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ABSTRACT 

MODULATION OF CELL DEATH SIGNALING AND CELL 
PROLIFERATION BY THE INTERACTION OF 

HOMOSERINE LACTONES AND PARAOXONASE 2 
 

Aaron Mackallan Neely 

March, 29th, 2016 

Pseudomonas aeruginosa produces N-(3-oxododecanoyl)-homoserine lactone 

(C12) as a quorum-sensing molecule that functions to facilitate bacteria-bacteria 

communication.  C12 has also been reported to affect many aspects of human 

host cell physiology, including evoking cell death in various types of cells.  

However, the signaling pathway(s) leading to C12-triggerred cell death remains 

unclear.  To clarify cell death signaling induced by C12, we examined mouse 

embryonic fibroblasts (MEFs) deficient in one or more caspases.  Our data 

indicate that, unlike most apoptotic inducers, C12 evokes a novel form of 

apoptosis in cells, probably through the direct induction of mitochondrial 

membrane permeabilization.  Previous studies indicate that C12 requires the 

lactonase/arylesterase paraoxonase 2 (PON2) to exert its cytotoxicity on MEFs. 

PON2 is known to function as a lactonase to cleave C12.  We found that PON2 

was overexpressed in tissues from non-small cell lung carcinoma (NSCLC) 

patients and oncogenically transformed human bronchia/tracheal epithelial 
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(NHBE) cells.  Reducing PON2 expression in NSCLC cell lines as well as several 

non-transformed cell lines rendered them resistant to C12.  However, PON2 

expression is only important for the proliferation of NSCLC cell but not that of 

their untransformed counterparts, indicating that PON2 mediates apoptosis 

independently of its function to modulate cell proliferation.  Overall, our results 

reveal a unique mitochondrial apoptotic signaling pathway triggered by 

C12/PON2 interaction and PON2 plays distinct roles in apoptosis signaling and 

cell proliferation. 
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CHAPTER 1: INTRODUCTION 

Tissue differentiation and homeostasis are tightly regulated by the BcL-2 

regulated cellular suicide program, apoptosis (2,3). Many human tumor cells 

acquire resistance to conventional chemotherapeutic drugs that depend on BcL-2 

proteins. These neoplastic cells have been found to have an increased ratio of 

anti-apoptotic to pro-apoptotic Bcl-2 proteins. Thus, the discovery of novel drugs 

that are capable of overcoming apparent tumor cell BcL-2 protein dependent 

resistance to cell death is a major challenge.  A promising anti-tumor approach is 

the identification of small molecules (as well as their cellular targets) that 

preferentially trigger tumor cell apoptosis, independent of tumor cell Bcl-2 protein 

profile (4,5).  While several candidate compounds have been identified, most if 

not all of these drugs could only induce apoptosis independent of either anti-

apoptotic or pro-apoptotic Bcl-2 proteins; but not both (5-7). Conversely, the 

quorum-sensing molecule N-(3-oxododecanoyl)-homoserine lactone (C12) 

preferentially induces transformed cell apoptosis in vitro and inhibits transplanted 

tumor growth in vivo independent of both anti- and pro-apoptotic Bcl-2 proteins;  

thereby making it an ideal candidate drug. Our preliminary data indicates that 

C12 triggers Bcl-2 protein-independent apoptosis, likely mediated by 

Paraoxonase 2 (Pon2). PON2 is known to function as a lactonase to cleave C12.  

Previous studies indicate that C12 requires the lactonase / arylesterase PON2 to 

exert its cytotoxicity (8,9).
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1.1. Programmed cell death-Apoptosis    

The word Apoptosis derives from Greek origin meaning “dropping off or falling 

off,” and initially referred to the process by which leaves fell from trees or petals 

from flowers. Apoptosis is a biological phenomenon that consists of a 

programmed sequence of biochemical events that culminate in the selective 

elimination of damaged, infected and potentially neoplastic cells from the bodies 

of multicellular organisms (10,11).  Apoptosis is one of the most ubiquitously 

employed mechanisms by which the body disposes of cell debris or damaged 

cells without eliciting localized inflammation; due to leakage of cellular 

contents(12). This mode of cell death is a vital component of normal tissue 

development, disease progression and maintenance of tissue homeostasis. 

Additionally, it serves as a means of defense against the development and 

advancement of cancer (13). The biochemical events that result in the 

occurrence of Apoptosis also elicit a large number of morphological changes in 

cells including cell shrinkage, blebbing of the membrane, condensation and 

fragmentation of nuclear material and the formation of apoptotic bodies. 

 

1.2. Regulation of apoptosis 

Apoptosis is under stringent genetic control and can be activated by stimuli from 

multiple sources. It is initiated in response to specific developmental signals or in 

the presence of various stimuli including the reduction of essential growth factors, 

the activation of Tumor Necrosis Factor receptors (TNFR), DNA damage, loss of 
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cellular attachment, decreases in the local concentration of tissue morphogens 

and major alterations in homeostatic state of the cell(14,15). 

 Excess or limited apoptosis can disrupt tissue homeostasis of multicellular 

organisms. When apoptosis occurs more frequently than cell proliferation does, 

neurodegenerative disorders are exacerbated. Further to this, the dysregulation 

of apoptosis has been implicated in the ontogeny and progression of many 

disease states including many cancers and neurodegenerative disorders such as 

Alzheimer’s, Huntington’s and Parkinson’s diseases (16-18).  Conversely, 

insufficient apoptosis can precipitate cancer development and progression 

(19,20). Thus, tight regulation between apoptosis and cell proliferation is 

imperative for the viability of all multicellular organisms. 

 

1.3. Biological significance of apoptosis 

Apoptosis has long been recognized as a critical regulatory component of the 

development process. The role of apoptosis in development has been 

investigated and well established in three organisms: Nematodes 

(Caenorhabditis elegans), Fruit Flies (Drosophila melanogaster) and mouse (Mus 

musculus). Apoptosis has been found to drive hemaphroditic development during 

embryogenesis in C. elegans and promote the completion of development in D. 

melanogaster(21).  Studies have indicated that the inhibition of apoptosis elicits 

developmental impediments, disorders and/or death (13,22). 

 



 4 

In early mammalian development, apoptosis is instrumental in the formation of 

synapses between neurons in the brain and the spinal cord as it facilitates the 

removal of excess neurons cells(23). Additionally, Apoptosis assists in tissue 

remodeling, molding and shaping of the body and organs and the 

detailing/separation of extremities (fingers and toes) by the removal of excess 

tissues. Inhibition or insufficient apoptotic signaling elicits malformed limbs and 

digits joined by soft tissue (Figure 1.1) (1).  

 

 

 

 

 

 

 

 

 

 

Apoptosis is also vital in the removal of those cells that may have deleterious 

effects on the organism. These include cells that are capable of participating in 

an autoimmune response as well as virally infected; and thus cytotoxic, T cells 

(24).  Apoptosis facilitates the maintenance of tissue homeostasis. In the average 

adult, billions of cells die daily via apoptosis and are then replaced with new cells 

that originate from the body’s stem cell populations (25).  Apoptosis regulates the 

 
 

Figure 1.1 Apoptosis is required for proper development. (A) 
Cells between the digits undergo apoptosis to facilitate proper 
finger and toe formation. (B) Insufficient apoptosis elicits 
malformed digits that are joined by soft tissues yielding the 
persistence of interdigital web as seen in the duck (1). 
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constant internal environment and normal tissue homeostasis. Under healthy and 

normal conditions, the rate of cell proliferation is approximately the same as the 

rate of apoptosis. This paradigm is essential for ensuring the viability of 

multicellular organisms. If this balance is disrupted, such that the occurrence of 

cell death is more frequent than that of cell replacement, the probability of the 

onset of neurodegenerative disorders is amplified. Moreover, inadequate 

apoptosis may elicit cancer development (26). 

 

1.4. The pathways of apoptosis 

Apoptosis typically occurs through one of three signaling pathways, namely the 

mitochondrial (intrinsic), the death receptor (extrinsic) and the mixed pathways.  

 

1.4.1 The intrinsic pathway of apoptosis 

Intracellular death signals are translocated to the mitochondria where they induce 

the mitochondria dependent intrinsic pathway of apoptosis. These signals 

activate the pro-apoptotic Bcl-2 proteins, which in turn lead to the formation of 

permeation channels on the outer mitochondrial membrane (OMM). These 

permeation channels facilitate the release of apoptogenic proteins (Diablo/Smac 

and cytochrome c) from the mitochondrial inter-membrane space (IMS) into the 

cytosol.  Upon release into the cytosol, Diablo/Smac and cytochrome c induce a 

cascade of caspase reactions that culminate in the occurrence of apoptosis(27). 

Cytochrome c activates apoptotic protease factor 1 (apaf1), which promotes the 

transition of procaspases to their active caspase form.  Diablo/Smac promotes 



 6 

apoptosis through direct interaction with inhibitors of apoptosis proteins (IAPs), 

thereby impeding their ability to inactivate caspases (Figure 1.2) (28,29).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure1.2. The intrinsic (mitochondrial) pathway of apoptosis. 
Apoptotic stimuli; such as DNA damage, elicits p53 activation. 
Activated p53 activates pro-apoptotic Bcl-2 proteins which in turn 
forms permeation channels on the OMM. These permeation 
channels facilitate the transport of cytochrome C and Diablo/Smac 
into the cytosol. While in the cytosol, cytochrome C initiates a 
caspase cascade that culminates in the occurrence of apoptosis 
while Diablo/Smac interacts with IAPs impeding their ability to inhibit 
caspases thereby promoting apoptosis.   The figure is from Dr. Mohd 
Saquib Khan at Pondicherry University. 
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1.4.2 The extrinsic pathway of apoptosis 

In contrast to the intrinsic apoptotic pathway, death signals for extrinsic apoptotic 

pathways are initiated from the outside of the cell. Induction of the extrinsic 

apoptotic pathways does not involve the mitochondria, involvement of the Bcl-2 

protein family or the release of cytochrome c forms the mitochondrial IMS to the 

cytosol.  In this pathway, specific death ligands such as tumor necrosis factor 

(TNF), Fas Ligand (FasL) or TNF-related apoptosis-inducing ligand (TRAIL) 

binds to their respective specific transmembrane death receptors including FAS, 

tumor necrosis factor receptor 1 (TNFR1), p75, DR4(30). 

