
University of Louisville University of Louisville 

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository 

Electronic Theses and Dissertations 

5-2016 

Mechanical properties and microstructure evolution of 17-4 PH Mechanical properties and microstructure evolution of 17-4 PH 

stainless steel processed by laser-powered bed fusion. stainless steel processed by laser-powered bed fusion. 

Harish Irrinki 
University of Louisville 

Follow this and additional works at: https://ir.library.louisville.edu/etd 

 Part of the Manufacturing Commons 

Recommended Citation Recommended Citation 
Irrinki, Harish, "Mechanical properties and microstructure evolution of 17-4 PH stainless steel processed 
by laser-powered bed fusion." (2016). Electronic Theses and Dissertations. Paper 2408. 
https://doi.org/10.18297/etd/2408 

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's 
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized 
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of 
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu. 

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F2408&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/301?utm_source=ir.library.louisville.edu%2Fetd%2F2408&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/2408
mailto:thinkir@louisville.edu


i 

 

MECHANICAL PROPERTIES AND MICROSTRUCTURE EVOLUTION 
OF 17-4 PH STAINLESS STEEL PROCESSED BY                                   

LASER-POWDER BED FUSION 
 

By 

 

Harish Irrinki 

 
 

A Thesis  
Submitted to the Faculty of the  

J.B. Speed School of Engineering of the University of Louisville  
in Partial Fulfillment of the Requirements  

for the Degree of  
 
 
 

Master of Science in  
Mechanical Engineering 

 

Department of Mechanical Engineering 
University of Louisville 

Louisville, KY 
 

 

May 2016



ii 

 

©Copyright 2016 by Harish Irrinki  

All Rights Reserved 

 

 

  



iii 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



ii 

 

MECHANICAL PROPERTIES AND MICROSTRUCTURE EVOLUTION OF 17-4 PH 
STAINLESS STEEL PROCESSED BY LASER-POWDER BED FUSION 

 

By 

 

Harish Irrinki 
 

 

A Thesis Approved on 

April 18, 2016 

by the following Thesis Committee: 

                           

 

_________________________________ 

Thesis Director 

Sundar  V. Atre 

        

_________________________________                                       

Stuart Williams 

 

_________________________________                                       

Li Yang 

 



iii 

 

 

 

 

I dedicate this thesis to 

 

my parents Sri Rama Murthy and Dhana Lakshmi Irrinki who have supported through 

the various obstacles in my life with their incessant generosity, support, and love. 

Without them, I would not be where I am today. 

 

 

 



iv 

 

ACKNOWLEDGEMENT 

First and foremost, I would like to express my sincerest gratitude for Dr. Sundar Atre, who 

has been a teacher, mentor, and friend throughout this study. Without his unfailing 

patience, guidance and motivation, none of this work would have been possible. He has 

certainly contributed to my growth as an individual and as a researcher providing me with 

an outstanding example of professionalism and intelligence. 

I would also like to thank Dr. Williams and Dr. Yang, both for being on my thesis 

committee. Furthermore, I must show my appreciation for various faculty and staff at the 

University of Louisville, especially in the Mechanical Engineering Department. I would 

like to thank the Walmart Foundation for supporting the research. I would like to thank 

Jason Stitzel (Metal Technologies) for his help with the metal 3D printer experiments. I 

would like to thank Dr. Sunil Badwe and Dr. Somayeh Pasebani (North American 

Hoganas) for their input on my research. I would like to thank Dr. Dilip Jangam (University 

of Louisville) for teaching me microstructure analysis. 

Additionally, I would like to thank my laboratory partner, mentor and friend, Kunal Kate, 

for supporting me and enriching my life. Special thanks goes to my dearest friends, Saketh, 

Ravi, Umashree, Balrama, Srujan and Venkatesh. They are the cleverest people I know. 

Finally, I would also like to dedicate this work to my grandfather, Gopala Krishna Murthy 

Sanku.



v 

 

ABSTRACT 

 

MECHANICAL PROPERTIES AND MICROSTRUCTURE EVOLUTION OF 17-4 PH 
STAINLESS STEEL PROCESSED BY LASER-POWDER BED FUSION 

 
 

Harish Irrinki 

April 18, 2016 

 

 

Laser powder bed fusion (L-PBF) is a potential manufacturing route for the production of 

tooling using different steel materials. However, there is a limited understanding of how 

the mechanical properties and microstructures of the L-PBF produced parts vary with 

change in powder type and process conditions. The current research studied the influence 

of L-PBF process parameters on mechanical properties and microstructures of 17-4PH 

stainless steel using gas and water-atomized powders. The results demonstrate the 

feasibility of using water-atomized powders as starting raw materials instead of typically 

used gas-atomized powders to fabricate parts in the L-PBF process at high energy densities.
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CHAPTER 1 

INTRODUCTION 

Injection molding is a $170 billion global industry that manufacturers multiple consumer 

products [1]. In 2010 alone the U.S. plastics industry produced an estimated 16 billion 

pounds of injection-molded products for applications in packaging, electronics, house-

ware and biomedical areas [1]. To cater the needs of this extensive injection molding 

product segment, quicker and efficient ways to manufacture injection molding tools are 

crucial that often are cause of larger lead times in product development.  Currently, the 

tools used in fabricating the injection molding tools mostly comprise of conventional 

manufacturing techniques such as milling, lathe or CNC lathe [2]. Even with advancements 

in conventional tool manufacturing techniques, there still exist challenges that cause large 

production lead times, complex geometry design issues and the need to cut manufacturing 

costs [2]. These challenges in tool manufacturing have driven the injection molding 

industry to look into new options such as additive manufacturing for fabricating tools for 

injection molding. Among various available additive manufacturing techniques for 

producing tools, the laser-powder bed fusion (L-PBF) process has shown potential in 

tackling the above-mentioned challenges faced by the tool manufacturing industry [3]. The 

L-PBF process has been used to produce defect-free parts from a variety of steel materials 

and a few researchers have shown to manufacture injection-molding tools [3]. To 

manufacture injection-molding tools using L-PBF, it is critical for a design engineer to 
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have an awareness of various material options available that can produce tools with desired 

mechanical properties. Typically, in L-PBF to obtain desired mechanical properties a 

design engineer needs understand the material property and process conditions 

interactions. There is a wide gap in the material-process-property interactions for 

manufacturing injection molding tools with the L-PBF process. Additionally, there is a 

limited understanding of how the mechanical properties and microstructures of the L-PBF 

produced parts scale with change in powder type and process conditions.  

Chapter 2 of the thesis examines literature data on various types of steel powders, 

processing conditions and mechanical properties that have been reported for the L-PBF 

process. The work in Chapter 2 reviews over 100 sources from the literature that cover 

different types steel powders and L-PBF process conditions used to successfully 

manufacture parts. Furthermore, material properties typically obtained from the L-PBF 

process such as density, hardness, yield strength, ultimate tensile strength, and elongation 

are compared to the properties obtained from metal injection molded (MIM) and wrought 

components. Additionally, the L-PBF process conditions such as laser power and scan 

speed that are typically used for various types of steel powders in order to obtain 

competitive mechanical properties of fabricated components are summarized. The 

collected data in Chapter 2 is expected to provide an appropriate starting point to a tooling 

design engineer to select material and process options and fabricate injection mold tools 

using the L-PBF process. The literature review presented in Chapter 2 was published in 

“Additive Manufacturing-Powder Metallurgy Conference”, 2015, Sandiego and is 

currently under preparation for a journal submission. 
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It was identified from the review reported in Chapter 2 that among steels, 17-4 PH 

stainless steel is the most studied steel powder under L-PBF process and a suitable 

candidate to manufacture injection molding tool. In this regard, Chapter 3 presents a study 

to understand the effect of the 17-4 PH stainless steel powders characteristics such as shape 

(gas-atomized and water-atomized), size distribution and critical processing conditions 

such as laser power and scan rate on the densification and mechanical properties of L-PBF 

parts. It is expected that the results from current study will provide a better understanding 

on the effect of powder characteristics and processing conditions on the properties of L-

PBF parts. A part of the research presented in Chapter 3 was published in “ European 

Powder Metallurgy Congress and Exhibition”, 2015, Reims and the entire work has been 

published in a peer-reviewed journal JOM in 2015. 

Chapter 4 addresses the gap identified in Chapters 2 and 3 regarding the microstructure-

mechanical property variations of the L-PBF parts fabricated using 17-4 PH stainless steel 

gas- and water-atomized powders. Chapter 4 presents a comprehensive study of the 

densification behavior, phase and microstructure development of the 17-4 PH stainless 

steel gas- and water-atomized parts processed by L-PBF. A part of the research presented 

in Chapter 4 is under preparation for submission in “Additive Manufacturing-Powder 

Metallurgy Conference”, 2016, Boston and the entire work presented in Chapter 4 is 

currently under preparation for a journal submission. 

Appendix A reports the raw mechanical testing data of the 17-4 PH stainless steel gas- and 

water- atomized L-PBF parts presented in Chapters 3 and 4. Appendix B reports the 

micrographs of the different gas- and water- atomized 17-4 PH stainless steel L-PBF parts. 
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CHAPTER 2 

MATERIALS FOR ADDITIVE MANUFACTURING OF PRODUCTION TOOLING 

FOR INJECTION MOLDING USING  LASER-POWDER BED FUSION (L-PBF) 12 

 

2.1 INTRODUCTION 

Injection molding is a $170 billion global industry for manufacturing of multiple consumer 

products [1]. In 2010 alone the U.S. plastics industry produced an estimated 16 billion 

pounds of injection-molded products for applications in packaging, electronics, house-

ware and biomedical areas [1]. Common materials that are injection molded include 

thermoplastics, thermosets, elastomers, and filled polymers. More recently, ceramic and 

metal injection molding technologies have further expanded the materials design window 

for the process. Materials for manufacturing tools for injection molding are selected 

depending on the type of polymer, production volume, mold cavity complexity and the 

type of tool component. Table 2.1 summarizes several types of steels used for 

manufacturing tools include carbon steel (1020, 1030, and 1040), tool steel (5-7, O-1, A-

2, D-2, H-13, and P-20) and stainless steels (420 and 17-4PH). Additionally, the type of 

steel selected depends on mechanical properties requirements for the tooling components 

such as ejector pins, clamp plates, inserts, cores, spruce bushing, gate inserts, support 

pillars, mold base plate, lifters, sliders and interlocks [2]–[10]. 

