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ABSTRACT 

 

MODULATION OF CARDIAC Kv CURRENTS BY Kvβ2 AND PYRIDINE 

NUCLEOTIDES 

Peter Joseph Kilfoil 

April 6, 2016 

Myocardial voltage-gated potassium (Kv) channels regulate the resting 

membrane potential and the repolarization phase of the action potential.  Members 

of the Kv1 and Kv4 family associate with ancillary subunits, such as the Kvβ 

proteins, that modify channel kinetics, gating and trafficking.  Previous 

investigation into the function of cardiac β subunits demonstrated that Kvβ1 

regulates Ito and IK,slow currents in the heart, but the role of Kvβ2 in the myocardium 

remains unknown. In heterologous expression systems, Kvβ2 increases surface 

expression of Kv1 channels, shifts the activation potential of Kv1 channels to more 

polarized voltages, and increases the inactivation of Kv1 channels.  Accordingly, 

the electrophysiological phenotype in Kvβ2-/- mice was examined to uncover its 

role.   

To investigate the effects of the loss of Kvβ2 on cardiac repolarization, we 

performed whole-cell electrophysiology on primary cardiac myocytes.  We found 

Kv current density was reduced and action potential duration prolonged in 
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myocytes lacking Kvβ2.  To isolate the molecular interactions by which Kvβ2 was 

affecting Kv currents, we show that Kvβ2 co-immunoprecipitates with Kv1.4 and 

Kv1.5 in heart lysates.  To measure if surface expression of these Kv channels 

was reduced with the loss of Kvβ2, we performed immunofluorescent confocal 

microscopy of isolated cardiac myocytes.   We found that the surface expression 

of Kv1.5 was reduced in Kvβ2-/- myocytes.  We also performed a membrane 

fractionation technique to demonstrate that the proportion of total cellular Kv1.5 at 

the membrane was reduced in Kvβ2-/-.  Together, these findings support our 

hypothesis that Kvβ2 plays a role in the generation of functional Kv currents in the 

myocardium by interacting with members of the Kv family.  

The pyridine nucleotides, NAD[P](H), are ubiquitous cofactors utilized as 

electron donors and acceptors by over 250 cellular oxidoreductases.  Work out of 

our laboratory has shown that the Kvβ proteins are functional enzymes of the aldo-

keto reductase family, that utilize NAD[P]H to catalyze the reduction of substrates.  

Furthermore, follow up work has shown that the redox status of bound pyridine 

nucleotide (PN) modifies the gating of Kvα-Kvβ channel complexes in 

heterologous expression systems. To examine a physiological role for PN in 

cardiac repolarization, whole-cell and single channel cardiac myocyte currents 

were recorded under the exposure to various PN redox states.  We found that the 

inactivation rates and open probabilities of Kv currents in isolated myocytes are 

sensitive to the redox status of PN, and that surface action potentials in an isolated 

heart model are prolonged by treatment with factors that increase intracellular 

NADH concentration.            
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CHAPTER I 

BACKGROUND 

The ability to maintain and utilize ionic gradients across a semipermeable 

membrane is one of the defining characteristics of life on this planet.  It has been 

long believed that life on Earth originated in the sea as single-celled 

microorganisms that have acquired increasing complexity over the ages.  In time, 

the protocell somehow acquired the ability to maintain a high K+/low Na+ cytoplasm 

while bathed in the high Na+ of the oceans.  It should be noted that an alternative 

theory, in which the primordial cell developed terrestrially, has recently been 

proposed.1  In this new paradigm, evidence is presented supporting the argument 

that the birthplace of the first cell was in vapor-rich vents in inland geothermal 

systems.  There are two main driving evidences behind this hypothesis. First, the 

protocell would not have yet acquired the molecular machinery (i.e. active transport 

via energy dependent transmembrane pumps) to maintain a high intracellular K+ 

concentration in low [K+] seawater, implying that, initially, these cells’ cytoplasm 

was of similar composition to that of the aqueous environment from which they 

arose.  Second, cells across all three domains, archaea, bacteria, and eukarya, 

utilize trace elements such as zinc, manganese and phosphate in a variety of 

conserved cellular processes.  Seawater is low in Mn2+ and Zn2+, the latter being 

found at concentrations in the picomolar to femtomolar range.2  Analysis of the 
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composition of geothermal pools shows these inorganics to more closely match 

that of the cytoplasm.1  

While the origin of the primordial cell may be debated, it is evident that the 

increasing complexity of life has mirrored its ability to asymmetrically distribute 

inorganic ions (and later, organic molecules) across its semipermeable 

membranes, and more importantly, to utilize this gradient as a form of potential 

energy. The evolution of selectively permeable ion channels and transporters is 

key to higher forms of life. 

In the animal kingdom, maintenance of the steady-state ratio of K+/Na+ 

across the cell membrane via the sodium-potassium-ATPase accounts for up to 

4% of total energy expenditure in the myocardium3 and up to 20% in neurons.4  

Furthermore, myocardial Ca2+-ATPase (SERCA) utilizes up to 30% of cellular 

energy reserves.5  The appropriation of energy to maintaining various ionic 

gradients underscores their critical importance.     

 Eurkaryotic cells have the capacity to synthesize ATP by utilizing a proton 

gradient generated across the inner mitochondrial membrane, i.e. aerobic 

respiration.  One of the key evolutionary differences separating prokarya from 

eukarya is the presence of membrane-enclosed organelles, such as the 

mitochondria, and subsequently the ability to increase the efficiency of ATP 

conversion from energetic substrates.   

Aside from the universally conserved usage of the mitochondrial proton 

gradient to produce cellular energy (ATP), various specialized cell types utilize the 

electrochemical gradient generated by other asymmetrical ionic distributions to 
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perform unique functions.  Most cells maintain a negative cytoplasmic resting 

membrane potential relative to their surroundings, which is generated by three 

main processes: the Gibbs-Donnan equilibrium, the activity of the Na-K-ATPase 

pump, and the summation of chord conductances of ions to which the membrane 

is permeable, i.e. Na+, K+, and Cl-.  

The Gibbs-Donnan equilibrium states that the majority of intracellular 

membrane-impermeant ions have a negative charge at physiological pH, such as 

proteins, organic polyphosphates, amino acids and nucleic acids.  Since these 

species cannot reach a chemical equilibrium across the membrane, they impart a 

net negative charge to the cytoplasm.   These anions contribute approximately -10 

mV to the resting membrane potential relative to the extracellular fluid.   

      Excitable cells, such as neurons and myocytes, maintain a much more 

hyperpolarized resting membrane potential than other cell types, typically in the 

range of -40 to -90 mV.  The majority of this potential results from gradients of 

various inorganic ion concentrations across the plasma membrane.  Cytoplasmic 

concentrations of K+ (~150 mM), Na+ (~10 mM), and Cl- (5 mM) differ considerably 

from those typically found in the extracellular solution, K+ (5mM), Na+ (145 mM), 

Cl- (120 mM).  The equilibrium potentials for each ion can be calculated using the 

Nerst equation:  

Ein-Eout = - RT * 2.303 log ([X]in / [X]out) / zF 

where [X]in  and [X]out are the concentrations of ion X across a membrane, R is the 

ideal gas constant, T is the temperature in Kelvin, F is Faraday’s constant and z is 

the ion valence.  The equilibrium potential for Cl- (ECl) in skeletal muscle is 
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approximately -90 mV, near this tissue’s resting membrane potential, so the net 

movement of Cl- at resting membrane potential is near zero.  EK in skeletal muscle 

is about -100 mV, resulting in a small net movement of K+ ions out of the cell.  ENa 

is approximately +65 mV, thus both the electrical and concentration forces on Na+ 

drive it into the cell.   

 As described supra vide, a significant portion of a cell’s energy is expended 

by the Na-K-ATPase to maintain Na+ and K+ gradients against their 

electrochemical equilibria.  This pump moves 3 Na+ ions out of the cell for every 2 

K+ that moves in, causing a net positive charge to exit the cell, and is thus termed 

“electrogenic”.  In itself, this net movement of positive charge out of the cell is 

responsible for ~-5 mV of a neuron’s or skeletal and cardiac muscles’ resting 

membrane potential.  In other cell types, such as smooth muscle, it may contribute 

over -20 mV to the transmembrane voltage difference.  While its direct effect on 

membrane potential is not insignificant, its true indispensible function is the 

maintenance of the K+/Na+ gradient utilized by voltage-gated channels. 

 By far the greatest contribution to membrane potential in excitable cells is 

the utilization of passive diffusion of Na+ and K+ down their electrochemical 

gradients though variably conductive pores. The conductance of a membrane to 

an ion can be described as the sum of the conductance of various ion channels to 

which that ion is permeant. This relationship is described by the chord conductance 

equation: 

Em = (gK*Ek)/(gK + gNa + gCl) + (gNa*ENa)/(gK + gNa + gCl) +(gCl*ECl/(gK + gNa + gCl) 
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Where g is the conductance of the membrane to the noted ion and E is the 

equilibrium potential to the noted ion and Em is the equilibrium potential of the 

membrane.  As a membrane becomes more permeant to a particular ion, the 

membrane potential is driven toward the equilibrium potential of that ion.  In the 

cardiac myocyte and neuron, the relative steady-state gK+ is high, thus the resting 

membrane potential is near the equilibrium potential for K+. During the action 

potential, the relative gNa+ increases drastically and Na+ rushes into the cell, 

causing rapid depolarization to near ENa of approximately +65 mV.  Membrane 

potential is then restituted as gNa+ rapidly falls and gK+ increases, driving the cell 

back toward the EK of about -90 mV. It is the finely tuned activity of multiple families 

of voltage-gated ion channels that both maintain and make use of this form of 

potential energy to accomplish a wide range of functions in various electrically 

active cell types.        

 

The action potential 

An action potential is a rapid depolarization in membrane potential followed 

by a return to resting membrane potential.  The shape, duration and size of action 

potentials differ considerably between excitable tissues, reflective of the diverse 

populations of voltage-gated ion channels functionally expressed on a tissue and 

cell type-specific basis.  While virtually all mammalian cell types express some 

combination of voltage-gated ion channels, only cells in the nervous system, 

muscle (skeletal and cardiac) and some neuroendocrine cells exhibit classical 

action potential firing patterns.  These tissues exhibit what can be considered the 
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evolutionarily conserved purpose of the action potential: finely tuned management 

of intracellular calcium levels through the activation of voltage-dependent calcium 

channels.  Calcium is unique when compared to other ions in that its 

transmembrane concentration gradient is very large; basal cytosolic calcium 

concentration in most cells is on the order of 10-8 to 10-7 M, compared to 10-3 M in 

extracellular fluids.  Comparatively, intracellular and extracellular concentrations 

of both Na+ and K+ differ by 1 to 2 orders of magnitude.   

Cells expend a great deal of energy to maintain nanomolar [Ca2+]i, by 

actively transporting it out of the cell or into dedicated internal stores such as the 

sarcoplasmic reticulum.  This finely tuned management is necessary because 

calcium acts as a second messenger, coupling electrical activities with many 

cellular events. Disruption of calcium homeostasis has detrimental effects on cell 

physiology, and prolonged elevation of intracellular calcium levels is common to 

both pathological (necrotic) and programmed (apoptotic) cell death, as well as 

contractile dysfunction in muscle.       

In neurons, calcium entry through voltage-gated Ca2+ channels initiates 

synaptic transmission.  In this process, calcium-sensitive synaptotagmins in the 

presynaptic terminal are activated by the transient rise in calcium concentration.  

These secretory proteins transduce the chemical Ca2+ signal to the exocytotic 

machinery, causing neurotransmitter release. The synaptotagmins are common to 

most other Ca2+-regulated exocytotic processes, including hormone release from 

endocrine and neuroendocrine cells.   
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In muscle cells, calcium acts as a second messenger transducing cellular 

depolarization with contraction, a process known as excitation-contraction 

coupling.  Activation of sarcolemmal voltage-gated Ca2+ channels by 

depolarization results in the entry of calcium ions that further promote Ca2+ release 

through the ryanodine receptor from the sarcosplasmic reticulum.  The excitation-

contraction signaling terminates on the myofilament apparatus; calcium binds to 

one of 4 high affinity sites on troponin C, causing a conformational change that 

displaces tropomyosin from its actin binding sites.  This allows crossbridging 

between the actin and myosin filaments, resulting in the power stroke that is the 

functional hallmark of muscle tissue.   

Restitution of nanomolar cytosolic calcium levels is accomplished through 

active transport out of the cell through the plasma membrane Ca2+-ATPase 

(PMCA) and the Na+-Ca2+ exchanger (NCX) and into internal stores through the 

sarcoplasmic reticulum ATPase (SERCA).  In the mammalian myocardium, Ca2+ 

extrusion is dominated by SERCA (70-90%) and NCX (10-30%).6 

In order to turn off the stimuli of the excitation-contraction and exocytotic 

pathways, i.e. calcium entry through voltage-gated Ca2+ channels, the cell must 

repolarize to membrane potentials at which the open probability of these channels 

is negligible.  The preponderance of this repolarization is accomplished by the 

activation of the voltage-gated K+ channels.   

 

Voltage-gated K+ channels  
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The voltage-gated K+ channel (Kv) family represents one of the most 

diverse families of ion channels.  The products of these gene families have 6 

transmembrane spanning domains (S1-S6) and assemble tetramerically through 

association of an N-terminal tetramerization (T1) domain to form a central ion-

conducting pore.  Over 40 mammalian Kv channel α-subunits encoded by 11 gene 

families (Kv1-Kv11) have been identified to date. These proteins form channels 

that vary widely in their gating properties, kinetics, and pharmacology.  Even within 

gene families, different genes may encode for alpha subunits with vastly different 

properties (i.e. Kv1.4 and Kv1.5 generate rapidly-inactivating A-type currents and 

non-inactivating delayed rectifier currents, respectively).  Their functional diversity 

is further underscored by the fact that different alpha subunits of the same family 

may heterotetramerize in vivo, such as Kv1.2/Kv1.5 in vascular smooth muscle7 

and Kv1.3/Kv1.5 in T-lymphocytes.8  This produces functional channels with gating 

and pharmacological properties intermediate to that of homotetramers formed from 

their individual components. Furthermore, the gating and pharmacology of Kv 

channels is altered by ancillary beta subunits, which include Kcne, KChIP, and Kvβ 

family proteins.  The result is an impressive functional diversity that matches 

repolarization dynamics to a cell’s requirements.  The critical role of ancillary Kv 

channel subunits is demonstrated by the fact that mutations in these proteins have 

been linked to a various pathologies in both humans and animals, including cardiac 

arrhythmias, hypertension, epilepsy and learning deficits.9 10  

Not unexpectedly, mutations in Kv alpha subunits are also associated with 

a wide range of diseases.  Mutations in Kv1 family members cause ataxia,11  
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epilepsy,12 atrial arrhythmias,13-15 and olfactory deficits.16  Mutations in the Kv2 

family have been linked to reduced left ventricular mass17 and infantile epilepsy.18  

Kv3 mutations are associated with spinocerebellar ataxia and cognitive defects19  

and antibiotic-induced cardiac arrhythmia.20  A truncation in Kv4.2 has been linked 

to temporal lobe epilepsy.21  Genome wide association studies (GWAS) will 

undoubtedly uncover more genetic variants responsible for channelopathies 

afflicting various tissues and organs.   

 

Kv channel structure and function 

The first mammalian Kv structure resolved with x-ray crystolography 

brought great insight into the structure-function relationship of this channel 

family.22  In this work, Kv1.2 from Rattus norvegicus was determined to a resolution 

of 2.9 Å, elucidating the structures and mechanisms responsible for voltage 

sensing and electromechanical coupling involved in the opening of the ion-

conducting central pore. This study built upon structural descriptions of the 

prokaryotic K+ channels KcsA and KvAP, which elucidated the amino acid bases 

for the K+ selectivity filter (transmembrane segments S5 and S6), voltage sensing 

(transmembrane segments S1-S4) and central pore formation.23, 24   These works 

confirmed the tetrameric association of α-subunits, arranged in four-fold symmetry 

around the central axis forming the conduction pore (Figure 1.1).        

The selectivity filter is lined with carbonyl groups along a 12 Å segment of 

the S6 along the central pore.  These electronegative carbonyls coordinate with 

the cation and allow for the dehydration of K+ ions as they enter the central pore.  
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In the aqueous environment of the central pore, the K+ ion is resolvated and 

expelled into the extracellular space by electrostatic forces. A consensus 

sequence (Thr-Val-Gly-Try/Phe-Gly) in the selectivity filter is highly conserved 

throughout evolution and is present in almost all K+ channels.  The atomic radius 

of Na+ (0.96 Å) is smaller than that of K+ (1.33 Å), and thus cannot fully coordinate 

with the carbonyls of the selectivity filter, resulting in a 104-fold preference for the 

passage of K+ over Na+.   

The defining characteristic of Kv channels is their ability to sense and 

respond to changes in the transmembrane potential by altering their conductance. 

This process is dependent on four key arginine residues located on the S4 TM 

segment, loosely attached to the perimeter of the pore.  Upon changes in 

membrane transmembrane potential, the positively charged sidechains of these 4 

arginine residues from each of the 4 tetramerically arranged α-subunits transfer a 

total of 12-14 positive elemental charges across the membrane electric field from 

inside to outside.  The movement of these residues is transduced through the S4-

S5 linker helix to constrict or dilate the S6 helix that forms the inner part of the 

pore, thus allowing the voltage sensor to perform mechanical work on the pore.25  

This process comprises the activation gating of the voltage-gated ion channel, 

allowing for the conductance of K+ ions down their electrochemical gradient as the 

S6 region causes pore dilation (open state).  Membrane repolarization removes 

the electrical field effect on the voltage sensing domains, causing them to return 

to their initial position.  This movement is transduced via the same S4-S5 linker 



 11 

helix to the S6 helix lining the pore returning it to its original constricted (closed) 

state in a process known as deactivation.     

In addition to activation and deactivation gating, voltage-gated ion channels 

can occupy a third gating state: the inactivated state.  Inactivation of a channel 

occurs when it enters into a stable, non-conducting conformational state from an 

activated state following membrane depolarization.  When in the inactivated state, 

a channel cannot conduct ions even if the transmembrane potential is favorable.  

Inactivation of an ion channel is accomplished through two mechanisms:  C-type 

inactivation and N-type inactivation (Figure 1.2). The C-type inactivation property 

was initially discovered when it was found that some voltage-gated channels 

displayed inactivation kinetics that were dependent upon splice variations in the C-

terminus.9  This mode of inactivation was also found to be independent of N-

terminal deletion.  C-type inactivation, which typically occurs on a slow time scale 

(10-1-100 s), involves extracellular conformational changes in the channel that 

result in the occlusion of the outer mouth of the ion-conducting central pore.26  Like 

activation, the return to the active channel state is voltage dependent.  This 

indicates that C-type inactivation is coupled to movement of the voltage sensing 

S4 domain during its initial response to membrane depolarization.  Recovery from 

inactivation occurs as the membrane is repolarized and the S4 domain returns to 

its original location, transducing a mechanical signal to open the pore mouth.  C-

type inactivation has been observed in all members of the Kv1 family. It also occurs 

in the related Kv4 and hERG (human ether-a-go-go related gene) family channels, 
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but with much faster recovery from inactivation kinetics, indicating a different 

molecular mechanism.27  

N-type inactivation, also known as ball and chain inactivation and fast 

inactivation, occurs with much more rapid kinetics (10-3 to 10-2 s) (Figure 1.3).  