 

The binding of death ligands to their respective specific death receptor promotes 

the collection and recruitment of the adaptor protein Fas-associated death 

domain (FADD) and the inactive forms of the initiator caspases 8 and 10 (pro-

caspases 8 and 10), thus allowing for the formation of the death-inducing 

signaling complex (DISC).  The DISC transports the procaspase molecules in 

close proximity, thereby ensuring access for their autocatalysis and eventual 

release into the cytosol (31-35).  Caspase 8 or 10 will then activate the effector 

caspases 3/7 in a cascade precipitated by caspase-mediated reactions that will 

culminate in the occurrence of apoptosis. 
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Figure 1.3. The extrinsic (death receptor) pathway of apoptosis. 
Extrinsic apoptotic signaling is generated extracellularly with the 
binding of death ligands to specific transmembrane death receptors.  
Activation of death receptors elicit clustering and recruitment of the 
adaptor molecule FADD, procaspase 8, 10 resulting in the formation of 
the DISC. DISC formation activates caspase 8, 10. Caspase 8, 10 then 
activates caspase 3/6/7 and leads to apoptosis.  The figure is from Dr. 
Mohd Saquib Khan at Pondicherry University. 
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1.4.3 The mixed pathway of apoptosis 

There exist certain instances where the induction of apoptotic signaling cascades 

from external sources can also elicit the activation of both intrinsic and extrinsic 

apoptotic pathways. This phenomenon is known as the mixed apoptotic pathway 

and entails death stimuli that are generated extracellularly causing the activation 

of pro caspase 8, pro caspase 10, and formation of the DISC; in the same 

manner as observed in the extrinsic apoptotic pathway.  The DISC formation will 

ultimately lead to autocatalysis and the eventual activation of caspase 8 and 10 

(31-35). When caspase 8 is activated, it can enter one of two routes: (i) it can 

activate the effector caspases 3, 6 and 7, thereby eliciting apoptosis via the 

extrinsic pathway or (ii) it can enter the intrinsic apoptotic pathway via interaction 

with the Bcl-2 protein family. In this instance, caspase 8 will cleave the inactive 

pro-apoptotic BH3-only protein “Bid” into its truncated and active form tBid. The 

tBid then activates the Bcl-2 proteins Bax and Bak at the OMM. Bak and Bax 

then undergo conformational changes as well as oligomerization thereby yielding 

the formation of permeation pores on the OMM. Permeation pore formation elicits 

the release of cytochrome c and Diablo/Smac from the mitochondrial IMS into the 

cytosol. Once in the cytosol, cytochrome c and Diablo/Smac exert their pro-

apoptotic effects in the same fashion as they do in the intrinsic apoptotic pathway 

(27,36).  
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Figure 1.4. The mixed pathway of apoptosis. Extracellular stimuli lead to 
the formation of DISC and the subsequent activation of caspases 8 and 10. 
Activated caspase 8 and 10 can cleave effector caspases to elicit cell death 
via the extrinsic pathway or can enter the intrinsic pathway by interacting with 
BCL-2 proteins. Caspase 8 converts Bid into tBid, which then interacts with 
Bax/Bak inducing their oligomerization and formation of permeation pores on 
the OMM, which facilitates the transport of apoptogenic proteins such as 
cytochrome c and Diablo/Smac out of the mitochondria into the cytosol. 
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1.5 Capases 

The caspases and the Bcl-2 protein family are primary regulators of Apoptosis. 

The caspases are a group of cysteine proteases, which cleave proteins at sites 

that are proximal to aspartic acid residues(37).  Caspase activation is typically 

considered the molecular hallmark of apoptosis(38). Caspases exist in their 

inactive forms (pro caspase), and become activated during apoptosis by pro-

apoptotic proteins(39).   

 

While 12 caspases have been identified to date, not all play a role in the 

regulation of apoptosis. For instance, caspase 1 is instrumental in the regulation 

of biological processes that are unrelated to cell death including red blood cell 

and skeletal muscle myoblast maturation.  In contrast, caspase 14 is critical in 

skin cell development(40). 

 

There are two classes of caspases involved in apoptosis namely the initiator 

(apical) and the effector (executioner) caspases. The initiator caspases include 

caspases 2, 8, 9 and 10 and are activated in response to upstream apoptotic 

stimuli. The initiator caspases cleave and process the effector caspases 3, 6 and 

7. Upon activation, the effector caspases trigger cell death by degrading critical 

intracellular structural proteins. 
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1.6 The Bcl-2 proteins 

The Bcl-2 family of proteins is a major regulator of the intrinsic pathway of 

apoptosis. Their names derived from B-cell lymphoma/leukemia 2, and are the 

second member of a collection of proteins initially discovered during 

chromosomal translocations involving chromosomes 14 and 18 in human 

follicular lymphomas (41). There are approximately 20 different members of the 

Bcl-2 protein family. Bcl-2 protein family members all share one to four 

homologous Bcl-2 homology (BH) domains that are important for homo and 

hetero-dimeric interactions among different family members. Bcl-2 proteins are 

either pro-apoptotic or anti-apoptotic (2,3,14) depending on the amount of BH 

domains and their ability to regulate apoptosis(42). 

 

Pro-apoptotic Bcl-2 proteins are important for the initiation and stimulation of the 

intrinsic apoptotic pathway. These proteins are divided into two structurally and 

functionally distinct categories: multi-domain and BH3-only Bcl-2 proteins(43).  

Multi-domain pro-apoptotic Bcl-2 proteins Bak, Bax and Bok share three BH 

domains (BH1-BH3). They are responsible for the formation of permeation 

channels on the OMM that disturbs mitochondrial membrane integrity during 

apoptosis.  This facilitates the release of apoptogenic proteins from the 

mitochondria into the cytosol (44). Bak and Bax are ubiquitously expressed in all 

tissues while Bok is present only in reproductive cells (44). Bax and Bak are 

localized in different subcellular compartments of healthy cells. In the presence of 

death stimuli Bax undergoes conformational changes at both the amino- and 
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carboxyl- termini eliciting its translocation from the cytosol to the OMM and the 

eventual formation of large oligomeric complexes.  Bak is localized solely in the 

mitochondria and upon apoptotic stimuli, will undergo conformational changes 

elicit the formation of oligomeric complexes (45,46).  The oligomeric form of Bax 

and Bak form permeation pores on the OMM (47). These permeation channels 

mediate the release of pro-apoptotic proteins cytochrome c and Smac/Diablo 

from the IMS of the mitochondria to the cytosol where they exert their effects. 

 

1.7 Other cell death modalities - Autophagy and Necrosis  

Autophagy is a tightly regulated, ordered cell death process. It is self-degradative 

and essential for the maintenance of the balance of sources of energy at critical 

stages of development as well as in response to nutrient deprivation(48).  

Autophagy is also responsible for the removal of damaged organelles, misfolded 

and aggregated proteins(49) and the elimination of intracellular pathogens(50). 

The deregulation of autophagy has been implicated in non-apoptotic cell death. 

Autophagy can be selective or non-selective in the removal of specific 

organelles, ribosomes and protein aggregates(51). Furthermore, autophagy 

promotes cellular senescence and cell surface antigen presentation. It protects 

against genomic instability and is critical in the prevention of necrosis(50). Thus, 

autophagy has a key role in the prevention of diseases including cancer, 

neurodegeneration, liver diseases, autoimmune diseases, cardiomyopathy and 

infections. Increased endocytosis, vacuolation, membrane blebbing and nuclear 

condensation are all characteristic morphological hallmarks of autophagy. This 
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type of cell death is categorized as a defensive reaction that can elicit cell death 

or cell survival(50).  

 

Another modality of cell death is necrosis.  Necrosis is the irreversible loss of 

plasma membrane integrity(52). It is a form of cell injury that results in the 

premature death of cells in living tissue by autolysis. This type of cell death lacks 

the features of apoptosis and autophagy, and typically is considered uncontrolled 

(52,53). Necrosis is typically connected to immoderate cell loss in human 

pathologies and can lead to local inflammation (54-56), thought to occur through 

the liberation of factors from dead cells that alert the innate immune system 

(53,54,57).  Necrosis is signaled by irreversible cytoplasmic alterations 

(condensation, fragmentation and loss of structure) and nuclear changes 

(pyknosis, karyolysis and karyorhexis) (52,53). Infection, toxins and trauma can 

result in the unregulated digestion of cell components leading to necrosis. 