                                                 
1 The authors would like to thank Walmart foundation for their support. 
2 Harish Irrinki, Brenton Barmore, Kunal Kate and Dr. Sundar Atre 
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Table 2.1 Steel materials used in making mold by traditional processes[2], [5], [8]–[11]. 
Steels  Application Process 

1020 carbon steel Ejector plates Injection molding  

1030 carbon steel 
Mold bases, ejector housing and 

clam plates 
Injection molding  

1040 carbon steel Support pillars Injection molding  

4130 alloy steel cavity retainer and support plates Injection molding  

6145 alloy steel Sprue bushings Injection molding  

S-7 tool steel Interlocks and hatches Injection and compression molding  

O-1 tool steel Small inserts and cores 
Injection, compression and blow molding, 

extrusion 

A-2 tool steel Injection and compression molds Injection and compression molding  

A-6 tool steel Injection and compression molds Injection and compression molding  

D-2 tool steel Gate inserts, lifters and sliders Injection and compression molding  

H-13 tool steel Injection mold cavities, dies and 
punches Injection molding  

P-20 tool steel Injection mold cavities, dies Injection and blow molding, extrusion 

420 stainless 

steel Injection mold cores and cavities Injection, compression and blow molding, 
extrusion 

 

 

Injection molding tools are most widely manufactured with conventional techniques such 

as milling, lathe or CNC lathe. Over the years these conventional manufacturing processes 

have developed with the onset of computer aided technology used for designing tools, high-

speed machining, improved precision and process automation that has led to faster 

production of tools.  Despite the progress in conventional tool manufacturing routes, 
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product development cycles are still long and expensive. Tooling costs account for 15% of 

injection molded part costs [12]. However, considering the global competition and 

requirement for shorter manufacturing times innovative manufacturing methods for tool 

production such as additive manufacturing have recently been explored to manufacture 

tools for injection molding [13]–[21]. Molding cycle times account for 35% of the part cost 

[11, 21], and innovative mold designs and materials using additive manufacturing appear 

to offer the promise for further impacting the cost-per-part produced by injection 

molding[22, 23].  One such additive manufacturing process used to manufacture tools of 

injection molding is called as laser-powder bed fusion (L-PBF) process, alternately known 

as selective laser melting (SLM), selective laser sintering (SLS) and direct metal laser 

sintering (DMLS) [12, 16, 20, 24]. Figure 2.1 presents an example of a tool manufactured 

using L-PBF process for injection molding of plastics.  The tool was fabricated using a 

maraging steel powder and is used for making injection-molded plastic cable connectors 

that are complex in shape and difficult to manufacture using conventional manufacturing 

techniques [13]. 
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Figure 2.1 Injection mold manufactured using the L-PBF process  

(Image used with permission from ©I3DMFG) 

 

In order to manufacture injection-molding tools using L-PBF, it is critical for the design 

engineer to have an awareness of various material options and corresponding process 

conditions to obtain useful mechanical properties from the process. Variations in powder 

characteristics and process parameters will affect the mechanical properties of tools [15, 

18, 25, 26]. Many independent research studies have shown to successfully fabricate fully 

dense components using L-PBF process for various steel powders by changing process 

parameters [28]–[32]. The current work reviews over 100 sources from the literature that 

cover different types steel powders and L-PBF process conditions to successfully 

manufacture parts. Further, material properties typically obtained from the L-PBF process 

such as density, hardness, yield strength, ultimate tensile strength, and elongation are 

compared to properties obtained from metal injection molded (MIM) and wrought 
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components. Additionally, L-PBF process conditions such as laser power and scan speed 

that are typically used for various types of steel powders in order to obtain competitive 

mechanical properties of fabricated components are summarized. The current work is 

expected to provide a convenient starting point to a tooling design engineer to select 

material and process options for fabricating injection mold tooling using the L-PBF 

process. 

 

2.2. Steels and their properties in the L-PBF process 

2.2.1 Materials   

The pie chart in Figure 2.2 represents around 100 L-PBF studies that have use steels 

powders of various compositions.  
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Figure 2.2 Relative emphasis of steels reported in the literature using the L-PBF process. 

 

It was observed that the most researched steel powders were 316L and17-4PH stainless 

steels followed by H-13 and M-2 tool steels. In contrast, only a limited amount of L-PBF 

studies have been reported on using P20, T15, and A6 tool steels. The material 

compositions of steel powders used in the L-PBF process are listed in Table 2.2.  
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Table 2.2 Material composition of steel powders used in different AM processes 

Powder C Mn Si Cr Mo Ni V Nb Cu S W Ref. 

316L  

stainless steel 
0.03 1.4 0.23 16.9 2.3 11.8  - -  -  0.01 -  [33]–[37] 

17-4 PH  

stainless steel 
0.07 1.0 1.0 

15-

17.5 
0.5 

3.0-

5.0 
 - 

0.2-

0.4 
3-5 -   - [38]–[42] 

420  

stainless steel 
0.4 1.0 1.5 

11-

14 
0.5  1  - -   - 0.04 -  [43]–[45] 

P20  

tool steel 

0.3-

0.4 

0.3-

1 

0.2-

0.8 

1.4-  

2 

0.3-

0.55 
 -  - -   -  - - [46] 

H10  

tool steel 

0.3-

0.45 

0.2-

0.7 

0.8-

1.2 

3-

3.75 
2-3 0.3 

0.3-

0.75 
-   -  - - [47, 48] 

H13  

tool steel 

0.3-

0.45 

0.2-

0.5 

0.8-

1.2 

4.8-

5.5 

1.1-

1.75 
0.3  

0.8-

1.2 
-   -  - - 

[28, 30, 

31, 49, 50] 

A6  

tool steel 

0.6-

0.75 

1.8-

2.5 
0.5  

0.9-

1.2 

0.9-

1.4 
0.3   - -   -  - - [51], [52] 

M2  

tool steel 

0.8-

1.05 

0.2-

0.4 

0.2-

0.45 

0.2-

0.45 

4.5-

5.5 
0.3  

1.8-

2.2 
-  0.25 0.03 

5.5-

6.7 

[48, 53, 

54] 

T15  

tool steel 

1.5-

1.6 

0.2-

0.4 

0.2-

0.4 

3.8-

5.0 
1.0 0.3  

4.8-

5.25 
 -  - 

0.03

  

11-

13  
[55] 

 

 

2.2.2 Powder characteristics 

Table 2.3 summarizes powder characteristics (shape and size distribution) for five types 

of steels from 25 sources and represents typical sintered densities (represented as % 

theoretical) obtained from the L-PBF process when different types of powder production 

routes and particle size distributions are used.  
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Table 2.3 Densities obtained for various types of gas and water atomized steels 
manufactured with the L-PBF process 

Material Powder type 

 

Powder size 

distribution 

(µm) 

 

Density 

(%) 

316L          

stainless steel           

[33–37, 56]          

Gas-atomized 0 – 60 99.5 ± 0.3  

17-4 PH     

stainless steel 
[38–40, 57–61] 

Gas-atomized 0 – 45 98.5 ± 1.3 

17-4 PH      

stainless steel 
[40, 41, 60] 

Water-atomized 0 – 45 98.5 ± 1.3 

420              

stainless steel 
[29, 62] 

Gas-atomized 0 – 50 N/A*  

H13                     

tool steel 
[30, 44, 49, 63, 64] 

Gas-atomized 50 – 150 90 ± 3 

H13                      

tool steel 
[28, 30, 48, 49, 53] 

Water-atomized 50 – 150 80 ± 3 

M2                      

tool steel 
[50, 53, 54, 66] 

Gas-atomized 0 – 45 99 ± 0.8 

M2                      

tool steel 
[50, 53, 54, 65, 66] 

Water-atomized 0 – 45 95 ± 4 

N/A* density data not reported for used gas atomized powders 

 

It can be seen that for various types of steels densities between 95 and 99 % are achievable 

for parts processed with L-PBF process. For parts fabricated from 316L stainless steel 
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powders, most research groups studied gas-atomized powders with powder size 

distribution of 0-60µm and obtained 99.5 ± 0.3 % density. In the case of 17-4 PH stainless 

steel, gas and water-atomized powders were used with powder size distribution of 0-45µm 

and theoretical densities of 98.5 ± 1.3 % was obtained. In contrast, a coarser particle size 

distribution of 50-150µm has been to manufacture parts from H13 tool steels with the L-

PBF process resulting in densities of 90 ± 3 % and 80 ± 3 % were obtained for gas and 

water atomized powders, respectively. For M2 tool steel powders, densities of 99 ± 0.8 % 

and 95 ± 4 % were achieved when gas and water-atomized powders of powder size 

distribution 50- 150µm was used. The extent of influence of powder production techniques 

(viz.  gas v/s water atomization) on the sintered density obtained from L-PBF process 

showed conflicting results. For instance, parts produced from 17-4PH stainless steel using 

gas and water atomized powders had a similar density of around 98.5% but parts 

manufactured from M2 tool steels showed that the use of gas-atomized powders resulted 

in parts with higher density (99 ± 0.8 %) when compared to water-atomized parts (95 ± 4 

%). Therefore, it can be noted that the composition of steel and powder characteristics 

could largely affect the densification and consequently material properties of L-PBF parts. 

It was evident from the literature survey that an important knowledge gap exists in the L-

PBF literature regarding the influence of particle size distribution, alloy composition, 

surface chemistry, and packing density on process conditions, microstructures and 

mechanical properties.  
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2.2.3 Hardness 

The most common mechanical property reported in the literature for various steels was 

hardness.  Figure 2.3 shows the hardness of various steels obtained using the L-PBF 

process.  Data collected from nearly 70 studies were compared to the corresponding data 

obtained from wrought and MIM. It was found that the hardness values of 316L stainless 

steel and M2 tool steel were the most reported data in the literature. Components fabricated 

using the L-PBF process exhibited comparable hardness values to that of MIM and wrought 

parts for all alloys with an exception for A6 tool steel. Figure 2.3 also shows that 316L 

stainless steels components have the lowest hardness values and M2 tools steels have the 

highest hardness values. Additionally, P20 and H-13 tool steels that are typically used in 

manufacturing injection molding tools also showed comparable hardness values for L-

PBF, MIM and wrought parts.  

Figure 2.3 Literature data on the hardness of steels fabricated using the L-PBF process. 
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Table 2.4 summarizes the average and standard deviation of hardness values for L-PBF, 

MIM and wrought parts based on the above data. It was observed that A6 tool steel had a 

rather low hardness of 260 ± 40 HB when fabricated using the L-PBF process [67]. The 

hardness values of L-PBF samples fabricated from 316L and 17-4 PH stainless steel were 

230 ± 40 HB and 360 ± 40 HB respectively and are comparable to the wrought and MIM 

hardness values. Among stainless steels, 420 stainless steels had the highest hardness value 

of 470 ± 50 HB when processed using L-PBF. Among tool steels, M2 had the highest 

hardness (730 ± 30 HB) when processed using L-PBF. Moreover, M2 and H13 tool steel 

were showed suitable compatibility with the L-PBF process since it was possible to achieve 

hardness similar to the wrought and MIM values.  
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Table 2.4 Literature data on the hardness (HB) of steels produced by wrought, MIM and 
L-PBF processes 

Brinell hardness (HB) 

Material Wrought MIM L-PBF 

316L         

stainless steel 

130 ± 40                                              

[28-35] 

115 ± 50                            

[32, 33, 36-40] 

120 ± 20                              

[41-47] 

17-4 PH 

stainless steel 

360 ± 40                            

[71, 73, 74, 87, 88] 

340 ± 40 

[73,  77–79, 89–93] 

360 ± 30 

[32, 42, 58, 94–103] 

420                

stainless steel 

460 ± 40 

[71, 73, 104–109] 

490 ± 30 

[71, 73, 77–79, 105, 108, 110] 

470 ± 50 

[29], [108], [111]–[116] 

P20                 

tool steel 

480 ± 30 

[71, 73, 74, 109, 117–119] 

490 ± 25 

[73, 78, 79, 120] 

500 ± 20 

[121] 

H13                      

tool steel 

550 ± 30 

[71, 73, 74, 106, 107, 109, 117, 122, 123] 

560 ± 25 

[73, 77–79, 106, 124, 125] 

550 ± 25 

[47], [63], [126]–[128] 

A6                     

tool steel 

630 ± 20 

[73, 104, 129] 

370 ± 50 

[77–79, 124, 129] 

260 ± 40 

[67] 

M2               

tool steel 

720 ± 40 

[71, 73, 104, 107, 130, 131] 

730 ± 50 

[73, 77–79, 107, 109, 124, 131] 

730 ± 50 

[30, 31, 54, 132–134] 

  

 

2.2.4 Ultimate tensile strength 

Figure 2.4 shows the ultimate tensile strength of various steels fabricated using the L-PBF 

process. The data was collected from nearly 50 studies and the strength values were 

compared to data obtained from wrought and MIM processes. 316L and 17-4 PH stainless 

steel strength values had the most reported data in the literature. Stainless steel components 

fabricated with the L-PBF process exhibited comparable ultimate tensile strength values to 
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that of MIM and wrought parts with an exception of tool steel. Figure 2.4 shows that 316L 

stainless steels components have the lowest ultimate tensile strength values and H13 tool 

steels have the highest strength values. Additionally, 420 stainless steel and H-13 tool steels 

that are often used for manufacturing tooling for injection molding also showed ultimate 

tensile strength values using L-PBF that were comparable to MIM and wrought parts.  

Figure 2.4. Literature data on the ultimate tensile strength of steels fabricated using the 
L-PBF process. 

 

Table 2.5 presents the average and standard deviation of ultimate tensile strength values 

for L-PBF, MIM and wrought parts. The ultimate tensile strength of L-PBF parts fabricated 

using 316L and 17-4 PH stainless steel samples were 550 ± 20 MPa and 1080 ± 30 MPa 

respectively and are comparable to the wrought and MIM ultimate tensile strength values. 

