### University of Louisville

# ThinkIR: The University of Louisville's Institutional Repository

**Electronic Theses and Dissertations** 

5-2016

# Tobacco-gene activity profile in Porphyromonas gingivalis, Filifactor alocis and Treponema denticola.

Neelima Chowdary Cherukumalli University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Part of the Oral Biology and Oral Pathology Commons, and the Periodontics and Periodontology Commons

#### **Recommended Citation**

Cherukumalli, Neelima Chowdary, "Tobacco-gene activity profile in Porphyromonas gingivalis, Filifactor alocis and Treponema denticola." (2016). *Electronic Theses and Dissertations*. Paper 2423. https://doi.org/10.18297/etd/2423

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

# TOBACCO - GENE ACTIVITY PROFILE IN PORPHYROMONAS GINGIVALIS, FILIFACTOR ALOCIS AND TREPONEMA DENTICOLA

By

Neelima Chowdary Cherukumalli

A Thesis Submitted to the Faculty of the School of Dentistry of the University of Louisville In Partial Fulfillment of the Requirement for the Degree of

Master of Science in Oral Biology

Department of Oral Health and Rehabilitation University of Louisville, School of Dentistry Louisville, KY

May 2016

Copyright by Neelima Chowdary Cherukumalli in 2016

All Rights Reserved

# TOBACCO - GENE ACTIVITY PROFILE IN PORPHYROMONAS GINGIVALIS, FILIFACTOR ALOCIS AND TREPONEMA DENTICOLA

By Neelima Chowdary Cherukumalli BDS

A Thesis approved on April 18, 2016

By the following Thesis Committee:

Dr. David A. Scott (Mentor)

Dr. Richard J. Lamont (Committee member)

Dr. Jan S. Potempa (Committee member)

#### ACKNOWLEDGEMENTS

I owe many thanks to my mentor Dr. David A. Scott for his patience, support and encouragement throughout my master's degree. I would also like to thank my committee members Jan S. Potempa and Richard J. Lamont for their feedback and assistance during this period.

A special thanks to Diane Renaud for teaching me every single procedure with great patience. I would like to give thanks to Justin Hutcherson, Himabindu Gogeneni, Daniel Miller, RO Hassanzadehmahaei and Melissa Metzler for their help in my project. I would also like to thank Gwyneth Lamont, Rishi Guha Niyogi, Zhen Gu, Atul Agrawal for their support in lab.

My sincere thanks to my parents Mr. Venkateswara Rao Cherukumalli and Lakshmi Prasanna Cherukumalli for allowing me to realize my potential. Words cannot describe the love and encouragement they have provided to me over the years. Also thanks to my sister Sravani Dhulipalla and my brother-in-law Kalyan Dhulipalla for their emotional and financial support. Lastly, thanks to all my friends Hari, Raviteja, Paridhi, Reshmanth and Sirisha for being there for me; I am grateful for you.

#### ABSTRACT

# TOBACCO - GENE ACTIVITY PROFILES IN PORPHYROMONAS GINGIVALIS, FILIFACTOR ALOCIS AND TREPONEMA DENTICOLA

Neelima Chowdary Cherukumalli, BDS

#### April 18, 2016

Smoking is an established risk factor for periodontitis. Prior studies have shown that cigarette smoke extract (CSE) can induce profound phenotypic changes in *Porphyromonas gingivalis* and alters the virulence of this important periodontal pathogen. We hypothesized that CSE might also alter gene expression in established periodontal pathogens, *Porphyromonas gingivalis* and *Treponema denticola*, as well as in the emerging pathogen, *Filifactor alocis*. Oral bacteria were grown in CSE-conditioned medium (1000 ng/ml nicotine equivalents) or in unconditioned control medium. Total RNA was extracted and CSE-regulated genes were identified by comparison of the mRNA profiles of CSE with control cultures using RNA-Seq analysis. Approximately, 30% of genes in the *P. gingivalis* genome and 5% of genes in the *F. alocis* genome were found to be differentially expressed when exposed to cigarette smoke. Several genes responsible for DNA replication and repair, transfer (tra) genes, ABC transporter genes and several metabolic genes were found to be differentially expressed in both *F. alocis* and *P.* 

*gingivalis*. Validation of RNA-Seq differentially expressed genes was done by qPCR analysis for selected genes and similar results were found. More in depth study of these genes could provide some of the first insights into how cigarette smoke changes the *P. gingivalis* and *F. alocis* phenotype in a manner likely to promote their colonization and infection.

# TABLE OF CONTENTS

| ACKNOWLEDGEMENTSiii                                                       |
|---------------------------------------------------------------------------|
| ABSTRACTiv                                                                |
| LIST OF FIGURES vii                                                       |
| LIST OF TABLES ix                                                         |
| Chapter 1: INTRODUCTION1                                                  |
| 1.1 Tobacco and disease1                                                  |
| 1.2 Smoking and chronic infectious diseases2                              |
| 1.3 Smoking and chronic inflammatory diseases4                            |
| 1.4 Periodontal diseases5                                                 |
| 1.5 Smoking and periodontal diseases6                                     |
| 1.6 Porphyromonas gingivalis8                                             |
| 1.7 Filifactor alocis13                                                   |
| 1.8 Treponema denticola17                                                 |
| 1.9 Smoking and Periodontal pathogens20                                   |
| Chapter 2: MATERIALS AND METHODS23                                        |
| 2.1 Bacterial culture and <i>in vitro</i> modelling of tobacco exposure23 |
| 2.2 Isolation of total RNA24                                              |
| 2.3 RNA-Seq analysis24                                                    |
| 2.4 Validation of RNA-Seq analysis data by PCR25                          |

| Chapter 3: RESULTS                                      | 28 |
|---------------------------------------------------------|----|
| 3.1 Bacterial growth in CSE-conditioned medium          | 28 |
| 3.2 Differentially expressed <i>P. gingivalis</i> genes | 30 |
| 3.3 Differentially expressed <i>F. alocis</i> genes     | 45 |
| 3.4 qPCR analysis                                       | 53 |
| Chapter 4: DISCUSSION                                   | 57 |
| REFERENCES                                              | 63 |
| URRICULUM VITAE                                         | 34 |

# LIST OF FIGURES

| 1. | Diseases related to Smoking                                    | 4          |
|----|----------------------------------------------------------------|------------|
| 2. | Effect of CSE on <i>P. gingivalis</i> growth rate              | 28         |
| 3. | Effect of CSE on <i>F. alocis</i> growth rate                  | 29         |
| 4. | Effect of CSE on <i>T. denticola</i> growth rate               | 30         |
| 5. | P. gingivalis ATCC 33277 genes differentially expressed u      | inder CSE- |
|    | induced stress                                                 | 36         |
| 6. | Citrate cycle pathway of <i>P. gingivalis</i>                  |            |
| 7. | Pyruvate metabolism pathway of <i>P. gingivalis</i>            |            |
| 8. | Glycolysis pathway of <i>P. gingivalis</i>                     | 40         |
| 9. | Butanoate metabolism pathway of <i>P. gingivalis</i>           | 41         |
| 10 | D. CAMP resistance pathway of <i>P. gingivalis</i>             | 42         |
| 11 | .ABC transporter pathway of <i>P. gingivalis</i>               | 43         |
| 12 | Biosynthesis of amino acids pathway of <i>P. gingivalis</i>    | 44         |
| 13 | . F. alocis ATCC 35896 genes differentially expressed under CS | E-induced  |
|    | stress                                                         | 47         |
| 14 | 2. Oxidative phosphorylation pathway of <i>F. alocis</i>       | 49         |
| 15 | ABC transporter pathway of <i>F. alocis</i>                    | 50         |
| 16 | B. Bacterial secretory system pathway of <i>F. alocis</i>      | 51         |
| 17 | . Protein export in <i>F. alocis</i>                           | 52         |
| 18 | 8. Pyruvate metabolism pathway of <i>F. alocis</i>             | 53         |

# LIST OF TABLES

| 1. | <i>P. gingivalis</i> oligonucleotide primers for quantitative PCR analysis | .25 |
|----|----------------------------------------------------------------------------|-----|
| 2. | F. alocis oligonucleotide primers for quantitative PCR analysis            | .26 |
| 3. | Up regulated genes in <i>P. gingivalis</i> from RNA- Seq analysis          | .31 |
| 4. | Down regulated genes in <i>P. gingivalis</i> from RNA- Seq analysis        | .32 |
| 5. | Up regulated genes in <i>F. alocis</i> from RNA- Seq analysis              | .45 |
| 6. | Down regulated genes in <i>F. alocis</i> from RNA- Seq analysis            | .47 |
| 7. | qPCR expression values for selected <i>P. gingivalis</i> genes             | .54 |
| 8. | qPCR expression values for selected <i>F. alocis</i> genes                 | .55 |

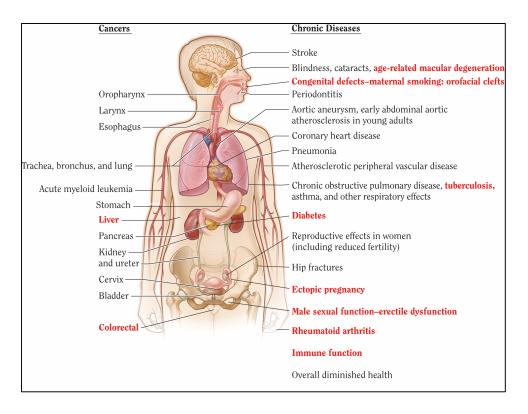
## CHAPTER 1: INTRODUCTION

#### Tobacco and Disease

Tobacco is the single biggest preventable reason for death and illness in the United States. According to the World Health Organization, there were around 1.3 billion smokers worldwide in 2003, and that number is relied upon to increment to 1.7 billion by 2020 (1). Cigarette smoking kills more than 480,000 Americans each year, with more than 41,000 of these deaths from exposure to secondhand smoke (2). In addition, smoking-related illness in the United States costs more than \$300 billion a year (2, 3).

Cigarette smoke is a complex mixture of chemical compounds. Researchers have estimated that cigarette smoke has > 7000 chemical compounds from many different classes (4). Components of smoke are contained in either the particulate phase or the gas phase. The particulate phase ingredients include tar, polynuclear hydrocarbon phenol, cresol, catechol and trace elements which are carcinogens; indol, carbazole (tumor accelerators) and 4-aminobiphenyl (known to cause hepatocellular carcinoma) (5). The gas phase contains carbon monoxide, hydrocyanic acid, acetaldehyde, acrolein, ammonia, formaldehyde and oxides of nitrogen, nitrosamines, hydrazine, and vinyl chloride that have carcinogenic activity (6,7,8,9). Nicotine in cigarette smoke is highly addictive. In

little doses nicotine goes about as a stimulant to the brain. In substantial doses, it's a depressant, repressing the signals between nerve cells. In considerably bigger doses, it's a deadly toxic substance, influencing the heart, veins, and hormones (10).


There is a positive association between tobacco smoking and cancers of the lung, oral cavity, pharynx, larynx, esophagus, pancreas, bladder, kidney, pelvis, nasal cavities, paranasal sinuses, nasopharynx, liver, stomach, kidney and cervix (12). Smoking accounts for at least 30% of all cancer deaths and 87% of lung cancer deaths. In the United states, tobacco use is responsible for nearly 1 in 5 deaths (11). In 2012, the estimated percentage of new lung cancers in males and females was 14% each. Among these lung cancers, 29% of male and 26% of female cases were estimated to be fatal (11).

#### Smoking and Infectious diseases

Smokers are more susceptible to multitude of infectious diseases compared to non-smokers (13). These include respiratory tract infections, pneumonia, tuberculosis, meningitis, sexually transmitted bacterial infections and bacterial induced periodontal diseases (14-20). The specific mechanisms by which cigarette smoking increases the risk of systemic infections are incompletely understood. They are multifactorial and can be due to Mechanical and Structural or Immunologic changes caused by smoking (21). Cigarette smoke and many of its components like acrolein, acetaldehyde, formaldehyde, free radicals and nitric oxide, are believed to be responsible for structural alterations in the airway

epithelial cells, which is thought to predispose to the development of upper and lower respiratory tract infections (22,23).

Cigarette smoking alters various cellular and humoral immune system functions. These alterations include a (i) decreased level of circulating immunoglobulins. Several studies have found that smokers had serum immunoglobulin levels (IgA, IgG, and IgM) 10% to 20% lower than those of nonsmokers (24-27), (ii) depression of antibody responses to certain antigens, such as influenza virus infection (28) and Aspergillus fumigatus infection (29), (iii) decrease in CD4+ lymphocyte counts, an increase in CD8+ lymphocyte counts. Since CD4+ cells facilitate B-cell proliferation and differentiation and immunoglobulin synthesis, decrease in the CD4 count seen in heavy smokers (≥ 50 pack-year) might contribute to the increased susceptibility to infections in this population. Increase in CD8+ cells in heavy smokers (≥50 pack-year) has also been found to be associated with infection (30,31,32), (iv) depressed phagocyte activity. There is reduced migration and chemotaxis of Polymorphonuclear leukocytes in the peripheral blood of smokers compared with PMNs from nonsmokers (33,34). Also motility and chemotaxis of PMNs are depressed in the oral cavity of smokers compared with nonsmokers (33), and (v) decreased release of proinflammatory cytokines. The release of cytokines from macrophages may also be altered in smokers. Studies showed that there is decrease in IL-1, IL-6 and TNF (35,36).



# Figure 1: Diseases related to smoking

Image showing association between smoking and various cancers and chronic diseases. The conditions in red are the new diseases that have been linked to smoking in the 2014 report by surgeon general and conditions in black are linked to smoking by USDHHS in 2004, 2006 and 2012.

Photo courtesy of: U.S. Department of Health and Human Services (USDHHS). *The Health Consequences of Smoking—* 50 Years of Progress: A Report of the Surgeon General. Atlanta (GA): U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, 2014.

#### Smoking and chronic inflammatory diseases

Tobacco smoking is known to substantially increase the risk for chronic, inflammatory diseases (14,15,37,38), such as acute vascular diseases (40,41), inflammatory bowel disorders (42,43) renal disease (15), pancreatitis (16) and periodontal diseases (44). Smoking is a major cause of cardiovascular diseases

and the risk for these diseases increases with the quantity of cigarettes smoked per day and the duration of smoking history (2). Chemicals in cigarette smoke can increase vascular permeability and activate adhesion molecule expression, resulting in increased leukocyte adhesion and, eventually, platelet aggregation. This can narrow the blood vessels and lead to cardiovascular conditions like atherosclerosis, acute myocardial infarction and stroke (45,46). Also, smoking increases blood pressure and decreases tolerance to exercise (46).

Smoking increases risk for lung diseases like chronic bronchitis (47,48), a long-term inflammation of the bronchi (large airways). The chemicals in cigarette smoke irritate and activate macrophages and epithelial cells. This causes the cells to release multiple types of cytokines which lead to thickening and inflammation of the airway lining. This persistent inflammation caused by cigarette smoke can change the structure of the airways and make them narrower through a cycle of injury and repair (49). Smoking is also associated with other chronic inflammatory renal diseases like inflammatory bowel disease and chronic kidney disease (50,51).

# Periodontal diseases

Periodontal diseases are one of the most predominant diseases all through the world (52). They represent a group of infectious inflammatory diseases affecting the supporting and surrounding tissues of teeth (53). They are second to dental caries as a cause of tooth loss among adults in developed countries (54), affecting 47.2% adults aged 30 years and older in the US (55). Periodontal diseases happen as a consequence of mixed microbial infections within which

specific groups of bacteria coexist. In a healthy mouth there are more than 350 species of microorganisms and periodontal infections are linked to less than 5% of these organisms (56). *Porphyromonas gingivalis, Treponema denticola, Prevotella intermedia, Aggregatibacter actinomycetemcomitans, Tannerella forsythia,* and *Fusobacterium nucleatum* are believed to play prominent roles in the etiology of periodontal diseases (56). Recent studies have identified a wide range of bacteria associated with disease status like *Filifactor alocis, Selenomonas, Synergistes, Desulfobulbus* and *TM7* (57,58). These bacteria exist as an organized biofilm on the tooth surface. Extension of the biofilm into the gingival sulcus begins a series of events that mediate periodontal disease (59).

In the gingival sulcus, pathogenic bacteria and their metabolic products initiate the inflammatory response in host cells (neutrophils, epithelial cells and macrophages). This results in an influx of an inflammatory infiltrate which is rich in neutrophils. These neutrophils attempt to phagocytose the bacteria (60). However, some periodontal pathogens have developed ways to resist phagocytosis using virulence factors like capsules, or avoid phagocytosis by gaining entry into host cells (61). Another method of fighting periodontal pathogens is neutrophil degranulation. When neutrophils degranulate, they release granular enzymes such as elastase, and matrix metalloproteinases (MMPs) as well as superoxide and oxygen radicals, and nitric oxides. These products do not discriminate between the bacteria and the host tissues. Thus, periodontal tissue destruction will result from prolonged exposure (62).

#### Smoking and periodontal diseases

Compared to non-smokers, tobacco smokers are more susceptible to plaque-induced gingivitis and periodontitis. There is a negative, dose-dependent relationship between smoking and periodontal health (63,64). Smokers are also more refractory to periodontal treatment than non-smokers (64).

Smoking has been shown to affect various aspects of the host immune response. It has adverse effects on fibroblast function (65), chemotaxis and phagocytosis by neutrophils (66), and immunoglobulin production (67). Macrophages play important roles in both cell mediated and humoral immunity as antigen-presenting cells. However, antigens are presented in the context of class 1 major histocompatibility complex (MHC) surface molecules. There might be a gradual reduction in the humoral immune response in smokers because of reduced expression of class I MHC by the alveolar macrophages in smokers (68,69).

Smokers show increased gingival recession and alveolar bone loss, greater periodontal ligament (PDL) attachment loss and deeper gingival pocket formation that is responsible for increased tooth mobility and tooth loss at an earlier age than non-smokers (70,71). Smoking has also been shown to reduce the concentration of serum IgG (25, 72,73). Smoking is also known to alter the host inflammatory response to plaque bacteria. According to several studies, nicotine activates the anti-inflammatory pathway and suppresses pro-inflammatory cytokine production (74-78). Also there is reduced levels of pro-inflammatory cytokines, such as IL-1 (84,85,86) in the gingival crevicular fluid (GCF) of smokers with periodontitis compared to non-smokers with periodontitis, whereas anti-inflammatory cytokines like IL-10 and TGF- $\beta$ 1 are increased in the GCF of smokers (79,80,81).

Despite being more susceptible to periodontitis and exhibiting faster disease progression and severity, chronic smokers lack the clinically overt inflammatory response to bacterial plaque that non-smokers exhibit such as redness, swelling, bleeding on probing making diagnosis of the disease more complicated in smokers (45,82).

#### Porphyromonas gingivalis

*Porphyromonas gingivalis* is a Gram-negative, proteolytic, asaccharolytic anaerobe. Although this bacterium is a natural member of the oral microbiome, it can proliferate to high numbers in periodontal lesions and can be highly destructive (83,84,85). *P. gingivalis* is found in significantly higher numbers in smokers compared to non-smokers and the infection is more persistent (70,86).

The "red complex" bacteria *Porphyromonas gingivalis*, *Treponema denticola*, and *Tannerella forsythia*, are frequently isolated together and are strongly associated with advanced periodontal lesions (56,87-89), but according to recent studies periodontal diseases are caused by synergistic and dysbiotic microbial community rather than "select periopathogens" such as "red complex" (88). So the concept of "red complex" has been superseded by the "Keystone pathogen" hypothesis, at least in mice. This indicates that certain low-abundance microbial pathogens can cause inflammatory disease by increasing the quantity of the normal microbiota and by changing its composition (88). For instance, *Porphyromonas gingivalis* has been shown to manipulate the native immune system of the host (90). By doing so, it was hypothesized that it not only facilitates its own survival and multiplication, but also that of the entire microbial community.

Intensive study has revealed multiple virulence factors which are responsible for the survival and pathogenesis of *P. gingivalis*.

#### Major fimbrial antigen (FimA)

The major fimbriae of *P. gingivalis* are long, hair-like, peritrichous, adhesive, filamentous structures that project away from the cell surface (91). They are primarily comprised of a 41 kD protein (FimA, fimbrillin) encoded by the *fimA* gene (92). *P. gingivalis* fimbriae adhere to a wide variety of molecules and oral substrates, which include salivary molecules, such as proline-rich proteins, proline-rich glycoproteins, statherins, oral epithelial cells, fibrinogen, fibronectin, lactoferrin, and bacteria, such as oral streptococci and *Actinomyces* species (93-96). Long fimbriae interact with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) allowing for localization of *P. gingivalis* on the streptococcal surface (97). Human GAPDH has also been shown to bind to long fimbriae (98).

Based on its nucleotide sequence variation, the *fimA* gene has been classified into six types (I, Ib, II, III, IV, V) (99,100). *fimA* genotypes II, Ib, and IV were shown to cause inflammatory changes in animal models (101,102,103). Recombinant protein of *fimA* genotype II is known to adhere to and invade human epithelial cells than *fimA* from other genotypes (104). In human Gingival epithelial cells (GECs) long fimbriae are also known to induce cytokines involved in bone resorption, such as tumor necrosis factor (TNF), interleukin-1b (IL-1b), IL-8, and IL-6 by stimulating nuclear factor-kB (NF-kB) via TLR 2 and CD14 (105, 106, 107). Minor fimbrial antigen (Mfa1)

Short fimbriae (Mfa1 fimbriae) are homopolymers of a subunit protein encoded by the *mfa1* gene, with a molecular mass of 75 kDa (92,108). They are shorter than the major fimbriae and can be easily seen when the latter are absent (101). Short fimbriae mediate co-adhesion between *P. gingivalis* and *S. gordonii* via adhesin-receptor interactions with streptococcal SspA and SspB surface proteins (109). Studies have reported that short fimbriae induced the expressions of cytokines, including IL-1 $\alpha$ , IL-1 $\beta$ , IL-6, and TNF, in both human monocytic cell lines and mouse macrophages by interacting with TLR2 and CD14 (110,111).

## <u>Capsule</u>

The *P. gingivalis* capsule is composed of glycosamionglycans and plays an important role in providing resistance to stressful conditions (112). It can help shield the microbe from the host defense and modulate host physiology (113) by providing resistance against neutrophils (114) and complement-mediated lysis or opsonization (115). The higher virulence potential of encapsulated strains compared to that of non-encapsulated ones, evaluated using a mouse abscess model, suggests that the capsule plays a significant role in the pathogenesis of this bacterium (116,117).

*P. gingivalis* capsule allows bacteria to escape host immune defenses by inhibiting the host immune response, thus promoting bacterial survival and growth (118). Recent studies show that encapsulated *P. gingivalis* strains trigger different host responses than non-encapsulated mutant strains (119,120). *P. gingivalis* K1 serotype capsular polysaccharide is capable of eliciting chemokine production from macrophages that in turn promote cell migration (121). Defensins, a small

antimicrobial peptides produced by host cells have a bactericidal effect. *P. gingivalis* capsule reduces the bactericidal effect of these peptides contributing to increased survival of the organism (122). The non-encapsulated PgC strain is less virulent than the encapsulated W50 strain, demonstrating that capsule plays a role in the virulence of *P. gingivalis* in the mouse abscess model (111). However, the role of capsule in the virulence of *P. gingivalis* is still vague.

#### Lipopolysaccharides (LPS)

The outer leaflet on the outer membrane of Gram-negative bacteria is comprised of lipopolysaccharide (123), which is atleast 10 kDa in size (84) Components of lipopolysaccharide are O-antigen, core, and lipid A. Lipid A is responsible for endotoxic activity, while the O-antigen is responsible for significant immunobiological activity (124) and is the easiest target for the humoral response of the host. The O antigen is recognized by the innate immune response and participates in complement activation (125,126). Many studies have established the immunobiological importance of the lipopolysaccharide of Gram negative cell wall envelope (127,128). It has the ability to activate the host inflammatory responses and disrupt bone remodeling process (129,130). *P. gingivalis* LPS binds to the CD14 and TLR-4, activating macrophages, epithelial cells respectively, leading to secretion of pro-infammatory cytokines (131,132).

*P. gingivalis* is known to show an unusual amount of lipid A heterogenicity containing both tetra-acylated and penta-acylated structures (134). Compared to *E. coli*, *P. gingivalis* Lipid A is heterogenic with varying numbers and positions of phosphate and fatty acid groups (134). When human monocytes were stimulated

with *P. gingivalis* LPS, the level of TNF, IL-1 $\beta$  and IL-6 was enhanced (133). LPS in *P. gingivalis* also plays a critical role in inducing cells to secrete pro-inflammatory cytokines, which mediate inflammation and participate in periodontal connective tissue destruction and alveolar bone resorption. *P. gingivalis* LPS is significantly less inflammatory than other Gram negative bacterial LPS such as that of *E. coli*. This might be because of differences in lipid A structure, reduced 4' phosphorylation, reduced acylation at the 3 and 3' positions on the back bone and the absence of acyloxyacyl group at the 3' position (135).

## Proteases including gingipains

The classification of the proteases has relied upon their catalytic mechanisms. There are four categories of *P. gingivalis* proteases: serine, cysteine and metalloproteinase. These include gingipains (Arg- or Lys-), periodontain (cysteine endopeptidase), PrtT proteinase, Tpr proteinase, collagenase (*prtC* gene), prolyl tripeptidyl peptidase (serine exopeptidase), dipeptidyl-peptidase IV (serine exopeptidase known as glycylprolyl peptidase, a product of the *dppIV* gene), dipeptidyl-peptidase VI (putative cysteine exopeptidase), amino-peptidase P, oligo-peptidase O and gelatinase (a proteinase degrading type IV collagen, gelatin, low-molecular-mass-kininogen and transferrin) (136). Of these, the collagenases, aminopeptidases, and the trypsin-like proteases are critical to *P. gingivalis* pathogenesis (137).

Gingipains are cysteine proteases that can cleave the proteins at arginine and lysine specific sites (138). All the extracellular and cell-associated protease activity with specificity for arginine peptide bonds is derived from two genes, *rgpA* 

and *rgpB*. All the extra- cellular activity with specificity for lysine peptide bonds is derived from a single gene, *kgp* (139). These are important etiological agents in periodontal diseases.

*P. gingivalis* proteases degradae and metabolise the extracellular matrix proteins (137). Gingipains have collagenolytic activity and degrade or inactivate inflammatory cytokines IL-6, IL-8, TNF and IFN. Proteases (Trp, PrtT) have MMP-activating or hemagglutinating properties. Dipeptidyl amino- peptidase IV (DPPIV) may also act as a virulence factor by contributing to the degradation of connective tissue (140,141).

#### Filifactor alocis

F. alocis is a Gram-positive, slow-growing, asaccharolytic, obligate anaerobic rod (142). It was first isolated in 1985 in the gingival sulcus of gingivitis and periodontitis patients and was classified as Fusobacterium alocis (143). Later, based on phylogenetic analysis of 16s rRNA, it was reclassified into the genus Filifactor (144). The size of the F. alocis genome is 1.93 Mb (www.broadinstitute.org). Cultivable strains of F. alocis include, ATCC 35896, D-62D (clinical strain) (145) and CCUG 47790 T (www.straininfo.net). F. alocis is present in diseased periodontal pockets in higher numbers than in healthy mouths (146,147). Arginine, which increases the growth of *F. alocis in vitro*, is abundantly present in periodontal pockets (148). This has been hypothesized to help explain the presence of *F. alocis* in high numbers in periodontal pockets (149).

