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ABSTRACT 

OPERATIONAL DECISION MAKING FOR MEDICAL CLINICS THROUGH 
THE USE OF SIMULATION AND MULTI-ATTRIBUTE UTILITY THEORY 

 

Bo Sun 

July 15th, 2015 

 

Currently, health care is a large industry that concerns everyone. 

Outpatient health care is an important part of the American health care system 

and is one of the strongest growth areas in the health care system. Many 

people pay attention to how to keep basic health care available to as many 

people as possible. A large health care system is usually evaluated by many 

performance measures. For example, the managers of a medical clinic are 

concerned about increasing staff utilization; both managers and patients are 

concerned about patient waiting time. 

In this dissertation, we study decision making for clinics in determining 

operational policies to achieve multiple goals (e.g. increasing staff utilization, 

reducing patient waiting time, reducing overtime). Multi-attribute utility function 

and discrete even simulation are used for the study. The proposed decision 

making framework using simulation is applied to two case studies, i.e., two 

clinics associated with University of Louisville in Louisville, Kentucky. In the 

first case, we constructed of a long period simulation model for a 

multi-resource medical clinic. We investigated changes to the interarrival times 
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for each type of patient, assigned patients to see different staff in different 

visits (e.g., visit #2, visit #5) and assigned medical resources accordingly. Two 

performance measures were considered: waiting time for patients, and 

utilization of clinic staff.  

The second case involved the construction of a one-morning simulation 

model for an ambulatory internal medicine clinic. Although all the resident 

doctors perform the same task, their service times are different due to their 

varying levels of experience. We investigated the assignment of examination 

rooms based on residents’ varying service times. For this model, we also 

investigated the effect of changing the interarrival times for patients. Four 

performance measures were considered: waiting time for patients, overtime for 

the clinic staff, utilization of examination rooms and utilization of clinic staff.  

We developed a ranking and selection procedure to compare the various 

policies, each based on a multiple attribute performance. This procedure 

combines the use of multi-attribute utility functions with statistical ranking and 

selection in order to choose the best results from a set of possible outputs 

using an indifferent-zone approach. We applied this procedure to the outputs 

from “Healthy for Life” clinic and “AIM” clinic simulation models in selecting 

alternative operational policies. Lastly, we performed sensitivity analyses with 

respect to the weights of the attributes in the multi-attribute utility function. The 

results will help decision makers to understand the effects of various factors in 

the system. The clinic managers can choose a best scheduling method based 

on the highest expected utility value with different levels of weight on each 

attribute. 

The contribution of this dissertation is two-fold. First, we developed a long 
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term simulation model for a multi-resource clinic consisting of providers with 

diverse areas of expertise and thus vastly different no-show rate and service 

times. Particularly, we modeled the details on assigning patients to providers 

when they come to the clinic in their different visits.  The other contribution 

was the development of a special ranking and selection procedure for 

comparing performances on multiple attributes for alternative policies in the 

outpatient healthcare modeling area.  This procedure combined a multiple 

attribute utility function with statistical ranking and selection in determining the 

best result from a set of possible outputs using the indifferent-zone approach. 
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I. INTRODUCTION 

A. BACKGROUND 

Nearly 15% of the gross domestic product of the United States is 

represented by the health care industry. The growing rate of the health care 

expenditures, which currently stands at 45%, is expected to double by 2050. 

Health care providers need to reduce costs and improve quality of service. 

Patients prefer to have a better health care service and shorter lengths of stay. 

Therefore, outpatient services are gradually becoming an important part in 

health care. These outpatient services include: 1) wellness and prevention, 

such as counseling and weight-loss programs, 2) diagnosis, such as lab tests 

and MRI scans, 3) treatment, such as some surgeries and chemotherapy and 

4) rehabilitation, such as drug or alcohol rehab and physical therapy. 

(Outpatients Services website) 

However, there are many problems for outpatient clinics. For example, 

Giachetti (2005) mentions three problems for the outpatient clinic: 1) high no 

show rate, 2) long waiting times, and 3) large appointment backlogs on the 

order of about 20 weeks. 

When the patient misses an appointment without cancellation or with a late 

cancellation, we call it a no show. In some clinics, up to 42% of scheduled 

patients fail to show up for pre-booked appointments (Deyo and Inui, 1980). 

Moore (2001) pointed out that the no show wasted 25.4% of scheduled time in 

the clinic; in addition, these no shows cost clinics 14% of anticipated daily

http://www.webmd.com/hw-popup/magnetic-resonance-imaging-mri
http://www.webmd.com/hw-popup/chemotherapy
http://www.webmd.com/hw-popup/physical-therapy
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revenue. Also, when patients do not arrive for their appointments, negative 

influences include lower provider productivity, longer appointment lead times, 

and poor patient satisfaction.  

Long waiting time is another problem in the outpatient clinic, especially for 

the patients who have made an appointment. The long waiting time is the 

major reason for patients’ complaints about their experience in outpatient 

clinics. In order to improve patients’ satisfaction, reducing waiting time plays a 

crucial role in the quality management. Bowman (1996) pointed out that a 

shorter waiting time results in better attendance rates. Huang (1994) did a 

survey on patients’ attitude towards waiting in an outpatient clinic, and 

generally, the patients feel satisfied if they wait no more than 37 minutes when 

they arrive on time. 

The third problem is the long appointment lead time. The lead time 

between an appointment request and the actual visit tends to be longer than 

before which is more than one month. The lead time is so long because the 

growth of outpatient capacity can not meet the increasing demand. The clinic 

manager considers many methods to reduce the lead time, such as additional 

slots arranged in each operating session to maintain a constant appointment 

lead time (Zhu, 2012). 

B. PROBLEM STATEMENT 

A well-designed appointment system has the potential to increase the 

utilization of medical resources as well as reduce waiting time for patients. In 

this dissertation, different appointment systems are applied in the simulation 

model. Many factors affect the performance of appointment systems, such as 



3 

 

patients’ no show rate, service time variability, patients’ preferences and the 

experience level of the scheduling staff. The simulation model outputs patients’ 

average waiting time, average utilization of staff and medical resources in the 

clinic, and the experienced overtime for the staff. The goal of this research is to 

find an effective scheduling system to match the patients’ demand, so that we 

can improve utilization and patient waiting time. 

We also study the tradeoffs between average waiting time and average 

utilization. For example, if we overbook the patients’ appointment, the waiting 

time gets longer although the utilization for the staff is high. When we follow 

the service time to schedule the patients, the staff would be idle if the patients 

do not show up for their appointment. Therefore, if we want to achieve a high 

utilization of the staff and a low average waiting time, a bi-criteria appointment 

systems is needed. 

In this dissertation, we develop a ranking and selection procedure for 

making comparisons of appointment systems. We apply multiple attribute 

utility theory to convert multiple performance measure to a scalar performance 

measure. This procedure combines multiple attribute utility theory with a 

two-stage ranking and selection method to select a best configuration 

(appointment system) from many possible alternatives using an indifference 

zone approach. This idea is based on (Butler et al.2001), and we believe that 

there are many advantages using this approach.  

First, the decision maker would typically not be able to determine which 

appointment system is better based solely on the simulation results of average 

waiting time and average utilization. With multiple attribute utility theory, the 

decision maker can make the decision directly by comparing the expected 
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utility of different appointment systems.  

Second, this method does not require the complicated step of estimating a 

covariance matrix, as Gupta and Panchapakesan (1979) mentioned. 

Compared to estimating the covariance matrix, implementing the ranking and 

selection method is relatively easier and robust as well implement. 

Third, as Andijani (1998) mentioned, it is difficult to determine if the number 

of replications is enough to identify the best performing configuration. With the 

two-stage ranking and selection method, we can estimate the number of 

replications required to select the best configuration. 

Fourth, we use multiple attribute utility function with ranking and selection 

method to compare each configuration. For example, Gupta and 

Panchapakesan (1979) mentioned that when comparing two configurations, if 

the population mean of the first attribute in configuration A is larger than that in 

configuration B, while the population mean of the second attribute in 

configuration A is smaller than that in configuration B, these two configurations 

cannot be compared. In this dissertation, we will overcome this challenge by 

applying multiple attribute utility theory with a two-stage statistical ranking and 

selection method originally proposed by Butler et al. (2001). 

Fifth, we perform sensitivity analyses with respect to the utility functions 

function used. Some papers perform a sensitivity analyses on the weight of 

each attribute to assess the robustness of the best configuration (Butler, et al., 

2001). With different single attribute utility functions, we will choose different 

indifference zones for the ranking and selection. Consequently, we can find a 

best configuration which has the largest expected utility. 

In this dissertation, we use two cases to illustrate the proposed the 
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combined methodology of multi-attribute utility function and two-stage ranking 

and selection in simulation. The input data for the simulation models are 

collected from the clinics. The decision makers are the managers of the clinics. 

They will determine the weight for each attribute to make the decisions. 

The first case study is for the “Healthy for Life” clinic in Louisville, Kentucky. 

The University of Louisville’s “Healthy for Life!” Clinic serves the state of 

Kentucky’s children. The department of Pediatrics at the University of 

Louisville has partnered with Passport Health Plan, the Kentucky Chapter of 

the American Academy of Pediatrics (AAP), YMCA, Kosair Children’s Hospital 

and other organizations to offer a solution. “Healthy for life” is a relatively new 

University of Louisville program which is attempting to stem the epidemic of 

childhood obesity. (Healthy for Life, website resource) 

This program is a complete resource for overweight children, offering a 

broad range of services from experts who can evaluate each child’s individual 

needs and develop a customized treatment plan accordingly. There are six 

types of staff in the clinic, and the no show rate varies by staff type and time. 

We build a long term simulation model which runs nearly half a year. There are 

nine hours in one day and five days in a week. 

The main issue faced by “Healthy for Life” is the rather high no show rate 

of approximately 50%. We develop simulation model to analyze various 

scheduling policies in order to increase staff utilization and decrease the 

patients’ waiting time. We first develop a one-day model to simulate the 

patients’’ activity flow during a visit, where one or two service providers may 

see a patient depending on the purpose of his/ her visit. We then extend this 

one- day model to a long term model, in order to examine the long term effects 
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of alternative appointment scheduling systems under study. The long term 

model simulates each patient’s multiple visits during a half year horizon. With 

regard to creating/ evaluating alternative appointment schedules, we vary the 

interarrival times for patients who see various staff according to the no show 

rate. In addition, we attempt to shorten the lead time between the actual 

appointment and the time when the reservation is made. The is motivated by 

the fact that the clinic currently makes appointments for patients one month in 

advance, which may contribute to the high no show rate. We design the 

simulation model such that the appointment lead time is changeable and we 

can then examine the effect (e.g., average waiting time and system utilization) 

of shortening the appointment lead time. 

The second case study is for the “Ambulatory Internal Medicine” clinic 

(“AIM” clinic) in Louisville. This clinic is an outpatient clinic associated with the 

Medical School of University of Louisville. The AIM clinic is a teaching clinic, in 

which resident doctors are trained in this clinic for three years prior to 

graduation. The clinic normally will obtain a new group of first year residents in 

July. During the treatment, the attending physician will spend time on teaching 

residents. We help the “AIM” clinic to solve the problem of scheduling patients 

in order to increase resource (including different years of residents and 

examination rooms) utilization and decrease the patients’ waiting time and 

over time experienced by staff. In particular, we take Tuesday morning as an 

example. In the case of the clinic, the clinic manager is not as concerned with 

the no show rate as in the case of the Healthy for Life Clinic, since most of the 

patients arrive on time. The clinic manager wants to limit waiting time of the 

patients and increase the number of patients seen. The resources in their clinic 
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are fixed. Our approach is to make proper assignment (e.g., properly assigning 

examination rooms to residents with various levels of years of experience thus 

various service time) for each resource in order to achieve efficient use of the 

resources. Because these resources are shared in the system, making 

assignments for these resources interact with each other and is very 

interesting and challenging.  

C. CONTRIBUTION 

C.1 SIMULATION 

C.1.1 “HEALTHY FOR LIFE” CLINIC 

We build a long term model for this multi-resource clinic. In this clinic, there 

are six staff members and each has its own distinct expertise (e.g., general 

pediatrician, psychologist, nutritionist, exercise physiologist), patients no show 

rate and service time. The patients will be assigned to see different staff in their 

subsequent visits. We study how the patients should be assigned and 

scheduled to see different staff. While most work in appointment scheduling 

focuses on single-resource clinic and one-day model, we study a clinic with 

multi-resources in a longer range. Particularly, we model the details about the 

number of patients who come to the clinic in their different visit times and 

which staff the patient is assigned to different visit times. We examine different 

appointment methods to compare the average waiting time and average 

utilization. 

C.1.2 “AIM” CLINIC 

We take Tuesday morning as an example to build a one morning model. 
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This clinic is a teaching clinic. Therefore, residents with different years of 

experience offer different service time, i.e., time to see a patient. For the first 

year of residents, they use more time on patients and talking to their attending 

physicians. Also they will stay in the examination rooms longer than residents 

with more experience. How to schedule residents with various years of 

experience in seeing patients and how to assign the examination rooms to 

these residents are the goal of this dissertation. Our contribution to the 

literature is that we firstly assign the resources of the clinic (including residents 

and examination rooms), and then schedule the patients’ interarrival time. We 

not only observe the average waiting time and average utilization for resources, 

but consider the overtime experienced by residents and staff as a key driver in 

the research. 

C.2 METHODOLOGY 

In this dissertation, we build one long period simulation model for a 

multi-resource clinic and a one morning model for a single resource clinic. In 

the long period simulation model (Healthy for Life clinic), we measure 

performance on waiting time for patients and utilization of staff in the clinic. In 

the one morning model (AIM clinic), we measure performance on waiting time 

for patients, utilization for staff, utilization for examination rooms and over time. 

To compare multiple attributes’ performance, we develop a ranking and 

selection procedure. This procedure combines a multiple attribute utility 

function with statistical ranking and selection to determine the best result from 

a set of possible outputs using the indifferent-zone approach. We apply this 

procedure to the outputs from these two simulation models. Also, we perform 
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sensitivity analysis on the weight of each attribute to compare the results. The 

clinic managers can decide which level of weight is suitable for the attributes 

and choose a best scheduling method based on the highest expected utility 

value. 

D. DISSERTATION ORGANIZATION 

The remainder of the dissertation is organized as follows: 

In Chapter 2, a comprehensive literature review is presented, including the 

literature related to problems in health care clinics, the literature related to 

reasons and effects of no show rate, and the literature related to methodology 

used this dissertation, i.e., simulation in health care, multiple attribute utility 

function and ranking and selection. Chapter 3 contains an overview of the 

MAU theory and the procedure of setting up the ranking and selection. Then 

details combining the ranking and selection and multiple attribute utility 

function are given. And finally, the application of the utility exchange by Butler 

et al., (2001) and the determination of parameter values for the indifference 

zone approach will be illustrated. Chapter 4 presents two cases studies 

including each clinic’s background, problems statement, analysis of the 

original data and the developed simulation model. In Chapter 5, utility functions 

used in the ranking and selection method is applied to the results of the two 

simulation models. Further, sensitivity analysis on the weight of each attribute 

is examined, from which the best appointment alternative is recommended. 

Chapter 6 gives the conclusion and future research.  
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II. LITERATURE REVIEW 

A. PROBLEMS IN CLINIC 

Currently, health care is a large industry that concerns everyone. The 

government also discusses the health care system. Most recently, President 

Obama signed the Patient Protection and Affordable Care Act (Stolberg, 2010). 

Many people pay attention to how to keep basic health care available to as 

many people as possible. Many hospitals emphasize short queue length in the 

waiting room and shift care from inpatient to outpatient facilities. This in turn is 

forcing outpatient clinical facilities to reassess their operation and capacities 

(Muthurman and Lawley, 2008). Therefore, many industrial engineers do 

research on health care, such as how to increase the utilization of staff, how to 

structure the patient’s flow and how to design a good scheduling method to 

solve medical clinic problems. 