Among stainless steels, 420 series stainless steel had an ultimate tensile strength value of 
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1600 ± 50 MPa when processed using L-PBF. Among tool steels, H13 tool steel had the 

highest tensile strength value of 1850 ± 25 MPa when processed using L-PBF.  

Table 2.5. Literature data on the ultimate tensile strength of steels produced by wrought, 
MIM and L-PBF processes 
Ultimate tensile strength (MPa) 

Material Wrought MIM L-PBF 

316L     

stainless steel 

550 ± 40 

[68–75] 

520 ± 50 

[72, 73, 76–80] 

550 ± 20 

[37, 81–86, 135–137] 

17-4 PH 

stainless steel 

1050 ± 40 

[71, 73, 74, 87, 88] 

1070 ± 40 

[73, 77–79, 89–93] 

1080 ± 30 

[32, 39, 41, 42, 94–103, 138, 139–141] 

420       

stainless steel 

1700 ± 40 

[71, 73, 104–109] 

1700 ± 30 

[71, 73, 77–79, 105, 108, 110] 

1600 ± 50 

[29, 108, 111–116] 

H13               

tool steel 

2000 ± 30 
[71], [73], [74], [106], [107], [109], 

[117], [122], [123] 

1900 ± 25 

[73, 77–79, 106, 124, 125] 

1850 ± 25 

[47], [63], [113], [126]–

[128], [142]–[144] 

 

 

2.2.5 Yield strength 

Figure 2.5 shows the yield strength of various steels compiled from nearly 50 studies that 

used the L-PBF process. These values were compared to yield strength values obtained 

from wrought and metal injection molding (MIM). The majority of reported yield strength 

data were for 316L and 17-4 PH stainless steels. Stainless steel components fabricated with 

the L-PBF process exhibited comparable yield strength values to that of MIM and wrought 

parts with an exception of 420 stainless steel which showed lower values. Figure 2.5 shows 

that 316L stainless steel has the lowest yield strength values and H13 tool steel has the 
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highest yield strength values. Additionally, H-13 tool steel that is typically used in 

manufacturing injection molding tools also showed yield strength for L-PBF parts that 

were comparable to MIM and wrought parts.  

 
Figure 2.5. Literature data on the yield strength of steels fabricated using the L-PBF 

process. 

 

Table 2.6 summarizes the average and standard deviation of yield strength values for L-

PBF, MIM and wrought parts. The yield strength of L-PBF fabricated 316L and 17-4 PH 

stainless steel samples were 350 ± 20 MPa and 700 ± 30 MPa respectively and are 

comparable to the wrought and MIM yield strength values. Among stainless steels, 420 

stainless steels had highest yield strength value of 800 ± 150 MPa when processed in           
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L-PBF. Among tool steels, H13 had highest yield strength value of 1450 ± 25 MPa when 

processed in L-PBF.  

Table 2.6. Literature data on the yield strength of steels produced by wrought, MIM and 
L-PBF processes 

Yield strength (MPa) 

Material Wrought MIM L-PBF 

316L     

stainless steel 

310 ± 40 

[68–75] 

220 ± 50 

[72, 73, 76–80] 

350 ± 20 

[37, 81–86, 135–137] 

17-4 PH 

stainless steel 

550 ± 40 

[71, 73, 74, 87, 88] 

750 ± 40 

[73, 77–79, 89–93] 

700 ± 30 

[32, 39, 41, 42, 94–103, 138, 139–141] 

420        

stainless steel 

1500 ± 40 

[71, 73, 104–109] 

1400 ± 30 

[71, 73, 77–79, 105, 108, 110] 

800 ± 50 

[29, 108, 111–116] 

H13                 

tool steel 

1600 ± 30 
[71], [73], [74], [106], [107], [109], 

[117], [122], [123] 

1500 ± 25 

[73, 77–79, 106, 124, 125] 

1450 ± 25 

[47, 113, 126–128, 63, 142–144] 

 

 

2.2.6 Elongation 

Figure 2.6 shows the elongation (%) data of various steels compiled from nearly 50 studies 

obtained using the L-PBF process. The data was compared to elongation values obtained 

from wrought and metal injection molding (MIM). The majority of elongation data from 

the literature were obtained for 316L and 17-4 PH stainless steels. Stainless steel 

components fabricated with the L-PBF process exhibited comparable elongation values to 

that of MIM and wrought parts with the exception of 420 stainless steel. Figure 2.6 shows 

that 316L stainless steel had the highest elongation values and H13 tool steel had the lowest 
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elongation values. Additionally, 420 stainless steel and H-13 tool steel that are typically 

used in the manufacturing of injection molding tools also showed low elongation values 

for L-PBF comparable to MIM and wrought parts.  

Figure 2.6. Literature data on the elongation of steels produced by the L-PBF process. 

 

Table 2.7 presents the average and standard deviation of elongation (%) values for L-PBF, 

MIM and wrought parts. The elongation values of L-PBF fabricated 316L and 17-4 PH 

stainless steel samples were 20 ± 10 % and 15 ± 5 % respectively and are comparable to 

the wrought and MIM elongation values. Among stainless steels, 420 stainless steel had 

lowest elongation value of 2 ± 1 % when processed in L-PBF. Among tool steels, H13 had 

elongation value of 6 ± 2 % when processed in L-PBF. However, no conclusions can be 

made for other steel samples fabricated by L-PBF due to lack of data reported in literature. 
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Table 2.7. Literature data on elongation of steels produced by wrought, MIM and L-PBF 
processes 

Elongation (%) 

Material Wrought  MIM  L-PBF  

316L        

stainless steel 

25 ± 5 

[68–75] 

20 ± 10 

[72, 73, 76–80] 

25 ± 5 

[37, 81–86, 135–137] 

17-4 PH  

stainless steel 

20 ± 4 

[71, 73, 74, 87, 88] 

8 ± 4 

[73, 77–79, 89–93] 

15 ± 5 

[32, 39, 41, 42, 94–103, 138, 139–141] 

420             

stainless steel 

8 ± 4 

[71, 73, 104–109] 

4 ± 2 

[71, 73, 77–79, 105, 108, 110] 

2 ± 1 

[29, 108, 111–116] 

H13                 

tool steel 

10 ± 2 
[71], [73], [74], [106], [107], [109], 

[117], [122], [123] 

7 ± 2 

[73, 77–79, 106, 124, 125] 

6 ± 2 

[47, 113, 126–128, 63, 142–144] 

 

 

2.2.7 Microstructures 

Studies that examined the microstructures of L-PBF fabricated steel parts are summarized 

in Table 2.8. The purpose of the table is to show the typical microstructures observed in 

L-PBF fabricated steel parts to achieve the desired mechanical properties mentioned in    

Table 2.8.  
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Table 2.8. Typical microstructures observed in L-PBF fabricated steel parts and their 
effect on mechanical properties 

Material Microstructure Mechanical properties 

316L             

stainless steel 

[33–37, 56] 

Austenite and ferrite 
Tensile strength, hardness and 

ductility  

17-4 PH        

stainless steel 

[38–41, 57–61] 

Martensite and metastable austenite 
Tensile strength, hardness and 

ductility 

420                

stainless steel 

[29, 62] 

Martensite, austenite and ferrite  
Tensile strength, hardness and 

ductility 

H13  

tool steel 

[28, 30, 48, 49, 53] 

Martensite, austenite and carbides 
Tensile strength, hardness and 

ductility 

M2  

tool steel  

[50, 53, 54, 65, 66] 

Martensite, austenite and carbides 
Tensile strength, hardness and 

ductility 

 

 

In 316L stainless steel parts fabricated by L-PBF process a duplex microstructure with 

austenite and ferrite was typically found. This duplex microstructure resulted in parts with 

improved tensile strength and ductility. In L-PBF fabricated 17-4 PH stainless steel parts, 

the microstructures typically had presence of martensite and metastable austenite that may 

have contributed to the tensile strength and hardness but produced parts with less ductility. 

Heterogeneous martensite, austenite and ferrite phases were typically found in 420 
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stainless steel parts and such microstructures resulted in improved tensile strengths. In H13 

and M2 tool steels, the L-PBF fabricated parts generally displayed both martensite and 

austenite phases. Additionally, carbide phases was generally found in the microstructure 

and resulted in producing parts with desired properties. However, not much research has 

been reported on the effect of size, morphology, and packing density of the powders on the 

microstructures and mechanical properties of steel parts. 

 

 

Figure 2.7. Microstructures of 17-4 PH stainless steel samples produced by the L-PBF 
process under different processing conditions [147] (a) Laser power 150 W, scan speed 
1550 mm/s, layer thickness 30 µm and hatch spacing 50 µm  (b) Laser power 150 W, 

scan speed 1250 mm/s, layer thickness 30 µm and hatch spacing 50 µm (c) Laser power 
195 W, scan speed 1550 mm/s, layer thickness 30 µm and hatch spacing 50 µm (d) Laser 

power 195 W, scan speed 1250 mm/s, layer thickness 30 µm and hatch spacing 50 µm 

 

a b 

c d 
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Figure 2.7 shows examples of quite different microstructures obtained for parts 

manufactured with the L-PBF fabricated parts when different powder sizes and shapes 

were used under the same processing conditions to illustrate the importance of the 

scientific gap that needs to be addressed in the future. 

2.3 Process Conditions 

Process parameters reported for the L-PBF process for various steels were examined from 

around nearly 100 studies to associate them with the obtained mechanical properties. The 

most common L-PBF process conditions that were reported were laser power, scan speed, 

scan spacing, layer thickness and laser beam diameter. Figure 2.8 provides a comparison 

of laser power and scan speed that were reported for various types of steels in order to 

identify starting points for specifying process condition window. 

 

Figure 2.8. Laser power and scan speed explored in the L-PBF of steel powders. 
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From Figure 2.8, it can be seen that the reported values of typical laser power ranged from 

50-200W and scan speed values varied from 50-1200 mm/s for various types of steels. 

Additionally, it was observed that for slow scan speeds (<350mm/s), typically low laser 

powers (<100 W) were used and with additional increase in laser power a wide range of 

scanning speeds were used to selectively melt the steel powders. Out of all the process 

conditions reported for steel powders the most broadly studied process window was 

observed for 17-4 PH stainless steels while the least number of studies were for H13 tool 

steel. Within the dataset of reported process conditions a relatively higher laser power was 

used for fabricating components from 420 stainless steel and M2 tool steel compared to 

316L and 17-4 PH stainless steels.  

