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ABSTRACT 

 

YERSINIA PESTIS EXPLOITS HOST ENDOCYTIC RECYCLING AND VESICULAR 

TRAFFICKING FOR INTRACELLULAR SURVIVAL 

Michael G. Connor 

April 1, 2016 

 

Y. pestis is a facultative intracellular pathogen and the causative agent of plague.  This 

bacterium, while most noted or the Black Death during the European 14th century, is not a historic 

pathogen but a re-emerging pandemic with both domestic and global impact.  Y. pestis is capable 

of colonizing the macrophage, and actively subverts phagolysosome maturation to establish a 

replicative niche known as the Yersinia containing vacuole (YCV).  The exploited host factors 

required to support the YCV are unknown.  Here we identified a comprehensive list of host factors 

required for Y. pestis survival through a genome-wide RNAi high-throughput screen.  We further 

identify that avoidance of the phagolysosome requires early recruitment of Rab1b and Rab4a on 

the YCV. Finally, we show that during intracellular infection Y. pestis sequesters Rab11b to the 

YCV to stall host cell recycling and support bacterial replication after 8 hours post-infection.  These 

data identify the first host factors required for Y. pestis survival within the macrophage, avoidance 

of phagolysosome maturation, and a novel role for exploiting the host recycling pathway for 

bacterial replication.   
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CHAPTER 1: 

YERSINIA PESTIS AND THE PLAGUE 
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Introduction 

Yersinia pestis is the etiological agent of the disease known as plague. Y. pestis has caused 

three major plague pandemics throughout human history. The three pandemics are the “Justinian 

Plague”, the “Black Death”, and the “Modern Pandemic”. Of the three, the most noted is the Black 

Death of the 14th century. This outbreak killed one third of the European population, and took over 

100 years for the population to recover [1-3].  Y. pestis is a zoonotic pathogen, cycling between the 

rodent (reservoir host) and the flea transmission vector [1].  The bacterium is endemic throughout 

rodent populations around the world, including the western United States [4, 5]. Incidence of human 

plague has been increasing, suggesting that plague is a re-emerging pathogen, and not a historic 

disease [5, 6].  Y. pestis has been used as a biological weapon and is considered by the U.S. 

federal government as a high risk for future use as a bioterrorism agent (Y. pestis is a Tier 1 

Category A Select Agent) [7].  

Human plague manifests in one of three forms: bubonic, septicemic, or pneumonic plague [8-

11].  Bubonic plague is the most common and naturally occurring form of disease. During bubonic 

plague, bacteria are transmitted to humans through an infectious bite from a flea. From the site of 

inoculation Y. pestis traffics to the draining lymph node.  Here the bacteria colonize and replicate 

to high titer.  Infected lymph nodes swell into the hallmark “bubo”, a fist-sized lump that resembles 

a cyst [1]. Bubonic plague is 40-60% lethal between 5-10 days post exposure without antibiotic 

treatment. Untreated bubonic plague can progress to septicemic plague as the bacteria 

disseminate throughout the host lymphatics and enter the bloodstream [12, 13]. During a 

septicemic infection the bacteria rapidly spread throughout the host colonizing the spleen, liver and 

lungs [11].  Lung colonization results in development of pneumonic plague [1], where the bacteria 

can be transmitted person to person via aerosolized bacteria. Person to person transmission results 

in primary pneumonic plague and death can occur within 72 hours. Pneumonic and septicemic 

plagues are 100% lethal at the onset of symptoms [1, 14].  In all three forms of disease the minimum 

infectious dose is believed to be 1-100 bacteria [6, 15].  

The genus Yersinia includes Y. pestis, Y. pseudotuberculosis and Y. enterocolitica [16-19].  In 

the genus, Y. pestis is the only species that causes an acute highly fatal infection in the absence 
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of timely diagnosis and treatment [14, 20]. Out of the three species Y. pestis is the only vector-

borne (flea) pathogen [1, 19].  Y. pestis began its pathogenic evolution from Y. pseudotuberculosis 

through the acquisition of two additional plasmids (pMT1 & pPCP) and genomic rearrangement 

approximately 1,000 to 20,000 years ago [16, 18]. There are three biovars of Y. pestis, Antiqua, 

Orientalis and Medievalis [1, 19]. Of these biovars only Orientalis strains are widespread. Each 

biovar was once believed to represent pandemic outbreaks of plague throughout human history; 

with Antiqua representing the Justinian Plague, Medievalis the Black Death (14 th century), and 

Orientalis the current pandemic - which began in China [21]. However, given the recent sequence 

data from victims of the Black Death, and Justinian plagues show that an Orientalis strain is the 

culprit of all plague outbreaks throughout human history [21-23].  The Y. pestis strain “Colorado 

92” (CO92) is a clinical isolate representing the Orientalis biovar [9]. 

By comparing the genomic sequences of Y. pestis across the genus, it was determined that 

the bacterium is currently undergoing genome reduction and the evolutionary niche it now occupies 

is potentially filled [16, 18]. The genome of Y. pestis has exchanged genes for various enteric 

adhesion, invasion and dissemination effectors in favor of genes to maintain transmission between 

the flea and mammal, such as plasminogen activator (pla) and murine toxin (ymt) [1, 16, 18, 19]. 

However, Y. pestis still maintains the pCD1 encoded Ysc type three secretion system (T3SS), 

which is conserved across the genus [1, 16, 18, 19]. Two of the major genes lost in Y. pestis are 

yadA and invasin. The yadA gene is an adhesion that interacts with the extracellular matrix to 

promote attachment of Y. pseudotuberculosis and Y. enterocolitica to the host cell [24-26]. Invasin 

is a highly efficient molecule that binds β1-intergrins to facilitate uptake of both Y. 

pseudotuberculosis and Y. enterocolitica by the host through “outside-in” signaling [26-29]. Even 

though Y. pestis lost these conserved factors the bacterium acquired additional virulence factors 

that contribute heavily to the organism’s life cycle. To highlight this, the Plasminogen activator, pla, 

is protease that is capable of cleaving C3 complement and degrading T3SS effector Yersinia outer 

membrane proteins (Yops). These functions allow for Y. pestis dissemination throughout the host, 

and dampening of Yop activation of innate immune responses [30-34].  Pla is encoded on pPCP 

[1, 16, 18, 19, 35, 36]. The Murine toxin, ymt, is required for transmission from the flea vector to in 
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mice, and resides on pMT1 [1, 16, 18, 19, 37, 38].  Mutants of ymt result in a 10-fold attenuation in 

LD50 when mice are intraperitoneally challenged [39-42].  Together, this highlights that Y. pestis is 

a young bacterium of Y. pseudotuberculosis descent that is undergoing genomic flux to further 

streamline its genome to adapt to both the flea and mammalian host.  

 Plague is not a historical pathogen, but rather a re-emerging disease of great health 

concern domestically and globally. Globally, plague naturally occurs in the rodent population on 

every inhabited continent except Australia [5].  The World Health Organization estimates ~2,000 to 

4,000 cases of human plague occur annually [5, 6, 14]. A recent review by Butler T et al., 2013, 

ranked the top twelve countries by human plague cases; China and the United States are seven 

and eleven, respectively [5]. In both cases the countries have high populations, modern health 

care, and extensive urbanization.  The highly developed nature of these countries highlights the 

potential for a devastating plague outbreak, and stresses the necessity to understand early 

pathogenesis to enhance our preventative measures. 

 To date, there is no Federal Drug Administration (FDA) approved vaccine for Y. pestis [5, 

6, 14, 19, 20, 43].  There are three vaccine candidates that target LcrV, the tip of the pCD1 encoded 

type-three secretion system, and/or the F1 capsule, encoded by caf1 on the pMT1 plasmid.  The 

first two vaccines are subunit vaccines using F1 and LcrV independently and the third is a 

recombinant fusion protein of rF1/LcrV [19, 20, 43, 44]. These vaccine candidates are currently 

being comprehensively tested for their efficacy in both bubonic and pneumonic plague in multiple 

mammalian models. While these vaccines have previously been tested in various animal models, 

the robustness of lasting T and B cell responses remain undetermined (for review see [20, 43, 44]). 

Vaccine development is slow, in part, because of the Y. pestis life cycle. A major concern with 

current vaccines is isolation of F1 and pCD1 negative strains naturally form the environment [1, 19, 

43]. These strains spontaneously lose the capsule and the T3SS. Additionally, capsule negative 

strains still remain lethal in the mammalian host [1, 19].  

Y. pestis is naturally maintained through reoccurring transmission cycles between the flea 

vector and rodents [1, 45].  Humans become infected with Y. pestis by their contact with infected 
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animals and are accidental hosts in the bacterium’s life cycle [1, 8, 9, 11].  Human plague 

progression is rapid, between 3-10 days, and outpaces the adaptive immune response (see 

reviews [1, 5, 13, 14]).  The swift pathogenesis is a hallmark of plague and highlights the critical 

role innate immunity plays in controlling disease.  The natural progression of disease begins with 

the inoculation of the bacteria from an infected flea bite into the sub-dermis of the host [1, 42, 46-

48]. From this initial site of infection, Y. pestis disseminates to the draining lymph node and 

throughout the lymphatic system [49]. During this process, Y. pestis rapidly suppresses the immune 

system, turns on several temperature dependent virulence factors, and replicates within the host.  

Y. pestis has several well-characterized, mammalian-specific, antiphagocytic virulence 

factors, like the T3SS, secreted Yop effectors, lipopolysaccharide (LPS), and Caf1 capsule (see 

review [1]).   Interestingly, at initial colonization of the mammalian host these virulence factors are 

down regulated [1]. Without these antiphagocytic tools Y. pestis is easily engulfed by macrophages 

and neutrophils during initial colonization [49-52].  Neutrophils are readily capable of killing the 

bacteria, however uptake of Y. pestis by a macrophage results in the survival of the bacterium [51, 

53-62]. Y. pestis rapidly subverts the innate immune defenses within these cells and establishes a 

replicative niche termed the Yersinia containing vacuole (YCV) [54, 55, 57, 59].  

Immune evasion by Y. pestis. 

Y. pestis uses several virulence determinants to establish infection [1, 33, 60, 63]. The best 

studied of these are the Yersinia outer membrane proteins (Yops), which are secreted by the T3SS 

[32, 33, 63]. The T3SS forms a channel in the membrane of host cells that the effector Yops (Yop 

O, H, M, T, J and E) are translocated through [33]. Once in the cytosol, the Yops interact with host 

signaling pathways to prevent phagocytosis and induction of a pro-inflammatory response [32]. Y. 

pestis has been shown to selectively target macrophages, neutrophils and dendritic cells for Yop 

intoxication [64, 65]. Bacterial targeting of neutrophils in particular has been demonstrated to be 

dependent on the bacterial recognition of the host complement receptor 3 [66]. However, the T3SS 

of Y. pestis is temperature dependent and not actively expressed during initial transmission from 

the flea vector (26°C) into a mammalian host (37°C) [1].  
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A second important virulence factor for Y. pestis to evade the immune response is LPS [1, 67, 

68]. LPS is normally recognized by TLR4 (toll-like receptor 4), a pathogen recognition receptor, 

found on phagocytic cells, such as dendritic cells and macrophages. LPS recognition by TLR4 

triggers signaling through the TRIF and MyD88 adaptor complexes initiating pro-inflammatory 

innate immune responses [69-71].  This signaling cascade activates the transcription factor NFκβ 

and initiates production and secretion of pro-inflammatory cytokines, such as IL-1β and IL-18 [69-

71]. However, during plague infection, Y. pestis alters the structure of its LPS and expresses a 

tetra-acylated form of LPS that does not activate TLR4 [67, 68]. Furthermore, data from studies 

with human TLR4 indicate that Y. pestis LPS antagonizes TLR4 signaling, actively dampening the 

pro-inflammatory response, though the exact mechanism remains unclear [67, 68]. Here again, the 

LPS modification is temperature dependent and not present at the time of transmission.  

Lastly, Y. pestis has an atypical capsule encoded by the caf operon [1, 72-74].  This capsule is 

comprised mainly of helical proteins that are loosely attached to the outer membrane of the 

bacterium [1, 72-74].  Caf1 is an antiphagocytic virulence factor which prevents phagocytosis by 

macrophages and monocytes [75, 76]. However, studies have demonstrated that capsule mutants 

are no less virulent than their wildtype counterparts, and at best display only a modest increase in 

LD50 in mice (summary of strain LD50 table 2 [1]; [39, 77]). Furthermore, caf1 expression is regulated 

by temperature and active only at 37°C [78, 79]. 

All three of these virulence factors are specialized for the mammalian host and required for Y. 

pestis to avoid phagocytosis by innate immune cells. However, they are not expressed in the flea 

vector, and are temperature regulated (flea 26°C to mammal at 37°C) [1].  Because of this Y. pestis 

during colonization from the flea vector is highly susceptible to uptake by innate immune 

phagocytes.  

Y. pestis interactions with professional phagocytes 

During colonization of the mammal Y. pestis is inoculated into the dermis, sub-dermis or directly 

into the blood stream via a capillary during a flea bite [1, 42, 46].  At the site of infection there is an 

influx of neutrophils and macrophages [51]. These professional phagocytes are the innate immune 
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system’s first responders to infection, and are tasked with controlling infection and priming an 

immune response. At the site of colonization Y. pestis interacts with both neutrophils and 

macrophages. However, neutrophils are better capable of killing the bacteria at this transitional 

stage in the bacteria’s early pathogenesis [53, 58, 80, 81]. In contrast, when a macrophage or 

monocyte phagocytizes Y. pestis, the bacterium prevents killing within these cells and is capable 

of establishing an intracellular niche [51, 54, 55, 57, 59, 82, 83]. In further support of this, Y. pestis 

infected rodents and nonhuman primates show bacteria association with macrophages, but to a 

lesser extent neutrophils from within the same infected host [49, 53, 58, 84].  

Y. pestis taken up by macrophages remain within a phagosomal compartment, but the bacteria 

inhibit the normal maturation of this phagosome to survive within the macrophage [57, 59, 60, 62, 

63, 83, 85, 86]. While the mechanisms are not well understood, Y. pestis is able to actively inhibit 

the acidification of this YCV [59]. The YCV does not acidify and the pH remains between pH 6.5 – 

7.5 throughout intracellular survival [59, 87].  In contrast to live bacteria, paraformaldehyde killed 

Y. pestis is rapidly degraded in an acidified YCVs [59, 87]. Studies have colocalized Rab7 and 

Cathepsin D, markers for stages of phagolysosome maturation, to ~30% of all nascent YCVs, 

indicating that the majority of the bacteria are not in a mature phagolysosome [86, 87].  In contrast, 

Rab5 and EEA1, markers for the early endosome have not been colocalized to the YCV, either due 

to lack of these markers on the YCV or the biogenesis of the YCV is too rapid.  Approximately eight 

hours post infection, the phagosome is further modified,and expands into a spacious vacuole in 

which Y. pestis is able to replicate [59]. At this point in YCV biogenesis, the spacious vacuole is 

clearly observed in light and electron micrographs [55, 59, 62, 86]. Studies to characterize the 

spacious YCV have indicated this compartment acquires LC3-II, a marker of autophagosomes, as 

early as four hours post-infection, and autophagy potentially contributes to the metabolism of the 

bacteria [59, 88, 89].  Studies by Ligeon et al., using Y. pseudotuberculosis, show the YCV acquires 

VAMP3 within 30 mins post-infection and is exchanged for VAMP7 within 3 to 24 hours [89].  They 

further demonstrated VAMP3 and 7 dynamics are required for YCV LC3-II single/double membrane 

formation [89].  Additional works submit that the YCV is a phagolysosome [55]. However, 

unpublished data by Bliska and colleagues indicate the spacious phagolysosome potentially retains 
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Lamp1, a lysosomal marker, and/or LC3-II [59, 87].  In either case, the spacious phagolysosome 

or autophagosome have been both identified, but whether Y. pestis requires autophagy for 

replication remains to be determined.  

Several in vivo studies indicate that intracellular survival in macrophages is important for 

colonization of the mammalian host [52, 62, 90].  Ye et al. demonstrated selective depletion of Gr1+ 

macrophage and dendritic cells in transgenic MaFIA mice lessens the severity of plague infection 

[52]. St. John and colleagues further highlight the importance of these innate cells, as chemical 

inhibition impacts the ability of Y. pestis to disseminate from the draining lymph node in a 

Sphingosine-1-phosphate dependent manner [49].  Additionally, macrophages from canines (a 

species relatively resistant to plague infection) are better equipped to kill intracellular Y. pestis than 

rodent macrophages (the natural reservoir for plague) [62, 91].  Finally, in vivo infection studies 

with Y. pestis phoP mutants, which are defective for intracellular survival, have reported extended 

times to death for the phoP mutant compared to wildtype Y. pestis [90]. These data suggest 

intracellular survival of Y. pestis also contributes to early immune evasion and pathogenesis.  

Biogenesis of the YCV highlights the importance of exploited host-pathogen interactions to 

facilitate survival of Y. pestis within the macrophage. The current model of Y. pestis intracellular 

survival within the macrophage based on all peer-reviewed publications is summarized in Fig. 1-1 

Subversion of the Phagolysosome by other pathogens 

  Phagolysosome maturation is a well-documented cellular process that requires 

subsequent recruitment and dissociation of Rab GTPases to coordinated vesicle trafficking and 

ultimately fusion with the lysosome [92-94].  Rab5, Rab7, and Rab9 are key contributors to the 

phagosome maturation pathway [94-101]. Initially, Rab5 is recruited to the early endosome and is 

exchanged with Rab7 on the intermediate phagosome [94, 97-101]. From here, Rab7 is required 

for the recruitment of Rab9, which completes the fusion of the maturating phagosome with the 

lysosome [94, 98-101].  At this point, the mature phagolysosome has Cathepsin D and vATPase 

markers and is actively acidifying to pH 4.0 in order to degrade the vacuole contents [95].  Subtle 
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disruptions in the recruitment of the Rab proteins can stall or even terminate trafficking of these 

endocytic vesicles and many intracellular pathogens hijack this process [102, 103].  

 Vesicular trafficking has become an area with increased research efforts in the context of 

pathogenesis (for review see [93, 102-104]). Pathogens such as Mycobacterium tuberculosis and 

Legionella pneumophilia have developed mechanisms to modulate host Rab GTPase machinery 

and prevent their destruction within the phagolysosome [93, 102, 103]. 

Rab GTPases Modulation by Mycobacterium tuberculosis 

 Mycobacterium tuberculosis (M. tb) is an intracellular pathogen that causes tuberculosis in 

humans [105]. The bacterium has developed the ability to exploit host trafficking to prevent 

degradation in the phagolysosome.  Studies dissecting the recruitment and retention of host Rab 

GTPases to the Mycobacteria containing vacuole (MCV) show the bacterium arrests 

phagolysosome maturation through disruption of the sequence/order of Rab GTPases [93, 106-

110]. Briefly, once M. tuberculosis is engulfed, the MCV acquires 22 different Rab GTPases [108]. 

Of these Rabs, differential recruitment of Rab22a and Rab14 to the early endosome stalls the 

conversion of Rab5 to Rab7, preventing the maturation of the phagolysosome [107, 109, 110]. 

Further investigation by Seto and colleagues showed Rab7, Rab20, and Rab39 regulated the 

acidification of the MCV [108]. In contrast, Rab7, Rab20, Rab22b, Rab32, Rab34, Rab38 and 

Rab43 impacted the recruitment of cathepsin D to these phagosomes [108]. Of note, Seto and 

colleagues’ work highlights speculation that M. tuberculosis does not actively target host Rab 

GTPases, but rather acquires Rab GTPases that normally modulate the process of phagolysosome 

maturation as a byproduct of how M. tuberculosis is trafficked upon uptake [108]. In support of this, 

recruitment of Rab22a, a Rab GTPase normally found on recycling endocytic vesicles, is 

associated and retained on the MCV [93, 106]. 

Rab GTPase Modulation by Legionella pneumophilia 

 Legionella pneumophilia is a facultative intracellular pathogen and the causative agent of 

Legionnaire’s disease [111, 112]. Legionella has a type 4 secretion system (T4SS) and translocates 

over 300 effector proteins to modulate the host cell upon engulfment [111, 112]. The bacterium 
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establishes a Legionella-containing vacuole (LCV) within the host cell and remodels this niche into 

a hospitable environment for replication. One of the best studied host targets for Legionella’s 

bacterial effectors is the host Rab1 GTPase (further detailed in the discussion of Chapter 3). Briefly, 

L. pneumophilia secretes several effectors that actively modulate the activity of host Rab1 on the 

LCV [113-126]. This process relies on bacterial modification of the host Rab GTPases’ ability to 

hydrolyze GTP to GDP through cycling of bacterial effectors that, 1) increase Rab1 hydrolysis, 2) 

AMPylation of Rab1, 3) de-AMPylation of Rab1, and 4) ubiquitination of Rab1 [115-117, 121-129].  

The outcome of these modifications on Rab1, results in L. pneumophilia modulation of LCV 

acidification and blocking of phagolysosome maturation.  

RNAi Screens Identify Novel Pathogenesis Mechanisms 

To date, there have been multiple genome-wide RNAi high-throughput screens to identify novel 

targets and pathways exploited by various bacterial and viral pathogens (Table 1-1; [130-142]). 

This tool has been exceptionally useful for bacterial and viral pathogens that are naturally difficult 

to perform traditional genetic screens in, such as Coxiella burnetii, West Nile Virus, and 

Mycobacterium tuberculosis [131, 136, 137, 139]. This method is amenable to suitable surrogate 

infection models and completely rests on the impact of a host gene upon the survival of the 

pathogen in question.  The first genome-wide RNAi screen by Agaisse et al., demonstrated the 

power of RNAi screen approaches to identify host requirements for survival by Listeria 

monocytogenes and Mycobacterium fortuitum [141]. Their results compared L. monocytogenes to 

M. fortuitum to identify individual host components required for both vacuole escape and pathogen-

containing vacuole (PCV) maturation.  They utilized the advanced tools for Drosophila cell RNAi 

and network/gene homologies to identify 160 targets specifically impacting L. monocytogenes 

survival and 91 targets that impacted both organisms’ intracellular survival [141]. A major finding 

from their data was the identification of several Rab GTPases, such as Rab1, 5, 7, and 35, and 

cellular trafficking components, such as Copβ1, that altered survival. These data eventually lead to 

discoveries of autophagy modulation and the exploitation of host genes to arrest phagosome 

maturation by various pathogens.  While Agaisse et al. pioneered the use of RNAi screens to 

identify novel genes, it was Kumar et al., who truly established the power of bioinformatic analysis 
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of these types of data. Using M. tuberculosis they developed a complex screening system to 

validate primary screen hits in subsequent secondary and tertiary screens through matching 

phenotypes and library deconvolution [136].  From their stringent screening process they applied 

GO ontology and network clustering criteria for the 329 validated hits. Their results demonstrated 

modular clustering of required host factors for M. tuberculosis that was isolate dependent [136].  

Furthermore, they show enrichment for biological networks, such as “Metabolism” and “Immune 

and Inflammation”, that inhibit and regulate survival of M. tuberculosis from the same datasets 

[136].  A highlight from their studies was bioinformatic identification and biological validation of 

interacting components with the autophagy cascade that dynamically regulated M. tuberculosis 

survival through modulation of IFNγ host responses [136].  Overall, genome-wide screening has 

successfully identified valuable networks exploited by other pathogens. However, development of 

an RNAi platform requires meticulous optimization and validation before it is implemented in the 

screening of a pathogen. 

Principles of RNAi Screening 

 In order to complete an RNAi screen, one must develop and optimize a screening platform 

to specifically address their hypothesis. Fundamentally, the process of development can be broken 

down into five parts, 1) class of screen, 2) species of screen or cell type, 3) RNAi method, 4) screen 

format, and 5) readout (Fig. 1-2; [143, 144]). 

Screen Class 

 In developing a screening platform to address your initial hypothesis one must either select 

a genome-wide or a functional category class of host targets (Fig. 1-2). A genome-wide screen 

uses a library comprised of targets from the known coding sequences of the species genome (e.g., 

Drosophila, Mouse or Human). A functional category class screen is a small subset of host targets 

and can be a class of protein, such as Kinases or Rab GTPases, or a known pathway, such as 

JAK/STAT or Ubiquitin.  
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Species of Screen 

 The next stage is to select the species you will conduct the RNAi in, Drosophila, Mouse or 

Human (Fig. 1-2). This selection is primarily driven by the ability to achieve knockdown of the target 

transcript using your chosen RNAi method [144].  

RNAi Method 

 The RNAi delivery method can either be long dsRNA, esiRNA, siRNA, or shRNA (Fig 1-

2;[143, 144]). Long dsRNA use the host machinery by Dicer to cleave the molecule into pools of 

siRNA [143].This method of delivery works best for C. elegans and Drosophila, because the dsRNA 

does not activate the type-I interferon response as it would in mammalian cells [143, 145]. The 

synthetic esiRNA and siRNA are developed to mimic the sequences after Dicer processing of the 

molecule, and are used mainly for mammalian cells and immortal cell lines [143, 146]. Finally, 

shRNA are designed to mimic the pre-microRNA substrate of Dicer and are expressed via 

Retroviral or Lentiviral vectors in transduced cells [143, 147]. The use of shRNA has been shown 

effective for primary mammalian cells, such as human macrophages [143]. Ultimately, the optimal 

degree of knockdown to achieve is 70 – 95% of the target [143, 144].  

Screen Format 

 Screening formats are either arrayed or pooled [143]. In an arrayed setup the user screens 

individual RNAi’s with the ability to deconvolute individual results via statistical analysis of their 

readout [143]. This arrayed approach provides individual data for each of the RNAi’s being tested, 

but can be cost, time and labor prohibitive at the genome-wide level. In a pooled approach, the 

user combines the individual RNAi’s (usually 3-6) and screens them for an effect, then statistically 

analyzes the results and chooses a subset of targets to further evaluate [143, 144]. A pooled 

approach lends itself to rapid and cost effective genome-wide screening. 

Readout 

 The final step to platform development is generating a ‘readout’.  The readout 

encompasses both the phenotypic reporter system as well as the technique/equipment used to 

discern the phenotype  [143]. The two common phenotypic reporters are fluorescent and 
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luminescent. While there are several means to analyze a high-throughput screen (HTS), the most 

common are either high-content imaging or plate reader based [143, 144, 148]. In both instances, 

the equipment requires optimization much like the rest of the platform and will briefly be 

summarized. High-content imaging requires the user to determine the autofocus, image quality 

minimums, segmentation, threshold, and regions-of-interest (ROI) of the image using software 

analysis tools [148]. From here, the user can quantify a range of phenotypes based on the amount 

of fluorescent reporter being imaged. A basic example of this for RNAi pathogen screens is number 

of bacteria or bacterial total intensity per cell [133, 135, 141]. To date, there has not been a multi-

plexed approach to determine both pathogen survival and relationship to either an overexpressed 

protein or antibody stained protein. As for a screen using a plate reader there is less to optimize, 

as the user is mainly concerned with dynamic range of the reporter’s intensity (fluorescent or 

luminescent) and the separation of controls. Here, the optimization of dynamic range is key to 

determine the limit of detection for the phenotypic response. As for the separation of controls, the 

user will account for the phenotypes using a Z’ factor per plate, Z’ score, or B score [149, 150]. 

These statistical approaches are based on the separation of a positive and negative control being 

3σ (standard deviations) apart. For Z’ factor in particular, a score >0.5 is highly robust, <0.5 to >0.3 

is acceptable, and <0.03 is unacceptable [149]. 

Proposed Research 

Y. pestis is a facultative intracellular pathogen capable of surviving within macrophages.  

Macrophages are innate immune cells normally capable of killing bacteria, however increasing data 

show Y. pestis prevents this process and survives within these host cells.  Survival within 

macrophages is a potential protective niche for Y. pestis during transition from the flea (26°C) to 

mammalian (37°C) host.  During this transition the bacteria is not expressing temperature 

dependent mammalian specific virulence factors, such as the T3SS, and is easily killed by 

neutrophils.  Y. pestis ΔphoP mutants are defective for intracellular survival and exhibit a higher 

LD50  with an extended time to death [56, 83, 90, 151].  The role of macrophages during 

pathogenesis is further emphasized by findings that Y. pestis predominately associates with 
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macrophages and not neutrophils in infected rodents and nonhuman primates [49, 53, 58, 84].  

Depletion of macrophages prior to infection with Y. pestis dampens bacterial burden [52]. 

Y. pestis survives within macrophages in a phagosomal compartment known as the YCV.  

Y. pestis actively subverts the phagolysosome maturation by inhibiting acidification of the YCV. 

After eight hours post-infection, the YCV expands in conjunction with bacterial replication [54, 55, 

57, 59, 61, 62, 152, 153].  While the fate of Y. pestis within the macrophage is known, the 

mechanisms exploited by Y. pestis to inhibit phagolysosome maturation and establish the YCV 

have not been defined.  

The use of genome-wide RNAi screens for comprehensive identification of required factors 

exploited by various intracellular pathogens for survival suggests the successful adaptation of this 

technology to Y. pestis. With this, we hypothesize that Y. pestis actively exploits host 

pathways/factors to avoid YCV acidification and support YCV biogenesis. To address this, we: 

1) Developed a bioluminescent system capable of monitoring bacterial burden within 

macrophage cells. 

2) Optimized, established, and completed a genome-wide RNAi screen in the biologically 

relevant murine macrophage cell line (RAW264.7 cells). 

3) Performed bioinformatic analysis for identified genes and validation of phenotypes 

from bioinformatic networks. 

4) Identified host factors impacting Y. pestis intracellular survival, altering YCV 

biogenesis and avoidance of the phagolysosome.  

The following chapters represent the first steps toward comprehensive identification of required 

host factors and the mechanisms necessary to support Y. pestis survival within the macrophage. 
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Figures and Figure Legends 

 

 

Figure 1—1 Summary of Y. pestis intracellular survival 
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Figure 1—2RNAi Screen Development Workflow 
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Tables 

Table 1-1. Pathogens Screened Using RNAi 

Pathogen Cell Type Year Reference 

L. monocytogenes 
HeLa CCL-2 

2015 
Kuhbacher 
[130] 

C. burnetti 
HeLa 

2013 
McDonough 
[131] 

Chikungunya virus U-2 OS 2013 Ooi [132] 

Eastern Equine 
Encephalitis virus U-2 OS 

2013 Ooi [132] 

S. typhmurium 
MCF-7  

2012 
Thornbroug
h [133] 

F. tularensis 
Human Monocyte-like THP-1; 
HMDMs; Human Alveolar 
Macrophages 

2012 Zhou [134] 

F. tularensis 
Drosophila S2R+ 

2010 
Akimana 
[135] 

M. tuberculosis Human Monocyte-like THP-1 2010 Kumar [136] 

M. tuberculosis 
Murine Macrophage-like J774.1 

2010 
Jayaswal 
[137] 

B. melitensis Drosophila SL2 2008 Qin [138] 

West Nile virus 
HeLa  

2008 
Krishnan 
[139] 

C. caviae Drosophila SL2  2007 Derre [140] 

L. monocytogenes 
Drosophila SL2 

2005 
Agaisse 
[141] 

M. fortuitum 
Drosophila SL2 

2005 
Agaisse 
[141] 

M. fortuitum Drosophila SL2  2005 Philips [142] 
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CHAPTER 2: 

DEVELOPMENT OF BIOLUMINESCENT BIOREPORTERS FOR IN VITRO 

AND IN VIVO TRACKING OF YERSINIA PESTIS1 

  

                                                           
1 Sun Y, Connor MG, Pennington JM, Lawrenz MB. Development of bioluminescent bioreporters for in 
vitro and in vivo tracking of Yersinia pestis. PloS one. 2012;7(10):e47123. PubMed PMID: 23071730. 
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Overview 

Yersinia pestis causes an acute infection known as the plague. Conventional techniques to 

enumerate Y. pestis can be labor intensive and do not lend themselves to high throughput assays. 

In contrast, bioluminescent bioreporters produce light that can be detected using plate readers or 

optical imaging platforms to monitor bacterial populations as a function of luminescence. Here we 

describe the development of two Y. pestis chromosomal-based luxCDABE bioreporters, LuxPtolC 

and LuxPcysZK. These bioreporters use constitutive promoters to drive expression of luxCDABE that 

allow for sensitive detection of bacteria via bioluminescence in vitro. Importantly, both bioreporters 

demonstrate a direct correlation between bacterial numbers and bioluminescence, which allows for 

bioluminescence to be used to compare bacterial numbers. We demonstrate the use of these 

bioreporters to test antimicrobial inhibitors (LuxPtolC) and monitor intracellular survival (LuxPtolC and 

LuxPcysZK) in vitro. Furthermore, we show that Y. pestis infection of the mouse model can be 

monitored using whole animal optical imaging in real time. Using optical imaging we observed Y. 

pestis dissemination and differentiated between virulence phenotypes in live animals via 

bioluminescence. Finally, we demonstrate that whole animal optical imaging can identify 

unexpected colonization patterns in mutant-infected animals. 

Introduction 

Bioreporters are engineered microbes that produce a detectable signal that can be used to 

monitor cell populations or responses to environmental stimuli. The bacterial luxCDABE operon, 

which produces light through bioluminescence, has been adapted for use as a bioreporter in many 

species of bacteria [154]. Unlike eukaryotic luciferase systems, the luxCDABE operon produces 

both the luciferase enzyme and the substrates required for light production, removing the 

requirement for supplemental exogenous substrates for luminescence [155]. By replacing the 

native luxCDABE promoter with a promoter from a gene of interest, researchers can monitor 

changes in gene expression as a function of bioluminescence. luxCDABE reporters driven by 

constitutive promoters, in which bacterial density directly correlates to luminescence, provide a 

system to monitor bacterial growth. Furthermore, because bioluminescence is only produced by 

viable bacteria, bacterial survival can also be monitored with a luxCDABE reporter  [155]. The ease 
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of detecting bioluminescent signal from luxCDABE without the addition of substrates or inactivation 

of the bacterium makes this an ideal reporter for real time monitoring of bacteria and high 

throughput biology technologies.  

Yersinia pestis causes the acute infection known as the plague. Human plague can manifest 

as three different forms. Bubonic plague arises in individuals who have been fed upon by an 

infected flea. The bacteria are regurgitated into the bite site by the flea and rapidly colonize the 

proximal lymph nodes. In these tissues, Y. pestis evades the immune system and replicates to high 

numbers. Without treatment, the bacteria can eventually colonize the bloodstream, leading to the 

development of septicemic plague. Cases of primary septicemic plague can also arise if Y. pestis 

is directly inoculated into the blood by the flea. From the blood, Y. pestis disseminates to other 

tissues in the host. Colonization of the lungs results in the development of pneumonia (called 

secondary pneumonic plague). Pneumonic plague patients can directly transmit Y. pestis to naïve 

individuals via contaminated aerosols, resulting in primary pneumonic plague [156]. Direct aerosol 

transmission of Y. pestis has also raised concerns about the potential use of plague as a biological 

weapon [14]. 

Several examples of the use of bioreporters in Yersinia have been reported. Two independent 

high throughput screens for inhibitors of the Yersinia type III secretion system have used 

bioluminescent bioreporters. The first screen monitored changes in yopE transcription with a 

PyopE::luxAB reporter [157], while the second used a lux operon driven by a constitutive promoter 

to monitor bacterial growth [158].  Other groups have engineered luxCDABE reporters to be under 

the transcription control of promoters of virulence genes to monitor expression patterns of these 

genes [159-161]. In addition to these in vitro assays, a limited number of studies in Yersinia using 

bioluminescent reporters for optical imaging of whole animals have been reported.  Trcek et al. 

developed an inducible luxCDABE reporter in Y. enterocolitica to monitor oral and IV infection [162]. 

The authors observed luminescent signal from the abdomen of live animals during oral infection, 

but due to the nature of the gastrointestinal tract, specific tissue localization required necropsy. 

However, whole animal imaging revealed unexpected colonization of the cervical lymph nodes that 
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has been overlooked using conventional models. In Y. pseudotuberculosis, Thorslund et al. were 

able to differentiate infection by wild type (WT) or mutant bacteria using the pCD1-Xen4 reporter 

[163]. More recently, Nham et al. infected animals subcutaneously with WT Y. pestis harboring a 

plasmid-based luciferase reporter and demonstrated that bioluminescence could be used to 

localize bacteria to lymph nodes via whole animal imaging. They were also able to use 

bioluminescence to monitor the development of systemic disease [164].  

Whole animal optical imaging has also been used to study pneumonic infection by several 

Select Agent pathogens. Independently, two groups demonstrated that experimental melioidosis 

could be visualized in the mouse model [165, 166].  Furthermore, Warawa et al. were able to 

visualize both upper and lower respiratory tract colonization, differentiate between colonization 

patterns of mutant bacteria, and show that luminescence detection from the thoracic cavity strongly 

correlated to bacterial numbers in the lung. Bina et al. developed a plasmid-based luxCDABE 

bioreporter in Francisella tularensis[167]. Using this system, they demonstrated that the volume of 

the bacterial suspension administered to mice could affect whether the bacteria were delivered to 

the lung [168]. These studies demonstrate the potential for use of bioluminescent-based optical 

imaging to monitor pneumonic plague. 

Several animal models of human plague have been characterized to study Y. pestis 

pathogenesis and develop potential therapeutics [169]. Conventional models to study microbial 

pathogenesis use separate groups of animals to determine the survival of animals (e.g., LD50 and/or 

time to death analysis) or dissemination rate of the pathogen (by enumerating bacteria from specific 

tissues of subsets of animals sacrificed at various time points). In contrast, optical imaging models 

allow for temporal and spatial analysis of the infection and survival data to be acquired from the 

same animal. Potential advantages of optical imagining models are: 1) smaller number of animals 

required for studies, 2) ability to follow the course of the disease in the same animal over time, and 

3) potential to identify unexpected dissemination routes. 

Here we describe the development of two chromosomally-based luxCDABE reporters for use 

in Y. pestis. We demonstrate that these reporters can serve as sensitive bioreporters to monitor Y. 
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pestis growth and survival under different conditions during in vitro growth. We also demonstrate 

that both bubonic and pneumonic plague infection can be monitored in live animals using these 

reporters via optical imaging. Finally, we show that the luxCDABE bioreporter can be used to 

compare and differentiate virulence phenotypes in animals without the need to sacrifice animals. 

Results 

Construction of a chromosomal luciferase reporter system in Y. pestis 

Our preliminary data demonstrated that in Yersinia a luxCDABE based-reporter was >200-fold 

more sensitive than equivalent fluorescent reporters using dsRED or EGFP (data not shown). 

Therefore, we developed a bioreporter using the lux operon in Y. pestis. Using a Tn7-based system, 

we integrated the entire luxCDABE operon driven by the EM7 promoter from pGEN-luxCDABE into 

the Y. pestis chromosome [170, 171]. Integration of the reporter into the chromosome greatly 

reduced the amount of bioluminescence produced per bacterium compared to Y. pestis with pGEN-

luxCDABE (likely due to a decrease in copy number), resulting in an average limit of detection of 

2.84x105 CFU (range = 1.30x104 to 6.23x106 CFU) for the chromosomal reporter (Fig. 2-1A and 

B). To increase the sensitivity, we replaced the EM7 promoter with one of two different promoters. 

We selected the tolC promoter from Burkholderia pseudomallei, which was used in a similar 

reporter in B. pseudomallei[165], and the cysZK promoter from Y. pestis, which was identified as a 

strong constitutive Y. pestis promoter [172]. Expression of the luciferase operon from the tolC 

promoter increased the chromosomal reporter sensitivity by ~100-fold (average limit of detection = 

2.5x103 CFU, range = 1.09x103 to 5.86x103 CFU) and approached the sensitivity of pGEN-

luxCDABE (Fig. 2-1C). The cysZK promoter further increased the sensitivity by an additional 10-

fold, establishing an average limit of detection of 3.06x102 CFU (range = 1.08x102 to 5.76x102 CFU) 

(Fig. 2-1D). As reported by Bland et al., we also observed increased expression of PcysZK at 37ᵒC, 

but importantly, the LuxPcysZKstrain maintained a direct correlation between bacterial numbers 

(CFU) and light production (RLU) during continuous growth at both temperatures (Fig. 2-2). LuxPtolC 

activity did not appear to be influenced by temperature and maintained a strong direct correlation 

between CFU and RLU at both temperatures (Fig. 2-2).    



 

23 
 

To ensure that expression of the lux operon did not affect growth of Y. pestis, we determined 

the growth rate of the Y. pestis reporter strains in vitro (Fig. 2-3A). No significant differences were 

observed between WT Y. pestis (no reporter) or strains carrying the three chromosomal reporters. 

