al., 2010). Both approaches derive a rigid cyclic schedule, which will be

strictly followed until the end of the planning horizon (Gascon et al., 1994).

However, Gallego (1990) has argued that the solution methods of the ELSP can

only be applied in an ideal production environment, where machines are perfectly

reliable, setup and production rates are constant, raw material and tools are always

available, demand is known and initial inventories are provided. Due to the severe

production environment in real manufacturing systems, the deterministic problem

should be extended to a stochastic version, the SELSP.

Compared with the deterministic ELSP, the stochastic nature of demand

added in SELSP makes this problem much more complex. In the SELSP, the

production capacity is limited, and it need to be allocated among the products;

however, the randomness of the demands means that the allocation of the capacity

must be dynamic. The dynamic allocation of production capacity is dependent on

the inventory levels of the various products in the system, since they share the same

inventory location. The various types of products compete for production capacity,

9



thus a much higher safety stock level would be needed to maintain a specific service

level above what would be required using a dedicated production facility for each

product (Sox et al., 1999).

Winands et al. (2010) have pointed out that the presence of change-over

times in combination with the stochastic environment are the key complicating

factors of the SELSP. Due to this unavoidable change-over time, there is a

significant delay when the system switches from producing one product to another.

If the system continues to spend too much time on the production of one product to

replenish its inventory level, the depletion of inventory for other products would

leave the system in a potentially less favorable state. The drawback of the situation

is: that to respond to the random demand in the system, one needs to shorten the

cycle length for each product; thus frequent production opportunities for the various

products. However, shortening the production cycle length would lead the system to

perform changeovers too frequently, which would waste a lot time, or even make the

system state blocked in change-over so that it can not fulfill the demand. Therefore,

to develop a valid control policy for the SELSP, both production and inventory

must be considered simultaneously and the decisions must be effective for a long

time horizons.

II.A.3 Summary

The system associated with an SELSP can be summarized as follow Winands

et al. (2010):
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• A production system with a single machine which can produce multiple

products, but only one at a time; the raw material is unlimited, while the

stock space is limited.

• Demands for the various products arrive according to stationary and mutually

independent stochastic processes. Demand that cannot be satisfied directly

from stock is either lost or backlogged until the product becomes available

after production.

• The individual products are produced in a make-to-stock fashion with possibly

stochastic production times. A setup time (that is possibly stochastic as well)

occurs before the start of the production of a product.

Due to the desire for efficient control of the production process, production

and setup times are often (almost) deterministic. The setups are, furthermore,

independent of the demand processes, production times and other setup times. The

main objective of the SELSP is to minimize the total expected costs per unit of

time over a planning horizon, which can either be finite or infinite. Besides the total

costs, other quantities of interest could, for example, be the fraction of time that is

lost due to setups, the fill rate (the fraction of demand satisfied directly from stock),

the average stock level or the average waiting time of customers Winands et al.

(2010). In the SELSP, a production policy should be able to decide whether to

continue to produce the current product, whether to switch to another product or

whether to idle the machine.
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II.B Multiple Machines with Intermediate Products

II.B.1 GE Production System

General Electric’s Appliance Park, located in Louisville, Kentucky, produces

various appliances, including dishwashers. The dishwasher production system has

three fabrication centers: 1) a center (denoted as FL) to produce three types of

lower dishwasher racks (denoted as types A, B, and BXL), 2) a center (denoted as

FU1) to produce four types of upper dishwasher racks (denoted as A1, B1, B2, B3),

and 3) a center (denoted as FU2) to produce two additional types of upper racks

(denoted as C2 and C4); the system also contains two coating centers: one for nylon

coating (denoted as Nylon) which has three colors (Color A, Color B and Color C),

and one for PVC coating (denoted as PVC) which only has one color (Color D).

The five work centers (FL, FU1, FU2, Nylon and PVC) constitute the production

system to produce the wire racks which supply dishwasher assembly lines. The

facilities layout and production process are illustrated in Figure 2.

 

                                       

 

 

 

 

F 

 

FU2 

WIP Buffer 

FU1 

Nylon 

Coating 

Conveyor A PVC Coating 
Conveyor B 

Storage 

Assembly 

Line Pull 

Mix 

FL 

Figure 2. Production Process and Facilities Layout.
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This production system has 9 types of WIP racks fabricated separately at the

three fabrication centers (see Table 1). These WIP racks are stored in the WIP

buffer area and conveyor A which can be treated as a buffer between the three

fabrication centers and the two coating centers. Thirteen types of coated racks,

which can be considered as the finished products, are stored in the storage area and

conveyor B serves as a buffer in front of the assembly lines as well. For each type of

coated rack, the arrival of the demand from the assembly lines corresponds to a

Poisson process, and the demand size of each arrival is normal distribution.(see

Table 2).

TABLE 1

Rack Model or Color at each Work Center.

Work Center FL FU1 FU2 PVC Nylon

A A1 C2 Color D Color A

Rack Model or B B1 C4 Color B

Color Types BXL B2 Color C

B3
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TABLE 2

13 Types of Coated Rack.

Fab Center Rack # Model Coating Type Color

1 A Nylon Color A

2 B PVC Color D

FL 3 B Nylon Color A

4 BXL Nylon Color B

5 BXL Nylon Color C

6 A1 Nylon Color A

7 B1 PVC Color D

FU1 8 B2 Nylon Color A

9 B3 Nylon Color B

10 B3 Nylon Color C

11 C2 Nylon Color B

FU2 12 C4 Nylon Color B

13 C4 Nylon Color C

The different models of fabricated racks and the coating colors associated

with the five work centers are summarized in Table 1. The estimated time intervals

for making changeovers from one model or color to another at each work center were

provided by GE.

The current dishwasher wire rack production policy in use at GE is a “push”

strategy. The multiple types of racks are produced and a changeover is performed

according to a production plan developed daily by the production manager. The

fabricated and coated racks are stacked in the WIP buffer, storage areas and the

two conveyors. GE wishes to develop a production control policy which can react to
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and fill the assembly line demand, in order to minimize the number of changeovers

and reduce the inventory levels significantly.

II.B.2 Generalization

Obviously, the problem described in section II.B.1 has many properties

similar to the SELSP:

• It is a make-to-stock production system with multiple products.

• One machine (or work center) can produce different types of products, but

have a significant setup time from product to product.

• Each machine (or work center) can only produce one type of product at a time.

• Demands for products are random.

• The stock space is limited.

However, there are two major differences between the SELSP and the GE

problem:

• There are several machines (or work centers) associated with the GE problem,

instead of single machine in the production system.

• The production process of the final product is two stages divided by the

intermediate components.
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The complexities of adding the two differences will be discussed in section

II.B.3. In summary, the GE problem is a SELSP with multiple machines and

intermediate components. The problem can be generalized by following:

Consider a two-stage production system, each stage have one or more parallel

machines to produce different types of products. In the first stage, the products are

intermediate components (also referred to as intermediate products) which are

produced to stock for wait to be used by the second stage. The second stage will

deplete the stock of intermediate components to produce the finished product to

fulfill the uncertain demands from the customers. All the machines in both of the

two stages can process more than one type of product, but only one type at a time.

The switch from one product to another on a machine would cause to a significant

change-over time. During this changeover time, the machine can not produce

additional items. There are two limited inventory spaces in the production system,

one for the intermediate components, and the other for finished product. The

demands for the finished products arrive according to stationary and mutually

independent stochastic processes, and the demand sizes are random. Demand that

cannot be satisfied directly from stock of the finished products is either lost or

backlogged until the product becomes available after production. Figure 3 gives a

visual depiction of the production system in the problem.
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Figure 3. The Generalization of the GE System

The main objective of this problem is to generate a control policy to

minimize the total expected costs per unit of time over a planning horizon.

Moreover, one may also be interested in the inventory levels for both of the

intermediate components and the finished products, the percentage of unmet

demands for the finished products, the number of change-overs, etc.

The GE problem is very common in many industries. For example, a

chemical company may have a system consisting of several reaction vessels to

produce different types of product, but if they want to change the product type for

one vessel, the time to rinse is unavoidable. An automobile plant may have several

assembly lines to supply their painting workshop; the different models produced in

these assembly lines combined with the color in the painting workshop results in a

variety of unique products; however, the changeover and preparation time for such

industry is significant. Consequently, there would be much potential benefit if a
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good general solution method could be developed for this kind of problem.

II.B.3 Complexity

Compared with classic SELSP, the GE problem is much more complex, since

it has more than one machine and intermediate components. To generate the

control policy for the production system, one needs to consider the number of

possible states in which the system could exist. The production status of the system

is described by the combination of discrete machine states. If one more machine is

added in the system, the number of the production states will definitely increase

exponentially. In the GE problem, besides the inventory pool for the finished

product, another inventory pool is required for the intermediate components. How

to allocate the capacity among the intermediate components is a new challenge for

this problem. The intermediate components divide the production process into two

stages, and they are not only the finished product for the first stage but also the

required materials for the next stages. Therefore, the inventory levels of the

intermediate components can not become negative and the unsatisfied demands of

intermediate components can neither be considered as lost sale nor back-order;

moreover, the lack of intermediate components would affect the production for the

next stage which is producing the finished products to fulfill the customer demands.

The existence of intermediate components not only doubles the effort needed for

allocating the production capacity, but also increases the overall dynamic

complexity of the production system.
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To generate a good control policy for the GE problem, besides dealing with

the balance of shorter production cycles and the frequencies of change-overs, one

also needs to consider the interactions of the machines in the systems, as well as the

dynamics of the inventory levels for the intermediate components. Thus, the

production control policy needs to be able to control every single machine on an

overall view to the system.
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CHAPTER III

LITERATURE REVIEW

Chapter III will focus on surveying the classic literature related to this

research. We will start with Stochastic Economic Lot Scheduling Problem.

The earliest survey paper on the SELSP appeared in Sox et al. (1999). In

this paper, Sox et al. classified the literature of the SELSP based on the modeling

methods introduced by academicians. Following the publication of the paper by Sox

et al. (1999), a large number of papers related to the SELSP appeared in the open

literature. For example, another survey paper was published by Winands et al.

(2010), which introduced the new literature published during 1999-2010 and

reclassified this literature based on the critical elements of production planning as

seen by practitioners. More specifically, Winands et al. (2010) addressed the

literature associated with the solution methods for the problems similar to SELSP

but even more complex. From historical literature, those methods can be classified

by the three different strategies for developing the control policy: sequence-cycle,

base-stock and combination of sequence-cycle and base-stock.

20



III.A Sequence-cycle method

The sequence associated with a production control policy can be determined

in a totally dynamic fashion.