 

1.8 N-(3-oxododecanoyl)-homoserine lactone (C12) 

The gram-negative opportunistic bacterium Pseudomonas aeruginosa produces 

N-(3-oxododecanoyl)-homoserine lactone (C12) as a quorum-sensing molecule 

used to facilitate bacteria-bacteria communication (7).  Quorum sensing is a 

bacterial communication system that releases and detects small diffusible 

autoinducers (8,58). This system is responsible for the regulation of bacterial 

gene expression in response to changes in cell population density(58). Gram 

positive and gram-negative bacteria employ quorum-sensing communication to 
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regulate variety of physiological functions including: symbiosis, antibiotic 

production, conjugation, motility and biofilm formation(58). Mounting data has 

shown that C12 is involved in the regulation of bacterial virulence genes and also 

interacts with eukaryotic cells (59,60).   As a small, lipid-soluble and diffusible 

molecule, C12 readily enters cells of multiple tissues in the lungs of cystic fibrosis 

patients including fibroblasts, epithelial cells, leukocytes, and endothelial cells 

(9).  Additionally C12 alters many aspects of eukaryotic cell physiology including 

the inhibition of the secretion of proinflammatory cytokines (61-64), activation of 

p53, and inhibition of events commonly associated with cell death (65-68). C12 

has been shown to induce apoptosis in multiple types of cancer cells (66,69-71). 

C12 induces apoptosis by inhibiting phosphatidylinositide3-kinases, arresting 

Akt/PKB pathway and attenuating STAT3 activity in breast carcinoma cells 

(8,66).  In pancreatic carcinoma cells, C12 induces apoptotic signaling and 

inhibits cell migration (8,70). In colorectal cancer cells, C12 reduces the 

expression of thymidylate synthase while enhancing the activity of otherwise 

conventional chemotherapeutic agents including 5-fluorouracil (5-FU) (69). 

 Comparative SAR analysis has indicated that long acyl side chains with a 3-oxo 

substitution are essential for C12’s anti-cancer effect (69). However, the exact 

signaling pathway(s) leading to C12-triggered cell death remains unclear.   Our 

preliminary studies indicate that C12-triggered tumor cell apoptosis occurs by 

selectively activating the mitochondria-specific intrinsic pathway through a novel 

mechanism that is independent of activities of both anti- and pro-apoptotic Bcl-2 

proteins in human tumor cells.  We also find that C12 induces apoptosis 
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preferentially in oncogenically transformed but not in non-transformed human 

bronchial epithelial cells.  Importantly, we discovered that C12 cytotoxicity is 

mediated through the lactonase activity of paraoxonase 2 (PON2).   

 

1.9 Paraoxonase 2 (PON2) 

PON2 is a ubiquitously expressed mammalian protein with anti-oxidant 

properties and lactonase/arylesterase activities (72,73), and it rapidly hydrolyzes 

C12 to C12-acid, which becomes trapped and accumulates within human 

bronchial epithelial cells, particularly in mitochondria (74-77).  PON2 is 

upregulated in many types of cancer, including lung cancer, enabling cancer cells 

to resist conventional therapeutic drugs (78,79).  PON2 expression also prevents 

oxidation and inflammation, but the detailed mechanisms remain unclear.  This 

membrane-bound protein’s expression is markedly elevated in several human 

non-small cell lung carcinoma (NSCLC) cell lines.  Mutations in the Pon2 gene 

may be associated with vascular disease and a number of phenotypes related to 

diabetes. 

 

An important anti-tumor approach is the identification of small molecules that 

preferentially trigger tumor cell apoptosis regardless of the Bcl-2 protein profile in 

tumor (4,5).  The quorum-sensing molecule C12 preferentially induces 

transformed cell apoptosis in vitro and inhibits transplanted tumor growth in vivo 

independent of both anti- and pro-apoptotic Bcl-2 proteins. The apoptosis 

cascade induced by C12 in tumor cells is unique, evident by its rapid pro-
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apoptotic effects, such as depolarization of mitochondrial membrane potential 

within minutes, release of cytochrome c into the cytosol within one hour and 

detection of maximal activation of caspases within four hours.  This distinctive 

pro-apoptotic feature of C12 has not been observed in any other apoptosis 

paradigms, which might be attributed to the ability of C12 or its metabolite(s) to 

directly permeabilize mitochondria (within minutes) without involving Bcl-2 

proteins.  Furthermore, lung tumor cells are resistant to conventional therapeutic 

drugs partially due to overexpression of paraoxonase 2 (PON2), a protein with 

anti-oxidant properties and lactonase/ arylesterase activities (80,81).   
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CHAPTER 2: MATERIALS AND METHODS 

2.1. Reagents 

N-(3-oxododecanoyl)-homoserine lactone (C12) was purchased from Sigma (St. 

Louis, MO). Propidium iodide (PI) was obtained from Invitrogen (Carlsbad, CA). 

Unless otherwise stated, all reagents were dissolved in dimethyl sulfoxide 

(DMSO). Dulbecco’s Modified Eagle’s Medium (DMEM), penicillin/streptomycin, 

trypsin, and L-glutamine were obtained from Mediatech (Manassas, VA), and 

fetal bovine serum (FBS) was purchased from Gemini (Broderick, CA). Caspase-

Glo assay 3/7 kit was purchased from Promega (Madison, WI). Antibodies (Abs) 

used for western blot analysis were anti-β-actin mAb (Sigma), anti-caspase-3 

pAb (Cell signaling; Danvers, MA), anti-caspase-7 pAb (Cell signaling), anti-

caspase-8 pAb (Cell signaling), anti-caspase-9 pAb (Cell signaling), anti-Bax pAb 

(Santa Cruz; Dallas, TX), anti-Bak pAb (Millipore; Billerica, MA), anti-Bcl-2 mAb 

(Santa Cruz), anti-human PON2 (Abcam; Cambridge, MA), anti-murinePON2 

(Antibodies-on-line; Atlanta, GA), peroxidase-conjugated goat anti-rabbit IgG 

(Thermo; Waltham, MA) and peroxidase-conjugated goat anti-mouse IgG 

(Thermo).  

 

2.2. Cell lines and cell culture  

Immortalized mouse embryonic fibroblasts (MEFs) deficient in the expression of 

caspase-8 and their wild-type counterparts were provided by Professor David 
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Vaux (Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 

Australia).  MEFs lacking caspase-9 and their wild-type counterparts were 

obtained from Professor Jerry Adams (Walter and Eliza Hall Institute of Medical 

Research).  MEFs lacking caspase-3, caspase-7, caspase-3 and caspase-7, or 

their wild-type counterparts were obtained from Professor Richard Flavell (Yale 

University).  HCT116 cells expressing different levels of Bak and Bax were 

obtained from Dr. Richard Youle (National Institutes of Health).  NSCLC cell line 

A549 and NCI-H1299 cells were obtained from ATCC.  A549 cells 

overexpressing Bcl-2 were produced by retroviral infection as described 

previously (8). To generate NCI-H1299 or A549 cells with reduced PON2 

expression or vector control, we infected cells using respective lentiviral 

supernatants with 10 µg/ml polybrene.  Stable cell lines were obtained by 

culturing cells in the medium containing1.5 g/ml puromycin.  NHBE cells were 

purchased from Lonza (Walkersville, MD). hT/LT/Ras HBE cells were obtained 

from Professor Barrett Rollins (Harvard Medical School).  Lewis Lung Carcinoma 

cells, NCI-H1299 and A549 cells were cultured as described previously (8). 

NHBE and hT/LT/Ras cells were grown in BEGM supplemented with 

SingleQuots (LONZA). HCT116 cells were grown as described previously (8). 

Cells were all cultured in a 5% CO2 humidified incubator at 37oC. 
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2.3. Cell viability/Death assays 

The indicated MEF cell lines were plated in a 48-well tissue culture plate with 

20,000 cells in each well and cultured for 24 hours. Following the treatment with 

different concentrations of C12, cells were harvested in the presence of 1.0 µg/ml 

propidium iodide (PI).  Cell viability was measured by PI exclusion using flow 

cytometry (FACSCalibur, Becton Dickinson) (FACScalibur, Beckon Dickinson; 

San Jose, CA). The percentage of cell death is determined as 100 minus the cell 

viability measurement. 

 

2.4. Caspase-3/7 activity 

Caspase-3/7 activities were measured using a Caspase-Glo assay kit (Promega, 

Madison, WI, USA) (82). In this assay, the proluminescent substrate containing 

the amino acid sequence Asp-Glu-Val-Asp (DEVD) is cleaved by activated 

caspase-3/7, resulting in the release of a luciferase substrate (aminoluciferin) 

and the production of luminescent signal. Briefly, 24 hours before the treatment, 

cells were plated in white-walled 96-well plates. At the indicated time points 

following treatment with various molecules, cells were mixed with CellTiter-Glo 

reagent and the luminescence was quantified by a Gemini EM microplate 

spectrofluorometer (Molecular Devices; Sunnyvale, CA) according to the 

manufacturer’s protocols. Data were presented as relative fluorescence units 

(RFUs). 
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2.5. Western blot analysis 

Equal amounts of proteins (30 µg) were separated on a 4-12% Bis-Tris gel (Bio-

Rad; Hercules, CA) and transferred onto PVDF membrane (Millipore; Billerica, 

MA). The membrane was incubated with appropriate primary or secondary 

antibodies either overnight at 4oC or at room temperature for 3 hours in 1X 

phosphate-buffered saline (PBS) containing 5% (w/v) nonfat dry milk (Bio-Rad) 

and 0.2% (v/v) Tween 20. Protein levels were detected using the enhanced 

chemiluminescent detection system (Pierce; Rockford, IL) as described 

previously(83). 