We further examined whether the Lux reporters impacted fitness of Y. pestis in the macrophage 

model. As seen in broth culture, the Lux reporters did not negatively impact the survival/replication 

of Y. pestis in macrophages, and we observed similar levels of replication by the reporter strains in 

RAW264.7 macrophages as WT Y. pestis without a reporter (Fig. 2-3B). Together these data 

demonstrate that integration of the lux operon driven by either PtolC or PcysZK generated a 

sensitive luciferase reporter that does not appear to impact Y. pestis growth and whose light 

production directly correlates to bacterial number.  

Using the Y. pestis Lux reporters as bioreporters 

Due to the requirement for a constant supply of O2, FMNH2, and aldehydes for the Lux system 

to produce light, bioluminescence only occurs in actively growing bacteria [155]. This property, in 

conjunction with the direct correlation between bioluminescence and bacterial numbers for the 

LuxPtolC and LuxPcysZK reporters, suggests that these reporters can be used to monitor Y. pestis 

survival in real time. To test this hypothesis, we incubated Y. pestis LuxPtolC with decreasing 

concentrations of a chemical disinfectant (MicroChem-Plus), and then monitored bacterial survival 

as a function of bioluminescence (Fig. 2-4A). At 6 mins post-exposure, samples were harvested, 

washed and plated to determine if bioluminescence readings correlated with bacterial numbers 

(Fig. 2-4B). Within 2 mins of exposure to MicroChem-Plus at concentrations ≥0.05%, we were 

unable to detect bioluminescence from the Y. pestis cultures. This correlated with viable bacteria, 

as at these concentrations, viable bacteria were below the level of detection of the LuxPtolC reporter. 

At levels of MicroChem-Plus <0.05% we observed a dose dependent reduction in bioluminescence 

that directly correlated to the number of bacteria recovered after six mins of incubation. 

To further demonstrate that bioluminescence can differentiate bacteria survival, Y. pestis 

LuxPtolC was incubated in 96-well plates with increasing concentrations of carbenicillin or 

gentamicin. Plates were incubated for 12 hrs at 26ᵒC, and bioluminescence was detected every hr. 
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These readings indicated a dose dependent bacterial growth inhibition, with lower bioluminescence 

readings observed as antibiotic concentrations increased (Fig. 2-4C and E). To confirm that 

bioluminescence readings correlated with bacterial numbers, a subset of samples was harvested 

at 4, 8, and 12 hrs and bacterial CFUs were determined by conventional enumeration (Fig. 2-4D 

and F). As seen for bioluminescence, we also observed a dose dependent response in bacterial 

CFU. Together these data demonstrate that bioluminescencecan be used to monitor changes in 

bacterial survival. 

Differentiation between bacterial phenotypes in vitro using Y. pestis Lux bioreporters 

To further demonstrate that the Y. pestis Lux bioreporters can be used to monitor bacterial 

numbers in a biological system, we infected macrophages with WT Y. pestis pCD1(-) or a mutant 

defective in macrophage survival (phoP) carrying our reporter constructs. RAW264.7 

macrophages were infected with the reporter strains and extracellular bacteria were killed with 

gentamicin. At several time points post-infection, bioluminescence was measured using a plate 

reader. In addition, at 1.5, 8, and 24 hrs post-infection, samples were also harvested to determine 

bacterial numbers by conventional bacterial enumeration techniques. CFU data demonstrated that 

all three of the WT Y. pestis reporter strains survived within the macrophages, but the phoP mutant 

strains were attenuated and bacterial numbers differed from WT by approximately two orders of 

magnitude over the course of the assay (Fig. 2-5A-C). The sensitivity of the bioluminescence signal 

produced by the LuxPtolC and LuxPcysZK reporter strains allowed for easy differentiation between WT 

and phoP phenotypes (Fig. 2-5E-F). In contrast, the lower sensitivity of the LuxPEM7  reporter made 

it more difficult to differentiate the phoP phenotype (Fig. 2-5D). While RLU data from the WT 

LuxPEM7 strain correlated with CFU data, the bioluminescent signal of the phoP LuxPEM7 strain 

quickly dropped below the limit of detection of the reporter, resulting in a loss of correlation between 

bacterial CFU and RLU for this assay. These data demonstrate that the LuxPtolCand LuxPcysZK 

bioreporters can be used to monitor changes in bacterial populations in biological systems in vitro. 
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In vivo imaging of bubonic plague 

The high sensitivity of the LuxPcysZK bioreporter that we observed in vitro suggested that it could 

also be used to monitor plague infection in vivo. Bubonic plague is the most common form of human 

plague and results from flea transmission. In the laboratory, bubonic plague can be modeled by 

intradermal or subcutaneous inoculation of mice with Y. pestis. After inoculation, the bacteria 

disseminate to the draining lymph node. Eventually the bacteria enter into the bloodstream to cause 

a systemic infection. To determine if the LuxPcysZK bioreporter could be used to monitor bubonic 

infection, specifically lymph node colonization, mice were challenged with the WT CO92 LuxPcysZK 

strain, and infection was monitored using whole animal optical imaging (Fig. 2-6). Mice were 

inoculated at the base of the tail with approximately 200-400 CFU of the bioreporter strain. The 

sensitivity of the bioreporter strain allowed us to detect bioluminescent signal from the inoculation 

site as early as 8 hrs post-inoculation. Furthermore, signal increased over time at the inoculation 

site, indicating that Y. pestis survives and replicates at the inoculation site over the course of the 

infection (Fig. 2-7A). 

Previous work has defined the lymphatic drainage basin for the base of the tail to be the subiliac 

(also referred to as the inguinal) and the axillary lymph nodes (LN) [173, 174]. We began to detect 

luminescent signal from the subiliac LN starting between 48 and 72 hrs post-inoculation (Fig. 2-6A, 

white arrows). Approximately 8-15 hrs after first detection in the subiliac LN, signal began to be 

detected in the axillary LN, indicating bacterial dissemination to these nodes (Fig. 2-6A, red arrows). 

For both lymph nodes, the bioluminescent signal continued to increase in the tissues over the 

course of the infection, indicating bacterial proliferation. By 72 hrs post-inoculation, we began to 

detect bioluminescence from other regions, indicating systemic infection. The animals succumbed 

to infection by 96 hrs post-inoculation. 

To further demonstrate that our bioreporter can be used to monitor bubonic plague 

dissemination, an additional group of mice was infected in the footpad with the WT CO92 LuxPcysZK 

strain. Previous work has demonstrated that dyes can disseminate from this site via two different 

drainage basins in mice [173, 174]. The first basin drains to the popliteal LN, followed by the sciatic 
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and renal LNs. Alternatively, drainage to the same basin as from the base of the tail can occur. In 

these studies we observed Y. pestis disseminating only through the former drainage basin from the 

footpad (Fig. 2-6B). Bioluminescent signal was first detected in the popliteal LN at about 72 hrs 

post-inoculation. Signal was detected 24 hrs later from regions corresponding to the sciatic and 

renal LNs. At this time we also were able to detect signal from the spleen. Together these data 

demonstrate that lymph node colonization and dissemination of Y. pestis can be tracked in live 

animals via optical imaging using the LuxPcysZK bioreporter. 

In vivo imaging of pneumonic plague 

Primary pneumonic plague occurs when aerosols containing Y. pestis are inhaled by a naïve 

individual. This form of disease can also be modeled in the mouse using the intranasal route of 

infection [175]. To determine if the LuxPcysZK bioreporter can be used to monitor pneumonic 

infection, we challenged mice intranasally with the WT CO92 LuxPcysZK strain and followed the 

progression of pneumonic plague by optical imaging. Bioluminescent signal could be detected from 

the thoracic cavity of all mice as early as 24 hrs post-inoculation and increased throughout the 

course of infection (Fig. 2-8A and B). To demonstrate that the bioluminescence signal directly 

correlated with bacterial numbers, lungs were harvested from a subset of animals after the 24, 48, 

and 72 hrs imaging sessions. The tissues were imaged and bacterial numbers in the lungs were 

determined. Bioluminescent signal from imaging of the thoracic cavity directly correlated to lung 

CFU (Fig. 2-8C; R2=0.8323). The significance of the correlation increased further when comparing 

signal directly from harvested lungs to CFU (Fig. 2-8D; R2=0.9684). Animals infected with the 

LuxPcysZK strain succumbed to infection between 60 and 80 hrs post-infection, a similar time to death 

as seen for Y. pestis without a reporter [175, 176]. 

Differences in phenotypes can be detected in vivo using the LuxPcysZK bioreporter 

To demonstrate that whole animal imaging using the LuxPcysZK bioreporter can differentiate 

between virulence phenotypes, we transferred the reporter into a Y. pestispla mutant. Pla is 

required for the development of bubonic plague, and a pla mutant is unable to disseminate from 

the inoculation site to the draining LN [177-179]. In the bubonic model, we observed bioluminescent 
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signal from the inoculation site of Y. pestispla LuxPcysZK infected animals as early as 8 hrs post-

infection (Fig. 2-7A). Signal increased at the inoculation site at a rate comparable to WT infected 

animals until 36 hrs post-infection. After 36 hrs, signal from WT infected animals continued to 

increase, but the signal from pla infected animals plateaued, remaining about 1-2 logs lower than 

WT signal for the remainder of the experiment. No signal was observed from the draining LN from 

pla infected animals (Fig. 2-7B), supporting previous data that the mutant is unable to disseminate 

to the LN after intradermal infection [179]. However, one pla infected animal (n=9) appeared to 

develop primary septicemic plague, as no signal was detected from the lymph nodes prior to 

systemic signal (data not shown). 

In the model for pneumonic plague, the pla mutant colonizes the lungs but is unable to 

proliferate in these tissues [176]. As expected, we observed low levels of bioluminescence from 

the thoracic cavity of mice infected intranasally with Y. pestispla LuxPcysZK, correlating with low 

levels of bacteria in these tissues (Fig. 2-8). Importantly, compared to WT infected mice, 

luminescence from the pla infected animals was significantly lower at all time points, except at the 

72 hr time point when there were not enough WT animals to calculate significance (Fig. 2-8B). 

While the pla mutant does not proliferate within the lungs during pneumonic infection, the LD50 of 

the mutant is similar to WT Y. pestis, likely due to thedevelopment of septicemic plague [176]. The 

sensitivity of the LuxPcysZK bioreporter allowed us to observe the development of septicemic plague 

in pla infected animals (Fig. 2-9A). Furthermore, as we monitored the pla infected animals, we 

also observed that a subset of animals developed bioluminescent signal near the ears which we 

did not observe in WT infected animals (Fig. 2-9). Together these data demonstrate that whole 

animal imaging with the LuxPcysZK bioreporter can differentiate between bacterial phenotypes during 

both bubonic and pneumonic plague infection. 

Discussion 

The bacterial luxCDABE operon produces a bioluminescent signal that can be used as a 

bioreporter to monitor bacterial numbers in real time. We developed two luxCDABE reporters for 

use in Y. pestis to monitor bacterial survival. We demonstrated that these reporters can be used to 
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monitor bacterial numbers in the presence of antimicrobial compounds, during intracellular 

infection, and in animal models for plague infection. Unlike plasmid-based systems previously used 

in Yersinia spp. [160, 162-164], these reporters are integrated into the chromosome. A 

chromosomal-based system has several characteristics that may be advantageous for future 

applications. First, integration of the reporter into the chromosome does not require antibiotic 

selection for maintenance and will likely be more stable than a plasmid-based system. Second, 

while plasmid reporters may be maintained without antibiotics for a period of time, especially with 

integrated toxin-anti-toxin maintenance mechanisms [164], [180], the plasmid still confers 

resistance for the selectable marker carried by the plasmid. Consequently, that marker is not 

available for further use (for example, to maintain other plasmids). The chromosomal reporters 

described here were engineered using a system that allows for the antibiotic marker to be removed 

after integration [171]. Therefore, the marker (in this case Kan) can be reused in downstream 

applications. 

One advantage of a plasmid-based reporter system is that plasmids are often maintained at 

increased copy numbers compared to the chromosome, which can increase the sensitivity of the 

reporter. In fact, we observed a dramatic decrease in sensitivity when we moved the luxCDABE 

operon from a plasmid to the chromosome. To overcome this problem we removed the promoter 

from the original construct and replaced it with a promoter we hypothesized would increase the 

expression of the lux operon. We chose two different promoters to test. The first promoter was from 

B. pseudomallei (PtolC) and had been used to successfully develop a similar chromosomal reporter 

for this bacterium [165]. This promoter increased the sensitivity to the levels of the original plasmid-

based reporter. The second promoter was originally identified by Bland et al. as being a strong 

constitutive promoter in Y. pestis (PcysZK) [172]. This promoter further increased the sensitivity to 

a level approximately 10-fold higher than the LuxPtolC or pGEN-luxCDABE. Importantly, we saw no 

deleterious impact of increased luxCDABE expression from our reporters on Y. pestis fitness during 

growth in vitro, in cell culture, or in the animal models. Therefore, we successfully engineered a 

chromosomal luciferase reporter that is 10-fold more sensitive than a widely used plasmid-based 

reporter, without attenuating growth of Y. pestis. 
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For both the LuxPtolC and LuxPcysZK reporters we observed a direct correlation between 

bioluminescence and Y. pestis numbers. This characteristic is important and demonstrates that 

bioluminescence readings from these reporters can be used to quantify bacterial numbers. 

Furthermore, the sensitivity of the reporter and easy detection methods allow these bioreporters to 

be used in large scale formats. For example, we demonstrated that we could use the LuxPtolC 

bioreporter to monitor bacterial growth in a 96-well format in the presence of antimicrobial 

compounds. Using this format we were able to easily determine the MIC for both carbenicillin and 

gentamicin. Furthermore, because we could monitor the bacteria in real time, we were also able to 

observe differences in growth patterns of Y. pestis in these two antibiotics. For example, Y. pestis 

incubated in inhibitory concentrations of carbenicillin (12.5 and 25 µg/ml) did not begin to decrease 

in bioluminescence until after 8 hrs into the assay, indicating that while bacterial growth might be 

inhibited, the bacteria were not killed by the antibiotic until after that time (Fig. 2-4C). In contrast, 

bioluminescence signal from bacteria incubated with inhibitory concentrations of gentamicin (2, 4, 

and 8 µg/ml) steadily decreased over the course of the assay, suggesting that bacterial death 

occurred much earlier (Fig. 2-4E). These hypotheses are supported by the CFU data that 

demonstrated that bacterial numbers did not begin to decrease in the carbenicillin samples until 

between 8 and 12 hrs, compared to between 4 and 8 hrs in gentamicin samples (Fig. 2-4D and F). 

These phenotypes can be explained by the mechanisms of action of the two antibiotics. Gentamicin 

blocks protein synthesis and quickly inhibits bacterial growth, whereas carbenicillin targets the 

bacterial peptidoglycan, which over time weakens the cell wall, leading to osmotic lysis, but allows 

for a short period of proliferation. The sensitivity and correlation between bioluminescence and 

bacterial numbers indicate that the bioreporters can be used to monitor Y. pestis survival in high 

throughput screens for new anti-Y. pestis compounds. 

While we saw a consistent correlation between bioluminescence and bacterial CFU in all of the 

assays we reported, macrophages infected with phoP LuxPcysZK demonstrated a decrease in 

bioluminescence between 8 and 24 hrs without a significant difference in CFU between these two 

time points. The same phenotype was not observed in the WT LuxPcysZK strain or in the LuxPtolC 

strains, all of which maintained correlation between RLU and CFU (Fig. 2-5). These observations 
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demonstrate that depending on the specific experimental assay, one bioreporter may more 

accurately represent bacterial numbers than the other. Furthermore, while the Y. pestis LuxPcysZK 

bioreporter was more sensitive than the LuxPtolC bioreporter in our initial studies (Fig. 2-1), 

sensitivities of the bioreporters may change under different experimental conditions. For example, 

we observed that LuxPcysZK is more active at 37ᵒC than 26ᵒC.Therefore, optimization and validation 

of the bioreporters must be performed for each new assay as it is being developed. 

Nham et al. recently reported the use of a plasmid-based bioluminescent bioreporter to follow 

the progression of bubonic plague in mice [164]. Using this bioreporter they demonstrated that 

spread of Y. pestis to the draining lymph nodes could be visualized in live animals via optical 

imaging. Furthermore, the authors were able to identify spread to the liver and spleen during 

disseminated (septicemic) plague. Similarly, we demonstrate here that the LuxPcysZKbioreporter 

could be used in optical imaging of bubonic infection. The sensitivity of the LuxPcysZKbioreporter 

allowed detection of bacteria at the inoculation site as early as 8 hrs post-infection, and we 

observed distinct dissemination patterns of Y. pestis LuxPcysZKfrom two different inoculation sites 

that followed the predicted lymphatic drainage basins. As the infection progressed, we were able 

to identify the transition to systemic infection when bioluminescence was detected from the spleen. 

Eventually bioluminescence was detected from more peripheral sites, such as the feet and tail, 

demonstrating that bacterial concentrations reached levels in the blood that could be detected by 

optical imaging prior to the animals succumbing to infection. 

Our data also demonstrate that WT bacteria are not cleared from the inoculation site over the 

course of the infection, and continuous increase of bioluminescence at the site indicates that the 

bacteria proliferate. It is still unclear whether secondary septicemic plague initiates from bacteria 

disseminating from the lymph nodes or the inoculation site, but our data suggest that viable bacteria 

remain at the inoculation site as a possible reservoir for septicemic spread. Interestingly, while the 

pla mutant did not appear to proliferate to WT levels at the inoculation site, we continued to detect 

bioluminescent signal from this site for as long as 14 days post-inoculation (unpublished data). 

These data indicate that the mutant can survive at the inoculation site for an extended period of 
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time, but survival at this site was not sufficient to lead to septicemic plague. However, one of the 

nine animals infected with the pla mutant developed septicemic plague during our studies. The 

lack of detectable signal from the draining lymph nodes suggests that the bacteria disseminated 

into the bloodstream without first colonizing the lymph nodes. A similar rate of septicemic infection 

by the pla mutant was previously reported by Sebbane et al. [179]. While these data may suggest 

septicemic plague arises from the inoculation site, we agree with Sebbane et al. that it is more likely 

that sepsis resulted from direct inoculation of the bacteria into the bloodstream during the infection 

and not from escape from the inoculation site. Additional studies are needed to further understand 

the dissemination of Y. pestis into the bloodstream.  

In addition to bubonic infection, we also demonstrate that the LuxPcysZK bioreporter is sensitive 

enough to monitor infection of deeper tissues colonized during pneumonic plague. Importantly, 

through enumeration of bacterial CFU in the lungs, we demonstrated that bioluminescence from 

the thoracic cavity directly correlates to bacterial numbers in the lungs. This correlation supports 

the use of bioluminescence to estimate bacterial burden in the lungs. Furthermore, we were easily 

able to differentiate between WT and pla infected animals, suggesting that this bioreporter can be 

used to differentiate between mutant phenotypes in the animal. The ability to monitor the entire 

progression of plague in an individual animal via optical imaging allows for dissemination kinetics 

and survival data to be obtained from the same group of animals, resulting in smaller number of 

animals per experiment. Furthermore, optical imaging of plague with the LuxPcysZK bioreporter may 

benefit therapeutic research, as it will allow researchers to observe the resolution of an established 

infection after treatment is initiated. 

Optical imaging with the LuxPcysZKbioreporter will also allow researchers to identify unexpected 

dissemination patterns that might be missed in conventional models. For example, in a subset of 

animals intranasally infected with the pla mutant, we observed bioluminescence from a region 

near the ears, which we did not observe in WT infected animals. The precise tissues infected in 

these animals have yet to be identified, but colonization of tissues in this region would not have 

been detected without the whole animal imaging data. These data raise the possibility that systemic 
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infection by the pla mutant may arise from colonization of the upper respiratory tract as opposed 

to dissemination directly from the lungs. However, additional experiments to determine the 

frequency of this phenotype, correlation to systemic infection, and identity of infected tissues are 

required to test this hypothesis. 
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Material and Methods 

Bacterial strains, plasmids, and growth conditions 

The bacterial strains and plasmids used in this study are listed in Table 2-1. E. coli was grown 

in Luria-Bertani (LB) broth at 37ᵒC. Y. pestis was grown in Brain Heart Infusion (BHI) broth at 26 or 

37ᵒC (with 2.5 mM CaCl2). When appropriate, antibiotics were used at the following concentrations: 

kanamycin, 50 µg ml-1 (E. coli), 25 µg ml-1 (Yersinia); carbenicillin, 50 µg ml-1. 

The Y. pestis phoP mutant was generated using lambda red recombinase as previously 

described [181]. Briefly, regions flanking the phoP gene were amplified by PCR with primers 

DNA418 (5'-GAT TTC TAC ACC GTC GTG GG-3') and DNA419 (5'-GAA GCA GCT CCA GCC 

TAC AC CAT ACA CCA ATC CTT GAT AAA ACG TTA AC-3')for the 5' fragment and primers 

DNA420 (5’-GGT CGA CGG ATC CCC GGA ATAG ACA CTA TGC TCA GAA AAA ATA ATA AAC 

CC-3') and DNA421 (5'-GGT GAG TTG AGG TAA ACG AGA G-3')  for the 3' region. The resulting 

products were gel purified and combined with a kan cassette flanked by FRT sites via overlapping 

extension PCR using primers DNA418 and DNA421. The resulting fragment was transformed into 

YPA035 expressing lambda red recombinase, followed by excision of the kan cassette, to generate 

YPA047.  

The chromosomal luxCDABE reporters (Lux) were generated by first amplifying the lux operon, 

including the EM7 promoter, from pGEN-luxCDABE  by PCR using primers DNA398 (5'-G GAG 

CTCCTC TGT CAT TTT CTG AAA CTC TTC ATG CTG-3') and DNA399 (5'-G GAG CTCCCG CAT 

CAA CTA TCA AAC GCT TCG-3') (engineered SacI restriction sites are underlined) [170]. The 

PCR product and pUC18r6k-mini-Tn7(kanEW) (a derivative of pUC18r6k-mini-Tn7 [171]in which 

the original kan cassette was replaced with the kan cassette from pKD13) were digested with SacI 

and ligated together to generate pLOU027. The EM7 promoter was subsequently removed from 

pLOU027 by digesting the plasmid with KpnI, which excised the promoter. The tolC promoter was 

amplified by PCR using primers DNA408 (5'-G GGT ACCGCC ACT CAT CGC AGT GTG-3') and 

DNA409 (5'-G GGT ACCAGG ATC GTC AAA AAC CGA TAT AAG ACG-3') and the cysZK 

promoter using primers DNA406 (5'-G GGT ACC ACT CTC GCC AAT ATT ATT GCG G-3') and 
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DNA407 (5'-G GGT ACCCGC CAA AAT ACG TCC GTT G-3') (engineered KpnI restriction sites 

are underlined). PCR products were digested with KpnI and ligated into KpnI-digested pLOU027. 

Proper orientation of the promoters was confirmed by DNA sequencing. Reporters were integrated 

into the Y. pestis chromosome through site specific transposition as described previously to 

generate the LuxPEM7, LuxPtolC, and LuxPcysZK bioreporter strains [171]. The antibiotic resistance 

cassette was excised from MBLYP-043 and MBLYP-045 as described previously [181]. 

To compare the sensitivity of the reporters, reporter strains YPA022, YPA038, YPA039, and 

YPA040 were inoculated in BHI broth in triplicate and grown for 15 hrs at 26ᵒC. Serial 10-fold 

dilutions of the cultures were made in sterile 1X PBS, and the bacterial concentration of the dilutions 

was determined by enumerating on BHI agar. 100 µl aliquots were also transferred to a 96-well 

white plate and bioluminescence for each dilution was determined using a Synergy HT plate reader 

(BioTek, Winooski, VT) (1 sec read, sensitivity of 135). Linear regression analysis of the log 

transformed data was used to calculate the trend line, R2 values, and limit of detection. 

To determine growth profiles and correlation between CFU and bioluminescence, YPA035, 

YPA038, YPA039, and YPA040 were grown for 15 hrs in BHI at 26ᵒC. Bacteria were diluted into 

fresh medium to a concentration of 0.03 to 0.05 OD600/ml and grown for 12 hrs at either 26 or 37ᵒC. 

Samples were harvested at various time points during growth to determine OD600, bioluminescence 

using a Synergy HT plate reader (1 sec read, sensitivity of 135), and bacterial numbers by serial 

dilution and enumeration on BHI agar. Linear regression analysis of the log transformed data was 

used to calculate the trend line and R2 values. To compare expression between 26 and 37ᵒC, RLU 

per CFU was determined for each sample over the entire growth curve. Statistical significance was 

determined using the Mann-Whitney t test with a two-tailed nonparametric analysis. 

Survival of Y. pestis in the presence of antimicrobial compounds 

To monitor survival of Y. pestis in antimicrobial compounds, YPA039 was grown for 15 hrs at 

26ᵒC. The OD600 of the culture was determined and bacteria were diluted to 1 OD600/ml. Bacteria 

were further diluted 100-fold in BHI to a final concentration of ~106 CFU/ml. 100 µl of bacteria were 

added to wells of a white 96-well plate. Bioluminescence for each well was determined with a 
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Synergy HT plate reader (1 sec read, sensitivity of 135) to establish a baseline and then 100 µl of 

indicated dilutions of MicroChem-Plus (National Chemical Laboratories, Philadelphia, PA) or 

antibiotics (diluted in BHI) were added to each well. For MicroChem-Plus, the first reading was 

taken 2.5 mins after addition and every 1.3 mins thereafter until 14 mins. At 6 mins, a subset of 

samples was harvested, washed once with 1X PBS, and 10-fold serial dilutions of bacteria were 

spot plated on BHI agar. For antibiotics, the first reading was taken 10 mins after addition of 

antibiotics and every hr thereafter for 15 hrs. Plates were incubated at 26ᵒC in the plate reader 

between reads. Samples were blanked against BHI only wells. At 4, 8, and 12 hrs, 100 µl of bacteria 

were harvested from each concentration and 10-fold serial dilutions were spot plated on BHI agar 

to determine CFU. 

Intracellular survival assays 

RAW264.7 macrophages (ATCC, Manassas, VA) were seeded into white 96-well tissue culture 

plates and infected with 106 CFU (MOI=10) of the Y. pestis reporter strains YPA035, YPA038, 

YPA039, YPA040, YPA073, YPA048, or YPA049, as described previously [182]. Extracellular 

bacteria were killed by incubation with gentamicin (16 µg/ml) for 1 hr, followed by three washes 

with 1X PBS. Medium was replaced with DMEM+10% FBS containing 2 µg/ml gentamicin and 

plates were incubated at 37ᵒC with 5% CO2 for 24 hrs. Bioluminescence was determined at various 

time points using a Synergy HT plate reader (1 sec reading, sensitivity of 135). For CFU 

determinations, cells were lysed with 1% Triton 100 and bacteria were enumerated by serial dilution 

and plating on BHI agar. 

In vivo imaging 

All animal studies were approved by the University of Louisville Institutional Animal Care and 

Use Committee (protocol 10-117). Five-to 7-week-old female B6(Cg)-Tyrc-2J/J (albino C57Bl/6) 

mice (The Jackson Laboratory,Bar Harbor, ME) were maintained in the ABSL-3 vivarium with 

sterilized food and water adlibitum at the University of Louisville’s Center for Predictive Medicine 

Regional Biocontainment Laboratory and imaging was performed in conjunction with the Center for 

Predictive Medicine BIO-Imaging Core. Hair was removed with clippers on the dorsal and ventral 
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sides of the mice two days prior to infection. Mice were anesthetized using a ketamine-xylene 

mixture for infections and isoflurane for imaging. Mice were infected with MBLYP-043 (WT) or 

MBLYP-045 (pla). For bubonic studies, mice were infected via injection of 200-400 CFU at the 

base of the tail or in the hind foot. For pneumonic infections, mice were infected via intranasal 

infection of 104-105 CFU. Beginning after infection, mice were monitored for disease symptoms 

twice daily and moribund mice were euthanized. For imaging, mice were anesthetized and images 

were taken using the IVIS Spectrum imaging system (Caliper Life Sciences, Hopkinton, MA). 

Average radiance (photons/sec/cm2) was calculated for regions of interest of infected animals and 

similar regions were analyzed from uninfected animals or tissues to determine background 

luminescence (used as the limit of detection). Statistical significance was determined using the 

Mann-Whitney t test with a two-tailed nonparametric analysis.
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Figures and Figure Legends 

 

 

Figure 2—1Sensitivities of chromosomal Lux reporters. 

The luxCDABE operon driven by different promoters was integrated into the Y. pestis chromosome 

using Tn7 transposition. Sensitivities of the Lux reporters were determined by making serial 

dilutions of the Y. pestis Lux strains (grown for 15 hrs) and determining the number of bacteria 

(CFU) and bioluminescence (RLU) in each dilution (n=3). Linear regression analysis of the Log 

transformed data was used to calculate the trend line, R2 values, and the limit of detection 

[LD=Log10CFU (± standard deviation)]. (A) pGEN-luxCDABE, (B) LuxPEM7, (C) LuxPtolC, (D) 

LuxPcysZK.  
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Figure 2—2Correlation between bioluminescence and bacterial number. 

Y. pestis LuxPtolC and LuxPcysZKwere diluted in BHI broth (n=3) and grown at 26ᵒC (A and B) or 37ᵒC 

(C and D) for 12 hrs. Samples were harvested at multiple time points during growth to determine 

bioluminescence (RLU) and bacterial numbers (CFU). Linear regression analysis of the Log 

transformed data was used to calculate the trend line and R2 values. (E) To determine if 

temperature impacted expression of the LuxPtolC (white circles) or LuxPcysZK(black circles) reporters, 

we calculated the RLU/CFU for each sample in A-D and compared the ratios. Black bars represent 

median values and statistical significance was determined using the Mann-Whitney t test with a 

two-tailed nonparametric analysis (****=p<0.0001, ns=not significantly different) 

.
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Figure 2—3Lux reporters do not impact fitness of Y. pestis. 

To determine if carriage of the Lux reporters impacted Y. pestis fitness, (A) growth of the Y. pestis 

Lux bioreporter strains (n=3), and (B) survival in macrophages (n=3) were compared to WT Y. 

pestis without a Lux reporter. WT (no reporter) = ● or black bar;  LuxPEM7 = ○ or white bar; LuxPtolC 

=  or gray bar; LuxPcysZK =  or hatched bar. 
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Figure 2—4Use of LuxPtolC to monitor survival of Y. pestis in the presence of antimicrobial 
compounds. 

Y. pestis LuxPtolCwas incubated with increasing concentrations of antimicrobials (n=9) in a 96-well 

format and bacterial survival was monitored by measuring bioluminescence. (A) Bioluminescence 

readings (RLU) from Y. pestis LuxPtolCincubated with MicroChem-Plus for 14 mins. (B) At 6 mins 

during incubation with MicroChem-Plus, bacteria were harvested from a subset of wells, washed, 

serially diluted, and spot plated on agar to determine bacterial CFU. (C) Bioluminescence readings 

(RLU) from Y. pestis LuxPtolCincubated with carbenicillin for 12 hrs. (D) At 4 (white), 8 (gray), and 

12 (black) hrs during incubation with carbenicillin bacteria were harvested from a subset of wells to 

determine bacterial CFU. (E) Bioluminescence readings (RLU) from Y. pestis LuxPtolCincubated with 

gentamicin for 12 hrs.  (F) At 4 (white), 8 (gray), and 12 (black) hrs during incubation with 

gentamicin, bacteria were harvested from a subset of wells to determine bacterial CFU. For D and 

F, the dotted line represents the limit of detection.  
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Figure 2—5. Survival of Y. pestis Lux reporters in macrophages. 

RAW264.7 macrophages were infected with Y. pestis Lux reporter strains, extracellular bacteria 

killed by gentamicin, and bacterial survival monitored by CFU determination (A-C) or 

bioluminescence (D-F). Data from WT Y. pestis is represented by black symbols and from an 

attenuated phoP mutant by white symbols. (A and D) are strains with the LuxPEM7 reporter (n=3 

for CFU, n=24 for RLU), (B and E) are strains with the LuxPtolCreporter (n=3 for CFU, n=12 for RLU), 

and (C and F) are strains with the LuxPcysZKreporter (n=3 for CFU, n=12 for RLU). 
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Figure 2—6. Dissemination of Y. pestis during bubonic infection. 

Mice were infected with ~200 CFU of Y. pestis LuxPcysZK subcutaneously at the base of the tail (A) 

or in the footpad (B) and imaged using an IVIS Spectrum. The lymph node drainage basin for each 
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inoculation site is diagrammed above the images [173, 174]. Location of the inoculation site is 

shown as a green circle, lymph nodes as blue circles, and the spleen as a red oval. For (A), the 

white arrow denotes the subiliac LN and the red arrow the axillary LN. For (B), the white arrow 

denotes the popliteal LN, the red arrow the sciatic LN, and the yellow arrow the renal LN. All images 

were adjusted to the radiance scale shown, except for the images in (B) marked with * in upper 

right corners. For these each image was adjusted to a different radiance to allow for visualization 

of specific tissues. 
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Figure 2—7. Continued bioluminescence from inoculation site. 

Mice were infected with ~200 CFU of WT (n=5) or pla (n=5) Y. pestis LuxPcysZK subcutaneously at 

the base of the tail and imaged using an IVIS Spectrum. (A) The average bioluminescence detected 

from the inoculation site was determined over the course of the infection. Black and white symbols 

represent animals infected with WT or plaY. pestis, respectively. (B) Sequential images from a 

representative animal infected with plaY. pestis LuxPcysZK.  
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Figure 2—8. Progression of pneumonic infection. 

Mice were infected with 5x104 – 1x105 CFU of Y. pestis LuxPcysZK intranasally and imaged using an 

IVIS Spectrum. (A) Sequential images from representative animals. (B) For each animal, average 

bioluminescence was calculated for the thoracic cavity using the ROI tool in Living Image 3.2 

software package. Black and white symbols represent animals infected with WT or plaY. pestis, 

respectively. Dotted line represents the limit of detection based on images from uninfected animals. 

** = p<0.005, *** = p<0.001. At various time points, lungs were harvested from a subset of animals 

to determine bacterial loads (CFU) and compared to bioluminescence from the thoracic cavity (C) 

or from the lungs ex vivo (D). 
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Figure 2—9. Extended imaging of animals intranasally infected with pla. 

 30% of animals infected intranasally with the pla mutant in Figure 6 developed bioluminescence 

signal from regions corresponding to the head. A, B, and C represent three individual animals. 

Animal A also represents an example of a pla infected animal that developed septicemic plague. 
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Tables 

 

Table 2-1. Strains and plasmids used in this work 

Bacterial Strains   

MBLYP-001 Y. pestis CO92; one passage from YP003-1 [9] 
MBLYP-043 MBLYP-001 with LuxPcysZK reporter This work 
MBLYP-010 Y. pestis CO92 pla; one passage from YP102 [176] 

MBLYP-045 MBLYP-010 with LuxPcysZK reporter This work 
YPA035 MBLYP-001 pCD1(-) This work 
YPA038 YPA035 with LuxPEM7 reporter This work 
YPA039 YPA035 with LuxPtolC reporter This work 
YPA040 YPA035 with LuxPcysZK reporter This work 
YPA047 YPA035 phoP This work 

YPA073 YPA047 with LuxPEM7 reporter This work 
YPA048 YPA047 with LuxPtolC reporter This work 
YPA049 YPA047 with LuxPcysZK reporter This work 
YPA022 YPA035 with pGEN-luxCDABE plasmid This work 
   

Plasmids   

pGEN-luxCDABE Lux operon with EM7 promoter [170] 
pUC18r6k-mini-
Tn7(kanEW) 

pUC18r6k-mini-Tn7 w/ modified Kan cassette [171] 

pLOU027 pUC18r6k-mini-Tn7(kanEW):: LuxPEM7 This work 
pLOU034 pUC18r6k-mini-Tn7(kanEW):: LuxPtolC This work 
pLOU037 pUC18r6k-mini-Tn7(kanEW):: LuxPcysZK This work 
pTNS2 Tn7 transposase helper plasmid [171] 
pSKIPPY pLH29 w/ Cat cassette replaced with Kan 

cassette 
[183] 
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CHAPTER 3: 

YERSINIA PESTIS REQUIRES HOST RAB1B FOR SURVIVAL IN 

MACROPHAGES2 

 

                                                           
2 Connor MG, Pulsifer AR, Price CT, Abu Kwaik Y, Lawrenz MB. Yersinia pestis Requires Host Rab1b for 
Survival in Macrophages. PLoS pathogens. 2015;11(10):e1005241. doi: 10.1371/journal.ppat.1005241. 
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Author Summary 

Yersinia pestis is the bacterial agent that causes the human disease known as plague. 

While often considered a historic disease, Y. pestis is endemic in rodent populations on several 

continents and the World Health Organization considers plague to be a reemerging disease. Much 

of the success of this pathogen comes from its ability to evade clearance by the innate immune 

system of its host. One weapon in the Y. pestis arsenal is its ability to resist killing when engulfed 

by macrophages. Upon invasion of macrophages, Y. pestis actively manipulates the cell to 

generate a protective vacuolar compartment, called the Yersinia containing vacuole (YCV) that 

allows the bacterium to evade the normal pathogen killing mechanisms of the macrophage.  Here 

we demonstrate that the host protein Rab1b is recruited to the YCV and is required for Y. pestis to 

inhibit both the acidification and normal maturation of the phagosome to establish a protective niche 

within the cell. Rab1b is the first protein, either from the host or Y. pestis, shown to contribute to 

the biogenesis of the YCV. Furthermore, our data suggest a previously unknown impact of Rab1b 

recruitment in the phagosome maturation pathway.  

Overview 

Yersinia pestis is a facultative intracellular pathogen that causes the disease known as 

plague. During infection of macrophages Y. pestis actively evades the normal phagosomal 

maturation pathway to establish a replicative niche within the cell. However, the mechanisms used 

by Y. pestis to subvert killing by the macrophage are unknown.  Host Rab GTPases are central 

mediators of vesicular trafficking and are commonly targeted by bacterial pathogens to alter 

phagosome maturation and killing by macrophages. Here we demonstrate for the first time that 

host Rab1b is required for Y. pestis to effectively evade killing by macrophages. We also show that 

Rab1b is specifically recruited to the Yersinia containing vacuole (YCV) and that Y. pestis is unable 

to subvert YCV acidification when Rab1b expression is knocked down in macrophages. 

Furthermore, Rab1b knockdown also altered the frequency of association between the YCV with 

the lysosomal marker Lamp1, suggesting that Rab1b recruitment to the YCV directly inhibits 

phagosome maturation. Finally, we show that Rab1b knockdown also impacts the pH of the 

Legionella pneumophila containing vacuole, another pathogen that recruits Rab1b to its vacuole. 



 

51 
 

Together these data identify a novel role for Rab1b in the subversion of phagosome maturation by 

intracellular pathogens and suggest that recruitment of Rab1b to the pathogen containing vacuole 

may be a conserved mechanism to control vacuole pH.   

Introduction 

Yersinia pestis is a facultative intracellular pathogen and causative agent of the disease 

known as plague. There have been three human plague pandemics in history; the most notable 

being the Black Death in the 14th century [1, 5]. Y. pestis can infect humans either through the bite 

of an infected flea or inhalation of contaminated aerosols. Flea inoculation can lead to the 

development of bubonic plague, a form of plague highlighted by bacterial dissemination to, and 

replication within, lymph nodes [1]. Inhalation of Y. pestis contaminated aerosols can result in rapid 

colonization of the lungs and development of pneumonic plague [1]. Both forms of plague are 

associated with acute disease progression and high mortality rates in the absence of timely 

antibiotic treatment. Furthermore, the potential for person-to-person transmission and use as a 

biological weapon in the absence of a vaccine highlights the risks associated with this pathogen 

[14]. 

