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ABSTRACT 
 

A RADIAL BASIS FUNCTION METHOD FOR SOLVING 
OPTIMAL CONTROL PROBLEMS 

 

Hossein Mirinejad 

April 15, 2016 

 

This work presents two direct methods based on the radial basis function (RBF) 

interpolation and arbitrary discretization for solving continuous-time optimal control 

problems: RBF Collocation Method and RBF-Galerkin Method. Both methods take 

advantage of choosing any global RBF as the interpolant function and any arbitrary 

points (meshless or on a mesh) as the discretization points. The first approach is called 

the RBF collocation method, in which states and controls are parameterized using a 

global RBF, and constraints are satisfied at arbitrary discrete nodes (collocation points) to 

convert the continuous-time optimal control problem to a nonlinear programming (NLP) 

problem. The resulted NLP is quite sparse and can be efficiently solved by well-

developed sparse solvers. The second proposed method is a hybrid approach combining 

RBF interpolation with Galerkin error projection for solving optimal control problems. 

The proposed solution, called the RBF-Galerkin method, applies a Galerkin projection to 

the residuals of the optimal control problem that make them orthogonal to every member 

of the RBF basis functions. Also, RBF-Galerkin costate mapping theorem will be 
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developed describing an exact equivalency between the Karush–Kuhn–Tucker (KKT) 

conditions of the NLP problem resulted from the RBF-Galerkin method and discretized 

form of the first-order necessary conditions of the optimal control problem, if a set of 

conditions holds. Several examples are provided to verify the feasibility and viability of 

the RBF method and the RBF-Galerkin approach as means of finding accurate solutions 

to general optimal control problems. Then, the RBF-Galerkin method is applied to a very 

important drug dosing application: anemia management in chronic kidney disease. A 

multiple receding horizon control (MRHC) approach based on the RBF-Galerkin method 

is developed for individualized dosing of an anemia drug for hemodialysis patients. 

Simulation results are compared with a population-oriented clinical protocol as well as an 

individual-based control method for anemia management to investigate the efficacy of 

the proposed method.   
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CHAPTER I 

INTRODUCTION AND MOTIVATION 
 

Optimal control problems are extensively used in various areas of science, 

technology and even medicine. While the traditional applications of optimal control 

problems including control and navigation of aerospace systems and robot motion 

planning are still of great interest, their new applications in economics, bioengineering, 

medicine and other fields of science have received significant attention from researchers 

recently. For example, minimizing the cost of production and storage of a given product 

could be treated as an optimal control problem [1]. Similarly, in medicine, minimizing 

the number of cancer cells over a fixed therapy interval can be formulated as an optimal 

control problem with the number of cancer cells as states (x) and drug dosage as the 

control (u) [2].  

In a general optimal control problem, the goal is to efficiently optimize a cost 

function subject to different constraints including system dynamics (e.g. linear or 

nonlinear dynamics), boundary conditions (e.g. initial and final constraints), path 

constraints (e.g. obstacle avoidance), and actuator constraints (e.g. limit in force, torque). 

Except for simplified systems with linear dynamics and constraints, seeking for 

minimizers of the optimal control problem cannot be analytically accomplished due to the 

existence of both differential and algebraic equations imposing a nonlinear infinite 

dimensional search space. Instead, numerical approaches are usually applied for solving 

these problems by introducing some level of approximation to the problem [3], [4].  



2 
 

Numerical methods for solving optimal control problems are either indirect or 

direct methods. Indirect methods apply Pontryagin’s Maximum Principle (PMP) and 

calculus of variations to find the optimality conditions for a given problem, eventually 

leading to a Hamiltonian Boundary Value Problem (HBVP) that can be solved using one 

of the various numerical methods [5]–[7]. Analytical differentiation, which is necessary 

to derive the optimality conditions, might be long and quite tedious for complex optimal 

control problems. Also, indirect methods suffer from difficulties in finding the initial 

guess of costates (adjoint variables) for an HBVP problem making them numerically 

unreliable. In addition, they need a priori knowledge of the constrained and unconstrained 

arcs in case of having inequality path constraints in the optimal control problem [3]. 

On the other hand, direct methods are extensively being used for solving optimal 

control problems by applying parameterization-then-discretization to the original 

problem. In a direct method, the states and/or controls are approximated by a specific 

function with unknown coefficients, and the optimal control problem is discretized using 

a set of proper nodes (collocation points) to eventually transcribe it into a nonlinear 

programming (NLP) problem. The NLP can then be solved by commercial off-the-shelf 

NLP solvers. While the solution of a direct transcription may not be as accurate as that of 

an indirect method as a result of approximation and discretization, there would be some 

advantages in solving optimal control problems with direct methods.  Perhaps, one 

advantage is that they do not use the PMP to solve an optimal control problem. Hence, 

there is no need to analytically differentiate the expressions for the cost and constraints. 

Also, they have larger radii of convergence than indirect methods, in general. In addition, 
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direct methods are more robust to the initial guess of parameters, do not need the guess of 

costates, and can be modified quite easily without reformulating the whole problem. 

Direct methods are mostly based on polynomial interpolation whether local or 

global polynomial(s). In local polynomial methods, such as Hermite-Simpson (HS) 

approaches [8] and spline-based approximation methods [9], states and controls are 

usually discretized into a set of nodes (equally or unequally spaced) in the time domain, 

and segments between each node are approximated by low-order polynomials. Global 

polynomial methods, on the other hand, use a high-degree global polynomial (Chebyshev 

or Lagrange polynomials of degree N) for parameterization, and a set of orthogonal nodes 

associated with the family of the polynomial for discretization [10]-[15]. Global 

polynomial methods have an exponential (spectral) convergence rate and hence, converge 

faster than local polynomial methods with algebraic convergence rate for a small number 

of nodes. However, they are limited by being tied to a certain grid of nodes. This 

drawback becomes more important when an interpolating function is not smooth enough 

making a pseudospectral method less efficient [16]. Although polynomials are 

computationally easy to use and have simple forms, other types of approximation, 

including RBF interpolation may lead to more efficient results, depending on the problem 

under consideration [17], [18]. 

In this dissertation, an RBF-based framework is developed for solving optimal 

control problems. The first method proposed is called the RBF collocation method, using 

arbitrary global RBFs for parameterizing the states and controls along with arbitrary 

discretization nodes to transcribe the optimal control problem into an NLP problem with 

RBF coefficients as decision variables of the NLP. The second method proposed is a 
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hybrid method, called RBF-Galerkin approach, combining RBFs as trial functions with 

Galerkin error projection to efficiently solve an optimal control problems numerically. 

Another contribution of the current work is costate estimation using the RBF-Galerkin 

method. A set of conditions are provided for the equivalency of Karush-Kuhn-Tucker 

(KKT) multipliers of the NLP resulted from the RBF-Galerkin method and discretized 

form of the costates of the optimal control problem to eventually develop a costate 

mapping theorem for the RBF-Galerkin method. 

The fact that both RBF collocation method and RBF-Galerkin approach do not 

require a specific grid of nodes for the discretization, provides more flexibility in 

choosing the collocation points, which would be really helpful for approximating 

nonsmooth functions with discontinuities. It is emphasized that the work presented here 

is substantially different from [19]. The problem considered in this dissertation is a 

general optimal control problem in which the final optimization time may be either 

known or unknown. In a free-final-time problem (e.g. time-optimal problem), the final 

optimization time and possibly some of the final states are unknown making the 

optimization problem more challenging. In addition, the problem considered here may 

include path constraints which are of vital importance in motion planning and navigation 

problems. Nonlinear path constraints are of great importance in guidance and navigation, 

so that motion planning with obstacle avoidance cannot be solved without considering 

those constraints. Moreover, the proposed approaches (RBF and RBF-Galerkin methods) 

may employ any global RBF (e.g. Gaussian RBFs, multiquadrics, inverse multiquadrics, 

…) for parameterization and any arbitrary points  (e.g. equally-spaced nodes, orthogonal 

nodes, …) for discretization. The practical importance of the proposed work is that a 
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variety of RBF functions can be applied for the interpolation of states and controls 

(instead of being limited to a specific type of polynomial as in polynomial-based 

methods), and also a wide range of discretization nodes can be easily employed for the 

discretization, providing a flexible RBF framework for solving optimal control problems. 