The gingival crevice is lined by epithelial cells, the first cells to be encountered by periodontal bacteria (150). Epithelial cells produce of the

chemoattractant cytokines like IL-8 which are responsible for signaling of the underlying tissues (151). Neutrophil migration into the gingival crevice is thought to be the first line of defense against plaque bacteria (152,153). F. alocis adheres to and invades the surface of gingival epithelial cells (GECs) (143). The secretion of proinflammatory cytokines IL-1, IL-6 and TNF by GECs are increased when infected with F. alocis (154). Such cytokines can induce osteoclastic activity and, thus, increased bone resorption (155). The effect of F. alocis on cell viability was investigated by observing the levels of apoptotic and necrotic cells after infection and it was confirmed that F. alocis stimulates apoptosis in GECs through the extrinsic apoptotic pathway, as it increases caspase-3 production (154). Transient activation of MEK1/2 and long term inhibition of MEK activity is caused by *F. alocis*. MEK1/2 activates MAPK pathways which can control cell proliferation and differentiation (154). Inhibition of MEK leads to induction of apoptosis in various cell types (156). Thus the pro-apoptotic effect of *F. alocis* is a result of its ability to inhibit MEK activity. All these effects of F. alocis on gingival cells may be responsible for the tissue destruction caused in periodontitis.

#### Virulence factors of F. alocis

#### Oxidative stress resistance

Periodontitis is characterized by the generation of reactive oxygen species (ROS) (166) by activated phagocytes at the gingival sulcus (157,158). ROS have the ability to initiate the destruction of connective tissue, and increasing ROS levels may kill different pathogens. So, oxidative stress resistance is important for the survival of an organism in the periodontal pocket (149). In broth culture, the

generation time was approximately 13 hours for F. alocis 35896 and 3 hours for P. gingivalis. When grown with 0.25mM of hydrogen peroxide to test their adaptation to oxidative stress (142), the generation time of F. alocis was 6 to 7 hours compared to 10 hours for P. gingivalis, which shows that F. alocis is more resistant to oxidative stress conditions than P. gingivalis. Also the growth of F.alocis appeared to be stimulated under such conditions (142). This might be another reason that helps explain the ability of F. alocis to thrive in the periodontal pocket (146). The exact mechanism underlying the oxidative stress resistance of *F. alocis* is not known. *F. alocis* has sialidase activity (142) which is important for the survival and pathogenesis of periodontal pathogens (160). This sialidase activity results in release of sialic acids that act as an ROS scavenger to reduce oxidative stress in the periodontal pocket (152). F. alocis has a putative neutrophil activating protein A (NapA). H. pylori NapA co-localizes with DNA, causing it to accumulate in one area of the bacterial cell protecting its DNA from damage by free radicals (161). There is a speculation that this neutrophil activating protein A may be an important virulence factor in F. alocis. It may also be responsible for the survival and stimulated growth of the bacteria under oxidative stress conditions (142) using a mechanism similar to that of *H. pylori*. Therefore, it is likely that the ability of *F*. alocis to survive oxidative stress in the periodontal pocket contributes to its ability to establish itself in this niche.

#### **Proteases**

Proteases are important virulent factors of several oral pathogens (163). In *Streptococcus mutans* (164), *Porphyromonas gingivalis* (165) and *Fusobacterium* 

nucleatum (166), proteome analysis has been used to understand the molecular mechanisms of bacterial invasion, survival and pathogenesis. When similar proteome analysis was performed in F. alocis ATCC 35896 and D-62D, strainspecific variation in their protein profiles was observed and a few proteases that could potentially play an important role in the pathogenesis were identified (167). The *F. alocis* genome has a putative total of 15 different proteases. Both strains of F. alocis have CaaX proteases (167) which are known in S. gordonii for their role in protein transportation and protection from bacteriocins produced by other similar bacteria (168). Protease HMPREF0389 00122 is present in the extracellular fraction of the D-62D strain and is known to have a collagen peptidase function. This protease might be responsible for the damage of the connective tissue which leads to tissue destruction in periodontitis (167). So this could be important in F. alocis pathogenesis. Proteins that play a crucial role in the amino acid metabolism are seen in F. alocis (142). Although F. alocis lacks some inherent amino acid synthesis pathways, the release of required amino acids through protein degradation with the help of these proteases and peptidases may be important for F. alocis survival. F. alocis has proteins responsible for ornithine catabolism and urea breakdown (167) and this well-developed nitrogen assimilatory pathway may also be involved in alternative amino acid synthesis pathways (169). So we can conclude that F. alocis has mechanisms to provide for its nutritional needs. One of the major virulence mechanisms in bacteria is their ability for extracellular secretion of proteins (170). Proteins involved in type-II secretory pathway, namely, Type IV pilus assembly protein (HMPREF0389 00426) and trigger factor

(HMPREF0389 01646), were also identified in the membrane fraction of the F. alocis ATCC 35896 (167). F. alocis D62-D proteins, leucotoxin translocation ATPbinding protein, fibronectin-binding protein, type IV pilus assembly protein, fimbrial assembly protein, hemolysin III type calcium-binding protein, toxin-antitoxin component protein and Na +/H + antiporter protein (NAPA) homologous to K+/H ÷ antiporter (171), are considered virulence factors in other microorganisms (167). F. alocis also has glycolytic enzymes, such as phospho-glycerate mutase and glyceraldehyde 3-phosphate dehydrogenase, that are responsible for energy metabolism (167). These virulence proteins and glycolytic proteins might have protein moonlighting functions such as mediating binding of bacteria to proteins of the extracellular matrix (ECM) like fibronectin (172), which is important for bacterial virulence in several human pathogens. Moonlighting proteins are multifunctional proteins which perform multiple autonomous, often unrelated, functions (173). These proteins add another dimension to cellular complexity and benefit cells in several ways (174). In conclusion, all of these proteins seen in F. alocis may contribute to its virulence but the exact role of these systems in the bacterial community is not clearly known.

## Treponema denticola

*Treponema denticola* is a helically shaped Gram-negative Spirochete that is motile and flexible. It has periplasmic flagella, which allow for mobility by using a proton motive force to cause thrusting through rotation (175).

Oral treponemes are a part of the polymicrobial biofilm (176). They play an important role in the etiology of several chronic diseases like chronic periodontitis,

acute necrotizing ulcerative gingivitis and dental abscesses (177-180). Treponemes are present normal healthy individuals in low numbers (181).

*T. denticola* has an ability to bind with *Fusobacterium* (182,183), early colonizing *Streptococcus crista* (184), *P. gingivalis* and *T. forsythia* (185,186,187). When co-cultured, *P. gingivalis* and *T. denticola* form significantly increased biofilm formation compared with monoculture (185). These interactions may be important for *T. denticola* to colonize and persist during health.

#### Virulence factors of *T. denticola*

Little is known about the virulence factors of *T. denticola* but they are believed to have features needed for adherence, invasion and damage of the periodontal tissues.

#### Leucine-rich repeat proteins (Lrr)

A *T. denticola* leucine-rich repeat protein (LrrA) has recently been shown to play a role in binding to *T. forsythia*. Also leucine-rich repeat protein in *T. forsythia* has been shown to be important for epithelial cell invasion and virulence in a mouse alveolar bone loss model (186-190) and is believed to have similar function in *T. denticola*.

#### Dentilisin

Dentilisin is proposed to be a major virulence factor of *T. denticola*. It contributes to disease progression by disrupting or modulating intercellular host signaling pathways and degrading host cell matrix proteins (191). It also allows for penetration of epithelial cell layers by *T. denticola* through degradation of intercellular adhesion proteins (191) and modulates host cell immune responses

through degradation of interleukin-1 $\beta$  (IL-1 $\beta$ ), IL-6, tumor necrosis factor alpha (TNF), and monocyte chemo attractant protein 1 (192,193).

#### Major sheath protein (Msp)

Msp is an abundant protein in the *T. denticola* outer membrane. It has surface-exposed loops that are able to bind to a variety of host proteins (181). Msp has been proposed to mediate colonization of host tissues (194,195). It is also one of the immunodominant *T. denticola* antigens recognized by human serum antibodies (196). Msp interaction leads to actin remodeling and reorganization in host cells, which is likely how it impairs neutrophil chemotaxis and phagocytic activity (197-200).

#### Lipoproteins

Lipoproteins are the most abundant membrane-associated proteins found in spirochetes, and *T. denticola* 35405 is predicted to have 166 of them, the highest number for any of the sequenced spirochetes (201). The role of these in *T. denticola* virulence is as yet unresolved, but they are likely to be responsible for epithelial cell binding and invasion, subversion of the complement cascade, or tissue invasion (202,203).

#### Outer Membrane Vesicles (OMVs)

Initially, OMV were thought to be the result of random blebbing of the outer membrane, or sheath, producing small spherical vesicles of 50-100 nm in diameter. However, recent studies have revealed that OMVs are formed by a highly regulated process which may increase the fitness of the bacterium in response to environmental stress (204,205,206). OMVs are considered potent

virulence factors, since they possess adhesins, toxins, and proteolytic enzymes that can mediate bacterial aggregation and invasion and can modulate the host immune response (205). *T. denticola* outer sheath vesicles (OSVs) can penetrate tissues more readily than the bacterium itself (207,208,209). Application of *T. denticola* OSVs to Hep-2 epithelial cell monolayers disrupted the tight junctions, which could facilitate penetration into underlying tissues (210). However, the involvement of treponemal OSVs in disease remains to be properly explored.

#### Smoking and Periodontal Pathogens

Tobacco-induced susceptibility to periodontitis was also believed to be associated with shifts in the microbial composition from one that is mainly constituted of Gram positive, aerobic, commensal bacteria to one that contains more Gram negative, anaerobic pathogens (211-218). Haffajee and Socransky (219) showed an increased prevalence of eight species, including *P. gingivalis*, in current smokers, while Eggert et al. (216) have shown a higher prevalence and proportion of T. forsythia, C. rectus, P. gingivalis and P. micros in plague samples from smokers. A recent study done by Camello Castello et al.et al... (221), showed that there is an increased presence of Filifactor, Tanerella, Schwartzia, Bullleida and Anaeroglobus in chronic periodontitis patients who smoke compared to nonsmoking chronic periodontitis patients and non-smoking healthy individuals. Also molecular studies have demonstrated that smokers with periodontitis have a diverse sub gingival microbial profile compared to non-smokers with periodontitis (198,200,201), which was contradicted in a recent study which showed that smokers with periodontitis has decreased bacterial diversity (221).

According to Bagaitkar et al. (222), several functionally-related genes including multiple genes in the major fimbrial and capsular polysaccharide operons, as well as genes encoding transcriptional regulators; efflux pump and transport proteins; proteases and cell envelope proteins, were dysregulated when *P. gingivalis* W83 was exposed to cigarette smoke extract conditioned media using Microarray analysis (222). Also she found that cell surface or outer membrane proteins, i.e., RagA, RagB and PG0179 were shown by biochemical approaches to be present at higher levels after CSE treatment. But the genes encoding for these components were not identified as differentially expressed in her microarray approach. However, till today, very little is known about how tobacco smoke affects the phenotype of periodontal pathogens.

# **HYPOTHESIS**

Cigarette smoke extract (CSE) represents an environmental stressor to which bacteria may adapt by several different mechanisms, one of which is by altering their gene expression. So, we hypothesize that established periodontal pathogens *P. gingivalis, T. denticola* and emerging periodontal pathogen *F. alocis* adapt to this environmental stress caused by cigarette smoke extract by altering their gene expression.

## CHAPTER 2: MATERIALS AND METHODS

#### Bacterial Culture and in Vitro Modelling of Tobacco Exposure

Porphyromonas gingivalis ATCC 33277, Filifactor alocis ATCC 35896 and Treponema denticola ATCC 35405 were purchased from the American Type Culture Collection (Manassas, VA) and maintained as frozen stocks. Growth medium for P. gingivalis - Gifu anaerobic medium (GAM), was purchased from Nissui Pharmaceutical (Tokyo, Japan). Growth medium for F. alocis - Brain heart infusion (BHI), was purchased from Becton, Dickinson and Company (Sparks, MD) and infused with L-cysteine (0.1%) and arginine (20%) purchased from Sigma-Aldrich (St. Louis, MO). Growth medium for T. denticola - Tryptone-yeast extractgelatin-volatile fatty acids-heat inactivated rabbit serum (TYGVS) (223). 3R4F standard reference cigarettes were obtained from the Kentucky Tobacco Research and Development Center (Lexington, KY). All three media (GAM, BHI and TYGVS) were conditioned with cigarette smoke extract by drawing cigarette smoke through 50ml of the medium by using a three-way stopcock and a syringe, with 35ml drags performed every 20 seconds. This cigarette smoke extract conditioned medium was then filtered (0.2mm). Nicotine content was determined by gas-liquid chromatography and adjusted to 7.2 pH and 1000 ng/ml nicotine concentration.

*P. gingivalis, F. alocis,* and *T. denticola* were grown in their respective control and cigarette smoke extract conditioned media under anaerobic conditions (80% N<sub>2</sub>, 10% H<sub>2</sub>, 10% CO<sub>2</sub>) at  $37^{\circ}$ c. For all experiments, bacteria were grown either in control or CSE conditioned media and bacterial cells were harvested at mid to late log phase (*P. gingivalis*- O.D 600 nm =1.0, corresponding to  $10^{9}$  cells per ml; *F. alocis*- O.D 600 nm =0.35, corresponding to  $3 \times 10^{9}$  cells per ml; *T. denticola*- O.D 600 nm = 1.6, corresponding to  $8 \times 10^{9}$  cells per ml).

#### Isolation of Total RNA

Total RNA was isolated from bacterial cells according to manufacturer's instructions using one of two kits. Perfect Pure <sup>TM</sup> RNA Cultured Cell Kit by 5 Prime (Gaithersburg, MD) was used for *P. gingivalis* and *T. denticola*. RiboPure <sup>TM</sup> – Bacteria by Ambion life sciences (Thermofisher, Waltham, MA) was used for the Gram positive *F. alocis*. Gram positive bacteria require an additional step to break the thick peptidoglycan layer. The quantity and quality of RNA was measured by performing a Nanodrop on a ND-1000 Spectrophotometer and then samples of RNA were stored at -80<sup>o</sup>C.

#### **RNA-seq Analysis**

Total RNA samples of *P. gingivalis*, *F. alocis* and *T. denticola* were sent to University of Michigan for RNA-Seq analysis. They first removed rRNA using a Ribo-zero rRNA removal kit by Epicentre (Chicago, IL). TruSeq RNA (nonstranded) kit by Illumina (Madison, WI) was used to generate m-RNA focused libraries. Once the libraries were generated, they were sequenced on 2 lanes using 50bp single end reads. These raw reads were then sent to University of Michigan

Bioinformatics core, where quality of the reads was checked using FastQC (version 0.10.1). Tuxedo Suite software was used for alignment, differential expression analysis and post-analysis diagnostics. Bowtie2 (version 2.1.0) was used to align reads to the respective reference genome. FastQC was used for a second round of quality control (post-alignment), to ensure that only high quality data would be input to expression quantitation and differential expression analysis. Cufflinks/CuffDiff (version 2.1.1) was used for expression quantitation and differential expression analysis and CummeRbund was used to generate diagnostic plots. Genes having  $\geq$ 1.5-fold change were classified as up regulated genes and genes with  $\leq$ 0.6-fold change were classified as down regulated genes. Enrichment Analysis of RNA-Seq data

KEGG and DAVID enrichment analysis were done on the differentially expressed *P. gingivalis* and *F. alocis* genes to identify significantly enriched functional categories.

### Validation of RNA-Seq data

Differentially expressed genes of interest were confirmed by quantitative PCR analysis using an Applied Biosystems 7500 Real Time PCR system. Primers were designed using the qPCR primer design software, Primer Quest, provided by Integrated DNA technologies (<u>http://www.idtdna.com/Primerquest/Home/Index</u>).

| Gene ID  | Forward primer 5'-3'   | Reverse primer 5'-3'   |
|----------|------------------------|------------------------|
| PGN_1047 | TTCCATAGCCAAACGTGTAGAG | CTGAGAGCCAACCGATCATATT |
| PGN_0295 | GGGTTCACTCAGTGCTCAAA   | GAGCCATCCAAACACTCGATAG |
| kgp      | AGGACAGGGTGAAGTTGTAATC | GCCTGCTTCGAATGTGAAATC  |
| PGN_1367 | CTCCGGGTAAGGCTGTTAATG  | CAGCCACTTGTCCACTTCTT   |
| PGN_1740 | TGAATGAGGGAGGAGAGGATAC | ATGGAGAATGGCTGCTTGAG   |

| PGN_1644 | GGCTGAAGATGGAAGAGGTATC   | GATGGCGGGAAAGTTGTTTG    |
|----------|--------------------------|-------------------------|
| upp      | AGATGCGCGATGTCACTATTC    | GGGTCATCTTCTTGCTGATCTC  |
| PGN_0134 | TCCATCATCAACGCCAAGAG     | GGCCGAAAGAAGTCCGTATT    |
| PGN_0885 | CACCCTATGCTTTGCCTCTT     | CGAAGGCTCATGGGTGAATAA   |
| PGN_0545 | CCTCTTGCTTTGTACGACTATCT  | AGACTGGATCACTGCTTCTATTC |
| RgpA     | GGACCGACGAAAGAAGATGATTA  | CTTCCACCACCTTCGCTTATAG  |
| PGN_0727 | CCCTTTATGCTTGCGGTATTG    | AAGGAAGGCGGGTGATATTT    |
| PGN_1695 | TAGGAGCATTGGATCAGAGTGGTG | GAAAGCCGGAGAAGTAATCATCC |
| RpoC     | CGAAGGTGTAGTGGAGAATGT    | CATAGGGAGCCATCGTCTTATC  |
| Dps      | CGCTGAAGAATGTGACCGATA    | TCAAATCCACCGTTACCTCATC  |
| PGN_0173 | GGATCAAGTCGGAGTGGAATAC   | CTTTAGAGGGAGCCGACATAAC  |
| PGN_0175 | GCGTATCCTCTCTGAAGTTGTT   | GGTATCCTCCGATGCGATATG   |
| PGN_1080 | GTAACTATGCAGCCGGTATGA    | CGGCTTCGTCTATGTACTTCTT  |
| PGN_0724 | AACTTCTCGGATGCCTTCTTAC   | CGCAAAGCCTCTTACCTCTT    |
| PGN_0660 | TGGCTTATCGTGGCTCTTTC     | GGAGGATCTCTTCTGCATCAC   |
|          |                          |                         |

# Table 2: F. alocis oligonucleotide primers used for quantitative PCR

| Gene ID          | Forward primer 5'-3'      | Reverse primer 5'-3'      |
|------------------|---------------------------|---------------------------|
| HMPREF0389_00184 | CCATAGAGGCGGAGGACTTA      | GCTCCTCACCATCAAGTACATAG   |
| HMPREF0389_00178 | GATGCCTGCTTGATGAGTTTG     | GCTGAGATTGTGCCTGAAGTA     |
| HMPREF0389_00166 | CTGACACCGACCATCATCAA      | GCGGTTCATAGTTCCCGATAA     |
| HMPREF0389_00226 | GAAGGACCTGTGGCTATGATTT    | AGCCTTATTACCGAGTCCTACA    |
| HMPREF0389_00802 | GAACAGTGGAAGAGGCGATAAG    | AAGCCACTCTCCTTCCCTAA      |
| HMPREF0389_01353 | ATGGAAGAAGAAGGCTGTAAGG    | ACTCTCTATGCAACGGACAAG     |
| HMPREF0389_00799 | CTAAGGGTCTGTTGCTGAATCT    | CTATGGCGAACCTCCTGTATTT    |
| HMPREF0389_00800 | CCGACTCAGATTGTAGTGGAAA    | CAGCAAGCCATCTCCTTCTAA     |
| HMPREF0389_00155 | ACATCATAGACAGCAGATATAGGG  | GTTGCCATTTCGAGAAGTCTG     |
| HMPREF0389_00186 | GGGCAAATGGACCGAATAAC      | GCTTGGTGAAACGGGATTAC      |
| HMPREF0389_01079 | TTGTCACCTTGCCGTTTCT       | CCAAGTGCCGCTCTGATATT      |
| HMPREF0389_00246 | GCACCCTTTGAAGCCTTTATC     | CTCCTGTAGACTTTCACGATCC    |
| HMPREF0389_00154 | ACTATCCATTATCTACAATGCTCCT | TCTTGCCATATTCTTTCATCATCAG |
| HMPREF0389_00969 | TCGTTTCGGGAGCATTGG        | AAAGTTCTCCGCCTACCATAAC    |
| HMPREF0389_00162 | AAGCAGAAGAGTGGCGAAA       | CCCATGTGAATTGTCGGTATTTG   |
| HMPREF0389_01096 | GTTCTGGAGATGGGTGTTTCT     | CCCTCTGCCCTTATTACCATATT   |
| HMPREF0389_00644 | AGGTCGTGGCTATGTTGATG      | GACTGTCTGCTGTTGGTTAGT     |
| HMPREF0389_01592 | ACAGCCTTAATCGGTTCGAG      | CTCACTTATATCTTCTCCGCCTATC |
| HMPREF0389_00823 | GGCACATATTTCCGGTAAACTTC   | CTTTCTCCATGTGATACGACCT    |
| HMPREF0389_00879 | TCGCAAGTCACTCAGGAAAG      | CTGTTCCGACACCTACCATAAT    |

Primers were designed for the species specific 16s rRNA gene, which was our reference gene.

#### P. gingivalis 16s rRNA - F: TGTAGATGACTGATGGTGAAAACC

### R: ACGTCATCCCCACCTTCCTC

F. alocis 16s rRNA - F: CAGGTGGTTTAACAAGTTAGTGG

#### R: CTAAGTTGTCCTTAGCTGTCTCG

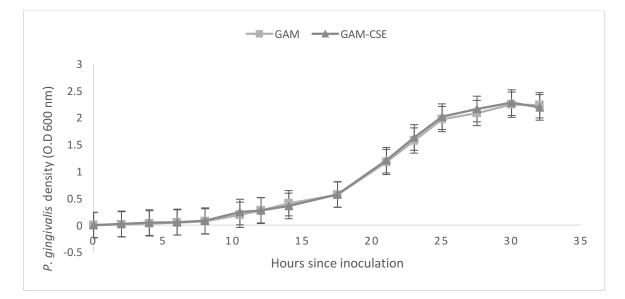
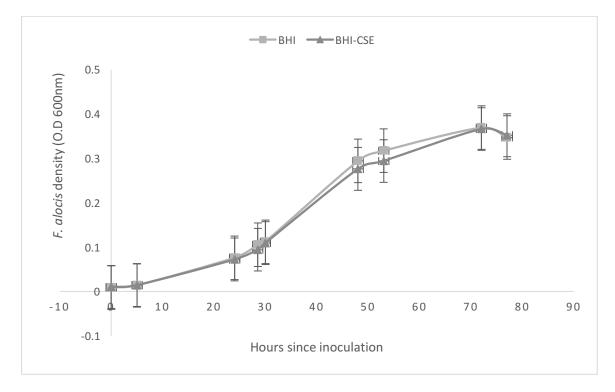
Primers were ordered from Biosynthesis (www.biosyn.com) and were reconstituted and stored at  $-20^{\circ}$ C. Total RNA (up to 1 µg) was reverse transcribed to cDNA using Superscript ® III- First Strand Synthesis Super Mix by Invitrogen (Waltham, MA) following manufacturer's instructions and stored at  $-20^{\circ}$ C. SYBYR Green Master Mix for qPCR analysis was ordered from Quanta Biosciences (Gaithersburg, MD) and the manufacturer's instructions were followed to set up a reaction. Reaction conditions used for qPCR were  $50^{\circ}$ C for 2 minutes,  $95^{\circ}$ C for 10 minutes, and  $95^{\circ}$ C for 15 seconds – 45 repetitions and  $60^{\circ}$ C for 1 minute. An additional dissociation stage was added to check for validity of primers which included  $95^{\circ}$ C for 15 seconds,  $60^{\circ}$ C for 1 minute,  $95^{\circ}$ C for 15 seconds and  $60^{\circ}$ C for 15 seconds and  $60^{\circ}$ C for 15 seconds.

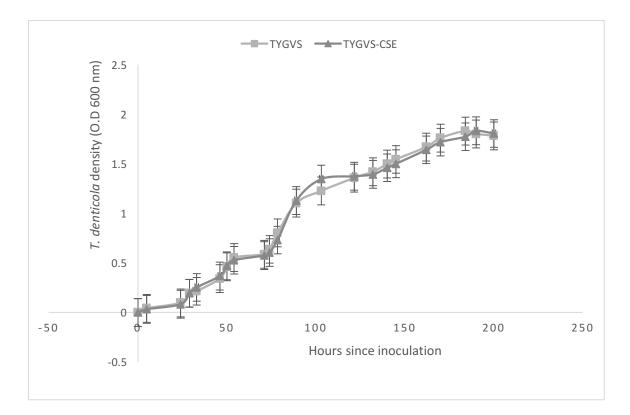
#### **Statistical Analysis**

All experiments were done in triplicate unless otherwise mentioned. Statistical significance between groups was evaluated by one-way nonparametric ANOVA and Fisher multiple comparison test. A probability value < 0.001 was considered statistically significant.

#### **CHAPTER 3: RESULTS**

<u>Growth of (*P. gingivalis, F. alocis* and *T. denticola*) in CSE- conditioned media We compared the growth of bacteria in CSE-conditioned and non-conditioned medium in order to determine if 1000 ng/ml nicotine equivalency was toxic to *P. gingivalis, T. denticola* or *F. alocis*. Similar growth characteristics were observed for all three species at this concentration of CSE. As shown in Figures 2, 3 and 4, the bacteria can tolerate this dose of CSE. All further experiments were done at 1000 ng/ml nicotine equivalency, a dose that is relevant to the concentration of nicotine found in the periodontal pockets of cigarette smokers (224).</u>



Figure 2: Effect of CSE on *P. gingivalis* growth

Growth curve of *P. gingivalis* in unconditioned GAM and CSE conditioned GAM. Triangles represent the growth of *P. gingivalis* in CSE conditioned media and squares represent the growth in GAM. Error bars represent the mean Standard deviation (SD) of 3 experiments. There were no statistically significant differences in the growth curves between experimental conditions.



### Figure 3: Effect of CSE on F. alocis growth

Growth curve of *F. alocis* in unconditioned BHI and CSE conditioned BHI. Triangles represent the growth of *F. alocis* in CSE conditioned media and squares represent the growth in BHI. Error bars represent the mean Standard deviation (SD) of 3 experiments. There were no statistically significant differences in the growth curves between experimental conditions.



### Figure 4: Effect of CSE on *T. denticola* growth

Growth curve of *T. denticola* in unconditioned TYGVS and CSE conditioned TYGVS. Triangles represent the growth of *T. denticola* in CSE conditioned media and squares represent the growth in TYGVS. Error bars represent the mean Standard deviation (SD) of 3 experiments. There were no statistically significant differences in the growth curves between experimental conditions.

### P. gingivalis differentially expressed genes

RNA-Seq analysis was performed in order to determine the differentially expressed genes of *P. gingivalis* when exposed to CSE. A total of 644 were found to be differentially expressed (P < 0.005). 54 genes were up regulated and 590 genes were down regulated.