There are two main problems that need to be solved in this research. The 

first problem is the high no show rate of patients. Rust and Gallups (1995) 

claimed that the problem of patient no-shows (patients who do not arrive for 

scheduled appointments) was significant in many health care settings, where 

no show rates can vary from as little as 3% to as much as 80%. Verbov (1992) 

did a survey about the reason for the no show patients. The reasons can be 

categorized with the following factors: 1) other illness, such as flu, cold, throat 

infection. 2) related to work 3) feel better 4) forget to attend 5) car broken down 

6) do not want to miss school 7) out of town on appointment day 8) mistaken 
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date and time of appointment 9) appointment is too early in the day. For the 

“Healthy for Life” clinic, the no show rate is nearly 50% which is high enough to 

affect the operation of the clinic.  

The most significant factor affecting no-show rates is the amount of time 

between scheduling the appointment and the appointment itself. According to 

the research, the longer time between the time of scheduling the appointment 

and the appointment itself, the more likely patients do not show up. A patient 

that was given an appointment that was less than a week away was more 

likely to show than a patient who booked six months in advance (Vozenilek, 

2009). Hilxon et al., (1999) pointed out that younger patients were less likely to 

keep appointments. The no show rate was lower when the patients call to 

schedule their own follow up appointments. The reason why the no show rate 

of “Healthy for Life” clinic is high is that patients need to make appointments 

one month in advance for the next appointment. Specifically, the “Healthy for 

Life” clinic is focused on the overweight children. Children are special patients 

in that whether they show up or not is not only decided by themselves but also 

decided by their parents’ schedule.  

Patients’ no show rates had many negative effects on the clinic, such as 

reducing provider productivity and clinic efficiency, increasing health care costs 

and limiting the ability of a clinic to serve its client population by reducing its 

effective capacity (LaGanga and Lawrence,2007). Hilxon et al. (1999) 

mentioned that when patients do not show up for their appointments, the time 

of staff in the clinic was wasted and residents missed the opportunity to see 

the progression of diseases or the outcome of treatments. 

Chesanow, (1996), Murray and Berwick (2003) Murdock (2002) gave a 
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conclusion that patients’ no show rates will influence: 1) economics. With the 

national rate of no show at around 12%, the estimated total cost of missed 

appointment was $400 million per year, 2) underutilization of equipment and 

manpower, 3) patients health.  

The second problem is patients’ long waiting times. In the present climate, 

value for money and maximum use of resources are prime considerations. 

However, total waiting time is the most important factor affecting the patients’ 

satisfaction. In UK, patients Charter was set up because the government 

agreed that the long waiting times for patients are unacceptable. This Charter 

offset a standard that the patients should not wait in the waiting room more 

than half an hour of their appointment time (Department of Health, 1991, 1995). 

An effective appointment system was a critical method to control patient 

waiting times (Harper, 2003). 

For above two problems to the clinic, we need to find a way to improve the 

benefit of the medical clinic and make patients satisfied. The goal we want to 

achieve in this dissertation is a good scheduling method which can increase 

the utilization of resources and decrease the waiting time for patients.  

B. MODELING METHEDOLOGY 

B.1 SIMULATION APPLICATIONS IN OUTPATIENT CLINICS 

Health care providers use the simulation method to analyze the current 

performance and compare alternatives. They are interested in using simulation 

to guide them in saving money and making clinics more efficient. Guo and 

West (2006) used the simulation method to help Cincinnati Children’s hospital 

Medical Center, which diagnosed and treated all types of eye disorders for 
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children, to improve their patients’ appointment scheduling. The main 

contributing factors in this paper were randomness of patients demand, plenty 

of no show rates in patients’ population, different types of follow-up patients 

and the variable staff schedule. They wanted to minimize the delays for 

patients to obtain an appointment and at the same time maximize the 

provider’s’ utilization. One benefit for the simulation was that they can easily 

track waiting time in the system and monitor the 95th percentile of the resulting 

waiting time distribution for the various appointment types.  

LaGanga and Lawrence (2007) used the simulation method to animate the 

overbooking clinic. From the simulation results, they found that the 

overbooking method provides a good utility when the clinic serves large 

numbers of patients, no show rates were high and service variability was 

lower. 

Giachetti (2005) used the discrete event simulation to do the simulation. 

The author analyzed patients’ appointment time and percent of daily 

appointment and gave clinics some suggestions as follows. First, arrival rates 

need to match the service rates, consequently the patients do not need to wait. 

Second, service providers should work when the first patients came to the 

clinic. For the clinic under study in the paper, the appointment time was earlier 

than the working time. Third, the service order in which the patients were 

called. Giachetti (2008) used the simulation method to reduce the appointment 

lead time and patient no show rate. The author mentioned three methods. First 

is to reduce the number of appointment types by letting. All the appointments 

have the same weight. Second, instead of using overall overbooking, they 

used individual overbooking, such as patients who missed two or more 
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appointments. Third, they found that using a single queue for multiple 

resources had shorter waiting time.  

Cote (1999) built a simulation model to examine the relationship between 

examining room and patients flow across four clinic performance measures. 

After using ANOVA for the experimental design, the author concluded that the 

number of examining rooms did not significantly affect examining room queue 

lengths or patients flow time. 

Kopach et al., (2007) used discrete event simulation, experimental design 

to study the effects of variables such as: making long term appointments, 

overbooking and the fraction of patients being served on open access on clinic 

throughput and patient continuity of care. The result was that if correctly 

configured, open access can improve the throughput of the clinic. 

Harper and Gamlin (2003) also developed a simulation model to an 

outpatient clinic. They changed different appointment schedules to examine 

whether appointment systems influenced patients waiting time in the clinic. 

The results showed that alternative appointment schedules could drastically 

reduce patient waiting times and the clinic did not need to hire more resources. 

B.2 MULTIPLE ATTRIBUTE UTILITY FUNCTION 

Multiple attribute utility (MAU) function had been used in a variety of 

settings to solve real project problems. Ozernoy et al., (1981) helped to select 

a commercial GIS (Geographic Information System). They needed to consider 

three attributes to choose a best one which are software capabilities, hardware 

capabilities, and vendor performance. Stafford et al,. (1979) analyzed some 

basic attributes which influenced the effectiveness of outpatient clinics, such 
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as different facilities, the patient routs though the clinic, number of observers in 

each facility, etc. They used these attributes to evaluate the operating 

procedures and policies. Dyer and Lorber (1982) used multiple attribute utility 

function to evaluate three competing vendors for the commercial generation of 

electricity by nuclear fusion. There were eleven attributes needed to be 

considered and eight decision makers did the evaluation. The reason that 

these papers used multiple attribute utility theory was that it provided a logical 

way to solve the conflicting objectives problem (Keeney and Raiffa, 1976).   

Although simulation is a useful tool in the modeling and analysis of a wide 

variety of complex real systems, we still need to combine other methods (such 

as MAU theory) to do the optimization and choose the best alternatives from all 

the configurations. Sometimes, we also need to consider the trade-offs 

between multiple conflicting configurations for the system. Anderson et 

al.,(2006) used the simulation model to employ multi-objective decision 

analysis and then performed optimization. The paper uses the variance 

reduction techniques of common random numbers and antithetic variants. 

Tekin et al., (2004) conducted a comprehensive survey on the techniques for 

simulation optimization which apply multi-objective decision analysis. They 

categorized the existing techniques to many problems, such as objective 

function (single or multi objectives), parameter spaces (discrete or continuous 

parameters). This paper introduced the advantages and disadvantages on 

existing methods. Lee (2008) used the simulation optimization method with 

multi-objective evolutionary algorithm. It is applied on a multi-objective aircraft 

spare parts allocation problem to find a set of non-dominated solutions. Butler 

et al. (2001) used the simulation model in multi-objective decision analysis. 
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Their method is unique in that they used multiple attribute utility theory (MAU) 

to convert multiple performance measures to a single scalar performance 

measure. They used this method on a real project to evaluate configurations 

for a land seismic survey in geophysical exploration for oil and gas.       

B.3 RANKING AND SELECTION 

Ranking and Selection (R&S) procedures are statistical methods 

specifically developed to select the best system or a subset that contains the 

best system design from a set of k competing alternatives (Goldsman and 

Nelson, 1994). Boesel (2000) and Boesel et al. (2003) find the best system 

from the large numbers of systems. These two paper developed statistical 

procedures that find the best system by using subset selection and 

indifference-zone. Some generally used measures of selection quality are the 

probability of correct selection P (CS). There were many papers on the R&S 

area in the last decades, and several papers are available in R&S field. (Kim 

and Nelson, 2003, 2007; Swisher et al., 2003).  

Many approaches to the ranking and selection problem have been 

proposed. The differences between these methods are how to allocate 

replications to certain designs.  

One popular R&S method is the two-stage indifference zone method which 

was proposed by Rinott (1978). He chose an initial sample of simulation 

replications and then determines the number of additional replications needed 

in the second-stage. Since Rinott’s seminar work, many have made 

improvements based on “Rinott’s two-stage” procedure. Nelson et al. (2001) 

proposed to find the best expected performance from the simulated system 
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and they also used the ranking and selection method. However, they find that 

the procedure needs more computation. They eliminated the uncompetitive 

alternatives at the first stage, and then avoid the larger sample at the second 

stage. Kim and Nelson (2006) also want to select the best simulated system. 

The procedures were suitable when the procedure repeatedly obtained small 

and incremental samples from the simulated system. The goal of their paper 

was to eliminate the sequential procedure. Alrefaei and Alawneh (2004) also 

selected the best expected performance measure from the stochastic system. 

They faced a problem that the number of alternative system was large. They 

used two-stage procedure which used the standard clock simulation method. 

In the first stage, they screened out the uncompetitive alternatives and kept the 

better alternatives which had a pre-specified large probability. Then they used 

R&S method finding the best alternative from which had been chosen at the 

first stage. 

Another different and popular way to select the best systems is due to 

Dudewicz and Dalal (1975). Their method guarantees that the performance 

measure value of the selected 𝜆𝑖 differs from the optimal solution value by at 

most a small amount 𝛿, with a probability of at least 𝑃∗. The difference from 

Rinott (1978) was that D&D procedure uses the weighted sample means from 

the systems. This procedure required fewer replications than the Rinott (1989) 

procedure, for the “ℎ” value was smaller. Their contribution was that they 

eliminated variance constraints for R&S Indifference zone. 

Most of the ranking and selection method were applied on the single 

attribute problem. However, in the real life, most of the projects and systems 

were multiple attribute problems. In this setting, the problem of selecting 
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non-dominated designs from a few alternatives through simulation became the 

problem of multiple attribute R&S. This problem was also the topic of this 

research. Swisher and Jacobson (2003) gave a survey of the literature about 

using R&S method and multiple comparison procedures to select the best 

configurations from a finite set of alternatives. Swisher and Jacobson (2002) 

used the simulation model to determine appropriate staffing and physical 

resources in a clinic. They used simulation-based statistical techniques, which 

included R&S and multiple attributes comparison. Nelson and Matejcik (1995) 

chose the best among 𝑘 simulated systems by using indifference-zone and 

multiple-comparison. They used the variance reduction technique of common 

random numbers to reduce the sample size. Butler et al. (2001) exchanged 

traditional single-attribute ranking and selection procedures to multiple 

attributes by using MAU theory. After exchange was performed, they just 

needed to consider single attribute instead of multiple attribute. When they did 

the ranking and selection, they chose the best result from the expected value 

of the utility function. We will use this approach in the current dissertation. 
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III. METHODOLOGY 

A. MULTIPLE ATTRIBUTE UTILITY FUNCTIONS 

Engineers always need to make decisions, such as choosing the location of 

a new factory or choosing the method to produce the product. Poor decisions 

can result in losing money, resources and time. Therefore, making good and 

reasonable decisions is important. The decision process is quite complicated, 

especially when decision makers (DM) need to trade off between various 

criteria. For example, Keeney and Raffia (1993) illustrated a case about air 

pollution control, they need to tradeoff among instructional programs, fire 

department operations, structuring of corporate preferences, evaluating 

computer systems, and siting and licensing of nuclear power facilities. 

The utility theory in decision making can help decision maker to decide and 

choose a best alternative from many alternatives with a mathematical model.  

A.1 SINGLE ATTRIBUTE UTILITY FUNCTIONS 

Single attribute functions are obtained by a set of lottery questions based 

on certain equivalence. Let Y be a lottery yielding consequences X1 and X2 

each with probability 0.5. This situation is a 50-50- chance lottery. The certain 

equivalent of 50-50- chance lottery is an amount of Z which is certain when the 

decision maker is indifferent to Y and Z.  

The procedures to identify the types of single attribute utility function as 
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follows: 

Step 1: Design the best level 𝑢(𝑥∗) and the worst level 𝑢(𝑥0). Normally, 

the best outcome is set at 1, and the worst is at 0. 

Step 2: Estimate the certainty equivalent value at the level 𝑥0.5 for which 

the utility value equals to 0.5. If the certain equivalent 𝑥0.5 = (𝑥∗+𝑥0)/2, the 

utility function is a risk neutral type. If 𝑥0.5 < (𝑥∗+𝑥0)/2, then the utility function 

is a risk averse type. If 𝑥0.5 > (𝑥∗+𝑥0)/2, then the utility function is a risk prone 

type. 

Step 3: The risk prone type or risk averse type utility functions are needed 

to estimate the unknown parameters, a, b, and c. Kainuma (1986) mentioned 

that applying Newton-Raphson method on the three pointes which are 𝑥∗,𝑥0 

and 𝑥0.5 to estimate the unknown parameters. There are two types of single 

utility function, one is risk aversion type and risk prone type functions Eq. (1), 

and the other is risk neutral utility function Eq. (2). Figure 1 illustrated three 

types of single utility function. (Kainuma et al. 2006) 

 

 

 
Figure 1. Three types of single- attribute utility function 
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𝑢𝑖(𝑥𝑖) = 𝑎 − 𝑏𝑒𝑥𝑝(−𝑐𝑥𝑖)                      (1) 

𝑢𝑖(𝑥𝑖) = 𝑎 + 𝑏𝑥𝑖                             (2) 

There is another form of single utility function mentioned by Butler et al. 

(2001), 𝑢𝑖(𝑥𝑖) = 𝐴𝑖 − 𝐵𝑖𝑒
𝑥𝑖𝑅𝑇𝑖, where 𝑅𝑇𝑖 is the DM’s assessed risk tolerance 

and 𝐴𝑖 and 𝐵𝑖 are scaling constants. 

A.2 MULTIPLE ATTRIBUTE UTILITY FUNCTIONS 

Multi- attribute utility theory (Keeney and Raiffa, 1976) was one of the 

major tools in the field of decision analysis. Using MAU analysis evaluates the 

alternatives and help to identify which alternative performing well on majority 

measures. In MAU analysis the first step is to form a matrix. In this matrix, 

each row represents an alternative and each column corresponds to a 

performance measure. The cells of this matrix represent the performance of 

each alternative on each performance measure. Then, the single attribute 

utility function will be needed which the scales performance from 0 to 1. When 

certain independence conditions are met, all the single attribute utility function 

can have a mathematical combination with scaling constants into a multiple 

attribute utility function. A multiple attribute utility function is a mapping from an 

attribute space with 2 or more attributes into the space of real numbers 

(Decision Making Slides, 2013). The utility function scales performance is also 

from 0 to 1.  

The form of the MAU function depends on the independence conditions by 

the different SAU functions.  