Table 2.9 summarizes the typical mechanical properties that can be for four types of steel 

powders for laser power of 50, 100, 105, 195, 200W and scan speed values between 50 

mm/s and 1200 mm/s. In order to understand the evolution of mechanical properties of 

printed parts with process conditions, majority of the studies focused primarily on laser 

power and scan speed. To standardize comparisons for process parameters used to print a 

part with L-PBF process, beam diameter values of 30 ± 5 μm, scan spacing values of 100 

± 15 μm and layer thickness of 50 ± 20 μm were taken as a basis.  It was noted that majority 

of the studies failed to report powder characteristics of the steels, and hence the influence 

of particle attributes on process conditions and mechanical properties could not be 

considered in this analysis.  
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Table 2.9. Summary of mechanical properties of steels with corresponding process 
conditions in terms of laser power (W) and scan speed (mm/s) 

Steel 

Laser 

power               

(W) 

Scan speed        

(mm/s) 

Ultimate 

tensile 

strength                  

(MPa) 

Yield 

strength     

(MPa) 

Elongation              

(%) 

Hardness            

(HB) 

316L      

stainless steel 

[37, 81–86, 135–137] 

50 100 -300 550 ± 50 350 ± 50 20 ± 10 120 ± 20  

105 150 - 800 550 ± 50 400 ± 50 20 ± 5 130 ± 10   

17-4 PH 

stainless steel 

[31, 61–72, 110–116] 

35 50-150 1020 ± 20 550 ± 50 15 ± 5 350 ± 30   

40 50 -150 1020 ± 30 550 ± 50 15 ± 5 350 ± 30   

50 50 - 150 1030 ± 20 550 ± 50 15 ± 5 350 ± 30   

70 300 1030 ± 50 550 ± 50 13 ± 5 360 ± 25  

105 150 - 800 1050 ± 50 650 ± 50 10 ± 5 360 ± 25  

195 600 -1200 1050 ± 50 650 ± 50 10 ± 5 360 ± 25  

420         

stainless steel 

[43, 45, 112, 145] 

200 500 - 1000 1600 ± 50 800 ± 150 2 ± 1 470 ± 50   

M2                

tool steel 

[30, 31, 54, 132–134] 

200 50 - 200 - - - 700 ± 100 

H13               

tool steel 

[82, 95–99, 117–119] 

200 500 -800 1850 ± 50 1400 ± 90 6 ± 2  550 ± 25  

 

For 316L stainless steel powders, when the laser power was varied between 35-100 W and 

scan speed between 50-800 mm/s, the ultimate tensile strength values ranged between 500-
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600 MPa, the yield strength was between 300-450MPa, and the elongation was between 

10-30 %. For 17- 4 PH stainless steel powders, when the laser power was varied between 

35-200 W and scan speed between 50 -1200 mm/s, the ultimate tensile strength values 

ranged between 1000-1100 MPa, the yield strength was between 550-700MPa, and the 

elongation was between 5-20 %. For H13 tool steel powders, at a laser power of 200 W 

and scan speed between 500-800 mm/s, the ultimate tensile strength ranged between 1750-

1900 MPa, the yield strength between 1200-1500MPa, and elongation between 4-9 %.  For 

420 stainless steel powders, at a laser power of 200 W and scan speed varied between 500-

1000 mm/s, the ultimate tensile strength values ranged between 1500-1650 MPa, the yield 

strength was between 700-900 MPa, and the elongation was between 1-3 %. However, for 

M2 tool steel powders; when the laser power was 200 W and the scan speed varied between 

50-200 mm/s, the hardness was between 550-850 HB. 

 

2.4 Conclusions 

The present review surveyed the use of L-PBF to fabricate components using tool steels 

(H13, M2, A6, P20, T15) and stainless steel (316L, 17-4 PH, 420) powders. Based on the 

review, it was evident that steel powders processed by L-PBF can attain mechanical 

properties comparable to wrought or MIM properties.  

Only a limited set of processing parameters have been reported in the literature that 

provides a useful starting point for studying any steel alloy. However, a detailed 

understanding of the influence of process parameters on mechanical properties and 

microstructures of L-PBF steels is clearly lacking. 
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L-PBF of steel gas-atomized powders has received a lot of attention. However, there have 

been relatively few studies reported using water-atomized powders in the L-PBF process. 

The main difference between the two types of powder is their particle shape. However, the 

accompanying influences of particle size distribution, surface chemistry, and packing 

density on ensuing microstructures and mechanical properties have not received much 

attention. Steel powders vary widely in size and shape. As a consequence, processing 

conditions in L-PBF process would need to be adjusted in order to obtain desired 

properties. Choosing the optimum parameters for a desired application can reduce the 

production time as it reduces the number of trial experiments. However, based on this 

review, the selection of process parameters depending upon variation in powder 

characteristics is another scientific gap that needs to be addressed in the future. 
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CHAPTER 3 

EFFECTS OF POWDER ATTRIBUTES AND LASER POWDER BED FUSION (L-

PBF) PROCESS CONDITIONS ON THE DENSIFICATION AND MECHANICAL 

PROPERTIES OF 17-4 PH STAINLESS STEEL3 

 

3.1 INTRODUCTION 

Laser powder bed fusion (L-PBF), alternately known as selective laser melting (SLM) has 

gained a lot of interest in recent times for fabricating complex three-dimensional net-shape 

parts. L-PBF uses a focused laser as an energy source to sinter/melt fine layers of powders 

to yield a solid part [1]–[6]. Many research studies have been carried out in the past few 

years on different materials (ferrous, and non-ferrous) to understand the various powder 

and processing conditions required to fabricate a defect-free part with superior properties 

using L-PBF techniques [1], [7]–[16]. Most of the studies identified processing conditions 

like laser power, scan rate, scan line spacing and thickness of layer to have significant 

effects on the densification of powder during L-PBF. Parts with high density were obtained 

                                                 
3 The authors would like to thank Walmart foundation for their support. 
3 Harish Irrinki, Brenton Barmore, Michael Dexter, Somayeh Pasebani , Sunil Badwe, Jason Stitzel, Rajiv 
Malhotra, Ravi Ennetiand Dr. Sundar Atre 
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when L-PBF was carried out at high laser power, low scan rate, low scan line spacing and 

low thickness of the sintered layer [1, 7, 12, 14, 15]. Apart from the processing conditions, 

the properties of the starting powder such as size, shape, and purity were also recognized 

to be critical for successful fabrication of parts with good properties. Typically smaller size 

powders (<50µm) with narrow size distribution exhibiting good flow and packing 

properties were identified  as appropriate starting raw materials for fabricating parts via L-

PBF.   

Powders obtained from gas-atomized techniques are mostly preferred for L-PBF. The gas-

atomized powders are spherical in shape and exhibit good flow and packing characteristics 

[17]. The purity of the gas-atomized powders is also very high compared to powders 

obtained from other techniques. Manufacturing powders by the gas-atomized technique is 

expensive resulting in an overall increase in the cost of the parts fabricated by L-PBF. On 

the other hand, powders manufactured by the water-atomized process are relatively less 

expensive and could result in the lowering of the cost of parts fabricated by L-PBF. 

However water-atomized powders are irregular in shape and show poor flowability and 

packing characteristics compared to gas-atomized powders [17]. The purity of water-

atomized powder is also typically lower than gas-atomized powders. The ability to 

fabricate parts from water-atomized powders with similar properties as obtained from gas-

atomized powders could result in reducing the manufacturing cost of L-PBF.  

Independent L-PBF studies have reported the fabrication of 17-4 PH stainless steel using 

gas and water-atomized powders [18]–[22]. However, few studies have been reported that 

compare 17-4 PH stainless steel powders of different shape and size attributes for assessing 

the role of powder attributes on processing conditions and ensuing mechanical properties. 
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In this regard, the present study was carried out to understand the effect of the powders 

characteristics such as shape (gas-atomized and water-atomized), size distribution and 

critical processing conditions such as laser power and scan rate on the densification and 

mechanical properties of L-PBF parts. The results from the current study will provide a 

better understanding on the effect of powder characteristics and processing conditions on 

the properties of L-PBF parts. 

 

3.2 EXPERIMENTAL 

17-4 PH stainless steel water-atomized powders of median particle size 17, 24 and 43 µm 

and a gas-atomized powder of median particle size 13 µm were used as starting powders.  
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Figure 3.1. Optical micrographs of the four 17-4 PH stainless steel powders used in this 
study (a) gas-atomized powder D50 = 13 µm (b) water-atomized powder D50 = 17 µm, (c) 

water-atomized powder D50 = 24 µm, (d) water-atomized powder D50 = 43 µm 

 

The morphology of the powders was characterized using a FEI Quanta 600F scanning 

electron microscope (SEM). The morphology of the gas and water-atomized powders used 

in the present study is shown in Figure 3.1. The size distribution width of the powders are 

defined using D10, D50 and D90 values. The D50, median size, 50% population lies below this 

value. Similarly, 10 % and 90 % of the population lies below the D50 and D90 values 

respectively. The SEM micrographs show typical spherical and irregular morphology for 

gas- and water-atomized powders, respectively. The water-atomized powders of median 

size 17 µm (Figure 1 b) showed both irregular and spherical particles.  
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The particle size distribution of the powders was measured using a Microtrac particle size 

analyzer (Figure 3.2). The gas-atomized powders had a bimodal distribution while the 

water-atomized powders had a monomodal distribution of varying median sizes and 

distribution widths. 

 

Figure 3.2. Particle size distribution of the four 17-4 PH stainless steel powders used in 
this study: (a) gas-atomized powder D50 = 13 µm (b) water-atomized powder D50 = 17 
µm, (c) water-atomized powder D50 = 24 µm, (d) water-atomized powder D50 = 43 µm 

 

The particle characteristics of water and gas-atomized powders used in the study are listed 

in Table 3.1. The particle size measurement data listed in Table 3.1 shows finer and narrow 

distribution (low width) of gas-atomized powders compared to water-atomized powders. 
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Table 3.1. Particle characteristics of 17-4 PH stainless steel water and gas-atomized 
powders 

 
Powder 

 

 
Shape 

Size distribution  
Size width 

2.56/log10(D90/D10) 

D10 

(µm) 
D50 

(µm) 
D90 

(µm) 
Gas-atomized (G) Spherical 5 13 27 3.5 

Water-atomized (W) 1 Irregular 10 17 28 5.7 
Water-atomized (W) 2 Irregular 16 24 37 7.0 
Water-atomized (W) 3 Irregular 26 43 67 6.2 

 

L-PBF experiments using the gas and water-atomized 17-4 PH stainless steel powders were 

carried out using a 3D Systems ProX 200 machine in Ar atmosphere. The machine was 

equipped with an yttrium fiber laser system with maximum power of 300 W. The samples 

along with the build plate after L-PBF were thermally stress relieved at 12000 F for 1 hour 

in air. All of the tensile samples were cut from the build plate by wire electrical discharge 

machining (EDM) into samples that were 0.68 m × 0.13 m × 0.318 m for mechanical testing 

as per ASTM E8M standard. The typical geometry of the specimen is shown in Figure 3.3. 

 

 

Figure 3.3. Geometry of the fabricated specimen 
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The effect of laser power (P) and scan speed (v) on the densification and mechanical 

properties of L-PBF processed gas and water-atomized powders were studied. The 

experimental conditions of laser power and scan speed used in the present study are 

summarized in Table 3.2. Other processing parameters such as hatch spacing and layer 

thickness were held constant. Sixteen samples per type of powder were fabricated for each 

process condition. Thus a total of 256 samples were fabricated during the study. Of the 256 

parts, 4 parts of each powder type and process condition were selected for mechanical 

testing and Archimedes density analysis. 

Table 3.2. L-PBF processing conditions used in this study 

Condition 
Laser 

power (W) 

Scan speed 

(mm/s) 

Hatch spacing 

(µm) 

Layer 

thickness (µm) 

Condition 1 195 1550 50 30 
Condition 2 195 1250 50 30 
Condition 3 150 1550 50 30 
Condition 4 150 1250 50 30 

 

The density of the L-PBF processed samples were estimated by the water displacement 

method (Archimedes principle) on a Mettler Toledo XS104 weighing balance equipped 

with a density measuring kit. The mechanical properties of the samples were measured 

with an Instron 5982 dual column testing system equipped with a 100 kN force load cell. 

The measurements were performed using a strain rate of 0.001 s. Four samples were used 

for reporting each measurement. The hardness of the sintered samples was measured using 

Rockwell ‘C’ hardness scale at 150 kg load. The hardness measurements were performed 

on the ends of the tensile samples. As the samples were built horizontally, hardness was 

measured parallel to the build layers. Seven hardness measurements were taken of each 

sample. 
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3.3 RESULTS AND DISCUSSION 

The densification and mechanical properties of samples fabricated using sintered gas and 

water-atomized powders were related to the L-PBF processing parameters using an energy 

density factor. The energy density factor during L-PBF was estimated as per Equation 3.1 

[23]   

  

 

where, Eρ is the energy density (Jmm−3), P the laser power (W), h the hatch spacing (mm), 

v the scan velocity (mms−1), and t the layer thickness (mm). The variation of % theoretical 

density with energy density for the four 17-4 PH stainless steel powders is shown in Figure 

3.4. Irrespective of powder type or size, the % theoretical density was found to increase 

with increased energy density. Among all the powders, the increase in % theoretical 

density, i.e. densification with energy density was significant for water-atomized powders 

of median particle size, 24 and 43 µm. Similar results of an increase in % theoretical density 

with increased energy density have been observed in previous research studies [1, 14, 15]. 