 

2.6. Measuring Δmito using imaging microscopy of JC1 

For imaging experiments to measure mitochondrial membrane potential (Δmito), 

cells were incubated with growth media containing the Δmito probe JC1 (10 μM) 

for 10 minutes at room temperature, and then washed three times with Ringer’s 

solution to remove the extra dye. JC1-loaded cells were placed onto a chamber 

on the stage of a Nikon Diaphot inverted microscope. Cells were maintained at 

room temperature during the experiment. Treatments were made by diluting 

stock solutions into Ringer’s solution at the concentrations stated in the text. 

Fluorescence imaging measurements of Δmito were performed using equipment 

and methods that have been reported previously (7,14). Briefly, a Nikon Diaphot 

inverted microscope with a Fluor 20 X objective (0.75 numerical apertures) was 

used. A charge coupled device camera collected JC-1 emission images (green: 

510–540 nm; red: 580–620 nm) during excitation at 490 +/- 5 nm using filter 
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wheels (Lambda-10, Sutter Instruments, Novato, CA). Axon Imaging Workbench 

5.1 (Axon Instruments, Foster City, CA) controlled filters and collection of data. 

Images were corrected for background (region without cells). Quantitative data 

are reported as JC1 fluorescence ratios normalized to minimal JC1 ratios 

obtained at the start of the experiment and maximal JC1 ratios obtained after 

treatment with 5 μM FCCP. 

 

2.7. Detection of the release of cytochrome c from mitochondria  

Mitochondria were purified from MEF cells as described previously (84). Isolated 

mitochondria were resuspended in buffer containing 12 mM HEPES (pH 7.5), 1.7 

mM Tris-HCl (pH 7.5), 100 mM KCl, 140 mM mannitol, 23 mM sucrose, 2 mM 

KH2PO4, 1 mM MgCl2, 0.67 mM EGTA, and 0.6 mM EDTA supplemented with 

protease inhibitors (Complete; Roche Diagnostics, Indianapolis, IN). After one 

hour incubation with C12 at 30°C, mitochondrial vesicles were centrifuged at 

10,000×g for 10 min, and vesicles were dissolved in 1×SDS-PAGE loading buffer. 

Proteins in the vesicle fractions were detected by Western blotting.  

 

2.8. Electrophysiological experiments 

Solvent free planar phospholipid membranes were formed across a 0.1 mm hole 

in a Saran partition by the monolayer method (60,61). The monolayers were 

formed by layering the lipid solution (0.5% (w/v) diphytanoylphosphatidylcholine, 

0.5% (w/v) asolectin (polar extract of soybean phospholipids), and 0.05% (w/v) 

cholesterol in hexane) on the surface of the aqueous solutions (1.0 M KCl, 1 mM 
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MgCl2, and 5 mM PIPES, pH 6.9) on either side of the partition. The 

phospholipids were purchased from Avanti Polar Lipids.  Calomel electrodes 

were used to interface with the aqueous phase. The membrane voltage was 

clamped using a high-quality operational amplifier in the inverted mode and the 

current recorded using Clampex 10.3 software.  Data was low-pass filtered at 

500 Hz when recorded. Typically 20-50μL of 0.7 mg/ml C12 (dissolved in 95% 

isopropanol, 5% DMSO) was dispersed with rapid stirring into a 5mL aqueous 

solution on one side of the membrane, labeled “cis” side. All voltages referred to 

the cis side, the trans being held at virtual ground by the amplifier.  Vehicle 

controls produced no conductance. 

 

2.9. Immunofluorescence microscopy 

MEF cells plated onto cover glasses 24 hours earlier were rinsed with Ringer’s 

solution and incubated for 4 hours with either vehicle (DMSO) or 50 µM C12 in 

Ringer’s solution. The immunofluorescence staining of cytochrome c and tom20 

were carried out as described previously (Zhao et al., JBC, 2015). Images were 

captured using a Nikon Eclipse Ti confocal microscope (Nikon; Melville, NY) 

equipped with a PlanApo 60x, 1.42 NA oil immersion objective. To minimize 

variability for quantitative assessment, the same microscope settings were used 

across vehicle control and C12-treated samples for three individual experiments. 

Four to nine fields of view were captured to acquire a sample size of at least 100 

cells for each individual experiment. Quantification of cytochrome c and tom20 

percentage of overlap was performed using ImageJ (NIH). For each image, 
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Maximum Intensity Projections (MIPs) were first created for both the cytochrome 

c and tom20 channels. Using tom20 as a guide, regions of interest (ROIs) were 

drawn around the cytoplasm of the cells, and these ROIs were copied onto the 

cytochrome c and tom20 MIPs.  The percent area of pixels above a set threshold 

was calculated for every ROI (cell) for both cytochrome c and tom20. The 

thresholds, although set differently for cytochrome c and tom20, were kept the 

same for every image across control and C12-treated samples to reduce bias. 

Percent overlap between cytochrome c and tom20 was calculated as (percent 

area cytochrome c/percent area tom20)*100. 

 

For immunofluorescence staining of tumor sections, tumor sections (5 μm) were 

treated with antigen retrieval procedure by boiling in 10% Triton x-100, then 

slowly cooled down at room temperature. After incubating with the blocking buffer 

(1× PBS, 0.2% Triton X-100, 5% goat serum), the slides were incubated with 

antibodies against activated caspase-3 (Cell signaling) overnight at 4oC. 

Following three 10-minute washes, slides were incubated with goat anti-rabbit 

IgG (Alexafluor-568, Invitrogen) for 1 hour. The fluorescence was visualized by 

confocal microscopy using a 40x CFI Plan Fluor objective (NA 0.6) 

 

2.10. Cell cycle analysis and cell proliferation assay 

For cell cycle analysis, 5×105 cells were sedimented (300 x g for 5 minutes) and 

washed twice with 500 µl 1 x PBS.  Cells were then fixed with 1 ml 70% ethanol 

in 1 x PBS at 4oC overnight.  After centrifugation, cells were washed twice with 1 
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x PBS and resuspended in 500 µl 1 x PBS.  50 U RNase A (Qiagen, Valencia, 

CA) were added to samples and incubated at 37oC for 1 hour. Five µg propidium 

iodide was added to samples which were incubated for 30 minutes at 37oC 

before flow cytometric analysis. To evaluate cell proliferation, 1.5×104 cells were 

plated in wells of a 12-well plate and the total cell number was determined by 

using a hemocytometer. 

 

2.11. In vivo animal studies  

For transplanted tumors in C57BL/6 mice, eight-week old C57BL/6 female mice 

(Jackson Laboratories; Bar Harbor, ME) were inoculated subcutaneously (s.c.) 

with 1×106 Lewis Lung Carcinoma cells on the right flank.  Tumors were 

measured daily with dull edged Vernier calipers (V = L×W2/2).  After tumor size 

reached around 100 mm3, animals with size-matched tumors were divided into 

control group and C12 group.  DMSO or C12 was administered intraperitoneally 

each day.  At the end of the experiments, tumors were excised for apoptosis 

evaluation.  TUNEL labeling was carried out by the Pathology Research Services 

Laboratory at University of Washington.  The slides were scanned by a 

ScanScope CS digital slide scanner (Aperio; Vista, CA). 

 

2.12. Statistical analysis 

All experiments were performed in triplicate at least three times. Results are 

presented as mean ± standard deviation. Statistical analysis was performed 

using Student’s two tail t-test. A p value < 0.05 was considered significant. 
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CHAPTER 3: RESULTS 
 
3.1 Caspase-3 and caspase-7 were required for C12-induced cell death. 

In multicellular organisms, cell death is a highly heterogeneous process in which 

several distinct, in some cases partially overlapping, cell signaling cascades can 

be activated (1).  Although C12’s ability to trigger the events commonly linked to 

apoptosis has been reported (References 56, 60, 63, 65, 66), it is unclear 

whether other cell death signaling is involved.  To thoroughly explore C12-

induced cell death signaling, we first investigate whether caspase-3 and 

caspase-7 are essential to mediate cytotoxic effects of C12 Cytotoxicity of C12 

was examined in MEF cells lacking only caspase-3 (caspase-3-KO), only 

caspase-7 (caspase-7-KO), or both of them as well as their wild-type (WT) 

counterparts (Figure 3.1A).  C12 induced significant cell death in WT, caspase-3-

KO and caspase-7-KO MEF cells, whereas caspase-3/7-DKO MEF cells were 

completely resistant to C12 exposure (Figure 3.1B).  Moreover, less cell death 

was observed in caspase-3-KO or caspase-7-KO MEFs than their wild-type 

counterparts, indicating that both caspase-3 and caspase-7 are involved in 

apoptosis signaling initiated by C12, although caspase-3 appears to play a more 

prominent role.  The essential role of caspase-3 and caspase-7 indicates that cell 

death induced by C12 is largely attributed to apoptosis. 
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Figure 3.1. Caspase-3 and caspase-7 were required for C12-induced cell 
death (A) Caspase-3 and caspase-7 expression in MEF cells was examined 
via western blot analysis. (B) The indicated MEFs were treated with various 
concentrations of C12 for 48 hours and cell viability was measured by 
propidium iodide exclusion using flow cytometry.  Cell death data are shown 
as mean ± standard deviations of 3 independent experiments. Asterisks 
indicate P < 0.05 (*); Student's unpaired t test. 
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3.2. Caspase-3 and caspase-7 were not required for mitochondrial 

depolarization.   