Up regulated genes (> 1.5 fold) include the arginine and lysine gingipain encoding genes, *kgp*, *rgpA* and *rgpB*; genes encoding arginine and proline metabolism (PGN\_1367, PGN\_ 0504 and PGN\_1434); genes encoding DNA binding (PGN\_1740, *dps* and *rpoC*); a group of genes responsible for carbohydrate and energy metabolism, these include nitrogen metabolism (PGN\_1047 and PGN\_1367) and several genes encoding carbohydrate metabolism ( PGN\_1695, PGN\_0173, PGN\_1753, PGN\_0504, PGN\_1529 and PGN\_1755).

### Table 3: List of up regulated genes in *P. gingivalis* upon CSE exposure

| Gene ID  | Gene name                                                                                | Gene ID  | Gene name                                                              | Gene ID                | Gene name                                                            |
|----------|------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------|
| PGN_1962 | methylmalonyl-CoA<br>2 hypothetical protein PGN_0504 decarboxylase beta PGN_1<br>subunit |          | PGN_1172                                                               | acyl-CoA dehydrogenase |                                                                      |
| PGN_1047 | hydroxylamine<br>reductase                                                               | PGN_1670 | conserved<br>hypothetical protein<br>with predicted<br>lysozyme domain | PGN_1000               | glycine cleavage system<br>protein H                                 |
| PGN_0295 | C-terminal domain of<br>Arg- and Lys-gingipain<br>proteinase                             | PGN_0731 | hypothetical protein                                                   | PGN_0099               | peptidase                                                            |
| kgp      | Lys-gingipain                                                                            | PGN_0503 | biotin carboxyl carrier protein                                        | PGN_0301               | outer membrane protein                                               |
| PGN_1367 | glutamate<br>dehydrogenase                                                               | PGN_1048 | hypothetical protein                                                   | PGN_1014               | elongation factor G                                                  |
| PGN_1740 | RNA polymerase ECF-<br>type sigma factor                                                 | ustA     | upregulated in<br>stationary phase<br>protein A                        | PGN_1752               | ferredoxin 4Fe-4S                                                    |
| rgpA     | RgpAc;<br>glycosyltransferase                                                            | PGN_1755 | 2-oxoglutarate<br>oxidoreductase<br>subunit beta                       | PGN_1174               | electron transfer flavoprotein alpha subunit                         |
| PGN_0727 | 4-hydroxybutyryl-CoA<br>dehydratase                                                      | PGN_1529 | 2-oxoglutarate<br>ferredoxin<br>oxidoreductase<br>subunit beta         | PGN_1419               | hypothetical protein                                                 |
| PGN_1695 | fructose-1,6-<br>bisphosphate aldolase                                                   | PGN_0033 | thioredoxin                                                            | PGN_2065               | Lys- and Rgp- gingipain<br>domain protein                            |
| rpoC     | DNA-directed RNA<br>polymerase subunit<br>beta'                                          | rgpB     | arginine-specific<br>cysteine proteinase<br>RgpB                       | PGN_1756               | 2-oxoglutarate<br>oxidoreductase subunit<br>gamma                    |
| dps      | DNA-binding protein<br>from starved cells Dps                                            | PGN_0496 | cytochrome B subunit                                                   | PGN_1578               | elongation factor Tu                                                 |
| PGN_0173 | glyceraldehyde 3-<br>phosphate<br>dehydrogenase type I                                   | PGN_1434 | aminoacyl-histidine<br>dipeptidase                                     | PGN_0498               | succinate<br>dehydrogenase/fumarate<br>reductase iron-sulfur subunit |
| PGN_1753 | 2-ketoisovalerate<br>ferredoxin reductase                                                | PGN_0805 | hypothetical protein                                                   | PGN_0809               | TonB protein                                                         |
| PGN_1080 | branched-chain amino acid aminotransferase                                               | PGN_0806 | MotA/TolQ/ExbB<br>proton channel protein                               | PGN_1120               | NADPH-NAD<br>transhydrogenase                                        |
| PGN_0649 | hypothetical protein                                                                     | PGN_1418 | pyruvate-flavodoxin oxidoreductase                                     | PGN_1739               | hypothetical protein<br>(lipoprotein)                                |
| PGN_0660 | alkyl hydroperoxide<br>reductase                                                         | PGN_0604 | ferritin                                                               | mfa1                   | Mfa1 fimbrilin                                                       |
| PGN_0724 | NAD-dependent 4-<br>hydroxybutyrate<br>dehydrogenase                                     | PGN_1880 | malate<br>dehydrogenase                                                | PGN_1655               | electron transport complex<br>RsxE subunit                           |

| PGN_1995 hypothetical protein | aspA | aspartate ammonia-<br>Iyase | PGN_1352 | hypothetical protein |
|-------------------------------|------|-----------------------------|----------|----------------------|
|-------------------------------|------|-----------------------------|----------|----------------------|

Table shows gene ID number and name of all *P. gingivalis* genes that were up regulated (> 1.5 fold) when exposed to CSE conditioned media.

Down regulated genes (< 0.6 fold) include genes encoding proteins that may be involved in DNA replication, recombination and repair (e.g., PGN\_1216, PGN\_2011, and PGN\_0644); the transfer gene cluster (*traJ*, *traK*, *traM*, *traA* and *traG*); Several genes in the ABC transporter operons (e.g., PGN\_1325, PGN\_1324, PGN\_0706, PGN\_0707 and PGN\_0708); minor fimbrial operon (*mfa1*); several operons of transposases and partial transposases; genes encoding nucleotide excision, repair and metabolism (PGN\_0327, PGN\_1706, PGN\_0195); putative endonuclease gene (PGN\_1801) and genes in the capsular biosynthesis locus (PGN\_110 and PGN\_1072).

| Gene ID  | Gene name                           | Gene ID  | Gene name                                                       | Gene ID  | Gene name                                     | Gene ID       | Gene name                                       |
|----------|-------------------------------------|----------|-----------------------------------------------------------------|----------|-----------------------------------------------|---------------|-------------------------------------------------|
| PGN_1644 | transposase in ISPg1                | PGN_0210 | transposase in ISPg1                                            | PGN_0385 | integrase/recombinas<br>e XerD                | PGN_0196      | xanthine/uracil<br>permease                     |
| uvrC     | excinuclease ABC<br>subunit C       | PGN_0706 | exported periplasmic<br>protein                                 | PGN_0405 | alpha-1,2-<br>mannosidase                     | PGN_0439      | hypothetical protein                            |
| PGN_1526 | hypothetical protein                | PGN_0206 | lipid A disaccharide<br>synthase                                | PGN_2013 | cation efflux system<br>protein               | PGN_1024      | ribosome-binding<br>factor A                    |
| PGN_0820 | hypothetical protein                | PGN_1627 | 4-amino-4-deoxy-L-<br>arabinose transferase                     | PGN_0549 | dTDP-glucose 4,6-<br>dehydratase              | PGN_1324      | ABC transporter<br>membrane protein             |
| PGN_1713 | PAP2 superfamily protein            | PGN_0524 | PAP2 superfamily protein                                        | PGN_1669 | transposase in ISPg1                          | PGN_0738      | phosphoglycerate<br>mutase                      |
| ирр      | uracil<br>phosphoribosyltransferase | ispD     | 2-C-methyl-D-erythritol 4-<br>phosphate<br>cytidylyltransferase | traJ     | conjugate transposon<br>protein TraJ          | PGN_1491      | hypothetical protein                            |
| PGN_0134 | biotin synthetase                   | PGN_1901 | transposase in ISPg1                                            | PGN_0324 | transposase in ISPg1                          | PGN_1586      | hypothetical protein                            |
| PGN_1177 | transposase in ISPg1                | PGN_1132 | transposase in ISPg1                                            | PGN_0056 | conjugate transposon<br>protein               | PGN_0688      | hypothetical protein                            |
| PGN_0885 | nitroimidazole resistance protein   | PGN_1984 | hypothetical protein                                            | PGN_1794 | hypothetical protein<br>(glycerate kinase)    | PGN_1259      | histidinol-<br>phosphate<br>aminotransferase    |
| PGN_0216 | hypothetical protein                | PGN_1216 | transposase in ISPg1                                            | PGN_1337 | hypothetical protein                          | PGN_t004<br>9 | tRNA-Ala                                        |
| PGN_0545 | sulfatase                           | PGN_0153 | hypothetical protein                                            | PGN_1957 | transposase in ISPg1                          | PGN_t001<br>4 | tRNA-Ala                                        |
| PGN_0113 | hypothetical protein                | PGN_0195 | xanthine<br>phosphoribosyltransferas<br>e                       | PGN_0260 | hypothetical protein                          | PGN_0959      | transcriptional regulator                       |
| PGN_0220 | partial transposase in<br>ISPg1     | PGN_1511 | hemolysin                                                       | PGN_0971 | transposase in ISPg1                          | PGN_1929      | hypothetical protein                            |
| PGN_0148 | hypothetical protein                | PGN_0058 | conjugate transposon protein                                    | PGN_1899 | hypothetical protein<br>(TPR domain protein ) | murQ          | N-acetylmuramic<br>acid-6-phosphate<br>etherase |
| PGN_0966 | partial transposase in<br>ISPg1     | PGN_1886 | NAD dependent<br>epimerase                                      | PGN_1831 | ribosome-associated<br>GTPase                 | PGN_1950      | hypothetical protein                            |
|          |                                     |          |                                                                 |          |                                               |               |                                                 |

| PGN_1077                                                                                     | transposase in ISPg1                                                                                                                                                                                                                                                    | PGN_1455                                                                         | hypothetical protein                                                                                                                                                                                                                                  | PGN_1309                                                                              | ferrous iron transport<br>protein B                                                                                                                                                                         | PGN_0777                                                                                     | glycosyl<br>transferase                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PGN_1456                                                                                     | hypothetical protein                                                                                                                                                                                                                                                    | PGN_0490                                                                         | DNA-damage-inducible<br>protein F                                                                                                                                                                                                                     | PGN_0858                                                                              | ABC transporter ATP-<br>binding protein                                                                                                                                                                     | PGN_0317                                                                                     | decarboxylating<br>precorrin-6Y<br>C5,15-<br>methyltransferase                                                                                                                                    |
| PGN_1706                                                                                     | phosphoribosylglycinamid<br>e formyltransferase                                                                                                                                                                                                                         | PGN_1241                                                                         | hypothetical protein<br>(glycosyl transferase<br>family protein)                                                                                                                                                                                      | PGN_t002<br>8                                                                         | tRNA-Arg                                                                                                                                                                                                    | PGN_1276                                                                                     | transposase in<br>ISPg1                                                                                                                                                                           |
| PGN_0807                                                                                     | DNAse related protein                                                                                                                                                                                                                                                   | PGN_2009                                                                         | hypothetical protein                                                                                                                                                                                                                                  | PGN_1110                                                                              | partial transposase in<br>ISPg1                                                                                                                                                                             | trmE                                                                                         | tRNA modification<br>GTPase TrmE                                                                                                                                                                  |
| PGN_0810                                                                                     | hypothetical protein                                                                                                                                                                                                                                                    | PGN_1568                                                                         | hypothetical protein                                                                                                                                                                                                                                  | PGN_0832                                                                              | gliding motility protein<br>SprA                                                                                                                                                                            | PGN_1724                                                                                     | glycosyl<br>transferase group 2<br>family protein                                                                                                                                                 |
| PGN_2030                                                                                     | hypothetical protein<br>(membrane protein)                                                                                                                                                                                                                              | PGN_1645                                                                         | dipeptidyl-peptidase III                                                                                                                                                                                                                              | PGN_1300                                                                              | transcriptional<br>regulator                                                                                                                                                                                | rnhB                                                                                         | ribonuclease HII                                                                                                                                                                                  |
| PGN_1044                                                                                     | alpha-amylase                                                                                                                                                                                                                                                           | PGN_0967                                                                         | partial transposase in<br>ISPg1                                                                                                                                                                                                                       | PGN_1734                                                                              | nucleoside permease<br>NupG                                                                                                                                                                                 | PGN_0406                                                                                     | alpha-1,2-<br>mannosidase<br>family protein                                                                                                                                                       |
| PGN_1302                                                                                     | hypothetical protein (O-<br>antigen polymerase)                                                                                                                                                                                                                         | PGN_1050                                                                         | M24 family peptidase                                                                                                                                                                                                                                  | PGN_0145                                                                              | hypothetical protein                                                                                                                                                                                        | PGN_0089                                                                                     | Hypothetical<br>protein (DNA-<br>binding helix-turn-<br>helix protein )                                                                                                                           |
| PGN_0797                                                                                     | hypothetical protein                                                                                                                                                                                                                                                    | PGN_1025                                                                         | hypothetical protein                                                                                                                                                                                                                                  | PGN_1668                                                                              | glycosyl transferase<br>group 2 family protein                                                                                                                                                              | PGN_1161                                                                                     | transposase in<br>ISPg1                                                                                                                                                                           |
| PGN_1583                                                                                     | hypothetical protein                                                                                                                                                                                                                                                    | PGN_1383                                                                         | hypothetical protein (DNA alkylation repair protein)                                                                                                                                                                                                  | PGN_0587                                                                              | transposase in ISPg1                                                                                                                                                                                        | PGN_1213                                                                                     | ATP-binding<br>protein                                                                                                                                                                            |
| PGN_0104                                                                                     | transposase in ISPg1                                                                                                                                                                                                                                                    | PGN_0379                                                                         | hypothetical protein                                                                                                                                                                                                                                  | traM                                                                                  | conjugate transposon<br>protein TraM                                                                                                                                                                        | PGN_1365                                                                                     | hypothetical protein                                                                                                                                                                              |
| PGN_1471                                                                                     | hypothetical protein                                                                                                                                                                                                                                                    | PGN_0240                                                                         | ferrochelatase                                                                                                                                                                                                                                        | PGN_1539                                                                              | ABC transport system<br>exported protein                                                                                                                                                                    | PGN_t005<br>2                                                                                | tRNA-Gly                                                                                                                                                                                          |
| PGN_1798                                                                                     | UbiE/COQ5 family methlytransferase                                                                                                                                                                                                                                      | PGN_0372                                                                         | hypothetical protein                                                                                                                                                                                                                                  | PGN_0702                                                                              | hypothetical protein                                                                                                                                                                                        | PGN_0700                                                                                     | oxidoreductase<br>Gfo/Idh/MocA<br>family                                                                                                                                                          |
| traK                                                                                         | conjugal transfer protein<br>TraA                                                                                                                                                                                                                                       | PGN_1822                                                                         | hypothetical protein                                                                                                                                                                                                                                  | PGN_t005<br>3                                                                         | tRNA-Cys                                                                                                                                                                                                    | PGN_0716                                                                                     | ABC transporter<br>permease                                                                                                                                                                       |
| PGN_0242                                                                                     | glycosyl transferase family<br>1                                                                                                                                                                                                                                        | PGN_1039                                                                         | alpha-1,2-mannosidase                                                                                                                                                                                                                                 | PGN_1636                                                                              | hypothetical protein                                                                                                                                                                                        | PGN_1723                                                                                     | hypothetical protein                                                                                                                                                                              |
| PGN_0602                                                                                     | transposase in ISPg1                                                                                                                                                                                                                                                    | PGN_1312                                                                         | transcriptional regulator                                                                                                                                                                                                                             | PGN_1131                                                                              | hydrolase                                                                                                                                                                                                   | PGN_0007                                                                                     | hypothetical protein                                                                                                                                                                              |
| PGN_0036                                                                                     | hypothetical protein<br>(transposase family<br>protein)                                                                                                                                                                                                                 | PGN_0070                                                                         | hypothetical protein                                                                                                                                                                                                                                  | gmk                                                                                   | guanylate kinase                                                                                                                                                                                            | PGN_1207                                                                                     | transport multidrug<br>efflux protein                                                                                                                                                             |
| PGN_0956                                                                                     | hypothetical protein                                                                                                                                                                                                                                                    | PGN_1258                                                                         | cobalamin biosynthesis<br>protein                                                                                                                                                                                                                     | PGN_t002<br>2                                                                         | tRNA-Gly                                                                                                                                                                                                    | PGN_1797                                                                                     | hypothetical protein                                                                                                                                                                              |
| PGN_1061                                                                                     | hypothetical protein                                                                                                                                                                                                                                                    | PGN_0267                                                                         | riboflavin biosynthesis<br>protein                                                                                                                                                                                                                    | PGN_1815                                                                              | hypothetical<br>protein(selenium<br>metabolism protein<br>YedF)                                                                                                                                             | PGN_1325                                                                                     | ABC transporter membrane protein                                                                                                                                                                  |
| PGN_1086                                                                                     | hypothetical protein                                                                                                                                                                                                                                                    | PGN_0045                                                                         | hypothetical protein                                                                                                                                                                                                                                  | PGN_0973                                                                              | hypothetical protein<br>(outer membrane<br>protein)                                                                                                                                                         | PGN_t003<br>4                                                                                | tRNA-Pro                                                                                                                                                                                          |
| PGN_t004<br>6                                                                                | tRNA-Asp                                                                                                                                                                                                                                                                | PGN_1211                                                                         | hypothetical protein                                                                                                                                                                                                                                  | PGN_1967                                                                              | sulfatase                                                                                                                                                                                                   | lacZI                                                                                        | beta-galactosidase                                                                                                                                                                                |
| PGN_t001<br>8                                                                                | tRNA-Leu                                                                                                                                                                                                                                                                | PGN_0212                                                                         | transposase in ISPg1                                                                                                                                                                                                                                  | PGN_2050                                                                              | ATP-dependent<br>helicase                                                                                                                                                                                   | PGN_0285                                                                                     | pyridine nucleotide-<br>disulphide<br>oxidoreductase                                                                                                                                              |
| PGN_1897                                                                                     | transport related<br>membrane protein                                                                                                                                                                                                                                   | PGN_1956                                                                         | putative DNA methylase                                                                                                                                                                                                                                | PGN_1838                                                                              | partial transposase in<br>ISPg1                                                                                                                                                                             | PGN_2090                                                                                     | hypothetical protein                                                                                                                                                                              |
| PGN_1378                                                                                     | replicative DNA helicase                                                                                                                                                                                                                                                | PGN_1389                                                                         | acetyltransferase                                                                                                                                                                                                                                     | PGN_1215                                                                              | hypothetical protein                                                                                                                                                                                        | PGN_1952                                                                                     | hypothetical protein                                                                                                                                                                              |
| PGN_1198                                                                                     | sodium-solute transporter                                                                                                                                                                                                                                               | PGN_0435                                                                         | partial hemagglutinin-<br>related protein                                                                                                                                                                                                             | PGN_1896                                                                              | sugar transferase                                                                                                                                                                                           | PGN_0770                                                                                     | ribonuclease Z                                                                                                                                                                                    |
| PGN_0707                                                                                     | iron ABC transporter<br>permease                                                                                                                                                                                                                                        | PGN_1629                                                                         | hypothetical protein                                                                                                                                                                                                                                  | traG                                                                                  | conjugate transposon<br>protein TraG                                                                                                                                                                        | PGN_1009                                                                                     | calcium-<br>transporting<br>ATPase                                                                                                                                                                |
| PGN_1708                                                                                     | magnasium shalatasa                                                                                                                                                                                                                                                     |                                                                                  |                                                                                                                                                                                                                                                       |                                                                                       |                                                                                                                                                                                                             |                                                                                              |                                                                                                                                                                                                   |
|                                                                                              | magnesium chelatase<br>subunit Chll                                                                                                                                                                                                                                     | PGN_1487                                                                         | dephospho-CoA kinase                                                                                                                                                                                                                                  | PGN_0425                                                                              | partial transposase in<br>ISPg3                                                                                                                                                                             | PGN_1821                                                                                     | putative integrin<br>subunit alpha                                                                                                                                                                |
| PGN_1421                                                                                     |                                                                                                                                                                                                                                                                         | PGN_1487<br>PGN_1474                                                             | dephospho-CoA kinase<br>S-ribosylhomocysteinase                                                                                                                                                                                                       | PGN_0425<br>PGN_0798                                                                  |                                                                                                                                                                                                             | PGN_1821<br>PGN_1747                                                                         |                                                                                                                                                                                                   |
|                                                                                              | subunit Chll                                                                                                                                                                                                                                                            |                                                                                  |                                                                                                                                                                                                                                                       |                                                                                       | ISPg3                                                                                                                                                                                                       |                                                                                              | subunit alpha                                                                                                                                                                                     |
| <br>PGN_1421                                                                                 | subunit Chll hypothetical protein                                                                                                                                                                                                                                       | PGN_1474                                                                         | S-ribosylhomocysteinase                                                                                                                                                                                                                               | PGN_0798<br>PGN_t003                                                                  | ISPg3<br>hypothetical protein                                                                                                                                                                               | PGN_1747                                                                                     | subunit alpha<br>hypothetical protein                                                                                                                                                             |
| PGN_1421<br>PGN_0332                                                                         | subunit Chll<br>hypothetical protein<br>hypothetical protein                                                                                                                                                                                                            | PGN_1474<br>PGN_0855                                                             | S-ribosylhomocysteinase<br>hypothetical protein<br>NOL1/NOP2/sun family                                                                                                                                                                               | PGN_0798<br>PGN_t003<br>8                                                             | ISPg3<br>hypothetical protein<br>tRNA-Leu                                                                                                                                                                   | PGN_1747<br>PGN_0194                                                                         | subunit alpha<br>hypothetical protein<br>hypothetical protein<br>DNA                                                                                                                              |
| PGN_1421<br>PGN_0332<br>PGN_1538                                                             | subunit Chll<br>hypothetical protein<br>hypothetical protein<br>cation efflux system<br>polysaccharide transport                                                                                                                                                        | PGN_1474 PGN_0855 PGN_1528                                                       | S-ribosylhomocysteinase<br>hypothetical protein<br>NOL1/NOP2/sun family<br>protein<br>hypothetical protein<br>(cupin domain-containing                                                                                                                | PGN_0798<br>PGN_t003<br>8<br>PGN_1145                                                 | ISPg3<br>hypothetical protein<br>tRNA-Leu<br>hypothetical protein                                                                                                                                           | PGN_1747<br>PGN_0194<br>PGN_1074                                                             | subunit alpha<br>hypothetical protein<br>hypothetical protein<br>DNA<br>methyltransferase                                                                                                         |
| PGN_1421<br>PGN_0332<br>PGN_1538<br>PGN_1033                                                 | subunit Chll<br>hypothetical protein<br>hypothetical protein<br>cation efflux system<br>polysaccharide transport<br>protein<br>ABC transporter ATP-                                                                                                                     | PGN_1474<br>PGN_0855<br>PGN_1528<br>PGN_1639                                     | S-ribosylhomocysteinase<br>hypothetical protein<br>NOL1/NOP2/sun family<br>protein<br>hypothetical protein<br>(cupin domain-containing<br>protein)                                                                                                    | PGN_0798<br>PGN_t003<br>8<br>PGN_1145<br>PGN_1185                                     | ISPg3<br>hypothetical protein<br>tRNA-Leu<br>hypothetical protein<br>acetyltransferase                                                                                                                      | PGN_1747<br>PGN_0194<br>PGN_1074<br>PGN_1195                                                 | subunit alpha<br>hypothetical protein<br>hypothetical protein<br>DNA<br>methyltransferase<br>hypothetical protein                                                                                 |
| PGN_1421<br>PGN_0332<br>PGN_1538<br>PGN_1033<br>PGN_2066                                     | subunit Chll<br>hypothetical protein<br>hypothetical protein<br>cation efflux system<br>polysaccharide transport<br>protein<br>ABC transporter ATP-<br>binding protein                                                                                                  | PGN_1474<br>PGN_0855<br>PGN_1528<br>PGN_1639<br>PGN_2001                         | S-ribosylhomocysteinase<br>hypothetical protein<br>NOL1/NOP2/sun family<br>protein<br>hypothetical protein<br>(cupin domain-containing<br>protein)<br>sensor histidine kinase                                                                         | PGN_0798<br>PGN_t003<br>8<br>PGN_1145<br>PGN_1185<br>PGN_1690                         | ISPg3<br>hypothetical protein<br>tRNA-Leu<br>hypothetical protein<br>acetyltransferase<br>exported fucosidase<br>iron ABC transporter                                                                       | PGN_1747<br>PGN_0194<br>PGN_1074<br>PGN_1195<br>PGN_0633                                     | subunit alpha<br>hypothetical protein<br>DNA<br>methyltransferase<br>hypothetical protein<br>yadS protein<br>ABC transporter                                                                      |
| PGN_1421<br>PGN_0332<br>PGN_1538<br>PGN_1033<br>PGN_2066<br>PGN_2028                         | subunit Chll<br>hypothetical protein<br>hypothetical protein<br>cation efflux system<br>polysaccharide transport<br>protein<br>ABC transporter ATP-<br>binding protein<br>hypothetical protein                                                                          | PGN_1474<br>PGN_0855<br>PGN_1528<br>PGN_1639<br>PGN_2001<br>PGN_0575             | S-ribosylhomocysteinase<br>hypothetical protein<br>NOL1/NOP2/sun family<br>protein<br>hypothetical protein<br>(cupin domain-containing<br>protein)<br>sensor histidine kinase<br>transposase in ISPg1                                                 | PGN_0798<br>PGN_1003<br>8<br>PGN_1145<br>PGN_1185<br>PGN_1690<br>PGN_0686             | ISPg3<br>hypothetical protein<br>tRNA-Leu<br>hypothetical protein<br>acetyltransferase<br>exported fucosidase<br>iron ABC transporter<br>permease                                                           | PGN_1747<br>PGN_0194<br>PGN_1074<br>PGN_1195<br>PGN_0633<br>PGN_0859                         | subunit alpha<br>hypothetical protein<br>DNA<br>methyltransferase<br>hypothetical protein<br>yadS protein<br>ABC transporter<br>permease protein<br>competence                                    |
| PGN_1421<br>PGN_0332<br>PGN_1538<br>PGN_1033<br>PGN_2066<br>PGN_2028<br>PGN_0644             | subunit Chll<br>hypothetical protein<br>hypothetical protein<br>cation efflux system<br>polysaccharide transport<br>protein<br>ABC transporter ATP-<br>binding protein<br>hypothetical protein<br>transposase in ISPg1                                                  | PGN_1474<br>PGN_0855<br>PGN_1528<br>PGN_1639<br>PGN_2001<br>PGN_0575<br>PGN_1087 | S-ribosylhomocysteinase<br>hypothetical protein<br>NOL1/NOP2/sun family<br>protein<br>hypothetical protein<br>(cupin domain-containing<br>protein)<br>sensor histidine kinase<br>transposase in ISPg1<br>hypothetical protein                         | PGN_0798<br>PGN_1003<br>8<br>PGN_1145<br>PGN_1185<br>PGN_1690<br>PGN_0686<br>PGN_1766 | ISPg3<br>hypothetical protein<br>tRNA-Leu<br>hypothetical protein<br>acetyltransferase<br>exported fucosidase<br>iron ABC transporter<br>permease<br>hypothetical protein<br>potassium/proton               | PGN_1747<br>PGN_0194<br>PGN_1074<br>PGN_1195<br>PGN_0633<br>PGN_0859<br>PGN_0519             | subunit alpha<br>hypothetical protein<br>DNA<br>methyltransferase<br>hypothetical protein<br>yadS protein<br>ABC transporter<br>permease protein<br>competence<br>protein                         |
| PGN_1421<br>PGN_0332<br>PGN_1538<br>PGN_1033<br>PGN_2066<br>PGN_2028<br>PGN_0644<br>PGN_0325 | subunit Chll<br>hypothetical protein<br>hypothetical protein<br>cation efflux system<br>polysaccharide transport<br>protein<br>ABC transporter ATP-<br>binding protein<br>hypothetical protein<br>transposase in ISPg1<br>hypothetical protein<br>rod shape-determining | PGN_1474<br>PGN_0855<br>PGN_1528<br>PGN_1639<br>PGN_2001<br>PGN_0575<br>PGN_0986 | S-ribosylhomocysteinase<br>hypothetical protein<br>NOL1/NOP2/sun family<br>protein<br>hypothetical protein<br>(cupin domain-containing<br>protein)<br>sensor histidine kinase<br>transposase in ISPg1<br>hypothetical protein<br>hypothetical protein | PGN_0798<br>PGN_1003<br>8<br>PGN_1145<br>PGN_1185<br>PGN_1690<br>PGN_0686<br>PGN_1584 | ISPg3<br>hypothetical protein<br>tRNA-Leu<br>hypothetical protein<br>acetyltransferase<br>exported fucosidase<br>iron ABC transporter<br>permease<br>hypothetical protein<br>potassium/proton<br>antiporter | PGN_1747<br>PGN_0194<br>PGN_1074<br>PGN_1195<br>PGN_0633<br>PGN_0859<br>PGN_0519<br>PGN_1295 | subunit alpha<br>hypothetical protein<br>DNA<br>methyltransferase<br>hypothetical protein<br>yadS protein<br>ABC transporter<br>permease protein<br>competence<br>protein<br>hypothetical protein |