The % theoretical density of the samples fabricated using the gas-atomized powder at 

energy density 104 J/mm3 is comparable to the % theoretical density reported by Gu et al 

[24] under the same process conditions. The % theoretical density of the samples fabricated 

using water-atomized powders sinter density is similar to the density reported by Tyler et 

al [19] but in different processing conditions. Simchi [13]  carried out L-PBF studies on 

iron and steel powders of various shapes and sizes in different processing conditions. The 

study reported the dependence of densification of the powders during L-PBF on powder 

characteristics and processing conditions.  

E
ρ 

=
𝑃

ℎ∗𝑣∗𝑡
                               (3.1) 
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Figure 3.4. Variation in sintered density and % theoretical density with energy density 
for samples fabricated using the four 17-4 PH stainless steel powders. 

 

The characteristics of the molten liquid formed during L-PBF play a critical role in the 

densification of the powders. At high energy density, a large amount of molten liquid with 

low viscosity is likely to be formed in the powder bed. The low viscosity liquid presumably 

results in better wettability of the melt ensuing in enhanced densification of powders [14]. 

At low energy density, the melt temperature is low and a high viscosity molten liquid with 

poor wettability characteristics is possibly formed, potentially resulting in poor 

densification of the powders [13]. 

The data from the current study also show higher densification of powders with smaller 

size. Simchi also reported a similar trend of higher densification with decreased  particle 

size for iron powders [13]. The smaller size powders exhibit higher surface area possibly 

absorbing more laser energy resulting in better densification [14, 19]. At the energy density 
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of 104 J/mm3 the % theoretical density of all the powders ranged between 96 and 97.5 % 

(7630 - 7670 kg/m3). In contrast, at 64 J/mm3 the % theoretical density of the samples 

ranged from 87 to 97 % (6860 - 7600 kg/m3). The achievement of similar densities for the 

gas and water-atomized powers at very high energy densities is an interesting result, which 

indicates that, using high energy density, parts with similar densification can be achieved 

using inexpensive, coarser water-atomized powders compared to the relatively expensive 

fine size gas-atomized powders that are typically used for L-PBF.  

Gas-atomized powders are typically used as starting powders in L-PBF studies. Better 

packing ability and low oxygen content of the gas-atomized powders have been previously 

claimed to be critical requirements for achieving high densification during the L-PBF 

process [14, 15]. 17-4PH stainless steel water-atomized powders exhibit relatively poorer 

packing characteristics due to their irregular shape and typically have higher oxygen 

content. The high oxygen content and the presence of surface oxides have been previously 

reported to be a deterrent in achieving good densification during L-PBF [14, 15, 25].  

The variation of ultimate tensile strength (UTS) of the samples with energy density is 

shown in Figure 3.5. The ultimate tensile strength of the samples increased with increase 

in energy density. Samples fabricated using gas-atomized powders showed significantly 

higher tensile strength (~1050 MPa) compared to samples fabricated using water-atomized 

powders (470-850 MPa) at low energy densities of 64 - 84 J/mm3
.  However at a high 

energy density of 104 J/mm3, samples fabricated using water-atomized powders of median 

particle sizes of 17 and 43 µm exhibited higher strength (~ 1050 MPa) than samples 

fabricated using gas-atomized powders (~ 950 MPa). Overall, the data clearly show the 

ability of samples fabricated using water-atomized powders to match the ultimate tensile 
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strength of samples fabricated using gas-atomized powders when processed at a high 

energy density of 104 J/mm3. For comparison, previous studies have reported as-printed 

ultimate tensile strength of the samples fabricated using gas-atomized powders to be 1000 

– 1100 MPa [20], [26]. The as-printed ultimate tensile strength values of samples fabricated 

using water-atomized powders was reported by Tyler et al to be 1250 MPa under different 

process conditions [19]. For further reference, 17-4 PH stainless steel properties in the 

wrought state have been reported to be in the range of 890 - 1100 MPa. The data for 17-4 

PH stainless steel properties obtained by other processing methods are 830 - 1000 MPa for 

casting and 965 - 1040 MPa for metal injection molding (MIM) [17]. 

 

Figure 3.5. Variation in ultimate tensile strength with energy density for samples 
fabricated using the four 17-4 PH stainless steel powder. 

 

The ultimate tensile strength of the sintered samples is strongly dependent on the % 

theoretical density of the samples dependence as shown in Figure 3.6. A notable aspect of 
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the data was that even within a narrow range of % theoretical density of ~ 97 % (~ 7650 

kg/m3) there was extensive variation in strength from 500 to 1100 MPa. On-going 

experiments using SEM and x-ray diffraction (XRD) analysis will help pin-point the 

microstructural origins of the trends in tensile strength. 

 
Figure 3.6. Variation in ultimate tensile strength with sintered density and % theoretical 

density for samples fabricated using the four 17-4 PH stainless steel powders. 

 

Figure 3.7 shows the variation in elongation as a function of energy density for samples 

fabricated using the four 17-4 PH stainless steel powders used in this study. Samples 

fabricated using the gas-atomized powder showed higher elongation values compared to 

samples fabricated using water-atomized powders when processed at energy densities of 

64, 80 and 84 J/mm3
. However no difference in elongation values was observed between 

samples fabricated using gas or water-atomized powders at an energy density of 104 J/mm3
.  
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The effect of energy density showed contrasting trends in affecting the elongation behavior 

of samples fabricated using the gas and water-atomized powders. In the case of samples 

fabricated using gas-atomized powders, elongation decreased with increased in energy 

density. However, in the case of samples fabricated using water-atomized powders, 

elongation increased with an increased energy density. Further assessment of 

microstructures is on-going to analyze the trends in the data. 

 

Figure 3.7.  Variation of elongation as a function of energy density for samples 
fabricated using the four 17-4 PH stainless steel powders. 

 

The variation of elongation is plotted as a function of % theoretical density as shown in 

Figure 3.8. It can be clearly noted that, even within a narrow range of % theoretical density 

(96 – 97.5 %), samples fabricated using gas and water-atomized powder with median 

particle size of 13 µm and 17 µm respectively, showed a high level of sensitivity in 

elongation values, varying from 7 – 23 %. In contrast, samples fabricated using water-
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atomized powders with median particle size of 24 µm and 43 µm exhibited a more expected 

increase in elongation values (7 - 16 %) with increase in % theoretical density from 87 to 

97 % (6900 - 7700 kg/m3). The elongation of the gas-atomized powder samples fabricated 

using energy density in the range of 64 – 84 J/mm3 (22 – 25 %) were comparable to the as-

printed value of 22 % reported by Gratton [20]. Tyler et al [19] reported 12% elongation 

for as-printed water-atomized powder specimens. The elongation values (5 - 23 %) of gas-

atomized and water-atomized samples compare well with the 17-4 PH stainless steel in the 

wrought state (4 -12 %) as well as in parts manufactured using casting (6 - 11 %) and MIM 

(8 - 12 %) [17]. 

 

Figure 3.8.  Variation of elongation as a function of sintered density and % theoretical 
density for samples fabricated using the four 17-4 PH stainless steel powders. 

The variation in Rockwell hardness (HRC) of the sintered samples with energy density is 

shown in Figure 3.9. The hardness of samples fabricated using both gas- and water-
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atomized powders increased with an increase in energy density. In general, the hardness of 

the samples was also found to increase with increase in % theoretical density of the samples 

(Figure 3.10). However, in keeping with the trends observed in ultimate tensile strength 

and elongation, the hardness varied from 25 to 39 HRC even within a narrow band around 

~ 97 % (~ 7650 kg/m3). For reference, Murr et al [18], [21] and Kumapty et al [22] reported 

values of 35–40 HRC for gas-atomized powder samples fabricated using L-PBF in other 

processing conditions. For further comparison, the hardness of 17-4PH stainless steel in 

the wrought state was reported to be 38 - 39 HRC while parts fabricated using casting and 

MIM were reported to be 36 - 38 HRC [17]. 

 

 
Figure 3.9. Variation of hardness with energy density for samples fabricated using the 

four 17-4 PH stainless steel powders. 
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Figure 3.10. Variation of hardness with sintered density and % theoretical density for 
samples fabricated using the four 17-4 PH stainless steel powders. 

 

SEM and XRD analyses of the samples studied in this paper are currently being conducted 

in our research group to understand the microstructural origins of the mechanical property 

evolution as a function of powder attributes and processing conditions. 

 

3.4 CONCLUSIONS 

A study was performed to understand the effects of powders characteristics (shape and size 

distribution) and critical processing conditions (energy density) on the densification and 

mechanical properties of L-PBF parts. The results from the study confirm the strong 

dependence of densification and mechanical properties on the energy density used during 

the L-PBF process. The % theoretical density, ultimate tensile strength and hardness of 
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both water and gas-atomized powders increased with increased energy density. Gas-

atomized powders showed superior densification and mechanical properties when 

processed at low energy densities. However, the % theoretical density and mechanical 

properties of water-atomized powders were comparable to gas-atomized powders when 

sintered at the high energy density of 104 J/m3. An important result of this study was that 

even at high % theoretical density (97 ± 1 %), the properties of as-printed parts could vary 

over a relatively large range (UTS: 500 - 1100 MPa; hardness: 25 - 39 HRC; elongation: 

10 - 25%) depending on powder characteristics and process conditions. The results confirm 

the feasibility of using inexpensive water-atomized powders as starting raw materials 

instead of typically used gas-atomized powders to fabricate parts using L-PBF technique 

by sintering at high energy densities.  
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CHAPTER 4 

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF LASER POWDER 

BED FUSION OF 17-4 PH STAINLESS STEEL                                                                    

GAS- AND WATER-ATOMIZED POWDERS4 

 

4.1 INTRODUCTION 

Laser powder bed fusion (L-PBF), alternately known as selective laser melting (SLM) is a 

digitally driven powder-based process that uses focused laser energy to fuse fine metallic 

powders into solid parts. In the L-PBF process, the laser-powder interactions are largely 

affected by process variables such as laser power, scan speed, hatch spacing and layer 

thickness [1]–[4]. In general, the above process variables determine the density, 

microstructures and properties obtained from L-PBF parts [5]–[9].  

Many investigations have been carried out in the past decade on different materials (ferrous 

and non-ferrous) to understand the effects of powder and processing conditions on the 

formation of microstructures in L-PBF parts [9]–[14]. For instance, Kruth et al. [15] 

reported on the effects of processing parameters on microstructure and mechanical 

properties of 316L stainless steel L-PBF parts. Further, the effects of laser sintering

                                                 
4 The authors would like to thank Walmart foundation for their support. 
4 Harish Irrinki, Samuel Dilip, Somayeh Pasebani, Sunil Badwe, Kunal Kate and Dr. Sundar Atre 
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parameters on structure-property relationships for low carbon steel powder, iron based 

powder, and Ni-Cr alloys have already been reported and highlighted that even minor 

changes in any processing parameters can have large effects on the final part properties, 

both physical and microstructural.  

Independent L-PBF studies have reported the relationship between mechanical properties 

and microstructural features of L-PBF parts produced using 17-4 PH stainless steel gas-

atomized powders under various process conditions [16]–[24]. However, few studies have 

been reported on microstructure-mechanical property variations of L-PBF parts fabricated 

using 17-4 PH stainless steel powders with different shapes and sizes. The goal of the 

present study is to address this gap in the literature using 1 gas-atomized and 3 water-

atomized powders with varying shape, size distribution and tracing the influence of L-PBF 

process conditions on the porosity, microstructure, phase propagation and mechanical 

properties of the fabricated parts. 

 

4. 2 EXPERIMENTAL METHODS AND PROCEDURES 

The particle size distributions of the four 17-4 PH stainless steel powders used in this study 

were measured using a Microtrac S3000 particle size analyzer. A high resolution FEI 

Quanta 600F scanning electron microscope (SEM) and a Bruker D8 DISCOVER X-ray 

diffraction (XRD) spectroscope were used for morphology analysis of the powders.    