Karmarkar and Yoo (1994) studied this kind of problems under the

assumption of deterministic production and setup times with unmet demands

considered to be “backlogged”. They formulate the problem using a discrete-time

stochastic dynamic programming model over a finite horizon under the assumption

of a time-varying stochastic demand. In their paper, the problem was solved by

Lagrangian relaxations with lower and upper bounds are provided for the original

problem.

Qiu and Loulou (1995) modeled the SELSP as a continuous-time

semi-Markov decision problem with an infinite time horizon. The current status of

the machine and the inventory levels of the individual products constituted the

state space. The demand for the products was assumed to be distributed according

to a Poisson process. Qiu and Loulou solved their problem by using the successive

approximations technique, in which the near-optimal policy can be extended and

derived on a truncated finite state space.

Sox and Muckstadt (1997) modeled the SELSP as a finite-horizon

discrete-time stochastic optimization problem under the assumption of overtime

being available. A Lagrangian decomposition algorithm was developed to find an

optimal or near-optimal solution for their problem.
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The methods applied in the three papers of Karmarkar and Yoo (1994), Qiu

and Loulou (1995), and Sox and Muckstadt (1997) were proven to be not very

suitable for large-scale problems or more complex systems. Due to the curse of

dimensionality, the solution procedure developed by Qiu and Loulou (1995) was

found to be inefficient and inaccurate for large problems. Sox and Muckstadt (1997)

assumed that a setup for a product is incurred even if the same product was

produced in the preceding period. Extensive computational time would be required

if the assumption were relaxed.

There is much more literature addressing this kind of problem by using the

strategy of fixed-sequence rather than by using a totally dynamic one.

As early as 1988-1991, a dynamic cycle lengths heuristic was developed by

Leachman et al. through (Leachman and Gascon, 1988) and (Leachman et al.,

1991). They solved the uncertainties in the problem via a deterministic approach

with the use of estimates. At first, they used the moving averages of the demand

forecast to calculate the target cycle lengths in each review period. Then, the

operational cycle lengths were determined by proportionally reducing the

production quantities of all products in a cycle, while maintaining the fixed

production sequence. Finally, when all products have sufficient stock, the idle

periods are inserted in cycle if possible.

Fransoo (1992) studied a model similar to those in Leachman and Gascon

(1988) and Leachman et al. (1991), and found that if one expects a product to be

consumed as much as possible in the following cycle, the dynamic cycle lengths
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heuristic would reduce the cycle length for this product in the current cycle, which

would lead to an increase in the relative setup frequency and a decrease in the

capacity available for production; thus, the future demand would be even more

difficult to fulfill. Also, to improve on the heuristic proposed by Leachman et al.

(1991), Fransoo developed an alternative heuristic which results in the cycle lengths

becoming more stable.

Erkip et al. (2000) proposed a fixed cycle strategy, which fixed not only the

sequence and the total cycle length, but also the available capacity for each

individual product. Their strategy is modeled as a quasi−birth−death process,

which can be solved numerically by a matrix-analytic method.

From 2000 to 2001, Markowitz et al. developed a solution method for SELSP

motivated by the well-known heavy-traffic limit theorems in (Markowitz et al.,

2000) and (Markowitz and Wein, 2001). In their model, a time-scale decomposition

is produced, and the SELSP can be approximated by a diffusion control problem.

Other recent work based on heavy-traffic analysis is by Bruin (2007), who presents a

generating function approach for the fixed cycle strategy under general traffic

settings.

III.B Base-stock method

The base-stock production strategies for these kinds of problems are normally

developed through standard single product inventory control strategies such as (s,Q)

or (s,S) policies.
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Zipkin (1986) developed an (s, Q) policy to solve a model with Poisson

demand processes and generally distributed setup and production times. Zipkin

made the assumption that the production time of a batch is (nearly) independent of

the size of this batch in this paper. In the developed policies, the batches for the

various products are produced in a first come first served (FCFS) order. In a recent

work, Winands et al. (2009) extended Zipkin’s model (Zipkin, 1986) to consider a

general (renewal) arrival process for demand, multiple parallel lines and various

service measures. Also, the production times did not have to be independent of the

batch sizes.

Beginning in 1994, Altiok and Shiue published a series of papers (see Altiok

and Shiue, 1994, 1995 and 2000a) that implement an (s, S) policy to solve these

kinds of problems. For example, Altiok and Shiue (1994) developed two priority

rules to determine the sequence of product production when more than one of the

product’s inventory levels goes below their respective reorder points. The first one is

the general priority rule: the machine will start to produce the highest priority

product with inventory position below its reorder point, when the inventory position

of the product currently set up reaches its base-stock level. The second priority rule

is a cyclical one, since it goes into effect when the products’ inventory levels go

below their reorder points in a cyclical manner. In 1994, Altiok and Shiue analyzed

the case of three products, and extended their model to the N products in Altiok

and Shiue (2000a). In 1995, Altiok and Shiue analyzed a lost sales case under the

additional assumptions of phase-type distributed production times and
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exponentially distributed setup times.

Paternina-Arboleda and Das (2005) applied reinforcement learning with

optimization via simulation via an approach to analyze a base stock policy: if the

product currently being produced reaches its base-stock level, the machine is

allowed to switch to produce another product or to remain idle until the next

demand arrival period when any new action might need to be performed. However,

the major drawback of Paternina-Arboleda and Das’s approach is that the

developed policy is very difficult to implement, since some data mining classification

techniques need to be applied when looking for a (near) optimal policy.

Brander et al. developed an approximate method to determine the safety

stocks and base-stock levels under given fixed production sequences (see Brander

et al. 2005, and Brander and Forsberg 2006). To determine whether to idle the

machine or to produce the next item in the sequence, they developed a control

model. Their work is implemented through the use of simulation results to estimate

the lot-size in a stochastic environment. It is also very interesting to mention that

their works (Brander et al., 2005) showed that the lot-sizes determination decisions

is of less importance than the sequencing decision.

III.C Combination of Sequence-cycle and Base-stock

One may want to utilize the advantages associated with both of the strategies

of sequence-cycle and base-stock. Therefore, some literature which combines these

strategies is reviewed in this section.
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Frequently, the policy would be divided into two levels. Bourland and Yano

(1994) developed a two-level hierarchical policy for the SELSP. Their strategy

assumes that for each individual product a reorder point is given. In the policy, the

upper level sub-policy determines the cyclic schedule, cycle length, stock levels and

idle time by ignoring the uncertainty associated with the demand. The lower level is

a control level that defines the control rule to follow the targets set by the upper

level. In another paper, Bourland (1994) let the production quantity be determined

by a match-up lot-sizing policy; such a match-up policy schedules production of a

product so that the stock level at the planned completion time - and not necessarily

at the actual completion time - of the production run is equal to the base-stock

level. Bourland (1994) also mentioned that such a match-up policy follows the

target cycles more effectively as compared to a standard base-stock policy.

Wagner and Smits also proposed a two-level policy to solve such kind of

problems in 2004. The upper level for the policy will decide the optimal fixed cycle

schedule by considering the expected setup and holding costs. The lower level will

derive a periodic (R,S) policy, where the optimal base-stock levels are obtained by

an algorithm developed by Smits et al. (2004).

Federgruen and Katalan computed the optimal base-stock levels by solving

standard newsboy problems and constructing the optimal production sequence by

approximation (see Federgruen and Katalan 1996b, Federgruen and Katalan 1996a,

and Federgruen and Katalan 1998). In their research, they showed that total

average costs only depend on the total idle time inserted in a cycle and not on the
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complete vector of idle times.

Grasman et al. (2008) extend Federgruen and Katalan’s model (Federgruen

and Katalan, 1996b) by adding random yields for the cases of backlogging and lost

sales. To obtain the optimal base-stock levels, they use the similar newsboy

equations in case of backlogging, and a heuristic for approximation in case of lost

sales.

Vaughan (2003) considered correlated demand, and used a base-stock

strategy and a target cycle length to develop the policy. The policy will allow the

machine to be idle when a cycle is ended within the target length, or else, the

machine will start next cycle immediately. In this research, Vaughan point out that

demand correlation will increase the variance of the cycle length and also cause the

correlation between demand per period and the cycle length. This will lead to a

higher variance of the total demand during a cycle and require larger safety stock

levels.

As compared to the two-level policy, Gallego (1990) proposed a three-level

production control policy. The production sequence, the production quantities and

the idle times are constructed at the first level by a deterministic approach. The

uncertainties in the problem are handled at the second level by a policy which can

recover the target schedule at minimal excess over average costs after a random

event happens. The safety stocks are added at the third level which ensure the

efficient use of the control policy. The method of developing the base-stock recovery

policy was introduced in Gallego (1994).
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It should be mentioned that an approximate decomposition approach is

normally applied to such problems. Krieg and Kuhn decomposed a multi-product

Kanban system (which is equivalent to a SELSP with lost sales) into multiple single

product single-server vacation models. Thus, the individual subsystems can be

evaluated numerically by an approximate continuous-time Markov chain. (Krieg

and Kuhn 2002, and Krieg and Kuhn 2004)

Recently, Eisenstein (2005) extended the base-stock recovery policy

developed by Gallego (1994). The new policy is more flexible and able to adjust the

amount of idle time during recovery in response to the randomness.

Vuuren and Winands (2007) proposed an approximate decomposition

approach to evaluate the quantity-limited lot-sizing policies. The quantity-limited

lot-sizing policy is a policy which combines the sequence-cycle and base-stock

strategies, that is, when the machine starts production of a product, it will continue

production until either the base-stock level has been reached or a maximum number

of items has been produced.

A classification scheme for the literature described in chapter III is shown in

Table 3:
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CHAPTER IV

METHODOLOGY

IV.A Introduction of Approximate Dynamic Programming

Problems involving optimization over time, for example, the fleet scheduling,

inventory management, portfolios investment, and asset selling problems, all involve

making decisions during a time horizon based on the information obtained and the

state status in each period. They are known as sequential decision problems

(Powell, 2011). Many of them can be solved via dynamic programming using a

backward recursion method. However, there are a large number of problems which

suffer the curses of dimensionality and cannot be solved by the backward recursion

method. In short, the curses of dimensionality arise when the dimensionality of the

state, outcome or action space increases, which causes the volume of the space to

increase very rapidly, which in turn causes the problem associated with the

evaluation of the system under all the possible situations to be completely

intractable. Approximate dynamic programming has been developed recently as a

powerful tool to solve those kinds of problems.