During its natural life cycle, Y. pestis cycles between two different hosts, the mammal and 

the flea. The bacterium requires different virulence factors to colonize each host, and coordinates 

the expression of these factors accordingly [1]. Y. pestis has several well characterized 

antiphagocytic mammalian virulence factors, such as the Ysc type three secretion system (T3SS), 

secreted Yop effectors and the Caf1 capsule  [1].  However, these virulence factors are down 

regulated in the flea vector and at the time of initial colonization of the mammalian host [1].  During 

this transitional period, Y. pestis is highly susceptible to phagocytosis by macrophages and 

neutrophils [51, 54]. Initial colonization of Y. pestis induces a rapid and early influx of neutrophils 

to the site of infection [51, 184]. Upon phagocytosis by neutrophils, Y. pestis is readily killed by 

these professional phagocytes [53, 58, 80]. However, Y. pestis has demonstrated an increased 

ability to survive phagocytosis by monocytes and macrophages [51, 54, 57, 59, 82]. Upon entry 

into the macrophage, Y. pestis actively circumvents the natural maturation of the phagolysosome 

by remodeling the phagosome into a hospitable replicative niche called the Yersinia containing 
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vacuole (YCV) [55, 57, 59, 83, 86].  In vitro studies have highlighted three key characteristics of the 

biogenesis of the YCV. First, Y. pestis is able to actively inhibit the normal acidification of the 

phagosome and maintain a pH between 6.5 - 7.5 within the YCV throughout the course of 

intracellular infection [59]. Second, a significant portion of YCVs appear to become 

autophagosomes, which is highlighted by colocalization with LC3-II and the presence of double 

membranes surrounding the bacteria [59, 88]. While the contribution of autophagy to intracellular 

survival is unclear, data indicates that autophagy contributes to the metabolism of intracellular 

bacteria [88, 89]. Finally, approximately eight hours after phagocytosis, the tight fitting vacuolar 

membrane of the YCV begins toexpand in size to form a spacious vacuolar compartment that can 

be observed by both light and electron microscopy [54, 59, 62, 86]. Bacterial replication within the 

YCV usually coincides with spacious vacuole formation. Importantly, while the fate of Y. pestis in 

the macrophage has been characterized, the mechanisms used to generate the YCV and avoid 

macrophage killing have not been defined. 

The ability of Y. pestis to survive within macrophages also appears to impact virulence of 

the bacterium. In vivo, intracellular Y. pestis are recovered from macrophages isolated from both 

infected nonhuman primates and rodents, but rarely from neutrophils isolated from the same 

animals [49, 58, 84]. Ye and colleagues further showed lower bacterial burdens in transgenic 

MaFIA mice selectively depleted of macrophage/dendritic cell populations, suggesting that 

macrophages are required to establish acute infection [52]. Y. pestis phoPQ mutants, which are 

defective for intracellular survival, are also attenuated during subcutaneous infection of BALB/c 

(75-fold change in LD50) and Swiss Webster mice (no change in LD50 but a significant delay in time 

to death for mutant infected animals) [56, 90]. Moreover, macrophages isolated from canines, a 

species that are relatively resistant to plague [91], are significantly more capable in killing Y. pestis 

than macrophages isolated from laboratory mice, a species highly susceptible to plague, 

suggesting that the ability of macrophages to kill Y. pestis may contribute to resistance to infection 

[62]. Together, these data highlight the importance of Y. pestis survival within the macrophage 

during pathogenesis  
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Rab GTPases are the largest member of the Ras Superfamily of small guanine 

triphosphatases and are central mediators of vesicle trafficking within eukaryotic cells [102, 185]. 

These GTPases mediate vesicle trafficking by cycling through active GTP-bound and inactive GDP-

bound conformations [102, 185]. When bound to GTP, the Rab protein integrates into specific 

vesicle membranes to mediate the trafficking of that vesicle through interactions with other 

trafficking proteins. Hydrolysis of the bound GTP to GDP results in extraction of the Rab from the 

membrane.  While approximately 60 different Rab proteins have been identified, the contributions 

of only a few Rabs to specific vesicle trafficking steps have been experimentally described. For 

example, Rab5, Rab7, and Rab9 have been well studied as key mediators of important steps in 

the phagosome maturation process [94-96, 98, 100, 101]. Rab5 is recruited to the early 

endosome/phagosome and is required for phagocytosis [94-96, 98, 100, 101]. Following 

phagocytosis, Rab5 disassociates from the early endosome and Rab7 is recruited to the endosome 

to facilitate recruitment of Rab9 and subsequent fusion with the lysosome [94-96, 98, 100, 101]. A 

single disruption in the recruitment of a Rab protein to the maturing vesicle can stall and even 

terminate trafficking of that particular endocytic vesicle to its intended destination. 

Due to the central role of Rab proteins for endosome sorting and phagosome maturation, 

many intracellular pathogens target Rab proteins to subvert these processes (see [102] for review).  

A classic example of Rab manipulation is seen in Mycobacterium infection of macrophages. M. 

avium and M. tuberculosis alter the normal distribution of Rab5 and Rab7 on their vacuole – 

retention of Rab5 and exclusion of Rab7 – to inhibit phagosomal fusion with the lysosome and 

subsequent killing of the bacteria [93, 107, 109, 110, 186, 187]. More recently, Rab1 has emerged 

as a common target required for the intracellular survival of many pathogens [107, 115, 117, 118, 

188-195]. Rab1 has two isoforms, Rab1a and Rab1b, which share 92% amino acid similarity and 

are thought to be functionally redundant [196, 197]. Both isoforms have been shown to be involved 

in ER-to-Golgi trafficking [191, 198]. More recently Rab1a has been associated with proper 

endosome sorting during receptor mediated endocytosis and Rab1b has also been linked to 

autophagosome formation [192, 199-202]. Several pathogen containing vacuoles (PCVs) have 

been shown to associate with Rab1, and this recruitment is essential for subsequent survival of the 
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pathogens contained within the PCV [115, 117, 118, 188-193, 203].  Coxiella burnetii requires Rab1 

for the Coxiella replicative vacuole (CRV) to expand in both Chinese hamster ovary (CHO) and 

RAW264.7 macrophage cells [188]. This expansion is significantly hindered in the presence of a 

GTP restricted form of Rab1 [188]. Similarly, Anaplasma phagocytophilum also recruits Rab1 

directly to the Anaplasma containing vacuole (APV) and it has been speculated that recruitment of 

Rab1 to the APV allows the bacteria to hijack endocytic trafficking [191]. Perhaps the best studied 

subversion of Rab1 by a pathogen comes from Legionella pneumophila. Rab1 has been shown to 

accumulate on the L. pneumophila containing vacuole (LCV) as early as 10 min after bacterial 

uptake and Rab1 knockdown has been shown to inhibit L. pneumophila intracellular replication 

[115, 118, 189]. Furthermore, several L. pneumophila secreted effectors have been identified that 

specifically target and modify Rab1 to alter its localization [115, 118, 120, 121, 124, 128, 189, 193, 

203, 204]. In contrast to the requirement of Rab1 for the survival of these intracellular pathogens 

that exist within vacuoles, Shigella flexneri, which replicates in the host cytoplasm, is hindered by 

Rab1 [190]. Inactivation of Rab1 by S. flexneri is critical for bacterial survival and is mediated by 

the VirA/EspG secreted effector family [190]. Together, these studies suggest a distinct role for 

host Rab1 GTPases for intracellular survival of pathogens that replicate within vacuolar 

compartments.  

Since Rab1 appears to be targeted by several pathogens that reside within vacuoles in 

order to survive intracellularly, we investigated the role of Rab1 in the survival of Y. pestis within 

macrophages. We demonstrate that siRNA knockdown of Rab1b in macrophages infected with Y. 

pestis significantly increases YCV acidification and association with the lysosomal marker Lamp1, 

resulting in decreased intracellular survival of Y. pestis. Furthermore, we show Rab1b is recruited 

to the YCV, suggesting a direct interaction with Rab1b is required for proper YCV maturation. 

Importantly, Rab1b is the first host protein to be identified that is required by Y. pestis to alter 

phagosome maturation and YCV acidification and impact the ability of this pathogen to survive 

within the eukaryotic cell. Finally, we also demonstrate for the first time that Rab1b recruitment to 

the L. pneumophila containing vacuole also impacts vacuole pH, suggesting a conserved 

mechanism for the recruitment of Rab1b to pathogen containing vacuoles.    
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Results: 

Rab1b is required for Y. pestis survival in macrophages 

Since Y. pestis exists within a vacuolar compartment within macrophages [54, 55, 57], and 

Rab1 has been linked to survival of several other intracellular pathogens that exist within vacuoles 

[117, 118, 188, 189, 191, 192, 194], we sought to determine if Rab1 is required for Y. pestis 

intracellular survival. Toward this goal, we initially screened whether either isoform of Rab1 is 

required for Y. pestis to survive in macrophages. RAW264.7 macrophages were transfected with 

either Rab1a or Rab1b specific siRNAs (pool of 3 siRNAs targeting each gene). 48 h after 

transfection, macrophages were infected with Y. pestis CO92 pCD1(-) LuxPtolC, which contains a 

bioluminescent bioreporter to monitor Y. pestis numbers [151]. Extracellular bacteria were killed 

with gentamicin, and intracellular bacterial survival was monitored via bioluminescent signal (Fig 3-

1A). While no change in Y. pestis bioluminescence was observed in Rab1a siRNA treated cells 

compared to scrambled siRNA treated controls, we observed a significant decrease in 

bioluminescence in Rab1b siRNA treated cells, indicating that Rab1b, but not Rab1a, is required 

for Y. pestis survival within macrophages. 

To confirm Rab1b is required for Y. pestis intracellular survival, RAW264.7 macrophages 

were transfected with a single Rab1b siRNA optimized for Rab1b knockdown and cell viability (Fig 

3-S1) and infected with Y. pestis CO92 pCD1(-) LuxPtolC 48 h post-transfection. As a positive control, 

we also infected macrophages transfected with Copβ1 siRNA. Copβ1 is a component of the 

cotamer complex and has been shown to alter both invasion and survival of other intracellular 

pathogens [141, 205]. As expected, Copβ1 knockdown resulted in a significant decrease in 

intracellular Y. pestis CO92 pCD1(-) LuxPtolC bioluminescence at 10 h post-infection as compared to 

scramble siRNA treated cells (Fig 3-1B; p≤0.0001). Rab1b knockdown also resulted in a significant 

decrease in bioluminescent signal; Y. pestis CO92 pCD1(-) LuxPtolC bioluminescence was ~50% 

less in Rab1b siRNA treated cells (Fig 1B; p≤0.0001). To confirm that Y. pestis CO92 pCD1(-) 

LuxPtolC bioluminescence accurately represents viable intracellular bacteria, cells were lysed and 

bacterial numbers were determined by conventional serial dilution enumeration (Fig 3-1C). 

Conventional enumeration supported our bioluminescent data and demonstrated a significant 
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decrease in viable intracellular colony forming units (CFU) in Rab1b siRNA treated cells (p≤0.001). 

No differences in survival were observed if bacteria were grown at 37oC prior to infection (Fig 3-

S2). Importantly, the direct correlation between bioluminescent signal and bacterial enumeration 

support the use of bioluminescent data to monitor intracellular Y. pestis numbers. 

To confirm that the pCD1 encoded Ysc type three secretion system (T3SS) does not impact 

Rab1b mediated Y. pestis survival, Rab1b transfected cells were also infected with Y. pestis KIM 

D-19 LuxPtolC, which contains the pCD1 plasmid and the Ysc T3SS, and bacterial survival was 

monitored by bioluminescence and conventional bacterial enumeration (Fig 3-1E and F). As 

observed for Y. pestis CO92 pCD1(-) LuxPtolC, we observed an ~50% decrease in Y. pestis KIM D-

19 LuxPtolC survival in Rab1b siRNA treated cells (p≤0.001). We also monitored Y. pestis 

intracellular bioluminescence temporally over the course of the infection to determine how early 

during infection Y. pestis intracellular survival was impacted by Rab1b knockdown. This analysis 

revealed that intracellular bacterial numbers for both strains were significantly decreased in Rab1b 

treated cells as early as 2 h post-infection, which is the earliest time point we can monitor after 

gentamicin removal (Fig 3-1D and G; p≤0.001). Finally, to determine if the Rab1b impact on 

intracellular survival is conserved in the Yersinia genus, transfected macrophages were infected 

with Y. pseudotuberculosis and Y. enterocolitica. As observed for Y. pestis, both enteric species 

were attenuated in survival when Rab1b was knocked down (Fig 3-S1).  Together these data 

demonstrate that Rab1b is required for Yersinia intracellular survival, which is independent of the 

Ysc T3SS, and bacterial survival is impacted by Rab1b very early during the infection process.  

Rab1b is not required for Y. pestis invasion of macrophages 

We observed a difference in Y. pestis intracellular numbers in Rab1b siRNA treated cells within 

2 h of macrophage infection (Fig 3-1D and G). The difference in recovered bacteria at this early 

time point could be due to an inability of Y. pestis to avoid phaogolysomal killing in the absence of 

Rab1b. However, Rab1b may also be required for efficient phagocytosis and the difference in Y. 

pestis numbers at 2 h post-infection could be a result of less bacteria gaining entry into the 

macrophages prior to gentamicin treatment. Because phagolysosome fusion and bacterial killing 

can occur within 120 minutes of phagocytosis [94, 102], we could not rely on the conventional 
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gentamicin protection assay, which requires a 1 h incubation period, to differentiate between 

invasion and bacterial killing in Rab1b siRNA treated cells. Therefore, we used a differential staining 

procedure to specifically label extracellular Y. pestis and determine if Rab1b knockdown impacted 

Y. pestis invasion of macrophages by confocal microscopy. Rab1b siRNA transfected RAW264.7 

macrophages were infected with Y. pestis CO92 pCD1(-)pGEN-PEM7::DsRED [206],which 

constitutively expresses the DsRED fluorescent protein. At 20 and 80 min post-infection, cells and 

total bacteria were fixed with paraformaldehyde. Extracellular bacteria were then specifically 

labeled with anti-Y. pestis polyclonal antibody and Alexa Fluor 488 anti-rabbit secondary antibody 

(Fig 3-2A). As a positive control, macrophages were treated with Copβ1 siRNA, which has been 

previously shown to be required for efficient phagocytosis [141]. As expected, cells treated with 

Copβ1 had significantly less intracellular Y. pestis than scrambled siRNA treated macrophages at 

both 20 and 80 min post-infection (Fig 3-2B and C; p≤0.001). Conversely, we observed no 

difference in the proportion of intracellular Y. pestis in Rab1b siRNA treated cells compared to 

scrambled siRNA treated cells. These data demonstrate that Rab1b is not required for 

phagocytosis of Y. pestis and suggest that the differences in intracellular bacterial numbers in 

Rab1b siRNA treated cells is due to a decreased ability of Y. pestis to avoid macrophage killing in 

the absence of Rab1b.  

Rab1b is required for Y. pestis to avoid YCV acidification. 

A hallmark characteristic of Y. pestis infection of the macrophage is that the bacterium is able 

to rapidly subvert normal acidification of the YCV [59]. Because acidification is one of the earliest 

steps in phagosome maturation and is required for both efficient lysosomal fusion and degradation 

of phagolysosomal contents [94], we next investigated whether Rab1b is required for Y. pestis to 

avoid YCV acidification. RAW264.7 macrophages were transfected with Rab1b siRNA and then 

treated with Lysotracker Red DND-99 prior to infection with Y. pestis CO92 pCD1(-) pGEN222, 

which constitutively expresses EGFP. Lysotracker Red DND-99 fluorescence is pH dependent 

(fluoresces below pH 5.5), and therefore, allows for identification of acidified vacuoles. As Y. pestis 

inhibition of YCV acidification is an active process, untransfected cells were infected with 

paraformaldehyde killed Y. pestis CO92 pCD1(-) pGEN222 to serve as a positive control for YCV 
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acidification. As previously reported for untransfected macrophages [59], Y. pestis CO92 pCD1(-) 

pGEN222 efficiently avoided YCV acidification in scramble siRNA treated macrophages, with <25% 

of Y. pestis found within acidified vacuoles by 80 min post-infection (Fig 3-3). This was significantly 

lower than paraformaldehyde killed Y. pestis, which were already within acidified vacuoles >80% 

of the time by 20 min post-infection (p≤0.01). The ability of Y. pestis to inhibit YCV acidification was 

greatly attenuated in Rab1b knocked down cells, where ~70% of the bacteria were observed within 

acidified vacuoles within 20 min post-infection (p≤0.01). Furthermore, Y. pestis remained within 

acidified vacuoles in Rab1b siRNA treated macrophages at 80 min post-infection. These data 

demonstrate that Y. pestis requires the host Rab1b GTPase to inhibit or avoid YCV acidification.   

Rab1b is necessary for Y. pestis to avoid fusion with the lysosome. 

 Acidification of the phagosome precedes or coincides with fusion to lysosomes and 

degradation of foreign particles such as bacteria [94]. As Rab1b knockdown resulted in increased 

acidification of the YCV, we next determined if Rab1b is required for Y. pestis to avoid fusion with 

lysosomes. RAW264.7 macrophages were transfected with Rab1b siRNA and infected with live or 

paraformaldehyde killed Y. pestis CO92 pCD1(-) pGEN-PEM7::DsRED. At 20 and 80 min post-

infection, cells were washed, fixed with paraformaldehyde, and stained with anti-Lamp1 antibody, 

a marker for lysosomal fusion (Fig 3-4A). In scrambled siRNA treated cells, we observed minimal 

association of live Y. pestis with Lamp1 (<25%) at 20 and 80 min post-infection, indicating limited 

association between the YCV and lysosomes at these time points (Fig 3-4B and C). As observed 

for YCV acidification, there was a significant increase in the association between Lamp1 and 

paraformaldehyde killed Y. pestis (>60%), supporting an active avoidance of lysosomal fusion by 

Y. pestis during macrophage infection (Fig 3-4B and C; p≤0.001). Rab1b knockdown also 

significantly altered Lamp1 association with the YCV compared to scramble siRNA (Fig 3-4B and 

C; p≤0.001 and p≤0.01, respectively). At 20 min post-infection, Lamp1 associated with ~55% of 

YCVs in Rab1b siRNA treated cells, and was maintained at this elevated level at 80 min post-

infection. These data indicate that Rab1b is required not only for Y. pestis to inhibit YCV acidification 

but also to avoid lysosomal fusion. Importantly, the ~2-fold increase in association with Lamp1 
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directly correlates to a similar 2-fold decrease in Y. pestis survival in Rab1b siRNA treated 

macrophages (Fig 3-1). 

Rab1b is not required for early Y. pestis association with LC3 

Autophagy has been linked to both Y. pestis and Y. pseudotuberculosis intracellular infection 

and may be required for sustained bacterial metabolism within cells [59, 88]. Furthermore, studies 

have shown a recruitment of LC3, a marker for autophagosomes, to the YCV during Y. 

pseudotuberculosis infection of HeLa cells and BMDMs [88, 89]. Recently, Huang and colleagues 

demonstrated a potential role for Rab1b in autophagy and intracellular survival of Salmonella 

enterica Typhimurium [192].  Given the link of Rab1b to autophagy and autophagy to Yersinia 

intracellular infection, we next investigated if knockdown of Rab1b impacted early association of 

LC3 to the YCV during macrophage infection. RAW264.7 macrophages were transfected with 

Rab1b siRNA and infected with live or paraformaldehyde killed Y. pestis CO92 pCD1(-) pGEN-

PEM7::DsRED. 20 and 80 min post-infection cells were washed, fixed with paraformaldehyde, and 

stained with anti-LC3 antibody (Fig 3-5A). In contrast to reported infection of epithelial cells with Y. 

pseudotuberculosis [89], we observed a very low incidence in the association between live or killed 

Y. pestis with LC3 during early stages of macrophage infection (Fig 3-5B and C) and this 

association was not significantly altered in Rab1b siRNA treated cells (~20% association in all 

samples). These data support previous data that LC3 association with the YCV is lower in 

macrophages than epithelial cells [88, 89] and demonstrate that Rab1b knockdown does not alter 

YCV-LC3 association during the early stages of Y. pestis infection when we observe changes in 

YCV maturation and intracellular survival of the bacteria. 

Rab1b is recruited to the YCV during macrophage infection. 

Rab GTPases mediate vesicular trafficking through direct interactions with vesicle membranes 

(see [102, 185] for review). Therefore, we next sought to determine whether Rab1b is recruited to 

the YCV during Y. pestis infection. Because Rab interactions with membranes are transient, we 

transfected RAW264.7 macrophages with a GFP-labelled, constitutively active form of Rab1b 

[eGFP-Rab1b(CA)]. eGFP-Rab1b(CA) contains a mutation in the GTP binding domain that inhibits 
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the hydrolysis of GTP, resulting in retention of the protein in the membrane in which the Rab 

GTPase is recruited [118, 191, 207, 208].  Twenty-four hours after transfection, macrophages were 

infected with either live or PFA killed Y. pestis CO92 pCD1(-) pGEN::mCherry or E. coli K12 

pGEN::mCherry, which constitutively express the mCherry fluorescent protein. Cells were washed 

and fixed with paraformaldehyde at 20 and 80 min post-infection and analyzed by confocal 

microscopy to determine localization of eGFP-Rab1b(CA) (Fig 3-6). Less than 25% of E. coli or 

PFA killed Y. pestis, which traffic to acidified vacuoles, colocalized with eGFP-Rab1b(CA) at 20 

min post-infection (Fig 3-6B). Furthermore, we observed no significant change in colocalization at 

80 min post-infection. However, in cells infected with live Y. pestis, we observed a significant 

increase in eGFP-Rab1b(CA) localization to the YCV at both time points (Fig 3-6B and C; ~57%; 

p≤0.05). These data demonstrate that while Rab1b is minimally associated with phagosomes 

containing E. coli or dead Y. pestis, the GTPase is associated with the YCV containing live Y. pestis 

at a significantly higher frequency, suggesting that Rab1b recruitment or retention to the YCV 

specifically contributes to Y. pestis survival. 

 

Disruption of the secretory pathway does not alter Y. pestis survival or inhibition of YCV acidification 

Rab1b has an important role in mediating ER-to-Golgi trafficking [209, 210]. While Rab1b 

appears to be directly recruited to the YCV, it is also possible that the effect of Rab1b knockdown 

on Y. pestis survival is due to changes in Golgi trafficking. To determine if Golgi trafficking, 

specifically secretory trafficking, is required for Y. pestis to inhibit YCV acidification, we treated 

RAW264.7 macrophages with Brefeldin A (BFA), which blocks Golgi trafficking independent of 

Rab1b by targeting Arf1.  BFA-treated macrophages were infected with Y. pestis CO92 pCD1(-) 

LuxPtolC for 20 min, extracellular bacteria were killed with gentamicin, and intracellular bacteria 

bioluminescence was monitored at 2 and 10 h post infection (Fig 3-7A and B, respectively). At both 

time points there was no significant difference in the survival of Y. pestis between untreated 

macrophages or cells treated with increasing concentrations of BFA. Macrophages treated with 10 

µM BFA were also incubated with Lysotracker Red DND-99 and subsequently infected with Y. 

pestis CO92 pCD1(-) pGEN222 to determine if inhibition of the secretory pathway altered YCV 
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acidification. As a control, a separate group of cells were infected with paraformaldehyde killed Y. 

pestis CO92 pCD1(-) pGEN222.  In agreement with the intracellular bacterial survival, there was no 

significant difference between YCV acidification in BFA-treated macrophages at 20 or 80 min post-

infection compared to untreated cells (Fig 3-7C and D).  Furthermore, BFA treatment did not alter 

the acidification of phagosomes containing paraformaldehyde killed Y. pestis. Together these data 

demonstrate that Y. pestis avoidance of the phagolysosome is independent of retrograde endocytic 

trafficking and suggests that Rab1b impacts YCV maturation independent of its function in Golgi 

trafficking. 

Rab1b inhibition results in increased acidification of the Legionella containing vacuole 

Previous studies with L. pneumophila demonstrate the cyclic recruitment and release of 

Rab1b on the LCV within 2 hours post-infection [117]. The release of Rab1b from the nascent LCV 

coincides with the transition of the LCV from a neutral to acidic pH [211, 212]. Given that Y. pestis 

recruits Rab1b to the YCV to prevent vacuole acidification, we hypothesized that L. pneumophila 

recruitment of Rab1b may also result in arrest of LCV acidification.  To test this hypothesis, we 

transfected RAW264.7 macrophage cells with siRNA targeting Rab1b and treated transfected cells 

with Lysotracker Red DND-99 prior to infection with L. pneumophila to monitor LCV acidification. 

As previously reported, we observed that the majority of LCVs did not colocalize with Lysotracker 

in scramble siRNA treated macrophage (only 30% of L. pneumophila was found in acidified 

compartments by 80 min post-infection; Fig 3-8). In contrast, we observed a significant increase in 

Lysotracker colocalization in macrophages treated with siRNA targeting Rab1b at both 20 and 80 

min post-infection (Fig 3-8B and C; p≤0.01 and P≤0.001, respectively). These data demonstrate 

that like Y. pestis, L. pneumophila requires Rab1b to inhibit LCV acidification during early stages 

of macrophage infection.   

Discussion 

Rab proteins are central mediators in vesicular trafficking within the cell. As such, intracellular 

pathogens often target these GTPases to subvert the normal phagosome maturation pathway and 

survive within host cells (see [102, 103] for reviews). Rab1 was one of the first identified members 
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of this family and has been extensively studied for its role in Golgi trafficking in yeast, Drosophila, 

and mammalian cells (see [210, 213, 214] for reviews). More recently, both isoforms of Rab1 have 

been linked to intracellular infection by several pathogens. Chlamydial species [194], L. 

pneumophila [118, 189], A.   phagocytophilum[191], Coxiella burnetii[188], and S. enterica 

Typhimurium[192] have been shown to recruit Rab1 to the PCV. Furthermore, inhibition of Rab1 

by either RNAi or expression of dominant negative Rab1 constructs indicate that Rab1 function is 

required for the survival/growth of L. pneumophila [189], C. burnetii [188], S. enterica Typhimurium 

[133, 192], and Brucella melitensis [138]. Our data demonstrate for the first time that Y. pestis also 

belongs to this group. Specifically, we have demonstrated that Y. pestis recruits Rab1b to the YCV 

during infection of macrophages and that this GTPase is required for intracellular survival. 

Interestingly, Rab1 has only been shown to be required for the survival of pathogens that exist 

within vacuolar compartments, suggesting a role(s) for Rab1 in subverting normal phagosome 

maturation and generation of a protective PCV. In fact, functional Rab1 has been shown to be 

detrimental to the survival of the cytoplasmic pathogen Shigella flexnerii through its interaction with 

the autophagy system within the host cell [190]. However, S. flexnerii has also evolved to target 

Rab1, through the VirG secreted effector protein, and inactivate the GTPase to inhibit 

macroautophagy during infection [190]. 

While Rab1 has been linked to the survival of several intracellular pathogens, the role Rab1 

plays in the maturation of individual PCVs is less well understood. In C. burnetii, Rab1 has been 

shown to be required for the massive expansion of the Coxiella replicative vacuole (CRV) [188]. 

This requires the acquisition of new membrane in order for the CRV to grow, and Rab1 recruitment 

to the vacuole may mediate the interception of vesicles (and their membranes) from the secretory 

pathway. This hypothesis is supported by studies showing that treatment with BFA, which 

independently inhibits the secretory pathway, also inhibits the expansion of the CRV [188]. Studies 

from A. phagocytophilum and Chlamydial species, which also form a large replicative vacuole, also 

suggest that Rab1 recruitment is important for formation of a spacious vacuolar compartment [191, 

194]. Therefore, a common goal of bacteria that recruit Rab1 to their PCV may be to subvert the 

secretory pathway in order to remodel the PCV. Furthermore, Rab1b has also been linked to 
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autophagy [192], which is also associated with the replication of both C. burnetii and A. 

phagocytophilum [215, 216]. It is possible that in addition to the secretory pathway, Rab1 

recruitment may also contribute to the recruitment of autophagsomal membranes to these PCV, 

though this has yet to be demonstrated. Since the YCV also expands late during infection (though 

not to the degree of these former pathogens) to form a spacious vacuole [54, 59, 62], it is possible 

that Rab1b may contribute to YCV expansion. However, we have not observed changes in 

spacious YCV formation in Rab1b siRNA treated macrophages. Furthermore, our data also suggest 

that early association with the autophagosome marker LC3 does not appear to protect YCV from 

acidification, as we observed no difference in YCV-LC3 association in Rab1b siRNA treated cells. 

More importantly, our data with Y. pestis reveal a potential new benefit of Rab1 recruitment to the 

PCV, which is to avoid phagosomal acidification and subsequent fusion to the lysosome. While it 

is currently unclear how Rab1b inhibits YCV acidification, it appears to be independent from its 

contributions to the secretory pathway, as BFA treatment did not result in similar changes to YCV 

acidification. Importantly, while knockdown of Rab1B does not alter the expression of Rab 5, 7 or 

9, which are required for phagosome maturation (Fig 3-S1A), it is possible that recruitment and 

retention of Rab1b to the early phagosome inhibits interactions with these Rabs (and/or Rab 

effector proteins) to inhibit normal phagosome maturation. Rab1 has also been linked to endosomal 

sorting through direct interactions with the kinesin Kifc1, which in turn affects directional vesicular 

motility within the cell [201, 202]. Thus, Rab1b recruitment may alter early sorting of the YCV to 

avoid acidification and lysosomal fusion. Studies to better characterize the early YCV, including 

differences in Rab composition and vATPase recruitment as compared to the normal phagosome 

are ongoing and will provide further insight into these mechanisms. Rab1 recruitment to the YCV 

also occurs significantly earlier than reported for C. burnetii (≤20 min vs. >12 h, respectively) [188], 

suggesting that timing of recruitment may indicate which function, inhibition of phagosome 

maturation or membrane acquisition, is contributing to pathogenesis of various pathogens. It should 

be noted that C. burnetii requires passage through an acidified vacuole to induce the expression of 

important virulence factors and subsequent intracellular survival [217]. Therefore, our observations 

that early acquisition of Rab1 inhibits PCV acidification may explain why Rab1 recruitment is 
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delayed during C. burnetii infection. In contrast to C. burnetii, L. pneumophila, which inhibits LCV 

acidification early during infection[211, 212, 218], recruits Rab1 in a similar time frame as seen 

during Y. pestis infection (within 10 min) [118]. In support of our hypothesis that early recruitment 

of Rab1b is a mechanism for pathogens to inhibit phagosome acidification, we demonstrated that 

knockdown of Rab1b decreased the ability of L. pneumophila to inhibit LCV acidification (Fig 3-8). 

Interestingly, L. pneumophila appears to control both recruitment and later release of Rab1 from 

the LCV (discussed below). The timing of Rab1 modification by L. pneumophila coincides with a 

transition from a neutral to an acidic LCV [211, 212], suggesting that Rab1 inhibition of acidification 

may be an active process that is reversible upon removal of Rab1 from the vacuolar membrane. 

 Phagosome acidification has been shown to be a key step in phagosome maturation. 

Acidification of the phagosome is believed to work in concert with Rab5, Rab7 and Rab9 to mediate 

phagosome maturation and ultimately fusion with lysosomes [94, 95]. Initially, the early 

phagosome, highlighted by association with Rab5, is slightly acidic (~pH 6.0). As the phagosome 

matures, the pH decreases and Rab7 replaces Rab5 on the phagosome. Rab7 subsequently 

recruits more vATPase complexes, resulting in further acidification of the phagosome and 

recruitment of Rab9. By the time Rab9 mediates lysosomal fusion, the pH of the phagosome is 

approaching 4.0, which is the optimal pH to activate hydrolases and proteases delivered to the 

phagosome by the lysosome. Several lines of evidence indicate that acidification of the phagosome 

is required in order for efficient lysosomal fusion and function to occur [100, 101, 219-221], which 

suggest that inhibition of acidification could influence proper lysosomal fusion to the PCV. In line 

with these hypotheses, we observed a direct correlation between increased YCV acidification with 

increased Lamp1 association, and subsequent decreased Y. pestis survival, in Rab1b siRNA 

treated cells. This direct correlation makes it difficult to separate the impact of acidification directly 

on Y. pestis survival (acidic killing) from lysosomal fusion, but further supports the importance of 

inhibiting YCV acidification as mechanism for Y. pestis intracellular survival [59]. 

 While Rab1 is important for the intracellular survival of several pathogens, bacterial 

virulence factors that target Rab1 have only been identified for Chlamydia [194] and L. pneumophila 

[116, 117, 119, 122, 125, 129, 193, 222, 223]. In the case of L. pneumophila, multiple Dot/Icm 
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secreted factors have been shown to target Rab1 and modify the protein to manipulate localization 

to the LCV; cycling the host Rab1 between active (anchored to the LCV) and inactive states. The 

effectors DrrA/SidM, SidD and LepB work in concert to first recruit Rab1 to LCV, and then later 

remove it [113, 115, 120, 121, 193] . L. pneumophila also manipulates Rab1 independent of 

recruitment to the LCV through the action of SidC/SdcA, LidA and AnkX [116, 127, 129, 223]. The 

redundancy in Rab1 targeting proteins indicates that Rab1 manipulation by L. pneumophila is 

extremely important for the intracellular survival of this pathogen. For Y. pestis, we have yet to 

define the virulence factors that mediate Rab1b recruitment to the YCV. However, we have shown 

that Y. pestis does not require the pCD1 plasmid (including the Ysc T3SS) or the high pathogenicity 

island (pgm locus) to recruit Rab1b and inhibit YCV acidification. These findings are in agreement 

with previous work that has shown both of these genetic elements are dispensable for intracellular 

survival [49, 53-55]. Therefore, virulence factors encoded elsewhere in the genome are mediating 

both Rab1b interactions and intracellular survival. While the PhoPQ two component regulator has 

been shown to contribute to intracellular survival, likely through the regulation of other genes [56, 

83, 86, 90], we speculate that these genes do not regulate survival through Rab1b because phoPQ 

mutants still inhibit YCV acidification during infection [86]. However, defining Rab1b recruitment to 

the phoPQ mutant YCV is needed to confirm this hypothesis. Studies to specifically identify Y. 

pestis factors involved in Rab1b recruitment to the YCV are ongoing.  

In summary, we have shown here for the first time that recruitment of Rab1b to the PCV 

directly correlates to the ability of a pathogen to inhibit acidification of the vacuole. These findings 

indicate a novel function for Rab1b in inhibiting phagosome maturation and suggest that other 

pathogens may use a similar strategy to modify the maturation of the PCV. Furthermore, in the 

context of Y. pestis infection, Rab1b is the first factor, either host or bacterial, identified that directly 

impacts acidification of the YCV. Future studies to define how Rab1b impacts phagosome 

acidification and to identify additional host factors that contribute YCV biogenesis will be important 

for us to understand how this pathogen evades killing by macrophages.  
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Materials and Methods 

Bacterial strains, plasmids, and macrophages. All bacterial strains used in this study are listed in 

Table 3-S1 in the Supplementary Information.Y. pestis CO92 [9] pCD1(-) and KIM D-19(pgm(-)) (BEI 

Resources) were cultivated at 26°C in Brain Heart Infusion (BHI) broth (Difco).  When needed, 

carbenicillin was used at 50µg/mL. Bioluminescent derivatives were generated using the LuxPtolC 

bioreporter as described previously [151]. To generate fluorescent bacterial strains, Y. pestis and 

E. coli K12 DH5α were transformed with pGEN222, pGEN-PEM7::DsRED, or pGEN222::mCherry 

[206]. E. coli was cultivated at 37°C in Luria-Bertani (LB) broth (Difco) supplemented with 50µg/mL 

carbenicillin. L. pneumophila AA100, a clinical isolate containing pMIP-GFP, was grown on BCYE 

agar plates for 3 days at 37°C prior to macrophage infection [224-226]. The pGEN222::mCherry 

plasmid was generated by replacing the EGFP gene from pGEN222 with the mCherry gene using 

Gibson Cloning [227]. Constitutive active EGFP-Rab1b was generated by site directed 

mutagenesis of pEGFP-Rab1b [108] using primers 5’- TGG AAC GGT TCC GGA C-3’ and 5’- GGC 

CCG CTG TGT CC-3’ to mutate the Glutamine at residue 67 to a Leucine as previously described 

[108]. RAW264.7 macrophages were obtained from ATCC and cultured in DMEM, 100 mM glucose 

+ 10% FBS (Hyclone).  

Transfection of macrophages. For siRNA transfection, 20 µl of 0.165 µM Silencer siRNA (Life 

Technologies) diluted in Opti-MEM (Life Technologies) was mixed with 10 µl of 0.03% (v/v) 

Lipofectamine RNAiMax/Opti-MEM (Life Technologies) as described by the manufacturer.  30 µl of 

the siRNA-Lipofectamine complex was added to each well of a white flat-bottom 96-well plate 

(Greiner), incubated at room temperature for 10 min, and then 1x104 RAW264.7 macrophages 

suspended in 80 µl of DMEM+10% FBS were added. Cells were incubated for 48 h at 37°C with 

5% CO2. For 24-well plates used for microscopy, all reagents were increased by 4-fold. For plasmid 

transfection, 4 µg of plasmid was transfected into 4.4 x 105 RAW264.7 macrophages using 

Lipofectamine 2000 (Life Technologies) or 0.5 µg of plasmid with JetPrime (Polyplus) as described 

by the manufacturers. Luminescence was monitored with a Synergy 4 plate reader (BioTek) (1 sec 

read with sensitivity set at 150).  
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Bacterial infection of macrophages. Macrophages were infected with Y. pestis strains as previously 

described [57, 151]. Briefly, bacteria were grown at 26oC in BHI, washed in PBS, and diluted 

appropriately in prewarmed DMEM+10%FBS. Bacteria were added to macrophages and the 

infection was synchronized by centrifugation. After 20 min, extracellular bacteria were killed with 

gentamicin (16µg/mL). One hour after gentamicin treatment, the medium was replaced with DMEM 

+ 10% FBS containing 2µg/mL gentamicin. Intracellular Y. pestis numbers were determined by 

bioluminescence using a Synergy HT plate reader (Biotek) or conventional bacterial enumeration 

as described previously [151]. For L. pneumophila, bacteria were swabbed directly from plates and 

diluted appropriately in prewarmed DMEM+10%FBS. Bacteria were added to macrophages and 

the infection was synchronized by centrifugation. At 20 minutes and 80 minutes post-infection cell 

monolayers were washed three times with PBS and fixed as described below [225, 226]. All MOIs 

were confirmed by conventional enumeration of the inoculum at the time of infection. For vacuole 

acidification experiments, 75 nM Lysotracker Red DND-99 (Life Technologies) was added to the 

cells 1 h prior to fixation. Brefeldin A (Sigma) was added to cells 2 h prior to Y. pestis infection and 

maintained throughout the infection.  

Immunofluorescent staining and confocal microscopy. For confocal microscopy, cells were fixed to 

coverslips with 4% paraformaldehyde for 30 min. For indirect immunofluorescent staining, fixed 

cells were blocked with 3% BSA overnight and incubated with rabbit anti-Y. pestis serum (1:1,000), 

anti-Lamp1 (0.8ug/ul; Abcam ab24170), or anti-MAP-LC3α/β (1:200; Santa Cruz sc-16756) 

antibodies for 1 h. Unbound primary antibodies were removed by washing and anti-rabbit Alexa 

Fluor 488 secondary antibody (1:4000; Life Technologies) was added for 1 h.  All coverslips were 

mounted with Prolong Gold with DAPI (Life Technologies) and imaged on an Olympus FV100 laser 

or Zeiss LSM 710 laser confocal microscope. Colocalization of Lysotracker Red DND-99 or proteins 

to the YCV was determined using the Coloc function in the Imaris image analysis software 

(BitPlane).   

Statistics. All data are shown as mean and standard deviation of three to six biological replicates 

and each experiment was repeated three times to confirm the phenotypes. For microscopy, at least 
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50 vacuoles per biological replicate were analyzed. p-values were calculated by one-way ANOVA 

(or t-test for L. pneumophila experiments) using GraphPad Prism software. 
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Figure and Figure Legends 

 

 

Figure 3—1. Rab1b knockdown inhibits the survival of Y. pestis within macrophages. 

RAW264.7 macrophages were reverse transfected with Rab1a, Rab1b, scrambled (Scr), or Copβ1 

siRNA. 48 h after transfection cells were infected with Y. pestis (MOI 10). (A) Percent survival of 

intracellular CO92 pCD1(-) LuxPtolC in Rab1a or Rab1b siRNA treated macrophages as compared 

to Scr siRNA treated macrophages. (B) Bioluminescence of intracellular bacteria from 

macrophages infected for 10 h with Y. pestis CO92 pCD1(-) LuxPtolC.  (C) Conventional enumeration 

of intracellular bacteria from macrophages infected for 10 h with Y. pestis CO92 pCD1(-) LuxPtolC. 
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(D) Bioluminescence of intracellular bacteria from macrophages infected for 2 h with Y. pestis CO92 

pCD1(-) LuxPtolC. (E) Bioluminescence of intracellular bacteria from macrophages infected for 10 h 

with Y. pestis KIM D-19 LuxPtolC. (F) Conventional enumeration of intracellular bacteria from 

macrophages infected for 10 h with Y. pestis KIM D-19 LuxPtolC. (G) Bioluminescence of intracellular 

bacteria from macrophages infected for 2 h with Y. pestis KIM D-19 LuxPtolC. The limit of detection 

for conventional enumeration is denoted by the dotted line. RLU = Relative Light Units; CFU = 

Colony Forming Units. *** = p<0.001, **** =p<0.0001. 
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Figure 3—2. Rab1b knockdown does not impact Y. pestis invasion of macrophages. 