| PGN_1214      | RHS repeat-associated<br>core domain protein                                       | PGN_1222      | hypothetical protein                                              | PGN_1499 | hypothetical protein                                     | PGN_1719      | Appr-1-p<br>processing protein<br>bifunctional UDP-                                  |
|---------------|------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------|----------|----------------------------------------------------------|---------------|--------------------------------------------------------------------------------------|
| PGN_0708      | iron ABC transporter ATP-<br>binding protein                                       | PGN_0074      | hypothetical protein                                              | PGN_1332 | para-aminobenzoate<br>synthase component I               | PGN_1194      | N-acetylmuramoyl-<br>tripeptide:D-alanyl-<br>D-alanine<br>ligase/alanine<br>racemase |
| PGN_1322      | hypothetical protein                                                               | PGN_0130      | partial transposase in<br>ISPg1                                   | PGN_0311 | hypothetical protein                                     | PGN_1731      | hypothetical protein                                                                 |
| PGN_0681      | hypothetical protein                                                               | PGN_1475      | 5'-methylthioadenosine/S-<br>adenosylhomocysteine<br>nucleosidase | PGN_1653 | thiamine biosynthesis<br>lipoprotein ApbE                | PGN_1462      | hypothetical protein                                                                 |
| PGN_0718      | ABC transporter<br>permease protein                                                | PGN_1923      | hypothetical protein                                              | PGN_1535 | hypothetical protein                                     | PGN_1459      | hypothetical protein                                                                 |
| PGN_1029      | GtrA family protein                                                                | PGN_1949      | hypothetical protein                                              | PGN_0005 | hypothetical protein                                     | PGN_1279      | partial transposase<br>in ISPg3                                                      |
| PGN_0878      | hypothetical protein                                                               | PGN_0940      | partial transposase in<br>ISPg2                                   | lacZII   | beta-galactosidase                                       | PGN_0111      | partial transposase<br>in ISPg6                                                      |
| PGN_0512      | biotinacetyl-CoA-<br>carboxylase ligase                                            | PGN_0980      | alpha-1,2-mannosidase                                             | PGN_1227 | TPR domain protein                                       | PGN_1351      | TetR family<br>transcriptional<br>regulator                                          |
| PGN_0877      | SNF2-related helicase                                                              | PGN_1386      | conjugative transposon<br>TraJ protein                            | PGN_0849 | hypothetical protein                                     | PGN_0786      | hypothetical protein                                                                 |
| PGN_1928      | CRISPR-associated Cmr5<br>family protein                                           | PGN_1190      | RNA methyltransferase                                             | PGN_0506 | hypothetical protein                                     | PGN_0013      | two-component<br>system sensor                                                       |
| PGN_1681      | ABC transporter ATP-<br>binding protein                                            | PGN_0307      | TatD family protein                                               | PGN_0908 | hypothetical protein                                     | PGN_0032      | histidine kinase<br>hypothetical protein                                             |
| PGN_1083      | hypothetical protein                                                               | PGN_0003      | hypothetical protein                                              | PGN_0703 | hypothetical protein                                     | PGN_1679      | outer membrane<br>protein                                                            |
| PGN_2011      | helicase                                                                           | PGN_0006      | Na+driven multidrug<br>efflux pump                                | PGN_1801 | putative<br>endonuclease                                 | PGN_1192      | DNA-binding<br>protein histone-like<br>family                                        |
| PGN_0750      | copper homeostasis<br>protein CutC                                                 | PGN_1072      | glycosyl transferase<br>family 2                                  | PGN_1709 | hypothetical protein                                     | PGN_0205      | AraC family<br>transcriptional<br>regulator                                          |
| PGN_1898      | transport protein                                                                  | PGN_1310      | glycogen synthase                                                 | PGN_1100 | capsule biosynthesis protein CapA                        | PGN_1983      | ion transporter                                                                      |
| PGN_1101      | hypothetical protein                                                               | PGN_1944      | hypothetical protein                                              | PGN_1725 | polysaccharide<br>deacetylase                            | PGN_1013      | putative Fe-S<br>oxidoreductase                                                      |
| PGN_0270      | amidophosphoribosyl-<br>transferase                                                | PGN_0314      | formate/nitrite transporter                                       | PGN_1404 | hypothetical protein                                     | PGN_0869      | penicillin-binding<br>protein 2                                                      |
| PGN_1985      | N-acetylmuramoyl-L-<br>alanine amidase                                             | PGN_0699      | hypothetical protein                                              | PGN_1559 | hypothetical protein                                     | PGN_1267      | SerB family protein                                                                  |
| PGN_0327      | DNA polymerase III<br>epsilon chain                                                | PGN_1008      | partial transposase in<br>ISPg1                                   | PGN_0230 | serine<br>acetyltransferase                              | PGN_1084      | hypothetical protein                                                                 |
| PGN_0844      | hypothetical protein                                                               | PGN_t001<br>6 | tRNA-Arg                                                          | PGN_0651 | hypothetical protein                                     | PGN_1915      | conjugative<br>transposon TraJ<br>protein                                            |
| PGN_1931      | CRISPR-associated Cmr3<br>family protein                                           | PGN_0554      | hypothetical protein                                              | PGN_0436 | partial hemagglutinin-<br>related protein                | traA          | conjugal transfer<br>protein TraA                                                    |
| PGN_t002<br>0 | tRNA-Pro                                                                           | PGN_0147      | putative lipoprotein                                              | PGN_0071 | PF11888 domain<br>protein                                | PGN_0979      | hypothetical protein                                                                 |
| PGN_1483      | hypothetical protein                                                               | PGN_1608      | sialidase                                                         | PGN_0776 | hypothetical protein                                     | PGN_0556      | cobalamin<br>biosynthesis-<br>related protein                                        |
| PGN_0478      | partial transposase in<br>ISPg4                                                    | PGN_0910      | hypothetical protein                                              | PGN_0719 | ABC transporter<br>permease protein;                     | PGN_t001<br>5 | tRNA-His                                                                             |
| PGN_1076      | DNA methylase                                                                      | PGN_0579      | hypothetical protein                                              | PGN_0132 | hypothetical protein                                     | PGN_1427      | hypothetical protein                                                                 |
| PGN_0961      | hypothetical protein                                                               | PGN_1919      | hypothetical protein                                              | PGN_1307 | hypothetical protein                                     | PGN_0926      | hypothetical protein                                                                 |
| PGN_1720      | hypothetical protein                                                               | PGN_0076      | mobilization protein TraG family                                  | PGN_0286 | pyridine nucleotide-<br>disulfide<br>oxidoreductase      | PGN_1540      | ABC transport<br>membrane protein                                                    |
| PGN_0981      | S-<br>adenosylmethionine:tRNA<br>ribosyltransferase-<br>isomerase                  | PGN_0848      | hypothetical protein                                              | PGN_0606 | glucosamine-6-<br>phosphate<br>deaminase-like<br>protein | PGN_1289      | hypothetical protein                                                                 |
| PGN_1463      | phosphoribose<br>diphosphate:decaprenyl-<br>phosphate<br>phosphoribosyltransferase | PGN_0720      | ABC transporter permease protein                                  | PGN_1440 | vancomycin B-type<br>resistance protein<br>VanW          | PGN_0352      | hypothetical protein                                                                 |
| PGN_0052      | hypothetical protein                                                               | PGN_0061      | putative conjugative<br>transposon protein                        | PGN_0339 | hypothetical protein                                     | PGN_1494      | oxygen-<br>independent<br>coproporphyrinoge<br>n III oxidase                         |
| truA          | tRNA pseudouridine<br>synthase A                                                   | PGN_1290      | hypothetical protein                                              | PGN_0107 | partial transposase in<br>ISPg3                          | PGN_0835      | hypothetical protein                                                                 |
| PGN_1932      | CRISPR-associated Csm1<br>family protein                                           | PGN_0943      | alginate O-<br>acetyltransferase                                  | PGN_0677 | multi antimicrobial<br>extrusion protein<br>MatE         | PGN_0430      | ABC transporter<br>ATP-binding<br>protein                                            |
| PGN_0539      | metallo-beta-lactamase<br>superfamily protein                                      | PGN_1925      | CRISPR-associated Cas1<br>family protein                          | PGN_1248 | hypothetical protein                                     | PGN_0745      | hypothetical protein                                                                 |
| PGN_0164      | hypothetical protein                                                               | PGN_0340      | carboxyl-terminal<br>processing protease                          | PGN_0479 | hypothetical protein                                     | PGN_1133      | hypothetical protein                                                                 |
|               | long-chain-fatty-acid-CoA                                                          | PGN_0542      | partial transposase in                                            | PGN_0596 | conjugate transposon                                     | PGN_0098      | hypothetical protein                                                                 |
| PGN_1738      | ligase                                                                             | 1 011_0042    | ISPg2                                                             |          | protein                                                  |               |                                                                                      |

| DONI 0400 | hypothetical protein                        | DON 4070      | lever alle alle allever de le                   | DON 4700      | hum ath attact models                        |               | membrane protein                                  |
|-----------|---------------------------------------------|---------------|-------------------------------------------------|---------------|----------------------------------------------|---------------|---------------------------------------------------|
| PGN_0166  | (transposase)<br>MazG nucleotide            | PGN_1073      | hypothetical protein                            | PGN_1730      | hypothetical protein                         | porS          | PorS                                              |
| PGN_1940  | pyrophosphohydrolase                        | PGN_0771      | NLP/P60 family protein                          | PGN_1665      | hypothetical protein<br>exodeoxyribonuclease | PGN_1147      | hypothetical protein                              |
| PGN_0014  | hypothetical protein                        | PGN_1070      | hypothetical protein                            | xseA          | VII large subunit                            | PGN_1824      | subunit alpha                                     |
| PGN_0582  | DNA topoisomerase I                         | PGN_1071      | methylthioribose kinase                         | PGN_0308      | hypothetical protein                         | PGN_0018      | hypothetical protei                               |
| PGN_1527  | tetrapyrrole methylase                      | PGN_0146      | hypothetical protein                            | PGN_0431      | hypothetical protein                         | PGN_0863      | DNA methylase N-<br>4/N-6                         |
| PGN_0046  | hypothetical protein                        | PGN_1250      | hypothetical protein                            | PGN_1682      | ABC transporter<br>permease protein          | PGN_1387      | ABC transporter<br>permease protein;              |
| PGN_0342  | uracil-DNA glycosylase                      | PGN_1680      | ABC transporter<br>permease protein             | PGN_1495      | low-specificity L-<br>threonine aldolase     | PGN_1336      | putative lipoprotein                              |
| PGN_0151  | hypothetical protein                        | PGN_0923      | DNA primase                                     | PGN_0469      | biotin synthesis<br>protein                  | PGN_t002<br>3 | tRNA-Asp                                          |
| PGN_1030  | hypothetical protein                        | PGN_1201      | tRNA (adenine-N6)-<br>methyltransferase         | PGN_0536      | hypothetical protein                         | PGN_0338      | hypothetical protei                               |
| PGN_0862  | Type III restriction<br>enzyme, res subunit | PGN_0845      | hypothetical protein                            | PGN_1907      | hypothetical protein                         | PGN_0480      | partial transposase<br>in ISPg4                   |
| PGN_0086  | DNA methylase                               | PGN_1953      | TonB-dependent outer<br>membrane receptor       | PGN_t000<br>5 | tRNA-Val                                     | PGN_1534      | hypothetical protein                              |
| PGN_0417  | hypothetical protein                        | PGN_1683      | ABC transporter<br>permease protein             | PGN_0565      | hypothetical protein                         | PGN_0822      | hypothetical protein                              |
| PGN_1223  | uracil permease                             | PGN_0922      | Virulence-associated<br>protein E               | PGN_0924      | mobilization protein                         | PGN_1306      | hypothetical protein                              |
| PGN_0051  | hypothetical protein                        | PGN_1082      | hypothetical protein                            | PGN_1920      | hypothetical protein                         | PGN_1064      | transposase in<br>ISPg3                           |
| PGN_0584  | topoisomerase                               | PGN_1473      | hypothetical protein                            | PGN_0600      | conjugal transfer<br>protein TraG            | PGN_t000<br>2 | tRNA-Asn                                          |
| PGN_0581  | topoisomerase                               | PGN_t004<br>1 | tRNA-Ser                                        | traQ          | conjugate transposon<br>protein TraQ         | PGN_0538      | hypothetical protein                              |
| PGN_0362  | hypothetical protein                        | PGN_1046      | DNA repair protein                              | PGN_0787      | hypothetical protein                         | PGN_1144      | hypothetical protei                               |
| PGN_1234  | hypothetical protein                        | PGN_2084      | TraJ family protein<br>conjugative transpos     | PGN_1918      | hypothetical protein                         | PGN_0048      | PcfK-like protein                                 |
| PGN_0852  | immunoreactive 47 kDa<br>antigen PG97       | PGN_2063      | hypothetical protein                            | PGN_0588      | hypothetical protein                         | PGN_0555      | hypothetical protei                               |
| PGN_0050  | hypothetical protein                        | PGN_1461      | spore maturation protein<br>A/B                 | PGN_0105      | hypothetical protein                         | PGN_0957      | hypothetical protei                               |
| PGN_1394  | transposase in ISPg2                        | PGN_1292      | anti-restriction protein                        | PGN_0946      | hypothetical protein                         | PGN_1068      | oxidoreductase<br>domain protein                  |
| PGN_0152  | immunoreactive 61 kDa<br>antigen PG91       | traO          | conjugate transposon<br>protein TraO            | PGN_1916      | ABC transporter ATP-<br>binding protein      | PGN_1609      | hypothetical protei                               |
| PGN_0839  | transposase in ISPg2                        | PGN_1017      | hypothetical protein                            | PGN_0075      | relaxase/mobilization<br>nuclease domain p   | PGN_1662      | partial transposase<br>in ISPg3                   |
| PGN_1924  | CRISPR-associated Cas2<br>family protein    | PGN_1257      | hypothetical protein                            | PGN_0652      | hypothetical protein                         | PGN_0402      | hypothetical protei                               |
| PGN_0851  | hypothetical protein                        | PGN_1707      | putative lipoprotein                            | PGN_1478      | hypothetical protein                         | PGN_0442      | transposase in<br>ISPg3                           |
| PGN_0513  | hypothetical protein                        | PGN_0559      | hypothetical protein                            | PGN_1075      | ISPg2, transposase                           | PGN_0949      | ABC transporter<br>ATP-binding<br>protein         |
| PGN_0947  | hypothetical protein                        | PGN_1291      | conserved hypothetical protein related to phage | PGN_0028      | calcium-transporting<br>ATPase               | PGN_1333      | para-<br>aminobenzoate<br>synthase<br>component I |
| PGN_0383  | transporter                                 | PGN_1069      | hypothetical protein                            | PGN_0306      | hypothetical protein                         | PGN_0953      | transposase in<br>ISPg3                           |
| PGN_1825  | hypothetical protein                        | PGN_1217      | hydroxylamine reductase                         | PGN_0958      | hypothetical protein                         | hmuR          | TonB-dependent<br>receptor HmuR                   |
| PGN_1823  | hypothetical protein                        | PGN_0455      | partial transposase Orf1<br>in ISPg5            | PGN_1476      | hypothetical protein                         | PGN_1371      | hypothetical protei                               |
| PGN_1353  | DNA alkylation repair<br>enzyme             | PGN_0460      | DNA-binding protein<br>histone-like family      | PGN_1059      | conjugative<br>transposon TraJ<br>protein    | PGN_0601      | hypothetical protei                               |
| PGN_1089  | methyltransferase                           | PGN_1067      | hypothetical protein                            | PGN_0978      | hypothetical protein                         | PGN_0072      | hypothetical protei                               |
| PGN_1277  | hypothetical protein                        | PGN_1368      | hypothetical protein                            | PGN_1726      | transposase in ISPg3                         | PGN_1917      | ABC transporter<br>ATP-binding<br>protein         |
| PGN_1624  | hypothetical protein                        | PGN_1160      | transposase in ISPg2                            | PGN_0441      | htpG; heat shock<br>protein 90               | PGN_r000<br>6 | 5S ribosomal RNA                                  |
| PGN_0825  | hypothetical protein                        | PGN_0950      | ABC transporter ATP-<br>binding protein         | PGN_t000<br>8 | tRNA-Pro                                     | PGN_2036      | hypothetical protei                               |
| PGN_1293  | PcfK-like protein                           | PGN_1927      | CRISPR-associated Cas1<br>family protein        | PGN_0899      | hypothetical protein                         | PGN_1748      | cytochrome c<br>biogenesis protein<br>CcsA        |
| PGN_0909  | transposase in ISPg3                        | PGN_1922      | transposase in ISPg3                            | PGN_1921      | transcriptional regulator                    | PGN_0796      | hypothetical protei                               |
| PGN_1065  | transposase in ISPg3                        | porR          | porP protein                                    | PGN_1109      | hypothetical protein                         | PGN_0363      | hypothetical protei                               |
| PGN_1490  | precorrin-2 C20-<br>methyltransferase       | PGN_1060      | transposase in ISPg3                            | PGN_0856      | A/G-specific adenine<br>glycosylase          | PGN_0552      | hypothetical protei                               |
| PGN_0948  | hypothetical protein                        | PGN_0954      | partial transposase in<br>ISPg6                 | PGN_0920      | partial excisionase                          | PGN_t001<br>7 | tRNA-Ser                                          |
| PGN 0049  | anti-restriction protein                    | PGN_1684      | hypothetical protein                            | PGN_t000<br>4 | tRNA-Val                                     | PGN_1265      | hypothetical protei                               |

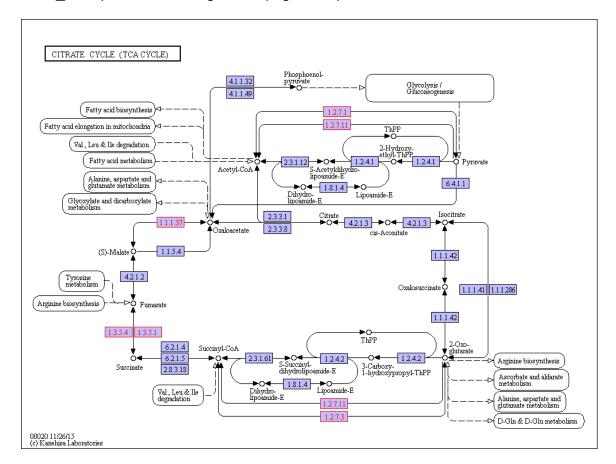
| PGN_0454      | transposase in ISPg3                       | PGN_1335      | hypothetical protein            | PGN_1006      | transposase in ISPg3                        | PGN_1228      | hypothetical protein            |
|---------------|--------------------------------------------|---------------|---------------------------------|---------------|---------------------------------------------|---------------|---------------------------------|
| PGN_1911      | transposase in ISPg3                       | PGN_t002<br>4 | tRNA-Phe                        | PGN_1063      | partial transposase<br>Orf2 in ISPg5        | PGN_0846      | hypothetical protein            |
| PGN_1592      | hypothetical protein                       | PGN_0879      | transposase in ISPg3            | PGN_0843      | hypothetical protein                        | PGN_t004<br>5 | tRNA-Lys                        |
| PGN_0213      | hypothetical protein                       | PGN_0459      | transposase in ISPg3            | PGN_1334      | hypothetical protein                        | PGN_0578      | conjugate<br>transposon protein |
| PGN_0790      | transposase in ISPg3                       | PGN_0106      | partial transposase in<br>ISPg3 | PGN_0305      | hypothetical protein                        | PGN_1294      | hypothetical protein            |
| PGN_0586      | hypothetical protein                       | PGN_1826      | hypothetical protein            | PGN_0945      | TetR family<br>transcriptional<br>regulator | PGN_r001<br>2 | 5S ribosomal RNA                |
| PGN_t002<br>7 | tRNA-Met                                   | PGN_1729      | acetyltransferase               | PGN_0401      | hypothetical protein                        | PGN_0921      | hypothetical protein            |
| PGN_0326      | DNA-binding protein<br>histone-like family | PGN_2059      | hypothetical protein            | PGN_0850      | hypothetical protein                        | PGN_1237      | hypothetical protein            |
| PGN_0934      | transposase in ISPg3                       | PGN_0925      | mobilization protein            | PGN_t002<br>5 | tRNA-Leu                                    | PGN_1477      | hypothetical protein            |
| PGN_1066      | transposase in ISPg3                       | PGN_0847      | hypothetical protein            | PGN_0019      | hypothetical protein                        | PGN_t000<br>6 | tRNA-Met                        |
| PGN_0955      | transposase in ISPg3                       | PGN_0475      | hypothetical protein            | PGN_t000<br>7 | tRNA-Met                                    | PGN_0364      | hypothetical protein            |
| PGN_0558      | transposase in ISPg3                       | PGN_0337      | hypothetical protein            | PGN_0474      | hypothetical protein                        | PGN_1778      | hypothetical protein            |
| PGN_1278      | partial transposase in<br>ISPg3            | PGN_1428      | transposase in ISPg3            | PGN_0574      | hypothetical protein                        | PGN_t001<br>9 | tRNA-Arg                        |
| PGN_0576      | hypothetical protein                       | PGN_1913      | transposase in ISPg3            | PGN_1414      | hypothetical protein                        | PGN_0551      | hypothetical protein            |
| PGN_0944      | transposase in ISPg3                       | PGN_1560      | hypothetical protein            | PGN_1266      | hypothetical protein                        | PGN_0853      | hypothetical protein            |
| PGN_0585      | transposase in ISPg3                       | PGN_1912      | partial transposase in<br>ISPg6 | PGN_r000<br>7 | 5S ribosomal RNA                            | PGN_0821      | hypothetical protein            |
| PGN_1836      | transposase in ISPg3                       | PGN_0304      | hypothetical protein            | PGN_r000<br>3 | 5S ribosomal RNA                            | PGN_0047      | hypothetical protein            |
| PGN_0864      | transposase in ISPg3                       | PGN_0589      | hypothetical protein            |               |                                             |               |                                 |
| -             |                                            |               |                                 | -             |                                             |               |                                 |

Table shows gene ID number and name of all P. gingivalis genes that were down

regulated (< 0.6 fold) when exposed to CSE.

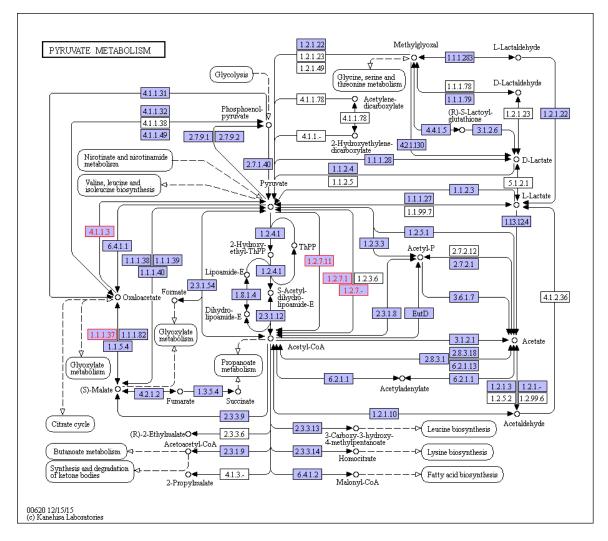


# Figure 5: P. gingivalis ATCC 33277 differentially expressed genes in CSE


Genes differentially expressed in *P. gingivalis* were grouped into different functional categories using DAVID and KEGG enrichment analysis software, A.

Metabolism; B. Genetic information processing; C. Environmental information processing; D. Transposases or partial transposases; E. DNA replication, recombination and repair; F. Others and G. hypothetical or conserved hypothetical proteins. Closed boxes represent up regulated genes in *P. gingivalis* (> 1.5 fold), when exposed to CSE and open boxes represent down regulated genes in *P. gingivalis* (< 0.6 fold), when exposed to CSE.

#### KEGG analysis for differentially expressed P. gingivalis genes


KEGG analysis was done on differentially expressed P. gingivalis genes to group them into various functional categories. Genes in several essential pathways were found to be differentially expressed. KEGG orthology system was used to generate these pathways with increased number of differentially expressed genes, which include glycolysis, citrate cycle, pyruvate metabolism, biosyntehsis of amino acids, butanoate metabolism, ABC transporters and CAMP resistance pathway genes. Several genes related to citrate cycle (PGN 1418, PGN 1529, PGN 1753, PGN 1755, PGN 1880, PGN 0496, PGN 0498, PGN 1752, and PGN 1756), Figure 6; pyruvate metabolism (PGN\_0504, PGN\_1755, PGN\_1753, PGN\_1529, PGN 1418, PGN 1880, Figure 7); glycolysis (PGN 1695, PGN 0173, PGN 1418, PGN 1529, PGN 1753, PGN 1755, Figure 8); butanoate metabolism (PGN 0496, PGN 0498, PGN 0724, PGN 0727, PGN 1172, PGN 1418, PGN 1755, PGN 1753, PGN 1529, Figure 9); and cationic antimicrobial peptide (CAMP) resistance (rgpB and rgpA) (Figure 10) pathways were found to be up regulated in *P. gingivalis* upon CSE exposure. Genes related to ABC transporter pathway (PGN 1325, PGN 1324, PGN 1025, PGN 1387, PGN 1471,

PGN\_0706, PGN\_0686, PGN\_0707, PGN\_0708, Figure 11) were found to be down regulated when *P. gingivalis* was exposed to Cigarette smoke. In amino acid biosynthesis pathway a few genes (PGN\_0173, PGN\_1695 and PGN\_1080) were up regulated and a few genes (PGN\_1475, PGN\_0230, PGN\_1474 and PGN\_1495) were down regulated (Figure 12).



### Figure 6: Citrate cycle pathway of P. gingivalis

Generated using KEGG orthology system and red boxes show differentially regulated *P. gingivalis* genes involved in Citrate cycle when exposed to CSE.



# Figure 7: Pyruvate metabolism pathway of *P. gingivalis*

Generated using KEGG orthology system and red boxes show differentially regulated *P. gingivalis* genes involved in Pyruvate metabolism when exposed to CSE.