 THE MULTILINEAR UTILITY FUNCTION  

Multilinear utility function is the most general form, as shown in (3a). 
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u(x) =  ∑ 𝑤𝑖𝑢𝑖(𝑋𝑖)

𝑛

𝑖=1

+  ∑ ∑ 𝑤𝑖𝑗𝑢𝑖(𝑋𝑖)𝑢𝑗(𝑋𝑗)

𝑗>1

𝑛

𝑖=1

+  ∑ ∑ ∑ 𝑤𝑖𝑗𝑚𝑢𝑖(𝑋𝑖)𝑢𝑗(𝑋𝑗)𝑢𝑚(𝑋𝑚)  + ⋯
𝑚>𝑗>𝑖

𝑗>𝑖

𝑛

𝑖=1

+ 𝑤123…𝑛𝑢1(𝑋1)𝑢2(𝑋2) … 𝑢𝑛(𝑋𝑛) 

(3a) 

where 𝑢𝑖  is a single attribute utility function over 𝑥𝑖  scaled from 0 to 1, and 𝑤𝑖 

(0 < 𝑤𝑖 < 1) is the scaling constant for attribute 𝑖  and 𝑤𝑖𝑗𝑚  are scaling 

constants which measure the impact of the interaction between attributes 𝑖, 𝑗, 

and 𝑚 on preferences (Decision Making Slides, 2013). To determine whether 

a decision maker’s preference satisfy the correct conditions, we can use (3a), 

and we need to define the utility independence (Decision Making Slides, 2013). 

A set of attributes X is utility independent (UI) of its complementary set X’ if the 

conditional preference structure over lotteries on X given X’ does not depend 

on the value of X’. For example, there are two attributes. The first attribute is 

the shortage and the second attribute is the outdating. The attribute  𝑥1′s  

range is from 0 to 10% and attribute 𝑥2′s range is from 0 to 15%. When 𝑥2 =

1% , the CE for 𝑥1 =< 1%, 9% >.  When 𝑥2 = 9%, the CE for 𝑥1 does not 

change, we can say that 𝑥1 is UI of 𝑥2. 

Given X = (𝑋1, 𝑋2, … . 𝑋𝑛), 𝑛 ≥ 2,  the mulilinear utility function will be 

appropriated if 𝑋𝑖 is utility independent of 𝑋𝑗 for all 𝑖 ≠  𝑗. 
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 MULTIPLICATIVE MAU MODEL 

A set of attributes X is mutually utility independent (MUI) if every subset X’∈ 

X is utility independent (UI) of its complement. For example,  𝑋1, 𝑋2, 𝑋3  is 

mutually utility independent, if and only if 𝑋1 is UI of 𝑋2, 𝑋3; 𝑋2 is UI of 𝑋1, 

𝑋3; 𝑋3 is UI of 𝑋1, 𝑋2; 𝑋1, 𝑋2 is UI of 𝑋3;  𝑋1, 𝑋3 is UI of 𝑋2; 𝑋2, 𝑋3 is UI of 

𝑋1. If 𝑋 = (𝑋1, 𝑋2 …  𝑋𝑛), a set of attributes, is MUI, then its utility function can 

be written as 1 + wu(X) = ∏ (1 + w𝑤𝑖𝑢𝑖(𝑋𝑖))𝑛
𝑖=1 . If we expand this form of the 

multiplicative model, we can obtain (3b), 

u(X) = ∑ 𝑤𝑖𝑢𝑖(𝑋𝑖)

𝑛

𝑖=1

+  ∑ ∑ 𝑤𝑤𝑖𝑤𝑗𝑢𝑖(𝑋𝑖)𝑢𝑗(𝑋𝑗)

𝑗>1

𝑛

𝑖=1

+  ∑ ∑ ∑ 𝑤2𝑤𝑖𝑤𝑗𝑤𝑚𝑢𝑖(𝑋𝑖)𝑢𝑗(𝑋𝑗)𝑢𝑚(𝑋𝑚)  
𝑚>𝑗>𝑖

𝑗>𝑖

𝑛

𝑖=1

+ 𝑤𝑛−1 ∏ 𝑤𝑖

𝑛

1

𝑢𝑖(𝑋1) 

(3b) 

where 0 ≤  𝑤𝑖 ≤  1, −1 < 𝑤 < ∞, w is a constant such that 1 + 𝑤 =  ∏ (1 +

𝑤𝑤𝑖), and the product is formed over 𝑖 = 1 𝑡𝑜 𝑛. The multiplicative form is a 

special case of the mutilinear model. 

 ADDITIVE MAU MODEL 

 “Additivity Independence (AI) occurs if preferences over lotteries on {X} 

depend only on the marginal probability distributions of the 𝑥𝑖 and not on the 

overall joint probability distribution over the {X}” (Decision Making Slides, 



24 

 

2013), 

 u (X) = ∑ 𝑤𝑖
𝑛
𝑖=1 𝑢𝑖(𝑋𝑖)                           (3c) 

where 0 ≤ 𝑤𝑖 ≤ 1 and ∑ 𝑤𝑖
𝑛
𝑖=1 = 1. 

Additive MAU model is a very restrictive condition, and therefore rarely 

holds. 

 STEPS TO ASSESS OF A MAU FUNCTION: 

The assessment process of MAU Function needs an analyst and a decision 

maker. There are three basic steps. 

The first step is assessing the single attribute utility functions and scaling 

constants. Also need to establish a set of independence conditions and 

choose a particular function form. 

The second step is to give points on the individual attribute utility function 

curves. For example, to decide the certainty equivalent, check these points 

whether fit for linear function or others. 

The third step is for the decision maker to make a decision to express these 

two alternatives are indifference. This decision will lead to a set of equations 

involving the scaling constants for these two alternatives’ expected utilities are 

equal. 

B. RANKING AND SELECTION METHODS 

The goal to use ranking and selection is to select one of the k systems as 

the best alternative, and in probabilistic sense, it is also to control the 

probability that the selected system is the best one. Assume there are more 

than two project configurations. Let 𝑋𝑖𝑗 be the random variable of interest 

from the 𝑗𝑡ℎ  replications of the 𝑖𝑡ℎ  project configurations, and let µ𝑖 =
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𝐸(𝑋𝑖𝑗).  Let µ𝑖𝑍 be the 𝑍𝑡ℎ smallest of the µ𝑖, so that µ𝑖1 ≤ µ𝑖2 ≤ µ𝑖3 ≤ ⋯ ≤

µ𝑖𝑘 denote the order of expected value. Our goal is to choose the smallest 

expected value µ𝑖1. (If we want to choose the largest expected value µ𝑖𝑘, the 

signs of the  Xij  and µi can be reserved.) If the R&S procedure identified the 

configuration correctly, we will say that a correct selection (CS) is made. 

We can never know for certain whether we make the correct selection, but 

we can to specify the probability of CS. If µi1 and µi2 are very close, we may 

not care about if we choose the configuration of 𝑖2 by mistake. Therefore, we 

need a method to avoid making large number of replications to resolve 

unimportant difference. We ask decision maker to specify indifference zone 

parameter  δ∗ . If  µi2 − µi1 ≥ δ＊ , we can say that µi2  is significantly better 

than µi1. 

In general, the ranking and selection procedure (Law, 2007) is designed to 

satisfy the following requirement:  

P{CS} ≥ P∗ whenever  µi2 − µi1 ≥ δ∗                (4) 

where (1 / 𝐾)  <  𝑃∗  <  1 and0 <  𝛿∗  < 1. If µi2 − µi1 ≤ δ∗, the procedure will 

select a best configuration within δ∗with probability at least  P∗.  

In this research, we use two- stage indifferent zone procedure for R&S. The 

following formulations is quoted from the book Law (2007). 

In the first stage, we make a fixed number of replications (𝑛0 ≥ 2) for each 

of the k configurations. We calculate the sample mean and variance. 

𝑋𝑖(𝑛0)
̅̅ ̅̅ ̅̅ ̅=

∑ 𝑋𝑖𝑗
𝑛0
𝑗=1

𝑛0
                                 (5) 

𝑆𝑖
2(𝑛0) =

∑ [𝑋𝑖𝑗−𝑋𝑖(𝑛0)]̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝑛0
𝑗=1

2

𝑛0−1
                       (6) 

For 𝑖 = 1,2, … . 𝑘 , then we need to compute the total sample size Ni 
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needed for configuration 𝑖. 

𝑁𝑖 = max {𝑛0 + 1, ⌈(
ℎ

𝛿＊
)

2

𝑆𝑖(𝑛0)
2⌉}                 (7) 

where ℎ depends on 𝑘, P∗ and 𝑛0 which is a constant that can be obtained 

from the table in Bechhoter et al. (1995, pp61-63) or in Law (2007, pp573). 

In the second stage, we make 𝑁𝑖 − 𝑛0 more replications of system 𝑖  (𝑖 =

1,2 … 𝑘) and then calculate the second-stage sample means. 

𝑋𝑖(𝑁𝑖−𝑛0)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅=

∑ 𝑋𝑖𝑗
𝑁𝑖
𝑗=𝑛0+1

𝑁𝑖−𝑛0
                        (8) 

Then we need to define the weights 

𝑤𝑖1 =
𝑛0

𝑁𝑖
[1 + √1 −

𝑁𝑖

𝑛0
(1 −

(𝑁𝑖−𝑛0)(𝑑∗)2

ℎ2𝑆𝑖
2(𝑛0)

  ]           (9) 

where  𝑤𝑖2 = 1 − 𝑤𝑖1, for 𝑖 = 1, 2 … … 𝑘. 

Finally, we can calculate the weighted sample means. 

𝑋𝑖(𝑁𝑖̃) = 𝑤𝑖1𝑋𝑖̅(𝑛0) + 𝑤𝑖2𝑋𝑖̅(𝑁𝑖 − 𝑛0)            (10) 

We need to choose the configuration with the smallest𝑋𝑖(𝑁𝑖̃). This result is 

the best one we using two-stage R&S method. 

C. UTILITY FUNCTION USED IN RANKING AND SELECTION 

C.1 UTILITY EXCHANGE 

In MAU function, we need to consider more than two attributes in the utility 

function and compare the results. In this dissertation, we consider to select 

one attribute as the standard measurement and exchange utility on the other 

attribute in the standard measure.  

 

 



27 

 

For example, a clinic manger considers to develop an optimal schedule for 

patients, where average patients’ waiting time and utilization of staff are two 

important performance measures. The manager tries many different schedules 

and obtains average waiting time and utilization from each schedule. Table 1 

illustrates four alternatives by measures matrix for schedule selection. 

From the above table, it is difficult to decide which schedule is the best 

choice. If we want to make this problem simpler, we can let the utilization be at 

the same level. Suppose we artificially set the utilization of each schedule to a 

common level, such as 0.5 and ask the decision maker (the clinic manager) to 

adjust the waiting time of each schedule. Finally, the “new” schedule should be 

equally preferred to the original configuration.  

For example, the schedule 1’s waiting time is 30 minutes with utilization 0.4. 

If we increase the utilization from 0.4 to 0.5, the patients will wait longer. 

Suppose the decision maker agrees that waiting time is 50 minutes with 

utilization 0.5. Repeat the same procedure with other schedules. Then the 

decision maker will face with a choice with the new schedules in Table 2.  

The above procedure converts the original alternatives into the hypothetical 

schedules without using MAU function, and the decision maker has his own 

internal utility function to provide the numbers required. 

Alternative Waiting time(minutes) Utilization 

Schedule 1 30 0.4 

Schedule 2 60 0.5 

Schedule 3 90 0.6 

Schedule 4 120 0.7 

Table 1 Alternative by Measures Matrix for Schedule Selection 

Alternative Waiting time(minutes) Utilization 

Schedule 1 50 0.5 

Schedule 2 60 0.5 

Schedule 3 70 0.5 

Schedule 4 80 0.5 

 

Table 2 New Choices of the Schedules 
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We also can use access weight and utility function to formalize the 

procedure of the utility exchange. Butler et al. (2001) proposed a “utility 

exchange” where one selected a medium for exchange or standard measure. 

In the last example, waiting time is the standard measure. Then select the 

other criteria as the common level of utility ci (2 ≤ 𝑖 ≤ 𝑛). Again, in the last 

example, utilization is the common level which all the utilization are 0.5. We 

also can illustrate in a formula:  𝑢i(xki
′ ) = ci,  i = 2 , 1 ≤ k ≤ K . The final step is 

to calculate the utility exchange. Base on the value of ci, change the utility 

u(xk1) to u(xk1
′ ). 

Butler et al. (2001) gave three propositions, which allowed one to convert 

an indifference zone for an attribute to an indifference zone for expected utility. 

The first proposition states that the procedure for calculating the utility 

exchange. The equation of u (𝑥𝑘1
′ ) is used for the multilinear, multiplicative and 

additive MAU function. The equation is like this 

𝑥𝑘1
′ = 𝑢1

−1(
𝑢(𝑋𝑘)−𝑄1

𝑄2
)                       (11) 

𝑄1 and 𝑄2 are constants which depend on the MAU form and assessed utility 

function and weights. 

In this dissertation, we use additive MAU function and consider two 

attributes. After we do the utility exchange. We can get the equation like this:     

𝑤1𝑢1(𝑥𝑘1
) + 𝑤2𝑢2(𝑥𝑘2

) = 𝑤1𝑢1(𝑥𝑘1
′) + 𝑤2𝑐2 

𝑢1(𝑥𝑘1
′ ) = 𝑢1(𝑥𝑘1) +

𝑤2

𝑤1
(𝑢2(𝑥𝑘2) − 𝑐2)               (12) 

The utility exchange approach relies on the separability on preferences to 

convert multiple performance measures into a single measure of performances. 

After the utility change, the indifference zone approach for the single 
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indifference zone procedure. So it changed to be 

E[u(𝑥[1]1
′ )] ≤ E[u(𝑥[2]1

′ )] ≤ E[u(𝑥[3]1
′ )] ≤ E[u(𝑥[4]1

′ )] … . . ≤ E[u(𝑥[𝐾]1
′ )]   (13) 

u(𝑥𝑘1) is the utility of first attribute in the configuration k.  

u(𝑥[𝑘]1
′ ) is after the utility exchange of first attribute in the configuration k. 

The goal is to select the project configuration of the k competing systems 

that contains the one with the largest expected performance. 

The second proposition is obtaining the variance after utility exchange. 

Because we use the ranking and selection method, we need to use variance to 

calculate the number of replications needed more. Calculating the rescaled 

variance for the first attribute, we obtain: 

var(𝑢1(𝑥𝑘1
′ )) =

var(𝑢(𝑋𝑘))

𝑄2
2                      (14) 

In the two attributes additive MAU function, we can change the equation as 

following: 

var(𝑢1(𝑥𝑘1
′ )) = 

𝑉𝑎𝑟(𝑤1𝑢(𝑥𝑘1)+𝑤2𝑢(𝑥𝑘2))

𝑤1
2  = 

𝑤1
2𝑉𝑎𝑟(𝑢(𝑥𝑘1))+𝑤2

2𝑉𝑎𝑟(𝑢(𝑥𝑘2))

𝑤1
2    (15) 

Finally, from the third proposition, we can change the procedure from 

accessing the 𝛿∗on the MAU function to accessing the 𝛿1
∗
 on the single 

attribute utility function corresponding to the standard performance measure. 

𝛿1
∗
=

𝛿∗

𝑤1
                             (16) 

C.2 ESTABLISHING THE INDIFFERENCE ZONE 

In the single attribute utility function, the certainty equivalent is equal to the 

inverse of the utility function evaluated at the expected utility (Clemen 1991, 

p372). i.e. 

E[u1(X{K}1)] = u1(CE[K]1)                    (17) 
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Then we can take (17) into (4) 

u1(CE[K]1) − u1(CE[K−1]1) = δ1
∗
                (18) 

where RTi is the DM’s assessed risk tolerance and Ai and Bi are scaling 

constants. They are the parameters of the single attribute utility function. From 

the Butler et al. (2001), we know that when δ1
∗
 increases, the indifference 

zone gets larger, so the number of replications gets smaller.  