RAW264.7 macrophages were reverse transfected with Rab1b, scrambled (Scr), or Copβ1 siRNA. 

48 h after transfection cells were infected with Y. pestis CO92 pCD1(-)pGEN-PEM7::DsRED(MOI 

7.5). 20 or 80 min post-infection cells and bacteria were fixed with paraformaldehyde and 

extracellular bacteria were stained by indirect immunofluorescence with anti-Y. pestis antibody. (A) 

Representative image showing differential staining of intracellular (red) and extracellular (green or 

yellow) bacteria. Scale bar is 5µm. Asterisk denotes intracellular Y. pestis. (B and C) Percentage 

of intracellular bacteria calculated at 20 and 80 min post-infection, respectively. ** = p<0.01, ns = 

not significant. 
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Figure 3—3. Rab1b knockdown alters YCV acidification. 

RAW264.7 macrophage cells were reverse transfected with scrambled (Scr), Rab1b or Copβ1 

siRNA.  48 h after transfection cells were incubated with Lysotracker Red DND-99 for 1 h and then 

infected with live or paraformaldehyde-killed Y. pestis CO92 pCD1(-) pGEN222 expressing EGFP 

(MOI 7.5). Colocalization of Lysotracker Red DND-99 and Y. pestis CO92 pCD1(-) pGEN222 was 



 

73 
 

determined by confocal microscopy. (A) Representative images showing colocalization of 

Lysotracker Red DND-99 and Y. pestis. Scale bar is 5µm. (B) Percent of YCVs that colocalized 

with Lysotracker Red DND-99 at 20 min post-infection. (C) Percent of YCVs that colocalized with 

Lysotracker Red DND-99 at 80 min post-infection. ** =p<0.01, *** =p<0.001.  
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Figure 3—4. Rab1b knockdown increases YCV association with Lamp1. 

RAW264.7 macrophage cells were reverse transfected with either scrambled (Scr) or Rab1b 

siRNA. 48 h after transfection cells were infected with live or paraformaldehyde-killed Y. pestis 

CO92 pCD1(-)pGEN-EM7::DsRED(MOI 3). Cells were stained for Lamp1 and colocalization was 

determined by confocal microscopy. (A) Representative images showing bacterial colocalization 

with Lamp1 at 20 min post-infection. Colocalization channel was defined using Imaris software. 

Asterisks denote bacteria not colocalized with Lamp1; arrowheads denote bacteria colocalized with 

Lamp1. Scale bar is 5µm. (B) Percent of YCVs that colocalized with Lamp1 at 20 min post-infection. 

(C) Percent of YCVs that colocalized with Lamp1 at 80 min post-infection. ** =p<0.01, *** =p<0.001.  
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Figure 3—5. Rab1b knockdown does not affect YCV association with LC3. 

RAW264.7 macrophage cells were reverse transfected with either scrambled (Scr) or Rab1b 

siRNA. 48 h after transfection cells were infected with live or paraformaldehyde killed Y. pestis 

CO92 pCD1(-) pGEN-PEM7::DsRED (MOI 7.5). Cells were stained for LC3 and colocalization was 

determined by confocal microscopy. (A) Representative images showing bacterial colocalization 

with LC3 at 20 min post infection. The colocalization channel was defined using Imaris software. 

Asterisks denote bacteria not colocalized with LC3; arrowheads denote bacteria colocalized with 

LC3. Scale bar is 5µm. (B) Percent of YCVs that colocalized with LC3 at 20 min post-infection. (C) 

Percent of YCVs that colocalized with LC3 at 80 min post-infection. ns = not significant.  
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Figure 3—6. Rab1b is recruited to the YCV 

RAW264.7 macrophages were transiently transfected with pEGFP-Rab1B(CA). 24 h after 

transfection cells were infected with either live or paraformaldehyde killed Y. pestis pMCherry (MOI 

7.5) or E. coli pMCherry (MOI 20). Colocalization of EGFP-Rab1b(CA) and bacteria was 

determined by confocal microscopy. (A) Representative images showing bacterial colocalization 

with EGFP-Rab1b(CA). Colocalization channel was defined using Imaris software. Asterisks 

denote bacteria not colocalized with EGFP-Rab1b(CA); arrowheads denote bacteria colocalized 

with EGFP-Rab1b(CA); arrows denote bacteria in untransfected cells. Scale bar is 5µm. (B and C) 

Percent of bacteria colocalized with EGFP-Rab1B(CA) at 20 and 80 min post-infection. * =p<0.05; 

** =p<0.01; *** =p<0.001. 
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Figure 3—7. Inhibition of the secretory pathway does not inhibit Y. pestis intracellular 

survival. 

RAW264.7 macrophages were treated with 0, 0.2 or 10 µM BFA prior to infection with Y. pestis 

CO92 pCD1(-) LuxPtolC  (MOI 10). Extracellular bacteria were killed with gentamicin and intracellular 

bacterial numbers were monitored at (A) 2 h and (B) 10 h post-infection by bioluminescence. To 

determine if BFA treatment impacted the ability of Y. pestis to inhibit YCV acidification, 

macrophages treated with 10 µM BFA were incubated with Lysotracker Red DND-99 prior to 

infection with live or paraformaldehyde killed Y. pestis CO92 pCD1(-) pGEN222 (MOI 3). Bacterial 

Colocalization with Lysotracker Red DND-99 was determined by confocal microscopy at (C) 20 and 

(D) 80 min post-infection. ns = not significant. 

 



 

78 
 

 

Figure 3—8. Knockdown of Rab1b Increases L. pneumophila LCV acidification. 

RAW264.7 macrophage cells were reverse transfected with either scrambled (Scr) or Rab1b 

siRNA. 48 h after transfection cells were incubated with Lysotracker Red DND-99 for 1 h, and 

infected with L. pneumophila pMIP-GFP (MOI 10). Coverslips were fixed and colocalization of 

Lysotracker was determined by confocal microscopy.  (A) Representative images showing 

colocalization of Lysotracker with L. pneumophila.  Scale bar is 5µm. (B) Percent of LCVs that 

colocalized with Lysotracker at 20 min post-infection. (C) Percent of LCVs that colocalized with 

Lysotracker Red DND-99 at 80 min post-infection. **=p<0.05, ***=p<0.001. 
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Supporting Information 

 

 

Figure 3—9. S1 Transfection with Rab1b siRNA in macrophages 

RAW264.7 macrophages were reverse transfected with either scrambled (Scr) or Rab1b siRNA 

and incubated for 48 h. (A) Total RNA was isolated from transfected cells (n=5) and Rab1b, Rab1a, 

Rab5a, Rab7 and Rab9 transcript levels were determined by qRT-PCR (Rab1b primers: 5’-

TGTCCTTTGTGCTGTCTCTTG -3’ and 5’- TCATCCTTTTCCATCTTCCCC -3’; Rab1a primers: 5’- 

CCTGCCTTCTCCTTAGGTTTG -3’ and 5’- TCGAAATCTTTCCTGGCCTG -3’; Rab5a primers: 5’- 

TGGTCAAGAACGGTATCATAGC -3’ and 5’- GCCTTTGAAGTTCTTTAACCCAG -3’; Rab7 

primers: 5’- AATAGGAGCGGACTTTCTGAC -3’ and 5’- CATCAAACACCAGAACACAGC -3’); 

Rab9 primers: 5’- CACGGAAGATAGGTCAGAACAC -3’ and 5’- CCCTTTAATGCCATCAACAGC 

-3’); GapDH primers: 5’- AATGGTGAAGGTCGGTGTG -3’ and 5’- ACAAGCTTCCCATTCTCGG -

3’). Relative expression was calculated using the ΔΔCt method [228].  Only Rab1b levels were 

significantly altered in Rab1b siRNA-treated cells compared to scramble treated cells (**=p<0.01; 

Student’s T-test). (B) Whole cell lysates were harvested from transfected cells and Rab1b protein 

levels (anti-Rab1b(G-20); Santa Cruz sc-599) were determined by Western blot.  β-actin (anti-β-

Actin; Abcam ab8227) represents  loading control. (C) Cell viability of Rab1b siRNA transfected 

cells was determined using Cell Titer-Glo as described by the manufacturer (Promega). No 

significant difference in viability was observed between Rab1b siRNA treated cells and scramble 

siRNA-treated (Scr), untransfected macrophages (Cells), or macrophages treated with 

Lipofectamine without siRNA (Lipo). RLU = Relative Light Units. 
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Figure 3—10. S2 Growth at 37°C does not alter intracellular survival of Y. pestis. 

RAW264.7 macrophages were reverse transfected with Rab1b, scrambled (Scr), or Copβ1 siRNA. 

48 h after transfection cells were infected with Y. pestis CO92 pCD1(-) LuxPtolC (MOI 10) grown for 

3 h at 37oC prior to infection. (A) Bioluminescence of intracellular bacteria from macrophages 

infected for 2 h. (B) Bioluminescence of intracellular bacteria from macrophages infected for 10 h. 

RLU = relative light units. *** = p<0.001 

.
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Figure 3—11. S3 Rab1b knockdown inhibits the survival of enteric Yersinia within 

macrophages. 

RAW264.7 macrophages were reverse transfected with Rab1b, scrambled (Scr), or Copβ1 siRNA. 

48 h after transfection cells were infected with pYV cured Y. enterocolitica 8081 [229] or Y. 

pseudotuberculosis IP32952 [17](MOI 10). Extracellular bacteria were killed with gentamicin and 

at 2 and 10 h post infection intracellular bacteria were determined by conventional enumeration. 

(A) Intracellular Y. enterocolitica at 2 h post infection. (B) Intracellular Y. enterocolitica at 10 h post 

infection. (C) Intracellular Y. pseudotuberculosis at 2 h post-infection (D) Intracellular Y. 

pseudotuberculosis at 10 h post-infection. The limit of detection for conventional enumeration is 

2.5 log10 CFU. CFU = colony forming units. * = p<0.05, *** = p<0.001 

.
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Tables 

Table 3--1. Table S1 Bacterial strains used in these studies. 

Table S1. Bacterial Strains   

Bacterial Strains  References/sources 

Y. pestis CO92 pCD1(-)  [9] 
Y. pestis KIM D-19 pgm(-) pCD1(+)  BEI Resources 
Y. pseudotuberculosis IP32593 pYV(-)  [17] 
Y. enterocolitica 8081 pYV(-)  [229] 
E. coli DH5α  New England Biolabs 
L. pneumophila AA100  [224] 
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CHAPTER 4: 

GENOME-WIDE RNAI HIGH-THROUGHPUT SCREEN IDENTIFIES THAT 

YERSINIA PESTIS EXPLOITS THE HOST ENDOCYTIC RECYCLING 

PATHWAY FOR INTRACELLULAR SURVIVAL 
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Introduction 

 Yersinia pestis is a facultative intracellular pathogen that causes the human disease known 

as plague [1, 5]. There have been three major plague pandemics, the most noted being the Black 

Death during the 14th century [1]. Recent epidemiological data demonstrates that Y. pestis is 

endemic in many countries, including the United States, and have led to the World Health 

Organization classifying plague as a re-emerging disease [1, 5]. In 2015, the Centers for Disease 

Control and Prevention (CDC) reported 15 human plague cases in the United States with three 

fatalities [6].  There are three forms of human plague: bubonic, pneumonic, and septicemic plague. 

Each form of plague results in an acute infection but is highlighted by the tissues primarily colonized 

by Y. pestis.  Bubonic plague is the most common form of human plague and arises after a bite 

from a Y. pestis infected flea. The bacteria rapidly disseminate from the inoculation site through the 

lymphatic system and colonize the draining lymph node [1, 49, 184]. Eventually the bacteria enter 

and replicate in the bloodstream, leading to the formation of septicemic plague [1, 6].  In rare cases, 

Y. pestis can be directly inoculated into the blood by a flea or from the bite of an infected animals, 

resulting in primary septicemic plague without colonization of the lymphatic system [1]. From the 

blood, Y. pestis is distributed throughout the body and colonizes other tissues such as the spleen, 

liver and lungs. Colonization of the lungs leads to the development of secondary pneumonic plague 

and the potential for patients to aerosolize Y. pestis by coughing and person-to-person 

transmission. Inhalation of infected aerosols by naïve individuals can result in colonization of the 

lungs by Y. pestis and the development of primary pneumonic plague. All three forms of plague are 

very rapid infections with high mortality rates in the absence of early antibiotic treatment. [1, 230]. 

Furthermore, the ability for aerosol transmission of the Y. pestis raises the potential for this 

bacterium to be used a biological weapon [14].  

In the environment, Y. pestis is maintained through a zoonotic transmission cycle between 

rodents and fleas [1, 5]. The ability of Y. pestis in exist in these two very different hosts is a result 

of the acquisition virulence factors required for the mammalian host and transmission factors 

required for flea colonization [1, 42, 48, 231]. The bacterium regulates these two groups of factors 

accordingly to ensure expression of appropriate factors only when required [1, 41, 42, 48, 231, 
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232]. For example, important antiphagocytic factors expressed during mammalian infection, like 

the Ysc type three secretion system (T3SS), secreted Yop effectors, and the Caf1 capsule, are not 

required for flea infection and are thus repressed in the flea vector[1]. However, the repression of 

these antiphagocytic factors in the flea means that during the initial colonization of the mammalian 

host during bubonic plague, Y. pestis is not expressing important virulence factors. Therefore, there 

is a transition period when the bacteria are highly susceptible to recognition and phagocytosis by 

macrophages and neutrophils immediately upon flea transmission [51, 54]. This susceptibility is 

highlighted by intravital microscopy of the infection site by Shannon et al. [233]. Following flea 

transmission of Y. pestis to the dermis of the ear, polymorphonuculear leukocytes (PMNs) are 

rapidly recruited to the infection site and appear to phagocytosis the bacteria. To a lesser degree, 

host macrophages are also recruited and engulf bacteria. Interestingly, infected macrophages 

appeared to migrate away from the infection site. Importantly, growing evidence suggests that 

these two phagocytes have very different abilities to kill Y. pestis [51, 53, 58, 80-82, 233].  

Specifically, neutrophils appear to be much more efficient at killing phagocytosed bacteria than 

macrophages [53, 58, 80].  Moreover, several studies suggest that Y. pestis actively inhibits killing 

by both mouse and human macrophages [54, 55, 57, 59, 82, 83, 86, 152].  

Intracellular Y. pestis have been isolated from macrophages in both rodent and nonhuman 

primate models of plague and from plague infected patients [49, 58, 84, 234, 235]. These findings 

suggest Y. pestis intracellular survival may contribute to virulence. Supporting this hypothesis, Ye 

at el. showed that animals selectively depleted of macrophage/dendritic cell populations exhibited 

delayed dissemination and subsequently lower bacterial burdens during plague infection [52]. 

Moreover, the Y. pestis phoPQ mutant, which is defective for survival within macrophages [56, 83, 

86, 90], has a 75-fold attenuation in subcutaneous infection of BALB/c mice and a significant delay 

in the development of lethal disease in Swiss Webster mice [56, 90].  In contrast, studies with 

canine macrophages, a species relatively resistant to plague [62], demonstrated that Y. pestis is 

defective in intracellular survival in these cells compared to murine macrophages [62, 91].  These 

data, combined with studies showing the sensitivity of Y. pestis to PMN phagocytic killing [53, 58, 
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80], suggest that Y. pestis infection of macrophages may provide an intracellular niche to avoid 

killing by PMNs during early stages on infection. 

Upon phagocytosis by macrophages, Y. pestis quickly and actively inhibits the normal 

maturation process of the phagosome [54, 55, 57, 59, 83, 86, 152]. A hallmark of this process is 

the inhibition of phagosome acidification by Y. pestis [55, 59]. The bacterium remains within this 

phagosome throughout the course of the intracellular infection, eventually remodeling it into a 

compartment called the Yersinia containing vacuole (YCV). In addition to maintaining a neutral pH, 

a subset of the YCVs eventually mature into autophagosome-like compartments, acquiring both 

LC3-II and double membranes [88, 89]. During late infection, the YCV begins to expand from a 

tight fitting vacuole to a spacious vacuole, which coincides with bacterial replication [55, 59, 62, 86, 

88, 89].  While autophagy has been noted during Y. pestis infection, the extent to which it impacts 

intracellular survival is not fully understood [59]. However, studies with Y. pseudotuberculosis 

indicate autophagy is important for intracellular bacterial metabolism [88, 89].  

Recently we identified the first host factor required by Y. pestis for the YCV biogenesis 

process [61]. We showed that the Rab GTPase Rab1b, which normally mediates ER-Golgi 

trafficking [209, 210], is rapidly recruited to the YCV and is required for Y. pestis to inhibit vacuole 

acidification and phagosome maturation within macrophages.  While Rab1 has been shown to be 

recruited to the vacuole of several intracellular pathogens [61, 118, 188, 189, 191, 192, 194], these 

studies were the first to link recruitment to avoidance of the phagosome acidification maturation.  

Furthermore, inhibition of pathogen-containing vacuole (PCV) acidification by Rab1 recruitment 

may be a conserved virulence mechanism for intracellular pathogens as RNAi of Rab1 during 

Legionella pneumophila infection also resulted in LCV acidification [61].  These data demonstrate 

that Y. pestis actively targets host factors to subvert macrophage phagosomal maturation and/or 

to generate a protective replicative niche within the macrophage. Here we attempt to identify 

additional host factors required for Y. pestis intracellular survival by developing an RNAi-based, 

high throughput assay to monitor the impact of host factors on Y. pestis survival in macrophages. 

Using this assay, we performed a whole genome screen and identified 135 genes contributing to 

Y. pestis intracellular survival. Network analysis of these genes revealed enrichment for factors 
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involved in host cell recycling pathway.  Based on these findings, we demonstrate that Y. pestis 

actively remodels the YCV to resemble host recycling endosomes. Finally, we demonstrate that Y. 

pestis infection also disrupts normal host cell recycling, likely through sequestration of Rab11.  

Results 

Development of a high throughput assay to monitor the impact of host gene RNAi on Y. pestis 

intracellular survival 

RNAi has been used to identify host factors required for intracellular survival of several 

pathogens [130-133, 135-142]. However, most of these screens have used Drosophila or HeLa cell 

lines, which may not present the same hurdles to intracellular survival as a pathogen may 

encounter during infection of macrophages. As macrophages are specifically infected during Y. 

pestis infection, our first goal was to select a macrophage cell line that was amendable to 

Lipofectamine-mediated transfection/RNAi needed for high-throughput screening. Towards this 

end, we tested siRNA transfection and knockdown in several human and mouse macrophage cell 

lines. While robust RNAi was observed in mouse macrophages, we were unable to reproducibly 

knockdown gene expression in human cell lines (data not shown). Based on these results, we 

chose RAW264.7 mouse macrophages for further optimization. Using a combination of siRNAs 

targeting genes of variable expression levels, we optimized Lipofectamine/siRNA concentrations 

and the transfection time to consistently achieve >70% knockdown of targets (Fig. 4-1A). We also 

confirmed the transcript knockdown correlated with decreased protein levels for GAPDH and 

COPB1 (Fig. 4-1B). Next, we established whether we could monitor changes Y. pestis intracellular 

survival in siRNA-treated macrophages. Macrophages were transfected with siRNAs targeting 

Rab2A and Copβ1, genes shown to impact the intracellular survival of multiple pathogens [130, 

135, 138, 140, 141] and infected with Y. pestis CO92 pCD1(-)LuxPtolC [151]. This bioluminescent 

bioreporter can differentiate as little as a 2-fold difference in macrophage intracellular burdens (Fig. 

4-1C) and bioluminescence directly correlates to intracellular bacterial numbers (Fig. 4-1D; R2 = 

0.89). Transfection with these two siRNAs significantly inhibited Y. pestis intracellular survival 

compared scrambled siRNA treated macrophages (Fig. 4-1E), demonstrating the utility of this 
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approach to identify host factors required for Y. pestis intracellular survival.  Finally, using Copβ1 

siRNA as a positive control, we determined the robustness of our assay by establishing a Z′ factor. 

Z′ factors between 0.5 and 1 represent highly reproducible assays that are amenable to high 

throughput analysis [143, 144, 149]. At 2 and 10 hours post infection, we calculated a Z′ factor of 

0.61 and 0.83, respectively, indicating a highly robust assay (Fig. 4-1F). Together these results 

indicate a robust assay that can be used for high throughput screening of host factors required for 

Y. pestis intracellular survival (Fig. 4-1G).  

Genome-wide siRNA screen identifies host cell signal transduction, transport and localization 

pathways are required for Y. pestis intracellular survival. 

To identify host factors required for Y. pestis intracellular survival, RAW264.7 macrophages 

were reverse transfected with siRNAs targeting 17,370 genes, representing the whole mouse 

genome, and infected with Y. pestis CO92 pCD1(-)LuxPtolC . Each plate also contained control wells 

transfected with scrambled or COPβ1 siRNAs. Bioluminescence was measured at 2 and 10 h post-

infection and Z′ factors were calculated from the control wells (the average Z′ factor for the screen 

at 2 and 10 h were 0.57 and 0.66, respectively). Plates with Z′’ factor less than 0.3 were repeated. 

At 12 h post-infection cell viability was also determined for 14,203 of the genes. Bioluminescence 

was normalized for each plate based on control wells and changes in Y. pestis intracellular survival 

were ranked by normalized scores (Fig 4-2A). 302 siRNAs that inhibited bacterial growth and 39 

siRNAs that promoted bacterial growth were selected for secondary validation based on selection 

criteria outlined in the Materials and Methods. 23 additional siRNAs associated with autophagy 

were also chosen for further validation.  For secondary validation, RAW264.7 macrophages were 

transfected with siRNAs targeting the 364 primary screen hits and subsequently infected with two 

different Y. pestis strains, one with the Ysc T3SS (KIMD19 pCD1(+) LuxPtolC) and one without (CO92 

pCD1(-) LuxPtolC). Bioluminescence was measured at 2 and 10 h post-infection and normalized 

scores from each strain were compared (Fig 4-2B). A direct correlation was observed between the 

two strains (rs =0.87) supporting previous studies that have shown that the T3SS is dispensable for 

intracellular survival [54, 61, 83, 151]. From the primary hits, we confirmed that 135 siRNAs showed 



 

89 
 

≥40% inhibition of Y. pestis intracellular survival and 7 siRNAs showed a hypervirulent phenotype 

with ≥20% more growth than scrambled controls (Table 4-1).   

To identify specific host pathways that may have been enriched for by our screen, we used 

a combination of Gene Ontology (GO) clustering and network analyses on our validated data set. 

ClueGO, a third party Cytoscape app,  clusters genes under their GO term in a non-redundant 

manner, while preserving the highest enrichment of the parent GO term by applying a two sided 

hypergeometric test and kappa score to generate significance testing  (for review see [236, 237]). 

Using all GO evidence codes, a minimum kappa score of 0.4, and a p-value threshold of 0.05, we 

observed substantial clustering within the validated dataset (Fig. 4-3A). Of the five enriched groups, 

the largest clustering enrichment was under Rab protein signal transduction (pV ≤ 0.001; Fig. 4-

3B). Additional enrichment included vesicle-mediated transport, vacuole organization, vesicle 

docking and mitochondrion organization (Fig. 4-3B).  Under the parent GO Term clusters, detailed 

GO terms significantly focused on host trafficking networks, transport and localization were 

common themes (Fig. 4-3C). 

Based on the significant enrichment for Rab GTPase signal transduction in the GO 

ontologies, we next determined the degree to which the nine validated Rab GTPases (1b, 2b, 3d, 

4a, 19, 20, 23, 30, & 40b) interacted within our validated screen hits. Using the GTPases as focal 

points, we generated a map of direct interactions from these Rab GTPases within our validated 

screen hits.  These interactions were mapped using a combination of STRING and BioGRID 

databases to create a Circos plot with known interactions (gray), activators (green), and inhibitors 

(red) (Fig 4-4A).  The Circos plot showed 8% (11 genes) of the validated hits directly interact with 

these validated Rab GTPases.  Next, we sought to identify the degree to which the validated Rab 

GTPases interacted within the validated and primary hit interactome.  To do this, we identified direct 

interactions between all validated genes, and then expanded this analysis to include direct 

interactions with all primary screen hits using the STRING and BioGRID databases.  These data 

were used to generate a map of the interactome using Cytoscape (Fig. 4-4B).  This interactome 

showed that 59% of the genes identified in the primary screen and 28% of validated genes directly 

interacted with one another and that several of the Rab GTPases were part of this interactome. 
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Together this data suggest that specific Rab-mediated host traffic pathways are targeted by Y. 

pestis in order to subvert phagosome maturation and intracellular survival. Host cell recycling is 

essential for Y. pestis survival 

Host cell recycling is essential for Y. pestis survival 

Rab GTPases are well studied regulators of cellular trafficking and endocytic pathways 

[185].  Our initial bioinformatic analysis of validated genes emphasized Rab-mediated endocytic 

trafficking as essential for Y. pestis intracellular survival. The Rab GTPases from our validated 

dataset could be categorized into three trafficking pathways: 1) host cell recycling (Rab4a, 20, 23, 

& 30); 2) retrograde trafficking (Rab1b & 2b); and 3) the secretory pathway (Rab40b) [99, 101, 102, 

185, 238, 239].  As there appeared to be significant enrichment for Rab proteins involved in host 

cell recycling, we focused on this pathway for further analysis.  

Rab4a, Rab11b and Myo5b are well characterized contributors to host cell recycling [238]. 

While Rab4a was a validated gene in our screen, the other two genes did not pass our primary 

screen criteria (≥60% inhibition of Y. pestis survival; <50 cytotoxicity) - Rab11b only inhibited Y. 

pestis survival by 50% in the primary screen and Myo5B was cytotoxic (upon subsequent analysis, 

only one of the three Myo5B siRNAs used in the primary screen was cytotoxic; data not shown).  

However, because of the importance of these proteins in the recycling pathway, we chose to 

independently verify the contribution of Rab4a, Rab11b and Myo5b on Y. pestis intracellular 

survival. Toward this end, RAW264.7 macrophages were transfected with single siRNAs targeting 

each of the three genes. Transfection with each siRNA resulted in >60% knockdown on each gene 

target (Fig. 4-5A) with no significant loss in cell viability (Fig 4-5B).  Subsequent infection with Y. 

pestis CO92 pCD1(-)LuxPtolC  confirmed that knockdown of all three genes impacted the ability of Y. 

pestis to survive within the macrophage (Fig. 4-5C-F). Knockdown of Rab4a had the largest impact, 

inhibiting Y. pestis survival by 40% at 2 h (Fig. 4-5C; p<0.001) and >80% at 10 h (Fig. 4-5D; 

p<0.001).  Interestingly, knockdown of Rab11b and Myo5B had no significant impact on Y. pestis 

survival at 2 h (Fig. 4-5C), but attenuated Y. pestis by >40% at 10 h (Fig. 4-5D; p<0.001).  

Bioluminescence data was confirmed at 10 h by conventional bacterial enumeration (Fig. 4-5E). 

Importantly, knockdown of Rab4a or Rab11b did not alter the expression of Rab GTPases involved 
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with phagolysosome maturation (Fig. 4-6A & B). Together these data indicate that Y. pestis requires 

the host recycling pathway to avoid killing by macrophages. 

Y. pestis requires Rab4a of the recycling pathway to avoid YCV acidification 

The decreased Y. pestis bioluminescence observed at 2 h for the Rab4a RNAi-treated cells 

could be attributed to either decreased bacterial uptake or early survival in the phagosome. To 

differentiate between these two possibilities, RAW264.7 macrophages transfected with siRNA 

targeting Rab4a or Rab11b were infected with Y. pestis-GFP. 20 min post-infection, extracellular 

bacteria were differential stained and quantified by confocal microscopy (Fig. 4-7A & B). The ratio 

of extracellular/total bacteria was compared to scrambled and Copβ1 siRNA treated macrophages.  

RNAi inhibition of Copβ1 has been previously shown to prevent RAW264.7 macrophage uptake of 

Y. pestis [61].  Using Copβ1 as a positive control, we show >35% inhibition of Y. pestis invasion 

(Fig. 4-7B).  The data shows there is no significant difference between Rab4a or Rab11b treated 

cells in comparison to the negative control (Fig. 4-7B).  These together suggested that Rab4a 

inhibition of Y. pestis survival was due to events impacting early YCV biogenesis post-invasion.   

Similar to Rab4a, we have previously shown that RNAi of Rab1b resulted in significant 

reduction in Y. pestis intracellular survival at 2 h post-infection, which directly correlated to an 

increase in the frequency of YCV acidification [61].  Therefore, we next determined the impact of 

Rab4a, Rab11b and Myo5b RNAi on YCV acidification. To monitor YCV acidification, transfected 

macrophages were pulsed with Lysotracker Red DND-99 prior to infection with Y. pestis CO92 

pCD1(-) pGEN222::EGFP. Lysotracker Red DND-99 is a fluorescent probe which accumulates in 

acidified vacuoles (<pH 5.5).  As a positive control, macrophages were also infected with 

paraformaldehyde killed Y. pestis CO92 pCD1(-) pGEN222::EGFP [59, 61]. As previously shown, 

Y. pestis actively avoided YCV acidification with <20% of YCVs colocalized with Lysotracker Red 

DND-99 by 80 min post-infection (Fig. 4-7E) [61]. In contrast, YCV containing paraformaldehyde 

killed Y. pestis is acidified as >80% of YCVs were acidified by 80 mins post infection (Fig. 4-7E). 

As indicated by our RLU data, Rab4a knockdown increased YCV acidification to 55% by 20 min 

post-infection, and >70% by 80 min post-infection (pV ≤0.001; Fig. 4-7D &E). Our data shows that 

Rab4a and Rab11b are not required for Y. pestis invasion. However, Rab4a is required Y. pestis 
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to avoid early YCV acidification.  In contrast, Rab11b and Myo5b impact YCV acidification later in 

the process of intracellular survival as inhibition of these host factors impact acidification to a larger 

degree at 80 mins post-infection.   

Interestingly, while there was a statistically significant increase in YCV acidification with the 

loss of Rab11b at 20 mins post infection (10%; Fig. 4-7D) this did not reflect the 2 h RLU data (Fig. 

5C). Moreover, by 80 mins post infection the loss of Rab11b caused a >40% of YCVs to acidify 

(Fig. 4-7D) which parallels our RLU data at 10 hours post infection (Fig. 4-5D).  Finally, the loss of 

Myo5b had no effect on YCV acidification at 20 mins post infection, but by 80 mins post infection 

increased YCV acidification by >40% (Fig. 4-7D), which again reflected bioluminescence data at 

10 hours post infection (Fig. 4-5D).  In summary, our findings demonstrate that Rab4a, Rab11b, 

and Myo5b are required for efficient avoidance of YCV acidification within the first 80 mins of 

infection.  Furthermore, these data suggest that Y. pestis is actively exploiting the recycling 

endocytic pathway for YCV biogenesis. 

The Yersinia containing vacuole acquires recycling endosome markers 

Rab GTPases exert their function through coordinated and sequential direct interactions 

on the vesicle membrane [102, 185].  Recycling endosome maturation/trafficking is initiated by 

Rab4a for fast recycling back to the plasma membrane on the early endosome [238].  In contrast, 

Rab4a is exchanged for Rab11b for the maturation/trafficking of slow recycling vesicles that reside 

spatially close to the Golgi-ERGIC space [238].  Therefore we postulated that Y. pestis hijacks the 

host endocytic recycling pathway by recruiting Rab4a to the early YCV, and then exchanges Rab4a 

for Rab11b in order to remodel the YCV as a slow recycling endosome.  To determine if Rab4a or 

Rab11b are recruited to the YCV, RAW264.7 macrophages were transfected with plasmids 

expressing Rab4a or Rab11b fused to EGFP [108] followed by infection with either Y. pestis CO92 

pCD1(-) pGEN::mCherry, paraformaldehyde killed Y. pestis CO92 pCD1(-) pGEN::mCherry,  or E. 

coli pGEN::mCherry. Association with Rab4a or Rab11b was determined by confocal microscopy 

(Fig. 4-8A).  Rab4a localized to paraformaldehyde killed Y. pestis and E. coli at 50% and 45% 

respectively by 20 mins post infection (Fig. 4-8B). In contrast, live 75% of live Y. pestis bacteria 

colocalized with Rab4a at 20 mins post-infection (Fig. 4-8B). The localization of Rab4a, at 20 mins 
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post infection to both paraformaldehyde killed Y. pestis and E. coli associate and could reflect the 

nature of Rab4a on the early sorting endosome [238]. 

However, by 80 mins post infection there is substantial loss of Rab4a to both 

paraformaldehyde killed Y. pestis and E. coli, 30% and 20% colocalization respectively. In contrast, 

live Y. pestis still retains 65% colocalization. Of note, is the significant drop in Rab4a colocalization 

with live Y. pestis by 80 mins post infection. In respect to Rab11b, by 20 mins post-infection 75% 

of live YCVs colocalized with Rab11b in contrast to 20% for paraformaldehyde killed Y. pestis and 

E. coli (Fig. 4-8C). The association of Rab11b with live Y. pestis significantly increases to 85% 

(p≤0.05) by 80 mins post-infection, whereas paraformaldehyde killed Y. pestis and E. coli remained 

at 20% (Fig. 4-8C).  These data taken together indicate that Y. pestis is actively recruits, and 

potential retains, Rab4a and Rab11b to the YCV during early stages of infection. 

Y. pestis infection stalls host recycling 

 Our data has shown that Rab4a and Rab11b, and indirectly host cell recycling, are required 

for Y. pestis to actively subvert the maturation of the phagosome. Recruitment of these proteins to 

the YCV also indicates that Y. pestis remodels its phagosome to resemble a recycling endosome.  

Because of these links to host cell recycling, we next tested whether infection with Y. pestis has an 

impact on host cell recycling of the infected macrophage. Toward this end, we monitored transferrin 

receptor (TfR) recycling using differential antibody labelling as a measure of global host cell 

recycling. As a positive control for this assay, Rab4a, which is required for efficient recycling of TfR 

[240-242], was knockdown by RNAi and compared to scramble siRNA transfected macrophages. 

In scramble control samples, intracellular TfR peaked at 10 min post-antibody labelling of the TfR 

and recycling was observed at 20 mins, with a decrease in the intracellular receptor (Fig. 4-9C).  In 

contrast, while intracellular TfR also peaked at 10 min post-antibody labelling in Rab4a siRNA 

treated cells, the steady state level of intracellular receptor remained significantly elevated as 

compared the scrambled control (pV ≤0.001; Fig. 4-9C). Importantly, TfR intensity per cell remained 

significantly (pV ≤0.001) elevated in the Rab4a siRNA treated cells even at 24 h, indicating 

continued inhibition of recycling.   
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To determine the impact of Y. pestis infection on recycling, RAW264.7 macrophages were 

treated with anti-TfR antibody and then infected with Y. pestis CO92 pCD1(-)pGEN::dsRed, 

paraformaldehyde killed Y. pestis CO92 pCD1(-)pGEN::dsRed, or E. coli K12 pGEN::dsRed.  At 2 

and 24 h post-infection, cells were fixed and intracellular TfR intensity per cell per field was 

determined by microscopy (Fig.4-10A).  Unlike paraformaldehyde killed bacteria, infection with live 

Y. pestis stalled host recycling as early as 2 h post-infection, resulting in significantly higher 

intracellular TfR intensity per cell per field as compared to uninfected cells, and continued to impact 

recycling as long as 24 h post-infection (Fig. 4-10). Furthermore, we observed a dose response, 

with greater MOIs of Y. pestis resulting in increased intracellular TfR intensity per cell per field. 

Importantly, infection with 10-fold higher numbers of E. coli K12 did not result in a significant change 

in TfR retention.  Next, we confirmed these results in primary macrophages. As observed for 

RAW264.7 macrophages, infection of human monocyte derived macrophages (HMDMs) with Y. 

pestis resulted in increased intracellular TfR intensity per cell per field, while infection with 

paraformaldehyde killed Y. pestis or E. coli had no impact on recycling (Fig.4-10 C,D,F & G). Finally, 

HMDMs were also infected with Salmonella enterica Typhimurium to determine if infection with 

another intracellular pathogen impacted the host cell recycling pathway. In contrast to Y. pestis, S. 

enterica Typhimurium had no impact on TfR recycling (Fig. 4-10H & I). Importantly, Y. pestis 

intracellular growth was also not impacted by the presence of the TfR antibody (Fig.4-11). Together 

these data demonstrate that Y. pestis actively inhibits host cell recycling (vs. killed Y. pestis), 

inhibition is not just a response by macrophages to bacteria (vs. E. coli K12), and inhibition is 

pathogen specific (vs. S. enterica Typhimurium).  

Stalling host cell recycling is required for Y. pestis replication 

 Y. pestis infection stalls host recycling as early as 2 h post-infection.  Since Rab11b is 

recruited to the YCV, it is possible that Y. pestis infection stalls host cell recycling through 

sequestration of Rab11b on the YCV. If this is true then overexpression of Rab11b may be able to 

restore host cell recycling. To test this hypothesis, RAW264.7 macrophages transfected with a 

plasmid overexpressing wildtype Rab11b-EGFP [108] were infected with Y. pestis CO92 pCD1(-) 

pGEN::mCherry and TfR recycling was monitored.  At 2 h post-infection untransfected cells showed 
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a >2 fold increase in both TfR intensity and endosomes per cell over Rab11b transfected cells (Fig. 

12 A & B).  By 24 h post-infection Rab11b transfected cells have a 2 fold increase in TfR intensity 

(Fig. 4-12C), and have a significantly lower level of endosomes per cell (pV ≤0.001; Fig. 4-12D).  

In contrast, untransfected cells have a significantly higher TfR intensity per cell (pV ≤0.01; Fig. 4-

12C), but have a >2 fold increase in endosomes per cell (Fig. 4-12D).  Overexpression of Rab11b 

restored host cell recycling and significantly decreased the amount of TfR endosomes per cell (pV 

≤0.001; vs untransfected).  Our data showed Rab11b loss significantly impacted Y. pestis survival 

at 10 h post-infection (p ≤0.001; Fig. 4-5D), and through accumulation of Rab11b Y. pestis stalled 

host cell recycling.  We therefore, hypothesized that Rab11b overexpression would impact bacterial 

burden in Rab11b transfected cells. To test this, we quantified bacteria number per cell in Rab11b 

transfected vs untransfected cells.  Overexpression of Rab11b prevents bacterial replication in 

RAW264.7 macrophages at 24 h (Fig. 4-12 E & F).  At 2 h post-infection there are equal numbers 

of bacteria between transfected and untransfected cells (Fig. 4-12F).  However, at 24 h post-

infection there >4 fold increase in bacteria in untransfected cells (Fig. 4-12H).  These data 

demonstrate that Y. pestis infection disrupts host cell recycling and this is required for bacteria 

replication. 

Discussion 

Y. pestis is easily phagocytosed by monocytes/macrophages during the initial transition 

from the flea to the mammalian host [54]. Once engulfed Y. pestis resides in a Yersinia-containing 

vacuole (YCV) that is remodeled by the bacterium to avoid normal phagolysosome maturation and 

generate a cellular compartment for replication [54, 55, 59]. While paraformaldehyde-killed Y. pestis 

is trafficked to an acidified compartment, and live Y. pestis is not [56, 59, 61, 83, 86]. These 

observations indicate Y. pestis actively modulates host-pathogen interactions during infection to 

avoid YCV acidification and establish a replicative niche within the macrophage. While the fate of 

Y. pestis within the host macrophage is well studied, the mechanisms and cellular processes 

necessary to support Y. pestis intracellular infection are largely unknown.  