L-PBF experiments were performed on a 3D Systems ProX 200 machine under argon. The 

process parameters used in the L-PBF experiments consisted of laser power, scan speed, 

layer thickness and hatch spacing as given in Table 4.1. 
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Table 4.1 L-PBF processing conditions and the corresponding energy densities used in 
this study 

Laser power 

(W) 

Scan speed 

(mm/s) 

Layer 

thickness 

(µm) 

Hatch spacing 

(µm) 

Energy 

density 

(J/mm3) 

150 1550 30 50 64 

150 1250 30 50 80 

195 1550 30 50 84 

195 1250 30 50 104 

 

The laser power was varied between 150 and 195 W and scan speed was varied between 

1250 and 1550 mm/s. The layer thickness and hatch spacing were kept constant at 30 µm 

and 50 µm to fabricate tensile geometries using the L-PBF process (Table 4.1). The set of 

process parameters considered for the L-PBF experiments were further used to calculate 

laser energy density using Equation 4.1.  

 
where, 𝐸𝑝 is energy density (J/mm3), P is laser power (W), v is scan speed (mm/s), t is layer 

thickness (mm), and h is hatch spacing (mm).  

All of the tensile samples after L-PBF were thermally stress relieved at 12000 F for 1 hour 

in air prior to their removal (electrical discharge machining) from the build plate. The as-

printed L-PBF parts were further analyzed for their mechanical as per ASTM E8M standard 

and physical properties as well as microstructures. Hardness testing was performed using 

a Rockwell ‘C’ hardness tester at 150 kg load. Mechanical property testing was performed 

𝐸𝑝 =
𝑃

ℎ ∗ 𝑣 ∗ 𝑡
                                                             (4.1) 
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using an Instron 5982 dual column machine. Density measurements were conducted using 

a method based on Archimedes law on a Mettler Toledo XS104 weighing balance and the 

density values of the L-PBF parts reported in this paper were expressed as a percentage of 

the density of a 17-4 PH stainless steel cast part. Microstructures of the L-PBF parts were 

analyzed using an Olympus BX53 microscope. Metallographic specimen preparation was 

carried out following standard procedures for microstructure characterization. A modified 

Fry’s reagent (1 g CuCl2, 25 mL HCl, 25 mL HNO2, and 150 mL H2O) was used as an 

etchant to reveal the austenite and martensitic phases typically found 17-4PH stainless steel 

parts [16], [20]. The microstructural characterization of the polished and etched L-PBF 

parts was performed in the horizontal plane perpendicular to the build direction. 

 

4.3 RESULTS 

4.3.1 POWDER CHARACTERISTICS  

The chemical compositions of the four17-4 PH stainless steel powders are presented in 

Table 4.2. The main alloying elements in the 17-4 PH stainless steel gas- and water-

atomized powders are Cr, Ni, Cu, and C. The type of alloying elements present are 

characteristic to 17-4 PH stainless steel powder but there is a substantial amount of C 

content (~0.2 wt. %) in the water-atomized powders when compared to the gas-atomized 

powder which was deliberately added to influence the powder morphology. 
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Table 4.2 Chemical composition of 17-4 PH stainless steel gas and water-atomized 
powders 

Powder type C Cr Cu Mn Ni P S Si Nb 

Gas-atomized 0.03 15-17.5 3-5 1 3-5 0.04 0.03 1 0.25 

Water-atomized 0.208 17.74 3.94 0.13 3.54 0.013 0.008 0.3 0.35 

 

The gas-atomized powder used in this study had a bimodal particle size distribution with a 

particle size range between 1-150 µm and displayed bimodal peaks at 8µm and 20 µm. 

Additionally, the gas-atomized powder had a median particle size of 13 µm as shown in 

Figure 4.1. The water-atomized powders were monomodal in nature and had median 

particle sizes of 17, 24 and 43 µm (Figure 4.1). The cumulative frequency for the powders 

is also plotted as a line function in Figure 4.1 to identify the particle diameters that 

corresponds to 10, 50, and 90% of the cumulative frequency distribution.  Cumulative 

values of these particle diameters are represented by D10, D50, D90 values and are presented 

in Table 4.3.  
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Figure 4.1 Particle size distributions of the 17-4 PH stainless steel powders used in this 
study (a) gas-atomized powder D50 = 13µm (b) water-atomized powder D50 = 17µm (c) 

water-atomized powder D50 = 24µm (d) water-atomized powder D50 = 43µm 

Table 4.3 Particle characteristics of the17-4 PH stainless steel gas- and water-atomized 
powders 

 

Powder 

Particle distribution  

Size width 

 

D10 

(µm) 

D50 

(µm) 

D90 

(µm) 

Gas-atomized (G) 5 13 27 3.5 

Water-atomized (W) 1 10 17 28 5.7 

Water-atomized (W) 2 16 24 37 7 

Water-atomized (W) 3 26 43 67 6.2 

 



52 

 

The morphology of the powders was characterized using SEM and represented in Figure 

4.2, showing the gas-atomized powders to be spherical while the water-atomized powders 

were more irregular in shape. 

 

 
Figure 4.2 SEM images of the 17-4 PH stainless steel powders used in this study (a) gas-

atomized powder (D50 = 13µm)   (b) water-atomized powder (D50 = 17µm) (c) water-
atomized powder (D50 = 24µm) and  (d) water-atomized powder (D50 = 43µm) 

 

Phase analysis of the powders was performed using XRD. Figure 4.3 reveals that alpha 

(α) and gamma (γ) phases were present in all the powders. The α phase is represented with 

(110), (200) and (211) planes and γ phase is represented with (111), (200) and (211) planes.  
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Figure 4.3 XRD analysis for the 17-4 PH stainless steel gas- and water-atomized 
powders, showing the presence of α and γ phases.  

 

4.3.2 EFFECTS OF L-PBF PROCESS CONDITIONS ON MECHANICAL 

PROPERTIES, MICROSTRUCTURE AND PHASE EVOLUTIONS  

The porosity, phases, microstructure and properties of the L-PBF parts fabricated using 17-

4 PH stainless steel gas and water-atomized powders were correlated with process 

conditions using the energy density parameter calculated using Equation 1. The results are 

discussed in turn based on four values of increasing energy density. 
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4.3.2.1 ENERGY DENSITY: 64 J/mm3 

The physical and mechanical properties of the 17-4 PH stainless steel L-PBF parts 

fabricated at energy density of 64 J/mm3 are reported in Table 4.4. It was seen that the 

density of L-PBF parts fabricated using the relatively coarser water-atomized powders 

(D50=24 µm and 43 µm) was lower than that of the L-PBF parts fabricated using the finer 

gas-atomized (D50=13 µm) and water-atomized (D50=17 µm) powders. 

 

Table 4.4 Mechanical properties of the 17-4 PH stainless steel gas-and water-atomized 
L-PBF parts processed at energy density 64 J/mm3 

 

 

To understand the variation observed in densities of the L-PBF parts, optical micrographs 

were analyzed as shown in Figure 4.4. Low porosities and small pore sizes were observed 

in L-PBF parts fabricated using the finer gas-atomized (D50=13 µm) (Figure 4a) and water-
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atomized (D50=17 µm) powders (Figure 4.4b). However, relatively large pores were found 

in L-PBF parts fabricated using the coarser water-atomized (D50=24 µm and 43 µm) 

(Figures 4.4c and 4.4d). The nature of pores observed in the optical micrographs 

qualitatively correlates with the densities obtained for the gas- and water-atomized L-PBF 

parts (Table 4.4).  

The mean ultimate tensile strength of the gas-atomized (D50=13 µm) L-PBF parts was 1050 

MPa and comparable to MIM (950 -1050 MPa) and wrought values (1000- 1050 MPa) 

[28]. However, the mean ultimate tensile strength for the three water-atomized (D50= 17 

µm, 24 µm and 43 µm) L-PBF parts ranged from 470-500 MPa. The hardness of the gas-

atomized (D50=13 µm) L-PBF parts was 28 ± 2 HRC was similar to the mean hardness of 

the water-atomized (D50= 17 µm, 24 µm and 43 µm) L-PBF parts which ranged from 25-

27 HRC. The elongation of the gas-atomized (D50=13 µm) L-PBF parts was 25 ± 0.5 % 

which is higher than MIM values (4 – 8 %) and comparable to wrought values (25 – 30 %) 

[28]. However the elongation for the three water-atomized (D50= 17 µm, 24 µm and 43 

µm) L-PBF parts was significantly lower with mean values ranging from 8-9% (Table 4.3).  

The higher elongation of the gas-atomized powders may at least partially attributed to the 

lower C content (Table 4.1) in addition to the lower porosity. 
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Figure 4. Optical micrographs of the gas- and water-atomized L-PBF parts produced at 
energy density  of 64 J/mm3 (a) gas-atomized powder D50 = 13µm (b) water-atomized 

powder D50 = 17µm (c) water-atomized powder D50 = 24µm (d) water-atomized powder 
D50 = 43µm 

 

The results of XRD analysis helped determine the phases present in the 17-4 PH stainless 

steel gas-and water-atomized L-PBF parts (Figure 4.5) and were used to further understand 

the observed differences in mechanical properties. The XRD patterns of the gas-atomized 

(D50=13 µm) L-PBF parts were composed of the martensite phase with no discernable 

fraction of the austenite phase in contrast to the XRD data of the starting gas-atomized 

powder which showed a mixture of both austenite and martensite phases (Figure 4.3). 

However, presence of predominant austenite and martensite phases was observed in L-PBF 
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parts fabricated using the three water-atomized powders. Previous L-PBF studies on water-

atomized powders observed the presence of austenite and martensite phases in fabricated 

parts [23], [25]. The higher amount of martensite in the gas-atomized L-PBF parts in 

addition to the lower porosity and higher density may qualitatively explain its superior 

mechanical properties relative to water-atomized L-PBF parts. 

 

 

 

Figure 4.5. XRD spectra of the 17-4 PH stainless steel gas-and water-atomized L-PBF 
parts processed at energy density 64 J/mm3 
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The optical micrographs in Figure 4.6 show the microstructures of the gas- and water-

atomized L-PBF parts. The microstructures of the gas-atomized (D50=13 µm) L-PBF parts 

appeared to mostly consist of the austenite phase (Figure 4.6a) and the water-atomized 

(D50= 17 µm, 24 µm and 43 µm) L-PBF parts showed a presence of austenite and 

martensite phases (Figure 4.6b-d). The observed microstructures for water-atomized L-

PBF parts qualitatively corresponded with the XRD analysis (Figure 4.5) but the high 

amount of austenite found within the microstructure of gas-atomized L-PBF parts appeared 

to contradict the XRD data (Figure 4.5).  
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Figure 4.6. Optical microscopy images of the gas- and water-atomized L-PBF parts 

produced at energy density  of 64 J/mm3 (a) gas-atomized powder D50 = 13µm (b) water-
atomized powder D50 = 17µm (c) water-atomized powder D50 = 24µm (d) water-atomized 

powder D50 = 43µm. 

 

4.3.2 ENERGY DENSITY: 80 J/mm3 

The properties of the 17-4 PH stainless steel L-PBF parts fabricated at energy density of 

80 J/mm3 are reported in Table 4.5. The density of the water-atomized (D50=24 µm and 43 

µm) L-PBF parts was lesser than that of the gas-atomized (D50=13 µm) and water-atomized 

(D50=17 µm) L-PBF parts. An increase in energy density from 64 J/mm3 to 80 J/mm3 

resulted in increase in density and mechanical properties of the gas and water atomized L-

PBF parts as shown in Table 4.5. At an energy density of 80 J/mm3 a decrease in scanning 
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speed from 1550 mm/s to 1250 mm/s may have resulted in increasing the density of the 

gas and water atomized L-PBF parts. Earlier studies by Gu et. al. reported that a higher 

densification of powders occus as a function of lower scanning speed and higher laser 

power [19]. 

Table 4.5 Mechanical properties of the 17-4 PH stainless steel gas-and water-atomized 
L-PBF parts processed at energy density 80 J/mm3 

 
 

The mean ultimate tensile strength of the gas-atomized (D50=13 µm) L-PBF parts was 1090 

MPa and comparable to MIM (950 -1050 MPa) and wrought values (1000- 1050 MPa) 

[28]. However, the mean ultimate tensile strength of L-PBF parts fabricated from the three 

water-atomized powders (D50= 17 µm, 24 µm and 43 µm) ranged from 590-650 MPa. The 

mean hardness of the gas-atomized (D50=13 µm) L-PBF parts was 31 HRC and compared 

well with the corresponding values for the three water-atomized (D50= 17 µm, 24 µm and 

43 µm) L-PBF parts which ranged from 29-32 HRC. The elongation of the gas-atomized 

(D50=13 µm) L-PBF parts was 22 ± 0.5 %. However, the mean elongation for the water-
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atomized (D50= 17 µm, 24 µm and 43 µm) L-PBF parts ranged from 9-10 % (Table 4.5). 