C.3 DETERMINE THE INDIFFERENCE ZONE 

The decision maker first needs to determine δ1
∗
. We can ask the decision 

maker to consider the following questions to determine δ1
∗
. For example, 

configuration A and configuration B are measured on expected waiting time. If 

the expected waiting time of configuration A is 30 minutes, what is the 

minimum waiting time of configuration B at which you will think configuration B 

is better than configuration A? Suppose that the decision maker answers that 

the minimum waiting time is 20 minutes. From (18), we obtain u (20) –u (30) 

=δ1
∗.  Hence, the decision maker determines that δ1

∗
 = 0.22 (i.e. there is no 

difference of waiting time between 20 minutes and 30 minutes). 

In Table 3, there are two groups of indifference zone numbers correspond 

to the indifference of waiting time which are decided by the decision maker. 

When the gap for waiting time gets larger, the indifference zone gets larger. 

DM is indifference to a change in these two waiting 
times (minutes) 

Indifference Zone for Expected 
Utility 

20 30 0.22 

20 25 0.1 

 

Table 3 Two Groups of Indifference Zone 
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IV. CASE STUDIES  

A. CASE STUDY ONE: HEALTHY FOR LIFE 

A.1 INTRODUCTION 

The University of Louisville’s “Healthy for Life!” Clinic serves the state of 

Kentucky’s overweight children. “Healthy for Life!” offers a broad range of 

services from experts who can evaluate each child’s individual needs and 

develop a customized treatment plan accordingly. The clinic always uses the 

Body Mass Index (BMI) value to determine whether children are overweight or 

not. BMI is a number calculated from a person's weight and height and is 

computed as 𝐵𝑀𝐼 =
𝑤𝑒𝑖𝑔ℎ𝑡 𝑖𝑛 𝑝𝑜𝑢𝑛𝑑𝑠∗703

ℎ𝑒𝑖𝑔ℎ𝑡 𝑖𝑛 𝑖𝑛𝑐ℎ𝑒𝑠2
 (What Health, internet resource) BMI 

provides a reliable indicator of body fatness for most people and is used to 

screen for weight categories that may lead to health problems (Center for 

disease control and prevention, internet resource). Children with a BMI in the 

85th percentile or above are referred to the “Healthy for Life!” program. 

In addition, clinic services are free to children covered by the Passport 

Health Plan, Indiana Medicaid Insurance and Kentucky Medicaid Insurance. 

Services are also available to private-pay and privately-insured patients on a 

fee-for-service basis. 

The “Healthy for Life!” clinic opened in June, 2009 in a newly renovated 

space donated by Kosair Children’s Hospital. It features examination rooms, a 
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counseling center, a group therapy space and a play center with treadmills, 

and exercise bikes. Activities at the clinic include demonstrations, 

healthy-meal planning lessons and taste tests for parents and their children. 

The clinic also includes a teaching kitchen where staff members offer cooking 

lessons. (Healthy for Life, internet resource) 

Figure 2 shows a layout of the clinic. 

A.2 PROBLEM STATEMENT 

The basic problem addressed by this dissertation involves the scheduling 

of the patients in order to improve the utilization of staff and decrease the 

waiting time for the patients. The manager of the clinic found that patients who 

make appointments often do not show up, which means that staff in the clinic 

has to wait for them and cannot see other patients. The manager wants to 

solve this problem and keep all the staff in this clinic busy. She also wants to 

decrease the waiting time for patients and keep the “show up rate” high for 

very sick patients. 

Figure 2. Layout of “Healthy for Life” clinic 
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We built a long term simulation model and investigated different scheduling 

methods to estimate the utilization of the staff, the waiting time for patients in 

the clinic, the patients flow times and patients types in terms of staff resource 

requirements order these different methods. In the research, we considered 

average waiting time and average utilization as two important performance 

measures. 

A.3 SIMULATION MODEL 

A.3.1 DATA INPUT IN THE MODEL 

A.3.1.1 STAFF AT “HEALTHY FOR LIFE” CLINIC 

There are eight staff members in the clinic: one receptionist, one nurse, 

one nurse practitioner, two physicians, one exercise physiologist, one 

psychologist and one nutritionist. 

The receptionist is responsible for the check in and check out of patients, 

as well as some paper work. Additionally, one day before the appointment day, 

receptionist makes reminder phone calls to patients. At that time, the patient 

either confirms with the appointment, or reschedules a new appointment, or 

leaves a message.  

The nurse is responsible for escorting patients into the clinic and recording 

the basic physical data, which takes nearly twenty minutes. Both new and 

follow up patients see the nurse before they see the physician, the nurse 

practitioner, or the nutritionist.  

The responsibility of the exercise physiologist is in offering children a range 

of physical activities and suggesting exercise options to them. 

The nutritionist helps patients with a healthy dietary habit. For new patients, 



34 

 

nutritionist will spend half an hour in the teaching kitchen offering cooking 

demonstrations and healthy meal planning lessons for parents and their 

children. For follow up patients, the nutritionist spends about half an hour in her 

office discussing patient concerns and their progress.  

The psychologist helps patients to have a good outlook and attitude 

towards weight control. Seeing the psychologist is considered an important 

element in this clinic these visits deal with underlying psychological issues. 

These issues including eating habit, depression, academic underperformance, 

poor body image, psychosomatic complaints and dysfunctional family 

relationships. If the patient’s insurance does not cover this service, then the 

patient needs to pay out of his or her own pocket. Usually, patients spend 30 to 

40 minutes seeing the psychologist during any particular visit. 

A.3.1.2 PATIENT FLOW AT THE CLINIC 

Patients need to make an appointment before visiting the clinic. For the 

new patients, they need to call the receptionist and fill out some forms before 

visiting the clinic. Follow up patients need to make their next appointment 

before they leave the clinic. In general, patients come to the clinic once each 

month. 

Figures 3 and 4 illustrate the process flow at the clinic for new and follow up 

patients, respectively.  

New patients, check in at the registration desk to fill out form in the waiting 

room until being called in. This usually takes about 20 minutes. Before seeing 

the physician, they first see the nurse. After seeing the physician, typically visit 

with the nutritionist. If the staff which they want to see is busy, they return to the 
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waiting room. In a normal situation, it will take patients about 20 minutes to be 

taken in by the nurse, and about 30 minutes each for interaction with the 

physician and the nutritionist. After these interactions, patients check out and 

schedule their next appointment in a month or so. This whole process usually 

requires that new patients spend about two hours in the clinic. 

For follow up patients, as indicated in Figure 4, upon arrival, they first 

spend approximately 10 minutes checking in and then wait to be taken in by 

the nurse. After interacting with the nurse, people visit the staff that they are 

scheduled to see. Before patients see the physician and exercise physiologist, 

they need to see the nurse. Finally, patients schedule next appointment for 

about a month into the future, which takes about 5 minutes.  

Typically, follow up patients require about 20 minutes for intake, 16 minutes 

to see the physician, 45 minutes to see the psychologist, 45 minutes to see the 

exercise physiologist and 30 minutes to see the nutritionist. In normal 

situations, follow up patients will stay in the clinic about one hour. 

Table 4 lists typical service times for each staff with both types of patients. 

As can been seen from Table 4, staff will spend more time with new patients. 

The clinic is open from 8am to 5pm on weekdays. However, after 4pm, the 

clinic has exercise classes for children. So the staff should finish their 

treatment by 4pm.  

Table 4 Process Time for Staffs 

 
New patients Follow Up Patients 

Physician 30 minutes 16 minutes 

Nurse Practitioner 30 minutes 16 minutes 

Exercise Physiologist 45 minutes 45 minutes 

Nutritionist 30 minutes 30 minutes 

Psychologist 45 minutes 45 minutes 

Nurse 20 -25 minutes 20 -25 minutes 
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Figure 3. Process of new patients 



37 

 

 

 

Follow up patient 
arrived

Patient check in
(Receptionist 10 

min)

Which staff 
need to see

Check if Nurse 
available

Check if 
Psychologist 

available

Check if Exercise 
Physiologist 

available

Check if 
Nutritionist 

avaiable

Check if Nurse 
available

Intake
(Nurse 20 
min, Scale 
Room, PR)

Wait until 
Nurse 

available

Wait until 
Nurse 

available

Intake
(Nurse 20 
min, Scale 
Room, PR)

Check if 
Physician or 

Nurse 
Practitioner 

available

Wait until 
Physician 
or Nurse 

Practitioner 
available

See 
Physician 
or Nurse 

Practitioner
(16 min 
Patient 
Room)

Wait until 
Nutritionist 

available

See 
Nutritionist

(30 min 
Cubic)

Wait until 
Psychologis
t  available

Patient or 
Patient’s 
parent see 
Psychologis

t
(45 min, 
office)

Wait until 
anyone of 

them  
available

See 
Exercise 

Physiologis
t

(45 min, 
Gym)

Patient checked 
out and 

reschedule 
another 

appointment
(Receptionist 10 

min)

No

Yes

No
Yes

Yes

No

No

Yes

No

Yes

No

Yes
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A.3.1.3 CLASSIFICATION OF THE PATIENTS 

In this multiple–resources clinic, new patients interact with the physician 

and the nutritionist during their first visit to the clinic. However, during 

subsequent visits patients are scheduled to see different staff. We classify 

patients into five types by visit times, and this classification leads to the 

following groupings of patients: 

 New patients 

 Follow up patients to see the nutritionist 

 Follow up patients to see the physician 

 Follow up patients to see the psychologist 

 Follow up patients to see the exercise physiologist 

Because this clinic is for overweight children, we also need to consider 

another factor: the BMI of each child. BMI is widely accepted to estimate body 

composition which correlates an individual’s weight and height to lean body 

mass. It is thus an index of weight adjusted for stature. Consequently, it can be 

 
Figure 5. The BMI weight status category 
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used to categorize an individual as healthy, underweight, overweight, or obese. 

(Yang et al., 2013). High values of BMI can indicate excessive fat, while low 

values can indicate reduced fat. Figure 5 is the BMI weight status category. 

When a child’s BMI is greater than or equal to the 95th percentile, this child will 

be categorized as obese. In this clinic, most of the children’s BMI are above 

85%. 

A.3.1.4 NO-SHOW RATES 

We collected the data from the clinic in 2011. There were 160 new patients’ 

appointments from January 2011 and 86 of these new patients did not show up. 

As mentioned earlier, new patients will see the physician and the nutritionist. 

Thus, the average no show rate is 46.25%, i.e., nearly half of the appointments 

are canceled or rescheduled. No Show Rate =
𝐶𝑎𝑛𝑐𝑒𝑙+𝑁𝑜 𝑆ℎ𝑜𝑤

𝑇𝑜𝑡𝑎𝑙
 After their first 

visit, new patients will become follow up patients. Follow up patients were 

scheduled for 505 appointments, of which 268 were “no shows”. Hence, the no 

show rate for follow up patients was 53.06%. 

From Table 5, it can be seen that the no show rate for follow up patients 

who see the psychologist is low. Also, most of the follow up patients prefer to 

see physician and psychologist in their following visits.  

 

 

 
Arrival Cancel No show Total no show rate 

New 86 39 35 160 46.25% 

FP See Physician 105 73 55 233 54.94% 

FP See Nutritionist 25 24 12 61 59.02% 

FP See Psychologist 85 49 23 157 45.86% 

FP See Exercise Physiologist 22 21 11 54 59.26% 

 

Table 5 No Show Rate for Different Types of Patients 
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A.3.2 SIMULATION OVERVIEW  

This simulation model was built in Arena 14.0 as a discrete-event, 

stochastic model. Epstein’ research (2000) on four treatment methods for 

overweight showed that children a significant change in weight was possible 

through the first two years of treatment, with decreases in percent overweight 

of 22.7% at the end of 6 months and a decrease of 10.9% overweight at 2 

years. Figure 6 shows the overweight change in percent from baseline for 

obese children in the experimental groups at 6, 12, and 24 months. 

In this dissertation, we assume that overweight children can lose weight, 

and that BMI decreases after six months. We build simulation models to 

represent treatment over a six months period and observe the patient flow 

during this time period. 

The scheduled patients include new and follow up patients. The process of 

scheduling appointments differs for these two categories of patients. New 

patients make appointments one week in advance and follow up patients make 

appointments one month in advance. We assume that each patient has their 

 

Figure 6. Overweight changing in percent with months 
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own preferred time. When the patients want to make an appointment, the 

receptionist will check whether the requested staff is available at the patient’s 

preferred time. If staff is not available, the receptionist will check the next half 

hour slot. This process repeats until the first available slot is found with the 

requested staff. If staff is not free during the patients prefer time, we will see 

whether staff is free in another time period and record the numbers of patients 

that cannot see staff during their preferred time. We want to assign most of the 

patients’ appointments to their preferred time slots. 

The model do not consider the urgent or emergency patients who need to 

be treated immediately. We only consider the appointment schedule for 

patients who call in advance. In this long term model, new patients see two 

staff in their first visits and follow up patients see one staff during one visit. We 

consider half an hour to be one unit of time. The model represents simulation 

period of half a year.  

A.3.2.1 MODELING ASSUMPTION 

The following assumptions are made in the simulation model.  

 The waiting room has unlimited capacity.  

 Processing times follow the same distribution for the same type of 

patient.  

 Unlimited queue lengths are allowed at all processes. 

 The order of processing is first-in-first-out (FIFO).  

 One week has five days and every day has nine hours. 

 Assume patients will get better in half a year, so the model runs for half 

a year. 
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A.3.2.2 MODEL CONSTRUCTION AND APPROACH 

Features from the Basic and Advanced Process template and the Blocks 

template of Arena are used. The model can be divided into three sections. One 

section is time flow, the second one is for patients to make appointments with 

the clinic and the third section represents the process of the patients seeing 

staff in the clinic. 

 TIME ENTITY FLOW MODEL: 
 

In this long term model, time flow process is an important part. First, we 

assign all the variable values to 1 including’ time of day’, ‘day of week’, ‘week 

of month’. We assume half an hour as a unit. When half an hour passed, we 

add 1 to the variable ‘time of day’. We assume that one day begins at 8am and 

has 9 hours. So when the time of day equal to 18, we need to add 1 to the 

variable ‘day of week’ and change the variable ‘time of day’ back to 1. For 

example, the “TNOW” is 8 pm on Monday. After nine hours passed, the 

“TNOW” is 8 pm on Tuesday.  

When the variable ‘day of week’ is equal to 5, we need to add one to the 

variable ‘week of month’ and let the other variables ‘time of day’ and ‘day of 

week’ equal to 1. For example, when the ‘week of month’ equal to 2 , ‘day of 

week’ equal to 1 and ‘time of day’ equal to 1, it means it is the second week 

8am on Monday. Figure 7 explains time entity flows. 
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 APPOINTMENTS MODEL FOR NEW PATIENTS: 
 

Every day, there are many calls to the receptionist including the new 

patients who want to make appointment, patients who want to cancel or 

reschedule their appointment, patients who want to know the information about 

the clinic. When new patients make appointments, the receptionist checks the 

schedule book. Because there is only one nutritionist in the clinic, the 

receptionist will check which time slot the nutritionist has available one week 

later. If the nutritionist is free, the receptionist will schedule the appointment at 

that slot precluding other patients from that time slot. 

 PROCESS MODULE FOR RECEPTIONIST CHECKS THE 
NUTRITIONIST SCHEDULE: 

 
The receptionist will check five days later from 9 am to 3:30 pm to 

determine whether the nutritionist is free. The reason that the check starts from 

9 am is that the new patients have to check in, intake and see physician which 

will use nearly one hour and the nutritionist works from 8 am. The reason 

appointments end at 3:30 pm is that the nutritionist needs to see new patients 

for half an hour and the staff end work at 4pm. We will avoid staff overtime 

work in this model.  