Approximate dynamic programming arose as a solution technique for

sequential decision problems involving uncertainty. Actually, the problem for
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approximate dynamic programming was found to be independent from the problems

for formal dynamic programming. Typically, the solution method of these problems

can be referred to control theory, which estimates the parameters that control the

system under a random environment. The development of approximate dynamic

programming involved contributions from three domains: economics, operations

research and computer science. At the very beginning, control theory was adopted

by economists for problems involving control activities at a very basic level. The

theory of controlling stochastic problems was mostly developed through the

application of the theory of Markov Decision processes as associated with Bellman’s

work (Sutton and Barto, 1998). Computer scientists contributed their work by

developing an algorithm. In the realm of artificial intelligence, it was found that the

algorithm for reinforcement learning, an area of machine learning, is very suitable

for solving approximate dynamic programming problems.

The theory of approximate dynamic programming was developed through the

work of Bellman and Dreyfus since 1959, and the core theory of Markov decision

processes resulted from Ronald A. Howard’s work (Howard, 1960). The technique of

approximate dynamic programming originated with Samuel’s work (Samuel, 1959),

within the artificial intelligence community. However, the benchmark where the

technology of approximate dynamic programming was developed should be referred

to the effort that combined control theory and neural network with the artificial

intelligence in the 1990’s, such as reinforcement learning and neuro-dynamic

programming. Several books discussed these techniques in detail. For example,
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Bertsekas and Tsitsiklis (1996), and Sutton and Barto (1998), as well as the edited

volumes of Miller et al. (1990), and White and Sofge (1992). Two papers (Tsitsiklis

1994, and Jaakkola et al. 1994) merged dynamic programming and stochastic

approximation theory, which enabled uncertainty to be formulated in dynamic

programming problems. Later on, a series of papers (Godfrey and Powell. 2001,

Papadaki and Powell 2003, Powell and Roy 2004, and Powell 2007) merged

approximate dynamic programming with mathematical programming, which

allowed approximate dynamic programming problems to be solved efficiently.

The general idea of approximate dynamic programming is based on an

algorithmic strategy that steps forward through time instead of backwards through

time as is typically done in the recursion method associated with formal dynamic

programming problems. This “forward through time approach” will be introduced

in detail in section IV.A.1.

IV.A.1 ADP Formulation and Algorithm

For a stochastic dynamic programming problem which has a planning horizon

of T periods, the contribution for each period t is Ct. Now let Aπ
t (St) be a function

that determines the decision given the information in the state variable St, where π

is the policy chosen from the set of policies Π. The objective function for the

stochastic optimization problem can be written as equation (1):

max
π

Eπ{
T∑
t=0

γtCπ
t (St, A

π
t (St))} (1)
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Note that γt is the discount factor for period t and E is the expectation

associate with policy π in equation (1).

For many similar problems, solving equation (1) “as a single problem” might

be computational intractable, however, it can be decomposed and solved by

estimating the value associated with the system being in state St, which is

represented by Vt(St).

Let at be the decision being made at period t, and let SM be a transition

function which can determine the evolution of the system from the current state St

to the next state St+1, associated with the decision at and the exogenous

information Wt+1 available between period t and t+ 1 as shown in equation (2):

St+1 = SM(St, at,Wt+1) (2)

With the above transition function, it is possible to evaluate the value of

being in state St, if decision at is taken. Thus, the best decision a∗t (St) for state St

can be found by equation (3).

a∗t (St) = argmax
at∈At

(Ct(St, at) + γVt+1(St+1)) (3)

Then, solving the problem is associated with estimating the value function

(Bellman’s Equation, Powell, 2008) of equation (4)

Vt(St) = max
at∈At

(Ct(St, at) + γVt+1(St+1(St, at))) (4)
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As mentioned earlier, compared to the backward recursion strategy for the

typical dynamic programming, approximate dynamic programming is based on a

“step forward” algorithmic strategy. The value function Vt(St) is estimated by going

forward and following the sample path that is generated to simulate the evolution

process of the system. There are many variations of approximate dynamic

programming algorithms. Figure 4 only describes a basic procedure for the ADP

algorithm.
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Step 0. Initialization

Step 0a. Initialize V 0
t , t ∈ T .

Step 0b. Set n = 1.

Step 0c. Initialize S1
0 .

Step 1. Choose a sample path ωn.

Step 2. Do for t = 0, 1, 2, ..., T .

Step 2a. Solve:

V̂t = max
at∈An

t

(Ct(St, at) + γV n−1
t (SM,a(Sn

t , at))) (5)

and let ant be the value of at that solves (5).

Step 2b. If t > 0, update the value function:

V̄ n
t−1 ← UV (V̄ n−1

t−1 , Sx,n
t−1, V̂t). (6)

Step 2c. Update the states:

Sn
t+1 = SM(Sn

t , a
n
t ,Wt+1(ω

n)). (7)

Step 3. Increment n. If n ≤ N go to Step 1.

Step 4. Return the value functions (V̄ N
t )Tt=1.

Figure 4. A Basic ADP Algorithm
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IV.A.2 Elements in ADP

There are five elements to a dynamic programming model, as well as to an

approximate dynamic programming model:

• State Variable. The state variable is the most important quantity in an

approximate dynamic programming model. It captures the current status of

the system. And, it is necessary as input to compute the decision function

value, the transition function value, and the objective function value, and

thus, constructing the value function approximation.

• Decision Variable. Decision variable is generated through the rule, policy,

strategy or function which is used to make the decision under a particular

circumstance. In the Markov decision process, this decision variable is called

an action, and is denoted by a ∈ A. In the optimal control community, this

decision variable is called a control, and is denoted by u ∈ U .

• Exogenous Information Process. The arrival of exogenous information mainly

represents the uncertainty in the system, which is the exogenous factor that

changes the state of the system. How to deal with the exogenous information

processes and make decisions before they arrive is the central challenge of

approximate dynamic programming problem.

• Transition Function. The evolution of the system from current state to the

next state is specified by the transition function, which incorporates the effect
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of the decision and exogenous information to the system.

• Objective Function. In an approximate dynamic programming problem, the

objective function is what to be optimized through developing a better policy.

It is called a contribution function for a maximizing problem and a cost

function for an minimizing problem.

IV.A.3 Perspectives of ADP

Powell (2007) discussed the wide range of promising areas to which

approximate dynamic programming could be applied, including the areas of

transportation, inventory control, finance, energy, military, manufacture and

medical. He also mentioned that approximate dynamic programming is typically

very suitable for solving complex dynamic programming problems which cannot be

handled by the backward recursion method (Powell, 2008) ; finally, Powell

mentioned that there are three main perspectives associated with approximate

dynamic programming:

• Large-scale (deterministic) optimization. Simio et al. (2009), Topaloglu and

Powell (2005) had applied approximate dynamic programming to solve a

large-scale resource allocation problem in transportation. From their research,

ADP was found to be not only a tool to handle the uncertainty, but also a

decomposition strategy that breaks problems with long horizons into a series

of shorter horizon problems.
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• Making simulations intelligent. There are many stochastic, dynamic problems

that are solved using myopic policies to make decisions at the current time

without considering the impact on the future. Approximate dynamic

programming can make the future tractable, thus providing higher quality

decisions and therefore a more intelligent approach. Powell et al. (2012)

combined ADP with a simulation model and solved an energy allocation

problem more intelligently.

• Solving complex dynamic programs. The uncertainties in dynamic programs

always complicate the problem. However, the various algorithms and

approximation strategies belonging to approximate dynamic programming

often provide good solutions to these intractable stochastic dynamic

programming problems. Topaloglu and Powell (2007) coordinated decisions on

pricing with a stochastic dynamic freight carrier system, then solved their

intractable complex dynamic program via ADP and obtained high-quality

solutions.

Many problems involving complex and dynamic production systems are

solved by simulation modeling, since users do not have to formulate a explicit

mathematical model and thus avoid modeling the complexity of dynamics in the

systems. The literature involving the application of approximate dynamic

programming to such problems is relatively rare. There are only two papers which

have applied approximate dynamic programming to the stochastic economic lot size

38



problem. Paternina-Arboleda and Das (2005) applied reinforcement learning with a

simulation to analyze a base stock policy. However, the policy they developed by

the use of an artificial neural-network is very difficult to implement, thus the result

is not readily known. Lhndorf and Minner (2012) modeled the SELSP by

semi-Markov decision processes and solved it by approximate value iterations (AVI)

with gradient search. They also compared the results from ADP to those generated

from a direct policy search via simulation, and found that the classic ADP approach

of AVI and stochastic gradient updates is not competitive for larger problems.

Lhndorf and Minner (2012) pointed out that the SELSP would be a good

benchmark for future research in ADP.

As mentioned in section IV.A.3, ADP is very suitable for solving problems

involving complex and dynamic systems by allowing the simulation to operate a

more intelligent fashion. Although applying a basic approximate value iteration to

SELSP is not very competitive when compared to a policy found by direct search

via simulation as shown in Lhndorf and Minner’s paper (Lhndorf and Minner,

2012), the various classes of approximation schemes and the richness of learning

algorithms in ADP are still worthy to try.

IV.B Policies in ADP

A policy is very essential in an approximate dynamic programming model,

since it defines the rule by which the system makes decisions at a certain state with

available exogenous information.
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Any method for determining an action at a given state can be viewed as a

policy. Thus, the policy might be a simple look-up table, a function or even a

complex algorithmic strategy. There are four categories of policies associated with

approximate dynamic programming:

• Myopic Policies. Myopic policies are the most easily understandable class of

policies. They do not require the use of future information or any forecasting

technique. The decisions are only based on the current status of state St,

which can be represented as equation (8):

AMyopic(St) = argmax
a

C(St, a) (8)

The form of a myopic policy would be any mathematical programming model

which only considers the status of the current state.

• Lookahead Policies. Lookahead policies make decisions by considering the

information over some horizon. These policies commonly solve problems by

using the approximation of future information over a limited horizon to choose

actions. For example, the tree search, roll-out heuristics, and predictive

control are all methods for lookahead policies.

• Policy Function Approximation. Some systems may have the feature that

their processes associated with making decisions can be easily captured by a

function without any embedded optimization problem. An example of this

type of policy would be selling a stock when its price goes over µ. The method
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of developing this kind of function is called a policy function approximation.

To approximate the policy function, the simplest way to generate a look-up

table; the most widely used method is to design a parameterized function to

generalize the policy, like the form of Aπ(St|θ); moreover, the non-parametric

statistical method can be used to fit the function and return the action a, such

as kernel regression.

• Value Function Approximation. Value function approximation is considered

the most powerful tool for solving complex dynamic programming problems.

This approach uses the value function Vt(St) to approximate the system value

of being in a certain state, and thus avoids “the curse of dimensionality”. The

decision can be made through solving the value function as equation (9):

a∗t (St) = argmax
a

(C(St, a) + V̄ (SM,a(St, a))) (9)

Since the part of V̄ (SM,a(St, a)) in equation (9) does not only capture the

current status of the system but also the future information, this

approximation does consider the impact of making a decision now on the

future and has the potential to generate a better solution. There are three

strategies to approximate the value function: look-up table, parametric model

and non-parametric model.