The rest of the dissertation is organized as follows. In Chapter II, the continuous-

time optimal control problem is formulated, also previous solutions as well as related 

work in surveys are reviewed. In Chapter III, the RBF collocation method, a 

computational approach based on the RBF interpolation and arbitrary discretization, is 

proposed to solve optimal control problems numerically. Chapter IV explains the RBF-

Galerkin approach for costate estimation and direct trajectory optimization. Also, 

numerical examples and performance comparisons are provided in Chapter III and 

Chapter IV to investigate the efficiency of the RBF method as well as the RBF-Galerkin 

approach for solving optimal control problems. Chapter V describes the application of the 

proposed solutions to the anemia management problem. Anemia management is 

formulated as a constrained optimal control problem and a multiple receding horizon 

controller based on the RBF-Galerkin method designed for individualized dosing of an 

anemia drug in patients with chronic kidney disease. Finally, conclusions and suggested 

future work are given in Chapter VI. 
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CHAPTER II 

OPTIMAL CONTROL PROBLEM FORMULATION AND EXISTING 
SOLUTIONS 

 

Optimal control of nonlinear systems is an active research area in control systems 

theory. In a general optimal control problem, the goal is to minimize a cost function with 

respect to various types of constraints, including system equations, boundary conditions, 

path constraints, and actuator constraints. Finding the minimizers of an optimal control 

problem subject to the constraints is usually called optimal trajectory generation 

(trajectory optimization), or motion planning -the latter is more popular term in robotics- 

which is an open research problem in many different fields. In this Chapter, a continuous-

time optimal control problem is formulated. Also, a summary of previous and existing 

solutions to optimal control problems is reviewed. 

 

2.1 Problem Statement  

Consider the following constrained optimal control problem. Determine the state 

( ) nt Îx  , control  ( ) mt Îu  , and possibly final time ft  to minimize the Bolza cost 

function 

 ( ) ( )( ) ( ) ( )( )
1

1 1 , , , ,  
f

ffJ L d

t

t

tt t t t tt=G +òx x x u  (2-1) 

subject to dynamic constraints, 



7 
 

 ( )( ) ( ), ( )  t t t=x f x u  (2-2) 

boundary conditions,  

 1 1( ( ), , ( ), )f f
gt t t t = Îγ x x 0  (2-3) 

and path constraints, 

 ( )( ), ( )  qt t £ Îq x u 0  (2-4) 

Among different types of optimal control problems, fixed-final-time problems are 

those having a known final optimization time ft , and hence the cost function should be 

minimized during a fixed amount of time. One example is a fixed-final-time guidance 

problem, where a dynamical system is controlled to satisfy the final conditions while 

maintaining any path and actuator constraints imposed on the system [20].  

On the other hand, in a free-final-time problem, the final optimization time and 

possibly some of the final states are unknown making the optimization problem more 

challenging. A typical example of a free-final-time problem would be a time-optimal 

problem in which the system trajectory needs to be developed in a minimum time 

possible. From the point of view of PMP, free-final-time problems are relatively difficult 

compared to other types of optimal control problems, since the final optimization time is 

unknown, and therefore adjoint variables in the associated HBVP problem do not have 

any boundary conditions. These problems are usually addressed either by searching for 

switching times or by using phase plane analysis (limited to second order problems) [21], 

[22]. However, these algorithms are limited to the problem under consideration and 

usually require the detailed knowledge of the system. An alternative approach is direct 
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transcription of an optimal control problem into an NLP problem, known as a direct 

method [8]-[15], [19], [23]-[26]. 

Due to the nature of constraints, usually a mixture of linear/nonlinear algebraic and 

differential equations, it is often impossible or at least impractical to find an analytical 

solution to the optimal control problem of Eqs. (2-1)—(2-4). Therefore, numerical 

approaches are usually applied to solve these problems that are divided into two main 

classes [3], [4]: indirect and direct methods 

 

2.2 Indirect Methods 

Indirect methods apply PMP and calculus of variations to the optimal control 

problem leading to a HBVP problem solved by numerical methods [5]-[7], [27]. The 

name of “indirect” comes from the fact that these methods solve the HBVP problem 

resulted from optimality conditions, thus indirectly solve the optimal control problem. 

While indirect methods have the high accuracy, and also guarantee to satisfy the first-

order optimality conditions, their radii of convergence are small compared to direct 

methods. Also, they are highly sensitive to the initial guess of adjoint variables making 

them numerically unreliable, especially for the large scale problems. Moreover, to derive 

a HBVP problem, it is required to analytically differentiate the expressions for the cost 

and constraints, which could be highly tedious for the complicated problems. 

 

2.2.1 Indirect Shooting Methods 

The shooting method could be considered the most basic indirect method [27]. The 

first step in the indirect shooting is to make a guess for the unknown boundary conditions 
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at one end of the interval of the optimal control problem. Using the guess and initial 

conditions, the HBVP can be integrated to the other end of the interval. As the integration 

reaches the other end of the interval, the terminal conditions found are compared to the 

known terminal conditions (known terminal conditions are those boundary conditions as 

well as transversality conditions obtained from the first-order necessary conditions). By 

setting a maximum tolerance between the two, one can decide how close is acceptable. If 

the obtained terminal conditions found are not within the maximum tolerance, then the 

unknown initial conditions can be adjusted, and the integration and comparison process 

would be repeated. The overall process is repeated until within the maximum tolerance 

[4]. The simplicity of this method makes writing a code to solve the problem relatively 

simple as well. A simple “Do-while” loop can be used to loop the guessing and 

integration while the specified tolerance is not met. Although this method is simple and 

straightforward, its major difficulty comes from its sensitivity to the initial guess. In fact, 

as the integration of dynamics moves in either direction of time, errors made in the 

unknown boundary conditions amplifies [4].  Another problem with the shooting method 

is that changes have a more substantial impact the earlier they are introduced in the 

trajectory, due to the integration starting at one end of the interval and ending at the other. 

As a result, small changes introduced at the beginning can eventually turn into the big 

nonlinear changes at the other end of the interval [3].  

 

2.2.2 Indirect Multiple Shooting Methods 

The multiple shooting method [28], [29], which is a slight variation of the shooting 

method, is used as an improvement to the shooting method, since it accounts for the 
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expansion and contraction within typical Hamiltonian systems [3], [4]. The multiple 

shooting method seeks to break the full interval into smaller segments, then apply the 

shooting method to each segment. Also, a number of additional conditions are introduced 

to enforce the continuity condition at the joints. The multiple shooting method is a 

significant improvement in regards to the sensitivity issues with the simple shooting 

method. However, the size of the problem would be increased as a result of extra 

variables introduced (values of states and adjoints at the interface points), compared to 

the simple shooting method.  

 

2.2.3 Indirect Collocation Methods 

Indirect collocation [30], also called indirect transcription, is a common method for 

solving two point boundary value problems (TPBVP). Similar to the multiple shooting 

method, the collocation method breaks the overall interval into smaller, sub-intervals. 

Also, in a transcription method, states and controls are parameterized using piecewise 

polynomials with the polynomial coefficients as unknown parameters found by using 

appropriate root-finding techniques such as Newton’s method [31]. The most common 

method to satisfy the defect constraint is the Hermite-Simpson method [32]. Collocation 

methods are most effective when used for solving multipoint boundary value problems, 

such as simple trajectory optimization. The major downfall to this method, which is the 

key downfall to all indirect methods as a whole, is that they cannot be applied without 

solving the adjoint equations. In real-world, complex problems this can be a relatively 

difficult task. Also, if the inequality path constraints are present, a priori knowledge is 
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required to predetermine the sequence of constrained and unconstrained arcs to correctly 

formulate the TPBVP. 