If the nutritionist is free at the slot, the receptionist will schedule the 

appointment at that time slot. If the nutritionist has been scheduled at that time 

slot, the receptionist will continue checking time slots until 3:30pm. If the 

nutritionist’s whole day schedule is busy, the receptionist can check the next 

day. See Figure 8. 

 PROCESS FOR THE NEW PATIENTS IN THE CLINIC: 
 

For new patients, upon arrival they check in at the registration desk to 

complete forms and then stay in the waiting room until called. Before seeing 
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the physician, they first see the nurse. The two physicians and one nurse 

practitioner perform the same duties, so patients can see any of them 

depending on who is free. After this, patients check out and schedule their next 

appointment in a month or so. This whole process usually takes new patients 

about two hours in the clinic.  Figure 8 shows the process of the new patients 

making appointments in the clinic. 
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 PREFERRED TIME ASSIGNMENT MODULE 
 

When new patients finish their first visit, they need to make their next 

appointment before they leave the clinic. Every patient has their own 

preference time. Some of them prefer an appointment on the day they call or 

sooner, and the day of the week or the time of the appointment is not important 

to them. Others prefer a particular day of week and a specific convenient time. 

Some of them prefer a particular provider, even if the time is not convenient to 

them or they have to wait. 

Based on a literature review, patients prefer to arrive at the clinic according 

to a “dome” shaped distribution, see Wang (1997), Robinson and Chen (2001), 

and Denton and Gupta (2001). So we assume that 20% of the patients prefer 

appointments between 8am and 10am, 35% prefer appointments between 

10am and 12am, 35% prefer appointments between 1pm and 3pm and the 

reminder prefer appointments between 3pm and 4pm. In the model, we 

assume that if patients prefer a particular time period initially, they will continue 

to prefer this time period in subsequent visits. 

 DECIDING WHICH STAFF TO SEE IN THE FOLLOWING VISITS 
 

From the data we collected from the clinic, we can see that most of the 

patients prefer to see the physician at their first and second visit, and on their 

third visit, some patients would see psychologist. On their fourth visit, patients 

would see the exercise practitioner, or the nutritionist. We also observe that 

typically patients visit the psychologist after their second appointments. Based 

on data collected from the clinic, we estimated the cumulative probability 

associated with appointments with each staff according to the visit number. In 

the simulation model, we randomly generated follow up patients visit times in 
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the simulation model, we used these cumulative probabilities to decide which 

staff member patients will see. Table 6 shows these cumulative probabilities. 

Columns shows the staff member patients will see. Row shows patients visit 

times. Table 6 shows the cumulative probabilities of patients see particular 

staff in their visit times. For example, if this is the third times of this patient 

come to the clinic, we will use the random probability to compare to the 

cumulative probability in the third row. If the random probability is 0.5, then this 

patient will see the physicians in his/her third visit. 

 

 

 

%  see each staff 2nd 3rd 4th 5th 6th 7th 8th 

Nutritionist 0.050847 0.090909 0.096774 0.065217 0.27027 0.212121 0.107143 

Physician 0.813558864 0.636364 0.467742 0.326087 0.621621 0.393939 0.464286 

exercise physiologist 0.906779203 0.738636 0.66129 0.521739 0.702702 0.515151 0.535714 

psychologist 1 1 1 1 1 1 1 

 

Table 7 Ten Configurations for the Interarrival Times (minutes) 

Configuration 
Interarrival time (minutes) 

New patients FP See Nut FP See Phy FP See Exe FP See Psy 

1 15 30 30 30 30 

2 15 45 45 30 30 

3 30 30 30 15 15 

4 30 30 30 30 30 

5 30 45 45 30 30 

6 45 30 30 15 15 

7 45 30 30 30 30 

8 45 45 45 30 30 

9 60 45 45 15 15 

10 60 45 45 45 30 

 

Table 6 Cumulative Probability to See Each Staff in Different Visits 
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 CHECK TO DETERMINE WHETHER A PARTICULAR STAFF 
MEMBER IS FREE AT THE PATIENT’S PREFERRED TIME PLOT 

 
As mention earlier, different patients have different preferred appointment 

times. The receptionist checks whether the staff member is available at the 

patient’s preferred time. Normally, this day is one month from the visit day. If 

the staff member has an appointment with another patient during this preferred 

time slot, the receptionist will check whether this staff is free at other times. 

However, the model will record this situation as one where a patient did not 

see staff during their preferred time. If the staff member is busy the whole day, 

the receptionist will check the following days in sequence until this patient is 

scheduled. The model records the number of patients scheduled in their 

preferred time slots and the number of patients scheduled at other times.  

Figure 9 shows the process associated with making an appointment with 

the nutritionist for follow up patients.  
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Figure 9. The process of follow up patients make appointment 
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 THE PROCESS FOR THE FOLLOW UP PATIENTS IN THE CLINIC: 
 

Follow up patients first spend approximately 10 minutes checking in and 

then see the staff that they are scheduled to visit. In addition, before patients 

see the physician or nutritionist, they are taken in by the nurse. Note that follow 

up patients just see one staff person during each visit. Finally, these follow up 

patients make their next appointment for next month before they leave, which 

takes about 10 minutes. 

A.4 SIMULATION RESULTS      

There are many methods to assign patients appointment. Some clinics 

overbooked appointments by double-booking patients into common 

appointments times and relying on no-shows to allow the schedule to catch up 

(Chung, 2002). One type of overbooking involves scheduling an appointment 

every 30 minutes when the facility can serve patients every 45minutes. The 

goal of overbooking is to minimize the negative effect of no-shows. Also, some 

researchers have studied changing the interarrival time for patients. One 

method is to use different interarrival based on different patient types (Lau, 

2000).  

In this model, we assigned ten different configurations for new patients’ and 

follow up patients’ interarrival times. We changed each type of patients’ 

interarrival time and observed the patients average waiting time and staff 

average utilization. We considered each type of patients’ process time and 

show up rate to set up the experiment. After running the simulation model for 

10 replications, we obtained output for two attributes as shown in Table 8. 

(FP=follow up patients) 
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Attribute x1 ------ patients’ average waiting time in the clinic 

Attribute x2 ------ staff utilization (the average utilization for over all the staff 

in the clinic) 

B. CASE STUDY TWO: AMBULATORY INTERNAL MEDICINE CLINIC 

B.1 INTRODUCTION 

Ambulatory care is a personal health care consultation, treatment or 

intervention using advanced medical technology. The patients do not need to 

stay overnight in the hospital. They stay at the clinic from the time of 

registration to discharge.  

This clinic is a teaching clinic, which belongs to University of Louisville. 

Normally, residents of doctor will see the patients firstly and then talk to the 

attending physician. The attending physician will guide them and give them 

some suggestions. This clinic offers a fee card which called the Gold Card. 

This card can reduce the cost of medicine. The minimum fee to receive 

treatment with the card is $20. This is one of the reasons that more patients 

prefer to come this clinic. 

Configuration 

Sample 
mean 

Waiting 
Time 

Sample mean 
Utilization 

Individual 
attribute 

utility function 

value for 𝑋1  
𝑢1(𝑥1) 

Individual 
attribute 

utility function 

value for 𝑋2   
𝑢2(𝑥2) 

half width 
of  

𝑢1(𝑥1) 

half width 
of  

𝑢2(𝑥2) 

1 22.99 0.22 0.66 0.34 0.04 0.01 

2 22.14 0.22 0.68 0.34 0.05 0.01 

3 23.00 0.22 0.66 0.34 0.04 0.01 

4 22.99 0.22 0.66 0.34 0.04 0.01 

5 22.14 0.22 0.68 0.33 0.05 0.01 

6 11.26 0.15 0.87 0.21 0.03 0.01 

7 11.26 0.14 0.87 0.21 0.03 0.01 

8 8.95 0.15 0.90 0.21 0.02 0.01 

9 10.20 0.09 0.88 0.14 0.04 0.01 

10 9.55 0.10 0.89 0.14 0.03 0.01 

 

Table 8 𝒏𝟎 = 10 
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The University of Louisville Ambulatory Internal Medicine (AIM) clinic 

operates with different specialties according to the day of the week. The 

patients need to make an appointment with clinic and show up on time. If the 

patients are more than 15 minutes late, they cannot be treated.  

The clinic has one waiting room, one front desk, two residents, an attending 

physician office, five triage desks and fifteen examination rooms. It is divided 

into two sides. On the large side, there are nine examination rooms and three 

triage desks. Some of second year residents and all of the third year residents 

work on the large side. On the small side, there are two triage desks and six 

examination rooms. Some of second year residents and all the first year 

residents work on the small side. The examination room will be assigned to the 

residents. Figure 10 shows a layout of the clinic. 

 

Figure 10. Layout of “AIM” clinic 
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B.2 PROBLEM STATEMENT 

The basic problem addressed for this clinic involved the scheduling of 

resources (including attending physician, residents and examination rooms) in 

order to improve the utilization of these resources and decrease the waiting 

time for the patients. The director of the clinic wants to minimize the waiting 

time for patients in the examination room and waiting rooms and reduce the 

over-time for the staff. The residents leave the clinic when the last patient has 

been seen. If the overtime lasts more than one hour on Tuesday morning, it will 

influence the next shift of residents on Tuesday afternoon. 

This case is different from the case involving the “Healthy for Life” clinic in 

that the no show rate for patients is not a major concern. The clinic manager 

wanted to shorten patients’ waiting time so that more patients could be seen. 

The resources in their clinic are fixed. We need to make a good assignment for 

each resource and keep every resource busy and efficiency. Finding a good 

assignment method when resources interact with each other is our goal in this 

case. 

B.3 DATA COLLECTION 

B.3.1 STAFFING AND SCHEDULING OPERATIONS AT AIM CLINIC 

We use a typical Tuesday morning for our case study. The resources 

available for Tuesday morning include twelve of residents of varying 

experience levels, four attending physicians, two receptionists, five nurses and 

15 examination rooms. Among these 12 residents, four of them are first year 

residents, five are second year residents and three are third year residents.        

These residents are medical school graduate students undergoing “on the 
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job” training. They completed eight years of higher education before entering 

the resident program. The resident program ranges from three years to seven 

years in duration, depending on the specialty. In this clinic, the program lasts 

three years. Treatment times are longer for first year residents than for second 

or third year residents. 

The residents treat patients and are supervised by the attending physicians 

who check whether the treatments are correct. For the first year residents 

(especially for the first six months), the attending physician will supervise them 

during the entire patient interaction. For the second and third year residents, 

permission of the attending physician is needed before giving patients the 

results. In this clinic, one attending physician will supervise of four residents. 

At the front desk, there are two receptionists who are responsible for check 

in and checkout of as well as some paper work. In addition, two days before 

the appointment day, a receptionist makes reminder phone calls to the 

patients.  

The nurse is responsible for taking in patients and recording the basic 

physical data; these activities require about twenty minutes. Both new and 

follow up patients see the nurse before they see the residents. Each nurse is 

assigned to a particular resident. 

B.3.2 PATIENTS FLOW AT THE CLINIC 

Patients make an appointment before visiting the clinic. New patients call 

the receptionist and complete some forms before going to the clinic. Patients 

who apply for a gold card bring their documents to the Financial Counselor 

office. Follow up patients make their next appointment, if needed, before they 
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leave the clinic. In general, patients come to the clinic two or three times in one 

year. 

Table 9 shows the check in times by patient types. Clinic manager gave us 

the data and explain the patients flow of the “AIM” clinic. Then we went to the 

clinic and observe the whole process for four “Tuesday Morning”. Also, we 

talked to the patients and got complains about the clinic. After that, we 

concluded the problems from data and patients talk. When the patients arrive, 

they need to check in at the front desk to fill the form out and then stay in the 

waiting room until being called in. The check in time varies between new 

patients and follow up patients, but both correspond to a triangular distribution. 

For new (old) patients the most likely check in time is 6(5) minutes. 

After patients check in, they wait until the assigned nurses are free for 

giving triage vitals. There are five nurses in the clinic and each is assigned to 

particular resident. After the patients receives triage vitals, they return to the 

waiting room until an examination room is free. When an examination room 

becomes available, the patient enters the room to wait for their assigned 

resident. New patients are assigned to the next available resident, while follow 

up patients see the particular resident who treated them on their previous visit. 

Residents see the patients by themselves first. Table 10 shows the process 

time for the initial interaction with residents. Note that these times are 

distribution according to a triangular distribution. As indicated in Table 10, third 

Patients type Minimum value Most Likely Value Maximum Value 

New 4 6 8 

Follow up 3 5 7 

 

Table 9 Check in Time for Different Types of Patients 

(Use Triangular Distribution) 
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year residents should see more patients than second year residents or first 

year residents during the morning shift. 

When a resident finishes seeing a patient, they will talk to an attending 

physician. The attending physician consider the resident’s experience and 

decide whether it is necessary to check the patient himself/herself in the 

examination room. If necessary, both of the resident and attending physicians 

will come back to the examination room and talk to the patients again. If not, 

the residents will return to the examination room by themselves without the 

attending physician. 

After treatment, the patient waits in the examination room for the reports 

and lab results. At the same time, the residents completes the relevant the 

forms. When these activities are completed, the patient can exit the 

examination rooms to check out and make next appointment if needed. This 

also depends on which receptionist is free or whose queue is shorter. The 

“time of check out” corresponds to triangular distribution -TRIA (13, 17, 20) 

minutes. Figure 11 illustrates the patients flow in AIM clinic. 

Residents Type 
New patients 

(minutes) 
Follow up patients 

(minutes) 

1st year Resident TRIA(55,60 65) TRIA(45,50 55) 

2nd year Resident TRIA(45,50,55) TRIA(20,25,30) 

3rd year Resident TRIA(35,40,45) TRIA(15,20,25) 

 

Table 10 Treatment Time for Patients See Residents 

(Use Triangular Distribution) 
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B.4 SIMULATION MODEL 

B.4.1 OVERVIEW 

This simulation model is also built in Arena Version 14.0 as a discrete-event, 

stochastic model.  

This model is a one morning model, with a simulation duration of four hours. 

The AIM clinic operates with different specialties each day of the week. The 

residents of University of Louisville take turns to be in “AIM” clinic one day a 

week in the morning or afternoon. We simulate the entire process associate 

with the patients stay in the clinic.  

Patients arrive to the clinic according to “dome” distribution which means 

most of patients arrive in the middle of the morning (from 9am to 11am). This is 
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one of the reasons for the long waiting time for patients. 

B.4.2 MODELING ASSUMPTION 

The following assumptions are made in the simulation model 

 The waiting room has unlimited capacity.  

 Processing times follow the same distribution for the same type of 

patient.  

 Unlimited queue lengths are allowed at all processes. 

 The order of processing is first-in-first-out (FIFO).  

 Patient is late no more than 5 minutes, or we will define this patient as 

no show. 

B.4.3 MODEL CONSTRUCTION AND APPROACH  

Constructs from the Basic and Advanced Process Templates and the 

Blocks Template of Arena are used for this model. The following sections 

describe the construction of the Model.  

We follow the clinic rules and the data we collected to build the model. 

Although from the clinic manager and patients, we know the main problem of 

this clinic is long waiting time. We still need to build simulation model and find 

the bottle neck from the clinic operation. Below is the basic idea of simulation 

model. 

The arrival rate for patients corresponds the data we collected from the 

clinic. Patients are divided into two categories: new (80%) and follow up (20%),  

When the first patients come into the clinic, we will assign this patient as 

the number one patient. The number one patient will see the number one 

resident, and there are 12 residents in the clinic. We do not use resident’s 
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name and assign them a number from one to twelve. The second patients see 

the number two resident and so on. Number thirteen patients will see number 

one resident again. We can change the sequence of resident to see the 

patients to let third years residents see more patients than the other year’s 

residents.  