The myopic policies, lookahead policies, policy function approximation and

value function approximation constitute the core tools for solving ADP problems.

However, hybrid strategies can also be generated based on these approaches. For
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example, predictive control can be used with value function approximation, roll-out

heuristics can be associated with policy function approximation, and tree search can

be combined with roll-out heuristics and a look-up table policy.

Since a revising scheme is needed to accurately approximate the value of

being in a state, an exploration versus exploitation issue may arise when applying

certain algorithms to search for an optimal policy. That is: if an policy involves on

exploiting current estimates of downstream values which are thought to be the best

possible decision, it may miss the chance to visit some states where better solutions

exist. Therefore, a randomized policy may need to be used in the algorithm and

works with the other policies (“exploitation” policies). The randomized policies

work by randomly choosing an action rather than following the “exploitation”

policies, thus it can help the algorithm explore more state and action then learn

their values. The most widely used randomized policy is an ϵ-greedy policy. In this

policy, an action a ∈ A will be chosen at random with probability ϵ, and with

probability 1− ϵ it will follow the “exploitation” policies.

IV.C Value Function Approximation Scheme

Value functions can be used to approximate the system value of being in a

state St, thus generating a policy based on the value function V̄t(St) and helping to

make decisions under certain circumstances through equation (10):

a∗t (St) = argmax
at∈At

(Ct(St, at) + γEV̄t+1(St+1)) (10)
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Therefore, value function approximation is considered as the most powerful

tool in approximate dynamic programming. However, the way to develop a good

approximation model and the method to iteratively learn the function is a challenge

for researchers.

In section IV.C, several typical methods for approximating the value function

is introduced. The methodology of learning the function value will be discussed in

chapter VI.

IV.C.1 Aggregation

In the very early stages of research for approximate dynamic programming,

aggregation was used to reduce the size of the state space thus overcoming the

“curse of dimensionality”. The idea was to firstly aggregate the multiple dimensions

in the original problem. After solving the problem on the aggregated level, an

approximate solution will be disaggregated to the original problem. (Powell, 2011)

When aggregation is used to approximate the value function, the objective

function for the problem will become the form of equation (11):

max
at∈A

(Ct(St, at) + γEV̄t+1(G(St+1))) (11)

It can be seen that the original value function V̄t+1(St+1) is replaced by

V̄t+1(G(St+1)) in equation (11), where G(St+1) is an aggregation function that

simplifies the expression of original state St+1 by ignoring the dimensions,

discretizing it, or applying any other method to reduce the state space. This would
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also reduce the number of parameters need to be estimated.

The most widely used aggregation method is hierarchical classification, since

the hierarchical aspect is very natural in common world. For example, a portfolio

problem may need to estimate the values of investing money in the stocks of many

particular companies. It might be a good way to aggregate companies by their

industry segments (e.g., electronic, chemical and service). For each industry, it

could be further aggregated based on whether the company is viewed as domestic or

multinational, and so on.

IV.C.2 Parametric Models

Using aggregation is still a form of look-up table. Although using aggregation

allows the avoidance of exploiting the huge number of possible values for state

vectors, it does not consider the specialized structure in the state variable, which

may lead to some level of inaccuracy.

Using parametric models to approximate the value function could not only

reduce potential large state variables but also keep the structure in the state

variables. Linear regression modeling (see equation (12)) is the most widely used

parametric model in ADP to approximate the value function:

y = θ0 +
I∑

i=1

θixi + ϵ (12)

Equation (12) is the classical representation of the linear regression model,

where θ are the parameters to fit the prediction variables (responses) y (which
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would be a set of observations), and ϵ is a random error.

If we consider θ to be the column vector of parameters, and y as the column

vector of responses, we can write equation (12) as:

y = θTx+ ϵ (13)

Note that ϵ is a vector of errors (ϵ1, ..., ϵn), which we assume to be

independent and identically distributed. The format of the linear regression model

in equation (13) can be addressed by using Approximate Dynamic Programming

more easily.

Support vector machine and support vector regression (Powell, 2011) are also

very popular parametric models in Approximate Dynamic Programming for

approximating value functions. As we know, support vector machine is used to

address classification problem (for example, if we have discrete function value),

while support vector regression is used to fit continuous functions.

The method associated with support vector machine (regression) is based on

the idea of using an optimal hyperplane to differentiate the classes of data points by

maximizing the margin between the classes, as Figure 5 shows:
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Figure 5. Support Vectors Scheme.

Note that y = wx+ b is the mathematical representation of the hyperplane, ϵ

is the distance from the edge of one of the classes to the hyperplane, and the margin

we want to maximize would be 2ϵ
||w|| . Therefore, the optimal hyperplane can be

obtained by solving the following optimization model (normally through Lanrange

relaxation):

min
1

2
||w||2 (14)

s.t. yi − wxi − b ≤ ϵ

wxi + b− yi ≤ ϵ

(15)

46



IV.C.3 Non-parametric Models

In approximate dynamic programming, the parametric models approximation

scheme is very powerful for obviating the problem of estimating the huge number of

state variable, as well as keep the structure in the problem. The parametric models

is also effective, since it is relatively easy to solve. However, the design of an

effective parametric model is considered as a frustrating art. For many problems, it

is very difficult to develop a parametric model that works well. For this reason,

non-parametric statistical methods have attracted more attentions in recent years.

(Powell, 2011)

Compared to parametric models, non-parametric models work primarily by

building local approximations to functions using observations rather than depending

on functional approximations, which can avoid the difficulty of designing a

parametric model suit to the problem.

The k-nearest neighbor is a non-parametric method for classification and

regression. In this method, the functions is estimated by using a weighted average of

the nearest neighbor points. The model is given by equation (16):

Ȳ n(x) =
1

k

∑
n∈Nn(x)

yn (16)

In equation (16) yn is assumed to be a response to measure a distance metric

between a query point x and an observation xn. N n(x) is the set of the k-nearest

points to the query point x. Therefore, Ȳ n(x) is the estimate of true function Y (x)
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given the observations x1, ..., xn.

Another non-parametric model named as kernel regression can also be

applied in approximate dynamic programming. Compared to the k-nearest

neighbor, kernel regression uses a weighted sum of prior observations to estimate

Ȳ n(x). The model can be generalized as equation (17):

Ȳ n(x) =

∑n
m=1Kh(x, x

m)ym∑n
m=1Kh(x, xm)

(17)

In equation (17), Kh(x, x
m) is a weighting function that decreases with the

distance between the query point x and the measurement xm. h is referred to as the

bandwidth which plays the role of scaling.

A large group of non-parametric statistical computational models called

artificial neural networks have been widely used in approximate dynamic

programming. Artificial neural networks arose from the field of computer science

and is inspired by the animal central nervous systems. It is very suitable to address

machine learning and pattern recognition problems. We will discuss detail in section

VI.C.1.

IV.D A Simple Example for ADP(Gosavi, 2009)

Section IV.C has discussed the various schemes to approximate the value of

being in a certain system state. After a specific approximation scheme is chosen, one

still need an algorithm to compute the approximated state value v̂n, and update the

parameters in the model of the approximation scheme, thus learn the configurations
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of the approximation. There are many algorithms available that can be chosen from

the field of machine learning. We will discuss the algorithms we adopted to solve

the problem in chapter VI. At the end of chapter IV, we will provide a simple

example to illustrate how Approximate Dynamic Programming works.

Consider a two-state Markov Decision Process (MDP) in which two actions

are permitted in each state. The relevant data are supplied in Figure 6. The

example illustrates the nature of a generic MDP. Theoretically speaking, underlying

any MDP is data with a structure similar to this two-state MDP; for large-scale

MDPs, usually the transition probabilities cannot be determined easily. However,

simple examples such as these can serve as test-beds for numerically testing a newly

designed RL algorithm.
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1 2

(1, 0.7, 6)

(2, 0.9,10)

(1, 0.6,12)

(2, 0.8,13)

(2, 0.1, –17)

(1, 0.3, –5)

(1, 0.4, 7)

(2, 0.2,14)

Figure 6. Two-State MDP with (x, y, z) on Each Arc Denoting the Action x, Tran-

sition Probability y, and Immediate Reward z Associated with the Transition.
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CHAPTER V

MODEL FORMULATION

In chapter V, a Markov decision process model is proposed for the problem

discussed in section II.B. Consider a production system which is producing multiple

finished products and intermediate components with several work centers. The

demands of these finished products are uncertain. For each work center, significant

changeover time is required for setting up to produce a certain item. The production

process is divided into two stages by the intermediate components. Hence, there

would be two inventory pools which would need to be controlled for the system, one

for the intermediate components and the other for the finished products. A finished

product cannot be produced if lacks the related type of intermediate component.

V.A Notations

The model assumes that there are N total products, including I finished

products and J intermediate components (I + J = N). The work centers K can

each only produce one item at a time. If a work center production status changes

from idle to busy or from producing one type of item to producing another, a

significant setup time Tn (n ∈ I ∪ J) is required. The time to process one unit of
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item on work center k is assumed to be deterministic and to have the same value for

each type of item. The work center cannot be interrupted when performing a

changeover or during the production of a single item. The production rate for work

center k is fixed to Prk. The inventory holding cost per unit time for item n is hn

(n ∈ I ∪ J). Customer demand which is not met at the time of demand for finished

product i is assumed to be backordered with a cost of bi per unit time. The

inventory level for intermediate product j is Invj and the inventory level for finished

product i is Invi. Inventory level for any product n (n ∈ I ∪ J) during unit time

period t is Invnt. Unit changeover cost for product n is Un, which can be assume to

be 1 in our problem. The state of work center k is Mk, which indicates the current

working status of work center k. For example, if Mk = 0, work center k is idle, and

if Mk = 1, work center k is producing product 1. Fk is the set of potential states

associated with work center k. For example, if work center k can only produce

product 1, 3 and 6, we would have Fk = {0, 1, 3, 6}; note that 0 means the work

center is idle. The actions we can take at work center k are denoted by ak. If

Mk = ak, the status for work center k is not changing; if Mk ̸= ak and ak ̸= 0, the

changeover will be performed on work center k; if Mk ̸= ak and ak = 0, work center

k will be set to idle in the next period. t is the unit time period, which is the

smallest time unit in our simulation, while τ is the decision period which might be

constituted by multiple t. The total cost during decision period τ is Cτ , which we

want to minimize.

The notations used in the model is shown in Table 4:
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TABLE 4

Table of Notations.

i ∈ I: Index for finished product.

j ∈ J : Index for intermediate component.

n ∈ N : Index for finished product and intermediate component, N = I ∪ J .

k ∈ K: Index for work center.

fk: Index for status which can be performed on work center k, fk ∈ Fk.