 

2.3 Direct Methods 

In direct methods, states and/or controls of the optimal control problem are 

approximated in such an appropriate manner that the original problem can be well 

transcribed into an NLP problem. The resulting NLP can be solved by gradient-based 

methods such as sequential quadratic programming or by using heuristic approaches like 

genetic algorithms and particle swarm optimization techniques [4]. When the state 

equations are left in the form of original differential equations and only controls are 

approximated, it is called control parameterization method in which the control is 

parameterized using a specific function, and the cost is evaluated by solving the initial 

value problem of the system differential equations. One example is direct multiple 

shooting method [23], where the time interval 1[ ]ft t  is divided into M subintervals, and 

the state at the beginning of each subinterval as well as the unknown coefficients in the 

control parameterization are used as optimization parameters (decision variables) of the 

NLP. On the other hand, in a control-state parameterization method, both state variables 

and controls are parameterized simultaneously using a specific function with unknown 

coefficients. While the total parameterization leads to a larger NLP, it is not required to 

solve the initial value problem at every single iteration of the NLP problem which is a 

great advantage of the control-state parameterization method.  
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Direct methods for numerically solving optimal control problems are mostly based 

on polynomial interpolation whether local or global polynomial(s). There also exist some 

non-polynomial methods in literature that will be described later in this Chapter. 

 

2.3.1 Direct Shooting and Direct Multiple Shooting Methods 

A direct shooting method [33], which is classified as a control parameterization 

method, is typically much more complex than its indirect counterpart. In the direct 

shooting, controls are parameterized with a specific function with unknown coefficient 

and dynamic constraints integrated by using a time-marching algorithm [34], [35]. In a 

shooting method, the phase propagation of a trajectory is accomplished by using an 

ordinary differential equations (ODE) initial value method for implicitly defined control, 

or differential algebraic equations (DAE) initial value method for explicitly defined 

controls [3]. Direct shooting applications are most successful when used for problems 

that have a limited number of NLP variables. However, problems that result in a large 

NLP cannot be succefully solved using a direct shooting approach. Another issue with the 

direct shooting is its high computational cost of evaluating finite difference gradients for 

each NLP iteration [3]. 

Similar to how direct shooting relates to indirect shooting, direct multiple 

shooting [23] relates to indirect multiple shooting. The time interval is divided into 

subintervals, in order to create a more detailed NLP compared to simple shooting 

method. The state values at the beginning of each subinterval as well as the unknown 

coefficients in the control parameterization are decision variable of the NLP. Direct 

multiple shooting produces a much larger NLP problem; however, it is still an 
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improvement to the direct shooting method since it does not have as many sensitivity 

issues. The sensitivity issues are decreased simply because the integration is performed 

over several smaller intervals versus one large interval, and therefore the error 

propagation would be limited to each subinterval.  

 

2.3.2 Local Polynomial Methods 

One of the most common approaches using control-state parameterization is direct 

collocation method (local polynomial method), first introduced by Hargraves et al. [24], 

in which both states and controls are discretized into a set of points (equally or unequally 

spaced) in time (collocation points or nodes) and segments between each node are 

approximated with low-order polynomials (usually a cubic polynomial). The 

parameterization along with the discretization converts the optimal control problem to an 

NLP problem with the polynomial coefficients as the NLP decision variables. The 

aforementioned approach is sometimes called direct collocation with nonlinear 

programming (DCNLP) which has been addressed to solve the constrained optimal 

control problem in [24], [25]. DCNLP is a well-established method for solving optimal 

control problems having the local support as well as numerical robustness to the initial 

guess. However, it suffers from major defects: first of all, it has a low algebraic 

convergence rate, compared to global polynomial methods with spectral accuracy. In 

addition, the way both state variables and controls are parameterized in a direct 

collocation method leads to a very large NLP problem. For the real-time trajectory 

optimization, it may not be possible to find a fast solution to a large NLP problem.  
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Some efforts have been done to reduce the size of the NLP resulted from direct 

transcription by mapping the states and controls to a lower dimensional space instead of 

directly parameterizing all states and controls. For example, Milam et al. [26] introduced 

the nonlinear trajectory generation (NTG) method in which states and controls were 

mapped to a lower dimensional space using differential flatness [36]. They were able to 

provide a rapid solution to optimal control problems with differentially flat dynamics by 

parameterizing the flat outputs (lower-dimensional variables in differentially flat 

systems) with piecewise low-order polynomials represented by B-splines [26].  

In splined-based methods, piecewise low-order polynomials are used for the 

interpolation of states and controls. Trajectory optimization using B-splines and NURBS 

(non-uniform rational B-splines) are two examples described here. 

 

A. Trajectory Optimization using B-splines 

In trajectory optimization with B-splines, the search space for minimizers of an 

optimal control problem is restricted to the vector space of all piecewise polynomial 

functions represented by B-spline basis functions. Consequently, the states and controls 

can be parameterized by B-splines, and an even discretization along the time is performed 

to completely transcribe the optimal control problem into an NLP problem [9], [26]. One 

example is the NTG method, designed at Caltech by Mark Milam et al. [26], combining 

the concept of differential flatness [36] with B-spline representation for direct 

transcription of an optimal control problem into an NLP problem. The NTG algorithm 

has three steps: 

 Determination of outputs, such that system dynamics can be mapped to a 

lower dimensional output space 



15 
 

 Parameterization of the outputs in terms of B-spline basis functions  

 Even discretization using equally-spaced nodes and transcription of the 

optimal control problem into an NLP problem  

The first step is to find outputs such that Eq. (2-2) can be mapped to a lower 

dimensional output space. The reason for this transformation is that it would be easier 

and more efficient to solve a lower dimensional problem. In addition, solving an 

optimization problem in a lower dimensional space needs a less computational time 

helping make the real-time trajectory generation feasible. For this purpose, it is needed to 

find outputs 1 2( , ,..., )T
mz z z=z  of the form 

 ( ) ( )( )1, , , ,        r m=A ¼ Îz x u u u z   (2-5) 

such that all the states x  and controls u  can be recovered from the outputs z  and their 

derivatives:  

 (1) ( )( , ) ( , ,..., )s=Bx u z z z  (2-6) 

These outputs are called flat outputs. In general, if the number of outputs z  

required for representing the states x  and controls u  is exactly equal to the number of 

controls (inputs) u , the system is differentially flat, and outputs z  are called flat outputs 

[36]. The necessary conditions for the system’s differential flatness were discussed in 

[36], [37]. When the flat outputs are defined, no explicit dynamic constraints remain in 

the transformed optimal control problem (removal of Eq. (2.2)), since the flat outputs 

implicitly contain all the information about the dynamics of the system. However, 

depending on the type of the optimal control problem, system dynamics may not be 
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differentially flat. Also, determining the flat outputs is not always possible even if it is 

proven to exist [37]. In the case that a flat output cannot be determined or that no flat 

output exists, the system dynamics in Eq. (2.2) can still be mapped to the lowest 

dimensional space possible using the outputs ( ) ( )( )11, , , ,  ,  r p m+=A ¼z x u u u z  . 

Therefore, ( , )x u  will be completely determined by the reduced-order model 
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In this case, an additional constraint function needs to be added to the optimal 

control problem. To find a feasible solution, it is assumed that outputs z  are in the finite 

dimensional vector space. The assumption is necessary to avoid seeking for minimizers 

in the space of all k-times continuously differentiable functions, an infinite dimensional 

space, making the optimization problem intractable. The space of all piecewise 

polynomial functions with a prescribed number of polynomial pieces, order, and 

smoothness has been selected for the NTG method. This space can be well represented by 

B-splines defined in [38]. Thus, outputs z  are parameterized in terms of B-spline basis 

functions as 
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where ( ), ji kB t  are the B-spline basis functions with the polynomial order ik . Also, j
iC  

are the coefficients of the B-splines, il  is the number of piecewise polynomials (knot 

intervals), is  is the number of smoothness conditions at the knots (breakpoints), and iq  is 

the number of coefficients.  