To better understand the cellular processes required for Y. pestis intracellular survival, we 

designed and conducted the first ever RNAi genome-wide screen to identify essential host 
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processes necessary for survival of Y. pestis inside macrophages. From our screen we identified 

135 host targets required by Y. pestis during infection of the macrophage. These gene targets 

enriched for three key cellular processes: vesicular trafficking, transport, and localization within the 

cell. The ontologies of these cellular processes provide the evidence that Y. pestis specifically 

targets host vesicular trafficking during intracellular infection. Analysis of these GO ontologies 

revealed overlap between the processes which highlighted the essential role of the host recycling 

pathway for the dynamic maturation of the YCV.  Furthermore, mapping the interactions between 

the validated and primary screen hits showed enrichment focused on recycling Rab GTPases. 

 Following up on these findings, we demonstrate that Y. pestis recruits recycling markers 

Rab4a and Rab11b to the YCV to resemble/enter the recycling pathway. RNAi of Rab4a, Rab11b, 

and Myo5b increased YCV acidification, but two distinct phenotypes were observed.  Rab4a 

knockdown increased YCV acidification within 20 mins post-infection, which was sustained out to 

80 mins, whereas, inhibition of Rab11b and Myo5B did not have a dramatic impact on YCV 

acidification until 80 mins post-infection, and the impact was not to the same extent as Rab4a.  

From this data, we postulate that Rab4a and Rab1b (identified to be required for rapid inhibition of 

YCV acidification in a previous study [61]) are recruited to the YCV specifically to arrest YCV 

acidification and avoid phagolysosome maturation.  

Conversely, Rab11b while recruited early to the YCV, plays a dominant role in bacterial 

replication and is not specifically required to avoid YCV acidification.  Rapid recycling via Rab4a 

occurs off of the early endosome prior to trafficking into a slow recycling arm, which requires 

Rab11b [238]. Rab11b moves recycling endosomes into the slow recycling pathway through 

additional trafficking components, such as Myo5b, Rab11fip proteins and Arf6 [238, 243, 244]. Our 

findings suggest that Y. pestis is trafficked into a slow endocytic path as RNAi inhibition of Rab11b 

and Myo5b have no impact on bacterial survival within 2 h of Y. pestis infection of the macrophage.  

However, by 10 h post-infection both Rab11b and Myo5b attenuate bacterial burden by >50%.  

Additional analysis of the limited, but growing literature on recycling endosome maturation, we 

identified additional genes that regulated Rab11b also inhibited Y. pestis survival.  Known Rab11b 

interactors are: EHD1, Rab11fip2, 3, & 5, and Arf1 [238].  Two of these components, (EHD1 & 
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Arf1), inhibited Y. pestis survival by ~ 30% at 10 h during primary screening, but did not make cutoff 

criteria for inclusion in the validation screens.  We believe Rab11b and Myo5b are essential for 

latter stages of YCV biogenesis, potentially through exploitation of the slow endocytic recycling 

arm.  Furthermore, our novel finding that overexpression of Rab11b prevents Y. pestis replication 

suggests that targeting Rab11b is a major regulator separating intracellular Y. pestis survival from 

replication within a spacious YCV.   

Intriguingly, inhibition of Rab11 isoforms have been shown to impact the survival of other 

pathogens that replicate in expanded independent intracellular compartments, such as Anaplasma 

phagocytophilum and Chlamydia spp [191, 194].  A. phagocytophilum recruits Rab11a to the  

Anaplasma phagocytophilum-occupied vacuole (ApV) within 5 h post-infection (>43% of ApVs), 

and this is maintained out to 24 h post-infection [191].  Inhibition of Rab11a, using a dominant 

negative form which cannot tether to the ApV, they attenuate A. phagocytophilum intracellular 

survival by >10% at 5 h post-infection in HL-60 cells [191].  RNAi knockdown of Rab11a in HeLa 

and HEp-2 cells, prevents Chlamydia trachomatis reversion from the metabolically active reticulate 

body into the inert infectious elementary body by blocking the bacteria’s ability to disrupt the Golgi 

[245-247].  Excitingly, when we re-visited the Coxiella burnetii genome-wide RNAi screen data 

(another pathogen residing in a pathogen containing vacuole termed the CCV) we noticed that 

inhibition of Rab11b also prevented bacterial replication [131].  While to our knowledge the role of 

Rab11b in C. burnetii has not been fully defined, one suspects it is also recruited to the CCV.  This 

is suggestive that exploitation of Rab11 isoforms is potentially a specific requirement of pathogens 

that expand their containing vacuoles during bacterial replication.  Additional, studies to define the 

role of Rab11 in vacuole expansion would shed substantial light on how these pathogens acquire 

the machinery to support vacuole expansion.  

Moreover, we show Y. pestis infection stalls the host cell recycling by sequestration of 

Rab11b, making this the first identification of any pathogen to arrest endocytic recycling traffic.  

While studies have shown various pathogens manipulate host Rab GTPase machinery for survival 

(for review [102]), no one has demonstrated a living bacterium capable of stalling an entire 

trafficking pathway.  Recently, studies using Anthrax toxin demonstrate disruption of host recycling 
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endosomes was directly attributed to the toxins impact on Rab11b and Sec15 exocyst assembly 

[248].  However, through overexpression of Rab11b they were able to restore wildtype Drosophila 

wing structure and normal recycling [248].  Within this context, we were intrigued that during our 

screen Arf6 RNAi, a well-studied Rab4 effector and a negative regulator of rapid recycling [249-

253], had a slight hypervirulent phenotype at 10 h post-infection  This observation could be 

suggestive, that inhibition of rapid recycling forces cellular compensation by the slow recycling arm 

and Rab11b through an increase in slow recycling endosomes. Due to this, there is less total free 

unbound Rab11b available for the cell to manage trafficking of these recycling endosomes, which 

in turn lowers the threshold needed to be sequestered to stall efficient recycling within the cell, and 

thusly, a hypervirulent phenotype for Y. pestis as more bacteria are capable of establishing a 

replicative niche. Studies with Anthrax toxin and our Y. pestis infection data suggest there are 

quantifiable finite protein levels for each Rab GTPase within the cell, and disruption/retention of a 

specific Rab GTPase dilutes the unbound pool available for cellular processes. If true, this would 

provide a novel insight into general intracellular pathogenesis, as a pathogenic organism, whether 

it be virus, parasite or bacterial, target host cell Rab GTPases for survival and actively force the 

infected cell to compensate to the benefit of the pathogen.  Through this compensation the 

infectious agent could create a diversion hiding their presence to the innate host defenses.   

Looking deeper into a mechanistic explanation for overexpression of Rab11b inhibition of 

Y. pestis replication we noticed recent findings linking Rab11b to autophagy [254].  Szatmari and 

colleagues, demonstrate that Rab11b interacts with Hook, a negative regulator of endosome 

maturation, to facilitate crosstalk between recycling endosomes and induction of autophagy [254].  

This peaked our interested as studies have noted that latter stages (>8 h post-infection) of Y. pestis 

replication occurs within a spacious YCV that resembles an autophagosome as it acquires both 

LC3-II and double membranes [88, 89].  Though the significance of autophagy to Y. pestis 

survival/replication during infection is unknown, findings in Y. pseudotuberculosis, the closet 

ancestral relative within the Yersinia genus, suggest that autophagy is required for bacterial 

replication [88, 89].  Ligeon et al., demonstrate Y. pseudotuberculosis acquires VAMP3 within 30 

mins post-infection and is exchanged for VAMP7 within 3 to 24 hours, and these VAMP3 and 7 
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dynamics are required for YCV LC3-II single/double membrane formation [89].  Studies by Moreau 

and colleagues further show that Y. pseudotuberculosis replicates in autophagosomes, and 

induction of autophagy with rapamycin significantly increased metabolically active bacteria [88].  

Additionally, these studies show that Atg4b C74A (enzymatically inactive Atg4b) prevented LC3 

recruitment to Y. pseudotuberculosis YCV [88].  In this context, our lab observed macrophage 

infection using phoPQ mutants of Y. pestis, compensated for bacterial number, survive the first 8-

10 h post-infection, have no significant difference in YCV acidification, and the decline in bacterial 

burden coincides with wildtype replication (MC & ARP unpublished data).  Transcriptional studies 

of ΔphoPQ mutants indicate the stress response regulator controls 188 Y. pestis genes [86].  The 

majority of these differentially regulated genes are putative or hypothetical, but appear to be 

involved with Y. pestis’ ability to acquire/sense nutrient deprivation and deal with antimicrobial 

peptides [86].  These studies further conclude that that phoPQ does not impact trafficking of the 

YCV but adaption of the YCV to a replicated niche [86].  In either case, the link between Rab11b 

and autophagy induction is exciting as we show Y. pestis stalls host recycling and restoration of 

this process through overexpression of Rab11b prevents bacterial replication.  Perhaps, Y. pestis 

stalls host cell recycling to facilitate entry into autophagosomes, or that autophagy triggers 

mammalian specific virulence factors for Y. pestis.  In this sense, one would hypothesize that 

overexpression of Rab11b would also prevent Y. pseudotuberculosis replication as well – provided 

the end result of stalling host recycling is to induce autophagy within infected cells.  

In summary, we completed a genome-wide RNAi HTS to identify required host factors to 

support Y. pestis intracellular survival.  From our data, we have demonstrated for the first time that 

Y. pestis remodels the YCV to resemble a recycling endocytic vacuole, and through the 

sequestration of Rab11b stalls host recycling. We further show that overexpression of Rab11b 

prevents bacterial replication. Our overexpression data demonstrates for the first time an exploited 

host protein that differentially separates an intracellular pathogen’s survival from replication.  Our 

future goals include defining the role of Rab11b and inhibition of host cell recycling in the context 

of autophagy and defining the mechanisms used by Y. pestis to generate the YCV. 
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Materials and Methods: 

Bacterial strains, plasmids, siRNA and transfection of macrophages. All bacterial strains listed in 

table 4-1.  Y. pestis CO92 [9] pCD1(-) and KIM D-19(pgm(-)) (BEI Resources NR-4681) were 

cultivated at 26°C in Brain Heart Infusion (BHI) broth (Difco).  E.coli and S. typhimurium was 

cultivated at 37°C in Luria-Bertani (LB) broth (Difco).  Growth media supplemented with 

Carbenicillin at 50µg/mL when needed. Bioluminescent derivatives were generated using the 

LuxPtolC bioreporter as described previously [151]. Y. pestis and E. coli fluorescent derivatives 

bacterial strains are described previously [61].  S. enterica Typhimurium pGEN-PEM7::DsRED was 

generated using Eppendorf protocol # 4308 915.532.  RAW264.7 macrophages were obtained from 

ATCC and cultured in DMEM, 100 mM glucose + 10% FBS (Hyclone). For 96-well RNAi high-

throughput screening, RAW264.7 macrophages were forward transfected using Tecan liquid 

handling robotics (Tecan) to pool 3 siRNAs from the Silencer siRNA Mouse Genome Library v3 

(Ambion) at [1µM] final concentration in 20µl Opti-MEM, and then mixed with 10µl of 0.03% (v/v) 

Lipofectamine RNAiMax/Opti-MEM (Life Technologies) as described by the manufacturer. 30 µl of 

the siRNA-Lipofectamine complex was added to each well of a white flat-bottom 96-well plate 

(Greiner), incubated at room temperature for 10 min, prior to addition of 1x104 RAW264.7 

macrophages suspended in 80 µl of DMEM + 10% FBS. 24-well plates reagents were increased 

4-fold previously described [61]. For plasmid transfection, 4.4 x 105 RAW264.7 macrophages were 

transfected using 0.5 μg of plasmid with JetPrime (Polyplus) as described by the manufacturers.  

All single siRNAs used are in Table 4-2.  

qRT-PCR, Western blot and Cell Viability. Rab GTPase expression, total RNA from 1.6x105 

transfected cells was isolated as previously described [61] and qRT-PCR was performed using 

SybrGreen (Life Technologies) with primers in Table 4-3. Relative expression was calculated using 

ΔΔCt  method [228]. Western blot was performed as previously described [61]. For AlamarBlue 

(Life Technologies) cell viability, 10µl reagent was added directly to macrophages and incubated 

at 37°C 5% CO2 for 2 hrs, then read using Synergy 4 (ex: 560: Em: 600).  
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Bacterial infection of macrophages. Macrophages were infected with Y. pestis as previously 

described [59, 61, 151]. In brief, bacteria cultivated overnight at 26oC in BHI, washed in PBS, and 

diluted in prewarmed DMEM+10%FBS. Bacteria were added to macrophages and infection 

synchronized by a 200xg centrifugation for 5 mins. 20 mins post infection extracellular bacteria 

were killed with gentamicin (16µg/mL) for one hour, and then media was replaced with DMEM + 

10% FBS containing 2µg/mL gentamicin for the duration of the experiment. Intracellular Y. pestis 

was quantified using a Synergy HT or Synergy 4 plate reader (Biotek; 1 sec read with sensitivity 

set at 150) or conventional bacterial enumeration as described previously [151].  S. enterica 

Typhimurium infection of macrophages was done with 200xg centrifugation for 10 mins. 60 mins 

post infection extracellular bacteria were killed with gentamicin (100µg/mL) for one hour, and then 

media was replaced with DMEM + 10% FBS containing 10µg/mL gentamicin for the duration of the 

experiment. 

Bioinformatic analysis. Validated and primary screen hits were stored with both Entrez Gene and 

MGI identifiers.  A script was made to pull interacting partners from all experimental evidence codes 

from BioGRID [255] and STRING [256] databases using MGI and Entrez Gene identifiers.  The 

script stored interactors for the input datasets, validated (135 genes) and primary hits (364 genes), 

as follows: 1) direct interactions within each individual dataset, and 2) direct interactions from 

validated to primary hits.  These interactions were stored and imported into Cytoscape (v3.30; 

[257]) to generate interaction maps.  For GO Ontology clustering, the validated (135) hits were 

imported by Entrez Gene identifier to Cytoscape plugins ClueGO [237] and CluePedia [236].  

Genes were clustered using all GO evidence codes, a minimum kappa score of 0.4 and a p-value 

threshold of 0.05.  To construct Circos plots, individual gene GO ontologies for validated datasets 

were generated using Entrez Gene identifier in PANTHER [258].  Circos plots were then overlaid 

with screening score data and interactions previous stored from BioGRID and STRING databases. 

TfR recycling and Acidification assay, Immunofluroescent staining, and confocal microscopy 

For confocal microscopy, cells were fixed to coverslips with 2.5% paraformaldehyde for 30 min. 

Indirect immunofluorescent staining, fixed cells were blocked with 3% BSA overnight and incubated 

with rabbit anti-Y. pestis serum (1:1,000).  Unbound primary antibodies were removed by washing 
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and anti-rabbit Alexa Fluor 594 secondary antibody (1:2000; Life Technologies).  For TfR recycling 

assay using siRNA transfection,  1.6x105 were transfected as described above in a 24-well plate 

(Greiner) and incubated either for 48 h at 37°C 5% CO2.  Prior to kinetic assay using siRNA 

transfection, cells were washed three times in cell culture grade PBS (Hyclone), left in cell culture 

PBS and placed on ice for 30 mins.  Media was aspirated and replaced with 37°C pre-warmed 

DMEM, 100 mM glucose + 10% FBS (Hyclone) with anti-TfR (1/1000 dilution; Abcam ab84036). 

Cells were moved to 37°C waterbath. At desired time points coverslips were removed and placed 

in acidic stripping buffer (HBSS + 50mM glycine + 150mM NaCl + 0.2% BSA pH 4) on ice.  

Coverslips were washed thrice with acidic stripping buffer and fixed with 2.5% paraformaldehyde 

for 15 min at room temperature.  Cells were rocked in permeabilization buffer (0.5% Tween 20 + 

3% BSA) overnight at 4°C prior to 1 h incubation with staining buffer (0.5% Tween 20 + 3% BSA + 

anti-rabbit 2,000 Alexa Flour 488).  For TfR recycling during bacterial infection, 1x105 RAW264.7 

macrophages were seeded in a 24-well plate (Greiner) and incubated overnight at 37°C 5% CO2.  

Macrophage media was replaced with 37°C pre-warmed DMEM, 100 mM glucose + 10% FBS 

(Hyclone) with anti-TfR (1/1,000 dilution; Abcam ab84036).  Bacterial strains were diluted to desired 

MOIs in DMEM, 100 mM glucose + 10% FBS (Hyclone) and added to macrophages.  After 1 h 

gentamicin killing media was replaced with appropriate gentamicin maintenance doses with 1/1,000 

anti-TfR antibody.  Coverslips were removed at 2 and 24 h post-infection, placed in acidic stripping 

buffer and processed as described above.  Lysotracker Red DND-99 (Life Technologies) 

acidification experiments were done as previously described [61]. For confocal microscopy, cells 

were fixed to coverslips and imaged as previously described [61].  All Coverslips were mounted 

with Prolong Gold with DAPI (Life Technologies),  

and imaged on a Zeiss LSM 710 laser confocal microscope. Colocalization of Lysotracker Red 

DND-99 or proteins to the YCV was determined using the Coloc function in Imaris image analysis 

software (BitPlane).  Quantification of TfR recycling was done in Fiji [259].  

Statistics. Unless otherwise noted in corresponding figure legend, all data are shown as mean and 

standard error margin (SEM) of one representative experiment. All experiments were repeated 

three to six for biological trend and each experiment was repeated three times to confirm the 
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phenotypes. For microscopy, at least 50 YCVs or 25 fields per biological replicate and experiment 

were analyzed. P-values calculated by one-way ANOVA or Student’s T-Test, with appropriate post-

hoc testing when necessary using GraphPad Prism software 

.
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Figures and Figure Legends 
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Figure 4-1. RNAi-based assay to identify host factors required for Y. pestis intracellular 

survival. 

(A and B) To determine if reproducible RNAi could be achieved in RAW264.7 macrophages, cells 

were reverse transfected with siRNAs targeting indicated genes. 48 h post-transfection, cells (n=3) 

were harvested for (A) RNA isolation and qRT-PCR (data represents the level of gene expression 

compared to scrambled siRNA control) or (B) protein isolation for Western blot analysis (βactin was 

used as a loading control). (C and D) To demonstrate that the Y. pestis CO92 pCD1(-) LuxPtolC 

bioreporter accurately represents intracellular bacterial numbers, RAW264.7 macrophages were 

infected with Y. pestis CO92 pCD1(-) LuxPtolC at indicated MOIs (n=12) and extracellular bacteria 

were killed with gentamycin. (C) Bioluminescence (RLU) of intracellular bacteria was determined 

at 1, 4, 8 and 18 h post-infection. (D) At 18 h, cells from each MOI (n=3) were lysed and bacterial 

numbers (CFU) were determined and compared to 18 h bioluminescence (RLU). (E) To 

demonstrate that RNAi targeting specific genes could impact Y. pestis intracellular survival, RAW 

264.7 macrophages were transfected with siRNAs targeting Rab2A or COPβ1. 48 h post-

transfection macrophages were infected with Y. pestis CO92 pCD1(-) LuxPtolC (MOI 10). Extracellular 

bacteria were killed with gentamycin and intracellular bacterial bioluminescence monitored over 

time. Data is represented as percent RLU of scramble siRNA (scr) control. (E) To demonstrate 

robustness of the assay, RAW264.7 macrophages (n=48) were reverse transfected with either 

scrambled siRNA (negative control) or siRNA targeting Copβ1 (positive control). 48 h post-

transfection macrophages were infected with Y. pestis CO92 pCD1(-) LuxPtolC (MOI 10). 

Extracellular bacteria were killed with gentamycin and intracellular bacterial bioluminescence was 

determined at 2 and 10 h post-infection. Z’ factor from 4 independent experiments are shown (bar 

= mean). (G) Overview of optimized high throughput assay for RNAi screening. 
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Figure 4-2. Identification of host factors required for Y. pestis intracellular survival 

To identify host factors required for Y. pestis to survive in macrophages, RAW264.7 

macrophages were reverse transfected with siRNAs for 48 h. (A) Transfected cells were infected 

with Y. pestis CO92 pCD1(-) LuxPtolC (MOI 10) and intracellular bacteria bioluminescence (RLU) 

determined at 2 (blue) and 10 (red) h post-infection. RLU values were normalized to controls [(gene 

RLU / avg. positive control RLU) / (avg. negative control RLU/ avg. positive control RLU)] and 

ranked from lowest to highest. Normalized scores ≤0.5 are highlighted in blue and ≥1.4 in yellow. 

(B) For secondary validation, transfected cells were infected with Y. pestis CO92 pCD1(-) LuxPtolC 

or KIMD19 pCD1(+) LuxPtolC (MOI 10) and intracellular bacteria bioluminescence (RLU) determined 

at 10 h post-infection. RLU values were normalized to controls and compared to each other. The 

red line represents the line of best fit (linear regression). Normalized scores ≤0.6 are highlighted in 

blue.  
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Figure 4-3. ClueGO clustering of validated genes impacting Y. pestis intracellular survival.  

 

(A) Cytoscape generated layout for GO term node clusters.  Clusters are color coded by highest 

order parent ontology. (B) Pie chart representing the percent parent ontology represented as a 

whole within our validated genes. (C) Detailed ontologies within the parent clusters broken down 

by the number of genes and the percent representation of those genes within the detailed term. 
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Figure 4-4. Identification of Rab GTPase interactions within primary screen hits. 

(A) To determine the Rab GTPases network interactions, we pulled all interactions from the Rab 

GTPases to the validated screen hits (n=135). The resulting interactions are displayed as a Circos 

plot as follows. Lines: Gray (interaction), Green (activator) and Red (inhibitor).  Each square 

represents if the target gene met cutoff criteria for inhibition (red) or hypersurvival (green) in the 

primary (outside ring), CO92 secondary (middle ring) or KIM-D19 secondary (inside ring) screens.  

Gene symbols are on the outside.  (B) Interactome of direct interactions between primary and 

validated hits.  Gray squares are primary hits, blue ovals are validated genes. Rab GTPases are 

highlighted with red boarder and labeled 
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Figure 4-5. Host recycling inhibits Y. pestis intracellular survival 

RAW 264.7 macrophages were transfected with a single siRNA targeting Rab4a, Rab11b or 

Myo5B. At 48 h post-transfection (A) RNA samples were harvested for qRT-PCR (n=9) or (B) cell 

viability was determined (n=5). To determine the impact of RNAi on Y. pestis survival, transfected 

RAW264.7 macrophages (n=8) were infected with Y. pestis CO92 pCD1(-) LuxPtolC  (MOI 10) and 

intracellular bacterial numbers were determined by bioluminescence at (C) 2 h or (D) 10 h post-

infection and compared to scrambled (scr) controls. (E) At 10 h post-infection, a subset of samples 

(n=3) were harvested for convention bacterial enumeration. Statistical significance was calculated 

by one-way ANOVA with Tukey’s Multiple Comparison post hoc. *** = p ≤0.001; ns = not significant. 
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Figure 4-6. RNAi inhibition of Rab4a and Rab11b does not impact the phagolysosome 

RAW 264.7 macrophages were reverse transfected for 48 h with single siRNA targeting indicated 

host genes.  Total RNA was isolated after 48 h and ΔCT (avg. target gene – avg. reference gene) 

determined for gene targets in either Rab4, Rab11b or scrambled negative control siRNA.  (A) ΔCT 

of targets in Rab4a treated vs scrambled negative control (CTR; n=9). (B) ΔCT of targets in Rab11b 

treated vs scrambled negative control (CTR; n=9). 
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Figure 4-7. Rab4a of the recycling pathway is essential for Y. pestis to avoid the 

phagolysosome 

For invasion, cells were infected with Y. pestis CO92 pCD1(-) pGEN222 EGFP (MOI ~3). After 

20min infection cells were fixed, and counter stained by indirect immunofluorescence with anti-Y. 

pestis antibody. (A) Representative image of differential staining showing intracellular bacteria 

(green) and extracellular bacteria (red/yellow). 10µm scale bar. (B) Percent of extracellular bacteria 

at 20min post-infection, represented as mean ± std (n=3).  After transfection cells were incubated 

with Lysotracker Red DND-99 for 1hr. After 1hr cells were infected with either live Y. pestis CO92 

pCD1(-) pGEN222 EGFP or paraformaldehyde killed Y. pestis CO92 pCD1(-) pGEN222 EGFP (MOI 

~3). Colocalization determined by confocal microscopy. (C) Representative field images at 20min 

post-infection. 10µm scale bar.  (D & E) Percent colocalization with Lysotracker Red DND-99 at 20 

and 80min post-infection, represented as mean ± std (n=3). Significance calculated by one-way 

ANOVA. ns= not significant, * = pV ≤0.05, ** = pV ≤0.01, *** = pV ≤0.001. 
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Figure 4-8. Y. pestis acquires recycling endosome markers Rab4a and Rab11b.  

To determine if the bacteria recruited Rabs 4a and/or 11b, RAW 264.7 cells were transiently 

transfected with either pEGFP-Rab4a or pEGFP-Rab11b, and infected with either live or 

paraformaldehyde killed Y. pestis CO92 pCD1(-) mCherry (MOI 3) and E. coli mCherry (MOI 20) 24 

h later.(A) Representative images at 20 min post-infection with cropped bacteria inserts. (B and C) 

Rab4a and Rab11b percent colocaliztion represented as mean ± std of all biological repeats (n=3). 

Significance calculated by one-way ANOVA or Student’s T-test. * = pV ≤0.05; ** = pV ≤0.01; *** = 

pV ≤0.001; ns = not significant. Scale bar 10µm and insert 2µm. 
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Figure 4-9. Recycling assay measures TfR kinetics. 

RAW 264.7 cells were transfected with either scrambled (scr) or Rab4a siRNA for 48 h prior to 

synchronization, pulsing with anti-TfR antibody, fixed and counterstained with Alexa488 secondary 

antibody (n=25).  (A) Representative images of total TfR staining vs only internalized TfR after 

acidic washing to remove surface and non-specifically bound antibody.  (B) Representative images 

over the kinetic time course for either scr or Rab4a treated cells. (C) Internalized TfR Intensity per 

cell for either scr or Rab4a treated cells over the kinetic time course ((intensity of TfR x TfR spots)/ 

cell number).  (D)Receptor amount (intensity of TfR) from raw intensity of internalized TfR in either 

scr or Rab4a.  (E)Endosome amount (# TfR spots) in either scr or Rab4a.  Significance calculated 

by Student’s T-test. Graphed as mean ± SEM.  * = pV ≤0.05** = pV ≤0.01; *** = pV ≤0.001; ns = 

not significant. Scale bar 10µm. 
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Figure 4-10. Y. pestis infection stalls host cell recycling.  

(A)Representative images at 24 h post-infection in RAW264.7 cells.  (B-G)Avg TfR intensity per 

field for infected RAW2647 cells with either dsRed live or paraformaldehyde killed Y. pestis (MOI 

5, 10, 20) or E. coli (MOI 25, 50, 100).  (H & I)Avg TfR intensity per field for HMDMs infected with 

either dsRed live or paraformaldehyde killed Y. pestis (MOI 10), E. coli (100) or Salmonella (MOI 

100).  Significance calculated by one-way ANOVA using Dunnett’s multiple comparison test to 

uninfected control.  Graphed as a representative experiment with mean ± SEM.  ** = pV ≤0.01; *** 

= pV ≤0.001; ns = not significant. Scale bar 10µm. 
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Figure 4-11. Ant-TfR antibody does not impact Y. pestis intracellular growth.  

RAW264.7 cells were infected with Y. pestis CO92 pCD1(-)LuxPtolC  (n=8; MOI 5, 10, 20) for 20 mins. 

Extracellular bacteria were killed, and intracellular bacteria maintained in gentamicin.  Anti-TfR 

antibody was maintained in the media throughout the experiment. Bioluminescence was monitored 

at 2, 6, 12 and 24 h post-infection.   
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Figure 4-12. Stalling host cell recycling is required for Y. pestis replication. 

RAW264.7 macrophages were transiently transfected with pEGFP-Rab11b prior to infection with 

Y. pestis CO92 pCD1(-) pGEN::mCherry (MOI 10) in a recycling assay.  (A & B) 2 h post-infection 

of TfR intensity and endosomes for transfected vs untransfected cells (n=50).  (C & D) 24 h post-

infection of TfR intensity and endosomes for transfected vs untransfected cells (n=50).  ( E & F) 

representative field images at 2 and 24 h post-infection. (G) 2 h post-infection bacteria per 

transfected vs untransfected cells (n=50). (H) 24 h post-infection bacteria per transfected vs 

untransfected cells (n=50).  Significance calculated by paired Student’s T-test.  Graphed as a 

representative experiment with mean ± SEM.  ** = pV ≤0.01; *** = pV ≤0.001; Scale bar field 50µm 

and insert 10 µm. 
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Tables 

Table 4-1. 135 validated genes 

 

Entrez Gene ID Gene Symbol MGI Gene/Marker ID Ensembl ID CO92 Primary CO92 Secondary KIM-D-19 Secondary

12266 C3 MGI:88227 ENSMUSG00000024164 0.31 0.45 0.73

14064 F2rl2 MGI:1298208 ENSMUSG00000021675 0.27 0.89 0.60

14635 Galk1 MGI:95730 ENSMUSG00000020766 0.27 0.47 0.62

14676 Gna15 MGI:95770 ENSMUSG00000034792 0.28 0.51 0.76

14967 H2-D4 MGI:95899 0.32 0.73 0.60

14997 H2-M9 MGI:1276570 ENSMUSG00000067201 0.20 0.66 0.41

15002 H2-Ob MGI:95925 ENSMUSG00000041538 0.21 0.57 0.50

15384 Hnrnpab MGI:1330294 ENSMUSG00000020358 0.14 0.27 0.35

15387 Hnrnpk MGI:99894 ENSMUSG00000021546 0.19 0.30 0.56

15482 Hspa1l MGI:96231 ENSMUSG00000007033 0.34 0.21 0.22

16174 Il18rap MGI:1338888 ENSMUSG00000026068 0.29 0.36 0.40

16678 Krt1 MGI:96698 ENSMUSG00000046834 0.24 0.38 0.27

16950 Loxl3 MGI:1337004 ENSMUSG00000000693 0.26 0.55 0.46

17135 Mafk MGI:99951 ENSMUSG00000018143 0.20 0.82 0.41

17195 Mbl2 MGI:96924 ENSMUSG00000024863 0.01 0.50 0.45

17279 Melk MGI:106924 ENSMUSG00000035683 0.27 0.47 0.24

17289 Mertk MGI:96965 ENSMUSG00000014361 0.28 0.43 0.50

17385 Mmp11 MGI:97008 ENSMUSG00000000901 0.12 0.95 0.49

17527 Mpv17 MGI:97138 ENSMUSG00000090262 0.35 0.60 0.53

17540 Mrvi1 MGI:1338023 ENSMUSG00000005611 0.20 0.67 0.43

17896 Myl4 MGI:97267 ENSMUSG00000061086 0.11 0.31 0.29

17904 Myl6 MGI:109318 ENSMUSG00000090841 0.16 0.59 0.40

17907 Mylpf MGI:97273 ENSMUSG00000030672 0.06 1.00 0.59

17925 Myo9b MGI:106624 ENSMUSG00000004677 0.09 0.58 0.58

17932 Myt1 MGI:1100535 ENSMUSG00000010505 0.35 0.56 0.25

18007 Neo1 MGI:1097159 ENSMUSG00000032340 0.17 0.54 0.63

18044 Nfya MGI:97316 ENSMUSG00000023994 0.04 0.69 0.46

18071 Nhlh1 MGI:98481 ENSMUSG00000051251 0.09 0.54 0.45

18082 Nipsnap1 MGI:1278344 ENSMUSG00000034285 0.19 0.34 0.36

18143 Npas2 MGI:109232 ENSMUSG00000026077 0.20 0.37 0.46

18181 Nrf1 MGI:1332235 ENSMUSG00000058440 0.09 0.20 0.27

18201 Nsmaf MGI:1341864 ENSMUSG00000028245 0.16 0.57 0.35

18209 Ntn3 MGI:1341188 ENSMUSG00000079662 0.35 0.81 0.50

18530 Pcdh8 MGI:1306800 ENSMUSG00000036422 0.17 1.08 0.56

18538 Pcna MGI:97503 ENSMUSG00000027342 0.17 0.40 0.39

18641 Pfkl MGI:97547 ENSMUSG00000020277 0.15 0.57 0.52

18690 Phxr5 MGI:104521 0.20 0.55 0.38

18720 Pip5k1a MGI:107929 ENSMUSG00000028126 0.28 0.78 0.46

18744 Pja1 MGI:1101765 ENSMUSG00000034403 0.26 0.37 0.44

18992 Pou3f2 MGI:101895 ENSMUSG00000095139 0.20 0.90 0.49

19053 Ppp2cb MGI:1321161 ENSMUSG00000009630 0.15 0.72 0.51

19064 Ppy MGI:97753 ENSMUSG00000017316 0.23 1.16 0.57

19110 Prl4a1 MGI:1206587 ENSMUSG00000005891 0.33 0.27 0.19

19331 Rab19 MGI:103292 ENSMUSG00000029923 0.25 0.42 0.14

19332 Rab20 MGI:102789 ENSMUSG00000031504 0.23 0.53 0.37

19335 Rab23 MGI:99833 ENSMUSG00000004768 0.18 0.41 0.35

19340 Rab3d MGI:97844 ENSMUSG00000019066 0.27 0.73 0.59

19341 Rab4a MGI:105069 ENSMUSG00000019478 0.13 0.33 0.10

20195 S100a11 MGI:1338798 ENSMUSG00000027907 1.59 1.12 0.63

20333 Sec22b MGI:1338759 ENSMUSG00000027879 0.16 0.45 0.51

20336 Exoc4 MGI:1096376 ENSMUSG00000029763 1.50 1.16 0.87

20438 Siah1b MGI:108063 ENSMUSG00000040749 0.33 0.12 0.20

20610 Sumo3 MGI:1336201 ENSMUSG00000020265 0.32 0.50 0.47

20630 Snrpc MGI:109489 ENSMUSG00000024217 0.35 0.63 0.58

21454 Tcp1 MGI:98535 ENSMUSG00000068039 0.25 0.62 0.44

21787 Tfg MGI:1338041 ENSMUSG00000022757 0.34 0.38 0.51

22110 Tspyl1 MGI:1298395 ENSMUSG00000047514 0.32 0.55 0.50

26394 Lypla2 MGI:1347000 ENSMUSG00000028670 0.27 0.46 0.28

27395 Mrpl15 MGI:1351639 ENSMUSG00000033845 0.11 0.25 0.27

54633 Pqbp1 MGI:1859638 ENSMUSG00000031157 0.27 0.45 0.60

56041 Uso1 MGI:1929095 ENSMUSG00000029407 0.15 0.39 0.31

56096 Plac1 MGI:1926287 ENSMUSG00000061082 0.34 0.58 0.48

56284 Mrpl19 MGI:1926274 ENSMUSG00000030045 0.33 0.29 0.30

56522 Papolb MGI:1932115 ENSMUSG00000074817 0.26 0.60 0.66

56523 Pmfbp1 MGI:1930136 ENSMUSG00000031727 0.34 0.62 0.43

58220 Pard6b MGI:2135605 ENSMUSG00000044641 0.36 0.33 0.29

siRNA Gene Target Identifers 10 Hour Normalized Y. pestis  Survival for Genes Meeting Cutoffs
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Entrez Gene ID Gene Symbol MGI Gene/Marker ID Ensembl ID CO92 Primary CO92 Secondary KIM-D-19 Secondary

58234 Shank3 MGI:1930016 ENSMUSG00000022623 0.34 0.31 0.46

64384 Sirt3 MGI:1927665 ENSMUSG00000025486 0.25 0.65 0.40

66409 Rsl1d1 MGI:1913659 ENSMUSG00000005846 0.22 0.33 0.31

66615 Atg4b MGI:1913865 ENSMUSG00000026280 0.24 0.38 0.20

66681 Pgm1 MGI:97564 ENSMUSG00000029171 0.28 0.44 0.58

67474 Snap29 MGI:1914724 ENSMUSG00000022765 0.37 0.41 0.57

67717 Lipf MGI:1914967 ENSMUSG00000024768 0.26 0.50 0.46

67832 Brix1 MGI:1915082 ENSMUSG00000022247 0.10 0.35 0.28

68572 Ict1 MGI:1915822 ENSMUSG00000018858 0.20 0.83 0.52

68943 Pink1 MGI:1916193 ENSMUSG00000028756 0.20 0.74 0.39

69902 Mrto4 MGI:1917152 ENSMUSG00000028741 0.25 0.54 0.47

70152 Mettl7a1 MGI:1916523 ENSMUSG00000054619 0.28 0.87 0.49

71306 Mfap3l MGI:1918556 ENSMUSG00000031647 0.24 1.16 0.46

71472 Usp19 MGI:1918722 ENSMUSG00000006676 1.46 1.33 0.68

71740 Pvrl4 MGI:1918990 ENSMUSG00000006411 0.21 0.40 0.26

71883 Coq2 MGI:1919133 ENSMUSG00000029319 0.28 0.31 0.43

72183 Snx6 MGI:1919433 ENSMUSG00000005656 0.36 0.56 0.67

73419 Armt1 MGI:1920669 ENSMUSG00000061759 0.14 0.55 0.41

74053 Grip1 MGI:1921303 ENSMUSG00000034813 0.35 0.28 0.21

74116 Pi16 MGI:1921366 ENSMUSG00000024011 0.33 0.15 0.31

74143 Opa1 MGI:1921393 ENSMUSG00000038084 0.36 0.32 0.20

74782 Glt8d2 MGI:1922032 ENSMUSG00000020251 0.27 0.57 0.56

75292 Prkd3 MGI:1922542 ENSMUSG00000024070 0.30 0.87 0.59

75530 Lyrm7 MGI:1922780 ENSMUSG00000020268 0.30 0.34 0.30

75985 Rab30 MGI:1923235 ENSMUSG00000030643 0.39 0.19 0.11

76308 Rab1b MGI:1923558 ENSMUSG00000024870 0.13 0.76 0.35

76338 Rab2b MGI:1923588 ENSMUSG00000022159 0.14 0.42 0.12

76366 Mtif3 MGI:1923616 ENSMUSG00000016510 0.16 0.21 0.12

77604 Rbm12b2 MGI:1924854 ENSMUSG00000052137 0.13 0.25 0.26

81500 Sil1 MGI:1932040 ENSMUSG00000024357 0.12 0.70 0.60

83672 Sytl3 MGI:1933367 ENSMUSG00000041831 0.14 0.60 0.55

98685 Trmt1l MGI:1916185 ENSMUSG00000053286 1.88 1.46 0.57

98758 Hnrnpf MGI:2138741 ENSMUSG00000042079 0.16 0.67 0.53

104776 Aldh6a1 MGI:1915077 ENSMUSG00000021238 0.36 0.43 0.53

108011 Ap4e1 MGI:1336993 ENSMUSG00000001998 0.37 0.26 0.25

108069 Grm3 MGI:1351340 ENSMUSG00000003974 0.29 0.30 0.52

108853 Mtrf1l MGI:1918830 ENSMUSG00000019774 0.32 0.24 0.21

109323 C1qtnf7 MGI:1925911 ENSMUSG00000061535 0.17 0.40 0.43

140859 Nek8 MGI:1890646 ENSMUSG00000017405 0.28 0.34 0.72

170719 Oxr1 MGI:2179326 ENSMUSG00000022307 0.32 0.25 0.38

192232 Hps4 MGI:2177742 ENSMUSG00000042328 1.48 1.10 0.92

207227 Stxbp5l MGI:2443815 ENSMUSG00000022829 0.24 0.30 0.31

207920 Esrp1 MGI:1917326 ENSMUSG00000040728 0.17 0.44 0.28

208177 Phldb2 MGI:2444981 ENSMUSG00000033149 0.30 0.41 0.47

209456 Trp53bp2 MGI:2138319 ENSMUSG00000026510 0.30 0.82 0.55

213556 Plekhh2 MGI:2146813 ENSMUSG00000040852 0.32 0.30 0.46

215335 Slc36a1 MGI:2445299 ENSMUSG00000020261 0.33 0.73 0.51

217371 Rab40b MGI:2183451 ENSMUSG00000025170 0.31 0.55 0.32

218121 Mboat1 MGI:2387184 ENSMUSG00000038732 0.26 0.58 0.45

218952 Fermt2 MGI:2385001 ENSMUSG00000037712 0.28 0.51 0.27

224044 Cyp2ab1 MGI:3644957 ENSMUSG00000022818 0.36 0.62 0.35

224118 0 No associated gene 0 0.37 0.57 0.13

227157 Mpp4 MGI:2386681 ENSMUSG00000079550 0.29 0.80 0.32

228775 Trib3 MGI:1345675 ENSMUSG00000032715 0.30 0.76 0.41

229534 Pbxip1 MGI:2441670 ENSMUSG00000042613 0.32 0.36 0.42

231507 Plac8 MGI:2445289 ENSMUSG00000029322 0.33 0.38 0.29

233489 Picalm MGI:2385902 ENSMUSG00000039361 1.59 1.25 1.12

234852 Chmp1a MGI:1920159 ENSMUSG00000000743 0.33 0.58 0.49

235330 Ttc12 MGI:2444588 ENSMUSG00000040219 0.09 0.53 0.37

238831 Ppwd1 MGI:2443069 ENSMUSG00000021713 0.30 0.56 0.51

241035 Pkhd1 MGI:2155808 ENSMUSG00000043760 0.33 0.30 0.49

259100 Olfr666 MGI:3030500 ENSMUSG00000063582 0.34 0.50 0.54

268294 Zbtb24 MGI:3039618 ENSMUSG00000019826 1.46 1.11 0.56

269198 Nbeal1 MGI:2444343 ENSMUSG00000073664 0.33 0.19 0.28

279499 Kctd19 MGI:3045294 ENSMUSG00000051648 0.06 0.69 0.33

327814 Ppfia2 MGI:2443834 ENSMUSG00000053825 0.27 0.65 0.47

380795 Ighg3 MGI:2144790 ENSMUSG00000076615 0.18 0.49 0.39

381827 1700073E17Rik MGI:1920734 ENSMUSG00000087204 0.09 0.51 0.11

403395 Clec3a MGI:2685642 ENSMUSG00000008874 0.35 0.71 0.58

siRNA Gene Target Identifers 10 Hour Normalized Y. pestis  Survival for Genes Meeting Cutoffs
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Table 4-2. Bacterial Strains 

Table 1. Bacterial Strains   

Bacterial Strains  References/sources 

Y. pestis CO92 pCD1(-)  [9] 
Y. pestis KIM D-19 pgm(-) pCD1(+)  BEI Resources 
Y.pestisCO92 pCD1(-)pGEN-PEM7::DsRED  [61] 
S. enterica Typhimurium  ATCC 14028 (LT2) 
S. enterica Typhimurium pGEN-PEM7::DsRED  LOU121; This study 
E. coli DH5α  New England Biolabs 
E.coliK12 DH5αpGEN-PEM7::DsRED  [61] 
E. coli DH5α pEGFP-Rab4a  [108] 
E. coli DH5α pEGFP-Rab11b  [108] 
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Table 4-3. siRNA 

Table 2.  
siNRA 

  

Target  Catalog # 

Rab1b  103033 

Rab4a  64223 

Rab11b  63944 

Myo5b  63101 
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Table 4-4. qRT-PCR Primers. 