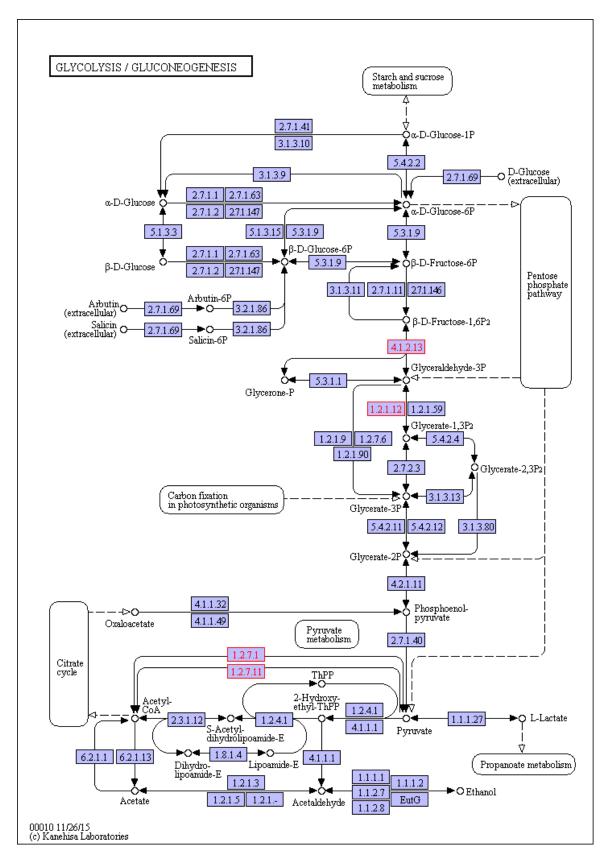
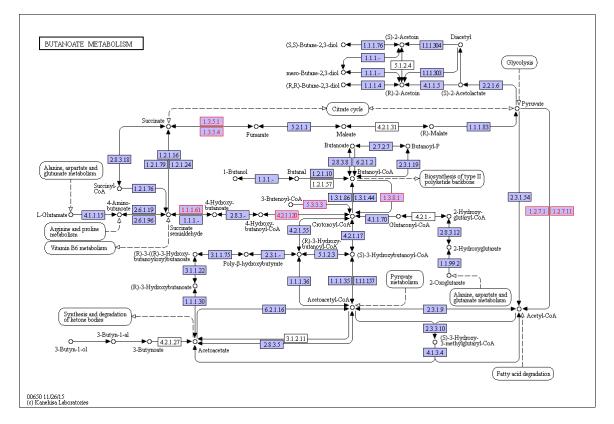
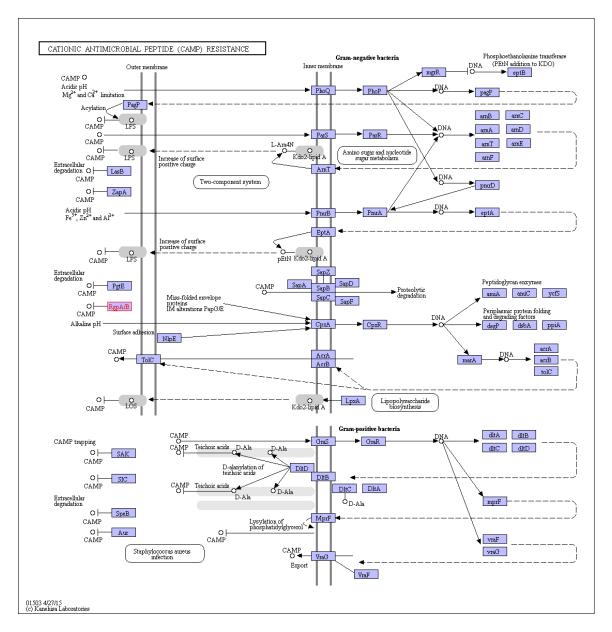




Figure 8: Glycolysis pathway of P. gingivalis


Generated using KEGG orthology system and red boxes show differentially regulated *P. gingivalis* genes involved in Glycolysis when exposed to CSE.

Generated using KEGG orthology system and red boxes show differentially regulated *P. gingivalis* genes involved in Glycolysis when exposed to CSE.



# Figure 9: Butanoate metabolism pathway of *P. gingivalis*

Generated using KEGG orthology system and red boxes show differentially regulated *P. gingivalis* genes involved in Butanoate metabolism when exposed to CSE.



### Figure 10: CAMP resistance pathway of *P. gingivalis*

Generated using KEGG orthology system and red box shows differentially regulated *P. gingivalis* genes RgpA and RgpB when exposed to CSE.

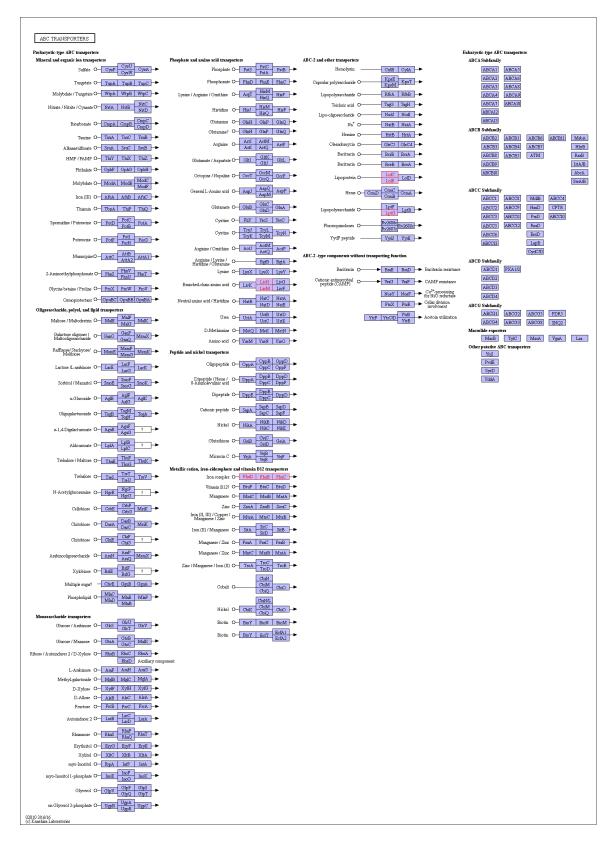
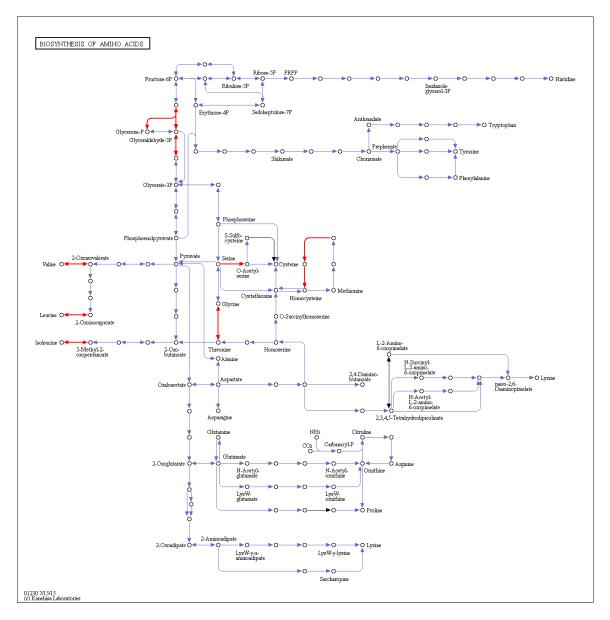




Figure 11: ABC transporter pathway of P. gingivalis

Generated using KEGG orthology system and red boxes show differentially regulated *P. gingivalis* ABC transporter genes when exposed to CSE.



# Figure 12: Biosynthesis of amino acids pathway of *P. gingivalis*

Generated using KEGG orthology system and red boxes show differentially regulated *P. gingivalis* genes involved in amino acid biosynthesis when exposed to CSE.

### *F. alocis* differentially expressed genes

When *F. alocis* was exposed to CSE, 83 genes were found to be differentially expressed (P < 0.005); 72 genes were up regulated (> 1.5 fold) and 11 genes were down regulated (< 0.6 fold). Many of the 83 genes that were differentially expressed encode hypothetical proteins whose functions have yet to be determined.

Up regulated genes include DNA replication gene (HMPREF0389 0155); Transfer gene cluster (*traE* and *traG*); Genes in the ABC transporter operon (HMPREF0389 00895, HMPREF0389 00896, HMPREF0389 00897. HMPREF0389 01591, HMPREF0389 01592, HMPREF0389 01190, HMPREF0389 01191 and HMPREF0389 01281); gene encoding fimbrial protein (HMPREF0389 00415); transcription assembly regulator aenes (HMPREF0389 00643, HMPREF0389 01102 and HMPREF0389 01590); gene encoding cell wall serine protease (HMPREF0389 00110); nucleotide metabolism gene (HMPREF0389 00826); genes responsible for Carbohydrate metabolism (HMPREF0389 00473 and HMPREF0389 00883) and energy metabolism (HMPREF0389 01302 and HMPREF0389 01303); gene encoding type IV pilus protein (HMPREF0389 00416); several genes for processing genetic information HMPREF0389 00822, HMPREF0389 00821, HMPREF0389 00820, (e.q., HMPREF0389 00830, HMPREF0389 00819, HMPREF0389 00831, HMPREF0389 00829, HMPREF0389 00828)

Table 5: List of up regulated genes in *F. alocis* upon CSE exposure

| Gene ID          | Gene name                       | Gene ID          | Gene name                              | Gene ID          | Gene name                                                  |
|------------------|---------------------------------|------------------|----------------------------------------|------------------|------------------------------------------------------------|
| HMPREF0389_00155 | DNA replication protein<br>DnaC | HMPREF0389_01736 | rpmJ; psM;<br>Ribosomal<br>protein L36 | HMPREF0389_01728 | hypothetical;<br>Copper amine<br>oxidase domain<br>protein |
| HMPREF0389_00186 | NlpC/P60 family<br>protein      | HMPREF0389_01591 | ABC transporter<br>permease            | HMPREF0389_01281 | ABC transporter<br>ATP-binding protein                     |

|                  | type IV conjugative                                                                  |                  | V-type ATP                                                          |                  |                                                                              |
|------------------|--------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------|------------------|------------------------------------------------------------------------------|
| HMPREF0389_00184 | transfer system protein<br>TraE                                                      | HMPREF0389_01302 | synthase beta chain 2                                               | HMPREF0389_00412 | hypothetical                                                                 |
| HMPREF0389_00178 | TraG family protein                                                                  | HMPREF0389_00820 | DNA-directed<br>RNA polymerase<br>subunit alpha                     | HMPREF0389_01273 | 46unctional46l membrane protein                                              |
| HMPREF0389_00166 | TnpX site-specific<br>recombinase                                                    | HMPREF0389_00825 | map; Methionine<br>aminopeptidase                                   | HMPREF0389_01581 | hlyD; hemolysin D                                                            |
| HMPREF0389_00246 | antirestriction protein (ArdA)                                                       | HMPREF0389_00826 | adk; adenylate<br>kinase                                            | HMPREF0389_00830 | rpsE: 30S<br>ribosomal protein<br>S5                                         |
| HMPREF0389_00154 | replication initiator<br>protein                                                     | HMPREF0389_00896 | zinc ABC<br>transporter<br>permease                                 | HMPREF0389_00415 | fimbrial assembly protein PilN                                               |
| HMPREF0389_00969 | nitrite transporter NirC                                                             | HMPREF0389_00414 | hypothetical                                                        | HMPREF0389_03101 | 23S ribosomal RNA                                                            |
| HMPREF0389_01685 | hypothetical                                                                         | HMPREF0389_01102 | transcriptional<br>regulator, TetR                                  | HMPREF0389_00831 | 50S ribosomal<br>protein L18                                                 |
| HMPREF0389_00162 | conjugation protein                                                                  | HMPREF0389_01448 | calcium-binding<br>acidic-repeat<br>protein                         | HMPREF0389_01537 | hypothetical                                                                 |
| HMPREF0389_01096 | MATE efflux family<br>protein                                                        | HMPREF0389_01590 | Transcriptional<br>regulator, AraC                                  | HMPREF0389_03107 | 23S ribosomal RNA                                                            |
| HMPREF0389_00644 | FtsK/SpolIIE family protein                                                          | HMPREF0389_00882 | ribH; 6,7-<br>dimethyl-8-<br>ribityllumazine<br>synthase            | HMPREF0389_00413 | hypothetical                                                                 |
| HMPREF0389_01592 | ABC transporter<br>permease, ATP-<br>binding protein                                 | HMPREF0389_00881 | ribBA; 3,4-<br>dihydroxy-2-<br>butanone 4-<br>phosphate<br>synthase | HMPREF0389_00416 | pilM; type IV pilus<br>assembly protein                                      |
| HMPREF0389_00823 | Translation initiation factor IF-1                                                   | HMPREF0389_00827 | preprotein<br>translocase<br>subunit SecY                           | HMPREF0389_00505 | O-<br>methyltransferase<br>family protein                                    |
| HMPREF0389_00879 | riboflavin biosynthesis<br>protein RibD                                              | HMPREF0389_00819 | rplQ; 50S<br>ribosomal protein<br>L17                               | HMPREF0389_01169 | CRISPR-associated<br>protein, Csd1 family                                    |
| HMPREF0389_00824 | hypothetical protein                                                                 | HMPREF0389_00895 | zinc ABC<br>transporter ATP-<br>binding protein                     | HMPREF0389_01190 | efflux ABC<br>transporter<br>permease                                        |
| HMPREF0389_01079 | Iron-sulfur cluster-<br>binding protein                                              | HMPREF0389_01191 | ABC transporter<br>ATP-binding<br>protein                           | HMPREF0389_00883 | HAD-superfamily<br>hydrolase<br>(46unctional partner<br>with ribBA and ribH) |
| HMPREF0389_01303 | V/A-type H+-<br>transporting ATPase<br>subunit D                                     | HMPREF0389_00828 | rplO; 50S<br>ribosomal protein<br>L15                               | HMPREF0389_03104 | 23S ribosomal RNA                                                            |
| HMPREF0389_00897 | Environmental sensor;<br>manganese/zinc/iron<br>transport system<br>permease protein | HMPREF0389_03110 | 23S ribosomal<br>RNA                                                | HMPREF0389_01135 | hypothetical                                                                 |
| HMPREF0389_01744 | hypothetical                                                                         | HMPREF0389_00829 | rpmD; 50S<br>ribosomal protein<br>L30                               | HMPREF0389_00928 | fabZ; beta-<br>hydroxyacyl-(acyl-<br>carrier-protein)<br>dehydratase         |
| HMPREF0389_00643 | transcriptional regulator                                                            | HMPREF0389_01138 | GTP binding<br>protein                                              | HMPREF0389_00473 | pyruvate<br>carboxylase                                                      |
| HMPREF0389_00822 | rpsM; 30S ribosomal<br>protein S13                                                   | HMPREF0389_01110 | prtA: cell wall serine protease                                     | HMPREF0389_01189 | RND family efflux<br>transporter MFP<br>subunit                              |
| HMPREF0389_00898 | GNAT family<br>acetyltransferase                                                     | hypothetical     |                                                                     | HMPREF0389_01137 | thiH; thiazole<br>biosynthesis proteir                                       |
| HMPREF0389_00821 | rpsK; 30S ribosomal protein S11                                                      | HMPREF0389_00660 | NIpC/P60 family<br>protein                                          | HMPREF0389_00959 | NADH oxidase,<br>water-forming                                               |

Table shows gene ID number and name of all *F. alocis* genes that were up regulated (> 1.5 fold) when exposed to CSE.

Down regulated genes include gene encoding nitrate/nitrite response regulator protein (HMPREF0389\_00802); signal peptidase gene

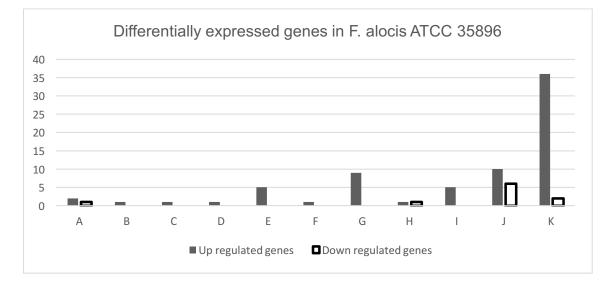

(HMPREF0389\_00799) and a gene responsible for glycolysis (HMPREF0389\_00226).

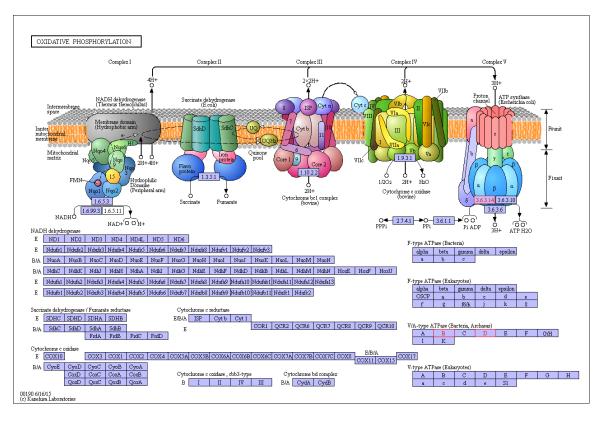
Table 6: List of down regulated genes in F. alocis upon CSE exposure

| Gene ID          | Gene name                                  |
|------------------|--------------------------------------------|
| HMPREF0389_00226 | acetyl coenzyme A synthetase               |
| HMPREF0389_00802 | Nitrate/nitrite response regulator protein |
| HMPREF0389_01749 | hypothetical                               |
| HMPREF0389_01748 | hypothetical                               |
| HMPREF0389_01188 | hypothetical                               |
| HMPREF0389_01353 | amidinotransferase                         |
| HMPREF0389_00486 | hypothetical                               |
| HMPREF0389_00798 | hypothetical                               |
| HMPREF0389_00799 | signal peptidase I                         |
| HMPREF0389_00801 | hypothetical                               |
| HMPREF0389_00800 | low density lipoprotein receptor 2         |

Table shows gene ID number and name of all F. alocis genes that were down

regulated (< 0.6 fold) when exposed to CSE.




### Figure 13: F. alocis ATCC 35896 differentially expressed genes in CSE

Genes differentially expressed in *F. alocis* were grouped into different functional categories using KEGG enrichment analysis software, A. Carbohydrate metabolism; B. Energy metabolism; C. Lipid metabolism; D. Nucleotide

metabolism; E. Metabolism of Cofactors and vitamins; F. Trancription; G. Translation; H. Folding, sorting and degradation; I. Membrane transport; J. Hypothetical proteins and K. Others. Closed boxes represent up regulated genes in *F. alocis* (> 1.5 fold), when exposed to CSE and open boxes represent down regulated genes in *F. alocis* (< 0.6 fold), when exposed to CSE.

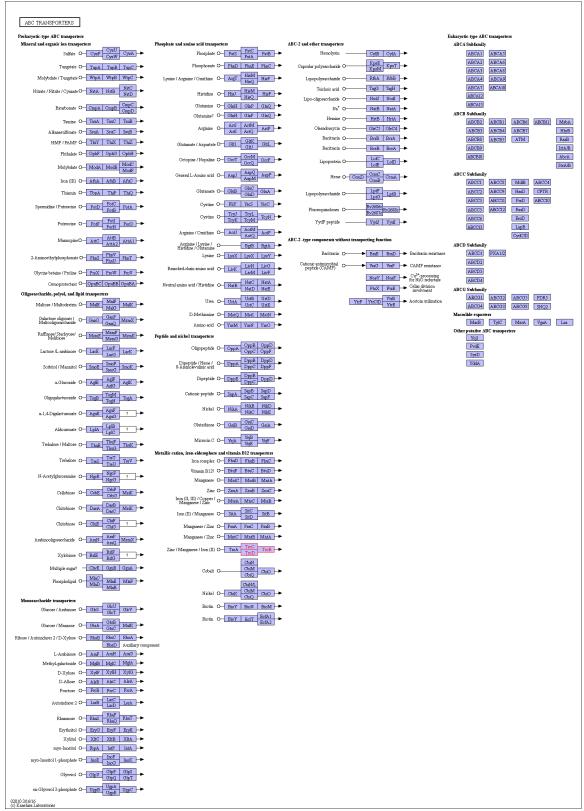
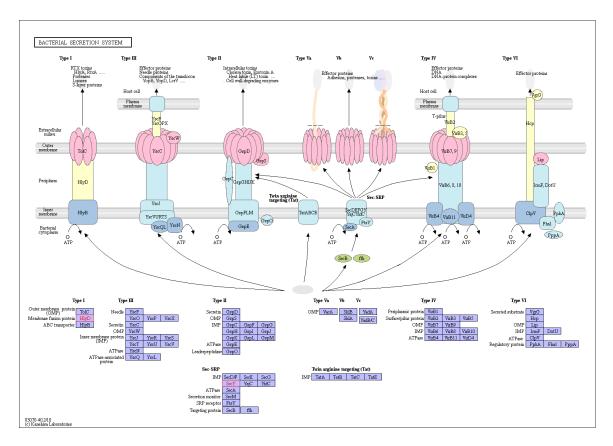
#### KEGG analysis for differentially expressed *F. alocis* genes

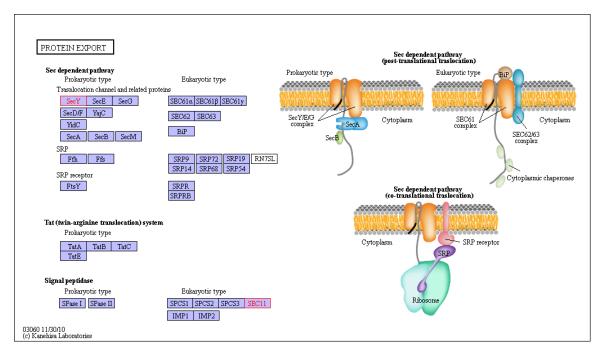
KEGG analysis was done on differentially expressed *F. alocis* genes to group them into various functional categories. Genes in several essential pathways were found to differentially expressed. KEGG orthology system was used to generate these pathways with increased number of differentially expressed genes, which include pyruvate metabolism, oxidative phosphorylation, ABC transporter, protein export and bacterial secretory system pathways. Genes related to oxidative phosphorylation (HMPREF0389 01302 and HMPREF0389 01303, Figure 14), ABC (HMPREF0389 00896, HMPREF0389 00897 transporter and 15) bacterial HMPREF0389 00895, Figure and secretory system (HMPREF0389 01581 and HMPREF0389 00827, Figure 16) pathways were up regulated when F. alocis was exposed to Cigarette smoke. In protein export pathway gene (HMPREF0389 00827) was up regulated and gene (HMPREF0389 00799) was down regulated (Figure 17). Similarly, in pyruvate metabolism pathway gene (HMPREF0389 00473) was up regulated and gene (HMPREF0389 00226) was down regulated (Figure 18) in *F. alocis* upon CSE exposure.



# Figure 14: Oxidative phosphorylation pathway of *F. alocis*

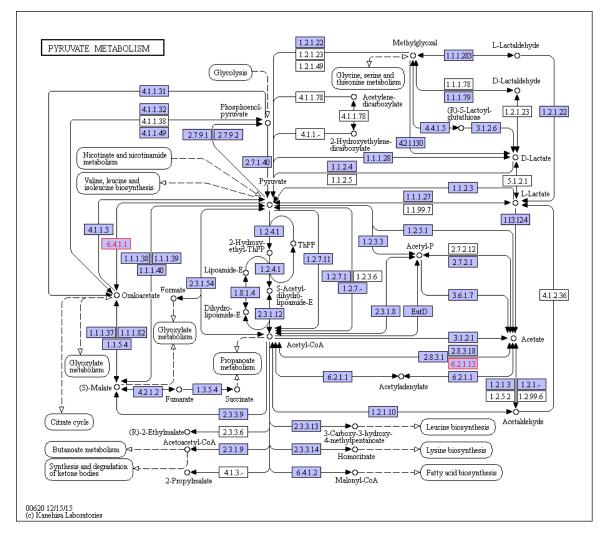
Generated using KEGG orthology system and red boxes show differentially regulated *F. alocis* genes involved in oxidative phosphorylation when exposed to CSE.



Figure 15: ABC transporter pathway of F. alocis

Generated using KEGG orthology system and red boxes show differentially regulated *F. alocis* ABC transporter genes when exposed to CSE.




# Figure 16: Bacterial secretory system pathway of *F. alocis*

Generated using KEGG orthology system and red boxes show differentially regulated *F. alocis* genes involved in secretion system when exposed to CSE.



# Figure 17: Protein export in *F. alocis*

Generated using KEGG orthology system and red boxes show differentially regulated *F. alocis* genes involved in protein export when exposed to CSE.



# Figure 18: Pyruvate metabolism pathway of *F. alocis*

Generated using KEGG orthology system and red boxes show differentially regulated *F. alocis* genes involved in Pyruvate metabolism when exposed to CSE.

T. denticola differentially expressed genes

We were unable to efficiently isolate RNA from *T. denticola*, therefore differentially

regulated genes could not be identified.