A balanced discretization of the optimal control problem is needed to transform the 

original continuous-time problem into an NLP problem. For this purpose, the collocation 

points 11 0t t-<¼<= =
tN ft t  are defined, where tN  is the total number of collocation 

points. Collocation points are the points in the time interval in 

 which the constraints are enforced. Finally the integral cost in Eq. (2-1) is 

approximated by a trapezoidal quadrature rule to transcribe the optimal control problem 

of Eqs. (2-1)—(2-4) into the following NLP problem: 

 ( )
2

0 0 1 1
0 0

     Γ ( ), ) L(, ( , ( ))
t

t t

N N

N N i i
j i

t tmin J z t t z z ta
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- -
= =

= +åå  (2-9) 

subject to 
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where G  and L are terminal cost and running cost, respectively. Also, ia  are the 

quadrature weights. The resulting NLP is solved by NPSOL [39], a dense NLP solver, 

designed at Stanford. 
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B. Trajectory Optimization using NURBS Basis Functions 

This method was developed by Melvin Flores et al. [40] at Caltech in 2006. Similar 

to the NTG, the local approximation is restricted to the vector space of all piecewise 

polynomial functions, but instead of the B-spline parameterization, a linear combination 

of non-uniform rational B-splines (NURBS) basis functions is used for the approximation 

such that, 

 ( ) ( ) ( ) ( )
1

, 0 1
0

, , , 
C

C

N
r r

j d N j
j

w wt t
-

-
=

= ¼åz Ρ  (2-11) 

where ( ) ( )z tr
 is the thr  time derivative of the interpolating function (states and/or 

controls), ( )
,
r

j d  is the thr  time derivative of the thj  NURBS basis function of degree d , 

depending on time  t    and weights jw  . Also, d
jΡ   is the thj  control point 

(coefficient of the linear combination), and CN  is the total number of active decision 

variables. The NURBS functions are expressed in terms of B-splines as 

 ( )
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( )
,

, 1
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where 0jw >  is the thj  weight corresponding to the thj  control point. NURBS basis 

functions are non-negative with local support satisfying partition-of-unity properties. In 

addition, they depend on two sets of parameters: control points jΡ  and weights jw . In 

trajectory optimization using NURBS, one set of parameters ( jΡ ) was used to specify a 

region of space that automatically satisfies the path constraints (removal of path 

constraints Eq. (2-4)). The rest of parameters (i.e. weights as well as remaining control 
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points) are used as decision variables of the transcribed NLP to find the optimal 

trajectory. In summary, the trajectory generation for differentially flat systems via 

NURBS basis functions consists of four steps: 

 Rewriting the optimal control problem in terms of the flat outputs and their 

derivatives to map the system dynamics to a lower dimensional space 

(removal of dynamic constraints) 

 Parameterizing flat outputs with piecewise polynomial functions using a 

linear combination of NURBS basis functions 

 Fixing the control points of parametric NURBS paths in such a way that 

they describe regions free from obstacles in their respective path spaces and 

contain their own initial and final path conditions (removal of path 

constraints) 

 Transcribing the modified optimal control problem into an NLP problem 

with the active weights and control points as decision variables of the NLP 

 

2.3.3 Pseudospectral Methods (Global Polynomial Methods) 

Another important class of control-state parameterization methods is the class of 

pseudospectral methods. They were originally developed for computational fluid 

dynamics applications [41] and extensively used in the optimal control community since 

1990s [10]-[15]. In a pseudospectral method, states and controls are approximated by 

Chebyshev or Lagrange polynomials of degree N, and the optimal control problem is 

discretized using orthogonal collocation points. For instance, Chebyshev-Gauss-Lobatto 

(CGL) or Legendre-Gauss-Lobatto (LGL) points are two popular choices for 
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discretization nodes in pseudospectral methods [10], [11]. Orthogonal nodes are 

unequally spaced in the time domain offering higher accuracy of interpolation with fewer 

nodes, compared to equally-spaced nodes [42]. Also, they take advantage of highly 

accurate quadrature rule (e.g. Gauss quadrature), used for approximating the integral cost 

of Eq. (2-1) [43], [44].  

The orthogonal nodes are chosen differently based on the family of the orthogonal 

polynomial and the discretization scheme. Some typical schemes are roots of Legendre 

polynomials (Legendre-Gauss or LG nodes), extrema of Legendre polynomials 

(Legendre-Gauss-Lobatto or LGL nodes), roots of Chebyshev polynomials (Chebyshev-

Gauss or CG nodes), and extrema of Chebyshev polynomials (Chebyshev-Gauss-Lobatto 

or CGL nodes). They can also be some other nodes related to the orthogonal polynomials. 

Pseudospectral methods are usually called global orthogonal collocation methods, 

because they approximate states and controls with a single high-degree polynomial 

(global approximation) with orthogonally collocated points (e.g. roots of Legendre 

polynomials). While pseudospectral methods have simple structures and converge 

exponentially for smooth well-behaved optimal control problems, they have difficulties 

in finding the solution for nonsmooth problems. In fact, the exponential convergence rate 

(spectral property) only holds for smooth functions, so the convergence rate is extremely 

slow for nonsmooth problems, even using a high-degree polynomial [45], [46].  

In all polynomial-based methods, whether global or local, the approximation is 

being limited to the polynomials, so there is no variability among the basis functions. 

While polynomials have desired properties for function approximation, in some cases, 

based on the type of the optimal control problem, representing the states and controls 
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with exponential, trigonometric and other types of functions may lead to more accurate 

and more efficient results than approximating them with polynomials [18]. 

 

2.3.4 Neural Network Based Methods 

Particular characteristics of neural networks architecture and the way they process 

information make them superior to many conventional techniques on certain classes of 

optimization problems. In fact, a wealth of work exists on using neural networks in 

optimization problems [47]-[60]. The basic principle of using neural networks for 

trajectory optimization is to model the system dynamics over a small, time period and to 

chain these segments together in order to build an optimal trajectory. The primitive idea 

was started by Dennis [47] at MIT in 1957, where he provided a fast solution to a 

quadratic programming problem by implementing it with analog electrical networks. The 

idea of using a neural network as a dynamic system whose equilibrium point is the 

solution to the linear/nonlinear programming problem came out of Dennis’s work. Later, 

Chua and Lin [48] designed an NLP circuit, using the Kuhn-Tucker conditions from 

mathematical programming theory, to simulate general NLP problems. Tank and Hopfield 

[49] developed a highly interconnected network of simple analog processors for solving 

linear programming problems using the computational properties of analog-processor 

networks. Kennedy and Chua [50] extended the results of Tank and Hopfield method to 

the general NLP problems. Lillo et al. [51] introduced a continuous nonlinear neural 

network model architecture based on the penalty method to solve constrained 

optimization problems. The idea behind the penalty method is to approximate a 

constrained optimization problem by an unconstrained problem (see [52] for more 
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details). Effati and Baymani [53] proposed a method for quadratic programming, a 

technique used for solving NLP problems, by using a Hopfield neural network model. 

The network is treated as a dynamic system converging to the optimal solution of the 

problem. Reifman and Feldman [54] provided a method of transcribing the NLP problem 

into an unconstrained form by applying a multilayer feed-forward neural network as a 

model for system dynamics. The converted problem was then solved with the bisection 

method. Yeh [55] provided an experimental model for the strength of the concrete 

mixture, given various ingredients and experimental data, using a neural network and 

then used the network in an NLP problem to optimize the mix.  

Another application of neural networks in optimization problems is the 

approximation of optimal controllers, known as neural dynamic optimization (NDO). For 

example, Niestroy [56] presented a method of creating an approximate optimal feedback 

controller for a constrained nonlinear system via parameterizing the optimal control 

problem with adaptive weights and biases of a neural network and using an NLP solver to 

find the optimum values. The optimized weights and biases were used online to control 

the system.  Other examples of designing optimal controllers with the NDO were 

discussed by Seong and Barrow [57] and Peng et al. [58]. An NDO model is often a 

multilayer feed-forward sigmoidal neural network generating the optimization parameters 

online. While the training process is quite fast and the resulting controller is robust to 

modelling errors, it is not easy to update the controller parameters without retraining the 

network, in case of changing dynamics and/or cost function.  

In [59], Inanc et al. used a neural network to approximate the signature and 

probability detection functions of an unmanned aerial vehicle (UAV) for a low-



23 
 

observable trajectory generation under the presence of multiple radars. They used a three-

layer feed-forward neural network, in which the first two layers employed a sigmoidal 

transfer function, and the output layer simply took a weighted sum of its inputs, to 

approximate tabular data for signature and probability detection of a UAV. Having 

approximated the signature and probability detection with differentiable functions, a 

spline-based optimization method was then applied to find a low-observable trajectory. 