Fk: Set for potential status can be performed on work center k.

Invn: Inventory level for product n.

Invnt: Inventory level for for product n during unit time period t.

Tn: Time for setting up for item n.

hn: Holding cost for product n per unit time.

Un: Unit cost for product n associated with changeover.

bi: Backorder cost for finished product i per unit time.

Prk: Production rate for work center k.

Mk: State of work center k.

ak: Action made on work center k.

t: Unit time period.

τ : Decision period.

Cτ : Total cost during decision period τ .

V.B Assumptions

V.B.1 State S and Action a

The overall state of the system S is defined by the work center status Mk for

each work center k and the inventory level Invn for each item n:
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S = (M1, ...,MK ; Inv1, ..., InvN)

Sk is the state of a single work center k, which is defined by Mk and the

inventory level Invfk (fk ∈ Fk) for each item which is associated with work center k:

Sk = (Mk; Inv1k , ..., InvFk
)

Note that each item is restricted to a particular location for its inventory.

When a decision is made to produce item fk on work center k, the value of fk will

be assigned to the action ak (ak = fk ∈ Fk) on work center k (ak = 0 means to make

work center k idle). All the possible actions for the K work centers consist of the

action space for the system:

a = (a1, ..., aK)

Note that the state and action spaces in this problem suffer from the “curse

of dimensionality”. If the state variable S = (M1, ...,MK ; Inv1, ..., InvN) has K

dimensions of machine status and N dimensions of inventory, and the possible value

for each machine status Mk is R and the possible value for each item’s inventory

Invn is L, then we have RKLN different states for the system. In a similar sense, if

the possible value for each action ak is D, we have DK action space for K

dimensions of actions in the system. Therefore, it may very well be computationally

infeasible to evaluate the qualities of all the pairs of state and action value (S,a),
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even for a fairly small size problem. For example, the number of possible (S,a) is

33100833 for a R = 3, L = 100, D = 3, K = 3, N = 8 problem. However,

approximate dynamic programming is an efficient method to avoid the curse of

dimensionality and make the evaluation of (S,a) possible.

V.B.2 Demand Arrivals

In the system, the demands only arrive for the end products. Although the

work centers that produce the end products also require items from the intermediate

inventory pool, we consider the requirement as inner control variables in the system.

The demands for each end product i are modeled as compound Poisson

processes through a compound Poisson distribution, which is the probability

distribution of the sum of a number of independent identically-distributed random

variables, where the number of terms to be added is itself a Poisson-distributed

variable. In contrast to a pure Poisson process, the compound Poisson processes can

model a stochastic demand process where the variance is different from the demand

rate. A compound Poisson process corresponds to a continuous-time stochastic

process in which arrivals follow a Poisson distribution PA
i (k) and demand sizes per

arrival follow a geometric distribution PD
i . The arrival times and demand sizes are

assumed to be independent for each end product.

Equation (18) represents the probability for the arrivals of demand for the

finished products being equal to k during a time interval of length t. λi is denoted

as the demand rate of demand for product i, with mean number of arrivals λit.
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PA
i (k) =

(λit)
k

k!
exp(−λit) (18)

Equation (19) represents the probability of the demand size being equal to d

for each arrival with mean demand size 1/qi. qi is the parameter of the geometric

distribution used, where 0 < qi ≤ 1.

PD
i (d) = qi(1− qi)

d−1 (19)

V.B.3 Cost Function

The cost associated with operating the system arises from three sources: the

holding cost, the backorder cost, and the setup cost. The setup cost is measured

through the production rate Prk. During setup times or wait times for setups at

work center k, nothing is produced at that work center.

The cost function Cτ (S,a) for each decision period τ can be represented as

equation (20):

Cτ (S,a) =


∑τ

t

∑N
n hn max(0, Invnt)−

∑τ
t

∑I
i bimin(0, Invit), if no changeover

∑τ
t

∑N
n hn max(0, Invnt)−

∑τ
t

∑I
i bimin(0, Invit) +

∑F
k UnTnPrk, o.w.

(20)

The decision period τ is the time between two decisions, while t represents

unit time (t ∈ τ). Whenever any machine produces one unit of any item, a decision

is required. For instance, τ would be 1
Prk

if no changeover is performed on machine
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k during the decision period (τ is equal to the time that one unit of item is

produced by machine k), or τ would be Tn +
1

Prk
if changeover to item n is

performed on machine k during the decision period (note Tn is the setup time for

item n). If machine k is set to be idle, the decision epoch time τ would be from

current point to the next arrival of any demand on machine k. When the new

demand arrives, a decision will be made on the idle machine.

The cost function Cτ (S,a) calculate the cost for the production system

during decision period τ by two conditions:

• If there is no changeover during the decision period τ , Cτ (S,a) would only

consider the holding cost of N items in this system (
∑τ

t

∑N
n hn max(0, Invnt))

and the backorder cost for I finished product (−
∑τ

t

∑I
i bi min(0, Invit)).

• If there is any changeover during the decision period τ , Cτ (S,a) would

consider the holding cost of N items and the backorder cost for I finished

product, plus the changeover cost
∑F

k UnTnPrk.

Note that max(0, Invnt) will always keep the inventory level for product n as

positive to calculate the holding cost, and min(0, Invit) will always keep the

inventory level for finished product i as negative to calculate the backorder cost.
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CHAPTER VI

CONTROL POLICIES AND ALGORITHMS

VI.A Optimization via Simulation by Adjusted (s, S) Policy

VI.A.1 Optimization via Simulation

As we mentioned in section II.B.3, production systems such as the GE

production system, are difficult to represent as an analytical model, because of the

uncertainties and the complicated interactions in the systems. To represent the

system and to perform analysis and improvement, simulation is an appropriate tool.

Many researchers have demonstrated the benefits of simulation for modeling

and analyzing complex production systems (Souza et al., 1996, Lin et al., 1998,

Benedettini and Tjahjono, 2009). Benedettini and Tjahjono (2009) have also

pointed out that the complexities of dynamics in production systems can be

explicitly reproduced by simulation models. These complex inventory policies for

operating the production systems, such as CONWIP (Huang et al., 2007), AWIP

(Masin and Prabhu, 2009) and (s, S) inventory policy (Hu et al., 1993), are

evaluated through simulation models. Also, optimization via simulation is an

excellent tool for comparing different system configurations, and is even able to
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improve the production systems or obtain optimal control variable values (Nyen

et al., 2006; Kumar and Sridharan, 2007; Han and Zhou, 2010).

VI.A.2 Adjusted (s, S) Inventory Control Policy

Inventory which includes raw materials, work-in-process components and

finished goods, is often used as a primary control variable in design of production

strategies for a production systems. For a multi-product manufacturing system, the

control policy must be able to determine and inform the work stations when to stop

producing the current product and switch to another product to produce. Altiok

and Shiue (2000b) propose a continuous-review (R, r) policy for controlling a

pull-type production system with multiple product types. The production of a

particular product stops when its inventory level reaches its target value R, and a

request to initiate the production of a product is made as soon as its inventory level

drops to or below its reorder point r. The (R, r) policy is very similar to the (s, S)

policy developed by Scarf (1959) which is very widely used. An (s, S) policy in a

manufacturing system will consider production stops at the instant that the

inventory level is raised to S, while production begins again at a review point when

the inventory level is observed to have dropped to or below s for the first time (Lee

and Srinivasan, April 1988). The review point can be either continuous or discrete.

The (s, S) policy is known to be effective in a variety of inventory situations

(Veinott, 1967).

The challenge to apply a classic (s, S) policy on the problem in our research
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is: if there are two products associated with one machine whose inventory levels

both dropped below s, a conflict of which product to produce will arise. To deal

with this conflict, we proposed an adjusted (s, S) inventory policy to solve this

problem in an simulation model. In the adjusted (s, S) inventory policy, a trigger

variable P ∗ is added into the classic (s, S) policy. Two definitions are needed before

introducing the trigger variable P ∗ (Wu et al., 2013).

The production system can be generalized with J types of intermediate

components (e.g., j = 1...9 for the fabricated racks in GE problem), I types of

products (e.g., i = 1...13 for the coated racks in GE problem) and K work centers

(e.g., k = 1...5 for the five work centers in GE problem). Since these work centers

are operating separately, the first definition is given below:

Definition For a work center k, the set for the types of intermediate components

or products associated with it can be denoted as Sk, where Sk ∈ I or J .

To design an inventory policy for controlling a multi-product production

system, one must define the decision variables which define when to stop producing

a certain product and which product is needed to be replenished. Based on the

concept of the (s, S) policy, the stopping criterion is developed as the second

definition:

Definition A work center k will stop producing product n when the inventory level

of product i (denoted as Invn) reaches its Sn.
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As soon as the production of product n is stopped, a changeover must be

performed, and a replenishment product m∗ must be picked up from Sk. The index

of m∗ is determined by a heuristic trigger variable P ∗, which is given by equation

(21):

P ∗ = min{m ∈ Sk|Pm =
Invm − sm

sm
} (21)

In (21), Pm actually represents the negative portion of the interval that

product m’s current inventory level differs from its sm in (s, S) policy, and P ∗ is the

minimum value of Pm one can find among the set of Sk. The product index which

needs to be replenished (denoted as m∗) is the index of m associated with P ∗ at

work center k. Then m∗ can be computed by (22):

m∗ = argmin
m∈Sk

Pm (22)

To apply the adjusted (s, S) inventory policy we proposed, a pair of control

parameters (sn, Sn) is assigned to each product n to control its inventory. As soon

as product n’s inventory level reaches to Sn, the machine will stop to produce

product n and a non-production period for product n begins. During the

non-production period for product n, the system will check the inventory level for

product n every time when the work center stops. If the inventory level for product

n is observed to be at or below sn, and the trigger variable P ∗ also point to n, then

the machine will start to produce product n and a new production period for

61



product n begins (refer to figure 7).

Production 

Period 

Non-production 

Period 

si 

Si 

Figure 7. The (s, S) policy with trigger variable.

VI.B Linear Approximation with Stochastic Gradient Search

VI.B.1 Linear Regression with Basis function

As we mentioned in section IV.C.2, a linear regression model is a good

parametric model to approximate the value function in Approximate Dynamic

Programming.

When implementing a linear regression model to ADP, a basis function ϕf (S)

is often used to replace the independent variable xi. ϕf (S) might be an indicator

variable, a discrete number, or a continuous quantity. A basis function plays the

role of extracting information from the state variable S and helps to explain the

behavior of the value function. With the linear regression model and basis

functions, the value function in ADP can be written in the form of equation (23):
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V̄ (S|θ) =
∑
f∈F

θfϕf (S) (23)

where θf is the parameter vector in equation (23).