The higher elongation of the gas atomized powders may at least partially attributed to the 

lower C content (Table 4.1) in addition to the lower porosity relative to the water-atomized 

powders. 

Optical micrographs of the gas- and water-atomized L-PBF parts perpendicular to the build 

direction are shown in Figure 4.. An increase in energy density to 80 J/mm3 resulted in a 

decrease of porosity in the gas-and water-atomized L-PBF parts as shown in Figure 4.7. 

This reduction of porosity can be attributed to a decrease in scanning speed from 1550 

mm/s to 1250 mm/s as observed in previous studies [19]. The resulting decrease in 

scanning speeds increased the laser-powder interaction time that resulted in high 

densification of powders [1, 9].  
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Figure 4.7 Optical micrograph images of the gas- and water-atomized L-PBF parts 

produced at energy density  of 80 J/mm3 (a) gas-atomized powder D50 = 13µm (b) water-
atomized powder D50 = 17µm (c) water-atomized powder D50 = 24µm (d) water-atomized 

powder D50 = 43µm. 

 

XRD analysis was performed to study the evolution of phases in the L-PBF parts as a 

function of process conditions as shown in Figure 4.8. Figure 4.8 shows that the intensity 

of austenite phase strongly oriented in (110) direction was decreased while martensite 

phase in (110) direction was increased in the water-atomized L-PBF parts. The XRD 

patterns of the gas-atomized (D50=13 µm) L-PBF parts were composed of the martensite 

phase with no discernable fraction of the austenite phase similar to gas-atomized L-PBF 
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parts fabricated at energy density of 64 J/mm.3 The result was in contrast to the XRD data 

of the starting gas-atomized powder which showed a mixture of both austenite and 

martensite phases (Figure 4.3). 

 

Figure 4.8 XRD analysis of the 17-4 PH stainless steel gas-and water-atomized L-PBF 
parts processed at energy density 80 J/mm3 

 

A considerable amount of austenite was observed within the microstructure of gas-

atomized L-PBF part (Figure 4.9a). However, both austenite and martensite phases were 
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observed within the microstructures of the water-atomized L-PBF parts as shown in 

(Figures 4.9 b-d). These phases observed in microstructures of the water-atomized L-PBF 

parts (Figures 4.9 b-d) correlates with the phases observed in the XRD (Figure 4.8). 

Furthermore, the observed grain sizes for L-PBF parts fabricated at 80 J/mm3 were smaller 

(Figure 4.9) than those observed in L-PBF parts fabricated at 64 J/mm3 (Figure 4.6). 

 

 
Figure 9. Optical microscopy images of the gas- and water-atomized L-PBF parts 

produced at energy density  of 80 J/mm3 (a) gas-atomized powder D50 = 13µm  (b) water-
atomized powder D50 = 17µm (c) water-atomized powder D50 = 24µ (d) water-atomized 

powder D50 = 43µm 
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4.3.3 ENERGY DENSITY: 84 J/mm3 

The properties of the 17-4 PH stainless steel L-PBF parts fabricated at an energy density 

of 84 J/mm3 corresponding to a laser power 195 W and scanning speed 1550 mm/s are 

reported in Table 4.6. The density L-PBF parts that were fabricated from all four powders 

at 84 J/mm3 were found to be similar (~97% theoretical). This trend differed from the 

observations of powder-dependent densification response for L-PBF parts fabricated at 

lower energy densities. An increase in energy density from 80 J/mm3 to 84 J/mm3 resulted 

in an increase in density and mechanical properties of the gas- and water-atomized L-PBF 

parts as shown in Table 4.6.  

 

Table 4.6 Mechanical properties of the 17-4 PH stainless steel gas-and water-atomized 
L-PBF parts processed at energy density 84 J/mm3 
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The ultimate tensile strength of the gas-atomized (D50=13 µm) L-PBF parts was 1110 ± 30 

MPa and comparable to MIM (950 -1050 MPa) and wrought values (1000- 1050 MPa) 

[28]. The mean ultimate tensile strength for the water-atomized (D50= 17 µm, 24 µm and 

43 µm) L-PBF parts were relatively lower and ranged between 760-860 MPa. The hardness 

of the gas-atomized (D50=13 µm) L-PBF parts was 36 ± 1 HRC. The mean hardness for 

the three water-atomized (D50= 17 µm, 24 µm and 43 µm) L-PBF parts was somewhat 

lower and ranged between 32-35 HRC. For reference, the hardness of 17-4PH stainless 

steel in the wrought state was reported to be 38 - 39 HRC while parts fabricated using MIM 

were reported to be 36 - 38 HRC [28]. The elongation of the gas-atomized (D50=13 µm) L-

PBF parts was 22 ± 0.5  %. However, the elongation of all three water-atomized (D50= 17 

µm, 24 µm and 43 µm) L-PBF parts was distinctly lower 12-13% (Table 4.6).   

Optical micrographs of the gas- and water-atomized L-PBF parts showed the presence of 

micro-pores within the microstructures (Figure 4.10). The large pores that were observed 

in water-atomized L-PBF parts for energy densities of 64 J/mm3 and 80 J/mm3 were 

reduced at 84 J/mm3 and got translated into the observed micro-pores (Figure 4.10). 

However, despite achieving high densification, the water-atomized L-PBF parts, their 

mechanical properties were 20% lower than that of the gas-atomized L-PBF parts.  
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Figure 4.10 Optical micrograph images of the gas- and water-atomized L-PBF parts 

produced at energy density  of 84 J/mm3 (a) gas-atomized powder D50 = 13µm (b) water-
atomized powder D50 = 17µm (c) water-atomized powder D50 = 24µm (d) water-atomized 

powder D50 = 43µm 

 

To understand this difference in mechanical properties of the water-atomized L-PBF parts, 

XRD analysis was performed as shown in Figure 4.11. The XRD patterns of the gas-

atomized (D50=13 µm) L-PBF parts were composed of the martensite phase with no 

discernable fraction of the austenite phase similar to gas-atomized L-PBF parts fabricated 

at energy density of 64 J/mm3. This result was in contrast to the XRD data of the starting 

gas-atomized powder which showed a mixture of both austenite and martensite phases 
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(Figure 4.3). Figure 4.11 also shows that the intensity of austenite phase strongly oriented 

in (110) direction was decreased while martensite phase in (110) direction was increased in 

the water-atomized L-PBF parts. The relatively higher mechanical properties gas-atomized 

powders may be partially explained by the lower austenite content.  The higher elongation 

of the gas-atomized powders may at least partially attributed to the lower C content (Table 

4.1) in addition to the lower porosity. 

Figure 4.11 XRD analysis of the 17-4 PH stainless steel gas-and water-atomized L-PBF 
parts processed at energy density 84 J/mm3 
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The phases present in the XRD spectra for the L-PBF parts correlates well with the phases 

observed in the microstructure of water-atomized L-PBF parts (Figure 4.12). The gas- and 

water-atomized L-PBF parts showed a relatively fined grain size when fabricated at 84 

J/mm3 as opposed to at lower energy densities (Figures 4.6 and 4.9). This result may 

partially explain the improvement in properties for all four powders, in addition to 

achieving high densification. 

 

 
Figure 4.12 Optical microscopy images of the gas- and water-atomized L-PBF parts 
produced at energy density  of 84 J/mm3 (a) gas-atomized powder D50 = 13µm   (b) 

water-atomized powder D50 = 17µm (c) water-atomized powder D50 = 24µm   (d) water-
atomized powder D50 = 43µm. 
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4.3.4 ENERGY DENSITY 104 J/mm3 

The properties of the 17-4 PH stainless steel L-PBF parts fabricated at 104 J/mm3 

corresponding to a laser power 195 W and a scanning speed of 1550 mm/s are summarized 

in Table 4.6. The density of L-PBF parts fabricated at 104 J/mm3 from all the four powders 

was similar (~97% theoretical) and also similar to the values obtained at 84 J/mm3. 

However, an increase in energy density from 84 J/mm3 to 104 J/mm3 resulted in an increase 

in mechanical properties of the water-atomized L-PBF parts as shown in Table 4.7. The 

mechanical properties for the L-PBF pasts fabricated at 104 J/mm3 using the gas-atomized 

powder however reduced somewhat compared to the L- gas atomized PBF parts fabricated 

at 84 J/mm3. 

Table 4.7 Mechanical properties of the 17-4 PH stainless steel gas-and water-atomized 
L-PBF parts processed at energy density 104 J/mm3 
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The ultimate tensile strength of the gas-atomized (D50=13 µm) L-PBF parts was 950 ± 50 

MPa. The mean ultimate tensile strength for the three water-atomized (D50= 17 µm, 24 µm 

and 43 µm) L-PBF parts varied between 870-1060 MPa. The hardness of the gas-atomized 

(D50=13 µm) L-PBF parts was 31± 1 HRC and were somewhat lower than values obtained 

for the three water-atomized (D50= 17 µm, 24 µm and 43 µm) L-PBF parts which ranged 

between around 32-35 HRC. The hardness of the three water-atomized (D50= 17 µm, 24 

µm and 43 µm) L-PBF parts was comparable to the hardness of the wrought 38 - 39 HRC 

and MIM 36 - 38 HRC [28]. 

The elongation of the gas-atomized (D50=13 µm) L-PBF parts was 16 ± 1 % and was 

similar to the three water-atomized (D50= 17 µm, 24 µm and 43 µm) L-PBF parts which 

ranged between 12-15 % (Table 4.6).  Further, the elongation of the gas-atomized L-PBF 

parts fabricated at 104 J/mm3 was lower than the elongation obtained for L-PBF parts 

fabricated at lower energy densities. 

Optical micrographs of the gas- and water-atomized L-PBF parts shows the presence of 

very pores of very small diameters within the microstructures, consistent with the 

measurements of high density (Figure 4.15).  
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Figure 4.13 Optical images of the gas- and water-atomized L-PBF parts produced at 

energy density  of 104 J/mm3 (a) gas-atomized powder D50 = 13µm (b) water-atomized 
powder D50 = 17µm (c) water-atomized powder D50 = 24µm (d) water-atomized powder 

D50 = 43µm. 

 

XRD data for the L-PBF parts fabricated from the four powders is presented in Figure 

4.14. The XRD patterns of the gas-atomized (D50=13 µm) L-PBF parts were composed of 

the martensite phase with no discernable fraction of the austenite phase in contrast to the 

XRD data of the starting gas-atomized powder which showed a mixture of both austenite 

and martensite phases (Figure 4.3). Further, the austenite content appeared to qualitatively 

decrease while the martensite phase inccreased in L-PBF parts fabricated using the three 
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water-atomized powders. Previous L-PBF studies on water-atomized powders observed 

the presence of austenite and martensite phases in fabricated parts [23], [25]. The higher 

amount of martensite in the water-atomized L-PBF parts fabricated at 104 J/mm3 in 

addition to the low porosity and high density may qualitatively explain its improved 

mechanical properties relative to water-atomized L-PBF parts fabricated at lower energy 

densities. 

 

Figure 4.14 XRD spectra of the 17-4 PH stainless steel gas-and water-atomized L-PBF 
parts processed at energy density 104 J/mm3 
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The phases present in the XRD spectra for the L-PBF parts correlated well with the phases 

observed in the microstructure of water-atomized L-PBF parts (Figure 4.15). The gas- 

atomized (D50=13µm) L-PBF parts showed a larger grain size in their microstructure at 

104 J/mm3 relative to gas-atomized L-PBF parts fabricated at lower energy densities 

(Figure 4.15). However, the three water-atomized L-PBF parts fabricated at 104 J/mm3 

showed relatively smaller grain size and the high martensite phase within their 

microstructure relative to water-atomized L-PBF parts fabricated at lower energy densities. 