The authors showed that the neural network approximation increased the smoothness of 

the resulting trajectory, compared to the B-spline approximation of signature and 

probability detection functions. According to their results, the main reason was the simple 

and straightforward structure of the neural network requiring fewer parameters than B-

splines for the same approximation. In addition, while the neural network approximation 

performs an unconstrained minimization, spline approximation enforces the continuity 

conditions at the interfaces, thereby may provide a less smooth interpolating curve.  

In an attempt to combine neural networks with direct collocation methods to solve 

a trajectory optimization problem for UAVs, Geiger et al. [60] used a feed-forward neural 

network to approximate system dynamics as well as the cost function of an optimal 

control problem. In their work, the approximating trajectory was discretized into n  equal 

segments, and a feed-forward neural network was then used to recursively approximate 

states, controls, and cost values on each segment of the trajectory. The optimal trajectory 

was built recursively and treated as an NLP problem. In each segment, a linear 

interpolation was used for the control time history 

 ( ) ( ) 0
0 1 0

1 0

.
t t

u t u u u
t t

-
= + -

-
 (2-13) 
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Also, equations of motion were integrated in each segment to find the state values 

at the end of the segment 

 ( ) ( ) ( )( )
0

0

0 ,  .
t

t

x t f x t u t dt
t

t
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+ = ò  (2-14) 

As a result, the neural network approximations of states and the cost function were 

represented as 
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where dY , JY  are neural network approximations of the final state and the cost function 

in each segment, respectively. Instead of finding both states and controls, this approach 

only finds the optimal controls using the NLP solver (control parameterization method). 

It should be noted that the collocation problem is no longer available, since the 

approximating functions have been replaced by the neural network. The aforementioned 

neural network method was applied to a UAV surveillance trajectory optimization 

problem. Authors showed that the approximated trajectory with the neural network was 

comparable with those generated by direct collocation and pseudospectral methods, while 

it was required much less computational time because of offline training of the neural 

network parameters [60]. 

Based on the literature review, performance of neural networks in constrained 

optimization problems looks promising. In particular, results of Inanc et al. [59] and 

Geiger et al. [60] demonstrated successful application of feed-forward neural networks 
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for real-time trajectory generation problems. Some advantages of neural networks in 

trajectory optimization can be summarizes as follows [61]:  

 Trajectory optimization with neural networks is fast, and the calculation time is 

consistent, thus making the real-time control feasible. 

 Neural networks are fault tolerant, hence able to operate in hazardous 

environments with more reliability. 

 Approximating the optimal trajectory can be learned from a few examples of the 

optimal paths (easy training). 

 A neural network based control system can be easily built by integrating neural 

networks trained for several tasks 
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CHAPTER III 

RBF COLLOCATION METHOD FOR SOLVING OPTIMAL CONTROL 
PROBLEMS 

  

A new approach based on the RBF interpolation and arbitrary discretization is 

proposed to solve the optimal control problems. The proposed approach is called the RBF 

collocation method or simply the RBF method. The RBF method is a direct method 

combining RBF parameterization of states and controls with proper discretization at 

arbitrary nodes to transcribe the optimal control problem into an NLP optimization 

problem with RBF coefficients as decision variables of the NLP. Regardless of the 

number and type of nodes (discretization scheme), the RBF interpolation for global RBFs 

is always unique [18]. Therefore, discretization nodes can be arbitrarily chosen in the 

proposed method for solving optimal control problems (they do not even need to be on a 

mesh of points, in general). This property makes the RBF method a truly mesh-free 

method, compared to pseudospectral methods that are being tied to a certain gird of 

nodes. The ability to arbitrarily select the collocation points is particularly useful for 

interpolating non-smooth functions, in that case the RBF method can provide more dense 

points near those discontinuities for the better approximation, a feature that is not 

possible in a classic pseudospectral method without using mesh refinement techniques 

[4]. 

In addition to providing great flexibility in choosing the discretization nodes, the 

proposed method also offers flexibility in choosing the type of basis functions (trial 
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functions) for parameterization. Instead of being limited to a specific type of local/global 

polynomial with a certain degree, RBF method uses a broad class of global RBF 

functions (e.g. Gaussian RBFs, multiquadrics, inverse multiquadrics, etc.) for 

parameterizing the optimal control problems. Having continuous derivatives, global RBF 

functions have local support leading to numerical stability for solving optimal control 

problems.  

 

3.1  Continuous-Time Optimal Control Problem 

Without loss of generality, consider the following continuous-time optimal control 

problem. Determine the state ( ) nt Îx  , control  ( ) mt Îu  , and possibly final time ft  to 

minimize the cost function 

 ( ) ( )( ) ( ) ( )( )0

1
0

1

 ,  1 , , ,  
2

1 f
f

t
J t dt

t
L t t t

-

-
-

=G + òx x x u  (3-1) 

subject to dynamic constraints, 

 ( )0( ) ( ), ( )  
2

ft t
t t t

-
=x f x u  (3-2) 

boundary conditions,  

 0( ( 1), , (1), )ft t g- = Îγ x x 0  (3-3) 

and path constraints, 

 ( )( ), ( )  .qt t £ Îq x u 0  (3-4) 
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The optimal control problem of Eqs. (3-1)—(3-4) can be transformed form the time 

interval [ 1,1]t Î -  to the time interval 0t [ , ]ft tÎ using an affine transformation, 

 0 0

2 2
f ft t t t

t t
- +

= +  (3-5) 

where 0t  and ft  are initial and final optimization time, respectively. 

 

3.2  RBF Introduction and Definition 

RBF functions were first studied by Rolland Hardy [62] in 1971 and then 

introduced by Kansa [63], [64] for solving partial differential equations using the 

collocation method in 1990. RBF functions were originally developed for the function 

approximation. They are naturally defined as multivariate functions, so they can be 

applied almost in any dimension [18]. An RBF is a real-valued function whose value 

depends only on the distance from a fixed point, called center point or center, 

 ( )( , )j j= -x c x c  (3-6) 

where j  is the RBF and c  is the center. The norm  is usually the Euclidean norm, but 

other distance functions could be used, as well. Any function satisfying Eq. (3-6) is called 

an RBF function. Some classical RBFs are shown in Table 3.1.  

In general, the RBF could be piecewise smooth like Polyharmonic Splines (PS) or 

infinitely smooth (global RBF) such as Gaussian (GA), multiquadric (MQ), or inverse 

multiquadric (IMQ) RBFs. Infinitely smooth RBFs usually have a shape parameter e  to 

tune the overall shape of the RBF. Increasing e  produces sharper RBFs while decreasing 

it leads to more flat RBFs. 
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Table 3.1  Classical RBFs, i ir r= = -x c  

Name of the RBF ( )rj

Gaussian (GA) 
2( ) , 0re e e- >   

Multiquadric (MQ) 21 ( ) , 0re e+ >   

Inverse quadrics (IQ) 21 / (1 ( ) ) , 0re e+ >  

Inverse multiquadric (IMQ) 21 / ( 1 ( ) ) , 0re e+ >  

Polyharmonic splines (PS) 
for 1,3,5,...

ln( ) for 2,4,6,...

k

k

r k

r r k

ìï =ïíï =ïî
 

 
RBFs are typically used for the function approximation of the form  
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or in the vector form 
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where the interpolating function ( )f x  is represented as a sum of N RBFs j , each 

associated with an RBF center n
i Îc  , and weighted by an appropriate RBF weight 

iw Î  .  

 

3.3  RBF Collocation Method 

The RBF collocation method for solving optimal control problems is based on 

interpolating global RBFs on arbitrary collocation points. To provide a more flexible 

framework, various sets of collocation points including equally and unequally spaced 

nodes could be arbitrarily chosen for discretization. For example, a set of Chebyshev-

Gauss (CG), Chebyshev-Gauss-Lobatto (CGL), Legendre-Gauss (LG), and Legendre-
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Gauss-Lobatto (LGL) nodes, each could be selected as a set of unequally-spaced 

orthogonal nodes to discretize the problem [44], [46]. Similarly, a set of equally-spaced 

nodes in the time can also be employed for discretization. Two most popular choices are 

sets of CGL and LGL nodes distributed over the interval [ 1,1]-  including both -1 and 1. 