Mitochondrial outer membrane permeabilization (MOMP) has been recognized to 

be a “no-return” step in both intrinsic and extrinsic apoptotic pathways (1). To 

further explore C12-initiated apoptotic signaling, we first studied the involvement 

of caspase-3 and caspase-7 in the key event of MOMP: depolarization of 

mitochondrial membrane potential (∆mito).  Depolarization of Δmito was 

evaluated by determining the changes in fluorescence with the voltage-

dependent dye JC1 being released from mitochondria into the cytosol and 

nucleus.  Within minutes of C12 exposure, mitochondria in MEFs were largely 

depolarized to a degree close to the complete depolarization of Δmito induced by 

the ionophore FCCP (Figure 3.2A).  Importantly, depolarization of Δmito occurred 

at similar levels in WT and caspase-3/7-DKO MEF cells upon C12 exposure, 

indicating that MOMP induced by C12 occurs upstream of “effector” caspase 

activation  (Figure 3.2B).  
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Figure 3.2. Caspase-3 and caspase-7 were not required for 
mitochondrial depolarization.  (A) C12’s effect on mitochondrial potential is 
independent of caspase-3 and caspase-7. MEFs were loaded with the 
mitochondrial potential dye JC-1, and its fluorescence was measured using 
imaging microscopy during the treatment with 50 µM C12 and 10 µM FCCP. 
Typical results are shown. (B) C12 caused equivalent depolarization of 
mitochondrial potential in both WT and caspase 3/7-DKO MEF cells.   Means 
+/- standard deviations for 3 experiments are shown. Responses of WT and 
caspase-3/7- DKO MEFs are not significantly different (p>0.05). Student’s 
unpaired t test. 
 



 30 

3.3. C12-induced mitochondrial outer membrane permeabilization occurs 

upstream of caspase-3/7 activation. 

To validate these observations, we studied the involvement of caspase-3 and 

caspase-7 in another key event of MOMP, cytochrome c release from 

mitochondria into the cytosol.  We performed immunofluorescent studies to 

evaluate C12-evoked redistribution of cytochrome c to the cytosol/nuclei.  Upon 

C12 treatment, intracellular distribution of cytochrome c was diffuse in the cytosol 

and nuclei in both WT and caspase-3/7-DKO MEFs, whereas Tom20 maintained 

its characteristic mitochondrial distribution, demonstrating that mitochondria in 

WT and caspase-3/7-DKO MEFs were permeabilized with cytochrome c released 

into the cytosol and diffused into the nuclei (Figure 3.3A).  The redistribution of 

cytochrome c was evaluated by calculating the percentage of overlapping 

between cytochrome c and Tom20, and the results indicate that C12 caused 

equivalent cytochrome c release in WT and caspase-3/7-DKO MEFs (Figure 

3.3B).  Overall, our results provide more evidence that C12 triggers MOMP 

independent of caspase-3 and caspase-7 activation.  
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Figure 3.3 C12-induced mitochondrial outer membrane permeabilization 
occurs upstream of caspase-3/7 activation. (A) Representative confocal images 
of MEF cells treated with either DMSO (control) or 50 µM C12 for 4 hours. The 
mitochondrial marker Tom20 is shown in red, cytochrome c is in green and DAPI in 
blue. Following the treatment with C12, staining of cytochrome c became diffuse 
and lost its co-localization with Tom20. (B) Cytochrome c is released from both WT 
and caspase-3/7-DKO MEFs to the similar degree upon C12 exposure. Threshold 
intensity of cytochrome c is compared to that of Tom20 for over 100 cells across 
control and C12 treated samples. Data represent means +/- standard deviations for 
three independent experiments. Student’s unpaired t test. 
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3.4. Caspase-8 and caspase-9 plays distinct roles in C12-induced apoptosis. 

While it has been shown that C12 induces an apoptotic modality of cell death, the 

exact signaling pathway remains unclear. It is well accepted that caspase-8 

activity is characteristic of the extrinsic apoptotic pathway while caspase-9 

activity is hallmark of the intrinsic apoptotic pathway.  To elucidate which 

apoptotic pathway is triggered in C12 induced cell death, we studied two pairs of 

MEF cells deficient in either caspase-8 or caspase-9 and their wild-type 

counterparts. Upon treatment with C12, similar levels of cell death were detected 

in both WT and caspase-8-KO MEF cells (Figure 3.4B).  In agreement with cell 

death data, caspase-3/7 was activated regardless of caspase-8 expression, 

indicating that caspase-8-mediated extrinsic pathway is not involved in C12-

induced apoptosis in MEFs.  In contrast, MEFs deficient in caspase-9 expression 

were completely resistant to C12 treatment (Figure 3.4E).  Furthermore, C12 

failed to evoke any significant activation of cspase3/7 (Figure 3.4F). Overall, 

these data suggest that C12 induces apoptotic signaling largely through 

activating the mitochondria-dependent intrinsic apoptotic pathway in MEFs. 
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Figure 3.4. Caspase-8 and caspase-9 plays distinct roles in C12-induced 
apoptosis. (A) Caspase-8 expression in MEF cells was examined by western 
blot.  (B) Caspase-8 activation is not involved in C12-induced cell death.  The 
cytotoxicity of C12 on MEFs was assessed 24 hours following the exposure by 
a propidium iodide DNA dye exclusion approach.  (C) Caspase-3/7 activities 
were measured 24 hours after C12 treatment.  (D) Caspase-9 expression in 
MEF cells was determined by western blot.  (E)  Wild-type and caspase-9-KO 
MEFs were treated with C12, and cell viability was measured 48 hours later.  
(F) Upon C12 treatment for 24 hours, caspase-3/7 activities were determined.  
All data are shown as means ± standard deviations of 3 independent 
experiments.  Asterisks indicate P < 0.05 (*); Student's unpaired t test. ns, no 
significance. 
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3.5. C12-induced mitochondrial potential decrease is independent of caspase-8 

and caspase-9. 

To further explore the roles of the “initiator” caspases in MOMP mediated by 

C12, depolarization of Δmito was examined in caspase-8-KO or caspase-9-KO 

MEF cells or their WT counterparts respectively.  Consistent with its effects on 

cell viability and caspase-3/7 activation (Figures 3.4B-C), deficiency in 

caspase-8 expression did not affect quick depolarization of Δmito (Figures 

3.5A-B).  Similarly, C12 caused the same levels of Δmito  depolarization in WT 

and caspase-9-KO MEF cells (Figures 3.5C-D), indicating that the “initiator” 

caspases are not involved in C12- induced MOMP.   
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Figure 3.5 C12-induced mitochondrial potential decrease is independent 
of caspase-8 and caspase-9. (A)  The mitochondrial potential of the WT and 
caspase-8-KO MEF cells loaded with JC-1 was determined by fluorescent 
microscopy upon the treatment with 50 µM C12 and 10 µM FCCP.  
Representative results were shown.  (B) C12 caused equivalent mitochondrial 
depolarization in WT and caspase-8-KO MEF cells.  (C) Mitochondria in WT 
and caspase-9-KO MEF cells were depolarized to the similar degrees upon 
the treatment of 50 µM C12 and 10 µM FCCP. (D) Summary of the data 
shown in (I). All data are shown as means ± standard deviations of 3 
independent experiments.  Student's unpaired t test. ns, no significance. 
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3.6. C12-induced caspase-9 activation occurs downstream of mitochondrial 

membrane permeabilization. 

We have demonstrated that caspase-9 activation is involved in C12-induced 

apoptosis. To further elucidate the involvement of caspase-9 activation, we 

examined cytochrome c redistribution from mitochondria to the cytosol/nuclei 

upon C12 exposure using immunofluorescence staining.  While C12 evoked the 

release of cytochrome c from mitochondria to the cytosol/nuclei regardless of 

caspase-9 expression, Tom20 displayed typical punctate and perinuclear 

mitochondrial distribution following C12 treatment (Figure 3.6A).  Moreover, C12 

caused similar level of cytochrome c release from mitochondria in WT and 

caspase-9-KO MEF cells (Figure 3.6B).  Taken together, these data indicate that 

C12 causes acute MOMP independent of any “initiator” caspase, suggesting that 

the effects of C12 on MOMP might be attributed to its direct action of on 

mitochondria.  
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Figure 3.6. C12-induced caspase-9 activation occurs downstream of 
mitochondrial membrane permeabilization. (A) Representative confocal images of 
MEF cells treated with either DMSO (control) or 50 µM C12 for 4 hours.  The 
mitochondrial marker Tom20 is shown in red, cytochrome c in green, and DAPI in 
blue.  Following the treatment with C12, staining of cytochrome c became diffuse and 
lost its co-localization with Tom20.  (B) Cytochrome c is released from both WT and 
caspase-3/7-DKO MEFs to the similar degree upon C12 exposure.  Threshold 
intensity of cytochrome c is compared to that of Tom20 for over 100 cells across 
control and C12-treated samples.  Data represent means +/- standard deviations of 
three independent experiments. Student's unpaired t test. 
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3.7. C12 directly induces mitochondrial outer membrane permeabilization in vitro. 

Since C12 depolarized Δmito within minutes independent of both “initiator” 

caspases and “effector” caspases (Figures 3.2 and 3.5), we reasoned that C12 

could possess activities directly permeabilize mitochondria.  To this purpose, we 

examined the effects of C12 on mitochondrial outer membrane integrity in vitro.  

Mitochondria isolated from WT MEF cells were incubated various concentrations 

of C12.  We assessed the amount of cytochrome c released from the 

mitochondria using western blot analysis (Figure 7A). In a manner dependent of 

C12 doses, less cytochrome c was detected in mitochondrial fractions with 

concurrent increase of cytochrome c in released fractions, indicating that C12 is 

able to permeabilize mitochondria directly in vitro.  
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Figure 3.7. C12 directly induces mitochondrial outer membrane 
permeabilization in vitro. (A) Mitochondria was isolated from wild-type MEFs 
and incubated with C12.  The cytochrome c release from mitochondria induced 
by C12 was determined by western blot. (B) The intensities of cytochrome c in 
mitochondrial fractions and released fractions shown in (A) were quantified 
using the software ImageJ (NIH). Cytochrome c release is represented as a 
percentage of the sum of the protein intensity mitochondrial fractions and 
released fractions.  Mean ± standard deviation for three independent 
experiments are shown.  Asterisks indicate P values of ˂ 0.05 (*) or ˂ 0.01 (**) 
by Student’s unpaired t test. 
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3.8. C12 forms channels with large conductance in phospholipid membranes in 

vitro. 