Table 3.  
qRT-PCR 
Primers 

   

Target 5’ – Forward – 3’  5’ – Reverse – 3’ 

Rab4a CATCGTCCTTATCCTCTGCG  AAAGCCTCTTCGACGTTCTC 

Rab4b CAGAAGTGGAAAGGAGCTGAG  TCACCAGGAATTTGAAGAGGAAG 

Rab5a TGGTCAAGAACGGTATCATAGC  GCCTTTGAAGTTCTTTAACCCAG 

Rab7 AATAGGAGCGGACTTTCTGAC  CATCAAACACCAGAACACAGC 

Rab9 CACGGAAGATAGGTCAGAACAC  CCCTTTAATGCCATCAACAGC 

Rab11a GTGGGCAATAAGAGTGATTTACG  TCTGTTAGAATTGTCTGAAAAGCAG 

Rab11b AAGACCATCAAGGCTCAGATC  CGCTCCACGTTCTCATATGTC 

Myo5b ATTTGAGGAACGGGTCACAG  GGTCAGAGCAGATGGGTTATATG 

GapDH AATGGTGAAGGTCGGTGTG  ACAAGCTTCCCATTCTCGG 
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CHAPTER 5: 

GENOME-WIDE RNAI HIGH-THROUGHPUT SCREEN IDENTIFIES 

POTENTIAL GENES IMPACTING Y. PESTIS INVASION 
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Introduction 

In order to establish an infection, bacteria must first adhere to, and then invade the host 

cell. Bacteria mediate adherence to host cells via adhesins that interact with host surface proteins 

to attach the bacteria to the plasma membrane [260, 261].  In order to invade the host cell bacteria 

use either a trigger or zipper mechanism [260, 261].  The trigger mechanism is characterized by 

the activation of signaling cascades below the attached bacteria that “trigger” cytoskeletal 

rearrangements. These events cause plasma membrane ruffling around the organism, and 

ultimately lead to its internalization [260, 261].  This mechanism is well studied for Salmonella 

enterica Typhimurium [260, 261].  In this case, the bacteria uses the T3SS to inject effectors that 

trigger Rho GTPases that promote actin ruffling around the bacteria [260, 261].  The zipper 

mechanism occurs when bacterial proteins bind host membrane proteins creating an internalization 

signal (“outside-in”) that induces the bacteria’s uptake [260, 261].  An example of this is Invasin, a 

conserved molecule between Y. pseudotuberculosis and Y. enterocolitica that binds β1 intergrins 

[26, 28, 29, 262, 263].  Through clustering of β1 intergrins on the host cell surface the enteric 

Yersinia induce “outside-in” signaling and invade the host cell through the zipper mechanism [26]. 

We have observed that Y. pestis is rapidly taken up by the macrophage.  Within 20 mins 

of a synchronized infection >65% of total bacterial inoculum is intracellular.  The speed and rate of 

invasion for Y. pestis is substantially higher than other well studied intracellular pathogens, such 

as S. enterica Typhimurium.  During S. enterica Typhimurium infection of macrophages it takes 

nearly an hour, after synchronization, for roughly ~50% of the inoculum to be intracellular 

(unpublished data) – an event that is a trigger mechanism mediated by SP1 island of the T3SS 

[264].  These observations lead us to hypothesize Y. pestis invasion is receptor mediated, through 

the zipper mechanism.   

Y. pestis has several known adhesins, such as Ali, YadB, YadC, Pla and pH 6 antigen [1, 

26, 265].  Studies of these adhesins in Y. pestis demonstrate their importance for adhering to host 

epithelial cells and professional phagocytes through interactions with host proteins, but clear links 

indicating their role in Y. pestis invasion has not been established [26, 265-267].  Furthermore, the 
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Y. pestis T3SS is not used for invasion, and is actually well established to be anti-phagocytic [1]. 

Cowan et al. demonstrated that after a five min centrifugation to initially synchronize bacterial 

contact, 75% of Y. pestis inoculum can invade HeLa cells by 100 min post-infection [27].  These 

data confirm that Y. pestis is capable of invading epithelial cells just as efficiently as the enteric 

Yersinia species. Further, they showed that loss of pPCP (and specifically the Pla adhesin) had 

had a significant impact on invasion, but Pla(-) bacteria were still able to invade.  Straley et al. 

demonstrated that Y. pestis lacking defined virulence determinants, such as the T3SS (encoded 

on pCD1 plasmid) and caf1 (capsule), are still capable of invading at high titers and survive within 

macrophages [54]. These studies highlight that an unknown chromosomally encoded effector 

contributes to bacterial invasion.  Importantly, Straley and colleagues also show that opsinization 

of Y. pestis does not prevent bacterial invasion, nor does it significantly impact the ability of the 

bacteria to survive within these cells [54].  Together, these suggest an unknown interaction of a 

bacterial adhesin is responsible for Y. pestis invasion.   

Since these observations, multiple attempts have been made to identify both the bacterial 

ligand and eukaryotic receptor used by Y. pestis for invasion [31, 49, 268-271].  Initially, Ng et al. 

conducted a microarray analysis of upregulated host genes during Y. pestis infection at 26°C in 

murine macrophages and identified Clec9a receptor [269]. However, Ng and colleagues were not 

specifically looking for receptors and neither this group nor others have followed up with this 

receptor.  In 2004, two groups followed up on Ccr5 receptor mutation, termed CCR5Δ32, which is 

a European conserved mutation linked to HIV resistance, and proposed to be a result of plague 

outbreak in the 14th century [268, 271]. In both studies, Ccr5-/- knockout mice had no significant 

difference in survival when challenged with Y. pestis [268, 271]. However, Elvin et al. demonstrate 

there was a significant difference in bacterial burden within infected Ccr5-/- macrophages [268].  

These two studies concluded that Y. pestis entry and pathogenesis was more complex than 

previously thought.   

Pla, and multifunctional protein encoded on the pPCP1 plasmid of Y. pestis, has been 

shown to bind to the macrophage receptor DEC-205 (also known as CD205) to promote 
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dissemination [31].  However, these data failed to demonstrate clear evidence that preventing 

interactions with Pla were sufficient to perturb intracellular bacterial growth.  Studies by Sodeinde 

at colleagues previously demonstrated the binding of Pla to CD205 found that Pla activity did not 

play a primary role in Y. pestis resistance to innate host defenses, but was important for 

dissemination of the bacteria, suggesting other factors contributed to Y. pestis invasion [177]. 

DC-SIGN (CD209) and Langrin (CD207) were demonstrated to bind LPS oligosaccharide 

core of Y. pestis [270, 272].  Y. pestis does not have an O-antigen, but an oligosaccharide outer 

core attached to lipid A (for review see [67]). In these studies KIM 10 pCD1 (-) strains were 

constructed with either a truncated outer core or O-polysaccharide covered core. Using these 

strains, in a fluorescence flow cytometry platform, they show the LPS core facilitates adherence to 

both dendritic and Langerhans cells, as mutants where the oligosaccharide core are truncated or 

covered by the O-polysaccharide are significantly attenuated [270, 273]. With the same strains they 

demonstrate lower intracellular bacterial burdens after killing extracellular bacteria for 1 h with 

gentamicin (100µg/mL) [270, 273].  However, the data failed to provide a clear preventative role, 

as Y. pestis LPS is temperature modulated (hexa-acylated (26°C) to tetra-acylated (37°C); 

discussed in chapter 1).  Furthermore, these studies failed to adequately quantify the relationship 

of bacterial inoculum, to either adherence or intracellular burden during in their flow cytometry 

assays.   

While a few receptors have been identified through links with Y. pestis adhesins, the link 

to Y. pestis invasion is not well established in these works.  The actual receptor(s) driving Y. pestis 

invasion of macrophages remains to be identified. During the optimization and completion of the 

Genome-wide RNAi HTS we emphasized our ability to kinetically monitor intracellular growth post-

infection.  We built our screening assay to have kinetic reads at 20 min, 2 h and 10 h post-infection 

with the idea that multiple time points might help us identify genes that were either a putative 

receptor, responsible for spacious YCV formation and bacterial replication, or differentially 

exploited during early and late YCV biogenesis.  We noticed at 20 mins post-infection there was a 

consistent elevation in bioluminescence (RLU) in our Copβ1 positive control over our scrambled 
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(scr) negative control. This phenotype peaked our interest due to the consistency of our 

observations, and thus warranted further characterization. Here we describe the characterization 

of elevated 20 min RLU as an invasion phenotype from our genome-wide RNAi screen.  

Results: 

Elevated RLU at 20 min post-infection indicates a defect in Y. pestis invasion. 

During the genome-wide RNAi screen to identify host factors required for Y. pestis 

intracellular survival (Chapter 4) we noticed that Copβ1 siRNA-treated wells had elevated 

bioluminescence (~10-15% higher) compared to scrambled (scr) negative controls across all 

screen plates (n=205) (Fig.5-1A). Copβ1 is a cytosolic component of the cotamer complex 

implicated in non-clathrin dependent recycling of LDL receptors [274, 275]. This complex is also 

associated with ADP-ribosylation factors (ARFs) and Golgi vesicle trafficking [274, 275].  

Knockdown of Copβ1 has previously been shown to inhibit uptake of other pathogenic bacteria, 

such as L. monocytogenes [141]. Therefore, the elevated bioluminescence at 20 mins post-

infection may indicate an invasion defect in Copβ1 treated cells. Alternatively, it is possible that the 

phenotype was an artifact of the promoter driving our bioreporter (pTolC).  To test if elevated RLU 

was promoter dependent, we compared macrophage infection with Y.pestis CO92 pCD1(-)LuxPtolC 

to Y.pestis CO92 pCD1(-)LuxPCysZ.  These two promoters drive the same bacterial luciferase system 

and have been integrated into the chromosome of Y. pestis CO92. Both of the promoters have 

been characterized previously, and have direct correlation between bioluminescence and bacterial 

number (see chapter 2) [151].  Bioluminescence was read at 20 mins post-infection, Our results 

show both promoters have ~ 10-15% elevated bioluminescence at 20 mins post-infection in Copβ1 

treated cells in comparison to scrambled negative control (scr) (Fig. 5-1B).  This data shows 

elevated RLU at 20 mins post-infection is independent of the promoter driving the bacterial 

luciferase system in Y. pestis CO92. 

Since the phenotype was not promoter dependent, we next tested whether known inhibitors 

of Y. pestis invasion displayed the same phenotype. Previous studies with Y. pestis showed 

treatment with Cytochalasin D significantly impacts invasion of HeLa cells [27].  This chemical 
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inhibitor has been demonstrated to prevent a range of cytoskeletal remodeling events to prevent 

phagocytosis [276].  Cytochalasin D has been extensively used to study bacterial invasion [253, 

276-286].  Importantly, while Cytochalasin D treatment inhibits invasion, it has not been shown to 

not alter subsequent intracellular survival of Y. pestis.  Therefore, treatment with Cytochalasin D 

was chosen as a control to determine if inhibition of Y. pestis invasion of macrophages recapitulated 

the 20 min phenotype observed in Copβ1 siRNA treated cells. Cytochalasin D treated cells were 

infected with Y. pestis CO92 pCD1(-)LuxPtolC for 20 min and bioluminescence was determined and 

compared to intracellular bacterial burden at 80 min post-infection.  A dose dependent elevation in 

bacterial bioluminescence over our untreated control was observed in the Cytochalasin treated 

cells (Fig. 5-2A).  This elevation correlated to a dose dependent decrease in the RLU of intracellular 

bacterial burden at 80 mins post-infection (Fig. 5-2B).  These data confirm that elevated RLU at 20 

mins post-infection is an indicator of invasion defect.  

Identifying invasion dataset from the Genome-wide RNAi HTS 

 Having demonstrating that elevated bioluminescence at 20 mins post-infection is an 

indicator of an invasion defect, we sought to utilize this phenomena to identify potential invasion 

defects from the genome-wide RNAi screen.  20 min bioluminescence was normalized for our entire 

20 min dataset (n=16,757) by the average percent of the scrambled (scr) negative control on each 

individual plate.  We established a cutoff criteria (materials and methods) and applied this to the 

entire 20 min dataset.  This resulted in the identification of 1,075 genes with an invasion defect 

based on their elevated RLU at 20 mins post-infection (Table 5-1).  To identify potential 

receptor/receptor activity of these hits we used PANTHER GO ontology database [258, 287].  Of 

the 1,075 genes identified with an invasion defect, 96 (9%) had direct receptor related 

functionalities (Table 5-2). 

Discussion 

Here we demonstrate that elevated bioluminescence (RLU) at 20 mins post-infection is an 

indication of a defect in Y. pestis invasion defects.  Through our characterization of this phenotype, 

we show elevated RLU at 20 mins is: 1) independent of the promoter driving Y. pestis 
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chromosomally integrated bioluminescent bioreporter, 2) using Cytochalasin D, a known invasion 

inhibitor, we are able to recapitulate a dose dependent elevation in 20 min RLU that is inversely 

proportional to the bacterial burden at 80 mins, based on intracellular RLU, and 3) our observations 

mimic previous data of Cowan et al., demonstrating that Cytochalasin D was capable of inhibiting 

Y. pestis invasion in HeLa cells [27]. Furthermore, from our phenotypic characterization we were 

able to identify a subset of genes from our genome-wide RNAi HTS as impacting Y. pestis invasion.  

This represents the first ever comprehensive list of potential receptors and invasion related 

components exploited by Y. pestis for entry into the host macrophage.  Many of the invasion hits 

that are not classified as receptors, are actually signaling/ trafficking molecules downstream of 

these receptors, such as the Arfgaps (2, 15, 17, & 18). Interestingly, Arfgap2 interacts with Arf1 to 

facilitate endocytosis and transport of endocytic cargo to the Golgi-ERGIC space [288].  Arf1 in turn 

is involved with Rab4a mediated endocytic recycling of receptors [238].  Of note, is the inclusion of 

Edg1 (Sphingosine 1-phosphate receptor 1) in our identified dataset. This receptor was shown by 

St. John and colleagues to be required by Y. pestis for efficient trafficking through the host 

lymphatics, and possibly entry into the macrophage (discussed below) [49] (Table 5-2).  Moreover, 

none of the receptors identified impacting adherence of Y. pestis to the host cell (DEC 205, CD205, 

CD207 and CD209) were identified in our invasion dataset.  This strongly suggests that while these 

receptors might contribute to adherence, they do not appear to contribute to Y. pestis invasion.   

St. John et al. recently identified a requirement of S1P for dissemination from the draining 

lymph node during a bubonic infection model [49].  Their studies employed the use of chemical and 

antibody receptor agonists to block the trafficking of Y. pestis in the host lymphatics [49].  In their 

hands, Y. pestis was still partially able to colonize the host even without S1P.  Furthermore, they 

demonstrated that from the site of infection there are two waves of infected cells that traffic to the 

draining lymph node. The first wave is double positive CD11c and CD11b cells, then over the 

course of 48 hrs the trafficked cells shift to CD11c, CD11b or PMN single positive cell types, which 

are representative on non-APC and inducible monocyte populations, respectively [49].  This novel 

observation highlighted that Y. pestis pathogenesis is potentially established through multiple 

innate immune cell types displaying a common receptor that facilitates Y. pestis adherence and 
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invasion.  This suggests that potentially the eukaryotic receptor exploited for Y. pestis invasion is 

also the receptor used to drive lymphatic dissemination.   

 The elevated RLU observed at 20 min post infection could be a result of : 1) Unimpeded 

light from extracellular bacteria results in the full amount of photons easily reaching the detector.  

Whereas, the light from intracellular bacteria has to escape both the YCV and the macrophage 

before reaching the detector, thusly dampening the amount of photons that are read.  2) 

Internalized bacteria undergo a rapid metabolic change that dampens light production due to 

substrate and ATP requirements of the luciferase operon. Whereas, extracellular bacteria do not 

shift their metabolic state. 3) After uptake of the bacteria within the macrophage bacteria that are 

being actively degraded do not produce light, resulting in decreased intracellular RLU in 

comparison to their extracellular counterparts.  Regardless of the molecular mechanism driving the 

elevation in RLU from the luciferase system, we demonstrate that this is a strong indicator of a 

bacterial invasion defect.   

There are three possible phenotypic outcomes post-invasion of the bacteria into the 

macrophage: 1) Elevated RLU is a reflection of strictly an invasion defect at 20 mins post-infection, 

and intracellular RLU at 80 min/ 10 h is survival  2) Elevated RLU is an invasion defect, and loss of 

this invasion route forces the bacteria down a phagolysosome maturation pathway. Resulting in 

kinetically decreasing RLU at both 80 min and 10 h post-infection in comparison to scr control, and 

3) Invasion of Y. pestis is not completely blocked by knockdown of the receptor, and a 

subpopulation of bacteria invade the macrophage via the normal mechanism resulting in decreased 

RLU at 80 min, but survival or growth (same RLU or increased RLU) at 10 h.  Either case, elevated 

20 min RLU phenotypically indicates an invasion defect.  However, we are currently characterizing 

the relationship between intracellular RLU at 80 min and 10 h post-infection to determine if these 

post invasion phenotypes reflect a branch point in Y. pestis survival due to disruption of the natural 

invasion route.   

Cytochalasin D is an example of a true invasion defect in which there is an elevated RLU 

read at 20 mins followed by a decrease in RLU at 2 h but either remains stable or increases at the 
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10 h RLU read (unpublished data).  Rab1b is an example of RLU data showing no invasion defect, 

but a survival defect as RLU continues to decrease at 80 min and 10 h post-infection.  We 

demonstrate that siRNA inhibition of Rab1b has no impact on bacterial invasion as the 20 min RLU 

is comparable to the scr negative control (unpublished data).  Using confocal microscopy we 

demonstrate that 20-25% of the bacteria are extracellular, but the 80 min and 10 h data show 

decreasing RLU (chapter 4; [61]). We further show that the RLU decrease is a direct result of 

increase YCV acidification within 80 mins post-infection [61].  In contrast, RNAi of Copβ1 is a 

primary example of both invasion and survival defect.  There is an elevated 20 min RLU that 

correlates with confocal analysis showing 30-40% of the bacteria remain extracellular (chapter 4).  

However, at 80 min and 10 h the intracellular RLU decreases as a direct result of increased 

acidification of the YCV at 80 mins post-infection (unpublished data). From our data with 

Cytochalasin D, Rab1b and Copβ1 there are three possible explanations for intracellular RLU at 

80 mins/ 10 h with an elevated RLU at 20 mins for the Y. pestis invasion dataset. In order to test 

each outcome we would use comparisons of elevated RLU to YCV acidification.   

The first outcome is that elevated RLU at 20 min strictly reflects invasion, and intracellular 

RLU at 80 min (or longer) is a measure of survival post-invasion.  To test this hypothesis, we would 

need to test for acidification of the YCV at 80 mins post-infection for targets that have decreased 

RLU over time. Then, the results of acidification tests would need to be compared to RLU reads at 

20 and 80 mins for a control that forces the bacteria toward the phagolysosome and ultimately 

degradation.  In this instance, one would expect elevated RLU reads at 20 mins to have no 

correlation with increased YCV acidification or with increased intracellular RLU across a kinetic 

infection.  Furthermore, determining this branching point between invasion and survival at 80 mins 

would implicate that the mechanism of bacterial entry is directly linked to avoidance of the 

phagolysosome, and is independent of the dogma that bacteria actively arrest phagolysosome 

maturation for survival. 

The second possibility, is that blocking the natural entry mechanism of Y. pestis forces the 

bacteria toward a phagolysosome maturation pathway and results in bacterial death by 80 mins/ 
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10 h.  To determine this, a comparison of acidified YCVs of the target to scrambled negative control 

siRNA would need to be completed.  One would expect to see a significant increase in acidified 

YCVs by 80 mins post-infection if elevated RLU at 20 mins is related to bacterial survival at 80 

mins.  Additionally, one would expect a continuous decrease in bacterial survival by RLU over time.   

The third outcome that RNAi inhibition incompletely blocks Y. pestis invasion, and a 

subpopulation enters normally.  This is based outcome is based on the caveats of RNAi.  Firstly, 

RNAi penetrance is not 100% and the 80 min/ 10 h RLU is reflective of normal Y. pestis entry into 

macrophage cells that did not receive adequate knockdown of the specified host target.  

Penetrance meaning that one cannot determine expression within a single cell or the amount of 

siRNA that is distributed among cells.  In this case further analysis of these genes would indicate 

that over time the bacteria that invade through the normal entry mechanism are able to survive and 

replicate.  To address this hypothesis, we would need to test for acidification of the YCV at 80 mins 

post-infection.  If there is no significant difference between YCV acidification of the target gene and 

the scrambled negative control, the elevated 20 min RLU in respect to decreased, non-acidified 80 

min RLU would indicate an invasion defect, but would not indicate if Y. pestis invasion mechanism 

was directly linked to survival. 

Overall, demonstrating the elevated RLU at 20 mins post-infection is a measure of Y. pestis 

invasion efficiency provides a powerful tool to dissect bacterial invasion and potentially identify the 

receptor of Y. pestis entry. While we have begun characterizing the various phenotypic results, 

additional studies are needed to determine the relationship of invasion to survival. A critical 

experiment for these studies is deciphering the RLU readouts of opsonized Y. pestis during 

macrophage infection, and if Y. pestis anti-sera prevents uptake.  In regards to opsonization, one 

would expect to drive Y. pestis uptake via the Fc receptor and have no impact on bacterial survival 

as previously shown [54].  In contrast, using Y. pestis anti-sera at 26°C, or live bacteria in a dose 

dependent response should provide an invasion phenotype or force the bacteria down a 

phagolysosome maturation pathway.  We believe the latter is true, as previous studies elude to a 

Y. pestis specific invasion mechanism that is dependent on a chromosomally encoded protein [27].  
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That being said, if one saturates the normal binding receptor and forces the bacteria to enter via 

another mechanism it would shuttled to the phagolysosome and degraded in an acidified vacuole.  

Cowan et al., data supports the anti-sera hypothesis as entry of Y. pestis was attenuated during 

26°C and 37°C temperature shifts due to an unknown chromosomally encoded bacterial protein, 

however, their data suggests it is due to phagolysosome trafficking [27].  

Materials and Methods 

Bacterial strains, siRNA transfection of macrophages. 

Y. pestis CO92 [9] pCD1(-)  and derivatives (BEI Resources NR-4681) were cultivated at 

26°C in Brain Heart Infusion (BHI) broth (Difco).  Bioluminescent derivatives were generated using 

the LuxPtolC or LuxPCysZ bioreporter as described previously [151].  RAW264.7 macrophages were 

obtained from ATCC and cultured in DMEM, 100 mM glucose + 10% FBS (Hyclone). For siRNA 

transfection, 20 μl of 0.165 μM Silencer siRNA (Life Technologies) diluted in Opti-MEM (Life 

Technologies) was mixed with 10 μl of 0.03% (v/v) Lipofectamine RNAi-Max/Opti-MEM (Life 

Technologies) as described by the manufacturer. 30 μl of the siRNA-Lipofectamine complex was 

added to each well of a white flat-bottom 96-well plate (Greiner), incubated at room temperature 

for 10 min, and then 1x104 RAW264.7 macrophages suspended in 80 μl of DMEM+10% FBS were 

added. Cells were incubated for 48 h at 37°C with 5% CO2.  

Cytochalasin D treatment 

 Cytochalasin D was two-fold serially diluted from 2mM DMSO stock into DMSO and then 

diluted to final concentrations of 0.5, 1 and 2µm in DMEM 10% FBS (Hyclone).  The DMSO 

matched control (0µm) was used for analysis.  Inhibitor and RAW264.7 murine macrophage cells 

were incubated for 1 hr at 37°C with 5% CO2 prior to bacterial infection. Final concentration of 

DMSO in DMEM 10% FBS was < 3%.   

Bacterial infection of macrophages.  

Macrophages were infected with Y. pestisCO92 pCD1(-)LuxPtolC or Y.pestis CO92 pCD1(-

)LuxPCysZ (MOI 10) as previously described [59, 61, 151]. In brief, bacteria cultivated overnight at 



 

139 
 

26oC in BHI, washed in PBS, and diluted in prewarmed DMEM+10%FBS. Bacteria were added to 

macrophages and infection synchronized by a 200xg centrifugation for 5 mins. 20 mins post 

infection extracellular bacteria were killed with gentamicin (16µg/mL) for one hour, and then media 

was replaced with DMEM + 10% FBS containing 2µg/mL gentamicin for the duration of the 

experiment. Bioluminescence was quantified using a Synergy HT or Synergy 4 plate reader (Biotek; 

1 sec read with sensitivity set at 150) at 20 min, 80 min and 10 h post-infection [151].   

Bioinformatics Analysis 

 Using the Genome-wide RNAi HTS dataset, we first normalized the 20 min dataset to the 

RLU of the avg scr negative control per plate as follows: (x gene RLU / avg scr RLU).  We then 

constructed a 95% confidence interval (CI) around the % elevation seen in the Copβ1 controls per 

plate. We used the lower 95% CI limit as our cutoff criteria for % elevated RLU to identify genes 

with an invasion defect per plate.  For GO ontology analysis, Entrez Gene identifiers for all 1,075 

genes meeting the lower 95% CI limit of Copβ1 controls per plate were ran through PATNHER 

(http://www.pantherdb.org/) for their molecular processes based on GO ontology. Those Entrez 

Gene identifiers that were sub-classified under Receptor Activity (96) were used to generate a 

separate dataset.   

Statistics 

 All experiments were repeated in triplicate, and are displayed as single representative 

experiments. All statistics were calculated in Graph Pad using either Student’s T-Test, or one way 

ANOVA with post-hoc Dunnett’s multiple comparison test for significance. 
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Figures and Figure Legends 

 

 

Figure 5-1. Elevated RLU is consistent and promoter independent. 

(A) Bioluminescence (RLU) at 20 min post-infection for all genome-wide RNAi HTS plates (n=205).  

(B) RAW264.7 macrophage cells transfected with either scrambled (scr; n=6) negative control or 

Copβ1 (n=8) siRNA for 48 hrs prior to infection with either Y.pestis CO92 pCD1(-)LuxPtolC or Y.pestis 

CO92 pCD1(-)LuxPCysZ (MOI 10).  Percent RLU compared to scr at 20 min. RLU = Relative Light 

Units. Significance calculated with Student’s T-test; ** = p<0.01, *** = p<0.001. 
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Figure 5-2. Elevated RLU is an invasion defect. 

RAW264.7 macrophage cells treated with 0.5, 1, or 2µm final [Cytochalasin D] (n=6) for 1 hr prior 

to infection with Y.pestis CO92 pCD1(-)LuxPtolC (MOI 10).  Bioluminescence (RLU) reads at (A) 20 

and (B) 80 mins post-infection.  Graphed as percent RLU compared to 0µm matched DMSO 

control.  Dotted line = 100%. RLU = Relative Light Units.  Significance calculated with One way 

ANOVA post-hoc Dunnett’s multiple comparison test to 0µm matched DMSO control; ** = p<0.01, 

*** = p<0.001. 
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Tables 

 

Table 5-1. All putative invasion targets. 