The former set minimizes the max-norm of the interpolation error, while the latter one 

minimizes the L2-norm of the interpolation error. CGL and LGL nodes, shown by jt , 

1, 2,...,j N= , are zeros of the derivative of Chebyshev and Legendre polynomials of 

degree N-1, respectively (also add 1 1t =- , 1Nt =  to obtain the whole set).  

Now, consider the optimal control problem of Eqs. (3-1)—(3-4). The state ( )tx  

and control ( )tu  are approximated using N RBF functions as  

 ( )
11

( ) ( ) ( ) R
i

N

i
i i

N

i
it t j t t j t
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= =» - ååx x α α  (3-9) 
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where ( )R tx  and ( )R tu  denote the RBF interpolation of ( )tx  and ( )tu , respectively. 

Also, ( )ij t  is the RBF and iα , iβ  are RBF weights related to ( )R tx , ( )R tu , 

respectively. Differentiating the expression in Eq. (3-9) with respect to t  yields 

 ( )
11

( ) ( ) ( )R
i i i

N

ii
i

N

t t j t t j t
==

» -= =ååx x α α     (3-11) 

For the purpose of clarity and brevity, the RBF method is derived for the GA RBFs 

and LGL nodes here. The procedure would be similar for other types of RBFs and nodes. 

GA RBFs are represented as 



31 
 

 ( ) 2 2( ) exp( ( ) )i i ij t j t t e t t= - = - -  (3-12) 

Without loss of generality, assume 1e= . Now, substituting Eq. (3-12) in Eq. (3-

11) and evaluating at LGL nodes results in  
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R
j j ji i
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d
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d
t t

t t
t ==

= =» =åx
x x α   (3-13) 

where ( )ji i jD j t=   are entries of N N´  GA differentiation matrix D  
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and 

 ( ) 2( ) exp( ( ) ) ( ).i j j i j i j ij t j t t t t j t= - = - - =  (3-15) 

Therefore, dynamic constraints of Eq. (3-2) are transcribed into the following algebraic 

equations: 
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.., 
N

ji i i i j
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f
iD j =

t
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t
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-
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=å α f α β 0  (3-16) 

Next, the continuous cost function of Eq. (3-1) is approximated by the Gauss-

Lobatto quadrature as 

 ( ) ( )0
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1
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t
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J t w Lj j j t
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where jw  are LGL weights corresponding to LGL nodes [ 1,1]jt Î - , given by 
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where 1NP -  is the Legendre polynomial of degree 1N - . Evaluating the path constraint 

of Eq. (3-4) at LGL nodes and applying Eqs. (3-16)—(3-17), the optimal control problem 

of Eqs. (1-4) is discretized into the following NLP problem:  

Find 1 2( ... )T
N N n´=Α α α α , 1 2( ... )T

N N m´=Β β β β , and possibly ft , to minimize 

the cost function of  
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where 
1

N

j ji i
i

D
=

=åd α . The N N´  RBF Gram matrix Φ  is a symmetric matrix defined as  
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Φ  (3-21) 

that results in 

 1 1( ) , ( )R T R T- -= =Α x Β uF F  (3-22) 

where  
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For infinitely smooth RBFs with nonsingular matrix Φ , including GA, IQ, and 

IMQ RBFs, a unique solution can be readily obtained for the aforementioned NLP. Also, 

for RBFs with positive semi-definite Φ  such as MQ RBFs, the number of nodes as well 

as RBF centers can be selected in such a way to uniquely approximate the optimal 

trajectory.  

Unlike pseudospectral methods being tied to a specific set of nodes related to the 

family of the global polynomial, it is emphasized that the RBF collocation method uses a 

set of arbitrary nodes. Also, any type of global RBF can be arbitrarily chosen for 

parameterization, instead of a specific type of polynomial with a certain degree as in 

polynomial-based methods. Deriving the RBF method for the GA RBFs and LGL nodes 

is an example to show how the method works. Clearly, other types of global RBFs 

including IQ, MQ, and IMQ can also be applied for parameterization, and various types 

of collocation points including CG, LG, CGL and even equally-spaced nodes can be 

arbitrarily chosen for discretization (discretization nodes do not even need to be on 

meshes of points, in general). Since the integral nodes are assumed to be the same as the 

discretization nodes, the quadrature rule needed for approximating the integral cost of Eq. 

(3-1) needs to vary according to the type of nodes used for discretization. For example, if 

the equally-spaced nodes are employed, the Gauss-Lobatto quadrature rule of Eq. (3-17) 

needs to be replaced by an appropriate quadrature rule such as trapezoidal or Simpson’s 

rule. Similarly, the Clenshaw-Curtis quadrature should be used for numerical integration 
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in case of using CGL discretization nodes. For more information about the quadrature 

rules and related nodes see [65].  

The described solution is called the RBF collocation method, developed as a set of 

MATLAB functions to transcribe the optimal control problem of Eqs. (3-1)—(3-4) into 

an NLP optimization problem, and then call SNOPT [66], a sparse NLP solver, to find 

the optimal trajectory. 

 

3.4 Optimality Conditions 

The Lagrangian of the Hamiltonian (augmented Hamiltonian), for the optimal 

control problem of Eqs. (3-1)—(3-4) is given by 

 ( , , , , ) ( , , ) ( ) ( , , ) ( ) ( , , )T TH Lt t t t t t= + +μ λ x u x u λ f x u μ q x u  (3-24) 

where ( ) nt Îλ   is the costate and ( ) qt Îμ   is the Lagrange multiplier associated with 

the path constraint. The first-order optimality conditions for the continuous-time optimal 

control problem are derived as 
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where qÎυ   is the Lagrange multiplier associated with the boundary condition γ . 

Necessary conditions of Eq. (3-25) are used as a test on the optimality of a candidate 

solution ( , )* *x u  after a successful run of the RBF method. It is emphasized that these 

conditions are necessary (not sufficient) for the optimality, and hence used to verify the 

feasibility of the solution. 

 

3.5  Numerical Examples 

In this section, the RBF method is applied to four different examples. The first one 

is a temperature control problem [67] where it is desired to heat a room using the least 

amount of energy. The second example being considered is the brachistochrone problem 

in which the goal is to find the shape of the curve when a bead, sliding from rest and 

accelerated by gravity, slips from one point to another in the least amount of time. For the 

temperature control problem and brachistochrone example, the exact solutions are 

available from analytical approaches, so it is possible to make a comparison between the 

numerical result and the exact solution to evaluate the accuracy of the method. Then, the 

RBF method is applied to the Vanderpol example, and the results are compared with a 

spline-based method (NTG) [26] for the accuracy of the solution and with a Legendre 

pseudospectral method (DIDO) [68] for the computational efficiency. Finally, the 

proposed method is applied to a motion planning problem with obstacle avoidance in a 

2D space. The RBF solution is compared with the numerical solutions obtained from 

PROPT [69] and DIDO, two commercially available optimal control software packages, 

to evaluate the performance of the proposed method. 
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3.5.1 Temperature Control Problem 

Consider the optimal control problem, minimize the cost function  

 

1

2

0

1

2
J u dt= ò  (3-26) 

subject to the system equation and boundary conditions 

 
( ) 3 ( ) 2 ( )

(0) 0 , (1) 10

x t = - x t + u t

x x= =


 (3-27) 

where ( )u t  is the rate of heat supply to the room and ( )x t  is the difference between the 

room temperature and the ambient temperature outside. The problem was considered in 

[67]. To control the room temperature on the time interval [0 , 1]  with the least possible 

energy, it is needed to find the optimum value for the control ( )u t  to minimize the cost 

function of Eq. (3-26) subject to the constraints of Eq. (3-27). The exact solutions for 

( )x t  and ( )u t  can be obtained from an analytical approach as  

 
3sinh 3

( ) 10 , ( ) 15
sinh 3 sinh 3

tt e
x t u t= =  (3-28) 

The RBF collocation method with three different RBFs, including GA RBFs, 

IMQs, and third-order PS is applied to transcribe the Eqs. (3-26), (3-27) into the NLP 

problem. The NLP is solved by SNOPT with default feasibility and optimality tolerances, 

called from MATLAB via a mex interface. The number of RBF centers are defined by 

the user in advance based on the number of desired RBF weights (optimization 

parameters). Also, RBF centers are distributed in the time domain [0 , 1]  based on the 

type of collocation points. For the GA RBFs and IMQ, the cost value will be tuned using 
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the shape parameter e . In addition, the type and total number of collocation points are 

changed to optimize the cost value. The results were summarized in Table 3.2. The 

calculations were performed in MATLAB (version 8.3) on an Intel Pentium 2.4 GHz 

machine running Windows 8.1. The exact value of the cost function obtained from the 

analytical method is 75.186J » . According to the results, overall, all three RBFs 

perform very well to minimize the cost function. As expected, increasing the number of 

RBF weights leads to more accurate approximation and hence less cost value at the 

expense of increased computation time. Figure 3.1 shows the exact and approximated 

values of ( )x t  and ( )u t  using three different RBFs (GA, IMQ, and PS), each with 7 RBF 

weights and 21 nodes.  