The amphipathic lipid ceramide forms large stable permeation channels in the 

mitochondrial outer membrane capable of releasing proteins (85,86). As C12 

directly induce MOMP in vitro (Figure 3.7), we postulated that amphipathic C12 

might possess similar activities.  Thus, we studied whether C12 is capable of 

forming large conductance pathways in phospholipid membranes lacking any 

proteins.  Following the addition of C12 to planar phospholipid membranes, the 

conductance increased slowly reaching steady levels but with frequent 

increases and decreases in conductance (Figure 8A).  The formation of the 

conductance consisted of discrete conductance increments that are 

characteristic of channels with various magnitudes.  Upon the addition of LaCl3, 

conductance formed by C12 was rapidly lost, suggesting that it was not caused 

by defects in the membrane (Figure 3.8A).  This was reversed by chelation of 

the lanthanide with EDTA.  Furthermore, the discrete conductance changes 

showed a log-normal distribution, which is typical of substances of varying size 

(Figure 3.8B).  However, the distribution of conductance does not seem to be a 

continuum but rather shows indications of preferential conductance that is 

multiples of 16 nS.  The results are consistent with C12 forming large channels 

of variable size that grow and shrink by incorporating or losing assemblies of 

C12 lipids, suggesting that C12 might directly function on mitochondria to 

induce MOMP (Figure 3.8D). 
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Figure 3.8. C12 forms channels with large conductance in phospholipid 
membranes in vitro. 
(A) Formation and reversible disassembly of C12 channel(s) in a planar 
phospholipid membrane.  At the indicated time points, C12, LaCl3, or EDTA was 
added to the aqueous phase on one side (cis side) of the membrane.  (B) 
Distribution of C12-induced conductance changes in phospholipid membranes.  
Sudden changes in conductance were measured and grouped into bins in log 
scale as appropriate for the apparent log-normal relationship of the data.  The 
data are pooled from 7 separate experiments. (C) Distribution of C12-induced 
conductance measured on occasions of sudden conductance changes.  Four 
nanoSiemen bins were used for the histogram.  These are pooled data from 7 
separate experiments. (D)The proposed model of C12 or C12 metabolite(s) 
functioning as a mitolytic molecule to directly cause MOMP. 
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3.9. C12 inhibits LLC tumor growth and induces tumor cell apoptosis in vivo in 

a dose-dependent fashion. 

The cytotoxic effects of C12 on tumor cells have been reported previously 

(66,69,74,80), but whether they are selective for transformed cells was 

unknown. To investigate whether oncogenic transformation influences the 

cytotoxicity of C12, we studied normal human bronchia/tracheal epithelial 

(NHBE) and corresponding HBE immortalized and transformed successively by 

telomerase, SV40 large T antigen and activated Ras (H-ras V12). This is a 

well-established epithelial cell malignant transformation system related to 

human lung cancer (87). Upon C12 treatment, we observed higher levels of 

cell death and caspases-3/7 activation in transformed HBE cells than in their 

untransformed counterparts.  This indicates that C12 induces apoptosis 

preferentially in transformed cells (Figure 3.9A-B). To investigate the relevance 

of C12 cytotoxicity on transformed cells to tumor growth in animals, we 

examined the effects of C12 on the growth of established Lewis Lung 

Carcinoma (LLC) tumors.  We found that transplanted tumors grew much more 

slowly in C12-treated mice than in vehicle-treated mice, revealing a dose 

dependent anti-tumor activity of C12 as a single agent (Figure 3.9C). By 

evaluating caspase3/7 activation and TUNEL labeling, we found that apoptosis 

is involved in the inhibitory activity of C12 in vivo (Figure 3.9D-F). 
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Figure 3.9. C12 inhibits LLC tumor growth and induces tumor cell 
apoptosis in vivo in a dose-dependent fashion. (A-B) Cytotoxicity of C12 is 
affected by oncogenic transformation. C12’s effects on HBE cell viability (A) 
and caspase-3/7 activation (B) were examined. All data shown are mean ± 
standard deviation of 3 independent experiments. Asterisk indicates P < 0.05 
(*) or P< 0.01 (**) by student's unpaired t test. (C) The inhibitory effects of C12 
on the growth of LLC tumors were studied. Tumors were measured daily and 
tumor tissues were removed at the end of treatments. Data are shown as mean 
± standard deviation of tumor volumes of 7 animals in either vehicle control or 
C12-treated group. Asterisk indicates P < 0.05 (*) by student’s unpaired t test. 
(D) Apoptotic cells in tumor sections were detected by immunofluorescence 
staining of activated caspase-3. Representative images of tumor sections are 
shown. Scale bar, 50 µm.  (E) TUNEL staining of apoptotic cells in control or 
C12-treated tumor sections. Representative images are shown. Scale bar, 60 
µm. (F) The percentage of apoptotic cells shown in (E) was quantified using 
ImageJ software. Data are mean ± standard deviation of three independent 
tumor sections. Asterisk indicates P < 0.05 (*) or P< 0.01 (**) by student’s 
unpaired t test.  
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3.10. C12 induces tumor cell apoptosis independent of anti-apoptotic Bcl-2 

proteins. 

Anti-apoptotic Bcl-2 proteins are frequently overexpressed in human cancers 

and associated with chemotherapeutic resistance and relapse(88).  To 

investigate the involvement of anti-apoptotic Bcl-2 proteins in C12-induced 

human tumor cell apoptosis, Bcl-2 was stably overexpressed in A549 cells by 

retroviral infection (Figure 3.10A). The anti-tumor drug actinomycin D caused 

less cell death and less caspases-3/7 activation in Bcl-2-overexpressing cells 

than in cells expressing the empty vector. In contrast, C12 induced similar 

levels of cell death and caspase-3/7 activation in cells overexpressing Bcl-2 

and the vector control cells (Figure 3.10B-C). We also investigated whether 

C12’s effect on mitochondrial membrane potential is dependent of Bcl-2.  

A549-vector and A549-Bcl-2-overexpressing cells were loaded with JC1, and 

its fluorescence was measured using imaging microscopy (Figure 3.10D-E). 

Within minutes of C12 exposure, mitochondria in A549-vector cells and A549-

Bcl-2 overexpressing cells were depolarized to the same degree, providing 

more evidence that C12 evokes apoptosis independent of anti-apoptotic Bcl-2 

proteins.  
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Figure 3.10. C12 induces tumor apoptotic cell death independent of 
anti-apoptotic Bcl-2 proteins. (A) Retrovirally overexpressed Bcl-2 in 
A549 cells was examined by western blot. (B) Cell viability was measured 
48 hours after C12 or actinomycin D (ActD) exposure. (C) Caspase-3/7 
activities were determined following 2 hour exposure to C12 and 24 hour 
exposure to actinomycin D. (D) C12’s effect on mitochondrial membrane 
potential is independent of Bcl-2.  A549-vector and A549-Bcl-2-
overexpressing cells were loaded with JC1, and its fluorescence was 
measured using imaging microscopy during the treatment with 100 µM 
C12 and 5 µM FCCP. Typical results from three independent experiments 
are shown. (E) C12 caused equivalent depolarization of mitochondrial 
potential in vector and Bcl-2-overexpressing A549 cells.  All data are 
shown as mean ± standard deviation of three independent experiments. 
Asterisks indicate P < 0.05 (*); ns, no significant by student's unpaired t 
test. 
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3.11. C12-induced tumor cell apoptosis is independent of Bak and Bax. 

Previous studies show that C12 induces apoptosis in MEFs independent of 

Bak and Bax (9), two pro-apoptotic Bcl-2 members required for MOMP in 

almost all apoptotic paradigms (3). To elucidate whether Bak and Bax are also 

involved in C12-induced tumor cell apoptosis, human colon carcinoma HCT116 

cell lines deficient in Bak alone (Bak-KO), Bax alone (Bax-KO), or both Bak 

and Bax (Bak/Bax-DKO) were investigated (Figure 3.11A). We found that C12 

caused equivalent cell death and caspase-3/7 activation in all the HCT116 cell 

lines examined (Figure 3.11B-C). This indicates that deficiency of Bak or Bax in 

HCT116 cells did not influence their responses to C12. Furthermore, deficiency 

in Bak/Bax expression did not affect C12’s effect to depolarize Δmito (Figure 

3.11D-E).   
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Figure 3.11. C12-induced tumor cell apoptosis is independent of Bak and 
Bax. (A) Bak and Bax expression in the indicated HCT116 cells was examined 
by western blot. (B-C) C12 induced similar levels of cell death (B) and 
caspase-3/7 activation (C) among WT, Bak-KO, Bax-KO and Bak/Bax-DKO 
HCT116 cells after 24 hours treatment. (D) The mitochondrial potential of the 
WT and Bak/Bax-DKO HCT116 cells loaded with JC1 was determined by 
fluorescent microscopy upon the treatment with 50 µM C12 and 5 µM FCCP.  
Representative results are shown. (E) Summary of the data shown in (D). All 
data are presented as mean ± standard deviation of three different 
experiments. ns, no significant. 
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3.12. PON2 expression is enhanced in human lung tumor tissues 

and oncogenically transformed HBE cells. 