Earlier studies reported that high percentage of the martensite phase was observed in water-

atomized L-PBF parts when processed at high energy density [25].  
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Figure 4.15 Optical microscopic images of the gas- and water-atomized L-PBF parts 
produced at energy density  of 104 J/mm3 (a) gas-atomized powder D50 = 13µm   (b) 

water-atomized powder D50 = 17µm (c) water-atomized powder D50 = 24µm (d) water-
atomized powder D50 = 43µm. 

 

4.4 CONCLUSIONS AND FUTURE WORK 

This work presents a comprehensive study of the densification behavior, phase and 

microstructure development of 17-4 PH stainless steel gas- and water-atomized parts 

processed by L-PBF. For all the energy densities, the gas-atomized L-PBF parts appeared 

to consist solely of martensite phases, whereas the water-atomized L-PBF parts appeared 

to consist of a mixture of austenite and martensite phases in XRD data. Additionally, the 
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phases revealed in the XRD spectra for water atomized L-PBF parts matches precisely to 

the microstructures analyzed by optical microscopy but this was not observed for the gas-

atomized L-PBF parts for all energy densities. As the energy density increased from 64 

J/mm3 to 104 J/mm3, grain size decreased for water-atomized L-PBF parts whereas the 

microstructures and grain size of gas-atomized L-PBF parts were different. 

At low energy densities of 64 and 80 J/mm3, low-porosity and high-density (~97% 

density) L-PBF parts were produced from smaller particle sizes of gas-atomized 

(D50=13µm) and water-atomized (D50=17µm) powders but lower densities (~87-92%) 

were observed for water-atomized powders (D50=24µm and 43µm). However, at low 

energy densities, the ultimate tensile strengths (UTS) for all water-atomized L-PBF parts 

ranged between 470-690 MPa that was lower than the gas-atomized L-PBF parts with 

UTS of 1000-1120 MPa. At higher energy densities of 84 and 104 J/mm3, similar 

densities were observed for all gas and water-atomized L-PBF parts. Furthermore, at a 

high energy density of 104 J/mm3 , mechanical properties such as hardness and ultimate 

tensile strength of L-PBF parts fabricated using water-atomized powders (D50=17µm and 

43µm) were higher than gas-atomized L-PBF parts and MIM and wrought values. It can 

be attributed to the decrease in grain size and to the presence martensite phase in the 

microstructure.  

The higher elongation of the L-PBF parts fabricated from gas atomized powders under all 

energy densities may at least partially attributed to the lower C content relative to parts 

fabricated using the three water-atomized powders.  

Analyses using SEM , EDS and magnetic induction methods will be employed in future 

studies to establish a more quantitative understanding of the influence of L-PBF process 
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parameters on the densification, microstructures and mechanical properties of gas- and 

water-atomized L-PBF parts. Furthermore, microstructure evolution and mechanical 

properties variation as a function of different heat treatment process are currently being 

studied and the results will be reported elsewhere. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 

5.1 CONCLUSIONS 

A study was performed using 1 gas-atomized and 3 water-atomized 17-4 PH stainless steel 

powders with varying shape, size distribution to understand the influence of 4 L-PBF 

process conditions on the density, mechanical properties and microstructures of the 

fabricated parts. The following conclusions can be drawn from the work: 

 

 Powder characteristics affects the density, mechanical properties and 

microstructures of the parts produced using the L-PBF process.  

 At lower energy densities of 64 and 80 J/mm3, low-porosity and high-density 

(~97% density) L-PBF parts were produced from gas-atomized (D50=13µm) and 

water-atomized (D50=17µm) powders but lower densities (~87-92%) were 

observed for the L-PBF parts fabricated using coarser water-atomized (D50=24µm 

and 43µm) powders.  

 At a high energy density of 104 J/mm3, similar densities were observed for all gas 

and water-atomized L-PBF parts
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 For all the energy densities, the gas-atomized L-PBF parts appeared to consist 

solely of martensite phase, whereas the water-atomized L-PBF parts appeared to 

consist of a mixture of austenite and martensite phases in XRD data. 

 As the energy density increased from 64 J/mm3 to 104 J/mm3 , grain size decreased 

for all water-atomized L-PBF parts. 

 The gas-atomized L-PBF parts showed superior densification and mechanical 

properties when processed at energy densities 64, 80 and 84 J/ mm3. The higher 

amount of martensite in the gas-atomized L-PBF parts in addition to the lower 

porosity may qualitatively explain its superior densification and mechanical 

properties relative to the water-atomized L-PBF parts. 

 At a high energy density of 104 J/mm3, the mechanical properties such as hardness 

and ultimate tensile strength of L-PBF parts fabricated using water-atomized 

powders (D50=17µm and 43µm) were higher than gas-atomized L-PBF parts. It can 

be attributed to the decrease in grain size and porosity and to the presence of 

martensite phase in the microstructure.  

 For all the energy densities evaluated, the elongation values of the water-atomized 

L-PBF parts were less than those made of gas-atomized L-PBF parts. The higher 

elongation of the gas-atomized parts under all energy densities may attribute to the 

lower C content relative to the water-atomized parts. 
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5.2 FUTURE WORK  

The current research studies the influence of process parameters on mechanical properties 

and microstructures of L-PBF processed 17-4PH steels. One area of the future research is 

to establish a more quantitative understanding of the influence of L-PBF process 

parameters on the densification, microstructures and mechanical properties of the gas- and 

water-atomized L-PBF parts using SEM, EDS and magnetic induction methods. 

Furthermore, an area of future research is to understand the microstructure evolution and 

mechanical properties variation of the gas- and water-atomized L-PBF parts as a function 

of different heat treatment process. In the current study, water-atomized powders 

containing high C content was used. In the future, water-atomized powders of chemical 

composition similar to that of gas- atomized powders will be used to study the effect of 

chemical composition on the microstructure and mechanical properties of the L-PBF parts. 

Future research will also explore different tooling materials that were identified in the 

review conducted in this study. This work can help in addressing the microstructure-

mechanical properties relationship as a function of powder attributes and processing 

conditions. 
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APPENDIX A 

 

MECHANICAL PROPERTIES OF THE AS-BUILT 17-4 PH STAINLESS STEEL  

GAS- AND WATER-ATOMIZED L-PBF PARTS 
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Table A.1. Mechanical properties of the 17-4 PH stainless steel gas-and water-
atomized L-PBF parts processed at energy density 64 J/mm3 

Energy density 64 J/mm3 

L-PBF parts from 

Sample 

# 

Density 

(%) 

Ultimate tensile strength 

(MPa) 

Hardness 

(HRC) 

Elongation 

(%) 

Gas-atomized powder        

D50 = 13 µm 

1 97 1035 28 22.5 

2 96.5 1000 26 22 

3 97 1040 28 21 

4 97.5 1115 30 23 

Water-atomized powder 

D50 = 17 µm 

1 95.5 450 24 7.5 

2 97 530 30 8 

3 96.5 515 27 8 

4 96 490 26 8 

Water-atomized powder 

D50 = 24 µm 

1 87 475 25 9 

2 87.5 510 26 9.5 

3 86.5 400 23 7 

4 87.5 520 27 10 

Water-atomized powder 

D50 = 43 µm 

1 89 465 24 9 

2 89.5 485 26 9.5 

3 90 495 28 7 

4 90 500 28 10 
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Table A.2 Mechanical properties of the 17-4 PH stainless steel gas-and water-atomized L-PBF 
parts processed at energy density 80 J/mm3 

Energy density 80 J/mm3 

L-PBF parts from 

Sample 

# 

Density 

(%) 

Ultimate tensile strength 

(MPa) 

Hardness 

(HRC) 

Elongation 

(%) 

Gas-atomized powder        

D50 = 13 µm 

1 97.5 1065 31 18 

2 97.5 1065 30 21 

3 98 1135 32 22 

4 97.5 1070 31 21 

Water-atomized powder 

D50 = 17 µm 

1 96.5 600 31 9.5 

2 97.5 700 33 11 

3 97 655 32 10.5 

4 97 660 32 10.5 

Water-atomized powder 

D50 = 24 µm 

1 90.5 580 28 10 

2 91 615 29 10 

3 91 610 29 10.5 

4 91.5 655 30 10 

Water-atomized powder 

D50 = 43 µm 

1 94 555 28 9.5 

2 95 600 32 10 

3 94.5 585 30 9 

4 94.5 590 31 10 

 

 

 

 

 

 

 

 

 



93 

 

Table A.3 Mechanical properties of the 17-4 PH stainless steel gas-and water-atomized L-PBF 
parts processed at energy density 84 J/mm3 

Energy density 84 J/mm3 

L-PBF parts from 

Sample 

# 

Density 

(%) 

Ultimate tensile strength 

(MPa) 

Hardness 

(HRC) 

Elongation 

(%) 

Gas-atomized powder        

D50 = 13 µm 

1 97.5 1155 37 23 

2 97.5 1075 35 22 

3 98 1115 37 22 

4 97.5 1080 36 23 

Water-atomized powder 

D50 = 17 µm 

1 97.5 850 34 12 

2 98 910 35 13 

3 97.5 820 33 12 

4 97.5 880 35 13 

Water-atomized powder 

D50 = 24 µm 

1 97 800 37 11 

2 96.5 700 33 11 

3 97 805 37 12 

4 96,5 750 35 12 

Water-atomized powder 

D50 = 43 µm 

1 97.5 880 33 13.5 

2 97.5 850 32 13 

3 97 820 31 12.5 

4 97 830 32 12.5 
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Table A.4 Mechanical properties of the 17-4 PH stainless steel gas-and water-atomized L-PBF 
parts processed at energy density 104 J/mm3 

Energy density 104 J/mm3 

L-PBF parts from 

Sample 

# 

Density 

(%) 

Ultimate tensile strength 

(MPa) 

Hardness 

(HRC) 

Elongation 

(%) 

Gas-atomized powder        

D50 = 13 µm 

1 97.5 910 31 16 

2 98 980 32 17 

3 97.5 900 31 16 

4 98 960 32 16 

Water-atomized powder 

D50 = 17 µm 

1 97.5 1090 34 15 

2 97.5 1070 34 14 

3 97 960 33 13 

4 98 1115 35 15 

Water-atomized powder 

D50 = 24 µm 

1 97 920 37 12 

2 96.5 830 33 12 

3 96.5 820 33 13 

4 96.5 845 35 11.5 

Water-atomized powder 

D50 = 43 µm 

1 98 1170 33 16.5 

2 97.5 1000 31 14 

3 97.5 1030 32 16 

4 97.5 1030 32 14.5 
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Appendix B 

Microstructures of the as-built 17-4 PH stainless steel gas- and water-atomized                  

L-PBF parts 
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Energy density 64 J/mm3 

 

Figure B.1 Cross section of the L-PBF parts produced from four 17-4 PH stainless steel 
powders at energy density 64 J/mm3 (a) gas-atomized powder D50 = 13µm (b) water-

atomized powder D50 = 17µm (c) water-atomized powder D50 = 24µm (d) water-atomized 
powder D50 = 43µm 
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Energy density 80 J/mm3 

 

 

Figure B.2 Cross section of the L-PBF parts produced from four 17-4 PH stainless steel 
powders at energy density 80 J/mm3 (a) gas-atomized powder D50 = 13µm (b) water-

atomized powder D50 = 17µm (c) water-atomized powder D50 = 24µm (d) water-atomized 
powder D50 = 43µm 
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Energy density 84 J/mm3 

 

 

Figure B.3 Cross section of the L-PBF parts produced from four 17-4 PH stainless steel 
powders at energy density 84 J/mm3 (a) gas-atomized powder D50 = 13µm (b) water-

atomized powder D50 = 17µm (c) water-atomized powder D50 = 24µm (d) water-atomized 
powder D50 = 43µm 
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Energy density 104 J/mm3 

 

 

Figure B.4 Cross section of the L-PBF parts produced from four 17-4 PH stainless steel 
powders at energy density 104 J/mm3 (a) gas-atomized powder D50 = 13µm (b) water-

atomized powder D50 = 17µm (c) water-atomized powder D50 = 24µm (d) water-atomized 
powder D50 = 43µm
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