Table 3.2  Cost function, shape parameter e , and number of weights for 
three types of RBFs used in the temperature control example 

RBF type Weights e Comput. Time (s) Cost 

GA 
3 4 0.12 76.610 
7 0.55 0.19 75.242 

25 0.17 0.63 75.189 

IMQ 
3 5 0.11 76.674 
7 1.2 0.16 75.243 

25 0.2 1.43 75.191 

PS 
3 - 0.09 75.889 
7 - 0.16 75.238 

25 - 1.00 75.194 
 

 

Figure 3.1   Exact and approximated values of ( )x t  and ( )u t  using three different RBFs, each with 7 

weights and 21 nodes, temperature control example 
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3.5.2 Brachistochrone Problem 

The proposed method is applied to the brachistochrone problem where it is desired 

to find the shape of the curve when a bead, sliding from rest and accelerated by gravity, 

slips from one point to another in the least amount of time. The optimal control problem 

is formulated as to minimize the final optimization time ft  subject to dynamic 

constraints 
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and boundary conditions 
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25 Brachistochrone is a time-optimal control problem with an analytical solution. It turns 

out that the optimal trajectories are the equations of a cycloid with the control q  as a 

linear function of time.  

The RBF method with GA, MQ, and IMQ RBFs along with the LGL nodes is used 

to solve the problem. The number of nodes N  is set to be 5, 10, and 25 for each type of 

RBF. Table 3.3 shows the minimum cost as well as the computation time of the RBF 

method for different number of nodes (for 9.81g = ). 
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Table 3.3  Comparison of cost and computation time of GA, MQ, 
and IMQ RBFs for the brachistochrone problem for N=[5, 10, 25] 

 

Method N J | J-Janalytic | Time (s) 
Analytic Solution  1.878940330   
GA 5 1.877877421 0.001062909 0.47 
MQ 5 1.877983233 0.000957097 0.39 
IMQ 5 1.879932113 0.000991783 0.36 
GA 10 1.878940392 0.000000062 1.28 
MQ 10 1.878940342 0.000000012 1.37 
IMQ 10 1.878940412 0.000000082 1.22 
GA 25 1.878940336 0.000000006 6.82 
MQ 25 1.878940331 0.000000001 7.19 
IMQ 25 1.878940332 0.000000002 6.83 

 

 As expected, higher accuracy is obtained by increasing the number of nodes, at the 

expense of increased computation time. While the IMQ RBF is computationally more 

efficient for this numerical example, the MQ RBF shows more accurate results. 

Comparing the minimum cost values with the analytical solution reveals that overall, the 

RBF method has an acceptable accuracy even for a low number of discretization nodes (

5N = ). Figure 3.2 shows the solutions obtained from the MQ RBF method for the states 

and control against the exact solutions for 25N = . The maximum absolute errors in the 

states and control (over all nodes) for 25N =  are approximately 104.5 10-´  and  

 

 
         a)                         b) 

Figure 3.2   Solution to the brachistchrone example using MQ RBFs for 25N =  
a) states , ,x y v    b) control 
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102.6 10-´ , respectively. The Hamiltonian for the brachistochrone problem can be written 

as 

 ( , , ) sin cos cosx y vH u v v gl q l q l q= + +λ x  (3-31) 

where [ , , ]x y vl l l=λ , [ , , ]x y v=x , and u q= . Applying the necessary conditions of 

optimality from Eq. (3-25) holds that Hamiltonian value must be -1, and costates xl  and 

yl  should be constants, i.e. 

 
( , , ) 1

= a , = b , a ,b are constants.x y

H u

l l
=-λ x

 (3-32) 

Figure 3.3.a shows estimated costates alongside the exact values of costates for 

25N = . The Hamiltonian derived from estimated costates is demonstrated in Figure 

3.3.b. It is evident from the graphs that results are in complete agreement with Eq. (3-32). 

The maximum absolute error in the costates for 25N =  is approximately 82.5 10-´ . This 

demonstrates that costates are accurate enough to partially verify the optimality of the 

solution. 

 
  a)      b) 

Figure 3.3   Costates and Hamiltonian for the brachistochrone example for 25N=  
a) costates , ,x y vl l l  b) Hamiltonian H  
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3.5.3 Vanderpol Problem 

The third problem under consideration is the Vanderpol oscillator. A comparison 

will be made between the RBF method and two other optimal control software packages, 

NTG and DIDO. NTG is a local polynomial method based on the B-Spline 

approximation developed in [26], whereas DIDO is a global polynomial method based on 

the Legendre polynomials approximation developed in [68], [70]. The optimal control 

problem for the Vanderpol oscillator is written as 
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2
min
x u

J x x u dt= + +ò  (3-33) 

subject to dynamic and boundary constraints 
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  (3-34) 

For the RBF method, GA RBFs with equally-spaced centers are used for the 

approximation. Also LG nodes are used as the collocation points. For NTG, the 

smoothness and order of B-splines are considered to be three and five, respectively as in 

[26]. NTG needs the number of time intervals for the local approximation, so it is set to 1, 

2, and 15 intervals corresponding to 5, 7, and 33 coefficients (optimization parameters), 

respectively. Also, the number of collocation points is set to be four times the number of 

coefficients as in [26].  According to Table 3.4, as the number of coefficients increases, 

the cost function value decreases, leading to more accurate results. In addition, 

considering the equal number of coefficients, the proposed approach shows better 

performance in minimizing the cost function than NTG (higher accuracy). In fact, the 
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RBF method has the flexibility to tune the RBF functions by changing the shape 

parameter e  to get the best cost value for each case. For example, for 7 coefficients, the 

cost would be 1.6902J =  for 4e= , also 1.69412J =  for 5e= , and the lowest cost is 

1.6882J =  for 5.5e= . Figure 3.4 shows 1( )x t , 2 ( )x t , 2 ( )x t , and ( )u t  for the RBF 

method and NTG, each with 7 coefficients.  

Table 3.4  RBF method and NTG cost and computation time 
comparison, Vanderpol example 

Method Coefficients Cost Time (s) 
RBF 5 1.9025 0.12 
NTG 5 1.9127 0.04 
RBF 7 1.6882 0.21 
NTG 7 1.6982 0.04 
RBF 33 1.6858 0.99 
NTG 33 1.6859 0.1 

 

 
a) 1( )x t       b) 2 ( )x t  

 
c) 2 ( )x t       d) ( )u t  

Figure 3.4   1( )x t , 2 ( )x t , 2 ( )x t , and ( )u t  for the Vanderpol example using the RBF method and NTG 

each with 7 coefficients 
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As seen in Figure 3.4, especially in the bottom two graphs for 2 ( )x t  and ( )u t , the 

RBF method provides the smoother curve with the same number of optimization 

parameters. According to Table 3.4, the computation time of the NTG method is faster 

than the RBF approach, since the proposed method runs in MATLAB that is not as fast as 

NTG’s compiled code. To make a fair comparison in terms of computation time, the RBF 

collocation method is compared with DIDO, another MATLAB-based tool. 

In DIDO, the number of optimization parameters is automatically set by the 

program, and the user does not have any control on the precision of the algorithm. 

Therefore, it is not possible to compare the cost values of DIDO and the RBF method for 

the equal number of optimization parameters.  However, the number of collocation points 

is adjustable, making it possible to compare the computation time of those methods for 

similar cost values.  For DIDO, the number of collocation points is increased from one, 

and the cost value, along with the computation time, is recorded for each set of nodes. 