It has been shown that PON2 upregulation in some cancer cells, including lung 

cancer cell lines, enables cancer cells to become resistant to conventional 

therapeutic drugs (80). To determine whether PON2 expression is enhanced in 

human lung cancer, we examined PON2 protein levels in tumor tissues of non-

small cell lung carcinoma (NSCLC) patients by western blot. Among eleven 

samples from patients, we found that PON2 was overexpressed in eight of lung 

cancer tissues compared with corresponding adjacent normal tissues, whereas 

its expression was slightly decreased in three of them (Figure 3.12A).  As Ras-

transformed HBE displayed higher levels of apoptosis compared with their 

untransformed counterparts upon C12 treatment (Figure 3.9A-B), PON2 

expression was also increased in transformed HBE cells. These observations 

provide more evidence that oncogenic transformation enhances PON2 

expression (Figure 3.12C).  
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Figure 3.12. PON2 expression is enhanced in human lung tumor tissues 
and oncogenically transformed HBE cells. (A) Expression of PON2 in 
NSCLC tissue specimens and corresponding adjacent normal tissues from 11 
patients were evaluated by western blot. Samples 1-4, 6, 8, 9, 11 were from 
adenocarcinoma patients, whereas samples 5, 7, 10 were from squamous cell 
carcinoma patients. T, tumor; N, normal. (B) The intensities of bands in (A) were 
quantified using ImageJ software (NIH). To normalize loading variation, the 
relative levels of PON2 were calculated by dividing the PON2 value into the 
corresponding value for actin. The data were shown as a ratio of PON2 levels in 
a tumor tissue sample versus its corresponding normal tissue, and the value 
bigger than 1 indicates that PON2 expression is increased in tumor tissues. 
Differential expression of PON2 in tumor versus normal tissues is significant 
with the value of “P” smaller than 0.01 as calculated by student’s paired t test. 
(C) The expression of PON2 and PON3 in primary HBE cells and their 
transformed counterparts was determined by western blot. 
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3.13. PON2 is required in C12 cytotoxicity in human lung tumor cells.  

Overexpression of PON2 promotes cytotoxicity of C12 in non-transformed MEF 

and HEK293T cells (9), but the role of endogenous PON2 in C12-induced 

apoptotic signaling is unclear. To further investigate the mechanism of C12-

triggered apoptosis, we investigated the prospective involvement of endogenous 

PON2 in C12 cytotoxicity in tumor cells. We employed shRNA to stably reduce 

PON2 expression in human NSCLC cell lines A549 and NCI-H1299. Treatment 

with C12 elicited less cell death and caspase-3/7 activation in A549 and NCI-

H1299 cells lacking PON2 expression (Figure 3.13). Conversely, increased cell 

death and caspase-3/7 activation observed in PON2-deficient cells in response 

to the conventional apoptotic stimuli actinomycin D and tunicamycin, suggesting 

that PON2/C12 interaction induces a novel form of apoptosis distinct from that 

evoked by classical apoptotic stimuli (8) .  
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Figure 3.13 PON2 is required in C12 cytotoxicity in human lung tumor 
cells.  
(A) PON2 expression in A549 cells was stably reduced by shRNA. The 
expression levels of PON2 were determined by western blot. (B) C12 induced 
less cell death in A549 cells with reduced PON2 expression than in control 
vector cells. Cell death was assessed after 32 hour incubation. (C) Upon 
treatment with different doses of C12 for 32 hours, less caspase-3/7 activation 
was detected in cells with reduced PON2 expression than control vector cells. 
(D) Stable reduction of PON2 expression in NCI-H1299 cells was evaluated by 
western blot. (E) C12 induced less cell death in NCI-H1299 cells with reduced 
PON2 following 24-hour treatment. (F) Less apoptosis was detected in NCI-
H1299 cells with reduced PON2 expression than control vector cells induced by 
C12.  All data shown are mean ± standard deviation of three independent 
experiments.  Asterisks indicate P values of ˂ 0.05 (*) or ˂ 0.01 (**) by 
Student’s unpaired t test. 
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3.14. Murine PON2 sensitizes human lung tumor cells with reduced 

endogenous PON2 expression to C12. 

To validate the role of PON2 in mediating C12-induced apoptosis, we stably 

overexpressed murine PON2 cDNA in A549 cells deficient in PON2 expression 

by retroviral infection (Figure 3.14A).  Upon treatment with C12, we observed 

more cell death and caspase-3/7 activation in PON2-deficient A549 cells 

overexpressing murine PON2 compared to vector control and parental cells 

(Figure 3.14B).  Similarly, stable overexpression of murine PON3 in PON2-

knockdown NCI-H1299 cells was confirmed by western blot (Figure 3.14C). We 

found that C12 induced more cell death and elicited higher caspase-3/7 

activation in PON2-knockdown NCI-H1299 cells expressing mouse (Figure 

3.14D).  
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Figure 3.14 Murine PON2 sensitizes human lung tumor cells with reduced 
endogenous PON2 expression to C12. (A) Murine PON2 cDNA was stably 
overexpressed in A549 cells with reduced PON2 expression by retroviral 
infection. Expression levels of PON2 were determined by western blot. (B-C) After 
treating with different doses of C12 for 24 hours, more cell death (B) and 
caspase-3/7 activation (C) were detected in PON2-knockdown A549 cells with 
increased mouse PON2 expression comparing to vector control and parental 
cells. (D) Stable overexpression of murine PON3 in PON2-knockdown NCI-H1299 
cells was examined by western blot. (E-F) C12 induced more cell death (E) and 
caspase-3/7 activation (F) in PON2-knockdown NCI-H1299 cells expressing 
mouse PON2 after 24 hours treatment. All data shown are mean ± standard 
deviation of three independent experiments. Asterisks indicate P values of ˂ 0.05 
(*) or ˂ 0.01 (**) by Student’s unpaired t test. 
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3.15. PON2 is essential for C12-triggered cell death in HEK-293T and HBE 

cells. 

To further explore the involvement of PON2 in apoptotic signaling in non-

transformed cells, endogenous PON2 expression was stably reduced in 

Human Embryonic Kidney-293T (HEK-293T) cells, whose viability was 

assessed upon treatment with C12 (Figure 3.15A-B). Reducing PON2 

expression in HEK-293 cells enabled cells resistant to C12.  Furthermore, we 

stably decreased PON2 expression in immortalized human bronchial epithelial 

(HBE) cells (89) and measured cell viability upon C12 exposure (Figure 3.15C-

D).  Reducing PON2 expression in HBE cells de-sensitized cells to C12.  

Overall, these data provide evidence that PON2 plays a similar role in 

apoptotic signaling in both transformed and non-transformed cells. 
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Figure 3.15 PON2 is essential for C12-triggered cell death in HEK-293T and 
HBE cells. (A) PON2 expression was stably reduced in HEK-293Tcells.  (B) 
The viability of HEK-293Tcells was measured 24 hours after C12 treatment.  (C) 
Stable decrease of PON2 expression in human bronchial epithelial (HBE) cells 
was determined by western blot. (D)The viability of HBE was evaluated 24 
hours following C12 exposure.  Mean ± standard deviation for three 
independent experiments are shown. For all the data, *, P < 0.05, Student’s 
unpaired t test. 
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3.16. PON2 is essential for human lung tumor cell proliferation but not  non-

transformed cell proliferation. 

During the process of generating A549 and NCI-H1299 cells lacking PON2 

expression, we observed that those cells proliferated much slower than their 

vector control counterparts.  To determine whether or not PON2 is essential for 

human lung tumor cell proliferation, we measured the proliferation of A549 cells 

and NCI-H1299 expressing PON2 shRNA or the empty vector control. We 

found that proliferation of NCI-H1299 and A549 cells with reduced PON2 

expression was slower compared to that of their empty vector expressing 

counterparts (Figure 3.16A-B), implicating a role of PON2 in lung tumor cell 

proliferation.  To determine whether or not PON2 is involved in the proliferation 

of non-transformed cells, we measured the proliferation of HEK-293T and HBE 

expressing PON2 shRNA or the empty vector control.  It was found that HEK-

293T and HBE cells lacking PON2 expression grew at the same rate as their 

counterparts expressing the empty vector (Figure 3.16C-D), indicating that 

PON2 is not involved in non-transformed cell proliferation.  Overall, these data 

indicate that PON2 mediates apoptosis independently of its function to 

modulate cell proliferation. 
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Figure 3.16 PON2 is essential for human lung tumor cell proliferation but  
not non-transformed cell proliferation.  The proliferation of A549 cells (A),  
NCI-H1299 cells (B), HEK-293T cells (C) and HBE cells (D) expressing PON2 
shRNA or the empty vector control was measured.  Proliferation of NCI-H1299  
and A549 cells with reduced PON2 expression was slower compared with their  
counterparts expressing the empty vector.  HEK-293T cells (C) and HBE cells  
with reduced PON2 expression proliferated at the same rate as their vector  
control counterparts.  All data shown are mean ± standard deviation of three  
independent experiments.  Asterisks indicate P values of ˂ 0.05 (*) by Student’s 
unpaired t test.       
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3.17. Deficiency in PON2 expression induces G1 cell cycle arrest of A549 cells. 