Each nurse is assigned to particular resident. The patients wait until the 

nurses are free and receive triage vitals which nearly use 20 minutes.  

When the examination room are free, the patients can stay in the 

examination rooms to wait residents. Firstly, the residents see patients by 

themselves. After they finish seeing patients, they need to talk to the attending 

physician outside the examination rooms. There are four attending physicians. 

Residents talk to the attending physicians depends on which attending 

physicians are free. While the residents talk to the attending physicians, the 

patients still wait in the examination rooms. 

After talking to the attending physicians, the first year residents, 30% of 

second year residents and third year residents will go back to the examination 

rooms with attending physicians. They talk to the patients again. The whole 

process follows triangular distribution-- TRIA (30, 35, 40) minutes. For other 

second year and third year residents (70% of them), the residents will go back 

examination room by themselves. The whole process follow triangular 

distribution---TRIA (13, 15, 20) minutes. Then the residents need to fill the 

forms.  

After patients finish the treatment and obtain all the results, they can leave 

the examination rooms and check out.  

The first patient will arrive at the clinic at 8:00am and the last patient will 



60 

 

arrive at the clinic at 11:20 am. 

B.5 SIMULATION RESULTS FOR “AIM” 

We follow the clinic rules and collected data to build model. We considered 

each year of residents’ process time and patients interarrvial time to set up the 

experiment. After running the simulation model for 10 replications, we obtained 

output as shown in Table 11, Table 12, Table 13. We got new patients’ and 

follow up patients’ average service time, average waiting time, average total 

time and average over time showed in Table 11. From Table 11, the results can 

be accepted, except over time is longer. However, we observed Table 12 which 

showed the top longest average waiting time for different activity. We found 

that waiting for examination rooms always take patients more time. Therefore, 

we need to change examination room assignment. Table 13 shows different 

examination room utilization. From Table 13, we conclude that examination 

room 13 and examination room 15 have low utilization. The reason is third year 

residents have two examination rooms. From the results, we conclude that 

examination rooms’ assignment is not reasonable. We need to try to reassign 

examination rooms. 

From the results seen in Tables 11, 12 and 13, we determine the problems 

of the AIM clinic. 

 

Patients Type 
Process time 

( minutes) 
Waiting time 
( minutes) 

Total Time 
( minutes) 

Over time 
(minutes) 

New patients 93.57 38.12 157.57 

91.76 

Follow up patients 79.28 32.37 136.83 

 

Table 11 Process Time for Different Type of Patients 
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Long waiting time for examination rooms, especially for the first year 

residents. 

 Long waiting time for residents to complete the forms. 

 The utilization associated with nurses is much lower than the utilizations 

for residents and the attending physicians. 

 Long over time, especially for the first year residents (first year resident 

service time is longer) 

Analysis of these simulation results and discussion with the clinic’s 

management led to the following suggested solution alternatives: 

 Change the numbers of patients assigned to different year residents. 

 Change the patient interarrival times 

 Allow flexible use of some examination rooms for residents 

Activity Waiting time(minutes) 

Waiting for examination room 6 34.16 

1st year resident fill the form 24.4 

Waiting for examination room 7 19.36 

Waiting for examination room 3 13.75 

Waiting for examination room 4 13.64 

Waiting for examination room 1 10.76 

Waiting for examination room 2 10.54 

2nd year resident fill the form 8.13 

 

Table 13 Average Lowest Utilization of Facility 

Examination room Utilization 

exam room 15 0.00466216 

exam room 13 0.01528925 

exam room 8 0.1489 

exam room 12 0.2309 

exam room 14 0.2352 

exam room 11 0.2505 

exam room 9 0.2842 

exam room 5 0.4003 

exam room 10 0.4697 

 

Table 12 Average Longest Waiting Time for Different Activity 
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Corresponding to these suggestions, we changed the simulation model. 

First, we increased the number of patients assigned to second and third year 

residents. In particular, third year residents were assigned to more patients 

than second year residents and second year residents were assigned to more 

patients than first year residents. From the data we collected, we found that the 

number of patients see each years of residents are equal. However, the first 

year residents need more service time than the other years of residents. 

Therefore, we increased the number of patients assigned to second and third 

year residents. 

Secondly, we changed the interarrival time for patients. In particular, we 

experimented with interarrival times of 3, 4, 5, 6 and 7 minutes. 

Thirdly, we allowed flexible use of examination rooms for all of the residents. 

The rule of the clinic is third year residents have two examination rooms, while 

the other resident just have one examination rooms. From the observation, we 

found that some patients need to wait examination rooms, however at the 

same time, other examination rooms are available. Also, we hear one patient 

complained she had waited in the examination rooms for an hour. The feeling 

of waiting in the examination room is worse than waiting room. Therefore, we 

assign that residents were allowed to use and available examination room.  

These changes led to 20 alternative configurations, as indicated in Table 

14. 
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There are four attributes to be considered, the sample mean waiting time of 

patients, sample mean utilization of staff, sample mean utilization of 

examination room and sample mean over time. Ten replications were run. The 

simulation results are shown in Table 15. 

 

Configuration 
Interarrival  

Time 
(minutes) 

Assign  
Examination  

Room 

Sequence  
of residents 

1 3 Yes original 

2 3 No original 

3 3 Yes change 

4 3 No change 

5 4 Yes original 

6 4 No original 

7 4 Yes change 

8 4 No change 

9 5 Yes original 

10 5 No original 

11 5 Yes change 

12 5 No change 

13 6 Yes original 

14 6 No original 

15 6 Yes change 

16 6 No change 

17 7 Yes original 

18 7 No original 

19 7 Yes change 

20 7 No change 

 

Table 14 Twenty Configurations Based on Suggestions 

Configuration 
Average  

Waiting Time 
Average Staff  

utilization 
Average Examination  

room utilization 
Over  
Time 

1 58.84 0.55 0.43 162 

2 62.94 0.57 0.54 164 

3 52.46 0.61 0.46 173 

4 52.45 0.59 0.51 172 

5 35.87 0.53 0.39 120 

6 36.79 0.53 0.43 122 

7 25.17 0.59 0.41 112 

8 25.01 0.59 0.43 96 

9 18.8 0.48 0.34 80 

10 20.48 0.47 0.35 76 

11 11.84 0.49 0.32 65 

12 11.84 0.49 0.32 65 

13 10.8 0.37 0.25 89 

14 11.48 0.37 0.26 90 

15 5.28 0.39 0.25 76 

16 5.28 0.39 0.25 76 

17 7.5 0.32 0.21 116 

18 7.56 0.33 0.21 97 

19 3.69 0.34 0.21 84 

20 3.69 0.34 0.21 84 

 

Table 15 Simulation Results for Twenty Configurations 
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From the results, we concluded that when the interarrival time is set to 

three minutes (configurations 1 though 4), the over time is almost three hours. 

One of the rules of clinic is that it closes when the last patient leaves. A long 

overtime period influences the afternoon schedule. When the interarrival time 

was set to seven minutes, the utilizations of staff and facility were low. After 

comparing these results, 12 configurations were chosen for future analyses, as 

shown in Table 16.  

 

Configuration 
Interarrival 

Time 

Assign 
Examination 

Room 

Sequence 
of residents 

Average 
Waiting  

Time 

Average  
Staff 

utilization 

Average 
Examination  

room 
utilization 

Over 
Time 

1 4 Yes original 35.87 0.53 0.39 120 

2 4 No original 36.79 0.53 0.43 122 

3 4 Yes change 25.17 0.59 0.41 112 

4 4 No change 25.01 0.59 0.43 96 

5 5 Yes original 18.8 0.48 0.34 80 

6 5 No original 20.48 0.47 0.35 76 

7 5 Yes change 11.84 0.49 0.32 65 

8 5 No change 11.84 0.49 0.32 65 

9 6 Yes original 10.8 0.37 0.25 89 

10 6 No original 11.48 0.37 0.26 90 

11 6 Yes change 5.28 0.39 0.25 76 

12 6 No change 5.28 0.39 0.25 76 

 

Table 16 Twelve Configurations and Simulation Results 
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V. UTILITY FUNCTIONS USED IN RANKING AND SELECTION 

A. RESULTS FOR “HEALTHY FOR LIFE” CLINIC 

A.1 MULTIPLE ATTRIBUTE UTILITY FUNCTION FOR THE “HEALTHY FOR 

LIFE” CLINIC: 

In the long period “Healthy for Life” simulation model, the main goal is to 

choose a policy for scheduling patients that will satisfy both the clinic’s 

manager and the clinic’s patients. The candidate policies involve varying 

interarrival times for patients. 

Two performance measures, the waiting time of patients and the staff 

utilization are considered. An ideal result will have low mean waiting time and 

high mean utilization. However, we need to tradeoff between these two 

attributes in order to find a better policy. We denote waiting time as 𝑋1, and 

utilization as 𝑋2.  

A single attribute utility function form is given by: 

𝑢𝑖(𝑥𝑖) = 𝐴𝑖 − 𝐵𝑖𝑒
𝑥𝑖𝑅𝑇𝑖                              (19) 

where 𝑅𝑇𝑖 is the decision maker’s (DM’s) assessed risk tolerance and 𝐴𝑖 and 

𝐵𝑖 are scaling constants. 

A particular single attribute utility function for the waiting time is given by: 

𝑢1(𝑥1) = 1.309 − 0.309exp(0.03208𝑥1)               (20) 
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The range of waiting time is (0, 45) minutes. The midpoint is 30 minutes as 

its utility value is 0.5. A graph of this function is shown in Figure 12. 

A particular single attribute utility function for utilization is given by: 

𝑢2(𝑥2) = −0.7841 + 0.7841exp(1.644𝑥2)       (21) 

The range of utilization is (0, 0.5). The midpoint is 0.3 as the utility value is 

0.5. The reason for using a maximum utilization value of 0.5 is that the staff 

has activities to perform other than what is represented in the model. A graph 

for this function is shown in Figure 13.  

Using these two attributes 𝑋1 and 𝑋2, an additive multiple attribute utility 

function is given by equation (22). 

Figure 12. Utility function for waiting time 

 

 

Figure 13. Utility function for utilization 
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U(𝑥1, 𝑥2) = 𝑤1𝑢1(𝑥1)+𝑤2𝑢2(𝑥2)               (22) 

Let 𝑤1 = 0.6   𝑤2 = 0.4 ,                 (23) 

Substituting (20) (21) and (23) into the (22), one obtains  

U(𝑥1, 𝑥2) = 0.6 ∗ [1.309 − 0.309exp(0.03208𝑥1)] + 0.4

∗ [−0.7841 + 0.7841exp(1.644𝑥2)] 

A.2 SELECTION OF 𝜹∗ FOR “HEALTHY FOR LIFE” CLINIC 

A.2.1 UTILITY EXCHANGE 

We studied ten configurations for new patients’ and follow up patients’ 

interarrival time. We change each type of patients’ interarrival time and 

observe the patients average waiting time and average utilization of staff. We 

considered each type of patients’ process time and show up rate to set up the 

experiment. Details associated with the ten configurations are shown in Table 

7, and associated output from the simulation model are shown in Table 8. 

Butler et al. (2001) proposed a “utility exchange” where one sets the 

utilization at a common level, and hence only needs to adjust the waiting time 

with the fixed utilization level. 

The first step is to determine the standard measure which is utilization of 

staff. Then, select a common level of utility, denoted as 𝑐𝑖 for the attribute 

which is assigned to be the standard measure. The last step is utility exchange. 

Based on the value of 𝑐𝑖, we change the value of waiting time from 𝑥𝑘1 to 𝑥𝑘1
′ . 

We want to make two alternatives equally preferred, which means that the 

respective expected utility values associated with the two alternatives will be 

equal.  

As noted earlier, there are two attributes and ten configurations in this study. 
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So K=10. We define 𝑥𝑘1 as the average waiting time, and 𝑥𝑘2 as the average 

utilization. We chose utilization as the standard measure and let u(𝑥𝑘2
′ ) = 𝑐2. 

Then we changed waiting time 𝑥𝑘1 to 𝑥𝑘1
′ , where k denote the alternative (in 

this project, k=1, 2, 3, 4...10) and the index 1 in 𝑥𝑘1
′   denote the first attribute. 

Butler et al. (2001) provide three propositions, which allows one to extend 

to an indifference zone for an attribute to an indifference zone for expected 

utility. We mentioned in Chapter III (P.27). Applying Propositions to the project: 

Let the utilization be the standard measure, and assume that the utilization is 

fixed at 0.22. Then 𝑐2 = 0.35. 

Table 17 shows the sample mean waiting time, the sample mean utilization, 

the individual attribute utility function value for 𝑥1 and 𝑥2, the fixed utility 

function value for 𝑥2  and rescaled utility value of 𝑥1
′  for the various 

configurations. 

 

Configuration 

Sample 
mean 

Waiting 
Time 

Sample 
mean 

Utilization 

Individual 
attribute 

utility function 

value for 𝑥1 
𝑢1(𝑥1) 

Individual 
attribute utility 
function value 

for 𝑥2 
𝑢2(𝑥2) 

Fixed 
utility 

function 
value for 

𝑥2 
𝑐2 

Rescaled 
utility 

function 
value for 

𝑥1 𝑢1(𝑥1′) 

1 22.99 0.22 0.66 0.34 0.35 0.66 

2 22.14 0.22 0.68 0.34 0.35 0.67 

3 23.00 0.22 0.66 0.34 0.35 0.65 

4 22.99 0.22 0.66 0.34 0.35 0.66 

5 22.14 0.22 0.68 0.33 0.35 0.67 

6 11.26 0.15 0.87 0.21 0.35 0.77 

7 11.26 0.14 0.87 0.21 0.35 0.77 

8 8.95 0.15 0.90 0.21 0.35 0.81 

9 10.20 0.09 0.88 0.14 0.35 0.74 

10 9.55 0.10 0.89 0.14 0.35 0.75 

 

Table 17 Utility Value for the Average Waiting Time, Utilization and Rescaled Utility of Waiting Time 
Value 
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A.2.2 DETERMINING THE INDIFFERENCE ZONE 

The next step is that the decision maker needs to determine  δ1
∗
. We 

discussed  δ1
∗
 in Section III, and we chose one of the indifference zones to 

calculate. We set δ1
∗ = 0.1 which means that the decision maker is indifferent 

between a waiting time of 20 minutes and a waiting time of 25 minutes, as 

shown in Table 3. 