Channels that display N-type inactivation contain an N-terminal domain of 

approximately 20 amino acids that are critical to this mechanism.  This N-terminus 

“ball” is followed by 60 amino acids in the “chain” domain.  Mutagenesis 

experiments on the N-terminus of the Kv1 drosophila homolog ShakerB 

demonstrated that the charge of the ball domain is critical to inactivation; 

increasing the positive charge in this region increases the rate of inactivation and 

conversely, decreasing the positive charge slows the rate of inactivation.28  Upon 

channel activation and pore opening, a negatively charged surface on the pore 

mouth is exposed.  This region electrostatically interacts with the positively 

charged residues in the N-terminus (the inactivation particle), rapidly occluding the 

conduction pore and placing the channel in an inactivated state.  Recovery from 

N-type inactivation to the closed but non-inactivated state requires the removal of 

the N-terminus inactivation particle from the pore.  The time course of recovery 

from inactivation is voltage dependent and sensitive to extracellular [K+], which 

indicates a mechanism in which a K+ ion displaces or destabilizes the interaction 

between the pore and the inactivation particle.29  

A Kv channel’s activation, inactivation, and recovery from activation kinetics 

are important in determining its contribution to cellular repolarization.  A rapidly 

activating and rapidly inactivating current such as the A-type currents generated 
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by Kv1.4 and Kv4.2 have a transient contribution to a cell’s repolarization, 

providing brief bursts of current early in the action potential that is not sustained.  

In the heart and neuron, these A-type currents are prominent and responsible for 

the early phase of repolarization.  Slowly activating but rapidly inactivating 

currents, such as those generated by hERG in the heart, provide repolarization 

capacity only later in the action potential.  Rapidly activating slowly inactivating 

currents, such as the cardiac Ikur (ultrarapid delayed rectifier potassium current), 

provide sustained repolarization capacity throughout the duration of the action 

potential.  Recovery from inactivation kinetics also dictates a channel’s contribution 

to repolarization on a use-dependent basis.  High-frequency action potential firing, 

as seen in the central nervous system, require rapid Kv channel recovery from 

inactivation to ensure their availability to participate in a series of repolarizing 

events.30  Conversely, prolonged Kv recovery from inactivation contributes to 

frequency dependent increases in excitability and changes in action potential 

shape.  This phenomena is well documented in the heart; the rate dependence of 

action potential duration and refractoriness in the ventricular endocardium differs 

from that of the epicardium.31  At the molecular level, the transient outward current, 

Ito, which dominates the early phase of cardiomyocyte repolarization, is generated 

by two different ion channels, Kv1.4 and Kv4.2.  These channels have significantly 

different rates of recovery from inactivation; Kv1.4 recovery occurs on the order of 

seconds32 while Kv4.2 recovers in milliseconds.33  Thus, the currents encoded by 

these channels are known as Ito,slow and Ito,fast, respectively.  The assymetrical 

distribution of these channels across the transmural gradient of the ventricular wall 
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is responsible for regional differences in repolarization and believed to be a 

mechanism by which to prevent re-entrant arrhythmias.34, 35  

 

Kv channel ancillary subunits 

When expressed in heterologous expression systems in vitro, Kvα- subunits 

form functional channels on their own.  In vivo, Kv channels are found to be 

coassembled with ancillary subunits in heteromultimeric protein complexes that 

modulate their gating kinetics (activation, inactivation, recovery from inactivation), 

pharmacology, and trafficking. Mutations in these subunits are associated with 

multiple pathologies in both human and animals, including hypertension, epilepsy, 

arrythmogenesis, hypothyroidism and periodic paralysis,10 which underscores their 

physiological importance.  

Four families of ancillary subunits are associated in vivo with members of 

the Kv superfamily:  KChIPs (Kv channel interacting proteins), KCNE (i.e. mink, 

minimal potassium channel subunit), DPPLs (dipeptidyl aminopeptidase-like 

proteins), and the Kvβs.  These subunits may associate with only one Kv 

subfamily, as demonstrated in KChIP preference for Kv4 channels, or with multiple 

Kv subfamilies, as with Kvβ proteins’ interaction with Kv1 and Kv4 members. 

Furthermore, their structures and mechanisms of physical interaction with the 

halochannel are distinct.  This is clearly demonstrated in the case of Kv4, which 

may associate in vivo with KChIP, DPPL, and Kvβ proteins simultaneously.  

Members of the same subunit family may have different or opposing effects on 

channel gating or trafficking.  Much of the information on subunit modulation of 
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channel function has been garnered through in vitro experiments and is described 

at the single cell level.  Animal models harboring subunit point and deletion 

mutations have also given insight into the function of these proteins.  

 

KChIPs 

The K+ channel interacting proteins (KChIPs) associate with the cytosolic 

domain of Kv4 channels.  Kv4 channels are highly expressed in the ventricular 

myocardium, where they generate the cardiac transient outward current Ito,fast 36 

and in dendrites of central neurons, where they generate the A-type current.37  The 

association of various KChIPs with Kv4 produce channel complexes exhibiting a 

wide range of activation, inactivation and recovery from inactivation kinetics.38  

Alternative splicing of the products of the four known KChIP genes (KChIP1-4) 

makes it the most diverse family of Kv channel subunits.   

 The binding of KChIPs to the Kv4 N-terminus alters both the voltage-

dependence and time course of the Kv4 current in a manner that is dependent on 

both KChIP subunit and Kv4 isoform composition.  Different KChIPs also have 

profound and differential effects on current density, presumably through altering 

surface expression. For example, KChIP1 increases the rate of Kv4.1 inactivation 

but causes a 4-fold decrease in the rate of Kv4.2 inactivation.39  KChIP1 

depolarizes the voltage dependence of activation (V1,2-act) of Kv4.1 by 

approximately 10 mV but hyperpolarizes the Kv4.2 V1,2-act by up to -40 mV.  

Coexpression of KChIP1 with Kv4.2 causes a 15-fold decrease in expression 

whereas coexpression of KChIP2 with Kv4.2 causes a 55-fold increase in surface 
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expression.40 Clearly, the association of KChIPs with different Kv4 members 

produce channel complexes exhibiting a profound range of electrophysiological 

signatures.  

 

DPPLs   

The dipeptidyl aminopeptidase-like proteins (DPPLs) modify the effects of 

KChIPs on Kv channels.  Heterologous expression of Kv4 with various KChIPs did 

not fully reconstitute the kinetics of A-type currents recorded from primary neurons, 

despite strong evidence that they originated from Kv4.2.  Indeed, 

coimmunoprecipitation of Kv4 in rat brain membranes revealed an association with 

DPPX, a protein of then unknown function.41  Co-expression of this protein with 

Kv4.2 in Xenopus oocytes caused a large increase in current density by facilitating 

trafficking and surface expression. It also accelerated the rate of inactivation and 

recovery from inactivation. When the Kv4.2/KChIP2/DPPX complex was 

expressed, current properties better matched the A-type kinetics found in neurons 

and the Ito kinetics in the heart.42  

 

KCNEs 

The KCNE gene family encodes single-pass integral membrane proteins 

that associated with members of the Kv7 family (KCNQ) early in their maturation 

and assist in their trafficking and alter their gating.   KCNE1 interacts with Kv7.1 to 

slow its time course of activation, right-shift its current-voltage relationship, reduce 

inactivation and increase single channel conductance43 and increase its surface 
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expression.44  Together, Kv7.1 and KCNE1 form the slow delayed rectifier 

potassium current Iks, a prominent delayed rectifying current in the heart.45  Of the 

4 families of ancillary Kv subunits, KCNE probably has the most critical function in 

the heart; mutations in KCNE1 are associated with the life threatening long QT 

syndrome.46  Mutations in KCNE2-5 are also associated with other ventricular and 

atrial arrhythmias.10  Interestingly, KCNE proteins display promiscuous binding to 

many members of the Kv superfamily, including Kv1, Kv2, Kv3, Kv4, and Kv11 

(hERG).44  The interaction with hERG, which generates the delayed rectifier 

potassium current IKr, is of particular importance to the proper functioning of the 

heart.  hERG plays a critical role in cardiac repolarization due to multiple known 

mutations in this gene linked to arrhythmias47 and the variety of drugs known to 

interact with the hERG channel to cause QT interval prolongation.48  

 

The Kvβ subunits 

Structure of the Kvβ proteins 

The Kvβ protein was first discovered in rat brain membranes by 

chromatography when it co-eluted from a dendrotoxin 1 (DTX-1) affinity column.49  

The purified proteins were run on a gel and silver stained, showing 3 bands.  One 

band at 76-80 kDa, corresponded to the column target, the DTX-1-sensitive alpha 

subunit, which was known to be a member of the Kv1 channel family.  Two other 

bands at 35 kDa (determined to be a degradation product) and 38 kDa of unknown 

origin were also revealed.  The molecular weights of these proteins closely 

matched that of the products of the Drosophila A-type K+ channel, which seemed 
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to contain peptides of 70 and 35 kDa, and was cloned a year earlier.50  Together 

these studies gave the first evidences of the heteromultimeric α4β4 composition 

that functional Kv channels assume in vivo.        

The concept of auxiliary subunits modulating the electrophysiological 

properties of ion channels had already been described for Na+ 51 and Ca2+ 

channels,52 and established a precedent for the functionality of the newly 

discovered Kv β-subunit.  Furthermore, cloned DTX-1-sensitive channels were 

known to be responsible for the synaptic A-type current in rat brain neurons, yet 

expression of these and other related Kv1 clones in Xenopus oocytes produced 

current with strikingly different inactivation characteristics.9, 53  

Rettig and Pongs54 were the first to demonstrate that Xenopus oocyte co-

expression of a β-subunit (Kvβ1) with members of the Kv1 family converted the 

non-inactivating Kv1 current into a rapidly inactivating current, quantitatively similar 

to the neuronal A-type current (Figure 1.4).  In this study, Kvβ1 and Kvβ2 cDNA 

were cloned from the rat brain and their protein products compared; alignment 

showed a C-terminal sequence that was 85% identical and an N-terminal domain 

of 79 amino acids that were present in Kvβ1 but not Kvβ2.  Hydropathy analysis 

and N-glycosylation patters indicated that the Kvβ proteins were cytosolic.  

Alignment of the Kvβ1 N-terminus with the N-termini of rapidly inactivating Kv1.4 

and Kv3.4 demonstrated high homology in the “ball” region.  Electrophysiological 

assays demonstrated that Kvβ1 imparted rapid inactivation to the non-inactivating 

RCK1 (Kv1.1).  Furthermore, coexpression of Kvβ1 with an N-terminal truncation 

mutant of Kv1.4 lacking its ball and chain region restored rapid inactivation 
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properties to the channel complex, which indicated that the Kvβ1 proteins can 

provide the inactivating ball in a manner analogous to the N-type inactivation of 

Kv1.4. Consistent with this model, Kvβ2, which has a shorter N-terminal domain, 

is not found to induce N-type inactivation in delayed rectifying channels, although 

when assembled with Kv1.5, Kvβ2 causes a -10 mV shift in the activation threshold 

and accelerates channel activation. Kvβ2 also has been shown to modestly 

accelerate inactivation of Kv1.4 currents.55  Kvβ3, which possesses an inactivating 

ball region with 90% sequence identity to that of Kvβ1 has been subsequently 

found to impart rapid inactivation to slowly inactivating Kv1.5 channels.56  

Follow up studies investigated the nature of the association of the Kvβ 

subunits with various members of the Kv family.  It was found that Kvβ1 and Kvβ2 

expressed in COS-1 cells associated with all known members of the Kv1 family 

with similar affinities but not with the Kv2 or Kv3 families.57  Kvβ1 and Kvβ2 also 

coimmunoprecipitated with Kv4.2.  The non-covalent nature of the α-β interaction 

was confirmed by noting the detergent sensitivity of the immunoprecipitation 

process, yet interaction was strong enough to withstand high salt treatment.58  

Interestingly, the interaction between Kvβ and Kv1 (dissociated by 0.2% SDS) is 

more detergent sensitive than that between Kvβ and Kv4 (not dissociated by 

<0.6% SDS).57  In Kv1 channels, the N-terminal contains a hydrophilic NAB (N-

terminal A and B box) region that is necessary for α-subunit tetramierization.59  This 

domain, the T1 tetramerization domain, also contains a structural motif 

FYE/QLGE/DEAM/L in Kv1.560 that is necessary for Kvβ1-mediated inactivation of 

the channel.61  NAB domains within the Kv1-Kv4 families share about 40% amino 
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acid identity59, 62; α-subunits of these different families do not tetramerize. NAB 

domains share about 70% within subfamilies, which is enough to allow for 

heterotetramerization.  The Kv4 α-subunits homology in this region with Kv1 is 

insufficient for Kvβ interaction; they associate with Kvβ by a distinct mechanism 

that is C-terminus but not N-terminus dependent.63  Thus, Kvβ utilize distinct 

molecular mechanisms to interface with these two families of Kv channels.   

 

Phosphorylation 

 The primary structures of Kvβ suggest the presence of 15 consensus 

phosphorylation sites: 1 for PKA, 10 for PKC, and 4 for casein kinase II.64   Protein 

kinase A phosphorylation of N-terminus serine 24 in Kvβ1.3 has been 

demonstrated to decrease its inactivation effect on Kv1.5 and thus to increase 

outward current.65  The effect of this phosphorylation event is unsurprising given 

its location—addition of negative charge at or near the inactivation ball inhibits its 

interaction with the open pore of the Kvα.  PKC-dependent phosphorylation of 

Kvβ1.2 using phorbol 12-myristate 13-acetate (PMA) decreases the current 

conducted by Kv1.5/Kvβ1.2 complexes by depolarizing the voltage dependence of 

activation.66  

Aside from the effects of on channel complex gating, phosphorylation also 

regulates export from the endoplasmic reticulum and cell surface trafficking.67   The 

association of Kvα and Kvβ subunits occurs during translation in the ER, with 

maturation of the complex into its α4β4 form completing before ER export.68, 69 The 

Kvβ proteins are known to increase surface expression of Kv1 channels (described 
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in more detail below). The positive membrane trafficking effect on Kv1.2 by Kvβ2 

is dependent on phosphorylation of α-subunit at Ser 440 and Ser 441.70  

Phosphorylation of Kvβ2 at Ser 9 and Ser 41 was also shown to be critical to the 

increase in Kv1.2 at the cell membrane.  Cycline-dependent kinase (Cdk) 

phosphorylation of Kvβ2 at Ser9 and Ser 31 regulates axonal targeting of Kv1 

channels in the hippocampus.71  These neurons have a highly localized distribution 

of Kv1.1 and Kv1.2 channels at the juxtaparonode, which is lost both by genetic 

knockout of Kvβ2 or Ser/Ala mutations at the phosphorylation sites.  The 

mechanism of this effect occurs through the microtubule plus end-tracking protein 

(EB1) domain of Kvβ2, phosphorylation at S9 and S31 by Cdk2 and Cdk5 disrupts 

its binding to EB1, promoting its dissociation from microtubules and insertion into 

the membrane.  In vivo, Kvβ2 is found in complex with the atypical protein kinase 

C zeta (PKC-ζ), connected by the scaffolding proteins PKC-ξ interacting proteins 

1 and 2 (ZIP1 and ZIP2).72  The purpose of PKC-ξ phosphorylation is not fully 

elucidated, but inhibition of PKC-ξ activity may play a role in the ceramide-

dependent inhibition of Kv currents in pulmonary artery smooth muscle.73  

 

The Kvβ proteins are functional enzymes 

Three human Kvβ genes undergo alternative splicing to form a total of 6 Kvβ 

proteins (amino acid length): Kvβ1.1 (401), Kvβ1.2  (408), Kvβ1.3 (419), Kvβ2.1 

(367), Kvβ2.2 (353) and Kvβ3 (404).  The Kvβ proteins are members of the aldo-

keto reductase (AKR) superfamily that includes 15 individual families of 

oxidoreductases involved in carbonyl metabolism. Members of individual families 
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share at least 40% sequence homology with each other and <40% homology with 

other AKRs. All AKRs share a (β/α)8 triosephosphateisomerase-barrel structural 

fold in which the active site is located at the C-terminus. These proteins do not 

contain a Rossmann fold, but they bind pyridine nucleotides with high affinity via  

unique AKR nucleotide binding domains (discussed below).    

The AKR nature of Kvβ proteins was first identified by the significant 

homology between the amino acid sequence of the Shaker β-subunit and proteins 

of the AKR superfamily.74  Amino acid alignments also showed that the AKR 

residues involved in cofactor binding are conserved in the Shaker β-subunit.75  In 

accordance with these predictions, our lab found that purified Kvβ proteins bind to 

pyridine nucleotides with high affinity (Kd values between 0.1 and 6 μmol/L).76  In 

vitro these proteins bind NADP(H) with higher affinity than NAD(H). However, the 

nature of the cofactor bound to Kvβ in vivo is unclear, because NAD(H) levels in 

excitable tissues are 2- to 7-fold higher than that of NADP(H); therefore, it is 

possible that the lower affinity of Kvβ for NAD(H) is offset by higher NAD(H) levels 

in the cell. Hence, the extent and the nature of the nucleotide bound to Kvβ in vivo 

may depend on the prevailing concentration of all 4 nucleotides in a cell. We 

believe that this might allow the Kvβ to respond to a wide range of metabolic 

conditions by being sensitive to changes in both NADP(H) and NAD(H) levels. 

To examine the functional effects of pyridine nucleotide binding, our group 

previously studied Kvβ1.3-mediated inactivation of Kv1.5 expressed in COS-7 

cells (Figure 1.5).77  Our lab found that oxidized nucleotides (NAD[P]+) prevent 

inactivation, whereas reduced nucleotides have no effect. These findings have 
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been corroborated and expanded by subsequent investigations, which have 

shown that NAD(P)+ removes the inactivation of Kv1.1 by Kvβ178  and Kv1.5 

inactivation by Kvβ3.79  NAD(P)+ also has been shown to prevent the Kvβ2-

mediated hyperpolarizing shift in Kv1.5 activation79 and the acceleration of Kv1.4 

current inactivation.80  The results of whole-cell patch-clamp have been 

substantiated by excised inside-out single-channel experiments in which it was 

found that the mean open time and the open probability of Kv1.5+Kvβ1.377 and 

Kv1.1+Kvβ178 currents are increased by adding NAD+ to the perfusate. The 

specificity of these interactions has been established by site-directed mutagenesis 

studies, which indicate that active site mutations that prevent nucleotide binding 

abolish the effects of NAD(P)+ on current inactivation.81 Additional mutagenesis 

and domain-deletion experiments have shown that oxidized nucleotides promote 

the binding of Kvβ N-terminus to the core of the protein and thereby remove 

inactivation by preventing the N-terminus from blocking the channel.82 This 

interaction also may be regulated by the cytosolic C-terminus of the membrane-

spanning channel protein. For instance, it has been reported that deletion of Kv1.5 

C-terminus prevents NAD(P)+-mediated removal of inactivation by Kvβ3.79  

Moreover, even though NAD(P)H does not affect Kv1.5 inactivation by Kvβ1.3,77  

it accelerates Kv1.5 inactivation by Kvβ379.  Collectively, these observations 

indicate that pyridine nucleotides bind directly to the Kvβ active site and that 

NAD(P)+ binding induces a specific conformational change that prevents Kvβ-

induced inactivation, whereas NADP(H) binding preserves or promotes 

inactivation. 
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Kv1 currents in the myocardium and the cardiac action potential 

The coordinated contraction and relaxation of cardiac muscle is necessary 

for the efficient pumping of blood.  Synchronized contraction requires the rapid 

electrical activation of cardiac myocytes throughout the entire heart.  This is 

accomplished through very low resistance connections, the gap junction proteins,  

which connect adjacent myocytes at the intercalated disk.  These proteins form 

physical connections between cells that freely allow the passage of ions and  

other small molecules.  The electrical syncytium formed by these cytoplasmic 

connections allows the depolarizing wave to be rapidly transmitted across the 

heart.  