To investigate the effects of deficient PON2 expression, we performed cell 

cycle analysis to determine the cell cycle profile of A549 cells expressing 

PON2 shRNA or the empty vector. We found that deficiency in PON2 

expression induces cell cycle arrest at G1 phase in A549 cells (Figure 3.17). 
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Figure 3.17. Deficiency in PON2 expression induces G1 cell cycle arrest of 
A549 cells. (A) Cell cycle profiles of A549 cells expressing PON2 shRNA or the 
empty vector control were determined.  (B) Summary of the data shown in (A).  
Reducing PON2 expression caused higher percentage of the cells in G1 phase of 
cell cycle.  All data shown are mean ± standard deviation of three independent 
experiments.  Asterisks indicate P values of ˂ 0.01 (**) by Student’s unpaired t test.  
“ns”, no significance. 
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CHAPTER 4: DISCUSSION 
 
The quorum-sensing molecule C12 evokes apoptosis in a variety of mammalian 

cells (62,65,68,90). Several signaling pathways leading to apoptosis have been 

associated with C12 cytotoxicity.  In addition to the activation of the intrinsic 

apoptosis pathway, C12 is also shown to induce caspase-8 activation, 

suggesting a role of the extrinsic apoptosis cascade in C12-induced apoptosis (9). 

The interplay between these pathways and the functions of key molecules 

involved were still unclear. In this study using cells deficient in one or more 

caspases, we present evidence that caspase-3/7 and caspase-9 but not 

caspase-8 are essential for C12-induced apoptotic cell death (Figures 3.1-3.2), 

indicating that C12 selectively triggers the mitochondria-dependent intrinsic 

apoptotic pathway.  Previously reported C12-caused caspase-8 activation; in 

addition to the events associated with activating a plasma membrane receptor 

(e.g. TNF receptor), are likely secondary responses to MOMP.  The dispensable 

roles of both “initiator” caspase (e.g. caspase-9) and “effector” caspase (e.g. 

caspase-3/7) in C12-indcued MOMP demonstrate that C12 may directly damage 

mitochondria without the involvement of other pathways triggering caspase 

activation.  

 

Consistent with its ability to induce depolarization of ∆mito within 20 minutes 

(Figures 3.2 and 3.5), amphipathic C12 molecules assemble permeation 
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channels in phospholipid membranes without any proteins (Figure 3.8). The 

characteristics of channels formed by C12 are similar to those of ceramide 

(85,85).  Ceramide has been demonstrated to suppress tumors through inhibiting 

tumor cell proliferation, triggering apoptosis, autophagy and/or senescence 

(85,86).  Ceramide-induced apoptosis signaling is modulated by both anti- and 

pro-apoptotic Bcl-2 proteins (91,92). In agreement with their functions in 

apoptotic signaling, Bcl-2 proteins also regulate ceramide channels in vitro 

(93,94).  It appears that C12 and ceramide evoke distinct apoptotic signaling with 

C12-triggered apoptotic responses independent of both anti- and pro-apoptotic 

Bcl-2 proteins in non-transformed as well as tumor cells.  

 

Several signaling pathways linked to apoptosis initiation, including JAK/STAT 

pathway (66), MAPK and eIF2 pathways (60), and ER stress pathway (63,65), 

have been implicated in C12-evoked cell death.  These apoptosis-associated 

signaling pathways are normally involved in multiple steps of signal transduction, 

and the biological events reflective of these signaling cascades are observed 

hours following C12 incubation. In contrast, depolarization of ∆mito, the earliest 

step of MOMP (6), is always detected within minutes upon C12 exposure and 

reaches its maximal levels in 20 minutes as reported here (Figures 3.2 and 3.5) 

and in our earlier studies (8,9).  Thus, it appears that activation of these signaling 

pathways is secondary to MOMP initiation in C12-triggered apoptosis cascade.  It 

is conceivable that C12 or its metabolite(s) acts directly on mitochondria to 

permeabilize them.  The in vitro studies in this paper support the notion that C12 
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might directly assemble permeation channels on mitochondria, leading to 

cytochrome c release, apoptotic cascade activation, and ultimately apoptosis. 

 

Many neoplastic cells show an increased ratio of anti-apoptotic to pro-apoptotic 

Bcl-2 proteins, which enables them to survive even under the conditions that 

would normally initiate apoptotic signaling (95). An emerging strategy for cancer 

therapy is to overcome the resistance to apoptosis caused by aberrant Bcl-2 

signaling in tumor cells (96,97). Recently, several small molecules triggering 

apoptosis independent of either pro- or anti-apoptotic Bcl-2 proteins have been 

identified as potential anti-tumor drugs. Among them, the pentacyclic triterpenoid 

betulinic acid induces Bax/Bak-independent MOMP and subsequent apoptosis 

(98,99).  Unlike C12, cytotoxic effects of betulinic acid are influenced by Bcl-2 

overexpression and it is ineffective against epithelial tumors.  Similarly, Bax/Bak 

is also nonessential in apoptotic signaling induced by chelerythrine (100) or 

titanium dioxide (TiO2) (101). The polyphenolic compound gossypol evokes 

Bax/Bak-independent apoptosis and inhibits Bcl-2-overexpressing human B 

lymphoblast tumor growth in nude mice (102). Furthermore, Bcl-2 expression 

fails to influence human tumor cell apoptosis induced by the antibiotic agent 

Tetrocarcin-A (103,104). Compared with those molecules, C12 is the first small 

molecule compound, to the best of our knowledge, inducing human tumor cell 

apoptosis in vitro as well as blocking tumor growth in vivo independent of both 

pro- and anti-apoptotic Bcl-2 proteins.   

 



 63 

The apoptosis cascade induced by C12 in tumor cells is unique, evident by its 

rapid pro-apoptotic effects, such as depolarizing mitochondrial membrane 

potential within minutes (Figures 3.10 and 3.11), releasing cytochrome c into the 

cytosol and maximally activating caspases. These distinctive pro-apoptotic 

features of C12 have not been observed in any other apoptosis paradigms of 

cancer cells, which might be attributed to the ability of C12 or its derivatives 

generated in tumor cells to directly permeabilize mitochondria without the 

involvement of pro- and anti-apoptotic Bcl-2 proteins. This study also shows that 

endogenous PON2 is essential for C12‘s cytotoxicity in human lung tumor cells 

(Figure 3.13), which is consistent with our previous observation of PON2 

overexpression in non-transformed fibroblasts and HEK293T cells (9).  

It has been reported that lung tumor cells are resistant to conventional 

therapeutic drugs partially due to enhanced expression of PON2, which is 

thought to be associated with anti-oxidant activities of PON2 (78,79).  Data 

presented in Figure 3.13 show decreased killing of A549 and NCI-H1299 cells 

with shRNA for PON2; which is consistent with previous results (9). Additionally, 

data in Figure 3.13 indicate that killing activities of C12 on lung tumor cells is 

mediated through PON2.  Thus, it is conceivable that C12 or compounds derived 

from C12 could trigger rapid and Bcl-2 protein-independent apoptosis in lung 

tumors that are resistant to traditional chemotherapeutic drugs, whereas normal 

tissues are spared due to their lower PON2 expression. 
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PON2 is known to associate with the mitochondrial electron transport chain 

Complex III component coenzyme Q10 (CoQ10), and it is optimally positioned 

with appropriate enzymatic activity to cleave oxidized mitochondrial lipids 

(73,105).  One possibility is that enhanced PON2 expression in tumor cells 

functions by interacting with CoQ10, leading to increased mitochondrial electron 

transport, and subsequent mitochondrial bioenergetics, which generate enough 

ATP and metabolites to sustain the rapid proliferation of lung tumor cells. 
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CHAPTER 5: CONCLUSION 

Overall, our study reveals that C12 induces a unique mitochondrial apoptotic 

signaling pathway, in which C12 or C12 metabolite(s) acts on mitochondria as a 

mitolytic molecule to permeabilize mitochondria, leading to activation of 

apoptosis signaling independent of both pro- and anti-apoptotic Bcl-2 proteins. 

These properties of C12 enable it inhibit tumor growth as a single agent 

regardless of Bcl-2 protein expression in tumors, making it an ideal candidate of 

a lead compound for novel therapeutic agents for cancer. Further to this, our 

studies indicate that PON2 expression in non-small cell lung carcinoma cells is 

essential for their rapid proliferation. Therefore, C12 is an ideal candidate of a 

lead compound for novel therapeutic agents for cancer.         
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APPENDIX: LIST OF ABBREVIATIONS 

5-FU   5-Fluorouracil  

Apaf-1   Apoptotic Protease Factor 1 

BH   Bcl-2 homolog 

C12   N-(3-oxododecanoyl)-homoserine lactone 

COQ10  Coenzyme Q10  

DISC   Death Inducing Signaling Complex 

FADD   Fas Associated Death Domain  

FasL   Fas Ligand 

FBS   Fetal Bovine Serum 

IAPs   Inhibitor of Apoptosis Proteins 

LLC   Lewis Lung Carcinoma 

MEFs   Mouse Embryonic Fibroblasts 

MIPs   Maximum Intensity Projections 

MOMP  Mitochondrial Outer Membrane Permeabilization 

NHBE   Human Bronchi/Tracheal Epithelial Cells 

NSCLC  Non-Small Cell Lung Carcinoma 

OMM   Outer Mitochondrial Membrane 

PBS   Phosphate Buffered Saline 

PI   Propidium Iodide 

PON2   Paraoxonase 2
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ROIS   Regions of Interest 

TLR4   Toll-Like Receptor 4 

TNF   Tumor Necrosis Factor 

TNFR   Tumor Necrosis Factor Receptor 

TNFR1  Tumor Necrosis Factor Receptor 1 

TRAIL   TNF-Related Apoptosis Inducing Ligand 

WT   Wild Type 
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