At this point, the mission to solve the approximate dynamic programming

problem is to find the appropriate parameter vector of θf . Consider the general

version of a linear regression model with basis functions as equation (24):

Y =
∑
f∈F

θfϕf (S) + ϵ (24)

where Y is the observation of the value of being in a state, and ϵ explains any

error associated with the difference between the observed value and the regression

estimation. Then the parameter vector of θf can be solved by the stochastic

gradient search method which is introduced in section VI.B.3.

Note that the linear regression model with basis functions often performs as a

good approximation scheme in ADP and is relatively easy to solve. However, there

are many problems which exhibit nonlinear behavior, then some other parametric

models should be applied to approximate the value function rather than the linear

regression model. For example, a quadratic polynomial such as equation (25) might

be used as the strategy to approximate the value function:

V̄ (S) =
∑
i

(θ1iSti + θ2iS
2
ti) (25)
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VI.B.2 Linear Regression Approximation Scheme

To solve the problem, a set of value functions are used to approximate the

average costs for the next decision period by taking certain action, as equation (26)

shows:

V̄(a1,...,aK) =
K∑
k=1

θkMk +
I∑

i=1

θ+imax(0, Invi) +
I∑

i=1

θ−imin(0, Invi) +
J∑

j=1

θjInvj (26)

The set of value functions V̄(a1,...,aK) is actually a list of linear regression

models with basis functions which are defined by the combination of the actions

a = (a1, ..., aK). For different combinations of actions, the value function V̄(a1,...,aK)

is different with respect to their parameter vector θ = (θk, θ+i, θ−i, θj). When a

decision is required to be made in the system, all the response values V̄(a1,...,aK) in

the list of linear regression models will be calculated from the current system state

value S = (M1, ...,MK ; Inv1, ..., Invn) with respect to each combination of action

a = (a1, ..., aK). Then, the optimal action a∗ = (a∗1, ..., a
∗
K) will be chosen as the

minimum value of V̄(a1,...,aK) found in the value function list by equation (27):

arg min
a∗∈A

V̄ (27)

note that A is the action space for the system.

In summary, we are using a set of linear regression models to evaluate the

average cost V̄ for making a certain action a under system state S. The number of

the linear regression models in the value function set depends on the action space A.
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If there is only a single machine in the production system, say machine 1, we will

have the action space A = amachine1. That is, the action space A only depends on

the possible status of machine 1. If machine 1 only has 3 possible states, the action

space A is equal to 3. Thus the number of linear regression models in the value

function is set to 3. However, in our research, we are trying to address the problem

for multiple machines in the production system. Therefore, the action space A

depends on the combination of the actions taken on each machine, where

A = {a1, a2, ..., an} if there are n machines in the production system. Hence, the

action space is equal to 3n, if all the machines in the production system only has 3

possible states, and our linear regression approximation scheme still suffers from the

“curse of dimensionality” with respect to the number of machines in the production

system, although it is still a good approximation method for a production system

which only has a few machines.

VI.B.3 Stochastic Gradient Search

A stochastic gradient algorithm is a popular method which is very suitable

for using an approximate value iteration to update the value function. (Bertsekas,

2007) It has the advantage that the estimate of a parameter can be updated online

while new samples are being collected.

A general stochastic optimization problem follows the form of (28):

min
x

EF (x,W ) (28)
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where the W contains the random information in the problem.

Due to the stochastic characteristics of W , the gradient of the decision

variable x cannot be computed exactly by the derivative of equation (28) as a

deterministic optimization problem. However, for many problems, the random

information can be fixed by following a sample realization w as W = W (w). After

that, the gradient of the new objective function F (x,W (w)) can be found by

derivative. And the decision variable x can be updated by following equation (29):

xn = xn−1 − αn−1∇xF (xn−1,W n) (29)

In equation (29), ∇xF (xn−1,W n) is called a stochastic gradient since it

depends on a sample realization of W n, and αn−1 is a stepsize.

Consider that a linear value function approximation with basis functions is

already set up by V̄ (S|θ) =
∑

θϕ(S), as it is introduced in section IV.C.2. To find

the best value of the parameter θ, one needs to solve equation (30) which involves

the minimization of the mean squared error:

min
θ

E
1

2
(V̄ (S|θ)− v̂n)2 (30)

After applying the stochastic gradient algorithm, the updating step of θ will

be:

θn = θn−1 − αn−1(V̄ (S|θn−1)− v̂n)∇θV̄ (S|θn) (31)
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Since V̄ (S|θn) = (θn)Tϕ(s), the gradient with respect to θ is given by

∇θV̄ (S|θn) = ϕ(sn), where ϕ(sn) is the sample realization at iteration n. Then

equation (31) can be updated to:

θn = θn−1 − αn−1(V̄ (S|θn−1)− v̂n)ϕ(sn) (32)

For applying the stochastic gradient algorithm, an initial estimate of the

parameter θ0 is required, and it is usually set to θ0 = 0.

VI.B.4 ADP Algorithm: Stochastic Gradient Search by Approximate Value

Iteration

To implement the stochastic gradient search within an approximate dynamic

programming algorithm by following equation (32), we use discounted reward to

represent the nth observation value v̂n which is generated by the sample path ωn, as

Equation (33) shows:

v̂n = Cn(Sn,an) + exp(−γτ) min
an∈A

V̄ n−1(Sn,an; θn) (33)

In Equation (33), Cn(Sn,an) is the immediate cost at period n, which is

returned by the sample realization. V̄ n−1(Sn+1,an; θn) is the estimation of the value

of being in successor state Sn by using the approximation model updated in

iteration n− 1. γ ∈ (0, 1) is a discount factor related to the algorithm.

As it is introduced in section VI.B.3, the stepsize of αn−1 is another very

important parameter which need for the stochastic gradient search. The stepsize
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will largely affect the convergence speed when the algorithm is performing, however,

too large of a stepsize might significantly reduce the solution quality. Although the

optimal value of the stepsize is unknown for the stochastic gradient algorithm,

experimental work has shown that there exist a simple stepsize rule that work well

in practice. (Powell, 2011) The rule to determine the stepsize is given by:

αn = ab(a+ n− 1)−1 (34)

where a ∈ R+ and b ∈ (0, 1] are two scaling parameters in the algorithm.

An approximate value iteration algorithm (shown in figure 8) is proposed to

solve the problem.
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Step 0. Initialization: θ0, starting state S0.

Step 1. Generate a sample path.

Step 2. Do for n = 1, 2, ....

Step 2.1 Find action a∗ by solving:

arg min
a∗n∈A

V̄ (Sn, an; θn). (35)

Step 2.2 Obtain information for decision period τ by following sample

realization ω:

(Cn(Sn,an), τn, Sn+1)← SM(Sn, a
∗, ω) (36)

Step 2.3 Compute v̂n through equation (33).

Step 2.4 Update θn through equation (32).

Step 2.5 Increment n.

Step 3. Return the value functions V̄ and coefficients θ∗.

Figure 8. Stochastic Gradient Search by Approximate Value Iteration.

Note that in step 2.2, SM is actually a simulation model which samples the

state transition function and returns a sample realization ω for the immediate cost

Cn(Sn,an), during the decision period τ , and the status of successor state Sn+1.
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VI.C Artificial Neural Network with Temporal Difference Learning

VI.C.1 Artificial Neural Network Model

Figure 7.1.  

Σ
net

kth artificial neuron

bk

x1

wk1

wk2

wkm

x2

xm

yk
f(net)

Figure 9. A Basic Artificial Neural Network Model (Kantardzic, 2011)

Figure 9 illustrate how does a basic artificial neural network model works. In

this model, there are m inputs x1, ..., xm and yk is the output which one wishes to

estimate. wki is a weight associated with input xi. bk is a constant term which is

included in the model.

In this artificial neural network model, a sample realization corresponding to

the input vector X(t) = (x1(t), ..., xm(t)) at iteration t is already known and

denoted by fk(t). After the input vector X go through the artificial neuron k, an

output value of yk(t) will be produced. An error ek(t) = fk(t)− yk(t) will appear.

To perform the learning process of the artificial neural network model, one need to

adjust the value of each input weight wki, then ultimately find the vector of

W = (wk1, ..., wkm) that solves equation (37) during the current iteration:
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min
W

E
1

2
(fk(t)− yk(t))

2 (37)

The model in figure 9 only represents a basic artificial neural network model

with single neuron. The actual architecture of artificial neural network model would

be much more complex as figure 10 shows.

Inputs InputsOutput

Outputs

Hidden
layer 1 layer 2 layer

Hidden

x1

y1

y2

x2

xn

Figure 10. A Complex Architecture of an Artificial Neural Network (Kantardzic,

2011)

The artificial neural network model shown in figure 10 is a multi-layer (MLPs:

multi-layer perceptrons) and multi-output model. For each layer, there is more than

one neuron. As the figure shows, neurons between two layers are interacting with

each other through the weight wij. This feature makes artificial neural network is

capable to capture both linear and non-linear relationship from the input and
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output, without any presumption about the parametric distribution from the

observation. Also, ANN model can be driven and self-adaptive from the the input.

VI.C.2 ANN Approximation Scheme

Controlling Mechanism

Artificial neural networks (ANN) are suitable to address machine learning

and pattern recognition problems (Kantardzic, 2011). In approximate dynamic

programming, an ANN is able to perform as an effective tool to approximate the

state-dependent value (e.g., Cτ (S,a) in section V.B.3) from a large amount of input

iteratively. In our research, the ANN not only contributes its feature for learning

the state values for the system, but it also provides control information for the

production operation.

Feedback for updating ANN 

Obtain expected 

value from 

simulation model 

Predict values 

for taking 

certain action 

on each Artificial 

Neural  

Network 

                   M1

                   M2

Input Data   …

                   Inv1

                   Inv2

                                …

Machine 

Figure 11. Mechanism of ANN Model.