Action potential morphology differs considerably between species, but the 

mechanisms of depolarization and propagation are highly conserved; in all 

mammalian hearts, cardiac action potential upstroke (depolarization) is 

accomplished by the activation and subsequent inactivation of voltage-gated Na+ 

channels.  The substantial interspecies variation is attributed primarily to 

heterogeneous expression of Kv and L-type Ca2+ channels, which is reflected in 

the time course of myocardial repolarization (Figure 1.6). 

Repolarizing K+ currents can be broadly segregated into two categories, the 

transient outward currents, Ito, and the outwardly rectifying currents, IK.
36  Within 

each category, multiple subclasses exist, which display distinct kinetic and 

pharmacological properties.  In the mouse heart, two transient outward currents 
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can be distinguished, Ito,fast and Ito,slow, which vary in their recovery from inactivation 

and pharmacological properties.  The expression of these two currents also differs 

spatially; while Ito,fast can be recorded from all areas of the ventricular myocardium, 

including the interventricular septum, Ito,slow expression is restricted to the 

septum.83  Outwardly rectifying currents in the mouse myocardium are described 

by three currents with various kinetics, IK,slow1, IK,slow2, and Isustained (or Iss).83, 84  No 

regionally distinct expression profile has been determined for these outward 

rectifiers.  Inwardly rectifying K+ currents of the KIR class also play a role in human 

but not mouse cardiac repolarization and set the resting membrane potential of the 

cardiac myocyte in both species.36 

 

The molecular identities of mouse cardiac Kv currents 

The transient outward current Ito 

Kv1.4 was the first gene cloned from the mammalian heart that encoded a 

rapidly inactivating K+ current.85  The cDNA for this gene, called RHK1 at the time, 

was isolated from a rat heart library and revealed a deduced amino acid sequence 

displaying characteristics of the Shaker voltage-gated K+ channels recently cloned 

from Drosophila: six segments corresponding to transmembrane domains, a 

domain homologous to the S4 voltage-sensor domain and a leucine zipper domain 

found between S4 and S5.  Southern blot analysis demonstrated expression of this 

gene was restricted to the brain and heart, with an absence in smooth and skeletal 

muscle.  Expression of the cloned gene in Xenopus oocytes generated an A-type 

rapidly inactivating current with activation and inactivation time courses and 
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voltage dependences that were grossly similar to the Ito current recorded from rat 

cardiac myocytes. The time course of recovery from inactivation for the cloned 

RHK1 gene differed substantially from that of Ito. With the limited but growing 

understanding of the effects of ancillary Kv subunits, it was reasonably speculated 

that the oocyte expression system might have lacked a protein responsible for 

modifying the recovery rate of the channel. 

Shortly thereafter, Tamkum et al. cloned another set of K+ channel genes 

from rat heart and aorta cDNA libraries.86  Five channels were cloned, four of which 

(RK1-RK4) were identical or similar to other Kv1 genes identified previously.  The 

fifth, RK5, encoded a unique channel with a sequence homology to the Drosophila 

Shal family (now known to be homologous to the mammalian Kv4 family), and 

stood as the first report of Shal family channel expression in a mammalian tissue.  

cDNAs of this gene were expressed in Xenopus oocytes in subsequent work for 

electrophysiological characterization.87, 88  These studies showed that rat Shal 

gave rise to rapidly activating and rapidly inactivating voltage-gated K+ channels 

with voltage dependences of activation and inactivation similar to both neuronal A-

type K+ currents and cardiac Ito.  Slight differences in pharmacology and 

inactivation time course between the RK5/Shal4 and native Ito currents have since 

been attributed to differential KChIP subunit expression in the heart and brain.10 

Ensuing studies combining molecular and electrophysiological approaches 

to elucidated the contributions of Shaker RCK4 and Shal RK5 in generation of 

cardiac Ito. Early studies demonstrated that the kinetics of Ito varied across the 

ventricular wall and in different regions of the heart.  This was examined eloquently 
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by Backx et al., who demonstrated regionally restricted Kv1.4 and Kv4.2 protein 

expression and a transmurally graded protein expression of Kv4.2 in the rodent 

heart.89  The later finding was subsequently explained by differential transmural 

KChiP expression by the transcription factor Irx5.90  

Many evidences by several groups support that the cardiac transient 

outward current is actually two regionally-restricted currents, Ito,fast (Ito,f) and Ito,slow 

(Ito,s), attributable to Kv4 and Kv1.4 respectively.  In addition to their spatial 

distribution, the two transient outward currents in the mouse myocardium can be 

distinguished readily based on their pharmacology and rates of recovery from 

inactivation matching their molecular correlates.91   The Ito,f current displays a rapid 

recovery from steady state inactivation (on the order of 10s through hundreds of 

milliseconds) and is sensitive to the giant crab spider toxin Heteropoda toxin at 

nanomolar concentrations.  Pharmacologicial isolation of Ito,f using Heteropoda 

toxin (HpTx2) demonstrates that this current displays A-type rapid inactivation and 

activation at relatively polarized membrane potentials.83  Together, these provided 

more evidence that Kv4.2 is the molecular correlate of the Ito,f  current in mice. This 

finding was further substantiated by Marban et al., who suppressed rat ventricular 

Ito using viral infection of a dominant-negative truncated Kv4.2 construct.92  Follow 

up studies indicated that in larger animals, including humans and dog, Ito,f  is 

encoded by the closely related Kv4.3.93  The Ito,f  current is highly conserved in the 

mammalian heart, having been well characterized in human, dog, cat, rat and 

mouse ventricular myocytes.94 The Ito,slow current is predominantly found in the 
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septum of mice and atrium of humans, which mirrors the protein expression of 

Kv1.4.89, 95  

Although the physiological importance of cardiac Kv1.4 is not as defined as 

it is for Kv4.2, the relationship between the two appears to be of importance in 

disease.  Many experimental and genetic models of heart failure and hypertrophy 

cause a decrease in ventricular Ito current density.96  In humans, Kv4.3 is 

downregulated in heart failure.97  In diabetic animals, Kv4.2 message and protein 

is reduced while Kv1.4 transcript and protein is increased, mimicking the changes 

in Ito kinetics in diabetes.98-101  This so called “isoform switching” between Kv4.2 

and Kv1.4 in the diabetic heart is being investigated as a possible contribution to 

increased incidence of ventricular arrhythmias in diabetic patients.     

 

The outwardly rectifying currents IK,slow1 and IK,slow2 

Whereas the mouse and human generate their transient outward currents 

through Kv4.2/Kv4.3 and Kv1.4 channels, their generation of delayed rectifying 

currents occurs through distinct molecular mechanisms.  The human ventricular 

delayed rectifying currents are distinguishable as three components, IKur 

(IK(ultrarapid)),  IKr (IK(rapid)), and IKs (IK(slow)), which are categorized based on the their 

rate of activation.36  The inactivation of these currents is slow enough such that 

they play a significant role in repolarization throughout phase 3 of the human action 

potential (Figure 1.2).  IKr and IKs can be detected in human myocytes isolated from 

the ventricles while IKur is a completely atrial current in humans.  The α-subunits 

responsible for generating these currents has been established after years of 
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intensive research.  The molecular correlate of IKr is hERG (also known as Kv11.1), 

the product of the gene KCNH2.  The IKs current is generated by the KVLQT1 

channel (also known as Kv7.1), the product of human KCNQ1.  The IKur current is 

generated by Kv1.5, the product of the Shaker-related gene KCNA5.  These 

channels are of immense clinical importance as mutations in and inadvertent 

pharmacological interactions with these channels are responsible for a multitude 

of channelopathies, including Long QT syndrome, Short QT syndrome, Familial 

Atrial Fibrillation, torsades de pointes, and idiopathic lone atrial fibrillation.36  

While hERG and KVLQT1 are not expressed in the mouse heart, Kv1.5 is 

a predominant current in the mouse ventricle.102  Initial investigations into mouse 

ventricular Kv currents demonstrated a very slowly inactivating component, termed 

IK,slow, played a significant role in myocyte repolarization.  Pharmacological 

approaches at characterizing the channel responsible for this current revealed two 

distinct components.  One component was sensitive to micromolar concentrations 

of 4-aminopyridine (4-AP), strongly indicative of Kv1-family contribution.  The 

second component was 4-AP insensitive but sensitive to tetraethylammonium 

(TEA), suggesting Kv2 family involvement.  Transgenic mice were also generated 

to further identify the channels involved in the IK,slow current.  The targeted genetic 

replacement of Kv1.5 with a truncated Kv1.1 to created a functional Kv1.5 

knockout mouse removed the 4-AP sensitive component of IK,slow and increased 

the incidence of spontaneous and triggered arrhythmias and caused QT 

prolongation.102 A functional Kv2.1 knockout mouse was generated using a 



 30 

dominant negative mutant, Kv2.1-N216, which eliminated the TEA-sensitive 

component of IK,slow and increased action potential duration.103  

The properties of mouse IK,slow1 are indistinguishable from the IKur found in atrial 

myocytes from larger animals, including human,83, 104, 105 and it is now accepted 

that Kv1.5 encodes the human atrial IKur.  Indeed, Kv1.5 has become a target in 

the development of drugs to treat atrial arrhythmias.106, 107 Perhaps not 

unexpectedly, many of the anti-arrhythmic compounds develop against Kv1.5 have 

had off target affects on other ion channels,108 underscoring the structural and 

pharmacological similarities of the multiple Kv-family channels that play a role in 

cardiac repolarization. The development of Kv1.5-specific anti-arrhythmic agents 

remain a major focus of the pharmaceutical industry.107  Furthermore, the critical 

role of Kv1.5 in human atrial function is demonstrated in its remodeling in patients 

with chronic atrial fibrillation where its protein abundance is reduced by up to 

60%.13, 109  
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Figure 1.1: Overall structure of the Kv1.2 tetramer.  viewed from the extracellular solution, 
shown as ribbons. Each of the four subunits is colored uniquely. The transmembrane helices 
S1 to S6 are labeled for the subunit colored in red. Each S4 helix (red, for example) is nearest 
the S5 helix of a neighboring subunit (blue, for example).   Adapted from Long SB et al. Science 
2005; 309:903-908 
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Figure 1.2:  Models of N-type and C-type inactivation of K+ channels.  A) N-type 
inactivation is dependent on an N-terminal inactivation “ball” domain  B) C-type inactivation 
involves the closure of the extracellular mouth of the channel.  Adapted from Rasmusson RL 
et al. Circ Res. 1998;82:739-750 
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Figure 1.3:  C-type and N-type inactivating currents.  Outward currents elicited by a +50 
mV depolarizing pulse from a holding potential of -100mV.  Left: RCK1 (Kv1.1) lacks an N-
terminal inactivation domain and inactivates by a slow C-type mechanism.  Right:  RCK4 
(Kv1.4) has an N-terminal “ball” domain and rapdily inactivates upon channel opening.  
Adapted from Rettig et al. Nature. 1994 May 26; 369(6478):289-94  
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Figure 1.4:  Kvβ1 imparts rapid N-type inactivation.  Coexpression of Kvβ1 converts the 
slowly inactivating RCK1 (Kv1.1) into a rapidly inactivating channel complex.  Adapted from 
Rettig et al. Nature. 1994 May 26; 369(6478):289-94.   
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Figure 1.5:  Model of physiological regulation of voltage-gated potassium (Kv) 
channel by pyridine nucleotides. A, Composite representation of the Kvα–Kvβ 
complex. The membrane-spanning domains of Kvα are shown in blue. The T1 domain, 
which docks with Kvβ, is shown in light blue. The N-terminus of Kvβ forms the 
inactivating ball and chain assembly. In the NADPH-bound state of the Kvβ subunit, the 
N-terminal domain of Kvβ inactivates the channel by plugging the internal opening of 
the ion-permeation pathway, resulting in N-type inactivation (right). Binding of NADP+ 
to Kvβ prevents inactivation. For clarity, only 2 of the 4 subunits of Kvα and β are shown. 
B, Schematic showing the regulation of channel function by NADPH. The 
noninactivated (open) state of the channel is stabilized by NADP+, whereas NADPH 
binding induces inactivation. The transition between the inactivated and noninactivated 
state of the channel is mediated either by pyridine nucleotide exchange or by catalytic 
turnover involving the substrate-dependent conversion of NADPH to NADP+. C, Effect 
of NAD+ on single channel Kv activity in inside-out patches recorded in COS-7 cells 
expressing Kvα1.5 and Kvβ1.3 before and after exposure to 1 mmol/L NAD+. Currents 
recorded in response to a +50-mV depolarizing pulse. Reprinted with permission from 
Am J Physiol Cell Physiol, Tipparaju et al.42D, Stereoview of a ribbon representation 
showing the side view of the channel complex containing the transmembrane (TM) 
domain, the T1 scaffolding, and the auxiliary β-subunits. The NADP+ cofactor bound to 
each β-subunit is shown as indicated.36 (Illustration: Ben Smith.)  Adapted from Kilfoil 
PJ et al Circ Res. 2013;112:721-741 
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Figure 1.6:  Action potentials and underlying ionic currents.  Adult human (left) and mouse 
(right) ventricular myocytes have diverse outward K+ currents while inward Na+ and Ca2+ currents 
are similar. The diversity of K+ currents results in distinct action potential repolarization shapes in 
human and mouse ventricular cells.  Adapted from Nerbonne JM Trends Cardiovasc Med. 2004 
Apr;14(3):83-93. 
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CHAPTER II 

DETAILED MATERIALS AND METHODS 

 

Immunoprecipitations and Western Blot Analysis 

Western blot analyses were performed on fractionated protein lysates 

prepared from whole heart, isolated ventricular cardiomyocytes, and whole brain 

tissue from adult (12 to 22 week) Kvβ2 WT and Kvβ2-/- mice to examine Kv1.4, 

Kv1.5, Kv4.2, Kvβ1 and Kvβ2 expression patterns. All antibodies used in this study 

are commercially available, have been previously tested for specificity and cross-

reactivity and have been shown to be subunit specific. For Western blot analyses, 

proteins were fractionated on SDS-PAGE gels (any-kD or 7.5%, BioRad), 

transferred to PVDF membranes followed by overnight incubation at 4°C with a 

(polyclonal or monoclonal) anti-Kvβ2 (K17/70, Neuromab, Davis, CA), anti-Kv1.4 

(K13/31, Neuromab), or anti-Kv1.5 (APC-004, Alomone, Jeruselum, Israel) 

antibody. Following thorough washing, the membranes were incubated with 

horseradish peroxidase-conjugated anti-mouse or anti-rabbit secondary 

antibodies. The membranes were again thoroughly washed to remove excess 

substrate and then bound antibodies were detected using luminescent horseradish 

peroxidase substrate (Pierce ECL/ECL Plus, Thermoscientific) and scanned on 

Typhoon.  
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For immunoprecipitations, 50 µL protein G-coated magnetic beads (Dynabeads 

Protein G, 10003D, Life Technologies) were incubated with rocking overnight at 

4°C with 10 µg of anti-Kvβ2 (K17/70), Kv1.4 (K13/31), Kv1.5 (APC-004) or Kv4.2 

(K57/1) antibody in 200 µL PBS plus 0.01% TWEEN-20 (to prevent bead 

aggregation). To decrease the signal from antibody heavy and light chains on 

Western blot, the antibodies were then cross-linked to the beads. This was 

achieved by first washing the beads twice each with 1 mL of sodium borate (50 

mM, pH 9.0) followed by 30 min incubation by rocking at room temperature with 1 

mL of 25 mM dimethyl pimelimidate made fresh in 50 mM sodium borate. After 

removing the supernatant, the beads were resuspended in 1 mL of ethanolamine 

and incubated by rocking for 2 hours at room temperature. The beads were then 

washed gently with 1 mL PBS plus 0.01% TWEEN-20 three times. Once cross-

linking was complete, lysates were incubated with the beads by rocking overnight 

at 4°C. The supernatant was removed and saved. The beads were resuspended 

in 1:5 SDS loading buffer with 150 mM DTT in PBS plus 0.01% TWEEN-20 and 

then heated at 70°C for 10 min. The supernatant was then removed and boiled at 

100°C for 10 min. The eluted sample was then fractionated and immunoblotted as 

described above. 

Differential centrifugation was used to prepare membrane-enriched fractions from 

heart lysates.  In this procedure, hearts were homogenized in chilled glass in cold 

lysis buffer containing (in mM): mannitol 225, sucrose 75, EGTA 0.1, Tris-HCl 30, 

pH 7.4.  Protease and phosphatase inhibitor cocktails (Sigma) were added at a 

1:100 concentration.  The lysate was centrifuged at 3000 RPM for 10 min to 
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remove cellular debris and unbroken cells.  The supernatant was removed and set 

aside on ice while the pellet was resuspended in lysis buffer and again 

homogenized.  The 3000RPM spin was repeated on this lysate and the 

supernatants were pooled.  The collected supernatants were then centrifuged at 

124,000g for 1 hour at 4° C.  The supernatant was removed and the pellet was 

resuspended in 200 μL of buffer containing (in mM): Tris 50, EDTA 1 and 2% 

sarkosyl.  The pellet was pipetted and the solution sonicated 5 times for 30 

seconds until completely dissolved. Protein content was then measured by Lowry’s 

method and separated by SDS PAGE.   

 

Electrophysiological Recordings 

Cardiomyocytes isolated from the mouse ventricles were used for 

electrophysiological recordings.  Whole-cell voltage-clamp and current-clamp 

experiments were performed within 12 hours of cell isolation at the temperatures 

noted using an Axopatch 200B patch-clamp amplifier (Axon Instruments, Foster 

City, CA). For voltage-clamp experiments, cells were patched using borosilicate 

glass pipettes (1B150F-4 and TW150F-4, World Precision Instruments, Sarasota, 

FL) pulled using a Sutter P-87 (Sutter Instrument, Novato, CA) to a resistance of 

2-4 MΩ when filled with a pipette solution containing (in mM): K-aspartate 100, KCl 

30, MgCl2 1, HEPES 5, EGTA 5, Mg-ATP 5, NaCl 5, pH adjusted to 7.2 with KOH. 