Entrez Gene ID Gene Symbol 
Screen Survival 

20min 2.0hr 10.0hr 

13858 Eps15 1.08 0.75 0.78 

13859 Eps15-rs 1.09 0.62 0.73 

14163 Fgd1 1.09 0.72 0.78 

14469 Gbp2 1.21 0.90 1.09 

14704 Gng3 1.13 0.86 0.94 

14709 Gng8 1.10 0.81 1.00 

330914 Grit 1.16 0.92 0.94 

69993 Chn2 1.12 0.62 0.89 

78618 Acap2 1.12 0.81 0.83 

11539.00 Adora1 1.17 0.74 0.74 

67333 Stk35 1.15 0.76 0.92 

68556 Uckl1 1.21 0.79 0.92 

14744 Gpr65 1.12 0.84 0.90 

15551 Htr1b 1.12 0.94 1.14 

16995 Ltb4r1 1.10 0.88 1.02 

216749 Nmur2 1.10 0.84 0.85 

227288 Il8ra 1.10 0.77 0.90 

387285 Hcrtr2 1.15 0.92 1.00 

436440 Gpr31c 1.14 0.79 0.83 

64095 Gpr35 1.11 0.68 0.69 

80910 Gpr84 1.17 0.97 1.06 

84111 Gpr87 1.09 0.87 0.96 

12766 Cxcr3 1.08 1.01 1.30 

12801 Cnr1 1.10 0.93 1.03 

13051 Cx3cr1 1.16 0.94 1.03 

13488 Drd1a 1.13 1.15 1.23 

13490 Drd3 1.16 1.08 1.20 

13491 Drd4 1.16 0.85 1.09 

13609 Edg1 1.17 0.99 1.30 

13617 Ednra 1.13 0.65 0.70 

14062 F2r 1.15 0.96 1.22 

14065 F2rl3 1.14 1.04 1.28 

14293 Fpr1 1.30 1.23 1.39 

14294 Fprl1 1.12 1.00 1.19 

14527 Gcgr 1.18 0.78 0.82 

14602 Ghrhr 1.09 0.94 0.98 

14652 Glp1r 1.11 0.82 0.85 

14715 Gnrhr 1.15 0.95 1.03 

14747 Cmklr1 1.16 0.87 1.04 

170757 Eltd1 1.23 0.81 0.87 

226278 Prlhr 1.12 1.06 1.51 

227289 Gpbar1 1.13 0.91 1.02 

229323 Gpr171 1.14 0.78 0.93 

238252 Gpr135 1.17 0.75 0.79 

239853 Gpr128 1.17 0.85 0.85 
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243277 E230012M21 1.16 0.99 1.42 

269053 Gpr152 1.16 0.90 0.98 

321019 Ebi2 1.14 0.78 0.85 

52389 D7Ertd680e 1.16 0.96 1.29 

52614 Emr4 1.11 1.06 1.34 

53978 Edg4 1.08 1.08 1.36 

56696 Gpr132 1.09 0.96 1.21 

78560 Gpr124 1.28 1.10 1.10 

94226 Edg8 1.18 1.19 1.53 

101533 1200016C12Rik 1.06 0.94 1.01 

105501 Abhd4 1.03 0.95 1.18 

11434 Acr 1.00 0.74 0.95 

11487 Adam10 1.09 0.75 0.77 

11488 Adam11 1.43 1.22 1.83 

11492 Adam19 1.10 0.93 1.22 

11495 Adam2 1.01 0.73 0.77 

13983 Esr2 1.01 1.00 1.57 

15370 Nr4a1 1.06 0.63 0.77 

171234 V1rf3 1.00 0.92 1.57 

18227 Nr4a2 1.07 1.06 1.60 

18441 P2ry1 1.10 0.45 0.52 

19214 Ptgdr 1.13 0.71 0.75 

19220 Ptgfr 1.06 0.48 0.59 

19222 Ptgir 1.01 0.80 1.15 

19228 Pthr1 1.03 0.99 1.39 

19401 Rara 1.09 0.86 0.91 

20605 Sstr1 1.03 0.76 0.87 

20607 Sstr3 1.05 1.04 1.13 

20608 Sstr4 1.06 0.68 0.96 

20609 Sstr5 1.00 0.78 1.22 

21337 Tacr2 1.01 0.86 1.03 

21338 Tacr3 1.05 0.63 0.68 

213527 Pthr2 1.06 1.05 1.80 

215854 Taar5 1.04 0.82 1.11 

21833 Thra 1.22 0.87 1.01 

21834 Thrb 0.99 0.92 1.16 

21907 Nr2e1 1.06 0.44 0.50 

22045 Trhr 1.00 1.10 1.56 

22337 Vdr 1.11 0.59 0.60 

22354 Vipr1 1.04 0.95 1.32 

22355 Vipr2 1.03 0.76 0.95 

233571 P2ry6 1.02 0.82 1.08 

23957 Nr0b2 1.06 1.01 1.41 

23958 Nr2e3 1.10 0.49 0.58 

243083 Tmprss11f 1.11 0.84 1.06 

243084 A030012E10 1.03 0.89 1.27 

319757 Smo 1.12 0.91 1.10 

329093 Cpa6 1.09 0.90 1.15 

56544 V2R2 1.05 0.77 1.13 

57385 P2ry4 1.02 0.78 1.12 

66286 1810029G24Rik 1.03 0.90 1.04 

67168 P2y5 1.06 0.80 0.89 

67469 Abhd5 1.06 0.88 1.12 

70008 Ace2 1.11 0.77 0.93 
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70839 P2ry12 1.01 0.86 1.02 

72461 2510048K03Rik 1.09 0.76 0.95 

73218 3110056O03Rik 1.04 1.07 1.31 

76453 2310046G15Rik 1.12 0.71 0.82 

77593 4930550B20Rik 1.04 0.81 0.86 

84112 Sucnr1 1.02 0.88 1.23 

235606 Apeh 1.21 0.59 0.66 

23792 Adam23 1.35 0.89 0.98 

70835 Prss22 1.27 0.85 0.86 

12288 Cacna1c 1.16 0.78 0.82 

12298 Cacnb4 1.11 0.86 0.90 

319446 Dpep2 1.21 0.96 1.18 

11486 Ada 1.08 0.73 0.75 

21752 Tert 1.13 0.60 0.61 

12299 Cacng1 1.13 0.90 1.08 

12337 Capn5 1.09 0.87 0.90 

12864 Cox6c 1.07 0.96 1.00 

13860 Eps8 1.24 0.95 0.99 

18606 Enpp2 1.13 1.10 1.23 

353025 Caps2 1.05 0.90 1.07 

50766 Crim1 1.21 0.74 0.82 

74754 Dhcr24 1.15 0.77 0.92 

13074 Cyp17a1 1.03 0.95 1.03 

13075 Cyp19a1 0.99 0.93 1.06 

217707 Coq6 1.03 0.87 1.10 

22034 Traf6 0.99 0.88 1.18 

22682 Za20d2 1.04 0.62 0.75 

52700 Txnl5 1.04 0.80 0.97 

53600 Timm23 0.98 0.91 0.94 

69035 Zdhhc3 0.99 0.48 0.67 

78903 Wrnip1 1.05 0.80 0.84 

209027 Pycr1 1.12 0.75 0.79 

102141 Snx25 1.02 0.62 0.75 

103724 Tbc1d10a 1.03 0.79 0.81 

11848 Rhoa 1.04 0.84 1.01 

11853 Rhoc 1.02 0.81 1.08 

11858 Rnd2 1.01 0.93 1.22 

14787 Rhpn1 1.08 0.51 0.55 

19395 Rasgrp2 1.01 0.75 0.90 

194590 Reps2 1.08 0.77 0.85 

19731 Rgl1 1.04 0.84 1.08 

19732 Rgl2 1.16 0.80 0.86 

19734 Rgs16 1.12 0.56 0.61 

19735 Rgs2 1.17 0.87 0.94 

19737 Rgs5 1.12 0.78 0.84 

19769 Rit1 1.16 0.66 0.68 

20224 Sar1a 1.07 0.82 0.84 

20334 Sec23a 1.08 0.86 1.03 

20401 Sh3bp1 1.13 0.89 0.94 

213391 Rassf4 1.10 0.61 0.62 

215653 Rassf2 1.02 0.75 0.76 

217463 Snx13 1.07 0.62 0.69 

217692 Sipa1l1 1.08 0.58 0.62 

21844 Tiam1 1.09 0.91 1.15 
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225870 Rin1 1.07 0.62 0.76 

232441 Rerg 1.04 0.74 0.76 

233071 Snx26 1.08 0.93 1.06 

233537 4921513O04 1.05 0.77 0.85 

24012 Rgs7 1.04 0.73 0.91 

246709 Rgs13 1.03 0.75 0.89 

50778 Rgs1 1.10 0.81 1.13 

51791 Rgs14 1.10 0.60 0.72 

56212 Rhog 1.15 0.35 0.35 

56437 Rrad 1.02 0.65 0.80 

69159 Rhebl1 1.08 0.54 0.60 

71330 Rcbtb1 1.16 0.80 0.96 

72536 Tagap 1.14 0.76 0.85 

74156 Cach 1.05 0.84 0.98 

74194 Rhoe 1.08 0.84 1.00 

75985 Rab30 1.14 0.38 0.39 

109904 Mcf2 0.99 0.83 0.83 

114713 Rasa2 1.08 0.69 0.75 

15463 Hrb 1.03 0.73 0.77 

16653 Kras2 1.03 0.62 0.65 

18797 Plcb3 1.04 0.74 0.81 

19330 Rab18 1.02 0.90 0.97 

19337 Rab33a 1.03 0.82 0.84 

19338 Rab33b 1.16 0.96 1.11 

19414 Rasa3 1.03 0.78 0.88 

19415 Rasal1 1.11 0.75 0.84 

19416 Rasd1 1.05 0.72 0.80 

212285 LOC212285 1.04 0.87 1.05 

223864 Rapgef3 1.04 0.93 0.96 

231801 Agfg2 1.06 0.88 1.08 

270160 Rab39 1.02 0.62 0.66 

271457 Rab5a 1.00 0.87 0.92 

67844 Rab32 1.02 0.52 0.57 

74055 Plce1 0.99 0.72 0.77 

103135 Usp52 1.10 0.81 0.87 

103694 Tmed4 1.06 0.92 0.97 

114886 Cygb 1.07 1.01 1.12 

11657 Alb1 1.05 0.64 0.69 

13063 Cycs 1.06 0.85 0.96 

16803 Lbp 1.13 0.67 0.83 

16819 Lcn2 1.08 0.83 0.84 

17189 Mb 1.03 0.67 0.73 

225651 Mppe1 1.05 0.82 0.96 

330260 Pon2 1.10 0.99 1.06 

50767 Nte 1.45 1.36 1.61 

71701 Pnpt1 1.14 0.89 0.91 

74244 Apg7l 1.18 0.50 0.52 

78600 Pde6h 1.13 0.74 0.75 

12978 Csf1r 1.26 0.84 0.89 

16452 Jak2 1.28 0.41 0.50 

16590 Kit 1.29 0.59 0.69 

57745 Zfp112 1.18 0.87 1.10 

13713 Elk3 1.01 0.75 0.75 

20254 Scg2 1.06 0.91 0.92 
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20351 Sema4a 1.05 0.73 0.93 

20358 Sema6a 1.03 0.71 1.02 

20394 Scg5 1.05 0.45 0.46 

22402 Wisp1 1.01 0.77 0.86 

224860 Plcl2 1.03 0.86 0.87 

24117 Wif1 1.06 0.89 1.01 

26456 Sema4g 1.03 0.47 0.49 

26556 Homer1 1.03 0.80 0.81 

67196 2700084L22Rik 1.08 0.77 0.80 

67405 Nts 1.05 0.85 0.95 

73318 1700013N18Rik 1.06 0.92 1.00 

14609 Gja1 1.09 0.90 0.99 

18417 Cldn11 1.06 0.84 0.95 

20821 Trim21 1.05 0.79 0.84 

22194 Ube2e1 1.06 1.03 1.11 

22209 Ube2a 1.10 0.84 0.86 

26458 Slc27a2 1.08 0.72 0.76 

54419 Cldn6 1.10 0.91 1.06 

56228 Ube2j1 1.11 0.95 1.06 

58187 Cldn10 1.12 0.91 0.97 

66105 Ube2d3 1.07 0.83 0.90 

66894 Wwp2 1.05 0.66 0.77 

74153 Ube1l 1.06 0.83 0.92 

79263 Trim39 1.05 0.83 0.87 

100705 Acacb 1.05 0.87 0.87 

107885 Mthfs 1.04 0.48 0.55 

17237 Mgrn1 1.06 0.65 0.74 

18563 Pcx 1.11 0.85 0.87 

212085 4921513B05Rik 1.06 0.81 0.94 

224826 Ubr2 1.04 0.60 0.84 

229487 Pet112l 1.10 0.90 0.96 

59004 Pias4 1.12 0.99 1.14 

97541 Qars 1.06 0.84 1.12 

99152 Anapc2 1.04 0.87 1.01 

1E+08 Dnajc3 1.05 0.52 0.63 

13418 Dnajc1 1.08 0.79 0.93 

14616 Gja8 1.09 0.87 0.93 

14617 Gjd2 1.06 0.85 0.91 

15507 Hspb1 1.07 0.96 1.16 

15528 Hspe1 1.11 0.89 1.14 

17475 Mpdz 1.03 1.00 1.00 

17714 Grpel2 1.05 0.78 0.87 

213539 Bag2 1.04 0.92 0.93 

231997 Fkbp14 1.07 0.74 0.97 

56354 Dnajc7 1.07 0.59 0.84 

56445 Dnaja2 1.03 0.83 1.02 

57431 Dnajc4 1.06 0.68 0.87 

64010 Sav1 1.03 0.93 1.14 

66411 Ckap1 1.07 0.93 1.03 

67035 Dnajb4 1.04 0.99 1.02 

68598 Dnajc8 1.07 0.75 1.14 

76889 Adck4 1.06 0.95 0.99 

80888 Hspb8 1.08 0.97 1.00 

83945 Dnaja3 1.07 0.80 0.98 
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93742 Pard3 1.03 0.91 0.94 

23970 Pacsin2 1.06 0.61 0.89 

386649 Nsfl1c 1.05 0.75 0.76 

56440 Snx1 1.04 0.89 0.91 

71889 Epn3 1.05 0.82 0.88 

11629 Aif1 1.15 0.72 0.78 

12813 Col10a1 1.07 0.82 0.88 

18125 Nos1 1.11 0.64 0.71 

18126 Nos2 1.10 0.60 0.71 

18570 Pdcd6 1.11 0.47 0.50 

20193 S100a1 1.08 0.72 0.79 

20198 S100a4 1.08 0.83 0.86 

21926 Tnf 1.09 0.52 0.54 

270084 Lpcat2 1.16 0.76 0.92 

27062 Cadps 1.09 0.88 0.89 

52589 Ncald 1.09 0.72 0.83 

67500 Ccar1 1.12 0.71 0.72 

70527 Stambp 1.08 0.86 0.90 

73316 Calr3 1.11 0.92 0.96 

80796 Calm4 1.12 0.81 1.02 

12263 C2 1.10 0.83 0.91 

14134 Fcnb 1.10 0.64 0.74 

14256 Flt3l 1.07 0.51 0.68 

14962 Cfb 1.13 0.65 0.87 

16168 Il15 1.09 0.56 0.60 

20292 Ccl11 1.11 0.92 0.93 

50908 C1s 1.08 0.86 0.91 

50928 Klrg1 1.09 0.85 0.86 

54525 Syt7 1.10 0.79 0.83 

14118 Fbn1 1.19 0.91 1.00 

16782 Lamc2 1.19 1.06 1.17 

17388 Mmp15 1.23 0.99 1.12 

17392 Mmp3 1.18 0.88 1.22 

17395 Mmp9 1.21 0.99 1.11 

18074 Nid2 1.20 1.08 1.31 

214766 Mmp21 1.25 0.68 0.92 

23948 Mmp17 1.27 0.78 1.10 

240047 Mmp25 1.21 0.69 0.92 

26561 Mmp23 1.19 0.81 1.06 

13433 Dnmt1 1.04 0.92 1.09 

13629 Eef2 1.05 0.84 0.94 

13685 Eif4ebp1 1.02 0.78 0.93 

13690 Eif4g2 1.07 0.72 0.81 

13796 Emx1 1.05 0.77 1.08 

13797 Emx2 1.02 0.74 0.75 

14265 Fmr1 1.01 0.80 1.09 

14836 Gsc 1.07 0.82 1.03 

14842 Gsh1 1.07 0.73 0.75 

14843 Gsh2 1.05 0.93 1.04 

14852 Gspt1 1.07 0.86 0.97 

15115 Hars 1.06 0.87 0.92 

15248 Hic1 1.05 0.85 0.98 

212528 Trmt1 1.03 0.97 0.98 

226414 Dars 1.03 0.73 0.85 
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23879 Fxr2 1.02 0.67 0.68 

54632 Ftsj1 1.01 0.78 1.00 

70791 Hars2 1.07 0.65 0.76 

15312 Hmgn1 1.00 0.80 0.84 

16589 Uhmk1 1.02 0.88 1.07 

171170 Mbnl3 1.05 0.68 0.78 

70223 Nars 1.02 0.62 0.70 

72199 Mms19l 1.03 0.72 0.82 

76936 Hnrpm 1.03 0.82 0.91 

94353 Hmgn3 1.01 0.81 0.89 

108017 Fxyd4 1.22 0.83 0.96 

171209 Accn3 1.19 0.82 0.86 

17178 Fxyd3 1.22 0.77 0.82 

217356 Tmc8 1.19 0.95 1.06 

229927 Clca4 1.20 1.15 1.46 

435845 Tmprss11c 1.17 0.73 0.74 

56808 Cacna2d2 1.20 0.90 1.04 

74270 Usp20 1.18 0.71 0.95 

103710 Slc35e4 1.03 0.95 1.16 

106039 Gga1 1.01 0.95 1.30 

110891 Slc8a2 1.00 0.83 0.93 

117591 Slc2a9 1.10 0.81 1.30 

140918 Slc7a12 1.05 0.97 1.13 

142681 Slc34a3 1.02 0.72 1.27 

14664 Slc6a9 1.07 0.95 1.14 

16792 Laptm5 1.03 1.02 1.34 

18399 Slc22a6 1.00 0.96 1.28 

20509 Slc19a1 1.03 1.05 1.25 

20536 Slc4a3 1.07 0.95 1.05 

207151 Slc22a9 1.00 1.05 1.32 

210148 Slc30a6 1.01 0.75 1.17 

216867 Slc16a11 1.02 0.90 1.16 

224661 Slc26a8 1.01 1.00 1.13 

22599 Slc6a20b 1.03 0.94 1.08 

227059 Slc39a10 1.03 1.02 1.33 

229706 Slc6a17 1.12 0.94 1.04 

242773 Slc45a1 1.01 0.91 1.15 

260302 Gga3 1.05 0.98 1.25 

268512 Slc26a11 1.04 0.97 1.06 

54160 Copg2 1.00 0.99 1.36 

56358 Copz2 1.02 1.00 1.27 

59042 Cope 1.02 0.98 1.27 

64454 Slc5a4b 1.01 0.99 1.38 

67843 Slc35a4 1.00 0.67 1.19 

69089 Oxa1l 1.01 0.89 1.26 

71805 Nup93 1.00 1.03 1.53 

72027 Slc39a4 1.01 0.94 1.16 

72961 Slc17a7 1.01 1.03 1.46 

74102 Slc35a5 1.03 0.67 1.24 

74338 Slc6a19 1.06 1.07 1.23 

77996 D730039F16Rik 1.07 0.88 1.20 

98396 Slc41a1 1.00 1.03 1.20 

108956 2210421G13Rik 0.99 1.01 1.13 

109280 9330176C04Rik 1.05 0.93 1.25 
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11777 Ap3s1 1.05 0.92 1.36 

16531 Kcnma1 1.05 0.96 1.12 

16532 Kcnma3 1.01 0.95 1.11 

16536 Kcnq2 1.02 0.96 1.10 

18669 Abcb1b 1.00 0.63 1.15 

18670 Abcb4 1.01 0.68 1.24 

192140 Tmc2 1.01 0.93 1.29 

193034 Trpv1 1.01 0.90 1.01 

20271 Scn5a 1.00 0.97 1.09 

20928 Abcc9 0.99 0.56 1.11 

210463 BC026439 1.07 1.09 1.19 

213603 BC010552 1.07 0.93 1.18 

213827 Arcn1 1.00 0.95 1.17 

223604 Kcnk9 1.04 0.92 1.11 

224742 Abcf1 1.00 0.57 0.91 

228993 BC019537 1.00 0.76 0.94 

231430 BC038311 1.05 0.97 1.08 

232910 Ap2s1 1.00 1.07 1.55 

236149 Slc22a26 1.05 0.91 1.23 

241612 Slc5a12 0.99 0.70 1.05 

241919 BC061928 1.02 0.81 0.81 

243813 Leng9 1.05 0.95 1.01 

252903 Ap1s3 0.99 0.93 1.23 

27061 Bcap31 1.02 1.02 1.22 

319800 C730048C13Rik 1.06 0.92 1.18 

320590 9430071P14Rik 1.01 0.98 1.36 

338363 6030446N20Rik 0.99 0.89 1.19 

338365 A230035L05Rik 1.00 0.91 1.35 

399548 Scn4b 1.01 0.93 1.17 

56325 Abcb9 0.99 0.61 1.25 

56334 Tmed2 0.99 0.95 1.09 

57776 Ttyh1 1.03 0.92 1.07 

67135 2310021H06Rik 1.03 1.15 1.18 

68044 2510006C20Rik 0.99 0.97 1.57 

68279 Mcoln2 1.00 0.93 1.00 

68682 1110028E10Rik 1.02 0.93 1.34 

69065 1810008K03Rik 1.00 1.03 1.29 

72175 2810423E13Rik 1.00 0.95 1.30 

74424 Tmc5 1.00 0.97 1.30 

75761 Apol7a 1.00 0.93 0.99 

77577 9830002I17Rik 0.99 0.85 1.15 

101744 C330005M16Rik 1.05 0.89 0.93 

102954 Nudt10 1.00 1.06 1.16 

105352 Dusp22 1.04 0.63 1.06 

108096 Slco1a5 1.04 0.98 1.04 

110074 Dutp 1.02 0.65 1.03 

110332 4921523A10Rik 1.02 1.02 1.20 

110895 Slc9a4 1.07 0.93 1.14 

13853 Epm2a 1.02 0.65 1.13 

14198 Fhit 1.04 0.91 1.07 

16331 Inpp5d 1.03 1.01 1.11 

170835 Pib5pa 1.06 0.96 1.09 

18640 Pfkfb2 1.02 1.09 1.24 

214901 Chtf18 1.01 0.82 0.88 
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216152 BC005764 1.01 1.11 1.49 

232941 C79127 1.00 1.05 1.25 

235534 Acpl2 1.04 0.95 1.15 

242291 1110001C20Rik 1.02 1.10 1.28 

28248 Slco1a1 1.01 0.94 1.12 

28250 Slco1a4 1.03 0.86 1.00 

28254 Slco1a6 1.04 1.06 1.12 

384619 Ccdc155 1.07 1.05 1.42 

52036 Saps3 1.01 0.73 1.32 

54561 Nap1l3 1.03 0.96 1.06 

57028 Pdxp 1.01 1.00 1.11 

58242 Nudt11 1.03 0.98 1.16 

58243 Nap1l5 1.01 1.06 1.22 

60600 Tsga8 1.02 0.87 0.93 

66387 Nudt8 1.02 1.02 1.13 

67395 4930403L05Rik 1.01 1.07 1.24 

67528 Nudt7 1.00 1.04 1.45 

67952 Tomm20 1.00 1.07 1.26 

68695 1110033O09Rik 1.02 0.98 1.29 

69274 Ctdspl 1.01 0.78 1.24 

71474 Ppp6r2 1.00 0.91 1.21 

74140 Tm9sf1 1.04 0.93 1.20 

74189 Phactr3 1.05 1.10 1.37 

74411 4932443D16Rik 1.00 1.00 1.12 

75769 4833424O15Rik 1.10 1.05 1.42 

77573 Vps33a 1.00 0.87 0.96 

13057 Cyba 1.00 0.80 0.82 

217864 D12Wsu95e 1.04 0.81 0.84 

276829 Smtnl2 1.03 0.77 0.80 

319593 D130011D22Rik 1.01 0.91 0.92 

320373 D130016K21Rik 1.01 0.76 0.76 

330577 D030069K18 1.03 0.95 0.97 

442805 D130007C19Rik 1.01 0.87 0.90 

52014 Nus1 1.00 0.92 0.97 

52668 Ifi27l1 1.00 0.79 0.91 

52670 Cpsf4l 1.02 0.95 1.11 

52717 D10Ertd641e 1.03 0.84 0.98 

214932 Cecr5 1.04 0.89 1.04 

225745 Ccdc5 1.08 0.88 1.10 

321022 Cdv3 1.03 0.87 0.91 

57912 Cdc42se1 1.04 0.91 0.97 

66440 Cdc26 1.07 0.79 0.83 

67849 Cdca5 1.06 1.10 1.20 

71991 Ckn1 1.07 0.93 1.00 

72278 Ccpg1 1.09 1.07 1.08 

94040 Clmn 1.14 1.00 1.06 

103466 C630002B14Rik 1.05 0.97 1.09 

12331 Cap1 1.00 0.86 0.89 

231855 Ap5z1 1.09 0.88 0.97 

235386 C630028N24Rik 1.03 0.80 0.89 

442802 C330011M18Rik 1.01 0.92 0.93 

54378 Cacng6 1.02 0.79 0.81 

68112 C330016H24Rik 1.04 0.82 0.82 

12959 Cryba4 1.07 0.97 1.12 
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12964 Cryga 1.08 0.85 0.99 

12967 Crygd 1.03 1.03 1.05 

12970 Crygs 1.04 1.05 1.07 

234577 Cpne2 1.06 0.97 1.17 

245684 Cnksr2 1.05 0.83 0.92 

266692 Cpne1 1.04 1.05 1.13 

338337 Cog3 1.08 1.00 1.16 

57358 Cmar 1.03 0.94 1.03 

66398 Commd5 1.10 1.04 1.18 

76524 Cln6 1.09 0.90 0.97 

94109 Csmd1 1.04 1.05 1.05 

13626 Eed 1.07 0.95 1.03 

210757 E430004N04Rik 1.04 0.98 1.01 

211305 E330017E16 1.04 1.03 1.12 

228598 Ebf4 1.04 0.94 1.03 

240754 Lax1 1.07 1.05 1.16 

319996 D130060C09Rik 1.12 1.10 1.19 

320360 E130307J04Rik 1.06 1.00 1.08 

403205 E030025L21Rik 1.05 0.93 1.18 

54648 Ccdc120 1.04 1.07 1.20 

231630 D5Ertd40e 1.06 0.93 1.01 

65111 Dap3 1.06 0.88 0.97 

213491 Szrd1 1.09 0.86 0.95 

219072 Haus4 1.08 0.86 0.92 

232813 D430041B17 1.06 0.85 0.99 

27762 Vwa7 1.07 0.97 1.09 

319388 D230002A01Rik 1.08 0.97 1.03 

319655 Podxl2 1.07 0.99 1.14 

52552 D13Ertd275e 1.14 1.01 1.06 

52846 D1Bwg0212e 1.05 0.85 0.89 

67586 D4Bwg1540e 1.06 0.94 1.10 

67948 Fbxo28 1.09 1.04 1.17 

78581 D530033C11Rik 1.12 0.99 1.19 

107986 Ddb2 1.05 1.02 1.02 

112403 Dom3z 1.07 1.05 1.15 

116905 Dph2l1 1.15 0.95 1.03 

13216 Defa1 1.07 1.09 1.27 

13221 Defa-rs12 1.09 1.06 1.18 

13238 Defa4 1.07 0.96 1.13 

13239 Defcr5 1.07 1.02 1.23 

13380 Dkk1 1.13 1.01 1.22 

13446 Doc2a 1.08 1.06 1.13 

13447 Doc2b 1.06 1.04 1.14 

13517 Dspp 1.10 1.01 1.20 

13518 Dst 1.08 1.08 1.15 

227525 Dclre1c 1.18 1.02 1.11 

23853 Def6 1.09 0.93 1.10 

23854 Def8 1.09 0.99 1.10 

246079 Defb9 1.09 1.02 1.24 

360212 Defb38 1.08 0.98 1.00 

50722 Dkkl1 1.11 1.20 1.38 

54638 DXImx40e 1.25 1.04 1.44 

54722 Dfna5h 1.19 1.18 1.36 

56176 Pigp 1.07 0.95 0.99 
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56455 Dnclc1 1.08 1.19 1.26 

56811 Dkk2 1.11 0.95 1.19 

58251 Ddc8 1.10 1.00 1.08 

66148 Dnajc15 1.06 0.99 1.15 

67379 Dedd2 1.11 1.02 1.03 

67728 Dph2l2 1.06 1.05 1.14 

68184 Denr 1.06 0.99 1.24 

68563 Dpm3 1.07 1.20 1.41 

68897 Disp1 1.10 1.06 1.07 

71804 Dufd1 1.11 1.01 1.06 

71972 Dnmbp 1.11 1.04 1.30 

73284 Ddit4l 1.13 1.00 1.02 

77674 Defb12 1.16 1.06 1.29 

94223 Dgcr8 1.08 1.22 1.30 

97998 Deptor 1.06 1.08 1.10 

102920 Fshprh1 1.12 0.85 1.08 

103583 Fbxw11 1.14 0.79 0.89 

14154 Fem1a 1.05 0.67 0.73 

14210 Fin15 1.10 0.90 0.99 

14221 Fjx1 1.09 0.89 1.07 

14352 Fv4 1.07 0.68 0.74 

17281 Fyco1 1.10 0.91 0.94 

213980 Fbxw10 1.10 0.69 0.71 

231470 Fras1 1.05 0.97 1.14 

239839 Ccdc14 1.21 0.68 0.79 

240263 Fem1c 1.06 0.88 0.94 

30050 Fbxw2 1.10 0.84 0.95 

384061 Fndc5 1.06 0.87 0.98 

50759 Fbxo16 1.07 0.79 0.81 

50764 Fbxo15 1.16 0.99 1.05 

64339 Fndc4 1.08 0.75 0.83 

66153 Fbxo36 1.07 0.91 1.08 

71313 Fsip1 1.05 0.77 1.04 

78938 Fbxo34 1.19 0.75 0.81 

219150 F830020C16Rik 1.13 0.82 0.91 

320463 F630111L10Rik 1.10 0.93 0.97 

50757 Fbxo12 1.17 0.84 0.90 

54357 Epb4.1l4b 1.11 0.67 0.67 

14585 Gfra1 1.09 1.07 1.11 

217648 Gm527 1.05 0.87 0.90 

229588 Gm128 1.06 0.95 0.96 

23885 Gcl 1.15 0.89 1.10 

241950 Gm1805 1.09 0.83 0.87 

381334 Gal3st2 1.26 0.80 1.04 

68592 Gcipip 1.20 0.67 0.80 

70772 Ggnbp1 1.09 0.87 0.97 

93683 Glce 1.08 0.91 0.97 

16970 Lrmp 1.13 0.80 0.86 

211228 Lrrc25 1.56 1.08 1.10 

269593 Luzp1 1.13 0.97 0.99 

432582 E130309D14Rik 1.11 0.92 0.99 

432589 LOC432589 1.11 0.93 0.96 

544988 544988 1.12 0.83 0.85 

16639 Klra8 1.08 1.08 1.09 
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67224 Med29 1.06 0.81 0.94 

140559 Igsf8 1.14 1.24 1.26 

15982 Ifrd1 1.02 1.09 1.18 

15983 Ifrd2 1.04 1.14 1.26 

192232 Hps4 1.17 1.42 1.48 

382522 Hist3h2bb-ps 1.01 1.18 1.21 

66141 Ifitm3 1.11 1.39 1.51 

66320 Tmem208 0.98 1.14 1.17 

66667 Hspbap1 1.06 1.00 1.09 

80876 Ifitm2 1.01 1.34 1.38 

83408 Gimap3 0.99 1.07 1.09 

99899 Ifi44 1.04 0.84 0.88 

13863 Lcn5 1.02 0.80 0.83 

16699 Krtap13 1.04 0.74 0.90 

212871 LOC212871 1.14 0.81 0.87 

268905 Krtap13-1 1.11 0.82 0.86 

381806 LOC381806 1.03 0.68 0.72 

432555 LOC432555 1.03 0.64 0.71 

54135 Lsr 1.08 0.94 1.08 

66380 Krtap3-3 1.05 0.87 0.99 

66708 Krtap3-2 1.02 0.75 0.88 

76893 Lass2 1.05 0.86 0.90 

18095 Nkx3-1 1.09 0.69 0.72 

18307 Olfr10 1.13 0.90 1.17 

213765 BC125332 1.09 0.88 1.00 

259015 Olfr1038 1.08 0.84 0.91 

433904 Ociad2 1.11 0.66 0.72 

67122 Nrarp 1.08 0.58 0.75 

68039 Nmb 1.07 0.71 0.72 

72310 Nkg7 1.07 0.60 0.73 

258925 Olfr20 1.07 0.76 0.81 

28028 Mrpl50 1.07 0.72 0.76 

434204 MGC51670 1.05 0.90 0.92 

68499 Mrpl53 1.04 0.75 0.89 

17149 Magoh 1.09 0.69 0.71 

17235 Mcsp 1.06 0.60 0.66 

66591 Mad2l1bp 1.07 0.94 0.96 

170829 Tram2 0.98 0.84 1.01 

219024 Tmem55b 0.98 0.62 0.72 

21950 Tnfsf9 1.04 0.65 0.73 

22031 Traf3 1.01 0.72 0.77 

22040 Trex1 0.96 0.82 0.87 

22057 Tob1 0.98 0.79 0.81 

22157 Tulp1 0.98 0.78 0.87 

224840 Treml4 0.97 0.71 0.76 

227331 Tnrc15 1.02 0.82 0.85 

227606 Tbpl2 0.96 0.73 0.76 

231130 Tnip2 1.00 0.79 0.83 

252838 Tox 0.98 0.69 0.70 

27279 Tnfrsf12a 0.95 0.76 0.79 

277414 Trp53i11 0.99 0.73 0.83 

30934 Tor1b 0.96 0.86 0.96 

64930 Tsc1 0.95 0.83 0.83 

66241 Tmem9 0.96 0.65 0.67 



 

154 
 

67946 Spata6 1.01 0.62 0.66 

71326 Treml1 1.00 0.70 0.83 

71609 Tradd 1.00 0.72 0.74 

72236 Tsnaxip1 1.01 0.74 0.74 

72265 Tram1 0.98 0.77 0.82 

20939 Sva 0.99 0.81 0.84 

20944 Svs5 1.01 0.78 0.82 

232811 Suv420h2 0.98 0.61 0.73 

237336 Tbpl1 0.98 0.66 0.67 

27381 Tcl1b2 0.99 0.65 1.02 

387347 Tas2r118 0.97 0.83 0.98 

387515 Tas2r144 0.96 0.67 0.70 

53878 Svs2 1.01 0.83 0.92 

57252 Tas2r105 0.96 0.74 0.89 

574417 Tas2r137 0.97 0.65 0.71 

67043 Syap1 0.97 0.63 0.65 

67923 Tceb1 0.98 0.82 1.17 

68416 Sycn 0.98 0.70 0.78 

71578 Sval1 0.97 0.68 0.76 

93670 Tac4 0.96 0.77 0.83 

104871 Spata7 1.03 0.64 0.64 

20759 Sprr2e 0.99 0.77 0.89 

20760 Sprr2f 0.96 0.88 1.04 

20761 Sprr2g 1.02 0.75 0.79 

20770 Spt1 0.99 0.85 0.95 

225888 Suv420h1 1.04 0.84 1.00 

229285 Spg20 0.96 0.65 0.74 

278240 Spin2 0.96 0.79 0.87 

54402 Stk19 0.97 0.51 0.56 

68720 Lce1b 0.98 0.87 0.98 

69611 Lce1d 1.02 0.70 0.73 

70599 Ssfa2 1.02 0.96 1.07 

75956 Srrm2 0.98 0.67 0.76 

216395 Tmem5 1.02 0.89 0.96 

21667 Tdgf1 1.09 0.91 1.03 

219249 Tdrd3 1.02 0.76 0.88 

27380 Tcl1b4 1.00 0.88 1.04 

27382 Tcl1b5 1.09 0.76 0.76 

56351 Tebp 1.02 0.85 0.95 

67878 Tmem33 1.00 0.84 0.99 

73122 Tgfbrap1 1.02 0.69 0.98 

73679 Tex19.1 1.01 0.81 0.84 

83559 Tex18 1.04 0.64 0.66 

108946 Zzz3 1.04 0.76 0.88 

112405 Egln1 1.04 0.95 1.04 

112406 Egln2 0.99 0.88 1.21 

14204 Il4i1 1.00 0.93 1.17 

15495 Hsd3b4 1.05 0.63 0.77 

15496 Hsd3b5 0.98 0.57 0.73 

170737 Znrf1 1.02 0.76 1.10 

20250 Scd2 1.01 0.79 0.79 

20834 Znrf4 1.00 0.70 0.87 

22761 Zfpm1 1.05 0.68 0.82 

22789 Zp3r 1.01 0.79 0.89 
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319740 Zfyve27 1.04 0.95 0.97 

320951 9030221M09Rik 1.01 0.61 0.63 

52696 Zwint 1.05 0.61 0.81 

58865 Tdh 1.01 0.67 0.86 

68221 1700049M11Rik 0.99 0.74 0.91 

68842 Tulp4 1.03 0.87 1.29 

69367 Glrx2 1.01 0.74 0.86 

74551 1810010O14Rik 0.99 0.90 1.01 

77424 9530002K18Rik 0.98 0.76 0.82 

78287 Zfyve20 1.00 0.89 0.95 

113865 V1rc8 1.03 0.88 0.88 

171245 V1rh1 1.06 0.82 0.94 

171247 Vmn1r199 1.01 0.73 0.78 

171257 V1ri6 1.04 0.75 0.87 

171271 Vmn1r220 1.05 0.81 0.88 

213081 Wdr19 1.01 0.73 0.90 

22360 Vmp 1.04 0.84 0.92 

230796 Wdtc1 1.02 0.71 0.74 

252908 V1ri8 1.04 0.76 0.78 

27973 Vkorc1 1.03 0.77 0.79 

54636 Wdr45 1.03 0.73 0.74 

69568 Vkorc1l1 1.01 0.64 0.65 

113848 Vmn1r42 0.99 0.71 0.87 

113864 V1rc7 1.03 0.82 0.99 

171198 Vmn1r28 0.98 0.76 0.88 

212190 Ubxd3 1.04 0.68 0.83 

217379 Ubxd4 1.00 0.71 0.99 

22269 Upk2 1.02 0.61 0.81 

22270 Upk3a 0.99 0.80 0.86 

69136 Tusc1 1.06 0.69 0.90 

70450 Unc13d 1.01 0.89 1.24 

72565 Uaca 1.03 0.62 0.63 

80385 Tusc2 1.05 0.89 1.23 

215627 Zbtb8 1.08 0.76 0.79 

22631 Ywhaz 1.06 0.77 0.79 

54367 Zfp326 1.10 0.90 1.27 

231659 G431004K08Rik 1.09 0.88 1.03 

67230 2810439M05Rik 1.08 0.73 0.84 

12189 Brca1 1.02 0.93 1.28 

208104 B930074I24 1.00 0.94 1.28 

216874 Camta2 1.01 0.94 0.99 

232855 BC023179 1.00 1.04 1.30 

235048 BC050092 1.01 0.90 1.05 

235956 Zfp825 1.00 0.88 1.00 

244219 BC030314 1.01 1.09 1.13 

319792 9130023H24Rik 1.03 0.84 1.15 

381066 Zfp948 1.01 0.84 1.13 

66830 Nacc1 1.01 0.97 1.21 

78783 Brpf1 1.02 0.93 1.03 

406222 Krt74 1.03 0.93 1.01 

71994 Cnn3 1.03 0.89 1.20 

102162 Taf5l 1.06 0.86 1.05 

74469 Taf7l 1.02 0.99 1.06 

328280 Rslcan24 1.05 1.02 1.10 
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20288 Msr1 1.14 0.79 0.81 

239029 4933430J11 1.21 0.65 0.65 

18171 Nr1i2 1.14 0.68 0.72 

257891 Olfr479 1.14 0.54 0.61 

258016 Olfr453 1.14 0.62 0.77 

258222 Olfr310 1.19 0.71 0.75 

258270 Olfr448 1.11 0.60 0.62 

258293 Olfr437 1.10 0.74 0.77 

258302 Olfr420 1.14 0.79 0.80 

258436 Olfr458 1.12 0.61 1.01 

258490 Olfr492 1.19 0.43 0.43 

258529 Olfr313 1.15 0.56 0.57 

258530 Olfr311 1.16 0.60 0.70 

258648 Olfr237-ps1 1.18 0.68 0.71 

258713 Olfr430 1.14 0.61 0.61 

258926 Olfr476 1.13 0.69 0.72 

257908 Olfr115 1.21 0.84 1.01 

257899 Olfr1000 1.20 0.71 0.79 

257916 Olfr1031 1.16 0.66 0.67 

18442 P2ry2 1.13 0.72 0.78 

259112 Olfr979 1.12 0.50 0.53 

102607 Snx19 1.11 0.77 0.78 

14700 Gng10 1.07 0.98 1.11 

19385 Ranbp1 1.16 0.51 0.56 

19387 Rangap1 1.15 0.40 0.45 

20403 Itsn2 1.11 0.82 1.09 

227800 Rabgap1 1.20 0.48 0.51 

236573 E430029F06 1.09 0.86 1.00 

243362 Stard13 1.07 0.79 0.94 

244962 Snx14 1.24 0.69 0.75 

380711 Garnl4 1.08 0.83 0.83 

50780 Rgs3 1.14 0.82 0.87 

56395 C78915 1.12 0.79 0.95 

56784 Ralgapa1 1.09 0.82 1.00 

70497 Arhgap17 1.11 0.79 0.91 

73910 Arhgap18 1.15 0.80 0.93 

76117 Arhgap15 1.13 0.85 0.88 

79264 Krit1 1.07 0.76 0.84 

99326 Garnl3 1.13 0.71 0.72 

107435 Hat1 1.07 0.78 1.33 

216454 BC089597 1.04 0.78 0.93 

77805 A930014I12Rik 1.06 0.88 1.04 

114143 Atp6v0b 1.05 0.87 1.00 

232906 6430596G11Rik 1.05 0.80 0.81 

68449 1110003P22Rik 1.05 0.84 0.93 

17110 Lzp-s 1.06 0.29 0.53 

17766 Nudt1 1.05 0.90 0.97 

18010 Neu1 1.07 0.98 1.11 

207806 Gm608 1.07 0.92 1.17 

212442 Lactb2 1.06 0.35 0.65 

215951 Lace1 1.08 0.33 0.58 

223254 Farp1 1.05 0.85 1.06 

226090 MGC28180 1.08 0.79 1.10 

227377 Farp2 1.06 0.91 0.99 
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227619 Man1b1 1.05 0.38 0.63 

23956 Neu2 1.07 0.94 1.09 

268395 Mpg 1.05 0.91 1.16 

30959 Ddx25 1.07 0.89 1.09 

320685 Dctd 1.09 0.77 0.80 

52633 Nit2 1.07 0.78 0.89 

59007 Ngly1 1.09 0.94 1.06 

67328 Lyzl1 1.07 0.38 0.66 

71567 Mcmdc1 1.09 0.90 1.13 

72831 Dhx30 1.05 0.81 0.93 

80907 Lactb 1.05 0.36 0.64 

83456 Mov10l1 1.08 0.90 1.02 

101497 AI194308 1.06 0.97 1.24 

102075 4931414L13Rik 1.04 0.92 1.00 

107338 Gbf1 1.04 1.01 1.34 

109151 Chd9 1.03 0.92 1.02 

11938 Atp2a2 1.04 0.89 1.04 

11941 Atp2b2 1.05 0.92 1.13 

11981 Atp9a 1.11 1.13 1.31 

16801 Arhgef1 1.03 1.00 1.22 

209224 Cova1 1.07 0.93 1.03 

213484 BC036718 1.04 0.82 0.89 

213522 BC026778 1.03 0.32 0.63 

216848 Chd3 1.02 0.81 1.02 

217364 D230014K01Rik 1.04 0.82 0.88 

224079 9330174J19Rik 1.11 1.03 1.10 

227723 5830434P21Rik 1.04 0.83 0.84 

229688 BC051070 1.03 0.92 0.94 

230379 Acer2 1.07 0.86 0.94 

243272 BC021875 1.03 0.46 0.73 

319767 9030605H24Rik 1.06 1.04 1.10 

320024 Aadacl1 1.02 0.52 0.57 

320707 Atp2b3 1.02 0.93 1.11 

381572 9430007A20Rik 1.06 0.87 1.01 

50769 Atp8a2 1.06 1.01 1.07 

52666 D10Ertd610e 1.08 0.93 0.96 

53404 Atoh7 1.06 1.10 1.50 

54608 Abhd2 1.06 0.94 0.97 

67239 Bxdc1 1.03 0.97 1.13 

67772 Chd8 1.05 0.90 1.01 

68126 Fahd2a 1.02 0.63 0.89 

71562 Afmid 1.02 0.95 1.28 

74018 Als2 1.04 1.08 1.14 

80744 BC003993 1.02 0.54 0.71 

83379 AV071179 1.04 0.97 1.27 

21843 Tial1 1.04 0.78 0.81 

219131 Phf11 1.05 0.70 0.71 

547168 Rhox7 1.07 0.90 0.96 

57317 Sfrs4 1.05 0.87 1.12 

68927 Ptcd2 1.04 0.91 0.96 

100609 9830109N13Rik 1.05 0.90 1.02 

103284 Zc3h10 1.02 1.13 1.23 

12877 Cpeb1 1.04 1.20 1.39 

13831 Epc1 1.04 1.01 1.06 
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14359 Fxr1h 1.02 0.92 0.94 

226049 Dmrt2 1.01 1.13 1.34 

231044 Gbx1 1.03 0.98 1.13 

231999 Plekha8 1.01 0.89 1.18 

233904 BC010250 1.02 1.15 1.17 

242620 Dmrta2 1.01 1.10 1.22 

268741 5730589K01Rik 1.03 0.74 0.80 

268859 A2bp1 1.06 1.02 1.33 

320858 D930040M24Rik 1.02 0.89 1.06 

494448 Cbx6 1.03 0.87 1.09 

66408 Aptx 1.06 1.16 1.36 

70127 Dpf3 1.02 0.97 1.14 

217944 Rapgef5 1.06 0.84 0.90 

26464 Vnn3 1.07 1.02 1.27 

67229 Prpf18 1.06 0.97 1.02 

67724 Pop1 1.07 0.78 0.86 

72886 2900016D05Rik 1.06 0.94 1.11 

74002 Psd2 1.07 0.94 0.97 

14957 Hist1h1d 1.05 1.12 1.17 

14958 H1f0 1.04 0.93 0.98 

15078 H3f3a 1.02 0.92 1.06 

15267 Hist2h2aa1 1.07 1.10 1.28 

15371 Hmx1 1.07 1.23 1.75 

15372 Hmx2 1.03 1.08 1.40 

16815 Lbx2h 1.04 0.98 1.13 

18080 Nin 1.02 0.89 1.02 

18508 Pax6 1.06 1.11 1.29 

223499 Gm83 1.04 0.88 0.91 

228731 Nkx2-4 1.04 1.07 1.31 

234988 Mbd3l2 1.01 1.13 1.45 

237339 L3mbtl3 1.02 1.20 1.29 

243529 H1fx 1.03 0.99 0.99 

246738 ORF28 1.04 0.93 1.02 

260423 Hist1h3f 1.05 1.12 1.41 

27354 Nbn 1.02 0.44 0.78 

319158 Hist1h4i 1.05 1.10 1.31 

382035 Pabpn1l 1.07 1.03 1.09 

433762 LOC433762 1.05 1.04 1.41 

50708 Hist1h1c 1.05 1.17 1.39 

56335 Mettl3 1.03 0.42 0.69 

56702 Hist1h1b 1.02 1.13 1.17 

80838 Hist1h1a 1.03 1.02 1.18 

97908 Hist1h3g 1.03 1.08 1.16 

30928 Zfp238 1.06 0.75 0.89 

67876 1500041J02Rik 1.07 0.77 0.83 

69029 1500032L24Rik 1.02 0.79 0.99 

69770 1600002K03Rik 1.07 0.66 0.78 

75188 1700009J07Rik 1.03 0.75 0.98 

75462 1700001C19Rik 1.02 0.72 0.95 

76568 1500035H01Rik 1.05 0.82 1.04 

78304 1500034E06Rik 1.02 0.78 0.90 

78330 1500032D16Rik 1.02 0.80 0.88 

66183 1110032A04Rik 1.07 0.79 0.90 

66195 1110058A15Rik 1.07 0.82 0.87 



 

159 
 

68659 1110032E23Rik 1.08 0.87 0.99 

68731 Rbfa 1.09 0.74 0.88 

68796 1110039B18Rik 1.07 0.58 0.61 

73730 1110008K04Rik 1.08 0.86 0.97 

74165 1110004B15Rik 1.12 0.84 1.00 

381629 0610007C21Rik 1.00 0.72 1.01 

55978 Ift20 1.02 0.72 1.05 

56700 0610031J06Rik 1.03 0.70 0.80 

57247 Zfp276 1.03 0.74 1.04 

59052 Mettl9 1.00 0.75 1.06 

66048 0610009E20Rik 1.00 0.78 0.96 

66074 0610041E09Rik 1.02 0.85 0.93 

66089 Rmnd5b 1.03 0.68 0.96 

66910 Tmem107 1.06 0.66 0.78 

67441 0610042E07Rik 1.01 0.89 0.98 

68212 0610007H07Rik 1.02 0.67 0.84 

68314 0610008F07Rik 0.99 0.80 0.88 

68323 0610006K04Rik 1.02 0.84 0.88 

68421 0910001K20Rik 1.02 0.86 0.98 

68550 1110002N22Rik 1.00 0.86 0.99 

71691 Pnmal1 1.01 0.81 1.03 

77038 Arfgap2 1.05 0.80 0.91 

109082 1110064L07Rik 1.13 0.79 1.02 

231238 2310045A20Rik 1.06 0.82 1.00 

65971 Tbata 1.07 0.87 0.96 

66374 2310011J03Rik 1.06 0.88 0.94 

71897 2310010M24Rik 1.08 0.91 0.94 

66934 1700022L09Rik 1.06 0.88 1.02 

67317 1700022I11Rik 1.08 0.90 1.02 

69479 1700029J07Rik 1.06 0.99 1.43 

73274 1700034P14Rik 1.05 0.89 1.08 

73299 1700041G16Rik 1.05 0.93 1.26 

75564 1700027N10Rik 1.09 0.83 1.14 

76416 Znrd1as 1.08 0.93 0.96 

108735 2010005O13Rik 1.15 0.83 0.96 

109129 2010311D03Rik 1.12 0.73 0.82 

233545 2210018M11Rik 1.08 0.84 0.87 

53951 2310002B06Rik 1.11 0.88 0.90 

56786 Tmem9b 1.14 0.90 0.94 

66343 Tmem177 1.12 0.89 1.01 

66349 2310004L02Rik 1.08 0.85 1.06 

66353 2310007A19Rik 1.17 0.99 1.00 

66358 2310004I24Rik 1.16 0.65 0.71 

66359 Fam36a 1.08 0.95 0.96 

66488 Fam136a 1.10 0.80 0.88 

66526 2210012G02Rik 1.04 0.88 0.94 

66528 2210020M01Rik 1.16 1.05 1.10 

66549 Aggf1 1.08 0.80 0.87 

67017 2010011I20Rik 1.17 0.97 1.16 

67038 2010109I03Rik 1.11 0.86 0.96 

67298 Gprasp1 1.11 0.81 0.92 

67484 Eepd1 1.13 0.99 1.02 

67495 Tmem167b 1.11 0.90 0.97 

67620 2310006J04Rik 1.10 0.90 0.95 
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67899 Cmc1 1.10 0.90 1.02 