As figure 11 shows, at each decision point, we have input data which consists

of both the machine status vector M and the inventory level vector Inv:

S = (M, Inv). After the input of this data is processed by the ANN model, the

72



response vector Y (y1k , ..., yfk) is obtained to estimate the average rewards of taking

different actions on machine k. For instance, response yfk reflects the estimated

average reward of taking action f on machine k in the next decision period. The

system will be controlled by choosing the optimal action a∗k = argminfk∈Fk
yfk which

minimizes the estimated reward yfk to y∗fk , where y∗fk = min(Y (y1k , ..., yfk)). (Note

that Fk is the set of actions can be performed on machine k) After the best action

a∗k is chosen, the simulation model will continue executing, and the expected average

reward fτ (S, a
∗
k), associated with taking action a∗k at state S on machine k for

decision period τ , will be returned from the simulation model as in equation (38),

and compared with the estimated value y∗fk to provide adjusting information of the

ANN model.

fτ (S, a
∗
k) =

Cτ (S, a)

τ
(38)

ANN Architecture

The architecture of an ANN is defined by the characteristics of a node and the

characteristics of the node’s connectivity in the network. In practical applications,

the most widely used architecture of the ANN model is a multilayer feedforward

network (Kantardzic, 2011). A general multilayer network model is tested to control

the system and approximate the state-action pair value. The multilayer network

model updates via iterations as described in figure 11. However, since there is no

boundary in a general multilayer network model, starting with an initial unlearned
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network will easily lead the system to be in states of poor quality (e.g., the state

which has item A inventory level extremely high, but item B extremely low). If the

network updates on these poor states without giving information for continuous

improvement, it will fail to control and optimize the system. To prevent the system

from stalling in states of poor quality, a characterised multi-layer ANN model which

adds the feature of an (s, S) policy is proposed as figure 12 shows:

 

 

 

 

 

 

 

 

… 
… 

… 

ak=fk 

ak=1k 

y1k 
 

I1 

I2 

In 

Mk 

yfk 

V(1k) 

V(fk) 

Figure 12. ANN Architecture.

In the multilayer ANN model, the inputs are the inventory levels for each of

the respective items and the machine status Mk, while the outputs are the y1k , ..., yfk

to estimate the average rewards of choosing action f on machine k. The inputs of

the inventories Inv1, Inv2, ..., Invn follow the general multilayer perceptrons (MLPs)

architecture. The inputs of machine status Mk will be compared with the neurons of

possible actions ak = (1k, ..., fk) on machine k. If the machine status Mk is not
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equal to action on the neuron, the output value on the neuron is 1, otherwise, the

output value on the neuron is 0. For example, if Mk = 1, the output value on

‘ak = 1’ is 0, and the output values on other neurons associated with Mk are 1.

At the neuron associated with the output value of yfk , there is a penalty

value V (fk) added on this neuron to prevent the system from being in states with

poor quality. The penalty value V (fk) is generated via a (s, S) policy which can be

simply obtained by a heuristic search, as defined in equation (39). Note that fk is

not only a value of action, but also the index of product which is decided to produce

(or perform changeover) by the corresponding action.

V (fk) =



M, if Ifk > Sfk

0, if sfk ≤ Ifk ≤ Sfk

−M, if Ifk < sfk

(39)

In equation (39), sfk and Sfk represent respective values for the parameters s

and S in the (s, S) inventory policy for product fk, while M is a large positive

number. In this ANN model, V (fk) acts as a boundary to ensure that the inventory

level of product fk does not become extremely high or low. V (fk) can keep the

production system in manageable states, and also ensure that the parameters in the

ANN model are not updated by using information with poor states continuously.
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Updating Procedure

In the artificial neural network model, there is a weight wij associated with

input (or neuron) i and neuron j. To minimize the error (ei(t) = fi(t)− yi(t))

between the predicted value yi(t) from the ANN model and the value fi(t) that

would be computed from the simulation model by following a sample path, the

weight vector of W = (w11, ..., wij) needs to be updated iteratively, thus improve the

predict accuracy. Therefore, we use the backpropagation method as the updating

procedure for the weight wij, as figure 13 shows:

Step 1. Initialization. Set all wji(0) = 0.

Step 2. For iteration n = 1, 2, ..., do:

Step 2.1. Compute net value of jth neuron:

vj(n) =
m∑
i=1

wji(n)xi(n)

where m is the number of inputs for jth neuron

Step 2.2. Compute the local gradient :

δj(n) =


ej(n)φ

′(vj(n)), for output layer

φ′(vj(n))
∑

k∈D δk(n)wkj(n), for hidden layer

Step 2.3. Update weight wji(n).

∆wji(n) = ηδj(n)xi(n) + α∆wji(n− 1) (40)

Figure 13. ANN Updating Procedure.
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Note that yi(n) = φ(vj(n)) is the output value and φ(vj(n)) is an activation

function (e.g., Sigmoid function). D denotes the set of all nodes on the next layer

that are connected to the node j. In equation (40), where α is usually a positive

number called momentum constant and η is the learning-rate parameter.

∆wji(n− 1) is the correction of the weight factor for a previous (n− 1)st sample.

The addition of the momentum term smoothes the weight being updated and tends

to resist erratic weight changes resulting from gradient noise or high-spatial

frequencies in the error surface. (Kantardzic, 2011)

VI.C.3 Temporal Difference Learning

Temporal difference (TD) learning is a supervised learning algorithm which is

often used in reinforcement learning to predict a measure of the total amount of

reward expected about the future. TD learning is viewed as a combination of Monte

Carlo method and dynamic programming by scholars (Sutton and Barto, 1998).

The Monte Carlo method is used in TD learning to create the sample path based on

the policy chosen. And TD learning is related to dynamic programming because it

follows a bootstrapping process which estimate the current value based on the

previously learned estimate. At each learning step, a prediction is made from the

knowledge of previous learning steps, after the observation for this step is available,

a new prediction will be updated based on the difference of the previous prediction

and the observation. Over adequate successive steps of learning, the prediction will

be adjusted to better match the observation, thus become more accurate.
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The mathematical formulation of temporal difference in approximate

dynamic programming is shown as equation (41):

δπτ = C(Sn
τ , a

n
τ ,W

n
τ+1) + V̄ n−1

τ+1 (S
n
τ+1)− V̄ n−1

τ (Sn
τ ) (41)

In equation (41), the component of C(Sn
τ , a

n
τ ,W

n
τ+1) + V̄ n−1

τ+1 (S
n
τ+1) is the

sampled observation of being in state Sτ , while V̄ n−1
τ (Sn

τ ) is the current estimate of

the value of being in state Sτ .

To update the prediction of the value V̄ n
t (St) of being in in state St, the

previous temporal differences should be cumulated as equation (42) shows:

V̄ n
t (St) = V̄ n−1

t (St) +
T∑

τ=t

δπτ (42)

One may think that those later estimates of the differences should be given

more weight than the later ones, thereby an artificial discount factor λ can be

introduced into equation (42) as a result. Meanwhile, a time discount factor γ can

be also introduced into equation (42) to capture the time effect in the model. Then,

equation (42) will come to be:

V̄ n
t (St) = V̄ n−1

t (St) +
T∑

τ=t

(γλ)τ−tδπτ (43)
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VI.C.4 ADP Algorithm: Artificial Neural Network by Temporal-Difference

Learning

By using the artificial neural network model we proposed in section VI.C.2 to

approximate the average cost for the system during each decision period, and

Temporal-Difference Learning method we introduced in section VI.C.3, we

developed a ADP algorithm by using the backpropagation to update the weight wij

in the ANN model, as figure 14 shows:

Step 0. Initialization: Set all wji(0) = 0 in ANN model.

Step 1. Generate a sample path.

Step 2. Do for n = 1, 2, ....

Step 2.1. Find action a∗k to minimise the output value in ANN model yfk :

a∗k = arg min
fk∈Fk

yfk .

Step 2.2. Obtain information for decision period τ through the simulation

model:

(Cn, τn, Sn+1)← SM(Sn, a
∗
k)

Step 2.3. Update weight wji(n) by the procedure as described in section

VI.C.2.

Step 2.4 Increment n.

Step 3. Return weight wji∗ in the Artificial Neural Network Model.

Figure 14. Artificial Neural Network by TD Learning Algorithm.
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CHAPTER VII

NUMERICAL EXAMPLE

VII.A Example Description

In chapter VII, the model formulated in chapter V is implemented to a simple

numerical example from the problem which is discussed in section II.B. The solution

methods 1, 2 and 3 proposed in chapter VI is performed on the numerical example.

Consider a two-machine and make-to-stock production system as figure 15

shows. Machine 1 produces two types of intermediate components IC1 and IC2,

whereas Machine 2 produces two types of finished products FP1 and FP2 by

consuming the intermediate components IC1 and IC2.

 

 

 

 

FP2 

FP1 

IC2 

IC1 

Machine 

Machine 

Machine 

Machine 

Intermediate Products Finished Product

…… …… 

Machine 

1 

Machine 

2 

Figure 15. 2-2-2 example.

Significant setup times occur during changeovers at both of the machines.

The objective of the problem is to find an effective control policy to operate the
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production system. This problem can be considered as an I = 2, J = 2, K = 2

(2− 2− 2) example for the model formulated in chapter V.

The experimental parameters set up for this numerical example can be found

in tables 5, 6 and 7.

TABLE 5

Parameters for Finished Product.

Product i Ti hi bi λi qi

1 0.15 1 5 5 0.5

2 0.20 1 8 10 0.4

TABLE 6

Parameters for Intermediate Product.

Product j Tj hj

1 0.10 2

2 0.15 2

TABLE 7

Parameters for Machine.

Machine k Prk

1 40

2 30
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VII.B Results

In chapter VI, we proposed three methods which can be used to solve the

problem. Although the problem itself suffers from the “curse of dimensionality”, the

formal Dynamic Programming method is still applicable to the simple numerical

example in chapter VII. We have also used Dynamic Programming to solve the

numerical example, then compare the results with the methods we proposed in

chapter VI. In the Dynamic Programming method, we determined the arrival of the

demand and the demand arrival size by using the estimated approximation of the

compound Poisson processes in section V.B.2.

Table 8 shows the measurements of the performance for the adjusted (s, S)

policy, the Linear Models with Basis Function, the ADP-ANN approach, and a

policy generated from a formal dynamic programming (DP) approach by using

approximation for the uncertainties in this numerical example. Since all the

uncertainties were dealt with approximation in the formal DP approach and this

example is relatively small, it required very little computational effort to obtain the

optimal policy for the formal DP approach compared to the other two methods

which were updating and searching a better solution in conjunction with the

simulation model. However, the result from the formal DP approach has the worst

performance of the three methods. The primary reason is that its average cost is

much higher than that of the other two approaches. It has a relatively high level

(21.38%) of unmet demand as well, resulting in a large backorder cost. Also, note
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that the number of changeovers required in the formal dynamic programming

approach is much higher than in the other approaches.
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Figure 16. Comparing the Convergences of Average Cost for 2-2-2 Example.

In this section, we also compared the results from the ADP algorithm in

section VI.C using the ANN model and the results from the ADP algorithm

approximated by Linear Regression Models with Basis Function in section VI.B, to

the results from a adjusted (s, S) policy in section VI.A obtained by a heuristic

search.