Validation of RNA-Seq data by qPCR analysis

To validate the RNA-Seq analysis, qPCR was performed on selected up regulated

and down regulated genes for both *F. alocis* and *P. gingivalis*. As seen in Table 7

and Table 8, most of the selected genes showed trends similar to that of RNA-Seq analysis. However differential expression of only a small number of genes was statistically significant in the qPCR experiments.

| Gene ID  | Gene name      | Control<br>qPCR<br>expression<br>value (Mean<br>C <sub>T</sub> ) | CSE<br>qPCR<br>expression<br>value (Mean<br>C⊤) | P- value<br>(T- test) |
|----------|----------------|------------------------------------------------------------------|-------------------------------------------------|-----------------------|
| 16s rRNA | Reference gene | 10.73                                                            | 13.17                                           | 0.0001                |

Selected P. gingivalis up-regulated genes by qPCR analysis

| Gene ID               | Gene name                                                                     | ∆Ct<br>Value<br>(control) | ∆Ct<br>Value<br>(CSE) | Delta Delta<br>Ct (DDC <sub>t</sub> )<br>Value | Fold<br>change<br>(2 <sup>-DDCt</sup> ) | P-<br>value<br>(T- test) |
|-----------------------|-------------------------------------------------------------------------------|---------------------------|-----------------------|------------------------------------------------|-----------------------------------------|--------------------------|
| PGN_1047 <sup>a</sup> | hydroxylamine reductase                                                       | 4.77                      | 3.09                  | -1.68                                          | 3.2                                     | 0.16                     |
| PGN_0295 <sup>a</sup> | C-terminal domain of Arg- and Lys-gingipain proteinase                        | 5.41                      | 3.38                  | -2.03                                          | 4.08                                    | 0.23                     |
| Kgp <sup>a</sup>      | Lys-gingipain                                                                 | 4.37                      | 2.04                  | -2.33                                          | 5.02                                    | 0.58                     |
| PGN_1367 <sup>a</sup> | glutamate dehydrogenase                                                       | 4.75                      | 2.86                  | -1.89                                          | 3.70                                    | 0.06                     |
| PGN_1740 <sup>a</sup> | RNA polymerase ECF-type<br>sigma factor                                       | 3.61                      | 2.50                  | -1.11                                          | 2.15                                    | 0.2                      |
| RgpA <sup>a</sup>     | RgpAc; glycosyltransferase                                                    | 3.87                      | 1.23                  | -2.64                                          | 6.23                                    | 0.125                    |
| PGN_0727 <sup>a</sup> | 4-hydroxybutyryl-CoA<br>dehydratase                                           | 3.29                      | 0.98                  | -2.31                                          | 4.95                                    | 0.013 <sup>b</sup>       |
| PGN_1695 <sup>a</sup> | fructose-1,6-bisphosphate<br>aldolase                                         | 3.52                      | 1.12                  | -2.4                                           | 5.27                                    | 0.56                     |
| RpoC <sup>a</sup>     | DNA-directed RNA<br>polymerase subunit beta                                   | 4.25                      | 1.28                  | -2.97                                          | 7.83                                    | 0.01 <sup>b</sup>        |
| Dps <sup>a</sup>      | DNA-binding protein from starved cells Dps                                    | 4.07                      | 1.17                  | -2.9                                           | 7.46                                    | 0.0009 <sup>b</sup>      |
| PGN_0173 <sup>a</sup> | glyceraldehyde 3-phosphate<br>dehydrogenase type I                            | 3.77                      | 1.13                  | -2.64                                          | 6.23                                    | 0.035                    |
| PGN_0175 <sup>a</sup> | 2-ketoisovalerate ferredoxin reductase                                        | 4.01                      | 1.13                  | -2.88                                          | 7.36                                    | 0.022                    |
| PGN_1080 <sup>a</sup> | branched-chain amino acid<br>aminotransferase                                 | 3.66                      | 1.1                   | -2.56                                          | 5.89                                    | 0.126                    |
| PGN_0660 <sup>a</sup> | alkyl hydroperoxide reductase                                                 | 3.94                      | 1.12                  | -2.82                                          | 7.06                                    | 0.0001 <sup>b</sup>      |
| PGN_0724 <sup>a</sup> | NAD-dependent 4-<br>hydroxybutyrate<br>dehydrogenase<br>Selected P. gingiyali | 4.13                      | 1.24                  | -2.89                                          | 7.41                                    | 0.008*                   |

Selected P. gingivalis down-regulated genes by qPCR analysis

| Gene ID | Gene name | ∆Ct<br>Value | ∆Ct<br>Value | Delta Delta Ct<br>(DDC <sub>t</sub> ) value | Fold<br>change        | P-<br>value |
|---------|-----------|--------------|--------------|---------------------------------------------|-----------------------|-------------|
|         |           | (control)    | (cse)        | (DDC <sub>t</sub> ) value                   | (2 <sup>-DDČt</sup> ) | (T- test)   |

| PGN_1644              | transposase in ISPg1                | 2.54 | 1.51 | -1.03 | 2.04 | 0.01 <sup>b</sup>   |
|-----------------------|-------------------------------------|------|------|-------|------|---------------------|
| Upp <sup>a</sup>      | uracil<br>phosphoribosyltransferase | 4.97 | 5.87 | 0.9   | 0.53 | 0.0003 <sup>b</sup> |
| PGN_0134 <sup>a</sup> | biotin synthetase                   | 5.53 | 5.89 | 0.36  | 0.77 | 0.001 <sup>b</sup>  |
| PGN_0885              | nitroimidazole resistance protein   | 5.83 | 5.79 | -0.04 | 1.02 | 0.022 <sup>b</sup>  |
| PGN_0545              | sulfatase                           | 5.88 | 5.63 | -0.25 | 1.18 | 0.056               |

The table shows all *P. gingivalis* up-regulated and down-regulated genes from RNA-Seq selected for qPCR analysis. Positive DDC<sub>t</sub> values indicate more PCR cycles and therefore less targeted gene after CSE exposure, meaning suppression of targeted gene expression. Conversely, negative DDC<sub>t</sub> values indicate more targeted gene after CSE exposure, indicating induction of gene expression.

a. Differentially expressed genes in qPCR which correlate with RNA-Seq results.
b. Represents *P. gingivalis* genes that showed statistically significant (P< 0.05) difference in their expression when exposed to cigarette smoke in qPCR analysis.</li>

| Gene ID           | Gene na                 | Contro<br>ame qPCR express<br>(Mean 0 |                                | sion value                | qPCR e                | CSE<br>expression valu<br>C⊤)                  | e (Mean                                 | P-<br>value<br>(T-<br>test) |
|-------------------|-------------------------|---------------------------------------|--------------------------------|---------------------------|-----------------------|------------------------------------------------|-----------------------------------------|-----------------------------|
| 16srRNA           | Reference g             | ce gene 10.54                         |                                | 4                         |                       | 11.23                                          |                                         |                             |
| Selected F. aloci |                         |                                       |                                | <i>cis</i> up-regul       | ated gene             | s by qPCR ana                                  | lysis                                   |                             |
| Ge                | ne ID                   | Ge                                    | ene name                       | ∆Ct<br>Value<br>(control) | ∆Ct<br>Value<br>(CSE) | Delta Delta<br>Ct (DDC <sub>t</sub> )<br>Value | Fold<br>change<br>(2 <sup>-DDCt</sup> ) | P-<br>value<br>(T-<br>test) |
| HMPREF            | 0389_00155              | DNA rep<br>protein I                  |                                | 12.97                     | 14.90                 | 1.93                                           | 0.26                                    | 0.01 <sup>b</sup>           |
| HMPREFO           | )389_00186 <sup>a</sup> | Nlpc/P6<br>protein                    | 0 family                       | 15.47                     | 14.7                  | -0.77                                          | 1.70                                    | 0.64                        |
| HMPREFO           | )389_00184 <sup>a</sup> |                                       | conjugative<br>protein TraE    | 15.79                     | 14.65                 | -1.14                                          | 2.20                                    | 0.04 <sup>b</sup>           |
| HMPREF            | 0389_00178              | TraG family protein                   |                                | 15.66                     | 15.74                 | 0.08                                           | 0.94                                    | 0.03 <sup>b</sup>           |
| HMPREFO           | )389_00166 <sup>a</sup> |                                       | TnpX site-specific recombinase |                           | 13.28                 | -1.1                                           | 2.14                                    | 0.13                        |
| HMPREFO           | )389_00246 <sup>a</sup> | Antirest<br>(ArdA)                    | riction protein                | 14.24                     | 13.43                 | -0.81                                          | 1.75                                    | 0.50                        |
| HMPREFO           | )389_00154 <sup>ª</sup> | Replicat protein                      | ion initiation                 | 12.21                     | 11.32                 | -0.89                                          | 1.85                                    | 0.71                        |
| HMPREF            | 0389_00969              | Nitrate t<br>NirC                     | Nitrate transporter            |                           | 9.1                   | 0.69                                           | 0.61                                    | 0.01 <sup>b</sup>           |
| HMPREFO           | )389_00162 <sup>a</sup> | Conjugation protein                   |                                | 13.26                     | 12.58                 | -0.68                                          | 1.60                                    | 0.98                        |
| HMPREFO           | )389_01096 <sup>a</sup> | MATE efflux family protein            |                                | 9.06                      | 8.18                  | -0.88                                          | 1.84                                    | 0.84                        |
| HMPREFO           | )389_00644 <sup>a</sup> | FtsK/Sp<br>protein                    | oIIIE family                   | 11.18                     | 10.42                 | -0.76                                          | 1.69                                    | 0.88                        |

### Table 8: qPCR expression values for selected *F. alocis* genes

| HMPREF0389_01592 <sup>a</sup> | ABC transporter<br>permease, ATP-<br>binding protein |                           | 8.46     | 5.5                   | 51  | -2.95                                       | 7.72                                    | 0.01 <sup>b</sup>           |
|-------------------------------|------------------------------------------------------|---------------------------|----------|-----------------------|-----|---------------------------------------------|-----------------------------------------|-----------------------------|
| HMPREF0389_00823              | Translation initiation<br>factor IF-1                |                           | 4.12 4.2 |                       | 21  | 0.09                                        | 0.93                                    | 0.11                        |
| HMPREF0389_00879 <sup>a</sup> | Riboflavin<br>biosynthesis protein<br>RibD           |                           | 10.78    | 3 10.41               |     | -0.37                                       | 1.29                                    | 0.5                         |
| HMPREF0389_01079              | Iron-sulfur cluster-<br>binding protein              | 10.56                     |          | 11.                   | 66  | 1.1                                         | 0.46                                    | 0.1                         |
|                               | Selected F. alocis                                   | s dow                     | /n-regul | ated ge               | nes | by qPCR analys                              | sis                                     |                             |
| Gene ID                       | Gene name                                            | ∆Ct<br>Value<br>(control) |          | ∆Ct<br>Value<br>(CSE) |     | Delta Delta Ct<br>(DDC <sub>t</sub> ) Value | Fold<br>change<br>(2 <sup>-DDCt</sup> ) | P-<br>value<br>(T-<br>test) |
| HMPREF0389_00226 <sup>a</sup> | Acetyl coenzyme A<br>synthetase                      | 4.61                      |          | 4.71                  |     | 0.1                                         | 0.93                                    | 0.02                        |
| HMPREF0389_00802              | Nitrate/nitrite<br>regulator protein                 | 9                         | .95      | 9.49                  |     | -0.46                                       | 1.37                                    | 0.27                        |
| HMPREF0389_01353              | Amidinotransferase                                   | 13.17                     |          | 12.54                 |     | -0.63                                       | 1.54                                    | 0.75                        |
| HMPREF0389_00799 <sup>a</sup> | Signal peptidase I                                   | 8.39                      |          | 8.77                  |     | 0.38                                        | 0.98                                    | 0.02                        |
| HMPREF0389_00800              | Low density<br>lipoprotein receptor<br>2             | 8                         | .93      | 8.72                  |     | -0.21                                       | 1.15                                    | 0.09                        |

Table shows all *F. alocis* up regulated and down regulated genes from RNA-Seq selected for qPCR analysis. Positive DDC<sub>t</sub> values indicate more PCR cycles and therefore less targeted gene after CSE exposure, meaning suppression of targeted gene expression. Conversely, negative DDC<sub>t</sub> values indicate more targeted gene after CSE exposure, indicating induction of gene expression.

a. Differentially expressed genes in qPCR which correlate with RNA-Seq results.
b. Represents the *F. alocis* genes that showed statistically significant (P<0.5) difference in their expression when exposed to cigarette smoke in qPCR analysis.</li>

#### **CHAPTER 4: DISCUSSION**

Cigarette smoke is an important environmental risk factor for periodontal diseases. Also cigarette smoke is known to increase vulnerability to oral bacterial infection, but with reduced clinical signs of overt inflammation. The underlying mechanism for this response is not clearly established. However, we can hypothesize that cigarette smoke causes alterations in the gene expression in periodontal bacteria. In our RNA-Seq experiments we were able to find the differentially expressed genes in an established periodontal pathogen, *P. gingivalis*, and an emerging periodontal pathogen, *F. alocis*. Approximately, 30% of genes in *P. gingivalis* genome and 5% of genes in *F. alocis* genome were found to be differentially expressed when exposed to cigarette smoke.

In *P. gingivalis* several functionally related genes were found to be up regulated, including genes encoding arginine and lysine gingipains (*kgp*, *rgpA* and *rgpB*), DNA binding genes and genes responsible for carbohydrate and energy metabolism. Gingipains play an important role in multiple virulence mechanisms in *P. gingivalis*, which are responsible for the growth and survival of the bacterium. They protect *P. gingivalis* from phagocytosis by PMN's by degrading macrophage CD14, thus inhibiting activation of leucocytes through the LPS receptor (138) and by degrading complement factor C3, preventing deposition of C3b on the bacterial cell surface (225,226). Also in addition to providing energy through degradation

and metabolism of extracellular matrix proteins (227), they subvert the host response by degrading inflammatory cytokines, IL-6, IL-8 and TNF (136,138). DNA binding gene PGN\_1740 is known to play a key role in biofilm formation by *P. gingivalis* (228). It has been demonstrated that the Dps (DNA-binding protein from starved cells) protein in *E. coli* plays an important role in the protection of cells from peroxide stress and is believed to have similar kind of function in *P. gingivalis* (229,230,231). Carbohydrate and amino acid metabolism provide *P. gingivalis* with energy necessary for its growth.

Several genes encoding proteins involved in DNA replication, recombination and repair which are essential genes for *P. gingivalis*; transfer (*tra*) genes which might be responsible for genomic diversity in P. gingivalis strains (232,233); ABC transport genes required for optimal entry of *P. gingivalis* into GECs (234); genes in the capsular biosynthesis locus (PGN 110 and PGN 1072) needed for capsule synthesis; minor fimbrial operon gene (*mfa1*) which is known to play key role in *P. gingivalis* auto-aggregation (235) and interspecies interactions with oral streptococci that facilitate biofilm formation (97,236), were found to be down regulated when P. gingivalis was exposed to cigarette smoke extract.

Many of the differentially expressed genes in *F. alocis* when exposed to CSE conditioned media encode hypothetical proteins whose function is yet to be determined. Several ABC transporter genes were found to be up regulated which are believed to provide resistance to *P. gingivalis* from potentially harmful chemicals in cigarette smoke (222) and might have similar function in *F. alocis*.

Transfer (*tra*) genes necessary for non-sexual transfer of genetic material in both Gram-positive and Gram-negative bacteria (237) and several genes processing genetic information were induced when exposed to cigarette smoke, suggesting the potential for increased genomic diversity among *F. alocis* strains. A fimbrial assembly gene (HMPREF0389\_00415) which is known for its virulence in other bacteria like *P. gingivalis*, *E. coli* and also several carbohydrate and lipid metabolism genes that provide energy to the organism were found to be up regulated. Nitrate/nitrite response regulator protein (HMPREF0389\_00802) needed for alternative mode of amino acid synthesis (169) was seen to be down regulated when exposed to cigarette smoke.

Even though all selected up regulated *P. gingivalis* genes from RNA-Seq showed up regulation (fold change > 1.5) in their expression when exposed to CSE in qPCR analysis, there were only a few genes with significant ( $P \le 0.01$ ) differences, which include PGN\_0724, *dps*, *rpoC* and PGN\_0660. DNA- binding genes (*dps* and *rpoC*) were seen to show increased expression in both RNA-Seq and qPCR analysis when exposed to CSE. These proteins bind DNA and are known as histone-like proteins and are believed to have diversity of functions responsible for survival of the organism. Also as said earlier Dps (DNA-binding protein from starved cells) protein in *E. coli* plays an important role in the protection of cells from peroxide stress and might show similar function in *P. gingivalis* (222,223,224). PGN\_0660 and PGN\_0724 are oxidoreductases and increase in the expression of these gene may be involved in protecting the bacteria from oxidative stress generated in periodontal diseases.

In contrast with our RNA-Seq data, only one gene Upp (uracil phospho ribosyl transferase) which might be responsible for cell wall organization and regulation of cell wall shape was found to be down regulated (Fold change < 0.6) in qPCR analysis.

Similar to RNA-Seq results most of the selected up regulated *F. alocis* genes from were found to be up regulated (Fold change >1.5) in qPCR analysis, but only expression of few genes was statistically significant ( $P \le 0.01$ ) difference, which include HMPREF0389\_00969 and HMPREF0389\_01592. Formate/ Nitrate transporter protein (HMPREF0389\_00969) may be necessary for the anaerobic respiration of *F. alocis*. ABC transporter protein (HMPREF0389\_01592) was seen to be up regulated in both qPCR and RNA-Seq analysis of *F. alocis* genes. As said earlier, this gene is believed to responsible for protecting *P. gingivalis* from harmful chemicals of cigarette smoke (222) and it might have similar function in *F. alocis*.

In contrast with our RNA-Seq data, most of the selected *F. alocis* down regulated genes remain unaltered in qPCR analysis. One gene HMPREF0389\_01353 (amidino transferase) found to be up regulated in qPCR and downregulated in RNA-Seq. It's function in the virulence of *F. alocis* was yet to be determined.

As stated earlier, expression of most of the selected genes for qPCR was similar to that of RNA-seq but not statistically significant ( $P \le 0.01$ ). This might be due to limitations in qPCR, like intra- and inter- assay variability (238) and/or complicated RNA-Seq technique. As statistical power is closely linked to sample size, a long transcript is more likely to be found differentially expressed during RNA-Seq than

a short transcript (240). So expression levels of short genes are not accurate with RNA-Seq analysis (239).

Also our RNA-seq data for *P. gingivalis* is not in agreement with the study done by Bagaitkar et al.. (222). Several genes responsible for growth and survival of *P. gingivalis* like genes responsible for DNA- replication, recombination and repair; ABC transporter genes which were found to be up regulated in her study, were down regulated in our study. Study done by Bagaitkar et al.. (222) was on *P. gingvalis* W83 strain, by using microarray analysis and at a CSE concentration of 500 ng/ml nicotine equivalents. We used *P. gingivalis* ATCC 33277 and a CSE concentration of 1000 ng/ml nicotine equivalency and RNA sequencing. Therefore, genetic, dose and technical differences may each and all have contributed to variation in results between studies.

Future studies can be done on the key *P. gingivalis* and *F. alocis* differentially expressed genes (validated by qPCR), when exposed to CSE conditioned media, using site-directed mutagenesis and complement assays. These procedures provide better understanding of specific genes as well as for developing novel variants of gene of interest. These studies might also provide some of the first insights into how tobacco smoke changes the *P. gingivalis* and *F. alocis* phenotype in a manner likely to promote their colonization and infection.

In summary, smokers are more prone to bacterial infection and to develop periodontitis, yet exhibit reduced clinical inflammation. Our experimental results showed that several genes essential for growth and survival of *P. gingivalis* and *F. alocis* were differentially expressed when exposed to cigarette smoke. These

61

results may explain in part the altered virulence and host-pathogen interactions.

#### REFERENCES

1. Jong-wook., L. (2003). World Health Organization director general's speech to 12th World Congress on Tobacco and Health. Available at: http://www.who.int/dg/lee/speeches/2003/helsinki/en.

2. U.S. Department of Health and Human Services (2014). The Health Consequences of Smoking—50 Years of Progress: A Report of the Surgeon General. Atlanta: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health.

3. Xu, X., et al.. (2015). Annual healthcare spending attributable to cigarette smoking: an update. Am J Prev Med 48(3): 326-333.

4. Rodgman, A. & Cook, L. (2014). The Composition of Cigarette Smoke. An Historical Perspective of Several Polycyclic Aromatic Hydrocarbons. Beiträge zur Tabakforschung / Contributions to Tobacco Research, 23(6), pp. 384-410. Retrieved 22 Apr. 2016, from doi:10.2478/cttr-2013-0873

5. Wang, L. Y., et al.. (1998). 4-Aminobiphenyl DNA damage in liver tissue of hepatocellular carcinoma patients and controls. Am J Epidemiol 147(3): 315-323.

6. Burns, D. N., Kramer, A., Yellin, F., Fuchs, D., Wachter, H., Digioia, R. A., Goedert, J. J. (1991). Cigarette Smoking. Journal of Acquired Immune Deficiency Syndromes, 4(1). doi:10.1097/00126334-199101000-00011

7. Al-Sayed, E. M. and K. S. Ibrahim (2014). Second-hand tobacco smoke and children. Toxicol Ind Health 30(7): 635-644.

8. Bi, X., Sheng, G., Feng, Y., Fu, J., & Xie, J. (2005). Gas- and particulate-phase specific tracer and toxic organic compounds in environmental tobacco smoke [Abstract]. Chemosphere, 61(10), 1512-1522. doi:10.1016/j.chemosphere.2005.04.057

9. Perfetti, T., & Rodgman, A. (2008). The Chemical Components of Tobacco and Tobacco Smoke. doi:10.1201/9781420078848

10. Mishra, A., Chaturvedi, P., Datta, S., Sinukumar, S., Joshi, P., & Garg, A. (2015). Harmful effects of nicotine. Indian Journal of Medical and Pediatric

Oncology: Official Journal of Indian Society of Medical & Pediatric Oncology, 36(1), 24–31

11. Furrukh, M. (2013). Tobacco Smoking and Lung Cancer: Perception- changing facts. Sultan Qaboos University Medical Journal, 13(3), 345–358.

12. Sasco, A., Secretan, M., & Straif, K. (2004). Tobacco smoking and cancer: A brief review of recent epidemiological evidence. Lung Cancer, 45. doi:10.1016/j.lungcan.2004.07.998.

13. Bagaitkar, J., Demuth, D. R., & Scott, D. A. (2008). Tobacco use increases susceptibility to bacterial infection. Tobacco Induced Diseases, 4(1), 12. doi:10.1186/1617-9625-4-12

14. Ezzati, M., et al.. (2005). Role of smoking in global and regional cardiovascular mortality. Circulation. 112(4): p. 489-97.

15. Mercado, C., & Jaimes, E. A. (2007). Cigarette smoking as a risk factor for atherosclerosis and renal disease: Novel pathogenic insights. Current Science Inc Current Hypertension Reports, 9(1), 66-72. doi:10.1007/s11906-007-0012-8

16. Yadav, D., & Whitcomb, D. C. (2010). The role of alcohol and smoking in pancreatitis. Nature Reviews Gastroenterology & Hepatology , 7(3), 131-145. doi:10.1038/nrgastro.2010.6

17. Smyk, D.S., et al.. (2012). Smoking as a risk factor for autoimmune liver disease: what we can learn from primary biliary cirrhosis. Ann Hepatol. 11(1): p. 7-14.

18. Baelum, V., & Lopez, R. (2003). Defining and classifying periodontitis: Need for a paradigm shift? European Journal of Oral Sciences, 111(1), 2-6. doi:10.1034/j.1600-0722.2003.00014.x

19. Pihlstrom, B. L., Michalowicz, B. S., & Johnson, N. W. (2005). Periodontal diseases. The Lancet, 366(9499), 1809-1820. doi:10.1016/s0140-6736(05)67728-8

20. Huttunen, R., Heikkinen, T., & Syrjänen, J. (2010). Smoking and the outcome of infection. Journal of Internal Medicine, 269(3), 258-269. doi:10.1111/j.1365-2796.2010.02332.x

21. Arcavi, L., & Benowitz, N. L. (2004). Cigarette Smoking and Infection. Archives of Internal Medicine, 164(20), 2206. doi:10.1001/archinte.164.20.2206

22. Marcy, M. (1987). Cigarette smoking and respiratory tract infection. Clin Chest Med.8381- 391

23. Richardson, M. (1988). Upper airway complications of cigarette smoking. Journal of Allergy and Clinical Immunology, 81(5), 1032-1035. doi:10.1016/0091-6749(88)90175-3

24. Dales, L. G., Friedman, G. D., Siegelaub, A., & Seltzer, C. C. (1974). Cigarette smoking and serum chemistry tests. Journal of Chronic Diseases, 27(6), 293-307. doi:10.1016/0021-9681(74)90093-9

25. Gulsvik, A., & Fagerhol, M. (1979). Smoking and Immunoglobulin Levels. The Lancet, 313(8113), 449. doi:10.1016/s0140-6736(79)90934-6

26. Gerrard, J. W., et al.. (1980). Immunoglobulin levels in smokers and non-smokers. Ann Allergy 44(5): 261-262.

27. Andersen, P., Pedersen, O. F., Bach, B., & Bonde, G. J. (1982). Serum antibodies and immunoglobulins in smokers and nonsmokers. Clinical and Experimental Immunology, 47(2), 467–473.

28. Finklea, J. F., Hasselblad, V., Riggan, W. B., Nelson, W. C., Hammer, D. I., & Newill, V. A. (1971). Cigarette Smoking and Hemagglutination Inhibition Response to Influenza after Natural Disease and Immunization 1. American Review of Respiratory Disease, 104(3), 368-376. doi:10.1164/arrd.1971.104.3.368

29. Gruchow, H. W., Hoffmann, R. G., Marx, J. J., Emanuel, D. A. and Rimm, A. A. (1981). Precipitating Antibodies to Farmer's Lung Antigens in a Wisconsin Farming Population. American Review of Respiratory Disease, Vol. 124, No. 4 (1981), pp. 411-415.

30. Ginns, L. C., Goldenheim, P. D., Burton, R. C., Colvin, R. B., Miller, L. G., Goldstein, G., Kazemi, H. (1982). T-lymphocyte subsets in peripheral blood and lung lavage in idiopathic pulmonary fibrosis and sarcoidosis: Analysis by monoclonal antibodies and flow cytometry. Clinical Immunology and Immunopathology, 25(1), 11-20. doi:10.1016/0090-1229(82)90160-x

31. Miller, L. G., Goldstein, G., Murphy, M., & Ginns, L. C. (1982). Reversible Alterations in Immunoregulatory T Cells in Smoking. Chest, 82(5), 526-529. doi:10.1378/chest.82.5.526

32. Reinherz, E. L., Rubinstein, A., Geha, R. S., Strelkauskas, A. J., Rosen, F. S., & Schlossman, S. F. (1979). Abnormalities of Immunoregulatory T Cells in Disorders of Immune Function. New England Journal of Medicine, 301(19), 1018-1022. doi:10.1056/nejm197911083011902

33. Noble, R. C., & Penny, B. B. (1975). Comparison of leukocyte count and function in smoking and nonsmoking young men. Infection and Immunity, 12(3), 550–555.

34. Corberand, J., Nguyen, F., Do, A. H., Dutau, G., Laharrague, P., Fontanilles, A. M., & Gleizes, B. (1979). Effect of tobacco smoking on the functions of polymorphonuclear leukocytes. Infection and Immunity, 23(3), 577–581.

35. Wewers, M. D., Diaz, P. T., Wewers, M. E., Lowe, M. P., Nagaraja, H. N., & Clanton, T. L. (1998). Cigarette Smoking in HIV Infection Induces a Suppressive Inflammatory Environment in the Lung. American Journal of Respiratory and Critical Care Medicine, 158(5), 1543-1549. doi:10.1164/ajrccm.158.5.9802035

36. Twigg, H. L., Soliman, D. M., & Spain, B. A. (1994). Impaired alveolar macrophage accessory cell function and reduced incidence of lymphocytic alveolitis in HIV-infected patients who smoke. Aids, 8(5), 611-618. doi:10.1097/00002030-199405000-00006

37. Schroeter, M. R., Sawalich, M., Humboldt, T., Leifheit, M., Meurrens, K., Berges, A., . . . Schaefer, K. (2008). Cigarette Smoke Exposure Promotes Arterial Thrombosis and Vessel Remodeling after Vascular Injury in Apolipoprotein E-Deficient Mice. Journal of Vascular Research, 45(6), 480-492. doi:10.1159/000127439

38. Wolf, P. A. (1988). Cigarette smoking as a risk factor for stroke. The Framingham Study. JAMA: The Journal of the American Medical Association, 259(7), 1025-1029. doi:10.1001/jama.259.7.1025

39. Bjartvelt, K., Tverdal, A. (2005). Health consequences of smoking 1–4 cigarettes per day. *Tob Control* 2005;14:315-320 doi:10.1136/tc.2005.011932

40. Csordas, A., & Bernhard, D. (2013). The biology behind the atherothrombotic effects of cigarette smoke. Nature Reviews Cardiology, 10(4), 219-230. doi:10.1038/nrcardio.2013.8

41. Bullen, C. (2008). Impact of tobacco smoking and smoking cessation on cardiovascular risk and disease. Expert Review of Cardiovascular Therapy, 6(6), 883-895. doi:10.1586/14779072.6.6.883

42. Stämpfli, M. R., & Anderson, G. P. (2009). How cigarette smoke skews immune responses to promote infection, lung disease and cancer. Nature Reviews Immunology, 9(5), 377-384. doi:10.1038/nri2530

43. Martins Junior, E. V., et al.. (1996). Smoking and inflammatory bowel disease: an epidemiological case-control study. Arq Gastroenterol 33(2): 74-78.