For current clamp experiments, pipette resistance was 7-10 MΩ when filled with 

the same solution. Cardiomyocytes were placed in a 0.25mL recording chamber 

(RC-26, Warner Instruments, Hamden, CT) and perfused with an external solution 
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containing (in mM): NaCl 135, MgCl2 1.1, CaCl2 1.8, KCl 5.4, HEPES 10, glucose 

5.5, pH 7.4 adjusted with NaOH. CdCl2 (0.3 mM) was added to the bath solution 

for voltage-clamp experiments.  In experiments done at near physiological 

temperature, perfusate heating was controlled using an inline heater (64-0103, 

Warner Instruments) and heated magnetic platform (PM-1, Warner Instruments), 

controlled by a bipolar dual automatic temperature controller (TC-344B, Warner 

Instruments).  Only quiescent, single, rod-shaped cardiomyocytes with clear 

striations were selected for recording. In voltage-clamp experiments, cells were 

held at -80 mV and depolarized for 5 sec to potentials from -100 mV to +50 mV in 

10 mV steps at 0.05 Hz.  In some experiments, cells were depolarized to a single 

potential of +50 mV from the same holding of -80 mV. All voltage clamp protocols 

were preceded by a 50 ms inactivating prepulse to -40 mV to eliminate Na+ 

currents.110 Whole-cell series resistances and capacitances were electronically 

compensated at least 80% to minimize voltage error.  Action potentials were 

evoked by the injection of a small, short lasting current (0.8-2 nA, 1-2 ms) at 1.0 

Hz.  Cells were paced for 30 seconds to reach steady state and the final 5 action 

potentials were averaged for analysis.        

 

Analysis of electrophysiological recordings 

Voltage-clamp data were analyzed using Clampfit 9 (Axon Instruments).  

Peak currents were defined as the maximal K+ current reached over the period of 

depolarization.  The amplitudes and inactivation time constants of outward currents 

were best-fit using tri-exponential curve fitting, which was performed in Clampfit 
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using the Levenberg-Merquot (SP) iterative technique.  Only fittings with a 

correlation ≥ 0.98 were used in analysis.  Peak and component amplitudes were 

normalized by cell capacitance and expressed in pA/pF. Cell membrane 

capacitance were calculated immediately upon reaching whole-cell configuration 

by Clampfit through integration of the transient seen in response to a +10 mV 

voltage step from holding.  Action potentials were analyzed using a custom written 

Visual Basic program in Microsoft Excel to calculate resting membrane potential, 

action potential amplitude, dV/dtmaz, and action potential durations at 20% 

(APD20), 50% (APD50) and 90% (APD90) repolarization. Action potentials 

recorded after 30 sec pacing at 1 Hz were used for comparison.        

 

Mice 

Male Kvβ2-/- mice as well as strain-matched WT mice were bred in house 

and maintained on a mixed C56BL/6 x 129/SvEv background.  The Kvβ2-/- mice 

were originally obtained from Dr. Geoffrey Murphy of the University of Michigan 

Department of Physiology and The Molecular & Behavioral Neurosciences 

Institute. All procedures were approved by the University of Louisville Institutional 

Animal Care and Use Committee, IACUC number 14047.  

 

Isolation of adult mouse cardiac myocytes 

Male mice 12-24 weeks of age were used for cardiac myocyte isolation.  

Twenty minutes prior to anesthetization, an intraperitoneal injection of heparin 

sodium salt (>350 USP units, H3149, Sigma Aldrich) was administered to prevent 
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blood clotting in the coronary vasculature upon excision of the heart.  Mice were 

anesthetized by an intraperitoneal injection of sodium pentobarbital (160mg/kg) 

and placed in a supine position with limbs restrained by tape.  Upon positive 

confirmation of full anesthesia by paw pinch, the heart was rapidly and gently 

removed by thoracotomy and placed in a 70mm petri dish containing ice-cold 

(~1°C) calcium-free phosphate buffer solution (Gibco, ThermoFisher Scientific).  

Any non-cardiac tissue attached to the heart was rapidly removed while the heart 

was submerged in PBS, and the aorta was identified.  Using microfine foreceps, 

the aorta was lifted onto a 22-gauge cannula attached to a modified Langendorff 

system and the heart was secured to the cannula using #4-0 surgical suture.  The 

heart was perfused in retrograde Langendorff mode with buffers maintained at 

37°C using a water-jacketed heat exchanger (Radnotti LLC, Monrovia CA) and 

negative feedback heated water bath and pump.  Upon canulation, the heart was 

perfused with Tyrode’s solution containing (in mM) NaHCO3 18, NaCl 126, KCl 4.4, 

MgCl2 1, HEPES 4, glucose 11, BDM 10, Taurine 30, pH 7.4) under a constant 

pressure of 70mm Hg. The perfusion of this first calcium-free buffer serves the 

purpose of removing all blood from the coronary vasculature as well as causing 

the dissociation of gap junctions which aids in myocyte isolation.  Perfusion of 

calcium-free Tyrode’s solution was no longer than 5 min to avoid a decline in 

myocyte health due to the “calcium paradox”, 111, 112 a phenomenon wherein 

reintroduction to physiological Ca2+ levels (1-3 mM) following perfusion of Ca2+-

free buffer causes rapid deterioration of cell quality and myocyte hypercontracture 

due to Ca2+ influx.   
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After 5 minutes, the perfusion solution was exchanged with an enzyme 

solution consisting of the above Tyrode’s solution with the addition of Liberase TH 

280μg/mL, CaCl2 25μM, endotoxin-free BSA 0.1%, DNAse (Roche) 15μg/mL, 

protease type XIV (Sigma Aldrich) 16.8μg/mL, pH 7.4 with NaOH.  The heart was 

digested for approximately 8-10 minutes and then inspected visually for proper 

digestion.  The ventricles were then cut off the cannula and the heart was placed 

in a 35 mm dish containing mincing solution at 37°C comprised of the above 

enzyme solution with the addition of BSA 9mg/mL.  In this buffer, any remaining 

vasculature or nonventricular tissues were quickly dissected away and the heart 

was minced using fine tip forceps until most large pieces of tissue were gone.  The 

tissue and cells were then gently triturated by aspirating the solution with a 

serological pipette several times.  The cell-containing solution was passed through 

a 100-mesh stainless steel filter to remove any underdigested tissue.  The filtered 

solution containing dissociated cardiac myocytes were then purified of damaged 

or calcium intolerant cells by reintroducing calcium in 5 steps of increasing 

concentration. Cardiac myocytes were allowed 10 minutes to pellet in 5 tubes 

containing 50 μM, 75 μM, 125 μM, 275 μM and 525 μM CaCl2.  Following this final 

stage, a small aliquot (10 μL) of suspended cells was transferred to a 

hemocytometer for counting and inspection of isolation quality.  Using this protocol, 

over 1 * 106 cardiac myocytes (>90 % rod shaped with long aspect ratio) are 

routinely obtained.   

  For electrophysiological experiments, the cardiac myocytes were then 

suspended in a cold (4°C), high K+ solution containing (in mM): K+-glutamate 100, 
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KCl 25, KH2PO4 10, MgSO4 1, glucose 22, EGTA 0.5, HEPES 5, pH 7.2 with KOH.  

Cells were stored in the refrigerator until study, at which time a small aliquot of 

suspended cells was transferred into the bath of the patch clamp microscope.   

For immunofluorescence imaging studies, the cardiac myocytes were fixed 

as follows.  Cells were allowed to pellet in a 15 mL test tube and any remaining 

buffer was aspirated.  The pellet was then resuspended in 2 mL of calcium-free 

PBS 4°C.  Cold paraformaldehyde (4% in PBS) was then slowly added to the 

suspension for a final concentration of 3% PFA and allowed to incubate for 15 min 

total.  The first 10 minutes of fixation was performed with gentle rocking, and during 

the final 5 minutes the tube was placed upright to allow the cells to pellet.  The 

fixed cardiac myocytes were washed 3 with 15 mL of cold PBS, allowing 15 

minutes during each wash to allow the cells to pellet at the bottom of the tube.  

Following the final wash step, the cells were suspended in 2 mL of PBS and stored 

at 4°C for up to 3 months.   

For protein and mRNA analysis, the pellet of cells was flash frozen in liquid 

N2 and stored at -80°C for later use.    

 

Cell Immunofluorescence  

For immunofluorescent studies, 3000-5000 fixed cardiac myocytes were 

diluted into approximately 100μL and adhered to poly-L-lysine-coated coverslips 

using a Cytospin 4 Cytocentrifuge (Thermo Scientific) at 300 RPM.  This produced 

an even distribution of cells without significant cell overlap and no disruption in 

morphology.   
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Cells were permeabilized by incubating in PBS containing 0.1% Triton X-100 for 

10 minutes.  The permeabilized myocytes were then washed in PBS three times 

for 5 min.  Blocking was performed by incubating the cells in 1% BSA, 22.5 mg/mL 

glycine in PBS T (PBS + 0.1% Tween 20) for 30 minutes.   

 Primary antibody incubation dilutions were determined empirically for each 

antibody.  Primary antibodies were diluted in 1% BSA in PBST and incubated for 

either 1 hour at room temperature or overnight at 4°C in a humidified chamber.  

Following primary antibody incubation, the cells were washed in PBS 3 times for 5 

minutes.   

 Secondary antibodies, anti-rabbit or anti-mouse Alexa 647 (ThermoFisher 

Scientific) were diluted in 1% BSA at a concentration of 1:2500.  Cells were 

incubated in the secondary antibody for 45 minutes at room temperature in an 

opaque box.  Cells were then washed again in PBS 3 times for 5 minutes.  

Coverslips were then quickly dunked into a beaker containing deionized water, as 

we have found this minimizes the presence of any salt crystals formed by 

evaporation.  Cells were counterstained with ProLong Antifade reagent containing 

4,6-diamidino-2-phenylindole (DAPI, ThermoFisher Scientific), covered with a 12 

mm coverslip and sealed using clear nail polish.  Cells were stored in a slide box 

at 4°C until analyzed.  Fluorescence was observed using a Nikon A1 confocal 

microscope equipped with a 405 nm laser (for DAPI) and a 632 nm laser (for Alexa 

647). 

 

Echocardiography 
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Transthoracic echocardiography was performed using the Vevo 770 

echocardiography platform. Mice were anesthetized using 2% isoflurane initially, 

and were maintained under anesthesia for the remainder of the experiment using 

1.5% isoflurane.  Body temperature was maintained at 37°C using an electronic 

rectal thermometer interfaced to a servo-controlled heating lamp.  

Electrocardiograms were recorded using leads attached to each limb.  Mice were 

placed supine on an examination board and depilatory cream was used to remove 

all hair on chest.  Two-dimensional imaging of the parasternal long axis was 

performed using a 707-B 30 MHz scan head at 100 frames per second.  Short axis 

images were also recorded by rotating the scan head.  Two-dimensional images 

were obtained every millimeter between the papillary muscles and the apex.  M-

mode images were constructed from 2-D images and were used to measure heart 

rate (HR), left ventricular inner diameter during diastole and systole (LVIDd and 

LVIDs, respectively).  These measures were used to calculate fractional shortening 

(FS) using the equation:  FS= [(LVIDd-LVIDs)/LVIDd] x 100%.  Ventricular 

volumetric indices (diastolic and systolic volumes) were calculated using 

Simpson’s rule of integration on the serially acquired short-axis images.  These 

were used to calculate stroke volume (SV) as SV=diastolic volume – systolic 

volume.  Ejection fraction (EF) was calculated as EF= (stroke volume/diastolic 

volume) 100%.  Cardiac output (CO) was calculated as: CO= SV * HR.     

 

Cardiac histology  
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Hearts were rapidly excised and mounted on a 22-gauge blunted needle 

cannula as with the cardiac myocyte isolation protocol and were retrogradely 

perfused with room temperature PBS for 3 minutes followed by 4% PFA in PBS 

for 15 minutes.  Hearts were then removed from the cannula, dissected of any non-

myocardial tissues, and sectioned in either the coronal, sagittal or axial axes using 

a Zivic Mouse Heart Slicer (Zivic Instruments, Pittsburgh, PA) and incubated 

overnight in 4% PFA.  The next morning, the heart sections were transferred to a 

beaker containing 70% ethanol for short-term storage. Heart sections were then 

processed and embedded in paraffin blocks for long term storage.  Paraffin-

embedded tissue sections were sliced at 4 μm and stained with H&E.  Images of 

mid-heart cross sections were made using a digital camera mounted to an 

Olympus microscope.   

  

Quantitative RT-PCR 

RNA was extracted from heart samples using the RNeasy mini kit (Qiagen). 

RNA concentration and purity was measured using the Nanodrop 1000A 

Spectrophotometer (Thermo Scientific).  The cDNA library was prepared using a 

Bio-Rad mycycler Thermocycler at 42°C for 60 min and 94°C for 5 min.  When not 

used immediately, cDNA samples were stored at -20°C.  Total cDNA were diluted 

20-fold using RNAse free water prior to use.  RT-qPCR was done using iTax 

Universal SYBR Green Supermix (Bio-Rad) on the Applied Biosystems 7900 HT 

Real-Time PCR system.  Primers for Kvα, Kvβ, and mGAPDH (internal control) 

were added to wells of a 384-well plate appropriately.  cDNAs for each RNA 
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sample were run in triplicate.  The RQ of each Kv channel subunit in each sample 

were calculated using the 2-ΔΔCt method by normalization to the internal standard 

mGAPDH.  Specific amplification was confirmed by visualizing melting curves for 

each sample for the presence of a single sharp peak.  

 

Statistics 

Data are reported as mean ± SEM.  Data were analyzed using GraphPad 

Prism and Microsoft Excel with paired or unpaired t-test with Bonferroni correction 

or ANOVA. For paired experiments where treatment values were normalized to 

initial values, the Wilcoxon matched pairs nonparametric test was used.  P-values 

<0.05 were considered to be significant.   
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CHAPTER III 

Kvβ2 MODULATES CARDIAC Kv CURRENTS AND REPOLARIZATION 

Introduction 

The voltage-gated potassium (Kv) channels are widely expressed 

throughout excitable tissues and are the primary mediators of repolarization in 

neurons and the cardiac myocyte.  In the heart, Kv channels regulate the resting 

membrane potential, the frequency of pacemaker and the shape and duration of 

the action potential.106   As a superfamily consisting of over 40 different members, 

they form one of the most diverse ion channel families both in form and function.  

Their functional diversity is further expanded through the interaction with ancillary 

subunits, such as the Kvβ proteins.  These cytoplasmic subunits, which bind to the 

intracellular domain of Kv1 and Kv4 family channels, can have profound effects on 

channel trafficking and membrane expression,63, 68, 113  subcellular localization,71, 

114  and channel gating and kinetics.54, 56, 115, 116  

Much of the information regarding the electrophysiological and catalytic 

functions of the Kvβ proteins has been gained through the use of heterologous 

expression systems.   While much of both in vivo and primary cell characterization 

have been performed in the central nervous system, some descriptions of the 

physiological function of Kvβ proteins in other tissues and organs do exist.  The 

loss of Kvβ1 in the heart has been demonstrated to alter the cardiac Kv currents 
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Ito,f and Ik,slow.117
 Furthermore, antisense knock down of Kvβ2 has been 

demonstrated to reduce Kv conductance, hyperpolarize the conductance-voltage 

relationship (V1/2-act, the voltage at which half the channels in a cell are in an 

activated state), increase the time course of current activation (τact, a measure of 

the rate of current change) and increase action potential duration in Xenopus 

myocytes.118 Kvβ2-/- mice also have a strong strain-dependent neurological 

phenotype.  In mice on a C57BL/6 background, loss of Kvβ2 leads to deficits in 

memory and learning and causes occasional seizures.119  

Therefore, we designed the present study to address our hypothesis that 

Kvβ2 plays a role in ventricular repolarization through a contribution to the 

generation of cardiac Kv currents by its interaction with one or more unknown 

members of the Kv family.  To this end, we used an approach that included single 

cell patch clamp and organ-level (Langendorff perfused heart) electrophysiology, 

protein measurement by Western blotting, co-immunoprecipitation, and cellular 

immunofluorescence.  We also assayed cardiac function using echocardiography 

to determine if contractile function of the heart was altered.  Together, we aimed 

to determine the cardiac phenotype of mice bearing a targeted disruption of the 

Kvβ2 gene (Kvβ2-/-) vs. their WT littermates.   

 

Results 

Kvβ2 expression in the mouse ventricle 

Western blotting of whole-heart lysates was performed to confirm the 

presence of Kvβ2 protein in mouse ventricular lysates (Figure 3.1).  We also 
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performed immunoblotting to determine if the loss of Kvβ2 impacts the protein 

expression of Kvα and Kvβ subunits previously described to interact with Kvβ2 in 

other cell types (Figure 3.1).   Using whole-cell ventricular lysates, protein levels 

of Kv1.4, Kv1.5, and Kv4.2 were not significantly altered in ventricles from Kvβ2-/- 

mice (Figure 3.2). To confirm cardiac myocyte expression of Kvβ2, isolated cardiac 

myocytes were fixed with paraformaldehyde, permeabilized and stained with a 

monoclonal anti-Kvβ2 antibody and anti-mouse Alexa 647 secondary antibody.  

Cells were viewed under confocal microscopy and it was shown that the greatest 

fluorescent intensity was localized to the sarcolemma (Figure 3.3).   

 

Kvβ2 interacts with Kv1.4 and Kv1.5 in the mouse heart 

Biochemical and electrophysiological work using expression systems has 

previously established that Kvβ2 interacts with most members of the Kv110 and 

Kv457, 63, 120 families both physically and functionally. In the brain, Kvβ2 has been 

shown to associate with Kv1.1, Kv1.2, Kv1.4, Kv1.6121 and Kv4.3,63 with Kv1.3 in 

lymphocytes122 and Kv1.5 in pancreatic islets.123 Previous work demonstrated that 

Kvβ1 directly interacts with Kv4.2 and Kv4.3, but not Kv1.4 or Kv1.5 in the mouse 

heart.117  

To determine the in vivo binding partners of Kvβ2 in the mouse heart, a co-

immunoprecipitation approach using magnetic bead-bound monocolonal anti-

Kvβ2 antibody was utilized.   Western blot analysis of ventricular lysates showed 

that Kv1.4 and Kv1.5 coimmunoprecipitate with Kvβ2. (Figure 3.4).  No positive 
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co-immunoprecipitation was observed in lysates prepared from Kvβ2-/- hearts, 

supporting the specificity of the interaction.      

 

Loss of Kvβ2 decreases surface expression of Kv1.5 in ventricular cardiac 

myocytes 

In heterologous systems, co-expression of Kvβ proteins increases the 

membrane expression of Kv1 and Kv4 channels.10, 124 To determine the effect of 

Kvβ2 on surface expression of Kv1.4, Kv1.5 and Kv4.2 channels, we compared 

the abundance of these Kv channels on the surface of ventricular cardiac myocytes 

isolated from WT and Kvβ2-/- mice.  To this end, two techniques were utilized: 

sarcolemmal membrane fractionation using differential centrifugation and confocal 

microscopy of fixed isolated cardiac myocytes.     