A.3 TWO STAGE RANKING AND SELECTION FOR THE “HEALTHY FOR 

LIFE” CLINIC 

In order to make a final comparison between alternative configurations, we 

determined the number of additional replications for the simulation results 

shown in Table 18. We used a half width of the confidence interval as output 

from the simulation runs in order to calculate the variance of each utility 

function, then we used the variance of the utility function to calculate the 

number of replications needed to allow a valid determination. Setting 𝑃∗ =

0.95,ℎ = 4.29, 𝑛0 = 10, 𝐾 = 10, 𝑐2 = 0.7, δ1
∗ = 0.1 and then using equation (7) 

yields the results shown in Table 18. After running additional replications, we 

obtained the average waiting time, utilization, utility value of waiting time and 

utility value of utilization in Table 19. Then we performed a utility exchange to 

calculate exchanged utility waiting time on these additional replications. After 

that, we calculated the weighted of two stage sample mean using formulation 

(9). Finally, we obtained the weighted sample means of utility value through 

the use of (10). The final results are shown in Table 20.  
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Configuration 

Rescaled 
Average 
Waiting 
Time 

𝑢1(𝑋𝑘1)′ 

Fix  

Utility 𝐶2 
Utilization 

Half 
Width of 
𝑢1(𝑥1) 

Half 
Width of 
𝑢2(𝑥2) 

Total 
Replications 

(𝑁𝑘) 

More 
Replications 

(𝑁𝑘 − 𝑛0) 

1 0.66 0.35 0.04 0.01 23 13 

2 0.67 0.35 0.05 0.01 36 26 

3 0.65 0.35 0.04 0.01 23 13 

4 0.66 0.35 0.04 0.01 23 13 

5 0.67 0.35 0.05 0.01 36 26 

6 0.77 0.35 0.03 0.01 13 3 

7 0.77 0.35 0.03 0.01 13 3 

8 0.81 0.35 0.02 0.01 6 0 

9 0.74 0.35 0.04 0.01 23 13 

10 0.75 0.35 0.03 0.01 13 3 

 

Table 18 Calculate Numbers of More Replications Needed According Variance 

Configuration 𝑁𝑘 − 𝑛0 𝑥𝑘(𝑁𝑘 − 𝑛0) 𝑢1(𝑁𝑘 − 𝑛0) 𝑢2(𝑁𝑘 − 𝑛0) 𝑢1’(𝑁𝑘 − 𝑛0) 

Define  

the Weights 

𝑤𝑘1 

1 13 22.57 0.67 0.34 0.66 0.43 

2 26 21.98 0.68 0.33 0.67 0.28 

3 13 22.57 0.66 0.33 0.65 0.43 

4 13 22.57 0.66 0.33 0.65 0.43 

5 26 21.98 0.68 0.33 0.67 0.28 

6 3 11.37 0.86 0.20 0.76 0.74 

7 3 11.37 0.86 0.20 0.76 0.74 

8 0     1.00 

9 13 10.42 0.87 0.15 0.74 0.43 

10 3 8.61 0.89 0.14 0.75 0.74 

 

Table 19 Calculated Rescaled Exchanged Utility of Waiting Time on More Replications and Weight 𝒘𝒌𝟏 
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Table 20 indicates that policy 8 is the best. For the policy, the interarrival 

times for new patients and follow up patients to see the physician and 

nutritionist are each 45 minutes respectively, and for follow up patients to see 

the exercise physiologist and psychologist are 30 minutes respectively. 

B.SENSITIVITY ANALYSIS ON UTILITY FUNCTION WEIGHTS FOR 

“HEALTHY FOR LIFE” 

We changed the weight of waiting time (𝑤1) in increments of 0.1 from 0.9 

to 0.1. Since 𝑤1 + 𝑤2 = 1, 𝑤2 was also appropriately changed in value. 

When 𝑤1 = 0.9, 𝑤2 = 0.1, the multiple attribute utility function is given by 

𝑈(𝑥1, 𝑥2) = 0.9 ∗ [1.309 − 0.309exp(0.03208𝑥1)] + 0.1

∗ [−0.7841 + 0.7841exp(1.644𝑥2)] 

From the formula for the utility exchange: 

𝑤1𝑢1(𝑥𝑘1
) + 𝑤2𝑢2(𝑥𝑘2

) = 𝑤1𝑢1(𝑥𝑘1
′) + 𝑤2𝑐2 

Thus, we obtain the required utility exchange for k=1, 2, 3…... K as follows:     

𝑢1(𝑥𝑘1
′ ) = 𝑢1(𝑥𝑘1) +

𝑤2

𝑤1
(𝑢2(𝑥𝑘2) − 𝑐2).              

Configuration 𝑊𝑘1 𝑊𝑘2 𝑈1’(𝑥1) 𝑈1’(𝑁𝑘 − 𝑛0) final results 

1 0.43 0.57 0.66 0.66 0.66 

2 0.28 0.72 0.67 0.67 0.67 

3 0.43 0.57 0.65 0.65 0.65 

4 0.43 0.57 0.66 0.65 0.65 

5 0.28 0.72 0.67 0.67 0.67 

6 0.74 0.26 0.77 0.76 0.77 

7 0.74 0.26 0.77 0.76 0.77 

*8 1.00 0.00 0.81  0.81 

9 0.43 0.57 0.74 0.74 0.74 

10 0.74 0.26 0.75 0.75 0.75 

 

Table 20 Utility Value of the Final Results 
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We concluded that 𝑢1(𝑥𝑘1
′ ) is influenced by the weight. We followed the 

steps as we mentioned above and obtained the final results shown in Table 21. 

Since the utility function is scaled from 0 to 1, its expected value should be 

between 0 and 1. Morrice (1999) mentioned that the utility value was only a 

convention and would not necessarily attain a value between 0 and 1. Hence, 

we ignored the configurations with utility values smaller than one. We mark 

these values as N/A in Table 21. 

From Table 21, we can conclude that when waiting time has a weight that is 

larger than or equal to 0.4, the configuration 8 is best. This optimal 

configuration states that the interarrival times for new patients and follow up 

patients to see the physician, nutritionist are each 45minutes respectively, in 

addition, the interarrival times for follow up patients who see exercise 

physiologist and the psychologist are 30 minutes. When 𝑤2 = 0.9, 

configuration 1 is the best. This optimal configuration corresponds to 

interarrival times for new patients as 30 minutes, and for follow up patients who 

see the physician, nutritionist, exercise physiologist the interarrival times are 

15 minutes. 

Table 21 Utility Value of Final Results on Different Weights 

 

configuration w1=0.9 w1=0.8 w1=0.7 w1=0.6 w1=0.5 w1=0.4 w1=0.3 w1=0.2 w1=0.1 

1 0.67 0.66 0.66 0.66 0.66 0.65 0.63 0.62 0.56 

2 0.68 0.68 0.67 0.67 0.66 0.65 0.63 0.59 0.50 

3 0.66 0.66 0.65 0.65 0.66 0.64 0.63 0.62 0.47 

4 0.66 0.66 0.65 0.65 0.66 0.64 0.63 0.62 0.47 

5 0.68 0.68 0.67 0.67 0.66 0.65 0.63 0.58 0.49 

6 0.85 0.83 0.80 0.77 0.73 0.65 0.54 0.31 N/A 

7 0.85 0.83 0.80 0.77 0.72 0.65 0.54 0.31 N/A 

8 0.88 0.86 0.84 0.81 0.76 0.69 0.57 0.33 N/A 

9 0.85 0.71 0.79 0.74 0.67 0.57 0.40 0.06 N/A 

10 0.87 0.84 0.80 0.75 0.68 0.58 0.41 0.07 N/A 
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C. RESULTS FOR THE “AIM” CLINIC 

C.1 MULTIPLE ATTRIBUTE UTILITY FUNCTION FOR “AIM” CLINIC: 

In the single morning “AIM” clinic simulation model, the main goal is to 

choose an optimal policy for scheduling patients with respect to satisfaction of 

the goal of the clinic’s manager and the clinic’s patients. The candidate policies 

involves varying interarrival times for patients, assignment of differing numbers 

of patients be to respective assigned to residents of different experience, 

flexibly assigned examination rooms. 

There are four performance measures: the waiting time of patients, the staff 

utilization, the examination room utilizations and the amount of over time. The 

ideal result will be low mean waiting time, high mean utilization of staff and 

examination rooms and low over time. However, tradeoffs are needed between 

these four attributes in order to determine a better policy. We denote waiting 

time as 𝑋1, utilization of staff as 𝑋2, utilization of examination room as 𝑋3 and 

over time as 𝑋4. 

The single attribute utility function form is given by: 

𝑢𝑖(𝑥𝑖) = 𝐴𝑖 − 𝐵𝑖𝑒
𝑥𝑖𝑅𝑇𝑖, 

where 𝑅𝑇𝑖 is the decision maker’s (DM’s) assessed risk tolerance and 𝐴𝑖 and 

𝐵𝑖 are scaling constants. 

A single attribute utility function for the waiting time is given by (24): 

𝑢1(𝑥1) = 1.425 − 0.4248exp(0.01729𝑥1)                (24) 

The range of waiting time is (0, 70) minutes. The midpoint is 45 minutes as 

the utility value is 0.5. 

A single attribute utility function for the utilization of staff is given by (25): 
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𝑢2(𝑥2) = 1.784 − 1.784exp(−0.8222𝑥2)                 (25) 

The range of utilization is (0,1). The midpoint is 0.4 as the utility value is 

0.5.  

A single attribute utility function for the utilization of examination room is 

given by (26): 

𝑢3(𝑥3) = 1.198 − 1.198exp(−1.801𝑥3)                  (26) 

The range of utilization is (0, 1). The midpoint is 0.3 as the utility value is 

0.5.  

A single attribute utility function for the overtime is given by (27): 

𝑢4(𝑥4) = 2.028 − 1.028exp(0.005661𝑥4)                (27)                                       

The range of waiting time is (0, 120) minutes. The midpoint is 70 minutes 

as the utility value is 0.5. 

Using the four attributes, an additive multiple attribute utility function is 

given in (28). 

U(𝑥1, 𝑥2) = 𝑤1𝑢1(𝑥1)+𝑤2𝑢2(𝑥2) + 𝑤3𝑢3(𝑥3)+𝑤4𝑢4(𝑥4)        (28) 

Let 𝑤1 = 0.4, 𝑤2 = 0.3, 𝑤3 = 0.2, 𝑤4 = 0.1, then the multiple attribute utility 

function is given by: 

U(𝑥1, 𝑥2, 𝑥3, 𝑥4)

= 0.4 ∗ [1.425 − 0.4248exp(0.01729𝑥1)] + 0.3

∗ [1.784 − 1.784exp(−0.8222𝑥2)] + 0.2

∗ [1.198 − 1.198exp(−1.801𝑥3)] + 0.1

∗ [2.028 − 1.028exp(0.005661𝑥4)] 
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C.2 SELECTION OF 𝜹∗ FOR “AIM” CLINIC 

C.2.1 UTILITY EXCHANGE 

We considered different years of residents’ service time, different types of 

patients’ service time and show up rate to set up the experimental. We 

assigned twelve configurations and observe the patients average waiting time, 

average utilization of staff, average utilization of examination rooms and 

amount of over time. Twelve configurations and simulation results are shown in 

Table 16, (Chapter IV). 

In this project, we have four attributes and twelve configurations. So K=12. 

We define 𝑥𝑘1 is the average waiting time, 𝑥𝑘2 is the average utilization of 

staff, 𝑥𝑘3 is the average utilization of examination rooms, and 𝑥𝑘4 is the over 

time. We choose utilization of staff, utilization of examination rooms, over time 

these three attributes as the standard measures and let u(𝑥𝑘2
′ ) = 𝑐2, u(𝑥𝑘3

′ ) =

𝑐3, u(𝑥𝑘4
′ ) = 𝑐4. Then we need to change waiting time 𝑥𝑘1 to 𝑥𝑘1

′ , k is the 

alternative (in this project, k=1, 2, 3, 4...12) and the index 1 in 𝑥𝑘1
′  is the first 

attribute. 

We applied Propositions which mentioned in Chapter III to the project: Let 

the utilization of staff, utilization of examination rooms, and over time be the 

standard measure. We need to define 𝑐2, 𝑐3,𝑎𝑛𝑑 𝑐4. from the formulas (25), (26) 

and (27), we get that: when 𝑋2 = 0.5, then 𝑢2(𝑥2) = 0.6 = 𝑐2; when 𝑋3 = 0.4, 

then 𝑢3(𝑥3) = 0.6 = 𝑐3; when 𝑋4 = 66, then 𝑢4(𝑥4) = 0.53 = 𝑐4. 

Table 22 shows the individual attribute utility function value for 𝑥1, 𝑥2, 𝑥3 

and 𝑥4, fixed utility function value for 𝑥2,𝑥3 and 𝑥4 and rescaled utility value 

of 𝑥1
′ . 
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C.2.2 DETERMINING THE INDIFFERENCE ZONE 

The next step is that the decision maker needs to determine  δ1
∗
. We 

assume the clinic manager believes that the waiting time of 30 minutes and 37 

minutes are indifference. After calculation, we get δ1
∗ = 0.09 . 

C.2.3 TWO STAGE RANKING AND SELECTION FOR “AIM” CLINIC 

In order to make a final comparison between alternative configurations, we 

determined the number of additional replications for the simulation in Table 24. 

We used the half widths of the 95% confidence intervals to calculate the 

Configuration 

Individual 
attribute 

utility function 
value  
for 𝑥1  
𝑢1(𝑥1) 

Individual 
attribute 

utility function 
value  
for 𝑥2   
𝑢2(𝑥2) 

Individual 
attribute 

utility function 
value  
for 𝑥3   
𝑢3(𝑥3) 

Individual 
attribute 

utility function 
value  
for 𝑥4   
𝑢4(𝑥4) 

Fixed 
utility 

function 
value for 

𝑋2  

𝐶2 

Fixed 
utility 

function 
value for 

𝑋3  

𝐶3 

Fixed 
utility 

function 
value for 

𝑋4  

𝐶4 

Rescaled 
utility 

function 
value  
for 𝑋1 
𝑢1(𝑥1′) 

1 0.64 0.63 0.604511 0.01168 0.6 0.6 0.53 0.530474 

2 0.62 0.63 0.645762 0.056824 0.6 0.6 0.53 0.549722 

3 0.77 0.69 0.625508 0.277767 0.6 0.6 0.53 0.782549 

4 0.77 0.69 0.645762 0.336217 0.6 0.6 0.53 0.809102 

5 0.84 0.58 0.548587 0.355263 0.6 0.6 0.53 0.753948 

6 0.82 0.57 0.560178 0.447326 0.6 0.6 0.53 0.757986 

7 0.90 0.59 0.524769 0.542754 0.6 0.6 0.53 0.862959 

8 0.90 0.59 0.524769 0.542754 0.6 0.6 0.53 0.862959 

9 0.91 0.47 0.434312 0.326612 0.6 0.6 0.53 0.680249 

10 0.91 0.47 0.447943 0.316954 0.6 0.6 0.53 0.678595 

11 0.96 0.49 0.434312 0.447326 0.6 0.6 0.53 0.773134 

12 0.96 0.49 0.434312 0.447326 0.6 0.6 0.53 0.773134 

 

Table 22 Utility Value of Each Attribute and Rescaled Utility Value for Waiting Time 
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variance of each expected utilities, then used these variances to calculate the 

additional numbers of replications needed. Setting 𝑃∗ = 0.95,ℎ = 4.29, 𝑛0 =

10, 𝐾 = 12, 𝑐2 = 0.7, δ1
∗ = 0.09 and then using equation (7) yields the results 

in Table 23. 

 

 

 

 

 

 

 

 

 

 

Configuration 

half 
width 

of 

𝑢1(𝑥1) 

half 
width 

of 

𝑢2(𝑥2) 

half 
width 

of 

𝑢3(𝑥3) 

half 
width 

of 

𝑢4(𝑥4) 

Rescaled 
variances of  
waiting time 

utility 

𝑢1(𝑥1)′ 

Total 
Replications 

(𝑁𝑘) 

More 
Replications 

(𝑁𝑘 − 𝑛0) 

1 0.20 0.03 0.03 0.33 0.1236 281 271 

2 0.17 0.05 0.02 0.23 0.0876 199 189 

3 0.05 0.03 0.03 0.15 0.0121 27 17 

4 0.05 0.04 0.04 0.11 0.0118 27 17 

5 0.05 0.03 0.02 0.06 0.0087 20 10 

6 0.05 0.02 0.02 0.10 0.0090 20 10 

7 0.07 0.06 0.06 0.07 0.0211 48 38 

8 0.07 0.06 0.06 0.07 0.0211 48 38 

9 0.04 0.06 0.06 0.16 0.0159 36 26 

10 0.04 0.06 0.06 0.15 0.0154 35 25 

11 0.01 0.06 0.05 0.11 0.0091 21 11 

12 0.01 0.06 0.05 0.11 0.0091 21 11 

 

Table 23 Calculate the Number of More Replications Needed According Variance 
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After running additional replications, we obtained the average waiting times, 

staff utilizations, utilizations of the examination rooms, over time values, and 

expected utilities for waiting time, staff utilization, examination rooms 

utilizations and overtime values. Then we performed the utility exchange 

procedure to calculate the exchanged utility waiting time on these additional 

replications. After that, we calculated the weighted of two stage sample mean 

using formulation (9). Finally, we can obtained the weighted sample means of 

the expected utility values through the use of (10). The final results are shown 

in Table 25. 