The linear regression model with basis function reduced the average cost

much more than formal DP approach, since it reduced the holding cost, and the

number of changeover for both intermediate and end products much. However, it

does not show much better performance than the adjusted (s, S) policy. Although

the holding cost is lower for the linear regression approximation, the backorder cost
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is much higher than the adjusted (s, S) policy. Also, the unmet demand for the

linear regression approximation is much higher. Some other important performance

measurements are the number of changeover for both of intermediate and end

product, as well as the lack of intermediate product. The lack of intermediate

product counts the time that there is not enough intermediate products when it is

required to produce a certain type of end product. This awkward situation is which

we want to avoid during the production process, since it would waste a lot of time

and resource. Compare to the adjusted (s, S) policy, the linear model definitely

have worse performance on these measurements.

The ADP-ANN approach results in a little slightly higher backorder cost but

a much lower inventory level than the adjusted (s, S) policy and the average cost is

much lower (8%) by using the ADP-ANN approach. Compared to the adjusted

(s, S) policy, the numbers of changeovers at the intermediate machine are almost

the same for the two methods, and the number of changeovers for the end product

machine is larger for the ADP-ANN approach than for the adjusted (s, S) policy.

However, the lack of intermediate product is much lower by using the ADP-ANN

approach than the adjusted (s, S) policy, which indicate that the ADP-ANN

method can control the system very smoothly. The ADP-ANN method shows a

better performance on the numerical example than the adjusted (s, S) policy.

Figure 16 shows the comparison of convergence curves for the average cost

over time from 0 to 106 using the ADP-ANN approach, the Linear Regression Model

with Basis Function approximation and the adjusted (s, S) policy to control the
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system. The X-axis is the number of the time units for the simulation period, while

the Y-axis represents the average cost. Note that the final average cost for the

ADP-ANN approach is close to 50, the final average cost for the linear model

approximation is close to 56, and the final average cost for adjusted (s, S) policy is

close to 55.

The linear model approximation shows a faster convergence than the

ADP-ANN approach and the adjusted (s, S) policy. However, it does not give us a

comparable reduction for the final average cost.

Figure 17 shows the comparison of the learning difference by applying linear

regression approximation and ANN-ADP approach to approximate the state values

in the numerical example. Compare to the ANN-ADP approach, the learning

difference is smaller before t = 300000 by using the linear regression approximation

with basis function. However, for a long term run of the simulation model, the

linear regression approximation does not reduced the learning difference as much as

the ADP-ANN approach
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Figure 17. Learning Difference for Linear Model and ADP-ANN.

In summary, all the three methods proposed in chapter VI works better than

the formal DP methods on the numerical example. The ADP-ANN approach

perform best among the three methods, and the adjusted (s, S) policy shows slightly

better results than the linear regression approximation.
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CHAPTER VIII

GE PROBLEM SOLUTION

VIII.A Problem Description

By examining the results of the numerical study in chapter VII, approximate

dynamic programming could be applied to optimize the control process for the

complex GE production system described in section II.B for which the formal

Dynamic Programming is not directly applicable.

However, although the linear regression model with basis function described

in section VI.B can avoid the “curse of dimensionality” for the extreme large state

space in the complex production system (GE), the number of the linear regression

models will grow very fast with the increase of the number of machines, which

means the action space A still suffer from the “curse of dimensionality”. Therefore,

only Methods 1 and 3 which we proposed are able to be generalized to solve the

control optimization problems for the complex system, such as the GE system.

As it is described in section II.B, the GE production system has five work

centers, each work center is associated with one to four different products. There

are total nine intermediate components and thirteen end products. The action space

A is 4 ∗ 5 ∗ 3 ∗ 2 ∗ 4 = 480, which is already a very large space, not to mention the
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state space is added into the problem.

In chapter VIII, we are trying to apply the adjusted (s, S) control policy to

solve the GE problem. After that, the results we obtain from the adjusted (s, S)

control policy can be used as parameters for the artificial neural network model we

proposed in section VI.C to approximate the average cost of the production system,

and thus optimize the control process through the approximate dynamic

programming algorithm in figure 14.

The parameters for GE problem can be found in table 9, 10 and 11 as

following:

TABLE 9

Parameters for Finished Product.

Product i Ti hi bi λi qi

1 150 1 8 188 0.13

2 150 1 6 169 0.29

3 150 1 6 174 0.27

4 150 1 6 180 0.19

5 150 1 4 58 0.89

6 150 1 8 188 0.13

7 150 1 6 169 0.29

8 150 1 6 174 0.27

9 150 1 5 108 0.85

10 150 1 4 14 0.81

11 150 1 5 129 0.66

12 150 1 6 171 0.28

13 150 1 5 41 0.86
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TABLE 10

Parameters for Intermediate Product.

Product j Tj hj

1 150 2

2 150 2

3 150 2

4 150 2

5 150 2

6 150 2

7 150 2

8 150 2

9 150 2

TABLE 11

Parameters for Machine.

Machine k Prk Machine Name

1 1 FL

2 1 FU1

3 1 FU2

4 0.5 Type 1 Coating

5 0.5 Type 2 Coating

VIII.B Results

In this section, the performance of the ANN-embedded ADP algorithm is

measured in comparison with a adjusted (s, S) policy. To obtain the optimal control

variable s and S in the adjusted (s, S) policy, we performed a tabu search on the
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simulation model. If the inventory level is less than 100, the increment (decrement)

for the tabu search is 10, otherwise, the increment (decrement) is 100. Table 12

shows the results of s and S from the optimization via simulation by using the

adjusted (s, S) policy.

TABLE 12

Optimal (s, S) policy.

Coated Rack s S Fabricated Rack s S

1 700 1300 A 500 1000

2 400 700 B 400 900

3 100 200 BXL 700 1200

4 600 1000 A1 800 1300

5 10 20 B1 300 600

6 500 800 B2 200 400

7 200 400 B3 40 80

8 400 600 C2 60 100

9 60 100 C4 200 400

10 20 40

11 120 200

12 300 600

13 200 400

Figure 18 shows the comparison of convergences for the average cost by using

the ANN model and the adjusted (s, S) policy to control the system for the GE

problem. The adjusted (s, S) policy converges slightly faster than the ADP-ANN

method, however, the final average cost it reached is much higher than the

ADP-ANN method.
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ANN.

Table 13 compares the performance measures of the two control methods.

The average cost for the ANN model converges to 12,834 while the average cost for

the adjusted (s, S) policy converges to 20,672. By using ANN model as the second

level policy to control the system, the average cost is reduced significantly, by

37.92%, since both of the inventory levels for intermediate and end products are

significantly reduced. The percentages of unmet demand for the end products are 0

for both of the two methods. The number of changeovers is significantly increased

by using the ANN model to control the system than by using the adjusted (s, S)
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policy; through the use of the ANN model the production system can be operated

more efficiently, thus keeping the inventories at lower levels. Also, note the lack of

intermediate product is significantly reduced, which means the two production

stages (for intermediate product and end product) are interacting with each other

very well. The undesired situation that in short of the associated intermediate

product when the production of end products is required is rarely happening by

using the ADP-ANN to control the production system.
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Figure 19 shows the change of the learning difference of ADP-ANN method

performed on the GE problem. Although the ANN model started with a very large

learning difference, after a number of iterations, the learning difference converges to

a small value.

0 1 2 3 4 5 6 7 8 9 10

x 10
5

−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

5000

6000

Figure 19. Learning Difference for Linear Model and ADP-ANN.
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CHAPTER IX

SUMMARY AND FUTURE RESEARCH

IX.A Summary

In order to quickly respond to various requirements from the market, the

flexibility is considered as one of essential features in the design of a production

system. However, it will make a production system more dynamic, thus many

operational difficulties will arise. The production control policy is often driven by

the inventories and developed via analytical models. With the increase of

uncertainties, varieties of products and system dynamics, the normal analytical

models often fail to obtain a optimal or near optimal control policy for the

production system.

In our research, to look for a better control policy of a complex dynamic

production system with multiple working stations, intermediate components,

uncertainties and significant changeover time, three methods are developed in

chapter VI:

• Optimization via simulation by using an adjusted (s, S) inventory control
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policy.

• An Approximate Dynamic Programming method by using Linear Regression

Models with Basis Functions to approximate the value function of the

production system.

• An Approximate Dynamic Programming method by using an Artificial Neural

Network model to approximate the value function of the production system.

The structure of the Artificial Neural Network model is improved in order to

capture the characteristics of the system and also include the information from

a adjusted (s, S) policy.

The methods we proposed in chapter VI are first tested on a small numerical

example in chapter VII. For the small multiple machines with intermediate

products problem, approximate dynamic programming methods shows much better

performance than using formal dynamic programming method with approximation

of the uncertainties in the production system. However, compared to the adjusted

(s, S) policy, the advantage of Approximate Dynamic Programming would depend

on the schemes to approximate the value function.

In the small numerical example, by using linear regression model with basis

functions as the approximation scheme, the results is not improved compared to the

adjusted (s, S) policy, although it converges faster. However, by using ADP-ANN

approach as the second level policy to control the system, the average cost is
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reduced significantly by 8%, but the percentage of unmet demand is higher by using

the ADP-ANN model. Since the objective is to reduce the cost and the shortage of

final products, is taken into account as backorder cost in the objective function, the

ANN-ADP approach still performs better than the adjusted (s, S) policy. It is

noteworthy that by using the ANN-ADP approach, the lack of intermediate

products is much less of a problem, this indicates that the ANN-ADP approach is

capable of controlling the system more intelligently.

The adjusted (s, S) policy and the ADP-ANN algorithm are also applied to

solve a complex problem from GE wire rack production system which suffers from

the “curse of dimensionality” in chapter VIII. As compared to the small numerical

example, the ADP-ANN approach is even much more pronounced for such more

complex system than the adjusted (s, S) policy.

From our research, Approximate Dynamic Programming is found to be an

effective way to predict such kind of complex production systems and improve the

operating process as well as their productivity. Moreover, the proposed methods can

be adjusted and applied to solve other stochastic-dynamic decision problems from

other fields, such as supply chain, revenue management, and finance.

IX.B Future Research

Future research directions stemming from current work in this dissertation

are as follows:
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• There are many statistical learning models that can be used as the

approximation scheme for the approximate dynamic programming method,

such as support vector regression, random forest and kernel regression. One of

them may capture the characteristics of such kind of problems better, thus

improving the control policy for the complex production system.

• Since the dynamic state-dependent policy generated via the approximate

dynamic programming algorithm is predicated on the current information

gathered from the system, it does not correspond to an easily implemented

policy like the adjusted (s, S) policy. To handle this problem, some

classification techniques, such as decision tree and k-nearest neighbors

algorithm, can be used to summarize the generated control policy and make it

more implementable for operators of a complex production system.

• This research can be also extend to the overall GE production system, and is

not limited to the wire rack production system only. The difficulty for the

extension is to find a simulation software which can model the system

efficiently and embed the complex algorithm easily, rather than to code

everything through the programming language inefficiently.
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