Whereas the total Kv1.5 protein in Kvβ2-/- ventricles was slightly greater 

than in WT (Figure 3.1), the ratio of Kv1.5 in the membrane-enriched fraction to 

that in supernatant was significantly reduced in Kvβ2-/- ventricular lysates (Figure 

3.5); this result suggests a role for Kvβ2 in moving Kv1.5 to the sarcolemma. The 

efficacy of the membrane separation protocol was confirmed by comparing pan-

cadherin detection in the membrane (M) and cytosolic (S) fractions (Figure 3.5), 

suggesting that all sarcolemmal protein was contained in the membrane-enriched 

fraction.  Furthermore, in accordance with findings in the literature, the membrane 

bound Kv1.5 was found as a single band, whereas Kv1.5 from whole cell 

preparations typically runs at two bands of distinct molecular weights.  In support 

of this finding, isolated cardiac myocytes were fixed and stained with anti-Kv1.5 
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antibody and visualized under confocal microscopy.  Surface fluorescence of 

Kv1.5 was reduced in Kvβ2-/- cardiac myocytes compared to WT controls (Figure 

3.6).     Together, these findings indicate a role for Kvβ2 in the surface expression 

of Kv1.5 channels in the heart.   

 

Loss of Kvβ2 reduces outward Kv current in ventricular cardiac myocytes 

To investigate whether Kv currents in cardiac myocytes were altered due to 

loss of Kvβ2, whole-cell voltage clamp (Figure 3.7) was used to compare the 

magnitude and time course of currents elicited in response to 5s, +50mV 

depolarizing pulses.  Triexponential fitting was used to dissect currents into three 

components based upon inactivation time constants.105  Peak current density  

(Ipeak) was reduced in Kvβ2-/- (p < 0.05, Figure 3.8 A-C).  The magnitude of current 

associated with the most rapidly inactivating exponential component, previously 

described to be attributed to Ito, was reduced from 30.0+/- 4.6 pA/pF in WT to 15.8 

+/- 2.0 pA/pF in Kvβ2-/- (p<0.01 Figure 3.8 D).  The magnitude of intermediate and 

slowly inactivating currents were reduced but did not reach statistical significance 

(p=0.13 and p=0.054, respectively, Figure 3.8 E,F).  The inactivation time constant 

values associated with each exponential term were not different between groups 

(Table 1).  

 

Reduced Kv current magnitude results in delayed action potential 

repolarization 
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As Kv currents are the driving force for cardiac myocyte repolarization, we 

tested whether the reduced Kv current densities observed in voltage-clamp 

conditions manifested in prolonged action potential durations.  Action potential 

repolarization was quantified as the time required for a cell to return to 20, 50, and 

90% of its resting membrane potential (APD20, APD50, and APD90).  

Repolarization was slowed significantly at each APD, indicating a significant 

repolarization deficit in Kvβ2-/- myocytes (Figure 3.9 B).  Other action potential 

parameters including upstroke velocity (dV/dtmax), resting membrane potential 

(RMP), and action potential amplitude (APA) were unchanged, confirming that the 

changes caused by loss of Kvβ2 are specific to repolarization and not due to broad 

electrophysiological instability or cell health (Figure 3.10).  We found that action 

potential duration was similarly prolonged by a partial blockade of Kv1.5 with the 

Kv channel blocker 4-aminopyridine.  At the concentration used (100 μM), we 

expected approximately 30% inhibition of Kv1.5 (IC50 270 μM)10, similar to the 

reduction in peak Kv current observed under voltage clamp.  Prolongation of action 

potentials by 4-AP was qualitatively similar to that observed in the  Kvβ2-/- cells 

(Figure 3.9 C).    

 To further confirm a repolarization deficit in the Kvβ2-/- heart, we perfomed 

a second series of experiments using the ex vivo Langendorff perfused heart 

model. Monophasic action potentials were recorded from the epicardial surface of 

the left ventricle during spontaneous beating (Figure 3.11 A-C).  In agreement with 

the transmembrane action potentials recorded from single isolated cardiac 
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myocytes, action potentials were significantly prolonged at 20, 50, and 90% 

repolarization (Figure 3.11 D-F).  

 

Baseline cardiac function is unchanged in Kvβ2-/- hearts 

 To examine if the prolonged cardiac repolarization seen in Kvβ2-/- 

manifested in changes in contractile function, we performed transthoracic 

echocardiography.  All functional cardiac parameters, including stroke volume, 

ejection fraction and cardiac output were unchanged (Figure 3.12).    We did find 

through necropsy study that Kvβ2-/- mice have smaller hearts than age- and sex-

matched WT mice.  The heart weight to tibia length ratio in Kvβ2-/- is significantly 

lower in Kvβ2-/- compared to age-matched WT (6.2 ± 0.1 mg/mm vs 7.4 ± 0.3 

mg/mm respectively, p < 0.002, Figure 3.13 A). This difference resulted from 

differential development in the left ventricle (Figure 3.13 B) as right ventricular 

development (Figure 3.13 C) was not different between groups.  Some hearts were 

sectioned in the transverse plane and stained with hematoxylin and eosin to 

compare gross anatomy and to visualize left ventricular development (Figure 3.13 

D). This difference does not arise from changes in cardiac myocyte size, which 

was not different between groups as measured either by microscopy or cellular 

capacitance during electrophysiological experiments (Figure 3.14).  

 

Discussion 

The results of this study show that Kvβ2 plays a role in repolarization in the 

heart through enhancement of Kv current density.  We found that Kvβ2 protein is 



 56 

expressed in the heart, specifically in the cardiac myocyte. We found that Kvβ2 

physically associates with Kv1.4 and Kv1.5 in vivo, and plays a role in the 

functional expression of Kv currents through enhanced Kv current density.  The 

significant reduction in peak current density in response to depolarization appears 

to be driven by a reduction in Ito, as the triexponential fitting model employed 

showed the largest reduction in the magnitude in the most rapidly inactivating 

component of the outward current. This is evidence to suggest a functional 

interaction of Kvβ2 with Kv4.2 or Kv1.4, channels it is known to both associate with 

and promote the surface trafficking of.  We attempted to co-immunoprecipitate 

Kv4.2 using the method that showed positive interaction with Kv1.4 and Kv1.5, but 

were not able to detect this protein in the immunoprecipitated material. This is not 

definitive evidence for a lack of interaction of Kv4.2 with Kvβ2 in the heart, but it 

suggests that the reduction in Kv current may be occurring by another mechanism.  

One interpretation of our results is that the observed reduction in surface 

expression of Kv1.5 in the Kvβ2-/- could be participating in the reduction of peak 

current.  Kv1.5, the molecular correlate of the human Ikur current is very rapidly 

activating; under voltage clamp conditions when the cell is depolarized to +50 mV, 

it almost instantaneously activates and contributes to the peak current density.  

This however does not explain a contribution to the rapidly inactivating component 

of the outward current. The most plausible explanation for the reduced rapidly 

inactivating current aside from an interaction of Kvβ2 with Kv4.2, which was not 

detected by Co-IP, is that Kvβ2 is interacting with Kv1.4 in the WT heart.  Indeed, 

we found positive co-immunoprecipitation with Kv1.4. The magnitude of the current 
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with an intermediate inactivation rate, IK,slow1 was reduced but not to a statistically 

significant level.  This could be a result of a limitation in the fitting algorithm used.  

Recent work published since the time of these experiments supports the notion 

that 5 sec depolarizations are not adequately long enough to fully resolve the three 

components of the murine Kv currents, Ito, IK,slow1 and IK,slow2 and that 

depolarizations lasting as long as 20 seconds may be required to accurately 

separate the magnitudes of each Kv current.125 (Liu J 189) Nevertheless, we 

interpret the findings of significantly reduced Kv current density, positive co-

immunoprecipitation with Kv1.4 and Kv1.5, and reduced trafficking of Kv1.5 to the 

sarcolemma as strong evidences of a critical role of Kvβ2 in the generation of 

repolarizing currents in the mouse heart.   

 The impact of the observed reduction in Kv current is clear; in both single 

cell current-clamp and monophasic action potential recordings, Kvβ2 hearts have 

a significantly reduced repolarization capacity.  Action potential durations are 

prolonged at all levels of repolarization, strongly indicating an effect on the rapidly 

activating components of the total cardiac Kv current, Ito and IK,slow1.  This is 

supportive of voltage clamp results and the observed interactions with Kv1.4 and 

Kv1.5, components of Ito and IK,slow1, respectively.  Further work is warranted to 

confirm whether Kvβ2 is interacting with Kv4.2 in the mouse heart.     

In addition to the effects that Kvβ2 appears to have on the functional 

expression of Kv channels, that is the enhancement of Kv channel abundance at 

the sarcolemma, the results can also be interpreted as evidence that the loss of 

Kvβ2 may affect the gating of Kv1.4 and Kv1.5 in the heart. While the voltage 
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clamp results do not show any significant differences in inactivation rates of the 

three Kv component currents, we did not specifically address changes in their 

voltage dependence of activation, V1/2-act.  Accurately measuring the V1/2-act of a 

singly expressed channel in a heterologous system is straightforward, doing so in 

a primary cell that contains many different currents is not.  We have not yet 

addressed this experimentally, in part due to the fact that the pharmacology of 

Kv1.5 inhibitors is lacking.  The Kv1.5 blockers commercially available are 

chemical blockers that are not as highly specific as peptide inhibitors (i.e. spider 

toxins like HpTx) available for other channels.  Inhibition of IK,slow1/Kv1.5 with 

channel blockers such as 4-AP and Psora-4 likely would not allow for the very 

precise inhibition necessary to allow for measurement of activation kinetics.  One 

potential compound to address this question does exist, diphenyl phosphine oxide 

(DPO-1), which blocks Kv1.5 in the sub micromolar range with an 8-fold specificity 

over Ito.  This may be addressed in future experiments as we further characterize 

the mechanism by which Kvβ2 modulates cardiac Kv currents.   
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Figure 3.1:  Expression of Kvα and Kvβ proteins in the mouse ventricle.  
Whole heart lysates were separated by SDS PAGE and incubated with anti-
Kv4.2, Kv1.5,  Kvβ1.1, Kvβ1.2, Kvβ2 and KChIP2 antibodies..  Kvβ2 protein is 
expressed in WT (lanes 1-3) but not Kvβ2-/- (lanes 4-6) hearts.  
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Figure 3.2:  Quantification of Western immunoblots.  Western 
blots from Figure 3.1 were quantified using ImageJ.  .  Detection of 
Kv1.5 was slightly increased (p<0.05).  n=3 WT and 3 Kvβ2-/- hearts.   
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Figure 3.3:  Cellular localization of Kvβ2 by immunofluorescence.  
Confocal microscopic images showing fixed isolated cardiac myocytes from 
WT (left) and Kvβ2-/- (right) mice stained with anti-Kvβ2 primary antibody 
(1:100) and Alexa647 secondary antibody. Red: anti-Kvβ2.  Blue: DAPI. 
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Figure 3.4:  Immunoprecipitation of Kv1.4 and Kv1.5 by Kvβ2. Lysates prepared 
from isolated adult ventricles were immunoprecipitated (IP) using monoclonal anti-
Kvβ2, antibody. Lysates before IP were also blotted with the same antibodies. Both 
Kv1.4 and Kv1.5 co-immunoprecipitate with Kvβ2 and are not detected in 
immunoprecipitation with Kvβ2/- ventricular lysates.   
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Figure 3.5:  Ratio of Kv1.5 in the sarcolemma to cytosol.   Top: A membrane 
preparation protocol was used to separate and enrich plasma membrane proteins.  The 
efficacy of the separation was confirmed by blotting for pan-cadherin, a protein exclusively 
found in the sarcolemma.  Center:  For each heart (4WT and 6KO), two lanes were 
loaded, one with the membrane fraction (left) and cytosolic fraction (right).  The band 
intensity of each pair was compared to find a membrane:cytosolic Kv1.5 ratio for that 
heart. Note: membrane bound Kv1.5 appears as a single band, cytosolic Kv1.5 appears 
as a double band, both bands were included.  Bottom:  Quantification of the group 
means, membrane:cytosolic ratio was significantly reduced in Kvβ2-/-  (p<0.05).   
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Figure 3.6:  Cellular localization of Kv1.5. Isolated cardiac myocytes were stained with 
an extracelluar epitope anti-Kv1.5 antibody with secondary Alexa647 staining and viewed 
under confocal microscopy.  Relative to WT, Kvβ2-/- showed reduced surface Kv1.5 
reactivity. Result is representative of 3 experiments.   
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Figure 3.7:  Isolated ventricular cardiac myocyte being recorded under 

whole-cell voltage-clamp configuration.  Rpipette=2.5 MΩ  
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Figure 3.8:  Kv currents in isolated cardiac myocytes.  Representative outward 
current traces recorded from WT (A) and Kvβ2-/- (B) ventricular cardiac myocytes in 
response to a family of 5s depolarizing pulses from -90 to +60 mV (Δ=10mV) from a 
holding potential of -80mV.  Peak outward current density in response to +50 mV was 
significantly reduced (C).  Tri-exponential fitting of current responses to a 5s 50mV 
depolarizing pulse was used to deconvolve individual currents based on inactivation 
rates (D-F).  The magnitude of the rapidly inactivating current was significantly 
reduced by loss of Kvβ2. (*: p<0.01).  N=# mice, n= # cells recorded.    
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Figure 3.9:  Action potentials in ventricular cardiac myocytes.  A. 
Representative action potentials recorded from ventricular cardiomyocytes isolated 
from WT and Kvβ2-/- mice.  B. Transmembrane action potentials of right ventricular 
cardiac myocytes were prologned at APD20, APD50, and APD90.  C.  Partial 
blockade of Kv1 currents using 4-AP (100 uM) similarly prolonged action potential 
durations in WT cardiomyocytes.  **: p<0.01  



 69 

 

 

 

 

 

 

 

 

 

 
 
Figure 3.10 Non-repolarization indices of electrophysiological function.  Non-
repolarization indexes of cardiomyocyte function in Kvβ2-/- cells, including A. dV/dtmax , B. 
Resting membrane potential, and C. Action potential amplitude.   
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Figure 3.11:  Surface action potentials.  Monophasic action potentials were 
recorded from electrodes placed on the left ventricular epicardial surface of 
Langendorff perfused hearts. Representative action potentials recorded from WT 
(A) and Kvβ2-/- (B), overlayed (C).  B.  Action potential durations at APD20 (D),  
APD50 (E), and APD90 (F) were significantly prolonged in Kvβ2-/- . n=5 mice WT 
and 6 mice Kvβ2-/-  *: p<0.05. Horizontal cale bar = 10ms.  Vertical scale bar = 20 
mV. These experiments were performed in collaboration with Dr. Srinivas Tipparaju 
and Dr. Kalyan Chapalamadugu at the University of South Florida Department of 
Pharmaceutical Sciences.      
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Figure 3.12:  Baseline cardiac function.  Echocardiography was used to measure 
stroke volume, ejection fraction and cardiac output.  These functional values were similar 
between WT and Kvβ2-/- mice.   
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Figure 3.13:  Cardiac anatomy. A. Heart weight normalized to tibia length in WT and Kvβ2-

/- mice.  B.  Left ventricular weight normalized to tibia length in WT and Kvβ2-/- animals.  C.  
Right ventricular mass was not reduced.  D. Transverse sections of hearts were stained 
with H&E stained transverse sections of hearts from WT and Kvβ2-/- animals. E.  Hearts 
excised from mice prior to dissection.  **: p<0.001, *: p<0.01.    

* **
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Figure 3.14:  Cardiac myocyte size in WT and Kvβ2-/- mice.  A. Cardiomyocyte 
length was measured under microscopy.  B.  Cardiomyocyte size was measured 
using capacitance during voltage-clamp experiments.  Over 50 cells from each 
genotype were measured by both methods.   
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CHAPTER IV 

REGULATION OF CARDIAC Kv CURRENTS AND REPOLARIZATION BY 

PYRIDINE NUCLEOTIDES 

 

Introduction 

Faced with a limited oxygen supply during ischemia, the oxidation of NADH 

by the mitochondrial electron transport chain complexes is inhibited, causing a rise 

in cytosolic NADH levels.  As a ubiquitous electron shuttling cofactor, changes in 

the NAD+/NADH ratio have widespread effects on the cell, including altering the 

activity of various enzymes involved in intermediate metabolism.  In the healthy 

heart, the ratio of NAD+/NADH remain generally constant as they are constantly 

recycled through various metabolic enzymes.  In the ischemic heart, this 

equilibrium is disturbed by the lack of oxygen, and the reduced NAD+ reserve is 

reflected in the inhibition of various dehydrogenases involved in energy 

metabolism.126  The accumulation of glycolytic byproducts NADH, lactate, and H+ 

may result in irreversible damage to the myocardium during ischemia.127  

The redox status of the pyridine nucleotide bound to Kvβ is known to alter 

the electrophysiological phenotype of the Kv channel complex (vide supra). 

Nucleotides in the reduced state, NAD(P)H, allow the rapid inactivation of the Kv 

channel by allowing free movement of the N-terminal inactivation domain of Kvβ1 

and Kvβ3 containing complexes.  Conversely, a bound nucleotide in the oxidized 
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state, NAD(P)+, inhibits N-type inactivation by restraining the N-terminus of Kvβ1 

and Kvβ3, preventing its access to the pore.82  Furthermore, in the presence of a 

bound oxidized nucleotide, the hyperpolarizing effect of Kvβ2 on Kv1.5 is lost, and 

the channel complex displays a V1/2-act not significantly different than that of Kv1.5 

alone, an effect that is likely conserved for all Kv1.5-Kvβ interactions.79   We 

therefore propose that Kvβ channel complexes may provide a mechanism linking 

cardiac metabolism with repolarization, which may be of particular importance 

during myocardial ischemia. 

The Kvβ proteins are members of the aldo-keto reductase (AKR) 

superfamily119, 128 and are functional oxidoreductases that utilize pyridine 

nucleotides, NAD[P](H),  for the reduction of a wide range of carbonyl substrates.80, 

129, 130  Accordingly, the Kvβ proteins bind pyridine nucleotides with high affinity, 

with Kd values in the low micromolar range.76, 81  

The redox status of the bound pyridine nucleotide confers profound electro-

physiological effects on the Kvα-Kvβ channel complex (Figure 1.5).  Studies in 

heterologous expression systems have demonstrated that oxidized nucleotides, 

NAD[P]+, prevent Kvβ1.3-mediated inactivation of Kv1.5.77  These studies have 

been expanded to include other Kvα-Kvβ arrangments,78-80  further elucidating how 

Kvβ-mediated modulation of Kv1 gating is dependent on the reduction state of the 

bound pyridine nucleotide.  The Kvβ2 protein product is shorter than Kvβ1 and 

Kvβ3, lacking the N-terminal domain responsible for rapidly inactivating Kv1 

channels.  NAD(P)+ has been shown to prevent the Kvβ2-mediated 
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hyperpolarizing shift in Kv1.5 activation voltage79 and acceleration of Kv1.4 

inactivation rate.80  

We therefore designed experiments to test our hypothesis that the cytosolic 

redox ratio of pyridine nucleotide affects cardiomyocyte excitability through the 

modulation of outward Kv currents.  We tested this using whole-cell voltage clamp, 

perforated-patch current clamp, excised-patch single channel patch clamp 

electrophysiology and Langendorff monophasic action potential recordings.    