 

 

 

 

 

Configuration 𝑢1(𝑁𝑘 − 𝑛0) 𝑢2(𝑁𝑘 − 𝑛0) 𝑢3(𝑁𝑘 − 𝑛0) 𝑢4(𝑁𝑘 − 𝑛0) 𝑢1′(𝑁𝑘 − 𝑛0) 

define 
the 

weights 

𝑤𝑘1 

1 0.72 0.61 0.582743792 0.0116798 0.589200701 0.04 

2 0.71 0.61 0.62550799 0.0116798 0.597278185 0.05 

3 0.79 0.67 0.615104002 0.269921666 0.787865399 0.37 

4 0.79 0.67 0.635726279 0.31152061 0.805079353 0.37 

5 0.84 0.59 0.548587064 0.353083695 0.760786976 0.51 

6 0.82 0.58 0.560178299 0.279549116 0.723486361 0.49 

7 0.92 0.59 0.524768819 0.431046779 0.853881277 0.21 

8 0.91 0.59 0.524768819 0.376994895 0.828680148 0.21 

9 0.91 0.48 0.447943319 0.341666919 0.691240579 0.28 

10 0.90 0.48 0.447943319 0.344623687 0.685833689 0.29 

11 0.96 0.51 0.447943319 0.424796737 0.789830477 0.48 

12 0.96 0.49 0.43431242 0.402774335 0.764163287 0.48 

 

Table 24 Calculated Rescaled Exchanged Utility of Waiting Time on More Replications and Weight 𝒘𝒌𝟏 
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From Table 25, we see that policy 7 is the best. Policy 7 has interarrival 

times for patients as 5 minutes, with two examination rooms assigned to third 

year residents and more patients assigned to third years residents. 

D. SENSITIVITY ANALYSIS ON UTILITY FUNCTION WEIGHT FOR THE 

“AIM” CLINIC 

Using these four attributes 𝑋1, 𝑋2, 𝑋3 and 𝑋4, an additive multiple attribute 

utility function is given by 

U(𝑥1, 𝑥2) = 𝑤1𝑢1(𝑥1)+𝑤2𝑢2(𝑥2) + 𝑤3𝑢3(𝑥3)+𝑤4𝑢4(𝑥4) 

We categorize the weight values as being as high (value of 0.4), medium 

(value of 0.3) and low (value of 0.2). Because the utility function is additive. 

𝑤4 = 1 − 𝑤1 − 𝑤2 − 𝑤3. The ten weight configurations are shown in Table 26.  

 

 

 

 

Configuration 𝑤𝑘1 𝑤𝑘2 𝑋𝑘𝑛0
− 𝑈1′(𝑛0) 𝑋𝑘(𝑁𝑘 − 𝑛0) − 𝑈1′(𝑁𝑘 − 𝑛0) final results 

1 0.04 0.96 0.53 0.59 0.59 

2 0.05 0.95 0.55 0.60 0.59 

3 0.37 0.63 0.78 0.79 0.79 

4 0.37 0.63 0.81 0.81 0.81 

5 0.51 0.49 0.75 0.76 0.76 

6 0.49 0.51 0.76 0.72 0.74 

7 0.21 0.79 0.86 0.85 0.86 

8 0.21 0.79 0.86 0.83 0.84 

9 0.28 0.72 0.68 0.69 0.69 

10 0.29 0.71 0.68 0.69 0.68 

11 0.48 0.52 0.77 0.79 0.78 

12 0.48 0.52 0.77 0.76 0.77 

 

Table 25 The Utility Value of Final Results 
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Table 27 shows these configurations more explicitly. 

The first step in the process is utility exchange: 

𝑤1𝑢1(𝑥𝑘1
) + 𝑤2𝑢2(𝑥𝑘2

) + 𝑤3𝑢3(𝑥𝑘3
)+𝑤4𝑢4(𝑥𝑘4

) = 𝑤1𝑢1(𝑥𝑘1
′) + 𝑤2𝑐2 +

𝑤3𝑐3 + 𝑤4𝑐4                                  

Thus, we obtain the required utility exchange for k=1, 2, 3, 4 as follows:     

𝑢1(𝑥𝑘1
′ ) = 𝑢1(𝑥𝑘1) +

𝑤2

𝑤1
(𝑢2(𝑥𝑘2) − 𝑐2) +

𝑤3

𝑤1
(𝑢3(𝑥𝑘3) − 𝑐3) +

𝑤4

𝑤1
(𝑢4(𝑥𝑘4) −

𝑐4).       

The second step of the process involves adjusting the variance due to 

  𝑤1 𝑤2 𝑤3 𝑤4 

1 High Medium Low 1-High-Medium-Low 

2 High Low Medium 1-High-Medium-Low 

3 High Low Low 1-High-Low-Low 

4 Medium High  Low 1-High-Medium-Low 

5 Medium Low High 1-High-Medium-Low 

6 Medium Low Low 1-Medium-Low-Low 

7 Medium Medium Medium 1- Medium- Medium- Medium 

8 Low High  Medium 1-High-Medium-Low 

9 Low Medium High  1-High-Medium-Low 

10 Low Medium Medium 1- Medium -Medium-Low 

 

Table 27 Assign the Level of Weight to the Number 

  𝑤1 𝑤2 𝑤3 𝑤4 

1 0.4 0.3 0.2 0.1 

2 0.4 0.2 0.3 0.1 

3 0.4 0.2 0.2 0.2 

4 0.3 0.4 0.2 0.1 

5 0.3 0.2 0.4 0.1 

6 0.3 0.2 0.2 0.3 

7 0.3 0.3 0.3 0.1 

8 0.2 0.4 0.3 0.1 

9 0.2 0.3 0.4 0.1 

10 0.2 0.3 0.3 0.2 

 

Table 26 Assign Weight on Different Level 
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adjustment of utility values. This is required for the calculation of the number of 

replications needed. The rescaled variance for the first attribute (𝑥𝑘1) is as 

follows: 

𝑣𝑎𝑟(𝑢1(𝑥𝑘1
′ )) = 𝑣𝑎𝑟 [

𝑈(𝑋𝑘) − 𝑤2𝑐2 −𝑤3𝑐3 − 𝑤4𝑐4

𝑤1
] =

𝑣𝑎𝑟(𝑈(𝑋𝑘))

𝑤1
2

 

The third step of the process involves is setting the following values: 𝛿1
∗ =

0.09 𝑃∗ = 0.95 , ℎ = 4.29 ,  𝑛0 = 10 ,  𝐾 = 10 ,  𝑐2 = 0.6, 𝑐3 = 0.6 , 𝑐3 = 0.53, to 

calculate the number of replications needed. After running additional 

replications, the utility exchange is done again. Then the use two-stage 

ranking and selection steps are used to calculate the final results. Table 28 

shows the expected utility values for each configuration by weight set.  

From the Table 28, we conclude that when the weight associated with 

waiting time is set to a high value, configuration 7 is the best result. The main 

goal of this clinic is to reduce the long waiting time problem. So the 

configuration 7 represents a good solution. In configuration 7, the interarrival 

times for patients is 5 minutes, two examination rooms assigned to third year 

                                
Configuration          

1 2 3 4 5 6 7 8 9 10 

1 0.59 0.58 0.46 0.55 0.53 0.20 0.54 0.47 0.46 0.19 

2 0.59 0.60 0.47 0.56 0.58 0.20 0.59 0.53 0.53 0.24 

3 0.79 0.77 0.70 0.81 0.77 0.59 0.78 0.80 0.78 0.67 

4 0.81 0.80 0.71 0.83 0.81 0.65 0.82 0.87 0.85 0.74 

5 0.76 0.74 0.71 0.69 0.69 0.55 0.69 0.60 0.53 0.50 

6 0.74 0.74 0.69 0.69 0.68 0.58 0.68 0.60 0.58 0.51 

7 0.86 0.84 0.84 0.83 0.79 0.78 0.81 0.75 0.71 0.70 

8 0.84 0.82 0.81 0.81 0.76 0.75 0.78 0.75 0.72 0.70 

9 0.69 0.68 0.67 0.76 0.54 0.53 0.57 0.34 0.32 0.29 

10 0.68 0.68 0.67 0.57 0.55 0.53 0.56 0.33 0.32 0.30 

11 0.78 0.77 0.78 0.70 0.66 0.69 0.68 0.50 0.46 0.49 

12 0.77 0.75 0.76 0.68 0.63 0.66 0.66 0.47 0.44 0.44 

 

 

Weight 

Table 28 Final Results of the Utility Value with Weighted Changed 
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residents and more patients are assigned to third years residents. When 

weight associated with the waiting time is set to a low value, configuration 4 is 

the best of those tested. In configuration 4, the interarrival time for patients is 4 

minutes, the examination rooms are flexible to use for all the residents and 

more patients are assigned to third year’s residents. When the weight 

associated with the waiting time is at a medium value, the result various 

among the configurations. We need to consider the weight of the other 

attributes. 

We also consider that when the weight associated with the utilization of 

staff is set to a high value, the configuration 4 is the best. When the weight 

associated with the utilization of examination rooms is set to a high value, the 

configuration 4 is also the best. In configuration 4, the interarrival time for 

patients is 4 minutes, the examination rooms are flexible to use for all the 

residents and more patients are assigned to third year’s residents. When the 

weight associated with the utilization of staff and examination rooms is at a low 

value, the result various among the configurations. We need to consider the 

weight of the other attributes. Over time is not an important attribute as other, 

so the weight of associated with the over time is always set to a low value or 

lower. 
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VI. CONCLUSIONS AND FUTURE RESEARCH 

A.CONCLUSIONS 

 
Clinic managers are under a great deal of pressure to reduce costs and 

improve quality of service provided. Clinic managers hope to find an optimal 

scheduling method to improve staff utilization, and also decrease the patients’ 

waiting time in order to satisfy the patients. 

In this dissertation, we performed projects for “Healthy for Life” Clinic and 

“AIM” Clinic in Louisville, KY.  

The “Healthy for Life” clinic is a multiple resource clinic for treating 

overweight children. The main problem in this clinic was the high no show rate. 

The patients make appointments with the clinic, but do not show up. Our work 

involved analysis and optimization of the clinic’s operation through data 

collection, simulation modeling and analysis. The steps were as follows: 

1. Collected one year raw data from the clinic. Analyzed data and 

identified opportunities for improvement. 

2. Constructed a long period simulation model for this multiple resources 

clinic. Categorized patients and staff through no show rates and service 

times. 

3. Changed the interarrival time of different types of patients as the 

configurations. Used multiple attribute utility theory with statistical 
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ranking and selection procedure to select the best configuration from 

these configurations with an indifferent zone approach. 

4. The clinic managers can decide which level of weight is suitable for the 

attributes and choose a best scheduling method based on the highest 

expected utility value. 

The animation of the simulation model provided the clinic manager with a 

good understanding of patient flow and the problems of the clinic. The results 

gave the clinic manager suggestions to increase the clinic’s efficiency and 

satisfy the patients. Also, we used multiple attribute utility theory with statistical 

ranking and selection to select the best configuration in health care is one of 

the contributions in this dissertation. The other contribution is building a long 

period simulation model in a multiple resource clinic. 

The “AIM” clinic is a teaching clinic, which belongs to the University of 

Louisville. The main problem for the clinic manager is long waiting times. Our 

work involved the improvement and optimization of the clinic operations by 

intelligent scheduling of patients and flexible assignment of facilities. The steps 

were as follows: 

1. Collected raw data from the clinic. Analyzed data and identify 

opportunities for improvement.  

2. Built simulation model and assign medical resources including 

examination rooms and residents in different years. Changed patients’ 

interarrival time and reassign medical resources as configurations. 

Concluded waiting time, utilization of staff, utilization of examination 

rooms and over time as the attribute to observe and analyze. 

3. Used multiple attribute utility theory with statistical ranking and selection 
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to select the best configuration from a set of configurations. 

4. Provide the decision makers the optimal scheduling policy based on 

different attitudes to each attribute. 

The new strategy optimizes the different years of resident scheduling and 

examination room assignment. Provide clinic manager suggestions to satisfy 

the patients and increase the clinic’s efficiency.  

B.FUTURE RESEARCH 

There are several directions available for further research in this area. 

These areas are discussed below.  

For the Simulation Models for the Healthy for Life clinic, there are three areas 

we like to propose. : 

First, in addition to the patient categories employed for the current model, 

patients could also be categorized by insurance type. Examples of these types 

of insurance include Passport, United Health Care, and Humana. Patients with 

Passport Insurance pay nothing for their medical care, while patients with other 

types of insurance need to co-pay. Some insurance types cover only two visits 

to the clinic; hence, insurance type is a significant factor influencing the no 

show rate. Therefore one approach that might be tried would be to investigate 

overbooking of patients in which the amount of overbooking would be by 

insurance type. This type of investigation would constitute a contribution to the 

literature since it has not been studied before.  

Second, the model could also be extended by categorizing patients by age. 

The range of patients’ age is from 2 to 19 years old. Patient no show rate 

varies by age; in particular, younger patients’ no show rate is higher than older 
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patients.  Hence an investigation in which the amount of overbooking varies 

by patient age could also be made with the simulation model. 

Third, in the current model, patients are randomly assigned to staff at each 

visit. A different approach would involve using a fixed sequence to assign 

patients. For example, patients could be assigned to see the psychologist in 

their second visit; the exercise physiologist in their third visit and so on. Then, 

we could compare the results of these two methods (random assignment vs. 

fixed sequence assignment) and choose an optimal one to suggest to the clinic 

manager. 

For the simulation model for the AIM Clinic, the following topics can be further 

studied. 

First, the current Tuesday morning model can be extended to a 

five-weekday model that considers variabilities in service times among 

residents, arrival rates for different days of the week, and special operational 

rules on a certain day during the week. Such a weekly model allows clinic 

manager to forecast dynamics on patient flow, staff utilization and quality of 

service. Second, the simulation results in this dissertation show that the 

utilization of nurses is low. We can modify the shift of nurse or reduce the 

number of nurse to increase efficiency. Third, the main objective of the current 

model is to reduce patients’ waiting time and overtime for staff. An alternative 

model can look into economic objectives such as reducing operating costs and 

increasing revenue. For example, increasing patients’ arrival rate will have 

positive effects on increasing revenue but negative effects on reducing 

patients’ waiting time. Thus, a balanced approach from using multi-attribute 

utility function can be explored.  
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Finally, we like to point several future directions on the general 

methodology for developing simulation model for outpatient clinic operations. 

First, multiplicative and multilinear multi-attribute utility function can be studied 

instead of the additive multi-attribute utility function used in the dissertation. 

Second, the sensitivity analysis conducted in the dissertation mainly varies the 

weights assigned to different terms in the additive multi-attribute utility function.  

We like to extend the sensitivity analysis by varying different types of utility 

function, validate the use of these functions and study varying effects of these 

utility functions. Finally, we like to integrate the design of experiment into our 

simulation model. One such technique called “controlled sequential factorial 

design” (CSFD), by Shen and Wan (2009), is particularly interesting to us.  It 

uses traditional factorial design to control the Type I error and focuses on each 

factor with heterogeneous variance. We like to use CSFD in our simulation 

model because it requires a moderate number of factors. 
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