44. Rota, M.T., et al.. (199). Tobacco smoke in the development and therapy of periodontal disease: progress and questions. Bull Group Int Rech Sci Stomatol Odontol. 41(4): p. 116-22

45. Centers for Disease Control and Prevention (US); National Center for Chronic Disease Prevention and Health Promotion (US); Office on Smoking and Health (US) (2010). How Tobacco Smoke Causes Disease: The Biology and Behavioral Basis for Smoking-Attributable Disease: A Report of the Surgeon General. Atlanta (GA): Centers for Disease Control and Prevention (US). 6, Cardiovascular Diseases.

46. Huxley R, Woodward M (2011). Cigarette smoking as a risk factor for coronary heart disease in women compared with men: a systematic review and metaanalysis of prospective cohort studies. Lancet;378(9799): 1297–1300.

47. Attili, A. K., Kazerooni, E. A., Gross, B. H., Flaherty, K. R., Myers, J. L., & Martinez, F. J. (2008). Smoking-related Interstitial Lung Disease: Radiologic-Clinical-Pathologic Correlation1. RadioGraphics, 28(5), 1383-1396. doi:10.1148/rg.285075223

48. Thorley, A. J., & Tetley, T. D. (2007). Pulmonary epithelium, cigarette smoke, and chronic obstructive pulmonary disease. International Journal of Chronic Obstructive Pulmonary Disease, 2(4), 409–428

49. Johannsen, A., Susin, C., & Gustafsson, A. (2013). Smoking and inflammation: Evidence for a synergistic role in chronic disease. Periodontology 2000, 64(1), 111-126. doi:10.1111/j.1600-0757.2012.00456.x

50. Cooper, R. G. (2006). Effect of tobacco smoking on renal function. Indian J Med Res, 124 (3): 261–268

51. Rubin, G. P., Hungin, A. P., Kelly, P. J., & Ling, J. (2000). Inflammatory bowel disease: Epidemiology and management in an English general practice population. Alimentary Pharmacology and Therapeutics , 14(12), 1553-1559. doi:10.1046/j.1365-2036.2000.00886.x

52. Albandar, J. M. (2011). Underestimation of Periodontitis in NHANES Surveys. Journal of Periodontology, 82(3), 337-341. doi:10.1902/jop.2011.100638

53. Ismail, G., Dumitriu, H. T., Dumitriu, A. S., & Ismail, F. B. (2013). Periodontal Disease: A Covert Source of Inflammation in Chronic Kidney Disease Patients. International Journal of Nephrology, 2013, 1-6. doi:10.1155/2013/515796

54. Gautam, D., Gupta, S., Kotwal, B., Jindal, V., Tuli, A., & Thakur, R. (2011). Effect of cigarette smoking on the periodontal health status: A comparative, cross sectional study. Journal of Indian Society of Periodontology , 15(4), 383. doi:10.4103/0972-124x.92575

55. Eke, P. I., Dye, B. A., Wei, L., Thornton-Evans, G. O. & Genco, R. J. (2012). Prevalence of periodontitis in adults in the United States: 2009 and 2010. Journal of Dental Research 91,914–920.

56. Suzuki, N., Yoneda, M., & Hirofuji, T. (2013). Mixed Red-Complex Bacterial Infection in Periodontitis. International Journal of Dentistry, 2013, 1-6. doi:10.1155/2013/587279

57. Dewhirst, F. E., Chen, T., Izard, J., Paster, B. J., Tanner, A. C. R., Yu, W.-H., Wade, W. G. (2010). The Human Oral Microbiome. Journal of Bacteriology, 192(19), 5002–5017. http://doi.org/10.1128/JB.00542-10

58. Griffen, A. L., Beall, C. J., Campbell, J. H., Firestone, N. D., Kumar, P. S., Yang, Z. K., Leys, E. J. (2011). Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. The ISME Journal ISME J, 6(6), 1176-1185. doi:10.1038/ismej.2011.191

59. Guthmiller, J. M., & Novak, K. F. (2002). Periodontal Diseases. Polymicrobial Diseases, 137-152. doi:10.1128/9781555817947.ch8

60. Cekici, A., Kantarci, A., Hasturk, H., & Dyke, T. E. (2013). Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontology 2000, 64(1), 57-80. doi:10.1111/prd.12002

61. Dennison, D. K. & Van Dyke, T. E. (1997). The acute inflammatory response and the role of phagocytic cells in periodontal health and disease. Periodontology 2000 14, 54–78.

62. Lee, W., Aitken, S., Sodek, J., & Mcculloch, C. A. (1995). Evidence of a direct relationship between neutrophil collagenase activity and periodontal tissue destruction in vivo: Role of active enzyme in human periodontitis. Journal of Periodontal Research, 30(1), 23-33. doi:10.1111/j.1600-0765.1995.tb01249.x

63. Sreedevi, M., Ramesh, A., & Dwarakanath, C. (2012). Periodontal Status in Smokers and Nonsmokers: A Clinical, Microbiological, and Histopathological Study. International Journal of Dentistry, 2012, 1-10. doi:10.1155/2012/571590

64. Luzzi, L. I., Greghi, S. L., Passanezi, E., Sant'ana, A. C., Lauris, J. R., & Cestari, T. M. (2007). Evaluation of clinical periodontal conditions in smokers and non-smokers. Journal of Applied Oral Science, 15(6). doi:10.1590/s1678-77572007000600011

65. Raulin, L. A., Mcpherson, J. C., Mcquade, M. J., & Hanson, B. S. (1988). The Effect of Nicotine on the Attachment of Human Fibroblasts to Glass and Human Root Surfaces in Vitro. Journal of Periodontology, 59(5), 318-325. doi:10.1902/jop.1988.59.5.318

66. Kenney, E. B., Kraal, J. H., Saxe, S. R., & Jones, J. (1977). The effect of cigarette smoke on human oral polymorphonuclear leukocytes. Journal of Periodontal Research, 12(4), 227-234. doi:10.1111/j.1600-0765.1977.tb00126.x

67. Holt, P. G. (1987). Immune and inflammatory function in cigarette smokers. Thorax, 42(4), 241-249. doi:10.1136/thx.42.4.241

68. Pankow, W., Neumann, K., Rüschoff, J., Schröder, R., & Wichert, P. V. (1991). Reduction in HLA-DR antigen density on alveolar macrophages of smokers. Lung, 169(1), 255-262. doi:10.1007/bf02714161

69. Mancini, N. M., Béné, M. C., Gérard, H., Chabot, F., Faure, G., Polu, J. M., & Lesur, O. (1993). Early Effects of Short-Time Cigarette Smoking on the Human Lung: A Study of Bronchoalveolar Lavage Fluids. Lung, 171(5), 277-291. doi:10.1007/bf03215871

70. Palmer, R. M., et al.. (2005). "Mechanisms of action of environmental factors--tobacco smoking." J Clin Periodontol 32 Suppl 6: 180-195.

71. Graves, D. (2008). Cytokines That Promote Periodontal Tissue Destruction. Journal of Periodontology, 79(8s), 1585-1591. doi:10.1902/jop.2008.080183s

72. Ferson, M., Edwards, A., Lind, A., Milton, G. W., & Hersey, P. (1979). Low natural killer-cell activity and immunoglobulin levels associated with smoking in human subjects. International Journal of Cancer, 23(5), 603-609. doi:10.1002/ijc.2910230504

73. Hersey, P., et al. (1983). Effects of cigarette smoking on the immune system. Follow-up studies in normal subjects after cessation of smoking. Med J Aust 2(9): 425-429.

74. Ulloa, L. (2005). The vagus nerve and the nicotinic anti-inflammatory pathway. Nature Reviews Drug Discovery, 4(8), 673-684. doi:10.1038/nrd1797

75. Wang, H., Yu, M., Ochani, M., Amella, C. A., Tanovic, M., Susarla, S., Tracey, K. J. (2002). Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature, 421(6921), 384-388. doi:10.1038/nature01339

76. Borovikova, L. V., et al.. (2000). Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405(6785):

77. Kherani, A. R., et al.. (2004). Macrophage inhibitor, semapimod, reduces tumor necrosis factor-alpha in myocardium in a rat model of ischemic heart failure. J Cardiovasc Pharmacol 44(6): 665-671.

78. Jonge, W. J., Zanden, E. P., The, F. O., Bijlsma, M. F., Westerloo, D. J., Bennink, R. J., Boeckxstaens, G. E. (2005). Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nature Immunology, 6(8), 844-851. doi:10.1038/ni1229

79. Goutoudi, P., Diza, E., & Arvanitidou, M. (2004). Effect of periodontal therapy on crevicular fluid interleukin-1 $\beta$  and interleukin-10 levels in chronic periodontitis. Journal of Dentistry, 32(7), 511-520. doi:10.1016/j.jdent.2004.04.003

80. Petropoulos, G., Mckay, I. J., & Hughes, F. J. (2004). The association between neutrophil numbers and interleukin-1alpha concentrations in gingival crevicular fluid of smokers and non-smokers with periodontal disease. Journal of Clinical Periodontology, 31(5), 390-395. doi:10.1111/j.1600-051x.2004.00489.x

81. Shirodaria, S., Smith, J., Mckay, I., Kennett, C., & Hughes, F. (2000). Polymorphisms in the IL-1A Gene are Correlated with Levels of Interleukin-1 Protein in Gingival Crevicular Fluid of Teeth with Severe Periodontal Disease. Journal of Dental Research, 79(11), 1864-1869. doi:10.1177/00220345000790110801

82. Scott, D., & Singer, D. (2004). Suppression of overt gingival inflammation in tobacco smokers - clinical and mechanistic considerations. International Journal of Dental Hygiene, 2(3), 104-110. doi:10.1111/j.1601-5037.2004.00079.x

83. Lamont, R. J., & Jenkinson, H. F. (1998). Life Below the Gum Line: Pathogenic Mechanisms of Porphyromonas gingivalis. Microbiology and Molecular Biology Reviews, 62(4), 1244–1263.

84. How, K. Y., Song, K. P., & Chan, K. G. (2016). Porphyromonas gingivalis: An Overview of Periodontopathic Pathogen below the Gum Line. Frontiers in Microbiology, 7. doi:10.3389/fmicb.2016.00053

85. Mysak, J., Podzimek, S., Sommerova, P., Lyuya-Mi, Y., Bartova, J., Janatova, T., Duskova, J. (2014). Porphyromonas gingivalis: Major Periodontopathic Pathogen Overview. Journal of Immunology Research, 2014, 1-8. doi:10.1155/2014/476068

86. Grossi, S. G., Goodson, J. M., Gunsolley, J. C., Otomo-Corgel, J., Bland, P. S., Doherty, F., & Comiskey, J. (2007). Mechanical Therapy With Adjunctive Minocycline Microspheres Reduces Red-Complex Bacteria in Smokers. Journal of Periodontology, 78(9), 1741-1750. doi:10.1902/jop.2007.070118

87. Bodet, C., Chandad, F., & Grenier, D. (2007). Potentiel pathogénique de Porphyromonas gingivalis, Treponema denticola et Tannerella forsythia, le complexe bactérien rouge associé à la parodontite. Pathologie Biologie, 55(3-4), 154-162. doi:10.1016/j.patbio.2006.07.045

88. Hajishengallis, G., & Lamont, R. (2012). Beyond the red complex and into more complexity: The polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Molecular Oral Microbiology, 27(6), 409-419. doi:10.1111/j.2041-1014.2012.00663.x

89. Bello, A. D., Buonavoglia, A., Franchini, D., Valastro, C., Ventrella, G., Greco, M. F., & Corrente, M. (2014). Periodontal disease associated with red complex bacteria in dogs. J Small Anim Pract Journal of Small Animal Practice, 55(3), 160-163. doi:10.1111/jsap.12179

90. Darveau, R. P. (2010). Periodontitis: A polymicrobial disruption of host homeostasis. Nature Reviews Microbiology, 8(7), 481-490. doi:10.1038/nrmicro2337

91. Selke, D., Klumpp, S., Kaupp, B., & Baumann, A. (1998). Molecular Cloning of Protein Phosphatase Type 2C Isoforms from Retinal cDNA. Protein Phosphatase Protocols, 243-250. doi:10.1385/0-89603-468-2:243

92. Amano, A. (2010). Bacterial adhesins to host components in periodontitis.Periodontology 2000, 52(1), 12-37.

93. Amano, A., Sharma, A., Lee, J. Y., Sojar, H. T., Raj, P. A., & Genco, R. J. (1996). Structural domains of Porphyromonas gingivalis recombinant fimbrillin that mediate binding to salivary proline-rich protein and statherin. Infection and Immunity, 64(5), 1631–1637.

94. Amano, A., Shizukuishi, S., Horie, H., Kimura, S., Morisaki, I., & Hamada, S. (1998). Binding of Porphyromonas gingivalis Fimbriae to Proline-Rich Glycoproteins in Parotid Saliva via a Domain Shared by Major Salivary Components. Infection and Immunity, 66(5), 2072–2077.

95. Lamont, R. J., & Jenkinson, H. F. (2000). Subgingival colonization by Porphyromonas gingivalis. Oral Microbiology and Immunology, 15(6), 341-349. doi:10.1034/j.1399-302x.2000. 150601.x

96. Holt, S. C., & Ebersole, J. L. (2005). Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: The 'red complex', a prototype polybacterial pathogenic consortium in periodontitis. Periodontology 2000, 38(1), 72-122. doi:10.1111/j.1600-0757.2005. 00113.x

97. Lamont, R. J., Park, Y., Costerton, J. W., Cook, G. S., Demuth, D. R., & El-Sabaeny, A. (2002). Role of the Streptococcus gordonii SspB protein in the development of Porphyromonas gingivalis biofilms on streptococcal substrates. Microbiology, 148(6), 1627-1636. doi:10.1099/00221287-148-6-1627

98. Sojar, H. T., & Genco, R. J. (2005). Identification of glyceraldehyde-3-phosphate dehydrogenase of epithelial cells as a second molecule that binds to Porphyromonas gingivalis fimbriae. FEMS Immunology & Medical Microbiology, 45(1), 25-30. doi: 10.1016/j.femsim.2005.01.006

99. Yamasaki, Y., Nomura, R., Nakano, K., Inaba, H., Kuboniwa, M., Hirai, N., . . . Asai, F. (2012). Distribution and molecular characterization of Porphyromonas gulae carrying a new fimA genotype. Veterinary Microbiology, 161(1-2), 196-205. doi: 10.1016/j.vetmic.2012.07.026

100. Fujiwara, T., Morishima, S., Takahashi, I., & Hamada, S. (1993). Molecular Cloning and Sequencing of the Fimbrilin Gene of Porphyromonas gingivalis Strains and Characterization of Recombinant Proteins. Biochemical and Biophysical Research Communications, 197(1), 241-247. doi:10.1006/bbrc.1993.2467

101. Amano, A., Nakagawa, I., Okahashi, N., & Hamada, N. (2004). Variations of Porphyromonas gingivalis fimbriae in relation to microbial pathogenesis. Journal of Periodontal Research, 39(2), 136-142. doi:10.1111/j.1600-0765.2004.00719.x

102. Neiders, M. E., Chen, P. B., Suido, H., Reynolds, H. S., Zambon, J. J., Shlossman, M., & Genco, R. J. (1989). Heterogeneity of virulence among strains of Bacteroides gingivalis. Journal of Periodontal Research, 24(3), 192-198. doi:10.1111/j.1600-0765. 1989.tb02005.x

103. Genco, C. A., Dyke, T. V., & Amar, S. (1998). Animal models for Porphyromonas gingivalis-mediated periodontal disease. Trends in Microbiology, 6(11), 444-449. doi:10.1016/s0966-842x(98)01363-8

104. Nakagawa, I. (2002). Functional Differences among FimA Variants of Porphyromonas gingivalis and Their Effects on Adhesion to and Invasion of Human Epithelial Cells. Infection and Immunity, 70(1), 277-285. doi:10.1128/iai.70.1.277-285.2002

105. Hajishengallis, G., Tapping, R. I., Harokopakis, E., Nishiyama, S., Ratti, P., Schifferle, R. E., . . . Yoshimura, F. (2006). Differential interactions of fimbriae and lipopolysaccharide from Porphyromonas gingivalis with the Toll-like receptor 2-centred pattern recognition apparatus. Cellular Microbiology, 8(10), 1557-1570. doi:10.1111/j.1462-5822.2006.00730.x

106. Asai, Y., Ohyama, Y., Gen, K., & Ogawa, T. (2001). Bacterial Fimbriae and Their Peptides Activate Human Gingival Epithelial Cells through Toll-Like Receptor 2. Infection and Immunity, 69(12), 7387-7395. doi:10.1128/iai.69.12.7387-7395.2001

107. Davey, M., Liu, X., Ukai, T., Jain, V., Gudino, C., Gibson, F. C., . . . Genco, C. A. (2008). Bacterial Fimbriae Stimulate Proinflammatory Activation in the

Endothelium through Distinct TLRs. The Journal of Immunology, 180(4), 2187-2195. doi:10.4049/jimmunol.180.4.2187

108. Hamada, N., Sojar, H. T., Cho, M. I., & Genco, R. J. (1996). Isolation and characterization of a minor fimbria from Porphyromonas gingivalis. Infection and Immunity, 64(11), 4788–4794.

109. Kuboniwa, M., & Lamont, R. J. (2010). Subgingival biofilm formation. Periodontology 2000, 52(1), 38-52. doi:10.1111/j.1600-0757.2009.00311.x

110. Hiramine, H., Watanabe, K., Hamada, N., & Umemoto, T. (2003). Porphyromonas gingivalis 67-kDa fimbriae induced cytokine production and osteoclast differentiation utilizing TLR2. FEMS Microbiology Letters, 229(1), 49-55. doi:10.1016/s0378-1097(03)00788-2

111. Hamada, N., Watanabe, K., Arai, M., Hiramine, H., & Umemoto, T. (2002). Cytokine production induced by a 67-kDa fimbrial protein from Porphyromonas gingivalis. Oral Microbiology and Immunology, 17(3), 197-200. doi:10.1034/j.1399-302x.2002.170311.x

112. Zaragoza, O., Rodrigues, M. L., Jesus, M. D., Frases, S., Dadachova, E., & Casadevall, A. (2009). Chapter 4 The Capsule of the Fungal Pathogen Cryptococcus neoformans. Advances in Applied Microbiology, 133-216. doi:10.1016/s0065-2164(09)01204-0

113. Deangelis, P. L. (2002). Evolution of glycosaminoglycans and their glycosyltransferases: Implications for the extracellular matrices of animals and the capsules of pathogenic bacteria. The Anatomical Record, 268(3), 317-326. doi:10.1002/ar.10163

114. Sundqvist, G., Figdor, D., Hänström, L., Sörlin, S., & Sandström, G. (1991). Phagocytosis and virulence of different strains of Porphyromonas gingivalis. Eur J Oral Sci European Journal of Oral Sciences, 99(2), 117-129. doi:10.1111/j.1600-0722.1991.tb01874.x

115. Slaney, J. M., Gallagher, A., Aduse-Opoku, J., Pell, K., & Curtis, M. A. (2006). Mechanisms of Resistance of Porphyromonas gingivalis to Killing by Serum Complement. Infection and Immunity, 74(9), 5352-5361. doi:10.1128/iai.00304-06

116. Ebersole, J., Kesavaln, L., Schneider, S., Machen, R., & Holt, S. (2008). Comparative virulence of periodontopathogens in a mouse abscess model. Oral Diseases, 1(3), 115-128. doi:10.1111/j.1601-0825.1995.tb00174.x

117. Laine, M. L., & Winkelhoff, A. J. (1998). Virulence of six capsular serotypes of Porphyromonas gingivalis in a mouse model. Oral Microbiology and Immunology, 13(5), 322-325. doi:10.1111/j.1399-302x.1998.tb00714.x

118. Singh, A., Wyant, T., Anaya-Bergman, C., Aduse-Opoku, J., Brunner, J., Laine, M. L., . . . Lewis, J. P. (2011). The Capsule of Porphyromonas gingivalis Leads to a Reduction in the Host Inflammatory Response, Evasion of Phagocytosis, and Increase in Virulence. Infection and Immunity, 79(11), 4533-4542. doi:10.1128/iai.05016-11

119. Katz, J., Ward, D. C., & Michalek, S. M. (1996). Effect of host responses on the pathogenicity of strains of Porphyromonas gingivalis. Oral Microbiology and Immunology, 11(5), 309-318. doi:10.1111/j.1399-302x.1996.tb00187.x

120. Vernal, R., León, R., Silva, A., Winkelhoff, A. J., Garcia-Sanz, J. A., & Sanz, M. (2009). Differential cytokine expression by human dendritic cells in response to different Porphyromonas gingivalis capsular serotypes. Journal of Clinical Periodontology, 36(10), 823-829. doi:10.1111/j.1600-051x.2009.01462.x

121. D'empaire, G., Baer, M. T., & Gibson, F. C. (2006). The K1 Serotype Capsular Polysaccharide of Porphyromonas gingivalis Elicits Chemokine Production from Murine Macrophages That Facilitates Cell Migration. Infection and Immunity, 74(11), 6236-6243. doi:10.1128/iai.00519-06

122. Igboin, C. O., Tordoff, K. P., Moeschberger, M. L., Griffen, A. L., & Leys, E. J. (2010). Porphyromonas gingivalis-Host Interactions in a Drosophila melanogaster Model. Infection and Immunity, 79(1), 449-458. doi:10.1128/iai.00785-10

123. Nikaido, H. (2003). Molecular Basis of Bacterial Outer Membrane Permeability Revisited. Microbiology and Molecular Biology Reviews, 67(4), 593-656. doi:10.1128/mmbr.67.4.593-656.2003

124. Wang, X., & Quinn, P. J. (2010). Lipopolysaccharide: Biosynthetic pathway and structure modification. Progress in Lipid Research, 49(2), 97-107. doi: 10.1016/j.plipres.2009.06.002

125. Erridge, C., Stewart, J., Bennett-Guerrero, E., Mcintosh, T. J., & Poxton, I. R. (2002). The biological activity of a liposomal complete core lipopolysaccharide vaccine. Journal of Endotoxin Research, 8(1), 39-46. doi:10.1177/09680519020080010401

126. Lerouge, I., & Vanderleyden, J. (2002). O-antigen structural variation: Mechanisms and possible roles in animal/plant–microbe interactions. FEMS Microbiology Reviews, 26(1), 17-47. doi:10.1111/j.1574-6976. 2002.tb00597.x

127. Jain, S., & Darveau, R. P. (2010). Contribution of Porphyromonas gingivalis lipopolysaccharide to periodontitis. Periodontology 2000, 54(1), 53-70. doi:10.1111/j.1600-0757.2009.00333.x

128. Janeway, C. A., Travers, P., Walport, M., et al. (2001). Immunobiology: The Immune System in Health and Disease. 5th edition. New York: Garland Science.

129. Herath, T., Wang, Y., Seneviratne, C., Darveau, R., Wang, C., & Jin, L. (2011). Heterogeneous LPS of Porphyromonas gingivalis differentially modulate the innate immune response of human gingiva. BMC Proc BMC Proceedings, 5(Suppl 1). doi:10.1186/1753-6561-5-s1-p86

130. Kato, H., Taguchi, Y., Tominaga, K., Umeda, M., & Tanaka, A. (2014). Porphyromonas gingivalis LPS inhibits osteoblastic differentiation and promotes pro-inflammatory cytokine production in human periodontal ligament stem cells. Archives of Oral Biology, 59(2), 167-175. doi:10.1016/j.archoralbio.2013.11.008

131. Kumada H, Haishima Y, Watanabe K, Hasegawa C, Tsuchiya T, Tanamoto K, Umemoto T. (2008) Biological properties of the native and synthetic lipid A of Porphyromonas gingivalis lipopolysaccharide. Oral Microbiology and Immunology, 23(1), 60-69. doi: 10.1111/j.1399-302X.2007.00392.x.

132. Kocgozlu, L., Elkaim, R., Tenenbaum, H., and Werner, S. (2009). Variable cell responses to P. gingivalis lipopolysaccharide. J Dent Res, 88(8), 741-742.

133. Gokyu, M., Kobayashi, H., Nanbara, H., Sudo, T., Ikeda, Y., Suda, T., & Izumi, Y. (2014). Thrombospondin-1 Production Is Enhanced by Porphyromonas gingivalis Lipopolysaccharide in THP-1 Cells. PLoS ONE, 9(12). doi:10.1371/journal.pone.0115107

134. Darveau, R. P., Pham, T. T., Lemley, K., Reife, R. A., Bainbridge, B. W., Coats, S. R., Hajjar, A. M. (2004). Porphyromonas gingivalis Lipopolysaccharide Contains Multiple Lipid A Species That Functionally Interact with Both Toll-Like Receptors 2 and 4. Infection and Immunity, 72(9), 5041-5051. doi:10.1128/iai.72.9.5041-5051.2004

135. Kumada, H., Haishima, Y., Umemoto, T., & Tanamoto, K. (1995). Structural study on the free lipid A isolated from lipopolysaccharide of Porphyromonas gingivalis. Journal of Bacteriology, 177(8), 2098–2106.