 

Results 

Cardiac Kv current are differentially altered by pyridine nucleotide redox 

ratios 

In heterologous systems, the coexpression of Kv1 and Kvβ subunits 

generate Kv currents whose inactivation rates are modulated by pyridine 

nucleotides.54, 77, 80  To explore whether native cardiac Kv currents are sensitive to 

such changes, ventricular cardiac myocytes were patched in whole-cell 

configuration using pipette solutions chosen to represent normoxic and hypoxic 

cytosolic conditions (Figure 4.1).    Upon reaching whole-cell configuration, series 

resistance was compensated > 80% and pipette solution was allowed 5 min to 

dialyze with the cytoplasm before running voltage clamp protocols.  Outward 

currents were elicited with a +50 mV, 5 sec depolarization and fit triexponentially 

offline. We found that the inactivation rate of Kv currents was significantly 

accelerated under hypoxic compared to normoxic pipette conditions.  The time 

constants associated with the intermediately and slowly inactivating Kv currents, 
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IK,slow1 and IK,slow2 were reduced in cardiac myocytes patched with hypoxic internal 

solution than normoxic internal solution (Figure 4.1).  A comparison of all 

calculated values is found in Table 2.  Most notably, the intermediate tau value, 

attributable to the cardiac current Ik, slow1, was reduced from 189 +/- 6 ms  to 145 

+/- 11 ms in myocytes patched with pipette solution containing high NADH (Figure 

4.1).  It has been previously proposed that the  Ik,slow1 current is encoded by Kv1.5, 

which above we demonstrate to associate with Kvβ2.  

 

Langendorff perfusion with lactate increases cellular NADH concentration 

and slows cardiac repolarization 

 We utilized a model developed by Dudley et al131 to manipulate cytosolic 

NADH/NAD+ ratios.  In these experiments, sodium lactate and sodium pyruvate 

were added to the perfusion buffer to drive the lactate dehydrogenase reaction in 

the desired direction (Scheme 4.1).  In a preliminary experiment, hearts from both 

WT and Kvβ2-/- were perfused with Tyrode’s buffer containing 20 mM lactate for 

20 minutes and then frozen for measurement of cellular NADH content.  It was 

found that in both genotypes lactate perfusion significantly increased NADH levels 

(Figure 4.2).   

 In electrophysiological experiments, Langendorff hearts were allowed to 

beat spontaneously during perfusion and monophasic action potentials were 

recorded from the left ventricular epicardial surface.  It was found that action 

potential durations were prolonged following 20 minutes of perfusion with lactate 

20 mM as compared to each heart’s control values.  Action potential duration was 



 78 

increased significantly at 20%, 50%, and 90% repolarization in WT hearts, p<0.05, 

(Figure 4.3 A,B).  Action potential durations were not different from control values 

in Kvβ2-/- hearts (Figure 4.3 C, D). In a separate series of experiments, surface 

action potentials were recorded from WT hearts perfused with 20 mM lactate for 

20 min followed by 20 mM pyruvate for 20 min.  In these experiments, pyruvate 

perfusion caused APD90 to shorten toward their control values, presumably by 

restoring intracellular NAD+ levels (Figure 4.4).  

 

Action potentials recorded in perforated patch mode are prolonged by 

lactate perfusion 

We used current clamp to measure single cell action potentials in WT 

cardiac myocytes perfused with 10 mM lactate in Tyrode’s perfusion buffer.  The 

perforated patch configuration using Amphotericin B (250 μg/ml) was utilized 

because the pores formed by this perforating agent are sufficiently small to prevent 

the passage of any molecule larger than monovalent ions.  This allowed lactate to 

drive an intracellular increase in NADH without it dialyzing out of the cell into the 

pipette as it would in the whole-cell configuration.  Action potentials were elicited 

via small current injections of 0.8-1.0 nA lasting 2 ms at a frequency of 1 Hz.  Action 

potential durations following approximately 8 minutes of lactate superfusion were 

normalized to control values in the same cell. We found that APD50 was 

significantly increased during this treatment while APD20 and APD90 trended 

toward prolongation as well (Figure 4.5 B).  Action potential amplitude, resting 
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membrane potential and upstroke velocity, dV/dt were not affected by the 

treatment with lactate (Figure 4.5 C).    

 

Single channel Kv activity was altered by perfusion with 1 mM NADH 

 To directly test the effect of NADH on Kv channel activity, single channel 

activity was measured in inside-out patches pulled from freshly isolated cardiac 

myocytes.  Upon successfully obtaining an inside-out configuration, the membrane 

patch was perfused for at least 4 minutes with a minimal buffer containing 140 mM 

KCl, 10 mM HEPES and 1 mM HEDTA.  Pipette internal solution was symmetrical.  

The minimal composition of the buffer eliminated contamination with other cationic 

currents.  Chloride channel activity was ruled out based on single channel 

conductance values.  Patches were subjected to 4.5 s, +30 mV pulses at a 

frequency of 0.05 Hz.  Single channel activity was quantified as the percentage of 

time the patch stayed in the open and closed states during each sweep. In one 

representative experiment, the probability of the channel in the closed state 

increased 10-fold upon addition of 1 mM NADH to the perfusate (Figure 4.6 A, B).  

A marked increase in channel closure was seen almost immediately upon 

perfusion of NADH (Figure 4.6 C).             

 

Discussion 

We have demonstrated by multiple electrophysiological modalities that 

cardiac Kv conductance can be modulated by altering the pyridine nucleotide 

redox status in the cardiac myocyte.  There are multiple reports in the literature, by 
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our group and others, who have clearly demonstrated a direct effect of pyridine 

nucleotides on Kv channel activity in heterologous expression systems (vide 

supra).  To the best of our knowledge, the experiments herein described constitute 

the first demonstration of endogenous Kv channel modulation by pyridine 

nucleotides in a primary cell (cardiac myocyte) and tissue (the perfused heart).      

 In the classical biochemistry perspective, the pyridine nucleotides act as 

electron carriers, supporting oxidation-reduction reactions involved in a variety of 

anabolic and catabolic cellular processes.  In addition to their role in support of 

metabolic oxidoreductase reactions, new roles for these cofactors have emerged 

with recent research.  The pyridine nucleotides are now known to play roles in 

regulation of cell signaling, gene transcriptional regulation, free radical production, 

the thioredoxin and glutathione pathways and as ligands for ion channels.126, 128, 

132, 133 In the case of ion channel modulation, pyridine nucleotide sensitivity, 

particularly differential sensitivity for the oxidized (NAD[P]+) versus reduced 

(NAD[P]H) states, has been proposed as a mechanism to link the metabolic status 

of a cell to its excitability.  When subjected to hypoxic or anoxic conditions, aerobic 

metabolic capacity is diminished, resulting in an accumulation of the reduced 

pyridine nucleotide NADH generated from glycolysis and the tricarboxylic acid 

cycle.  Without available oxygen, this NADH can not be oxidized back to NAD+ 

through the electron transport chain enzymes.  This shift in pyridine nucleotide 

redox putatively may serve as a metabolic queue to alter the conductances of 

various ion channels, integrating metabolic activity with cellular excitability. 

Multiple channels or channel subunits contain nucleotide binding domains which 
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bind pyridine nucleotides with high affinity, including the calcium-activated K+ 

channels Slo1 and Slo2, KATP, the voltage-gated sodium channel Nav1.5, the cystic 

fibrosis transport regulator CFTR, the lysosomal two-pore channel TPC2, the 

transient receptor potential channel TRPM2, the ryanodine receptor RYR, and the 

voltage-gated K+ channel subunit Kvβ proteins.  128  These channels regulate many 

distinct cellular processes involved in cellular metabolism and homeostasis, and 

as such, their regulation by pyridine nucleotides may be a fundamental role of 

these molecules outside of their electron carrying ability.   

Whereas these nucleotides act as ligands to several structurally distinct ion 

channels by poorly understood mechanisms (see APPENDIX), the understanding 

of their molecular interaction with the Kvβ proteins is comparatively well delineated.  

In an elegant set of experiments by Pan et al., 82 serial mutagenesis of residues in 

the core domain and N-terminus of Kvβ1 was employed to determine the molecular 

mechanism by which N-type inactivation is modulated by the redox state of the 

pyridine nucleotide bound to Kvβ1.  Mutants were coexpressed with the delayed 

rectifier Kv1.1 in Xenopus oocytes and giant inside-out patches were pulled; 

patches were depolarized to +60 mV from a -100 mV holding potential and % 

inactivation (i.e. peak current – steady state current at 200 ms).  Patches were 

perfused with 4-cyanobenzaldehyde, previously described to be a reducible 

substrate of the Kvβ proteins.78  Kvβ catalysis of 4-CY into 4-cyanobenzoic acid 

requires the oxidation of the Kvβ-bound cofactor and thus this was utilized as a 

model for assaying the residues involved pyridine nucleotide-dependent 

modulation of N-type inactivation.  These experiments provided the information 
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implicating specific residues in the Kvβ1 core and N-terminal domains responsible 

for restraining the inactivation domain when a reduced nucleotide is present in the 

nucleotide binding domain.  Furthermore, these experiements mechanistically 

linked the enzymatic turnover of substrate with rapid inactivation kinetics, 

elucidating the processes by which both altered availability and redox status of 

cytosolic nucleotides or the presence of an unknown carbonyl substrate may be 

utilized to alter Kv channel conductances and thus cellular excitability.  Thus, this 

raises the interesting question of whether the primary mode of Kvβ-dependent Kv 

channel modulation occurs through shifting cytosolic NAD(P)H/NAD(P)+ ratio or 

through some unknown substrate to which Kvβ has a high turnover rate, or both.  

Further experiments are being performed by our group as well as others to uncover 

the physiological significance of these regulatory axes. 

In this project, cardiac myocyte Kv conductances were altered by 

intracellular dialysis of pipette mixtures containing either high NADH or NAD+ 

concentrations.  Furthermore, modulation of intracellular pyridine nucleotide redox 

status by lactate perfusion altered both cardiac myocyte and whole heart 

repolarization rates.  These are compelling evidences that pyridine nucleotides 

have the ability to modulate cardiac repolarization, but further evidence is required 

to demonstrate that they are endogenous regulators of ion transport or that 

physiological or pathological changes in pyridine nucleotide levels have any effect 

on ion transport.  A more thorough understanding of these relationships may 

require development of new modalities which are capable of simultaneously 

measuring free nucleotide levels and ion channel conductances either in cells or 
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tissue/organ preparations in order to delineate how these processes contribute to 

in vivo.   
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Figure 4.1: Cardiac Kv current inactivation..   Whole-cell outward Kv currents were 
elicited in response to a 5s, +50 mV depolarizing pulse from a holding potential of -80 mV 
and fit triexponentially.  Current inactivation was accelerated under hypoxic pipette 
conditions.  Representative amplitude-normalized Kv currents (A).  Inactivation time 
constants for tau 2 (corresponding to Ik,slow1) and tau 3 (corresponding to Ik,slow2) were shorter 
under hypoxic pipette mix conditions. .  Pipette internal solutions contained either normoxic 
(high NAD+) or hypoxic mixes (high NADH) of pyridine nucleotides. n= 19 cells (normoxic), 
14 cells (hypoxic).   (*: p<0.01, **: p<0.001.)   
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Figure 4.2:  Perfusion of hearts in Langendorff mode with lactate.  
Hearts were perfused ex vivo with lactate 20 mM (Lactate +) for 20 
minutes and flash frozen for later measurement of pyridine nucleotides.  
Cellular NADH concentration increased significantly in both WT (top) 
and Kvβ2-/-  compared to controls perfused with standard Tyrode’s 
buffer (Lactate -).  n= 3 hearts WT and 3 hearts Kvβ2-/- for each 
treatment.  *: p<0.05. These experiments were performed in 
collaboration with Dr. Srinivas Tipparaju and Dr. Kalyan 
Chapalamadugu at the University of South Florida Department of 
Pharmaceutical Sciences.      
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Figure 4.3:  Lactate perfusion causes action potential prolongation in WT but not Kvβ2-/- 
hearts.  Monophasic action potentials were recorded from Langendorff perfused hearts during 
control (Lactate -) and following lactate 20 mM perfusion for 15 minutes (Lactate +).  A. WT hearts 
displayed prolonged action potential durations (APD).  B. Action potential duration at 20, 50, and 90 
% repolarization was increased.  C. Kvβ2-/- repolarization was not sensitive to lactate.  D. Action 
potential durations in Kvβ2-/- were not changed from control. n=5 hearts WT and 5 hearts Kvβ2-/-  
*:p<0.05.  These experiments were performed in collaboration with Dr. Srinivas Tipparaju and Dr. 
Kalyan Chapalamadugu at the University of South Florida Department of Pharmaceutical Sciences.      
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Figure 4.4: Action potential prolongation caused by lactate is rescued by 
perfusion with pyruvate.  Monophasic action potentials were recorded on hearts as 
they were perfused with control Tyrode’s (Lactate -) for 15 min, followed by 20 mM 
lactate (Lactate +) for 20 minutes followed by 20 mM pyruvate (Pyruvate +) for 20 
minutes. Pyruvate perfusion shortened APD90 back to control values. n=5 hearts.  *: 
p<0.05.  These experiments were performed in collaboration with Dr. Srinivas Tipparaju 
and Dr. Kalyan Chapalamadugu at the University of South Florida Department of 
Pharmaceutical Sciences.          
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Figure 4.5: Cardiac myocyte action potentials are prolonged by lactate 
superfusion.  Single cell action potentials were recorded in WT cardiac 
myocytes (n=6) in the perforated patch configuration to allow intracellular 
NADH accumulation during lactate perfusion.  A.  Representative traces 
recorded during control (black) and following 8 min 10 mM lactate superfusion.  
B.  Action potential duration at 50% repolarization was significantly prolonged.  
C.  Action potential amplitude, resting membrane potential and upstroke 
velocity was not different from control. n=6 cells. *: p<0.05.  

* * 
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Figure 4.6: Single channel Kv activity in cardiac myocyte inside-out patches is 
increased by NADH.  A.  Single channel activity was recorded from excised patches 
pulled from cardiac myocytes perfused with control buffer. B. When 1 mM NADH was 
added to the perfusate, single channel event activity increased approximately 10-fold 
(percentage of time the channel spend in the closed state.) C.  P(closed) was calculated 
for each 5 second sweep during 4 minutes of control and 6 minutes of 1 mM NADH 
perfusion.      
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Scheme 4.1:  Lactate dehydrogenase reaction.  Langendorff-perfused hearts and 
cardiomyocytes in perforated patch configuration were perfused with 10 mM or 20 
mM sodium lactate in order to drive the LDH reaction to produce elevated cytoplasmic 
NADH. Langendorff perfused hearts   
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APPENDIX 

 

OTHER ION CHANNELS MODULATED BY PYRIDINE NUCLEOTIDES128 

 

Bacterial Potassium Transporters 

It is currently believed that life originated in an aqueous environment in 

which negatively charged biomolecules, such as proteins and nucleic acids, were 

trapped in a semipermeable membrane. The high osmotic pressure exerted by 

charged biomolecules was counterbalanced by a high concentration of positively 

charged K+ ions within the membrane-delimited cell. This intracellular 

accumulation of K+ and exclusion of the more abundant seawater cation, Na+ was 

probably used to energize the cell membrane. As a result, all living cells tightly 

regulate K+ transport and use K+ as the major solute to control osmolarity. The 

regulation of K+ transport is critically important not only for survival and growth but 

also for maintaining cytosolic pH and for transmitting information from the 

extracellular to the intracellular environment. Although it is unknown how archaic 

cells regulated K+ transport, modern bacteria, such as Escherichia coli, maintain 

separate systems for K+ uptake and efflux. Transport systems, such as Trk, Ktr, 

and T2M channels, mediate active uptake of K+ ions, whereas K+ efflux is effected 
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by the Kef system. Remarkably, all 4 of these transport systems possess a 

nucleotide-binding potassium transport nucleotide–binding domain (KTNBD).134, 

135  In uptake systems, this domain is in the cytosolic subunits (TrKA or KtrA) that 

assemble with the membrane-spanning subunits (TrkG/H or KtrB/D), whereas in 

systems mediating K+ efflux (KefC/B), the KTNBD is covalently linked to the 

cytosolic C-terminus of the ion transporter. In both instances, the cytosolic location 

of the NBD suggests a sensing mechanism in which ligand binding to the 

intracellular domains of the transporter could alter K+ flux through the ion-

conducting pore. This possibility is reinforced by the invariant proximity of the 

KTNBDs to the base of the innermost pore-forming helices134, suggesting that 

conformational changes in the KTNBD could readily alter the ion transport 

properties of the pore. The KTNBDs of bacteria form a well-conserved Rossmann 

fold, which is a stable NAD+-binding motif composed of 6 parallel β strands linked 

to 2 pairs of α-helices. This fold is commonly found in several bacterial and 

eukaryotic dehydrogenases. The Rossmann fold of KtrA binds to both NAD+ and 

NADH. Binding of these ligands is essential for the maintenance of the tetrameric 

state of KTNBD and ligand-mediated changes. This could impart conformational 

changes in the ion-transporting subunit to alter its conducting properties,134 

although this has not been directly demonstrated. 

Like KtrA, the K+ uptake proteins TrkG/H also interact with subunits (TrkA) 

containing the KTNBD. The TrkA subunit of TrkG/H has 2 distinct dinucleotide-

binding sites in each of 2 similar subdomains and, in addition to TrkG/H, TrkA also 

interacts with several other proteins, such as TrkE, to form functional channels. 
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Each half of the protein sequence of TrkA aligns with NAD+-dependent 

dehydrogenases, such as lactate, malate, and alanine dehydrogenase, and 

purified TrkA binds NAD+ and NADH with much higher affinity than ATP.136  

Because TrkA lacks the C-terminal catalytic domain of dehydrogenases, it is 

considered unlikely that the protein has enzyme activity. Nevertheless, it has been 

proposed that binding of NAD(H) to TrkA regulates the transport activity of the 

TrkG and the TrkH systems,134 but the functional regulation of Trk transporters by 

NAD(H) has not been directly demonstrated to date. However, the presence of a 

pyridine NBD in TrkA suggests potential coupling between energy expensive 

import of K+ ions and active metabolism. This coupling might be particularly 

important during cell growth. A high NADH:NAD+ ratio is a prerequisite for cell 

growth, and activation of K+ import by pyridine nucleotides may be required to 

maintain cytoplasmic K+ levels and turgor pressure during cell expansion.134  

In contrast to the K+ uptake systems, which associate with nucleotide-

binding proteins, the K+-efflux system, KefC, has a KTNBD that is covalently linked 

to its ion-transporting subunits. The KefC transport system is inactivated by 

reduced glutathione, and it is activated by glutathione-S-conjugates.137  Activation 

of this transport by glutathione conjugates leads to acidification of the cytosol. 