69147 2200002J24Rik 1.08 0.89 0.93 

69457 2310005G13Rik 1.10 0.94 0.96 

69520 Lce3f 1.12 0.80 0.90 

69542 2300002M23Rik 1.06 0.84 0.94 

69871 2010007H12Rik 1.08 0.88 1.09 

69876 2010013E08Rik 1.14 0.98 1.08 

69882 2010321M09Rik 1.10 0.93 1.15 

69893 2010305A19Rik 1.12 0.99 1.00 

69894 2010107G23Rik 1.19 0.79 0.96 

70082 2210402C18Rik 1.18 0.91 1.05 

70088 2310005N01Rik 1.14 0.87 0.93 

70160 Vps36 1.14 0.86 0.97 

70163 2210415F13Rik 1.09 0.73 0.73 

70178 2210412D01Rik 1.18 0.87 0.97 

70257 2010107E04Rik 1.06 0.89 0.96 

71886 2310002L09Rik 1.14 0.99 1.01 

71912 2300003C06Rik 1.15 0.81 0.95 

72084 2010319C14Rik 1.10 0.97 1.10 

72098 2010300G19Rik 1.05 0.93 0.97 

72103 2010301N04Rik 1.13 0.87 0.87 

72123 2010109K11Rik 1.14 0.94 1.01 

72357 2210016L21Rik 1.05 1.04 1.07 

74175 2300002G24Rik 1.10 0.90 0.95 

74243 2210009G21Rik 1.12 0.88 0.95 

75691 Anks6 1.09 0.98 1.13 

76425 Gid8 1.04 1.07 1.09 

76527 2010004A03Rik 1.11 1.04 1.05 

98682 2210010L05Rik 1.16 0.68 0.71 

67291 3110023B02Rik 1.24 0.88 0.92 

108755 2610208E05Rik 1.12 1.03 1.25 

108909 2610208M17Rik 1.16 0.84 1.10 

214459 2610318I01Rik 1.19 0.93 1.24 

54614 2610317D23Rik 1.15 1.10 1.47 

66459 2610022G08Rik 1.15 0.87 1.09 

66460 2610042O14Rik 1.16 0.98 1.23 

67171 Dram2 1.18 0.92 1.07 

68032 2610318K02Rik 1.15 0.94 1.18 

69900 Mfsd11 1.14 0.85 1.12 

70297 Gcc2 1.17 0.83 0.94 

70333 Cd3eap 1.13 1.00 1.16 

70420 2610034B18Rik 1.20 1.03 1.31 

70466 Ckap2l 1.19 0.95 1.18 

72137 Wdsub1 1.17 0.93 1.14 

72139 2610044O15Rik 1.14 1.00 1.25 

72141 Adpgk 1.12 0.86 1.13 

72155 2610510J17Rik 1.13 1.04 1.24 

72201 2600013N14Rik 1.16 0.99 1.23 

72503 2610507B11Rik 1.13 0.78 0.98 

72519 2610319K07Rik 1.12 1.01 1.12 

76375 2610034H20Rik 1.12 0.81 1.07 

76915 2610034E18Rik 1.19 1.02 1.17 

66985 2400009B11Rik 1.17 0.90 0.98 

108900 2700049P18Rik 1.14 0.99 1.17 
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230582 Cyb5rl 1.08 0.95 1.23 

269633 2810046M22Rik 1.11 1.01 1.09 

66310 2810410M20Rik 1.09 0.90 1.32 

67217 2810055F11Rik 1.10 0.95 1.02 

68020 2810002N01Rik 1.12 0.93 1.26 

68026 2810417H13Rik 1.12 0.70 0.83 

70211 2810407A14Rik 1.12 0.92 1.08 

72174 2810423G08Rik 1.18 1.05 1.19 

72195 Supt7l 1.07 0.89 1.11 

72522 2610528J18Rik 1.11 0.66 0.69 

72543 2610528K11Rik 1.10 0.67 0.77 

72649 Tmem209 1.10 0.83 1.02 

72669 2810032G03Rik 1.07 0.82 1.05 

78833 2700085M18Rik 1.08 0.95 1.15 

67745 4930583K01Rik 1.10 0.82 1.11 

73167 3110043J09Rik 1.14 0.82 1.01 

74383 Ubap2l 1.11 0.64 0.68 

99887 4930577M16Rik 1.10 0.85 1.00 

67574 4833435D08Rik 1.13 0.66 0.76 

78757 4921505C17Rik 1.15 0.86 1.05 

225392 Rell2 1.08 0.95 1.16 

233826 4732427B05 1.11 0.99 1.14 

245843 4632417D23 1.09 0.60 0.64 

66701 4633402N23Rik 1.10 0.82 1.13 

69823 3830421F13Rik 1.06 0.88 1.09 

76863 4833420K19Rik 1.07 1.02 1.09 

77043 4632433K11Rik 1.06 0.80 1.06 

77056 Tmco4 1.06 0.98 1.27 

67592 4930524B15Rik 1.17 0.75 0.89 

75283 4930556L07Rik 1.16 0.66 0.77 

109212 6720460F02Rik 1.20 1.06 1.09 

71406 5430416O09Rik 1.15 0.92 1.00 

108654 4933403F05Rik 1.11 0.91 1.04 

244178 4933400K24Rik 1.10 0.84 0.99 

381622 5031410I06Rik 1.17 0.99 1.14 

66775 4933428I03Rik 1.12 1.01 1.06 

71323 5133400D11Rik 1.14 0.85 0.95 

75991 5033405K12Rik 1.11 0.77 0.91 

244886 AI118078 1.16 0.91 1.09 

64074 Smoc2 1.07 0.75 0.82 

216724 Rufy1 1.08 0.54 0.56 

83564 Rnh2 1.08 0.73 0.83 

19328 Rab12 1.07 0.84 0.85 

19362 Rad51ap1 1.09 0.61 0.62 

245195 Retnlg 1.04 0.67 0.73 

245688 Rbbp7 1.05 0.90 1.18 

69903 Rasip1 1.08 0.63 0.70 

70052 Prpf4 1.06 0.92 0.98 

76938 Rbm17 1.05 0.56 0.56 

24056 Sh3bp5 1.09 0.73 0.78 

27387 Sh2d3c 1.07 0.86 0.89 

68723 S100a18 1.08 0.75 0.77 

20409 Ostf1 1.08 0.59 0.63 

242737 Oog4 1.05 0.74 0.86 
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258225 Olfr913 1.05 0.86 1.14 

258500 Olfr944 1.05 0.61 0.75 

68767 Wash 1.05 0.59 0.63 

257898 Olfr867 1.10 0.68 0.71 
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Table 5-2. PANTHER Identified receptor/receptor activity hits. 

Entrez 
Gene 

ID 

Gene 
Symbol 

Gene Name 
Screen Survival 

20min 2.0hr 10.0hr 

11539 Adora1 Adenosine receptor A1 1.17 0.74 0.74 

12766 Cxcr3 C-X-C chemokine receptor type 3 1.08 1.01 1.30 

12801 Cnr1 Cannabinoid receptor 1 1.10 0.93 1.03 

12813 Col10a1 Collagen alpha-1(X) chain 1.07 0.82 0.88 

13051 Cx3cr1 CX3C chemokine receptor 1 1.16 0.94 1.03 

13488 Drd1a D(1A) dopamine receptor 1.13 1.15 1.23 

13490 Drd3 D(3) dopamine receptor 1.16 1.08 1.20 

13491 Drd4 D(4) dopamine receptor 1.16 0.85 1.09 

13609 Edg1 Sphingosine 1-phosphate receptor 1 1.17 0.99 1.30 

13617 Ednra Endothelin-1 receptor 1.13 0.65 0.70 

14062 F2r Proteinase-activated receptor 1 1.15 0.96 1.22 

14065 F2rl3 Proteinase-activated receptor 4 1.14 1.04 1.28 

14293 Fpr1 fMet-Leu-Phe receptor 1.30 1.23 1.39 

14294 Fprl1 Formyl peptide receptor-related sequence 1 1.12 1.00 1.19 

14527 Gcgr Glucagon receptor 1.18 0.78 0.82 

14602 Ghrhr Growth hormone-releasing hormone receptor 1.09 0.94 0.98 

14652 Glp1r Glucagon-like peptide 1 receptor 1.11 0.82 0.85 

14715 Gnrhr Gonadotropin-releasing hormone receptor 1.15 0.95 1.03 

14744 Gpr65 Psychosine receptor 1.12 0.84 0.90 

14747 Cmklr1 Chemokine-like receptor 1 1.16 0.87 1.04 

15370 Nr4a1 Nuclear receptor subfamily 4 group A member 1 1.06 0.63 0.77 

15551 Htr1b 5-hydroxytryptamine receptor 1B 1.12 0.94 1.14 

16639 Klra8 Killer cell lectin-like receptor 8 1.08 1.08 1.09 

16995 Ltb4r1 Leukotriene B4 receptor 1 1.10 0.88 1.02 

18171 Nr1i2 Nuclear receptor subfamily 1 group I member 2 1.14 0.68 0.72 

18227 Nr4a2 Nuclear receptor subfamily 4 group A member 2 1.07 1.06 1.60 

18441 P2ry1 P2Y purinoceptor 1 1.10 0.45 0.52 

18442 P2ry2 P2Y purinoceptor 2 1.13 0.72 0.78 

19214 Ptgdr Prostaglandin D2 receptor 1.13 0.71 0.75 

19220 Ptgfr Prostaglandin F2-alpha receptor 1.06 0.48 0.59 

19222 Ptgir Prostacyclin receptor 1.01 0.80 1.15 

19228 Pthr1 
Parathyroid hormone/parathyroid hormone-related 
peptide receptor 1.03 0.99 1.39 

19401 Rara Retinoic acid receptor alpha 1.09 0.86 0.91 

20288 Msr1 Macrophage scavenger receptor types I and II 1.14 0.79 0.81 

20605 Sstr1 Somatostatin receptor type 1 1.03 0.76 0.87 
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20607 Sstr3 Somatostatin receptor type 3 1.05 1.04 1.13 

20608 Sstr4 Somatostatin receptor type 4 1.06 0.68 0.96 

20609 Sstr5 Somatostatin receptor type 5 1.00 0.78 1.22 

21337 Tacr2 Substance-K receptor 1.01 0.86 1.03 

21338 Tacr3 Neuromedin-K receptor 1.05 0.63 0.68 

21833 Thra Thyroid hormone receptor alpha 1.22 0.87 1.01 

21834 Thrb Thyroid hormone receptor beta 0.99 0.92 1.16 

21907 Nr2e1 Nuclear receptor subfamily 2 group E member 1 1.06 0.44 0.50 

21926 Tnf Tumor necrosis factor 1.09 0.52 0.54 

22045 Trhr Thyrotropin-releasing hormone receptor 1.00 1.10 1.56 

22337 Vdr Vitamin D3 receptor 1.11 0.59 0.60 

22354 Vipr1 Vasoactive intestinal polypeptide receptor 1 1.04 0.95 1.32 

22355 Vipr2 Vasoactive intestinal polypeptide receptor 2 1.03 0.76 0.95 

23957 Nr0b2 Nuclear receptor subfamily 0 group B member 2 1.06 1.01 1.41 

23958 Nr2e3 Photoreceptor-specific nuclear receptor 1.10 0.49 0.58 

50908 C1s Complement C1s-A subcomponent 1.08 0.86 0.91 

50928 Klrg1 Killer cell lectin-like receptor subfamily G member 1 1.09 0.85 0.86 

52389 
D7Ertd68
0e MCG21623, isoform CRA_b 1.16 0.96 1.29 

52614 Emr4 
EGF-like module-containing mucin-like hormone 
receptor-like 4 1.11 1.06 1.34 

54160 Copg2 Granzyme A 1.00 0.99 1.36 

56544 V2R2 Vomeronasal type-2 receptor 1 1.05 0.77 1.13 

56696 Gpr132 Probable G-protein coupled receptor 132 1.09 0.96 1.21 

57385 P2ry4 P2Y purinoceptor 4 1.02 0.78 1.12 

64095 Gpr35 G-protein coupled receptor 35 1.11 0.68 0.69 

67168 P2y5 Lysophosphatidic acid receptor 6 1.06 0.80 0.89 

68897 Disp1 Protein dispatched homolog 1 1.10 1.06 1.07 

70839 P2ry12 P2Y purinoceptor 12 1.01 0.86 1.02 

71326 Treml1 Trem-like transcript 1 protein 1.00 0.70 0.83 

71991 Ckn1 DNA excision repair protein ERCC-8 1.07 0.93 1.00 

78560 Gpr124 G-protein coupled receptor 124 1.28 1.10 1.10 

80910 Gpr84 G-protein coupled receptor 84 1.17 0.97 1.06 

84111 Gpr87 G-protein coupled receptor 87 1.09 0.87 0.96 

84112 Sucnr1 Succinate receptor 1 1.02 0.88 1.23 

94109 Csmd1 CUB and sushi domain-containing protein 1 1.04 1.05 1.05 

94226 Edg8 Sphingosine 1-phosphate receptor 5 1.18 1.19 1.53 

97998 Deptor Rod outer segment membrane protein 1 1.06 1.08 1.10 

101533 
1200016
C12Rik Kallikrein 1-related peptidase b9 1.06 0.94 1.01 

170757 Eltd1 
EGF, latrophilin seven transmembrane domain-
containing protein 1 1.23 0.81 0.87 
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213527 Pthr2 Parathyroid hormone 2 receptor 1.06 1.05 1.80 

216749 Nmur2 Neuromedin-U receptor 2 1.10 0.84 0.85 

226278 Prlhr Prolactin-releasing peptide receptor 1.12 1.06 1.51 

227288 Il8ra C-X-C chemokine receptor type 1 1.10 0.77 0.90 

229323 Gpr171 Probable G-protein coupled receptor 171 1.14 0.78 0.93 

233571 P2ry6 P2Y purinoceptor 6 1.02 0.82 1.08 

238252 Gpr135 Probable G-protein coupled receptor 135 1.17 0.75 0.79 

239029 
4933430J
11 Anthrax toxin receptor-like 1.21 0.65 0.65 

239853 Gpr128 Probable G-protein coupled receptor 128 1.17 0.85 0.85 

243083 
Tmprss11
f Transmembrane protease serine 11F 1.11 0.84 1.06 

243084 
A030012
E10 Transmembrane protease serine 11E 1.03 0.89 1.27 

243277 
E230012
M21 Probable G-protein coupled receptor 133 1.16 0.99 1.42 

245688 Rbbp7 Histone-binding protein RBBP7 1.05 0.90 1.18 

257891 Olfr479 Olfactory receptor Olfr479 1.14 0.54 0.61 

257898 Olfr867 Olfactory receptor 867 1.10 0.68 0.71 

258302 Olfr420 Olfactory receptor 1.14 0.79 0.80 

258713 Olfr430 Olfactory receptor 1.14 0.61 0.61 

258925 Olfr20 Olfactory receptor 1.07 0.76 0.81 

269053 Gpr152 Probable G-protein coupled receptor 152 1.16 0.90 0.98 

321019 Ebi2 G-protein coupled receptor 183 1.14 0.78 0.85 

387285 Hcrtr2 Orexin receptor type 2 1.15 0.92 1.00 

435845 
Tmprss11
c Neurobin 1.17 0.73 0.74 

436440 Gpr31c 
12-(S)-hydroxy-5,8,10,14-eicosatetraenoic acid 
receptor 1.14 0.79 0.83 
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CHAPTER 6: 

DISCUSSION AND FUTURE DIRECTIONS 

  



 

167 
 

 

Research Summary 

I demonstrated that Y. pestis survival within the macrophage is a dynamic process and several 

host proteins are directly involved in YCV biogenesis.  My data, summarized in Fig. 6-1, 

demonstrates that within 20 mins post-infection Y. pestis prevents lysosome fusion through 

recruitment of Rab1b and Rab4a to arrest YCV acidification.  By 80 mins post-infection the maturing 

YCV associates with Rab1b, Rab4a and Rab11b.  In addition to recruitment of Rab proteins 

involved in endocytic recycling to the YCV, Y. pestis infection also stalls the host recycling process, 

and this is necessary for late stage bacterial replication.  My data suggests that stalling of the 

recycling process can be directly attributed to sequestering Rab11b on the YCV, as overexpression 

of Rab11b restores recycling and prevents bacterial replication.  These data provide a significant 

improvement in our understanding of the early colonization of the macrophage and trafficking 

events leading the maturation of the YCV into a replicative niche.   

Implications of My Research and Future Directions 

Developing new pathway analysis techniques for RNAi screens through mapping interactions 

Our identification and enrichment for host cell trafficking processes and ultimately the 

impact of the endocytic recycling pathway on Y. pestis survival was due in part to our novel 

approach to genomic screening data.  To the best of my knowledge, to date all RNAi genomic 

screens have focused their post-screen efforts using pathway and ontology analysis software to 

understand their validated data [130-142], and not to explore their datasets in a biological context 

during validation.  As such, we initially used MetaCore pathway analysis software to determine 

enrichment within our validated gene hits.  However, due to the limited number of input genes (135), 

we were unable to identify specific pathways with any degree of confidence. In many instances, 

the significantly enriched networks only contained a single gene that skewed the p-value due to the 

weight of the gene within the identified network.  Whereas another networks would contain multiple 

genes, but the combined p-value was not sufficient to warrant significance by the pathway analysis 

software. Part of this is the nature of RNAi genomic screens versus microarray analysis, which 
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pathway analysis programs were developed for.  RNAi does not have 100% penetrance, meaning 

the targeted gene is usually only inhibited to an undefined degree.  In contrast, a microarray has 

100% penetrance, meaning the impact upon the phenotype of interest can be completely dictated 

by the experimental design (e.g., gene deletion or growth condition). As such, enrichment for a 

pathway based on gene p-value is difficult to interpret in the context of an RNAi screen. 

Furthermore, statistical weight is assigned to each cellular component based on their 

interconnectedness with other cellular proteins.  As a result, transcriptional and global pathway 

regulators have larger statistical weight when included in the user’s dataset. As such, a dataset 

could be significantly skewed by the number of transcriptional or global regulators within the 

dataset, resulting in analysis missing important pathways. Therefore, we shifted our bioinformatic 

analysis to Gene Ontology (GO) clustering to generate and build maps of interacting gene partners 

based on our validated and primary screen hits.  These initial interaction maps then served to guide 

our subsequent experiments. 

 Curated pathways are also limited to the quality and known knowledge of the genes within 

the pathways. This limitation ultimately skews screen analysis toward what is known or predicted.  

Thus, we chose to build maps of interacting partners within our validated and primary screen hits 

to avoid any bias inherent to current analysis software. This allowed our networks to self-enrich 

through inclusion of additional nodes that strengthened the interactions between input datasets.  

Moving forward, one could use this process to further understand the relationship between various 

subsets identified in our validated dataset.  Also one could use this process to understand bacterial 

invasion through mapping invasion hits to our survival hits.  Furthermore, we can begin 

development of an application using these simple rules to allow fellow pathway explorers to build 

maps of their datasets.    

Are Rab1b and Rab4a only required to avoid YCV acidification? 

Y. pestis recruits Rab1b and Rab4a within 20 mins post-infection of the macrophage to 

prevent YCV acidification (chapters 3 and 4;[61]). These findings show Y. pestis survival within the 

macrophage hinges on early subversion of phagolysosome maturation. However, it is unclear if 

Rab1b and Rab4a are required only to prevent YCV acidification or if they are also essential for Y. 
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pestis YCV biogenesis/survival post-phagolysosome subversion. To address this, one could use 

chemical inhibitors, such as ammonium chloride, to block vacuole acidification in Rab1b and Rab4a 

siRNA treated macrophages and then monitor survival of Y. pestis. If either of these Rabs are 

required to manipulate the macrophages in subsequent steps after preventing YCV acidification, 

Y. pestis bacterial survival will still be inhibited in RNAi treated cells. In contrast, if these Rabs are 

strictly recruited to block acidification, ammonium chloride treatment should restore bacterial 

survival in RNAi treated cells. In the event treatment does not restore virulence, further 

characterization of the YCV biogenesis process in these cells will need to be performed. 

Does the Timing of Rab Recruitment Impact YCV Maturation? 

Rab GTPase trafficking occurs in coordinated and sequential fashion to efficiently move the 

vesicle to its intended destination along an endocytic pathway within the cell (see reviews [102, 

185, 289, 290]). For example, Rabs 5, 7 and 9 are recruited in a specific sequence to achieve 

phagosome fusion with the lysosome [94, 95, 98-101]. Disrupting the recruitment of one protein 

results in failure to recruit subsequent Rabs, terminating phagolysosome maturation [94, 95, 98-

101]. We have shown Y. pestis quickly subverts/arrests phagolysosome maturation and prevents 

YCV acidification within 20 mins of entry into the macrophage by recruiting Rab1b and Rab4a 

(chapter 3 and 4; [61]). However, we have not determined if recruitment of either of these proteins 

is required for subsequent recruitment of Rab11b. Using RNAi to inhibit Rab1b and Rab4a, one 

could determine if Rab11b is still recruited to the YCV in the absence of these other Rab proteins.  

These experiments can be further extended to identify if loss of any of the other validated Rab 

proteins impact recruitment. Moreover, future studies using CRISPR/CAS systems to integrate 

multiple fluorescently tagged Rabs1b, 4a & 11b and live cell imaging could provide a powerful tool 

to monitor Rab GTPase timing and bacterial trafficking in real-time. Importantly, live cell imaging 

could also incorporate tagged markers for cellular processes such as autophagy, receptors, and/or 

the phagolysosome to allow for real-time analysis of: 1) Y. pestis trafficking Rab interactions that 

lead to autophagy, recycling endosome maturation and phagolysosome avoidance, 2) Y. pestis 

time and spatial dependent recruitment of Rabs and host markers to support autophagy, recycling 

endosome maturation and phagolysosome avoidance 3) Y. pestis time dependent modeling of 
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trafficking and replication requirements during YCV maturation, and 4) identification and data to 

develop computational systems to demonstrate/animate Rab GTPase mediated trafficking events 

in silico. Understanding the timing of Rab GTPase recruitment events may also reveal if one Rab 

protein is targeted by Y. pestis to influence the recruitment of others, resulting in prioritizing 

potential Rab proteins for subsequent studies to understand how Y. pestis recruits these proteins 

to the YCV.  

How does Y. pestis recruit Rab GTPases to the YCV? 

Efforts to identify Y. pestis proteins responsible for intracellular survival by targeting the 

bacterium itself using mutagenic screens have had limited success, and have only identified the 

PhoP/Q regulon as required [86, 291-293]. We have identified nine Rab GTPases that appear to 

be required for Y. pestis survival (Rabs 1b, 2b, 3d, 4a, 19, 20, 23, 30, & 40b). Based on their cellular 

location and similarity of GTP binding domains, these Rabs can be classified into five subfamilies: 

Subclass 1: Rab23; Subclass 9: Rab20; Subclass 11: Rab2b, Rab4a; Subclass 12: Rab19, Rab30; 

or Subclass 13: Rab1b, Rab3d, Rab40b [294-297]. Our enrichment for Rab GTPases involved with 

host endocytic recycling suggests Y. pestis makes a bacterial effector that recognizes a specific 

motif within these Rab GTPases [294-297]. Using Rab1b, Rab4a and Rab11b as “bait”, 

immunoprecipitation could be performed to pull down Y. pestis proteins that potential interact with 

these Rabs. The bacterial proteins would then be identified by MS/MS. Mutations in these genes 

could then be made and tested for Rab recruitment, intracellular survival, and virulence in the 

mouse model. It should be noted that Y. pestis may indirectly recruit Rab proteins through 

interactions with host Rab effectors.  In this scenario, Y. pestis proteins may not precipitate via Rab 

pull down. In the event that no proteins are identified via pull downs, transposon mutagenesis could 

be used to identify Y. pestis mutants that do not recruit Rabs to the early YCV (using high content 

screening).  Host targets of these Y. pestis proteins could then be identified by immunoprecipitation 

of eukaryotic lysates.  
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How do Y. pestis interactions with the host cell recycling pathway contribute to intracellular 

survival? 

Cross talk between endocytic recycling and autophagy is a potential cellular mechanism for 

sensing disruptions within trafficking pathways or inadequate homeostatic signals from receptors 

involved in maintaining cellular metabolism [298]. Furthermore, recent studies have indicated that 

Rab11b may be an important mediator of this cross talk [254].  Y. pestis has been shown to 

associate with autophagosomes; however, the contribution of autophagy to Y. pestis replication is 

yet to be determined [59, 88, 89].  During the first 8 h of infection, Y. pestis induces autophagy 

within infected cells, as indicated by the conversion of LC3-I to LC3-II [59, 299].  Pujol et al. showed 

that Y. pestis avoids clearance by xenophagy, resides in autophagosomes, but does not require 

autophagy to survive in macrophages up to 8 h post infection [59]. Studies with Y. 

pseudotuberculosis, the closest relative to Y. pestis, have shown autophagy is required for bacterial 

replication [88, 89]. Additionally, Moreau et al. have shown that induction of autophagy with 

rapamycin increased metabolic activity of Y. pseudotuberculosis within the YCV, and abolishing 

autophagy induction using Atg4b C74A (enzymatically inactive Atg4b) prevented the recruitment of 

LC3 to the YCV [88]. Therefore, it is reasonable to hypothesize that by stalling the host recycling 

pathway, Y. pestis may disrupt metabolic signals resulting in the host cell, becoming quiescent and 

inducing autophagic flux in the cell. This hypothesis could explain how Y. pestis induces autophagy. 

To test if autophagy is specifically required for bacterial replication independent of host cell 

recycling, one could treat Y. pestis infected Rab11b overexpressing macrophages with rapamycin 

to chemically induce autophagy independent of recycling inhibition. If autophagy is required for Y. 

pestis replication, induction of autophagy using rapamycin in Y. pestis infected Rab11b 

overexpressing cells would restore bacterial replication to wildtype levels. However, it is possible 

that autophagy is not required for Y. pestis replication/survival. In this case induction of autophagy 

will not restore bacterial replication in Rab11b overexpressing cells. Furthermore, these results 

would suggest bacterial replication is dependent on an unknown recycling endosome maturation 

event, and induction of autophagy within infected cells is a byproduct of the infection. 
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Extending our Rab11b studies suggests a universal mechanism for intracellular pathogens  

In addition to Y. pestis, a variety of other pathogens appear to target Rab11 (a/b) [107, 130, 

131, 140-142, 191, 194, 215-217, 240, 246, 248, 300-312]. Anthrax toxins were shown to disrupt 

recycling in Drosophila wing discs, and overexpression of Rab11 restored wildtype morphology 

[248, 313].  This theme has been observed for Tetanus and Shiga toxin B through their disruption 

and association with markers for recycling endosomes [240, 309, 310].  While these toxins are 

secreted from their respected pathogens, neither Bacillus anthracis, Shigella flexneri or Clostridium 

tetani appear to reside in a pathogen containing vacuole (PCV) [103, 314].  However, the targeting 

of Rab11 by intracellular pathogens indicates a potentially universal mechanism supporting survival 

(summary in Table 6-1). Future studies determining if these pathogens target Rab11 to disrupt host 

cellular recycling processes to promote survival need to be conducted. Perhaps diverting/stalling 

Rab11 naturally driven processes through the dilution/sequestration/inactivation of Rab GTPase 

protein available to the cell would allow these organisms to establish their replicative niches, by 

modulating downstream innate cellular defenses, such as autophagy [254, 315].    

Does stalling of host recycling potentially impact pro-inflammatory responses? 

Y. pestis infection produces very little pro-inflammatory response early during infection, but at 

latter stages there is a dramatic spike in inflammation [1, 316-322].  This phenomena is also 

observed in transcritpome analysis of monocytes/ macrophages infected with Y. pestis lacking the 

pCD1 virulence plasmid and T3SS secreted Yops [321], which are potent modulators of the 

inflammasome and pro-inflammatory apoptosis [323-325].  Rab11 trafficking has also been shown 

to impact many host proteins involved in innate immunity.  For example, efficient signaling and 

recycling of TLR4 requires Rab11a and CD14 [71, 326, 327]. Moreover, it is known that Rab11 is 

required for both loading/storing MHC I within recycling endosomes, but also for recruitment of 

MHC I to endosomes engaged in active TLR4 signaling [328, 329]. Finally, Weigert et al. found 

dominant negative forms of Rab11 and Rab22a prevented MHC I recycling [330]. One can view 

these findings as two separate but integral events for TLR4 and MHC I signaling as mediated by 

Rab11 trafficking processes: 1) pre-priming recycling endocytic compartments with MHC I and 

recycling/trafficking MHC I to the plasma membrane, and 2) TLR4 engaged signaling promoting 
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recruitment of MHC I via Rab11 to initiate an innate immune response (perhaps 

autophagy/xenophagy). Due to the requirement for Rab11 in TLR4 and MHC I cellular processes, 

one can speculate that Y. pestis sequestration of Rab11b may also disrupting TLR4 and MHC I 

signaling cascades. This disruption could potentially contribute to anti-inflammatory nature of Y. 

pestis infection.  

To determine if TLR4 signaling is disrupted, one could adapt our TfR recycling assay to 

monitor TLR4 recycling and TLR4 retention in macrophages infected with Y. pestis and compare 

to infection with E. coli K12 or S. Typhimurium.  Given our previous findings that TfR is retained 

due to disruption of host recycling, we expect to see retention of TLR4 in Y. pestis infected cells 

and inefficient recycling of TLR4.  These results would suggest that Y. pestis infected macrophages 

may be further inhibited in their ability to respond to LPS through TLR4 signaling.  To determine if 

MHC I presentation is disrupted, one could pulse Y. pestis infected macrophages with Ova 

SIINFEKL peptide. Using flow cytometry, one can compare MHC I expression of Y. pestis infected 

cells to uninfected cells. If Y. pestis disrupts MHC I presentation, one would expect to see 

diminished surface expression of MHC I specifically in Y. pestis infected cells. Furthermore, 

classical T-cell activation assays could be used to determine if MHC antigen presentation is 

disrupted by Y. pestis infection.  

An extension of these studies would be to adoptively transfer Y. pestis infected wildtype and 

Rab11b overexpressing macrophages into mice. Herein, one could determine if stalling cellular 

host recycling by Y. pestis contributes to: 1) dampening the early pro-inflammatory response of 

infected hosts via cytokine response, 2) dissemination of Y. pestis, or 3) overall animal survival. 

The results of these studies will provide biological significance for stalling host cell recycling in Y. 

pestis infected macrophages within the context of in vivo pathogenesis of plague. Moreover, these 

adoptive macrophage studies could have novel insight into the overall contribution of Y. pestis 

intracellular survival within the macrophage in terms of disease progression. Overall, these studies 

would be the first to determine if Y. pestis disruption of host endocytic recycling to the dampening 

of pro-inflammatory response of an infected host.  
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Does Y. pestis use eukaryotic receptors to target the recycling pathway? 

 The first step of any pathogen to colonize a host cell is adherence and invasion.  We identified 

96 potential receptors that exhibit a Y. pestis invasion phenotype from our RNAi genome-wide 

screen. Of the 96 identified receptors exhibiting a Y. pestis invasion phenotype, we hit Edg1 

(Sphingosine 1-phosphate receptor 1).  This receptor has been shown to inhibit bacterial 

dissemination from the draining lymph node in vivo [49].  Furthermore, St. John et al. demonstrated 

that chemical ablation of Edg1 reduced Y. pestis burden in CD11b (macrophage) and CD11c 

(dendritic) cell types in the popliteal and iliac lymph nodes [49]. Due to these previous findings, 

Edg1 should be prioritized for further characterization using experiments detailed in chapter 5.  

Interestingly, recycling endosomes are hallmarked by very little acidification, and remain at ~ 

pH 6.4 to prevent degradation of vacuole contents in order to recycle these reusable cellular 

components [244, 331]. Therefore, the ability of Y. pestis to inhibit YCV acidification could be 

directly linked to the receptor it uses for invasion, if this receptor targets the endosome to the 

recycling pathway. Several chemokine and scavenger receptors were identified as potential Y. 

pestis receptors.  These receptors have been shown to associate with recycling endosomes, and 

potentially have common motifs or interacting partners [332, 333].  Using our validated screen hits 

as a focal point, one could map network interactions to the 96 receptors to determine if a common 

pathway emerges.  In support of this, we identified Arfgap2, an interacting partner of Arf1, within 

our invasion dataset [288].  Arf1 interacts with Rab4a to facilitate recycling endosome trafficking 

from the early endosome [238, 244, 334]. These findings indicate that Y. pestis entry and/or early 

survival may directly link to the pathogen’s ability to traffic into the host recycling pathway. 

It is possible that Y. pestis uses multiple receptors for invasion, or binds to a cluster of 

receptors associated within a lipid raft.  In this case, there may be several receptors that inhibit Y. 

pestis invasion, but the efficiency of each individual receptor to inhibit invasion would matter.  As 

such, one could use chemical inhibitors to further determine the general mechanism for 

internalization of Y. pestis.  Overall, identifying a receptor that prevents uptake of Y. pestis is 

advantageous.  Once identified, one could define the bacterial proteins that facilitate this through 
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screening a transposon library or using bacterial outer membrane preparations in pull-down assays 

with tagged versions of the receptors.  Through the identification of these bacterial proteins one 

could generate deletion mutations of Y. pestis and assess the contribution invasion has on 

pathogenesis.  Importantly, these bacterial proteins could serve as potential targets to develop new 

therapeutics or vaccines to inhibit macrophage invasion.   

Is spatial location within the cell important for intracellular survival? 

Using live cell microscopy, we have observed dynamic YCV movement occurring during the 

first 8 hours of infection (unpublished data). We have also observed that Y. pestis tends to replicate 

only in YCVs that traffic to the perinuclear region (unpublished data). In contrast, bacteria that 

remain spatially halfway between the plasma membrane and perinuclear region appear to be 

degraded, presumably within phagolysosomes. Recently, Johnson et al. have shown that 

heterogeneity exists in lysosomes within the cell [335].  Their results demonstrate the further from 

the plasma membrane the more efficient the acidification process is through accumulation 

(increased density) of vATPase and Rab7 [335].  Intriguingly, this data suggests that spatial and 

temporal areas of the cell are more capable of mounting innate immune responses than others. 

Looking at cellular location and similarity of GTP binding domains of the nine validated Rabs (Rabs 

1b, 2b, 3d, 4a, 19, 20, 23, 30, & 40b) we noticed enrichment for the Golgi/ ERGIC perinuclear 

space, indicating that recruitment of these Rabs to the YCV may result in trafficking towards the 

Golgi/ ERGIC space. These observations suggest that Y. pestis survival and avoidance of the 

phagolysosome may be directly linked to trafficking of the bacteria to the perinuclear region.  Using 

markers for lysosomes (vATPase, Rab7, Rab9 & Cathepsin D) and image analysis software, one 

could determine the spatial requirements for Y. pestis survival/replication. Moreover, using RNAi 

techniques and markers for the Golgi/ERGIC space, one could determine trafficking events and 

spatial location requirements for Y. pestis replication.   If temporal and spatial location are essential 

for Y. pestis replication/survival, we would expect to see differences in recruitment of Rab GTPases 

and phagolysosome markers to perinuclear YCVs in contrast to their counterparts closer to the 

plasma membrane.   
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Potential Biological Impact of Y. pestis Low Calcium Response in Macrophages 

 Y. pestis has a growth phenomenon termed the “Low Calcium Response” (LCR) 

discovered in the late 1940-50s [1, 75, 82, 336, 337]. The LCR is characterized as a biological 

requirement for Ca2+ for growth at 37°C in broth media, and no supplementation for growth at 26°C 

(see review [1]). Furthermore, consecutive passages at 37°C in the absence of Ca2+ results in loss 

of the pCD1 plasmid, which encodes the T3SS, and attenuation in mice [336, 337]. To date, there 

is little known about the biological relevance for the LCR [1, 338-341]. Szatmari and colleagues 

recently demonstrated that Rab11b interacts with Hook, a negative regulator of endosome 

maturation, to facilitate crosstalk between recycling endosomes and induction of autophagy [254].  

Furthermore, autophagy triggers an influx of calcium into the nascent autophagic vesicle, and 

Rab11b is required for the effective fusion and docking during this transition [342, 343].  These 

observations suggests that Y. pestis induction of autophagy may result in the induction of Ca2+ 

influx into the YCV and subsequently trigger bacterial replication.  To determine if calcium influx 

occurs in the YCV, cells could be infected with fluorescent Y. pestis strain and pulsed with a calcium 

fluro dye to monitor the changes in YCV Ca2+ concentration over time. Simultaneously one could 

determine when the LCR is induced during a macrophage infection by monitoring the expression 

levels of lcrF (a gene whose expression changes during the LCR) during macrophage infection 

using a bioluminescent transcriptional reporter.  If lcrF expression is dependent on Ca2+ influx, then 

we would expect induction of lcrF expression to occur after influx of calcium into the YCV. In the 

event that Ca2+ influx and lcrF expression changes are observed, one could then determine if 

Rab11b recruitment prevents the induction of LCR.  In either case, these experiments would clearly 

demonstrate a biological role for LCR of Y. pestis in bacterial replication during bacterial survival 

within the macrophage.  In addition to growth at 37oC, Y. pestis secretion of the T3SS Yops effector 

proteins is also regulated by calcium and the lcrF (see review [344]). If indeed LCR responses are 

triggered with Ca2+ influx into the YCV, one could also determine if Y. pestis T3SS expression is 

also triggered by Ca2+ influx.  If expression is induced during intracellular infection, studies to 

determine if secretion of the Yop effectors occurs in response to Ca2+ influx could be performed.  
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 These studies would provide a novel insight into how Y. pestis regulates mammalian 

specific virulence factors, and senses the transition into the mammalian host.  This would also 

suggest that Y. pestis modulation of mammalian expressed virulence factors is not solely 

dependent on temperature shift.  Findings may explain why in vitro growth of Y. pestis require 

calcium. This also suggests that spontaneous loss of pCD1 in naturally occurring environmental 

isolates is a response of Y. pestis adapting to an environment with little potential for transmission 

to a mammalian host.  Furthermore, to our knowledge there is not a calcium driven immune 

response to Y. pestis within the flea midgut.  Potentially, the influence of a sustained calcium event 

and a 37°C temperature shift is the necessary trigger for Y. pestis to sense intracellular survival in 

a mammal vs extracellular survival within the flea.   
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Figures and Figure Legends 

 

 

Figure 6-1. Summary model of our findings 
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Tables 

Table 6-1. Rab11 (a/b) pathogen & toxin association. 

Rab11 (a/b) Pathogen & Toxin Association 

Pathogen 
Rab11 (a/b) loss impact on 

replication/survival? 
Ref. 

C. burnetii Small vacuoles  [131, 215, 217, 300-302] 

L.. pneumophila ?; is on the LCV [304] 

L. monocytogenes Inhibits [130, 141] 

S. aureus ?; has dynamic co-localization [108] 

S. flexneri Inhibits vacuole rupture [305, 306] 

S. typhimurium Partially inhibits; required for efficient 
maturation 

[307] 

Mycobacterium sp Inhibits?; cell type specificity? [142, 311] 

Anaplasma sp Inhibits [191, 216] 

Chlamydia sp Inhibits [140, 194, 246] 

Andes virus  Inhibits [312] 

Hantavirus (new world) Inhibits [312] 

Respiratory syncytial virus ? [303] 

 

Toxin 
Rab11 (a/b) overexpression rescue 

phenotype? 
Ref. 

Anthrax (EF & LF) Yes, for EF toxin only [248] 

Cholera  Yes [308] 

Tetanus Yes [240, 309] 

Shiga B Yes [310] 
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