136. Potempa, J., Banbula, A., & Travis, J. (2000). Role of bacterial proteinases in matrix destruction and modulation of host responses. Periodontology 2000, 24(1), 153-192. doi:10.1034/j.1600-0757.2000.2240108.x

137. Holt, S. C., et al.. (1999). Virulence factors of Porphyromonas gingivalis. Periodontology 2000 20(1): 168-238

138. Imamura, T., Travis, J., & Potempa, J. (2003). The Biphasic Virulence Activities of Gingipains: Activation and Inactivation of Host Proteins. Current Protein & Peptide Science CPPS, 4(6), 443-450. doi:10.2174/1389203033487027

139. Curtis, M., Aduse-Opoku, J., & Rangarajan, M. (2001). Cysteine Proteases of Porphyromonas Gingivalis. Critical Reviews in Oral Biology & Medicine, 12(3), 192-216. doi:10.1177/10454411010120030101

140. Grenier, D., & La, V. D. (2011). Proteases of Porphyromonas gingivalis as Important Virulence Factors in Periodontal Disease and Potential Targets for Plant-Derived Compounds: A Review Article. Current Drug Targets CDT, 12(3), 322-331. doi:10.2174/138945011794815310

141. Kumagai, Y., Yagishita, H., Yajima, A., Okamoto, T., & Konishi, K. (2005). Molecular Mechanism for Connective Tissue Destruction by Dipeptidyl Aminopeptidase IV Produced by the Periodontal Pathogen Porphyromonas gingivalis. Infection and Immunity, 73(5), 2655-2664. doi:10.1128/iai.73.5.2655-2664.2005

142. Aruni, A. W., Roy, F., & Fletcher, H. M. (2011). Filifactor alocis Has Virulence Attributes That Can Enhance Its Persistence under Oxidative Stress Conditions and Mediate Invasion of Epithelial Cells by Porphyromonas gingivalis. Infection and Immunity, 79(10), 3872-3886. doi:10.1128/iai.05631-11

143. Cato, E. P., Moore, L. V., & Moore, W. E. (1985). Fusobacterium alocis sp. nov. and Fusobacterium sulci sp. nov. from the Human Gingival Sulcus. International Journal of Systematic Bacteriology, 35(4), 475-477. doi:10.1099/00207713-35-4-475

144. Jalava, J., & Eerola, E. (1999). Phylogenetic analysis of Fusobacterium alocis and Fusobacterium sulci based on 16S rRNA gene sequences: Proposal of Filifactor alocis (Cato, Moore and Moore) comb. nov. and Eubacterium sulci (Cato, Moore and Moore) comb. nov. International Journal of Systematic Bacteriology, 49(4), 1375-1379. doi:10.1099/00207713-49-4-1375

145. Wang, Q., Wright, C. J., Dingming, H., Uriarte, S. M., & Lamont, R. J. (2013). Oral Community Interactions of Filifactor alocis In Vitro. PLoS ONE, 8(10). doi:10.1371/journal.pone.0076271

146. Kumar, P., Griffen, A., Barton, J., Paster, B., Moeschberger, M., & Leys, E. (2003). New Bacterial Species Associated with Chronic Periodontitis. Journal of Dental Research, 82(5), 338-344. doi:10.1177/154405910308200503

147. Wade, W. G. (2011). Has the use of molecular methods for the characterization of the human oral microbiome changed our understanding of the role of bacteria in the pathogenesis of periodontal disease? Journal of Clinical Periodontology, 38, 7-16. doi:10.1111/j.1600-051x.2010.01679.x

148. Uematsu, H., Sato, N., Hossain, M., Ikeda, T., & Hoshino, E. (2003). Degradation of arginine and other amino acids by butyrate-producing asaccharolytic anaerobic Gram-positive rods in periodontal pockets. Archives of Oral Biology, 48(6), 423-429. doi:10.1016/s0003-9969(03)00031-1

149. Aruni, A. W., Zhang, K., Dou, Y., & Fletcher, H. (2014). Proteome Analysis of Coinfection of Epithelial Cells with Filifactor alocis and Porphyromonas gingivalis Shows Modulation of Pathogen and Host Regulatory Pathways. Infection and Immunity, 82(8), 3261-3274. doi:10.1128/iai.01727-14

150. Yilmaz, O. (2008). The chronicles of Porphyromonas gingivalis: The microbium, the human oral epithelium and their interplay. Microbiology, 154(10), 2897-2903. doi:10.1099/mic.0.2008/021220-0

151. Kagnoff, M. F. and L. Eckmann (1997). Epithelial cells as sensors for microbial infection. J Clin Invest 100(1): 6-10

152. Attstro<sup>m</sup>, R., and J. Egelberg (1970). Emigration of blood neutrophils and monocytes into the gingival crevices. J. Periodontal Res. 5:48–55

153. Page, R. C., and H. E. Schroeder (1976). Pathogenesis of inflammatory periodontal disease. A summary of current work. Lab. Invest. 34:235–249.

154. Moffatt, C., Whitmore, S., Griffen, A., Leys, E., & Lamont, R. (2011). Filifactor alocis interactions with gingival epithelial cells. Molecular Oral Microbiology, 26(6), 365-373. doi:10.1111/j.2041-1014.2011.00624.x

155. Preshaw, P. M., & Taylor, J. J. (2011). How has research into cytokine interactions and their role in driving immune responses impacted our understanding of periodontitis? Journal of Clinical Periodontology, 38, 60-84.doi:10.1111/j.1600-051x.2010.01671.x

156. Meng, J., Fang, B., Liao, Y., Chresta, C. M., Smith, P. D., & Roth, J. A. (2010). Apoptosis Induction by MEK Inhibition in Human Lung Cancer Cells Is Mediated by Bim. PLoS ONE, 5(9). doi:10.1371/journal.pone.0013026

157. Waddington, R. J., et al.. (2000). "Reactive oxygen species: a potential role in the pathogenesis of periodontal diseases." Oral Dis 6(3): 138-151.

158. Baelum, V., & Lopez, R. (2004). Periodontal epidemiology: Towards social science or molecular biology? Community Dentistry and Oral Epidemiology, 32(4), 239-249. doi:10.1111/j.1600-0528.2004.00159.x

159. Katsuragi, H., Ohtake, M., Kurasawa, I., & Saito, K. (2003). Intracellular production and extracellular release of oxygen radicals by PMNs and oxidative

stress on PMNs during phagocytosis of periodontopathic bacteria. Odontology, 91(1), 13-18. doi:10.1007/s10266-003-0022-1

160. Brigham, C., Caughlan, R., Gallegos, R., Dallas, M. B., Godoy, V. G., & Malamy, M. H. (2009). Sialic Acid (N-Acetyl Neuraminic Acid) Utilization by Bacteroides fragilis Requires a Novel N-Acetyl Mannosamine Epimerase. Journal of Bacteriology, 191(11), 3629-3638. doi:10.1128/jb.00811-08

161. D'elios, M. M., Amedei, A., Cappon, A., Prete, G. D., & Bernard, M. D. (2007). The neutrophil-activating protein of Helicobacter pylori (HP-NAP) as an immune modulating agent. FEMS Immunology & Medical Microbiology, 50(2), 157-164. doi:10.1111/j.1574-695x.2007.00258.x

162. Cooksley, C. (2003). NapA protects Helicobacter pylori from oxidative stress damage, and its production is influenced by the ferric uptake regulator. Journal of Medical Microbiology, 52(6), 461-469. doi:10.1099/jmm.0.05070-0

163. Serrano-Luna, J., Piña-Vázquez, C., Reyes-López, M., Ortiz-Estrada, G., & Garza, M. D. (2013). Proteases from Entamoeba spp. and Pathogenic Free-Living Amoebae as Virulence Factors. Journal of Tropical Medicine, 2013, 1-32. doi:10.1155/2013/890603

164. Guo, L. H., Wang, H. L., Liu, X. D., & Duan, J. (2008). Identification of protein differences between two clinical isolates of Streptococcus mutans by proteomic analysis. Oral Microbiology and Immunology, 23(2), 105-111. doi:10.1111/j.1399-302x.2007.00394.x

165. Lamont, R., Meila, M., Xia, Q., & Hackett, M. (2006). Mass Spectrometry-Based Proteomics and its Application to Studies of Porphyromonas gingivalis Invasion and Pathogenicity. IDDT Infectious Disorders - Drug Targets, 6(3), 311-325. doi:10.2174/187152606778249935

166. Al-Haroni, M., Skaug, N., Bakken, V., & Cash, P. (2007). Proteomic analysis of ampicillin-resistant oral Fusobacterium nucleatum. Oral Microbiology and Immunology, 23(1), 36-42. doi:10.1111/j.1399-302x.2007.00387.x

167. Aruni, A. W., Roy, F., Sandberg, L., & Fletcher, H. M. (2012). Proteome variation among Filifactor alocis strains. Proteomics, 12(22), 3343-3364. doi:10.1002/pmic.201200211

168. Zhang, Y., Whiteley, M., Kreth, J., Lei, Y., Khammanivong, A., Evavold, J. N., Herzberg, M. C. (2009). The two-component system BfrAB regulates expression of ABC transporters in Streptococcus gordonii and Streptococcus sanguinis. Microbiology, 155(1), 165-173. doi:10.1099/mic.0.023168-0

169. Doroshchuk, N. A., Gelfand, M. S., & Rodionov, D. A. (2006). Regulation of nitrogen metabolism in gram-positive bacteria. Molecular Biology, 40(5), 829-836. doi:10.1134/s0026893306050190

170. Sandkvist, M. (2001). Type II Secretion and Pathogenesis. Infection and Immunity, 69(6), 3523-3535. doi:10.1128/iai.69.6.3523-3535.2001

171. Reizer, J., Reizer, A., & Saier, M. H. (1992). The putative Na /H antiporter (NapA) of Enterococcus hirae is homologous to the putative K /H antiporter (KefC) of Escherichia coli. FEMS Microbiology Letters, 94(1-2), 161-163. doi:10.1111/j.1574-6968.1992.tb05307.x

172. Henderson, B., Nair, S., Pallas, J., & Williams, M. A. (2011). Fibronectin: A multidomain host adhesin targeted by bacterial fibronectin-binding proteins. FEMS Microbiology Reviews, 35(1), 147-200. doi:10.1111/j.1574-6976.2010.00243.x

173. Henderson, B., & Martin, A. (2011). Bacterial Virulence in the Moonlight: Multitasking Bacterial Moonlighting Proteins Are Virulence Determinants in Infectious Disease. Infection and Immunity, 79(9), 3476-3491. doi:10.1128/iai.00179-11

174. Huberts, D. H., & Klei, I. J. (2010). Moonlighting proteins: An intriguing mode of multitasking. Biochimica Et Biophysica Acta (BBA) - Molecular Cell Research, 1803(4), 520-525. doi:10.1016/j.bbamcr.2010.01.022

175. Charon, N. W., Goldstein, S. F., Block, S. M., Curci, K., Ruby, J. D., Kreiling, J. A., & Limberger, R. J. (1992). Morphology and dynamics of protruding spirochete periplasmic flagella. Journal of Bacteriology, 174(3), 832–840.

176. Kolenbrander, P. E., Andersen, R. N., Blehert, D. S., Egland, P. G., Foster, J. S., & Palmer, R. J. (2002). Communication among Oral Bacteria. Microbiology and Molecular Biology Reviews, 66(3), 486-505. doi:10.1128/mmbr.66.3.486-505.2002

177. Sela M (2001). Role of Treponema denticola in periodontal diseases. Crit Rev Oral Biol Med 12:399-413.

178. Holt, S. C., & Ebersole, J. L. (2005). Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: The 'red complex', a prototype polybacterial pathogenic consortium in periodontitis. Periodontology 2000, 38(1), 72-122. doi:10.1111/j.1600-0757.2005.00113.x

179. Foschi, F., Izard, J., Sasaki, H., Sambri, V., Prati, C., Muller, R., & Stashenko, P. (2006). Treponema denticola in Disseminating Endodontic Infections. Journal of Dental Research, 85(8), 761-765. doi:10.1177/154405910608500814

180. Robertson, D., & Smith, A. J. (2009). The microbiology of the acute dental abscess. Journal of Medical Microbiology, 58(2), 155-162. doi:10.1099/jmm.0.003517-0

181. Dashper, S. G., Seers, C. A., Tan, K. H., & Reynolds, E. C. (2010). Virulence Factors of the Oral Spirochete Treponema denticola. Journal of Dental Research, 90(6), 691-703. doi:10.1177/0022034510385242

182. Kaplan, C. W., Lux, R., Haake, S. K., & Shi, W. (2009). The Fusobacterium nucleatum outer membrane protein RadD is an arginine-inhibitable adhesin required for inter-species adherence and the structured architecture of multispecies biofilm. Molecular Microbiology, 71(1), 35-47. doi:10.1111/j.1365-2958.2008.06503.x

183. Kolenbrander, P. E., Parrish, K. D., Andersen, R. N., & Greenberg, E. P. (1995). Intergeneric coaggregation of oral Treponema spp. with Fusobacterium spp. and intrageneric coaggregation among Fusobacterium spp. Infection and Immunity, 63(12), 4584–4588.

184. Yao, E. S., Lament, R. J., Leu, S. P., & Weinberg, A. (1996). Interbacterial binding among strains of pathogenic and commensal oral bacterial species. Oral Microbiology and Immunology, 11(1), 35-41. doi:10.1111/j.1399-302x.1996.tb00334.x

185. Hashimoto, M., Ogawa, S., Asai, Y., Takai, Y., & Ogawa, T. (2003). Binding of Porphyromonas gingivalis fimbriae to Treponema denticola dentilisin. FEMS Microbiology Letters, 226(2), 267-271. doi:10.1016/s0378-1097(03)00615-3

186. Sharma, A., Sojar, H. T., Glurich, I., Honma, K., Kuramitsu, H. K., & Genco, R. J. (1998). Cloning, Expression, and Sequencing of a Cell Surface Antigen Containing a Leucine-Rich Repeat Motif from Bacteroides forsythus ATCC 43037. Infection and Immunity, 66(12), 5703–5710.

187. Sharma, A., Inagaki, S., Honma, K., Sfintescu, C., Baker, P., & Evans, R. (2005). Tannerella forsythia-induced Alveolar Bone Loss in Mice Involves Leucinerich-repeat BspA Protein. Journal of Dental Research, 84(5), 462-467. doi:10.1177/154405910508400512

188. Capestany, C. A., Kuboniwa, M., Jung, I., Park, Y., Tribble, G. D., & Lamont, R. J. (2006). Role of the Porphyromonas gingivalis InIJ Protein in Homotypic and Heterotypic Biofilm Development. Infection and Immunity, 74(5), 3002-3005. doi:10.1128/iai.74.5.3002-3005.2006

189. Inagaki, S., Onishi, S., Kuramitsu, H. K., & Sharma, A. (2006). Porphyromonas gingivalis Vesicles Enhance Attachment, and the Leucine-Rich Repeat BspA Protein Is Required for Invasion of Epithelial Cells by "Tannerella forsythia" Infection and Immunity, 74(9), 5023-5028. doi:10.1128/iai.00062-06 190. Dashper, S. G., Ang, C., Veith, P. D., Mitchell, H. L., Lo, A. W., Seers, C. A., . . . Reynolds, E. C. (2008). Response of Porphyromonas gingivalis to Heme Limitation in Continuous Culture. J. Bacteriol., 191(3), 1044-1055. doi:10.1128/jb.01270-08

191. Chi, B., Qi, M., & Kuramitsu, H. K. (2003). Role of dentilisin in Treponema denticola epithelial cell layer penetration. Research in Microbiology, 154(9), 637-643. doi:10.1016/j.resmic.2003.08.001

192. Miyamoto, M., Ishihara, K., & Okuda, K. (2006). The Treponema denticola Surface Protease Dentilisin Degrades Interleukin-1 (IL-1), IL-6, and Tumor Necrosis Factor Alpha. Infection and Immunity, 74(4), 2462-2467. doi:10.1128/iai.74.4.2462-2467.2006

193. Okuda, T., Kimizuka, R., Miyamoto, M., Kato, T., Yamada, S., Okuda, K., & Ishihara, K. (2007). Treponema denticola induces interleukin-8 and macrophage chemoattractant protein 1 production in human umbilical vein epithelial cells. Microbes and Infection, 9(7), 907-913. doi:10.1016/j.micinf.2007.03.009

194. Fenno, J., & Mcbride, B. C. (1998). Virulence Factors of Oral Treponemes. Anaerobe, 4(1), 1-17. doi:10.1006/anae.1997.0131

195. Ellen, R. P. (2006). Virulence determinants of oral Treponemes. In: Pathogenic Treponema: molecular and cellular biology. Radolf JD, Lukehart SA, editors. Wymondham, Norfolk, UK: Caister Academic Press, pp. 357-386.

196. Capone, R., Wang, H. T., Ning, Y., Sweier, D. G., Lopatin, D. E., & Fenno, J. C. (2008). Human serum antibodies recognize Treponema denticola Msp and PrtP protease complex proteins. Oral Microbiol Immunol, 23(2), 165-169. doi:10.1111/j.1399-302x.2007.00404.x

197. Silva, A. P., Lee, W., Bajenova, E., Mcculloch, C. A., & Ellen, R. P. (2004). The major outer sheath protein of Treponema denticola inhibits the binding step of collagen phagocytosis in fibroblasts. Cellular Microbiology, 6(5), 485-498. doi:10.1111/j.1462-5822.2004.00377.x

198. Amin, M., Grove, D. A., Kapus, A., Glogauer, M., & Ellen, R. P. (2007). An actin-stabilizing peptide conjugate deduced from the major outer sheath protein of the bacterium Treponema denticola. Cell Motility and the Cytoskeleton, 64(9), 662-674. doi:10.1002/cm.20213

199. Thomas, B. P., Sun, C. X., Bajenova, E., Ellen, R. P., & Glogauer, M. (2006). Modulation of Human Neutrophil Functions In Vitro by Treponema denticola Major Outer Sheath Protein. Infection and Immunity, 74(3), 1954-1957. doi:10.1128/iai.74.3.1954-1957.2006 200. Magalhães, M. A., Sun, C. X., Glogauer, M., & Ellen, R. P. (2007). The major outer sheath protein of Treponema denticola selectively inhibits Rac1 activation in murine neutrophils. Cellular Microbiology, 10(2). doi:10.1111/j.1462-5822.2007.01045.x

201. Setubal, J. C. (2006). Lipoprotein computational prediction in spirochaetal genomes. Microbiology, 152(1), 113-121. doi:10.1099/mic.0.28317-0

202. Mcdowell, J. V., Frederick, J., Stamm, L., & Marconi, R. T. (2006). Identification of the Gene Encoding the FhbB Protein of Treponema denticola, a Highly Unique Factor H-Like Protein 1 Binding Protein. Infection and Immunity, 75(2), 1050-1054. doi:10.1128/iai.01458-06

203. Mcdowell, J. V., Huang, B., Fenno, J. C., & Marconi, R. T. (2009). Analysis of a Unique Interaction between the Complement Regulatory Protein Factor H and the Periodontal Pathogen Treponema denticola. Infection and Immunity, 77(4), 1417-1425. doi:10.1128/iai.01544-08

204. Wensink, J., & Witholt, B. (1981). Outer-Membrane Vesicles Released by Normally Growing Escherichia coli Contain Very Little Lipoprotein. European Journal of Biochemistry, 116(2), 331-335. doi:10.1111/j.1432-1033.1981.tb05338.x

205. Wai, S. N., Lindmark, B., Söderblom, T., Takade, A., Westermark, M., Oscarsson, J., . . . Uhlin, B. E. (2003). Vesicle-Mediated Export and Assembly of Pore-Forming Oligomers of the Enterobacterial ClyA Cytotoxin. Cell, 115(1), 25-35. doi:10.1016/s0092-8674(03)00754-2

206. Kato, S., Kowashi, Y., & Demuth, D. R. (2002). Outer membrane-like vesicles secreted by Actinobacillus actinomycetemcomitans are enriched in leukotoxin. Microbial Pathogenesis, 32(1), 1-13. doi:10.1006/mpat.2001.0474

207. Kuehn, M. J. (2005). Bacterial outer membrane vesicles and the hostpathogen interaction. Genes & Development, 19(22), 2645-2655. doi:10.1101/gad.1299905

208. Cimasoni, G., & Mcbride, B. (1987). Adherence of Treponema denticola to Modified Hydroxyapatite. Journal of Dental Research, 66(12), 1727-1729. doi:10.1177/00220345870660120601

209. Cockayne, A., Sanger, R., Ivic, A., Strugnell, R. A., Macdougall, J. H., Russell, R. R., & Penn, C. W. (1989). Antigenic and Structural Analysis of Treponema denticola. Microbiology, 135(12), 3209-3218. doi:10.1099/00221287-135-12-3209

210. Chi, B., Qi, M., & Kuramitsu, H. K. (2003). Role of dentilisin in Treponema denticola epithelial cell layer penetration. Research in Microbiology, 154(9), 637-643. doi:10.1016/j.resmic.2003.08.001

211. Cardenas, V. M., & Graham, D. Y. (2005). Smoking and Helicobacter pylori Infection in a Sample of U.S. Adults. Epidemiology, 16(4), 586-590. doi:10.1097/01.ede.0000165365.52904.4a

212. Zambon, J., Grossi, S., Machtei, E., Ho, A., Dunford, R., & Genco, R. (1996). Cigarette Smoking Increases the Risk for Subgingival Infection With Periodontal Pathogens\*. Journal of Periodontology, 67(10s), 1050-1054. doi:10.1902/jop.1996.67.10s.1050

213. Haffajee, A. D., & Socransky, S. S. (2001). Relationship of cigarette smoking to the subgingival microbiota. Journal of Clinical Periodontology, 28(5), 377-388. doi:10.1034/j.1600-051x.2001.028005377.x

214. Kamma, J. J., Nakou, M., & Baehni, P. C. (1999). Clinical and microbiological characteristics of smokers with early onset periodontitis. Journal of Periodontal Research, 34(1), 25-33. doi:10.1111/j.1600-0765.1999.tb02218.x

216. Eggert, F., Mcleod, M. H., & Flowerdew, G. (2001). Effects of Smoking and Treatment Status on Periodontal Bacteria: Evidence That Smoking Influences Control of Periodontal Bacteria at the Mucosal Surface of the Gingival Crevice. Journal of Periodontology, 72(9), 1210-1220. doi:10.1902/jop.2000.72.9.1210

216. Umeda, M., Chen, C., Bakker, I., Contreras, A., Morrison, J., & Slots, J. (1998). Risk Indicators for Harboring Periodontal Pathogens. Journal of Periodontology, 69(10), 1111-1118. doi:10.1902/jop.1998.69.10.1111

217. Winkelhoff, A. V., Bosch-Tijhof, C., Winkel, E., & Reijden, W. V. (2001). Smoking Affects the Subgingival Microflora in Periodontitis. Journal of Periodontology, 72(5), 666-671. doi:10.1902/jop.2001.72.5.666

218. Shiloah, J., Patters, M. R., & Waring, M. B. (2000). The Prevalence of Pathogenic Periodontal Microflora in Healthy Young Adult Smokers. Journal of Periodontology, 71(4), 562-567. doi:10.1902/jop.2000.71.4.562

219. Socransky, S. S., & Haffajee, A. D. (2005). Periodontal microbial ecology. Periodontol 2000, 38(1), 135-187. doi:10.1111/j.1600-0757.2005.00107.x

220. Bizzarro, S., Loos, B. G., Laine, M. L., Crielaard, W., & Zaura, E. (2013). Subgingival microbiome in smokers and non-smokers in periodontitis: An exploratory study using traditional targeted techniques and a next-generation sequencing. J Clin Periodontol, 40(5), 483-492. doi:10.1111/jcpe.12087

221. Camelo-Castillo, A. J., Mira, A., Pico, A., Nibali, L., Henderson, B., Donos, N., & Tomã<sub>i</sub>s, I. (2015). Subgingival microbiota in health compared to periodontitis and the influence of smoking. Front. Microbiol, 6. doi:10.3389/fmicb.2015.00119

222. Bagaitkar, J., Williams, L. R., Renaud, D. E., Bemakanakere, M. R., Martin, M., Scott, D. A., & Demuth, D. R. (2009). Tobacco-induced alterations to Porphyromonas gingivalis -host interactions. Environmental Microbiology, 11(5), 1242-1253. doi:10.1111/j.1462-2920.2008.01852.x

223. Chan, Y., Ma, A. P., Lacap-Bugler, D. C., Huo, Y., Leung, W. K., Leung, F. C., & Watt, R. M. (2014). Complete Genome Sequence for Treponema sp. OMZ 838 (ATCC 700772, DSM 16789), Isolated from a Necrotizing Ulcerative Gingivitis Lesion. Genome Announcements, 2(6). doi:10.1128/genomea.01333-14

224. Nuca C., Amariei C., Badea V., Zaharia A., Bucur L., Arendt C. (2012). Salivary cotinine - biomarker of tobacco consumption in the assessment of passive smoking prevalence. Farmacia. 60(5):662-674.

225. Wingrove, J. A., et al.. (1992). Activation of complement components C3 and C5 by a cysteine proteinase (gingipain-1) from Porphyromonas (Bacteroides) gingivalis. J Biol Chem 267(26): 18902-18907

226. Popadiak, K., Potempa, J., Riesbeck, K., & Blom, A. M. (2007). Biphasic Effect of Gingipains from Porphyromonas gingivalis on the Human Complement System. The Journal of Immunology, 178(11), 7242-7250. doi:10.4049/jimmunol.178.11.7242

227. Marsh, P. D., Mcdermid, A. S., Mckee, A. S., & Baskerville, A. (1994). The effect of growth rate and haemin on the virulence and proteolytic activity of Porphyromonas gingivalis W50. Microbiology, 140(4), 861-865. doi:10.1099/00221287-140-4-861

228. Onozawa, S., Kikuchi, Y., Shibayama, K., Kokubu, E., Nakayama, M., Inoue, T., . . . Hasegawa, H. (2015). Role of extracytoplasmic function sigma factors in biofilm formation of Porphyromonas gingivalis. BMC Oral Health, 15(1), 4. doi:10.1186/1472-6831-15-4

229. Almiron, M., Link, A. J., Furlong, D., & Kolter, R. (1992). A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes & Development, 6(12b), 2646-2654. doi:10.1101/gad.6.12b.2646

230. Altuvia, S., Almiron, M., Huisman, G., Kolter, R., & Storz, G. (1994). The dps promoter is activated by OxyR during growth and by IHF and ?sin stationary phase. Mol Microbiol, 13(2), 265-272. doi:10.1111/j.1365-2958.1994.tb00421.x

231. Ueshima, J., Shoji, M., Ratnayake, D. B., Abe, K., Yoshida, S., Yamamoto, K., & Nakayama, K. (2003). Purification, Gene Cloning, Gene Expression, and Mutants of Dps from the Obligate Anaerobe Porphyromonas gingivalis. Infection and Immunity, 71(3), 1170-1178. doi:10.1128/iai.71.3.1170-1178.200

232. Naito, M., Hirakawa, H., Yamashita, A., Ohara, N., Shoji, M., Yukitake, H., . . Nakayama, K. (2008). Determination of the Genome Sequence of Porphyromonas gingivalis Strain ATCC 33277 and Genomic Comparison with Strain W83 Revealed Extensive Genome Rearrangements in P. gingivalis. DNA Research, 15(4), 215-225. doi:10.1093/dnares/dsn013

233. Igboin, C. O., Griffen, A. L., & Leys, E. J. (2009). Porphyromonas gingivalis Strain Diversity. Journal of Clinical Microbiology, 47(10), 3073-3081. doi:10.1128/jcm.00569-09

234. Park, Y., Yilmaz, O., Jung, I., & Lamont, R. J. (2004). Identification of Porphyromonas gingivalis Genes Specifically Expressed in Human Gingival Epithelial Cells by Using Differential Display Reverse Transcription-PCR. Infection and Immunity, 72(7), 3752-3758. doi:10.1128/iai.72.7.3752-3758.2004

235. Lin, X., Wu, J., & Xie, H. (2006). Porphyromonas gingivalis Minor Fimbriae Are Required for Cell-Cell Interactions. Infection and Immunity, 74(10), 6011-6015. doi:10.1128/iai.00797-

236. Daep, C. A., James, D. M., Lamont, R. J., & Demuth, D. R. (2006). Structural Characterization of Peptide-Mediated Inhibition of Porphyromonas gingivalis Biofilm Formation. Infection and Immunity, 74(10), 5756-5762. doi:10.1128/iai.00813-06

237. Figurski, D. H., & Helinski, D. R. (1979). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proceedings of the National Academy of Sciences, 76(4), 1648-1652. doi:10.1073/pnas.76.4.1648

238. Tevik Dorak, M. (2007). Real-time PCR. www.dorak.info/genetic/realtime. html

239. Corney, D. C. (2013). RNA-seq Using Next Generation Sequencing. Materials and Methods, 3. doi:10.13070/mm.en.3.203

240. Oshlack, A., & Wakefield, M. J. (2009). Transcript length bias in RNA-seq data confounds systems biology. Biol Direct, 4(1), 14. doi:10.1186/1745-6150-4-14

#### CURRICULUM VITAE

NAME: Neelima Chowdary Cherukumalli

#### ADDRESS:

782 Theodore Burnett Ct # 1

Louisville, KY 40217

DATE OF BIRTH: January 22, 1990

## EDUCATION & TRAINING:

Bachelor of Dental Surgery (2007-2012),

St. Joseph Dental College and Hospital,

Eluru, India

# DENTAL EXPERIENCE

Associate Dentist (May'11 – Aug'12)

Sudantha Dental Clinic, Vijayawada, India

## **PROFESSIONAL SOCIETIES:**

American Association for Dental Research (AADR) Jan 2015 – Ongoing

International Association for Dental Research (IADR) Jan 2015 - Ongoing.