Because thiol reactivity is decreased at low pH, this might be a strategy for 

preventing the modification of cytosolic protein thiols, and thereby for protecting 

the bacteria from electrophilic stress. The C-terminal KTNBD of KefC is similar in 

structure to the Rossmann fold of dihydrofolate reductase and it binds glutathione. 
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Inhibition of KefC by glutathione is enhanced by NADH, but not NAD+, indicating 

that NADH:NAD+ ratio could regulate the antiporter activity of KefC.138 

In addition to glutathione and NADH, the KTNBD of KefC also binds to the 

auxiliary subunits, KefF and KefG, which are required for the full activation of 

KefB/C.139 The primary sequences of KefC and KefG show striking resemblance 

to human quinone reductases and in the crystal structure of KefF, FMN is bound 

to the KTNBD of the protein.140  Recently, it has been shown that the KefF is a 

bonafide oxidoreductase in which NADH and NADPH act as electron donors and 

quinones and ferricyanide act as acceptors.141  Although enzyme activity was not 

found to be required for KefC activation, it was suggested that by catalyzing the 

reduction of quinones, KefF protects KefC from the toxicity of electrophilic 

quinones.141  

As discussed, the link between K+ channels and nucleotide-binding proteins 

in bacteria is conserved in eukaryotic K+ channels. Like the bacteria efflux systems 

(Kef), some of the eukaryotic channels, such as the Slo channels, possess a 

nucleotide-binding site in their cytosolic domain, whereas others, such as Kv 

channels, associate with auxiliary subunits that bind pyridine nucleotides in a 

manner reminiscent of the bacterial K+ uptake systems (Trk/Ktr). Moreover, like 

bacterial channels, the mammalian K+ channels also are regulated by pyridine 

nucleotides. It is likely that this mode of regulation is conserved during evolution 

because it plays a critical, nonredundant role in linking K+ transport to the 

metabolic state of the cell, thereby enabling the cell to sense and respond to 

changes in the external environment. 
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Slo K+ Channels 

The Slo family comprises high-to-intermediate conductance channels with 

a C-terminal domain that bears close resemblance to TrkA and other NAD+-binding 

prokaryotic K+ transporters.142 These channels are widely distributed across 

Linnaean borders and are expressed in many types of cells, including cardiac 

myocytes and smooth muscle cells. The 4 mammalian Slo genes, Slo1 (BKCa), 

Slo2.1 (Slick), Slo2.2 (Slack), and Slo3, encode proteins that form K+-selective 

homotetrameric channels.143  The core region of these channels resembles the 

canonical Kv channels, but their cytoplasmic domain shows unusually high 

structural diversity. Variations in the cytosolic domain enable these channels to 

respond to a wide range of intracellular ions and metabolites. The cytosolic region 

of Slo1 binds to calcium via the calcium bowl located at the distal end of its 

hydrophilic tail; therefore, these channels are sensitive to changes in both 

membrane potential and [Ca2+]i. The Slo2.1 channel is regulated by Cl−, but it 

contains an ATP-binding domain as well. The Slo2.2 channel is insensitive to Cl− 

and it does not bind ATP. Nevertheless, both Slo2 channels respond to elevated 

[Na+]i levels, giving rise to the KNa current.144 

Initial work showed that the KNa channels are sensitive to sodium only at 

supraphysiological levels (50–80 mmol/L), making it doubtful whether they could 

be regulated by physiological changes in [Na+]i that usually vary between 5 and 15 

mmol/L.145 Channel run-down after initial excision also was frequently observed. 

These discrepancies remained unresolved until Tamsett et al142 found that the 
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cytoplasmic domain of both Slo2.1 and Slo2.2 contains NBDs similar to TrkA. This 

site includes a canonical NAD+-binding βαβαβ motif that was required for 

nucleotide binding. They also found that application of physiological levels of NAD+ 

to inside-out patches of rat dorsal root ganglion neurons led to a 2- to 2.5-fold 

increase in the open probability of KNa channels and a decrease in EC50 of Na+ 

from 50 to 20 mmol/L. The specificity of this interaction was reinforced by the 

finding that other cytosolic factors (cAMP, cGMP, and ATP) were without effect.146  

NAD+, but not NADH, was effective in altering the gating properties of the channel, 

but only in the presence of Na+. Moreover, like native KNa channels, the current 

generated by Slack channels also was increased by NAD+ or NADP+. Site-directed 

mutations at the NAD+-binding site of the Slo2 channel abolished this response, 

suggesting that direct nucleotide binding to the cytosolic region of the channel is 

required for these channels to respond to changes in pyridine nucleotide levels. 

The regulation of KNa/Slo2 channels by NAD(P)+ suggests that the activity 

of these channels may be coupled to the metabolic state of the cell. This mode of 

regulation may be particularly important during ischemia–reperfusion and other 

conditions in which accumulation of NAD(P)+ could increase K+ efflux via these 

channels. High levels of intracellular NAD(P)+ also would increase the sensitivity 

of these channels to intracellular sodium. Indeed, it has been suggested that in 

ischemic cardiac myocytes, elevated [Na+]i levels activate KNa, and an increase in 

this current shortens the action potential duration and induces calcium overload.147, 

148 Therefore, regulation by pyridine nucleotides would allow these channels to 

adapt simultaneously to both the metabolic and the ionic conditions prevalent in 
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the ischemic heart. Interestingly, even though the evidence is indirect, it has been 

proposed that the Slo2 channels are present in cardiac mitochondria.149  If present, 

the regulation of these channels by pyridine nucleotides might represent 

conservation of the link between metabolism and ion transport in modern 

mitochondria and their prokaryotic ancestors. 

The NAD+-binding site of Slo2 resembles the calcium binding site of the 

cytoplasmic domain of Slo1 channels, which contain 2 regulators of potassium 

conductance domains.143 The regulator of potassium conductance domain is 

similar to the KTNBD of bacterial channels134  found in 6-transmembrane K+ 

channels, except that in the KTNBD the nucleotide binding Rossmann fold is not 

conserved. The N-terminus of the regulator of potassium conductance domain of 

Slo1 forms a Rossmann fold, which is similar to that seen in the structure of the 

cytoplasmic region of Slo2.2150; however, amino acid replacements in this domain 

during evolution have recruited the structure to bind calcium ions in case of Slo1 

and sodium in case of Slo2.2. Although no direct pyridine nucleotide binding to the 

regulator of potassium conductance domain of Slo1 channels has been 

demonstrated, Lee et al151 have reported that application of 2 mmol/L NAD+ to the 

internal face of excised patches from small (<300 μm) pulmonary arteries reduces 

the open probability of BKCa channels, whereas NADH has the opposite effect. 

However, pyridine nucleotides had no effect on steady-state BKCa conductance 

in ear arterial smooth muscle cells151 or in large (>300 µm) intralobar pulmonary 

arteries,152 although in large arteries, application of NADH did lead to a voltage-

dependent block of the channel.  Although these observations are intriguing, 
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further studies are required to understand how intracellular changes in pyridine 

nucleotides regulate the activity and the physiological role of Slo channels. 

 

Kv2.1 Channels 

Like members of the Kv1 and Kv4 family, the Kv2.1 channels also have 

been shown to be sensitive to the redox ratio of pyridine nucleotides. MacDonald 

et al153 have reported that in whole-cell recordings of Kv2.1 from pancreatic β-cells, 

increasing the NADPH:NADP+ ratio in the patch pipette from 1:10 to 10:1 

increased the contribution of fast inactivation to total inactivation from 40% to 60%. 

The effects, however, were modest and could not be duplicated by Yoshida et al.154  

Moreover, it is unclear how Kv2.1 is regulated by NADP(H). The Kv2.1 protein 

does not associate with pyridine-binding subunit, such as Kvβ, and direct binding 

of pyridine nucleotide to Kv2.1 has not been demonstrated. Although it is possible 

that changes in NADPH/NADP+ levels could also affect Kv2.1 currents indirectly 

by changing cell metabolism or kinase activation, there is no evidence to support 

this possibility. Moreover, the physiological significance of the redox sensitivity of 

Kv2.1 in insulin secretion is unclear, because it has been reported that changes in 

Kv2.1 channels do not affect the levels of the critical pool of subplasma membrane 

calcium that regulates exocytosis.155 Because NADPH facilitates insulin 

exocytosis,156 it has been speculated that the binding of NADPH increases the 

association of Kv2.1 with SNARE proteins, which facilitates granule docking or 

priming.157  Although this is an interesting possibility, additional investigations are 

required to fully elucidate the relationship between NADP(H) and Kv2.1 and to 
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assess its importance in regulating insulin secretion or other physiological 

phenomena. 

 

Voltage-gated Sodium Channel 

The voltage-gated sodium channel (Nav) conducts the fast inward sodium 

current that gives rise to the upstroke of the action potential and regulates the 

action potential duration. Therefore, small changes in sodium current profoundly 

impact myocardial excitability and conductance and such changes attributable to 

genetic mutations increase myocardial susceptibility to arrhythmias. Several gain-

of-function and loss-of-function mutations in the cardiac channel (SCN5A) and its 

auxiliary subunits (Nav β1–β4 subunits) have been linked to arrhythmic 

syndromes, such as the long Q-T (LQTS type 3), the Brugada, the sick sinus, and 

the sudden infant death syndromes.158  In a large multigenerational family of Italian 

descent with Brugada syndrome159 and in several cases of sudden infant death 

syndrome,160 the pathogenic cause has been identified to mutations in the glycerol-

3-phosphate dehydrogenase-1-like protein (GPD1-L), which decrease surface 

trafficking of SCN5A and the peak sodium current. The importance of GPD1-L is 

further underscored by recent evidence showing that common variations in or near 

GPD1-L are associated with increased risk of sudden cardiac death in patients 

with coronary artery disease.161  

GPD1-L is a 40-kDa protein that shares 84% sequence homology with 

GPD, an oxidoreductase that converts dihydroxyacetone phosphate to glycerol-3-

phosphate. Because glycerol-3-phosphate is required for lipid synthesis, the 
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activity of GPD connects carbohydrate metabolism to lipid synthesis. GPD also 

contributes electrons to the mitochondrial electron transport system and maintains 

the redox status of the pyridine nucleotide levels in the mitochondria by 

participating in glycerol phosphate shuttle. GPD1-L displays glycerol phosphate 

dehydrogenase activity, although its catalytic activity is slower than that of GPD.162, 

163 Results of GST pull-down assays in a heterologous expression system suggest 

that GPD1-L is directly or closely associated with the pore-forming α-subunit of 

SCN5A.162 GPDL-1 mutations that have been linked to Brugada syndrome 

(A280V) and sudden infant death syndrome (E83K) decrease GPDL-1 activity, but 

do not alter its association with SCN5A.162  However, these mutations decrease 

the surface expression of SCN5A, thereby reducing total INa.159, 162   This 

phenomenon is reminiscent of the behavior of Kvβ, which is also an 

oxidoreductase that regulates the surface expression of its pore-forming partner 

(Kv1). As seen with GPDL-1, loss-of-function mutations also decrease the effects 

of Kvβ on Kv1 trafficking.164  

The close association between Nav and GPD1-L suggests that the sodium 

current may be sensitive to redox chemistry. Patch-clamp experiments of Dudley 

et al165  show that in rat neonatal cardiac myocytes and in HEK cells expressing 

SCN5A, intracellular dialysis with 20 to 100 μmol/L NADH directly inhibits and that 

this is antagonized by incubating the cells with NAD+. This inhibition of INa was 

linked to NADH-dependent protein kinase C (PKC) activation or mitochondrial 

superoxide generation.165 However, the processes by which NADH could stimulate 

PKC have not been identified and it was unclear how activated PKC could increase 
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mitochondrial reactive oxygen species production. Moreover, NADH-mediated INa 

suppression was not accompanied by changes in the inactivation of the channel 

or the induction of window current or a late sodium current, usually seen in cardiac 

myocytes exposed to oxidants.166-168  Valdivia et al 162 suggest that at least some 

of the effects of NADH on sodium current may be attributable to changes in GPD1-

L activity, because they were completely abolished by inhibiting PKC, indicating 

that NADH has no direct effects on Nav. They link PKC activation to GPD1-L 

activity, suggesting that NADH increased the production of glycerol-3-phosphate 

by GPD1-L, which increases diacylglycerol formation. This increase in 

diacylglycerol stimulates PKC activity and results in greater SCN5A 

phosphorylation. Moreover, they found that PKC activation acutely decreases the 

surface expression of SCN5A and this effect is prevented by the NADPH oxidase 

inhibitor apocynin, suggesting that both channel phosphorylation and reactive 

oxygen species production are required for PKC-mediated regulation of SCN5A 

trafficking.162, 169_ENREF_153 However, these signaling pathways have been 

delineated mostly in heterologous systems and, therefore, additional experiments 

are required to determine endogenous regulation of INa by pyridine nucleotide in 

cardiac myocytes (or neurons) and to determine whether GPD1-L and pyridine 

nucleotide–dependent changes in PKC activation and reactive oxygen species 

generation affect only sodium channels or other ion transport mechanisms as well. 

 

ATP-regulated K+ Channels 
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The ATP-regulated K+ channels represent another class of K+ channels that 

are regulated by nucleotides. Although these channels are primary regulated by 

ATP, they also have been found to be sensitive to pyridine nucleotides as well. 

The effects of pyridine nucleotides on the KATP channels were first described by 

Dunne et al,170 who reported that in excised patches of insulin-secreting cells low 

(100 μmol/L) concentrations of NAD(P)+ and NAD(P)H promoted channel opening, 

whereas high concentrations (500 μmol/L) led to channel closure. These effects 

were modified by ATP and ADP, indicating that pyridine coenzymes compete with 

adenine nucleotides for the NBD of the channel. 

The KATP currents are generated by a large conductance channel present 

in the plasma membrane of several tissues, including the heart, smooth muscle, 

and pancreatic β-cells.171, 172 An ATP-dependent potassium conductance has also 

been identified in the mitochondria,173, 174  which has recently been found to be 

attributable to a channel related to the ROMK (Kir1.1) channel of the renal outer 

medulla.175  The sarcolemmal KATP channels open when the cellular 

concentrations of ATP are low and are blocked at high ATP levels. These channels 

are formed by the 4 pore-forming Kir6.2 subunits and 4 regulatory sulfonylurea 

receptor (SUR2A) subunits. The current is inhibited by the binding of adenine 

nucleotides to Kir6.2. Moreover, the NBD of SUR interacts specifically with Mg–

nucleotide complexes, resulting in channel opening.171  Therefore, in any given 

metabolic state, the activity of the channel is a balance between the stimulatory 

and inhibitory effects of adenine nucleotide binding. Experiments with Kir6.2/SUR1 

expressed in Xenopus oocytes have shown that inhibition of these currents by 
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NAD+ and NADP+ is mediated via binding to the Kir6.2 NBD, but not to the SUR1 

NBD. The affinity of Kir6.2 for NADP(H) is markedly enhanced on interaction with 

SUR1, perhaps because modification of the nucleotide-binding pocket of Kir6.2 by 

SUR1 facilitates the attachment of molecules bulkier than adenine 

mononucleotides, such as NADP(H).176  Nevertheless, the physiological 

significance of this interaction has not been assessed, and it is not clear whether 

the cardiac SUR2A isoform responds similarly. Because pyridine nucleotides are 

much less potent in inhibiting IKATP, it is likely that these nucleotides make only a 

small contribution to inhibition of the channel. Moreover, because the Kir6.2 

displays no specificity for oxidized or reduced species but responds only to bulk 

nucleotide concentrations, it cannot participate in modulation of membrane 

potential by the redox state of pyridine nucleotides. Additionally, the ability of low 

concentrations of pyridine nucleotides to increase the activity of native KATP 

channels in pancreatic cells170 was not observed in oocytes expressing 

Kir6.2/SUR1.176  Clearly, additional work is required to elucidate the mechanism of 

binding of low levels of pyridine nucleotides and to assess the significance of 

binding to physiological levels of NADP(H). Nevertheless, because pyridine 

nucleotides levels change under conditions that affect ATP levels, it is likely that 

native KATP channels are sensitive to both adenine and pyridine nucleotides. 

Like the sarcolemmal KATP channel, the mitochondrial KATP currents also 

respond to pyridine nucleotides. Measurements of mitochondrial KATP activation by 

osmotic swelling indicate that the channel activity could be inhibited by NADPH.177  

The inhibition of the channel could not be related to reduction of mitochondrial 
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thiols and, therefore, was ascribed to direct regulation of the channel activity by 

NADPH. These observations suggest that the regulation of mitoKATP channels by 

NADPH may be a physiological mechanism for sensing changes in energy 

metabolism and the redox status of mitochondria, but extensive work will be 

required to determine whether pyridine nucleotides are endogenous regulators of 

mitochondrial K+ transport. 

 

Cystic Fibrosis Transmembrane Conductance Regulator 

The cystic fibrosis transmembrane conductance regulator is an ATP-

binding cassette ion exchanger responsible for moving chloride and thiocyanate 

ions across epithelial cell membranes. Mutations in this gene create a 

nonfunctional protein that does not transport chloride and water in and out of cells 

that line the lungs, the pancreas, the liver, and the reproductive and digestive 

tracts. This disruption of osmotic gradients results in the production of abnormally 

viscous mucous, causing the obstruction of the respiratory tract characteristic of 

cystic fibrosis, as well as chronic dysfunction of other affected organs. The cystic 

fibrosis transmembrane conductance regulator acts as a cAMP-activated ATP-

gated ion channel that allows Cl− ions to flow down their electrochemical gradient 

and exit the cell. It has been reported that pyridine nucleotides can interact with 

the NBD of cystic fibrosis transmembrane conductance regulator and that the 

redox potential of pyridine nucleotides regulates the Cl− conductance of the 

channel.178  It was found that when ATP levels were clamped, there was a marked 

increase in Cl− conductance on dialysis of the cell with NADP+. In contrast, dialysis 
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with NADPH inhibited Cl− conductance. Although these studies point to an 

intriguing link between the redox state of pyridine nucleotides and Cl− 

conductance, no studies seem to have followed-up on these initial findings. 

 

Transient Receptor Potential (TRP) M2 Channel 

Pyridine nucleotides and their metabolites also regulate calcium transport 

and homeostasis. Although the effects of pyridine nucleotides on the voltage-

dependent calcium channels have not been reported, recent work has shown that 

NAD+ regulates calcium homeostasis by modifying the activity of TRPM2 channel 

(TRPM2). The transient receptor potential (TRP) M2 channel belongs to a large 

TRP superfamily which comprises several 6 transmembrane cation channels 

involved in a variety of processes ranging from sensation of touch, smell, taste, 

pain, temperature, osmotic pressure, and apoptosis.179  A distinguishing feature of 

the TRPM2 channel is the presence of a cytosolic nudix hydrolase domain in the 

C-terminus of the channel that is highly homologous to the ADP pyrophosphatase 

NUDT9 and is therefore named the NUDT9-homologous domain (NUDT9-H). The 

NUDT9 domain of ADP pyrophosphatase displays 39% sequence identity with 

TRPM2 and is a member of the Nudix family of proteins, such as 8-oxo-dGTP 

hydrolase (MutT) and diadenosine tetraphosphate pyrophosphatase (AP4A 

hydrolase).180  TRPM2 is highly abundant in the brain, but it is also expressed in 

other tissues, including, spleen, liver, lung, heart, and myeloid cells.181  The 

channel is nonselective for cations and displays a nearly linear current–voltage 

relationship with a reversal potential near 0 mV.182  The physiological functions of 
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TRPM2 have not been completely elucidated, but there is evidence showing that 

the channel is involved in monocyte chemotaxis183, insulin secretion by pancreatic 

β-cells184, and lysosomal calcium release.185  Studies with TRPM2-null mice 

suggest that the channel controls the production of chemokines in monocytes and 

the infiltration of neutrophils during inflammation.186  Because TRPM2 is highly 

responsive to oxidative stress, it is likely that this channel could function as a redox 

sensor187  by directly binding to NAD+ or its metabolite, ADPR. 

Data from whole-cell patch-clamp experiments show that intracellular 

dialysis with NAD+ 188 evokes a large inward current in cells expressing TRPM2 

channels. In excised patches, application of NAD+ lead to instantaneous activation 

of the channel, suggesting that NAD+ directly activates the channel without the 

involvement of cytoplasmic or membrane components. However, regulation of the 

channel by NAD+ remains controversial. Some investigators suggest that 

stimulation of the channel by NAD+ may be attributable to contamination of the 

commercially available NAD+ preparations that contain trace levels of ADPR, 

which is the natural ligand of the channel.189  Nevertheless, direct binding of 32P-

NAD+ to a GST fusion protein of the C-terminal domain of TRPM2184, 187 suggests 

that the channel protein interacts with NAD+, presumably as it does with ADPR. 

Moreover, even though trace contamination by ADPR could account for the effects 

of 1 mmol/L NAD+, channel activation at higher temperature also has been 

observed at 300 μmol/L NAD+ 184 and only minimal channel activation was 

observed with 10 μmol/L ADPR188 (EC50 ≈100 μmol/L),182 suggesting that 
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contamination with >10% ADPR would be required to fully account for pronounced 

channel activation by commercial NAD+ preparations. 

The binding of 32P-NAD+ to the C-terminus of TRPM2 channels indicates 

that NAD+ interacts with ADPR binding site of the Nudix domain. The importance 

of this domain has been confirmed by experiments showing that deletion of the C-

terminus abolishes the activation of the channel by both ADPR and NAD+.187, 190  

Hara et al187 have suggested that H2O2 activates TRPM2 by increasing the 

intracellular NAD+, which precipitates cell death by inducing calcium and sodium 

overload. A similar NAD+-activated conductance, reminiscent of the TRPM2 

activity, also has been implicated in rat striatal neuron cell death induced by cell 

depolarization and calcium influx.191  Additionally, it has been reported that a 

similar NAD+-gated nonselective cation channel is activated in CRI-G1 rat 

insulinoma cells treated with H2O2.192 The findings of these studies suggest that 

stimulation of TRPM2 by NAD+ could activate cation influx and trigger cell death. 

Similarly, in cardiac myocytes, activation of TRPM2 and the resultant sodium and 

calcium overload have been proposed to be obligatory steps in H2O2-mediated 

apoptosis.124  Nonetheless, it remains unclear whether myocardial oxidative injury 

in vivo during ischemia–reperfusion could be attributed to TRPM2 activation and 

whether this is mediated by NAD+ binding to the channel. Further experiments with 

TRPM2-null mice are warranted to rigorously delineate the role of TRPM2 in 

myocardial ischemic injury and heart failure and to determine whether the activity 

of the myocardial channel is regulated by NAD+. 
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In addition to its direct effects on the channel, NAD+ could affect the 

regulation of TRPM2 by its endogenous ligand, ADPR, or inhibit the catalytic 

activity of the C-terminal domain of the channel. It is currently believed that TRPM2 

is activated by ADPR generated from the cleavage of NAD+ by CD38.193 Thus, 

NAD+ levels could indirectly affect TRPM2 activity by regulating the supply of 

ADPR. NAD+ also could compete with ADPR binding and catalysis. The NUDT9 

domain of the channel has low levels of ADPR pyrophosphatase activity182 which 

could be inhibited by NAD+ and other pyridine nucleotides and their metabolites, 

although this possibility has not been directly tested. Regardless, the presence of 

a catalytic domain within the channel is fascinating because it indicates that as 

seen with the bacterial Kef system, the TRPM2 channels belong to a distinct class 

of channel proteins that possess catalytic activity. Even though the enzymatic 

activity of NUDT9 is considerably lower than in the ADPR pyrophosphatases, this 

may be an evolutionary adaptation to increase the dwell time of ADPR at the 

channel.190 Moreover, mutations of the catalytic domain that increase enzymatic 

activity of NUDT9-H decreased channel activity, suggesting that nucleotide 

binding, not catalysis, activates the channel. Notably, the interesting possibility that 

channel gating or ion flow modulates the catalytic activity of NUDT9-H has not 

been tested. 

 

Ryanodine Receptor (RyR) Calcium Release Channel 

The RyRs represent another class of ion channels that may be regulated by 

pyridine nucleotides. Sequence analysis and homology modeling studies show 
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that the RyR of the skeletal muscle (RyR1) contains several dehydrogenase and 

NAD+/NADH oxidoreductase domains.194 This region is located near the N-

terminus of the RyR1 and it shows significant structural homology to isocitrate 

dehydrogenase and isopropylmalate dehydrogenase. It also contains additional 

motifs related to the alcohol dehydrogenase. Notably, several of the residues that 

participate in NADP+ binding in isocitrate dehydrogenase are conserved in RyR1, 

suggesting that the channel may be capable of binding to pyridine nucleotides. 

Indeed, equilibrium-binding studies indicate low-affinity binding of [3H] NAD+ to the 

sarcoplasmic reticulum membrane (Kd=10 μmol/L), although kinetic studies 

indicate a much higher affinity (Kd=50 nmol/L). On the basis of these studies, it 

has been estimated that nearly 10 molecules of NAD+ bind to each subunit of 

RyR1.194  Sequence alignment demonstrates that the the cardiac RyR2 protein 

shares ≈82% homology with RyR1 between amino acids 41 and 1200, and that 

this region of the protein contains multiple nucleotide-binding sites with significant 

structural and sequence homology to phosphorylated isocitrate dehydrogenase. 

The same region also encompasses both catalytic and binding sequences 

common to dehydrogenases and oxidoreductases. 

The results of structural and biochemical studies are consistent with 

functional measurements. In permeabilized ventricular myocytes, addition of 

NADH decreases the frequency of calcium sparks,195 and this inhibitory effect of 

NADH is partially reversed by NAD+, although NAD+ by itself has no effect on 

calcium spark frequency. These findings suggest that an increase in NADH/NAD+ 

(eg, during ischemia) could inhibit spontaneous sarcoplasmic reticulum calcium 
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release. Nevertheless, the biochemical basis and the physiological significance of 

these findings are yet to be established. Particularly, it is unclear whether these 

effects are because of direct binding of NAD+ to RyR or because of some other 

indirect NAD+-dependent changes, such as increased superoxide generation by 

NADH oxidase.196 

Although NAD+ does not activate calcium sparks in permeabilized 

myocytes, addition of 1 µmol/L NAD+ increases the open probability of single RyR2 

cardiac calcium release channels incorporated into planar phospholipid bilayers.197  

A similar increase has been reported for skeletal muscle RyR1 channels; in which 

case, addition of 1 to 10 μmol/L NAD+ led to a 7- to 80-fold increase in open 

probability.198 These observations suggest that NAD+ can directly activate calcium 

release channels; however, additional investigations are required to fully assess 

the role of pyridine nucleotides in regulating the calcium release channels, to 

determine whether the oxidoreductase domains of the RyR are catalytically active, 

and whether this catalysis regulates calcium release by the channel. 

 

Regulation of Calcium Signaling by NAADP+ 

In addition to directly regulating ion transport, pyridine nucleotides also generate 

specialized metabolites that regulate cell signaling, particularly calcium fluxes. The 

most potent of these metabolites is nicotinic acid adenine dinucleotide phosphate 

(NAADP+), which stimulates calcium release in different cell types at 

concentrations as low as 5 to 10 nmol/L. Activation of calcium release by NAADP+ 

has been found to regulate several physiological processes, including fertilization, 
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neurite outgrowth, synaptic function,199 and insulin secretion.200 NAADP+ also 

mobilizes calcium stores in smooth muscle cells201  and cardiac myocytes.202  In 

endothelial cells, NAADP+ has been recognized as an essential mediator of 

histamine-induced secretion of von Willebrand factor203  and a regulator of nitric 

oxide production.204  On the basis of the observation that intravenous 

administration of a cell permanent NAADP-ester lowers blood pressure in rats, it 

has been suggested that NAADP+ regulates systemic blood pressure.204  

NAADP+ is an NADP+ derivative in which the nicotinamide ring is replaced 

by nictonic acid. This structural difference may be sufficient in preventing NAADP+ 

binding to most NADP+-binding proteins, and in promoting specific recognition of 

NAADP+ by its cognate receptors. The biochemical processes involved in NAADP+ 

synthesis have not been completely identified. In vitro NAADP+ is synthesized from 

NADP+ by both ADP-ribosyl cyclases and CD38,205 but it is not clear whether these 

enzymes synthesize NAADP+ in vivo. Measurements of basal NAADP+ levels in 

several tissues show that CD38-null mice maintain normal NAADP+ levels.206 

Moreover, increases in NAADP+ levels in histamine-stimulated myometrial cells206 

and in glucose-stimulated islet cells200 are preserved in the absence of CD38, 

although NAADP+ generation in response to CCK stimulation in pancreatic acinar 

cells207 is attenuated. Thus, at least in some cells, NAADP+ synthesis seems to be 

CD38-independent and it is likely that there are additional enzyme(s) involved in 

generating basal and agonist-evoked NAADP+. 
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Agonist-stimulated increase in NAADP+ levels is associated with release of 

calcium from intracellular stores that are different from those mobilized by IP3 or 

cyclic ADPR.208 It is currently believed that NAADP+ targets lysosome-related 

stores as some of its effects are inhibited by depletion of acidic calcium stores, but 

not by inhibitors of sarco/plasmic or endoplasmic reticulum Ca2+-ATPase. The 

ability of NAADP+ to release calcium from lysosomes has been related to the 

activation of 2-pore channels (TPCs).209, 210 These channels contain 2 putative 

pore-forming repeats and their transmembrane regions are similar to that of other 

channels, such as the Nav or TRP channels however, instead of the plasma 

membrane, these channels are located in the endolysosomes and lysosomes or 

the ER. To date, 3 genes encoding TPCs (TPCN1-3) have been identified, of which 

TPCN2 is the predominant form expressed in primates and humans. Cells 

expressing TPC2 show a marked increase in calcium release on intracellular 

dialysis with 10 nmol/L NAADP+. Conversely, genetic knockdown of these 

channels abolishes NAADP+-induced calcium release, indicating that TPCs are 

endogenous targets of NAADP+.208 However, in addition to TPCs, NAADP+ also 

activates RyR211 and TRP subtype mucolipin 1 (TRP-ML1)212 and, at high 

concentrations, the TRPM2213 channels. The role of each of these channels in 

shaping the overall calcium response to NAADP+ is not clear, but it has been 

suggested that responses of multiple NAADP+ targets are integrated such that the 

small localized release of calcium by NAADP+ via TPCs is amplified by neighboring 

receptors to generate well-orchestrated calcium oscillations. 
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The molecular mechanisms by which NAADP+ regulates TPCs remain to be fully 

elucidated. Data from HEK-293 cells show that relative to wild-type cells, cells 

stably overexpressing TPC2 display increased [32P] NAADP+ binding at high-

affinity (Kd=5 nmol/L) and low-affinity (Kd=10 μmol/L) sites.210 However, the results 

of photoaffinity studies using radioactive 5-azido NAADP+ show no direct binding 

to the TPC protein. These studies, however, did show that some unknown low-

molecular-weight proteins were labeled by [32P] NAADP+ and that the labeling of 

these proteins was preserved in TPC-null cells.214 These observations suggest that 

similar to what has been observed with other pyridine coenzyme–regulated 

channels (eg, Kv channels), there might be ancillary proteins within the larger TPC 

complex, which impart NAADP+ sensitivity to TPCs. 

 

Because NAADP+ is synthesized from NADP+, it is possible that this synthesis is 

sensitive to prevailing intracellular levels of pyridine nucleotide as well as cellular 

redox state. However, CD38-ribose and ADP-ribose cyclase-dependent NAADP+ 

synthesis requires nicotinic acid, which binds to these enzyme with low affinity (half 

maximal effective concentration, 5 mmol/L).205 Therefore, under most conditions, 

the availability of nicotinic acid, rather than NADP+, is likely to be the limiting factor. 

NAADP+ signaling could, however, be coupled to the cellular redox state by 

enzymatic reduction of NAADP+ to NAADPH. NAADP+ is structurally related to 

NADP+ and it binds to NADP+-linked enzymes, such as glucose-6-phosphate 

dehydrogenase and 6-phospho gluconate dehydrogenase.215 The reduction of 

NAADP+ by glucose-6-phosphate dehydrogenase generates NAADPH, which 
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does not induce calcium release. Hence, it is possible that enzymatic reduction is 

an off signal that limits the actions of NAADP+, and that this reductive process 

couples NAADP+ signaling to the overall redox state of the cell. In this regard, it is 

interesting to point out that several processes that involve NAADP+ signaling, for 

example, fertilization,216 are also associated with dramatic changes in the redox 

state; therefore, the redox sensitivity of NAADP+ may be the missing link between 

calcium-mediated signaling and cell metabolism. 

 

Summary and Perspective 

In classical biochemistry, pyridine nucleotides are most frequently viewed 

as soluble electron carriers. As coenzymes, they are known to support oxidation–

reduction reactions and to control cell metabolism. However, recent research 

suggests that pyridine nucleotides can also regulate cell signaling, gene 

transcription, and ion transport by acting as electron donors, enzyme substrates, 

or ligands of specific receptors. Unlike most signaling molecules, pyridine 

nucleotides also impart redox sensitivity to regulatory processes. By doing so, 

these nucleotides control a large network of reactions, and therefore they can 

effectively integrate metabolism, cell signaling, gene transcription, proliferation, 

and cell death. Many of these processes depend on ion transport and homeostasis 

and, thus, the ability to regulate ion channels may be a fundamental feature of the 

biological role of pyridine nucleotides. 

Although research in this area is still maturing, several ion-transporting 

proteins have been shown to either contain NBD motifs or assemble with auxiliary 
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subunits that bind pyridine nucleotides. The association between nucleotides and 

ion transport has been conserved during evolution, and NBD-containing ion 

transport systems have been found in organisms ranging from bacterium to 

human. Although during evolution, some of these domains have been recruited to 

provide structural stability to proteins or to bind other ligands, most are still capable 

of high-affinity pyridine nucleotide binding. In addition, recent studies have shown 

that some NBD motifs of ion transport proteins are functional and that the activity 

of several ion transporters is modified by exogenous addition of pyridine 

nucleotides. There is also evidence to suggest that pyridine nucleotides regulate 

ion fluxes by binding directly to ion transport proteins or their ancillary subunits. 

Yet, there is little direct evidence showing that pyridine nucleotides are 

endogenous regulators of ion transport or that physiological or pathological 

changes in pyridine nucleotide levels have any significant effect on ion transport. 

Additional research therefore is needed to establish cause-and-effect relationships 

between pyridine nucleotides and ion transport. To delineate these relationships, 

it may be necessary to develop new methods for simultaneously measuring free 

nucleotide levels and ion transport in living cells and to determine how pyridine 

nucleotides regulate ion transport in vivo. 

As discussed, recent research has uncovered several potential 

mechanisms by which pyridine nucleotides can regulate ion fluxes. In bacterial K+ 

transporters, such as KtrA, for example, nucleotide binding induces specific 

changes in channel conformation—changes that could possibly alter the ion-

conducting properties of the channel pore.134 Similarly, in eukaryotic channels, 
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such as the Slo K+ channels, the binding of pyridine nucleotides to the cytosolic 

domain of the channel alters channel gating, whereas in Kv1 complex nucleotide 

binding to Kvβ affects inactivation of the current. In addition, as shown for Kv1164 

and SCN5A162 channels, NBD proteins could also facilitate channel trafficking and 

localization. Moreover, as in the bacterial KefC channels, catalytically active NBD 

proteins could help protect channel proteins from oxidative injury. Such proteins 

could also provide the channel privileged access to metabolites that regulate 

channel activity—as in case of the Nav-associated protein GPD1-L, which 

regulates selective PKC phosphorylation of the channel. Although the general 

applicability of this function is unclear, other channel proteins, like Kvβ, are also 

constitutively associated with PKC,72 suggesting that association with other 

signaling proteins may be required to support local channel-specific regulation. In 

most cases described in the literature, however, the speculated roles of pyridine 

nucleotides in regulating ion fluxes remain unsubstantiated. Additional research is 

required to delineate the specific roles of pyridine nucleotides and their metabolites 

in the regulation of channel activity, localization, and posttranslational modification. 

Additional research also is required to evaluate the physiological and the 

pathological implications of this regulatory axis. For instance, even though 

circumstantial evidence suggests that pyridine nucleotides play an important role 

in the regulation of HPV, insulin secretion, oxygen sensing, or even circadian 

rhythms,217 there is no clear evidence to actually implicate pyridine nucleotides in 

these phenomena. It is similarly unclear whether the ischemic dysfunction of 

myocardial ion conductances is related to changes in pyridine nucleotide signaling. 
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Finally, the exciting possibility that, in addition to being regulated by NBD proteins, 

ion transport proteins in turn can regulate the activity of pyridine nucleotide–

dependent proteins has yet to be tested. As mentioned, several channel-

associated proteins, such as KefF, Kvβ, GPD1-L, and NUDT9-H, are catalytically 

active; therefore, changes in membrane potential could affect the activities of these 

enzymes. Further exploration of this possibility could reveal new mechanisms by 

which membrane potential regulates cell chemistry and metabolism. In the brain, 

such processes might be the basic molecular units of memory and learning; in non-

neuronal cells, this mechanism could, perhaps, impart metabolic memory or 

contribute to the epigenetic regulation of gene expression. To understand these 

and other complex relationships between ion transport and pyridine nucleotides, 

however, we would first need to identify and characterize specific components of 

the individual ions channels that are regulated by pyridine nucleotides. From these 

findings, we would have to develop an integrated systemwide view—a view that 

would detail how exactly different ion transport mechanisms are synchronously 

regulated to support basic cell function or to mount a well-orchestrated unified 

response to environmental cues. Thus, further elucidation of this link between 

pyridine nucleotides and ion transport might provide a new understanding of the 

mechanisms underlying several physiological processes and disease states. 
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