For the RBF method, GA RBFs and LG nodes are used for parameterization and 

collocation points, respectively. Also, the number of collocation points is changed 

between 5 to 20 times the number of coefficients to get the cost value similar to DIDO 

cost. The results are summarized in Table 3.5.  

Table 3.5  Computation time comparison between RBF method 
and DIDO, Vanderpol example 

Method nodes ( )Nt  Cost Time (s) 

RBF 25 1.9603 0.11 
DIDO 4 1.9604 0.70 
RBF 80 1.6875 0.28 
DIDO 8 1.6873 1.17 
RBF 220 1.6857 0.59 
DIDO 10 1.6857 1.48 
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According to the results, the proposed method has better computation time for 

similar cost values. For example, the RBF collocation method is about 84% faster than 

DIDO for the cost value of 1.9603J =  and about 60% faster for the cost value of

1.6857J = . This clearly demonstrates the efficiency of the proposed method in terms of 

computation time, as compared to another MATLAB-based tool. 

 

3.5.4 Robot Motion Planning Problem 

In this example, the RBF method is applied to solve a 2D navigation problem with 

nonlinear path constraints. In an area of [ ]80 80´ , a mobile robot needs to go from the 

initial point (40,5)  to the final point (55,70)  in the time interval [0,20]  using the 

minimum kinetic energy and avoiding three circular obstacles in the path. The obstacles 

are located at ( )40,20 , ( )55,40 , and ( )45,65  with the radius 10r = . Also, the maximum 

horizontal and vertical speeds of the robot are allowed to be 10 . The optimal control 

problem is to minimize the cost function 
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subject to box constraints and boundary conditions 
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and nonlinear path constraints 
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corresponding to three circular obstacles in the path. To solve this problem, IMQ RBFs 

with 5.5e=  are used for parameterization. ( )x t  and ( )y t  each are parameterized with 

the following number of IMQ RBFs: N= [10, 30, 60]. Also, discretization nodes and RBF 

centers are chosen using LGL nodes. Table 3.6 shows the cost and computation time 

obtained from the RBF method along with those obtained from PROPT and DIDO for N= 

[10, 30, 60]. PROPT and DIDO are both MATLAB-based software packages using 

pseudospectral methods to solve optimal control problems. 

According to Table 3.6, increasing the number of optimization parameters, N, leads 

to more accurate solutions at the expense of increased computation time. For this 

example, the accuracy of the RBF method is higher than either of the other methods for 

different values of N. Also, the computation time of the method is competitive with two 

other methods. In fact, the computation time of the RBF method is much less than that of 

DIDO, but slightly higher than the computation time of PROPT for the same values of N. 

Figure 3.5 shows the optimal trajectory found by the RBF method for N=30. 

Table 3.6  Comparison of cost and computation time of the 
RBF method with PROPT and DIDO for N=[10,30,60]  

Method N Cost Time (s) 
RBF 10 255.97 0.95 
PROPT 10 256.21 0.16 
DIDO 10 278.43 2.50 
RBF 30 254.36 1.26 
PROPT 30 254.38 0.75 
DIDO 30 254.37 44.63 
RBF 60 254.30 6.74 
PROPT 60 254.31 6.30 
DIDO 60 254.32 334.39 
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Figure 3.5   Optimal trajectory obtained from the RBF method for the robot motion planning with 

obstacle avoidance for N=30  
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CHAPTER IV 

RBF-GALERKIN METHOD FOR TRAJECTORY OPTIMIZATION AND 
COSTATE ESTIMATION 

 

Direct methods are extensively used for solving nonlinear optimal control problems 

mainly because of their ability to efficiently handle path constraints, robustness to initial 

guess of parameters, and greater radii of convergence compared to indirect methods. A 

direct method, sometimes called direct transcription, is based on approximating states 

and/or controls by a specific function with unknown coefficients, and discretizing the 

optimal control problem with a set of proper nodes to eventually transcribe it into an NLP 

problem. The resulting NLP then can be solved by efficient NLP solvers available. Most 

of the direct methods are collocation-based approaches which could be either local or 

global collocation methods depending on the type of function used for approximation. 

Runge-Kutta methods [71], B-spline approaches [72], and direct collocation methods [73] 

are examples of local collocation methods using low-degree local polynomials for 

approximating states and controls in each subinterval. The optimal trajectory is built by 

stitching those local trajectories together and enforcing some continuity conditions at 

joints. The main drawback of local polynomial methods is their algebraic convergence 

rate, so the accuracy of solution obtained from these methods is not that impressive. 

Pseudospectral methods [10]-[15], on the other hand, use a high-degree global 

polynomial (e.g. Legendre or Chebyshev polynomials) for the approximation and a set of 

orthogonal nodes associated with the family of the polynomial for the discretization. 
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Spectral (exponential) accuracy along with ease of implementation made them so popular 

for trajectory optimization problems. However, it was proven that the spectral accuracy 

only holds for sufficiently smooth functions [16], so if the solution contains irregular 

smoothness or switching times, a traditional pseudospectral method will converge slowly 

even with a very high-degree polynomial [46]. Pseudospectral methods are tied to a 

specific mesh of points; for example a Legendre pseudospectral method can only use a 

set of Legendre-Gauss-Lobatto (LGL) nodes, whereas a Gauss pseudospectral method 

only applies Legendre-Gauss (LG) nodes for the discretization. This limitation becomes 

even more important when there are some discontinuities in the optimal solution and a 

classic pseudospectral method would not be able to provide more dense points near those 

discontinuities [4]. Some research work was conducted to apply variations to the classic 

pseudospectral methods to capture those discontinuities, for instance, in [74], [75] a 

pseudospectral method along with finite elements were used to combine both benefits of 

global collocation (high accuracy) and local collocation (more flexibility in choosing 

discretization points as well as sparser NLP problem resulted from direct transcription) 

for solving optimal control problems. However, these modified methods impose a 

number of limitations to the mathematical formulation of the problem and are incapable 

of finding a solution to non-sequential optimal control problems [76].  

A different approach is proposed to extend the discretization of the optimal control 

problem into any arbitrary points. Global RBFs are used as the basis functions for 

parameterization of states and controls. Regardless of the number of points and how they 

are selected (meshless points or on a mesh of points), the RBF interpolation for global 

RBFs are always unique [18]. Therefore, the discretization points can be arbitrarily 
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chosen and do not even need to be on a mesh of points, in general. Also, since global 

RBF contains a broad class of interpolating functions including GA RBFs, MQ, and 

IMQ, the method offers a great flexibility in choosing basis functions for parameterizing 

a given problem, which is another advantage of the RBF-based approach.  

In Chapter III, an RBF collocation method was developed for direct trajectory 

optimization. It has been demonstrated that the RBF method is very efficient for solving 

both fixed and free-final-time optimal control problems, as compared to both B-spline 

and Legendre pseudospectral methods. While the numerical examples have shown very 

promising results, there would still remain questions about the optimality of the proposed 

method. In particular, one may ask if the proposed approach would satisfy the first-order 

necessary conditions of the optimal control problem, in general. Can the optimality of the 

proposed method be verified mathematically? Is there any way to successfully estimate 

the costates (Lagrange multipliers) of the optimal control problem using the RBF 

method?  

A considerable amount of work has been conducted in surveys on relating the first-

order necessary conditions of the optimal control problem and KKT optimality conditions 

of the NLP resulting from direct transcription [8], [71], [77], [78]. It has been shown that 

the Legendre pseudospectral method, the Jacobi pseudospectral method and also some 

Runge-Kutta methods give the exact estimation of costates from KKT multipliers of the 

NLP, under a set of closure conditions [77], [78]. These additional conditions are 

required to be added to the KKT conditions in order to fill the gap between indirect and 

direct methods. In this Chapter, it is aimed to answer the optimality question and provide 
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a solution to costate estimation by introducing a new hybrid approach, called the RBF-

Galerkin method for solving optimal control problems. 

The RBF-Galerkin method combines RBF interpolation with Galerkin error 

projection to efficiently solve an optimal control problem numerically. Another 

contribution of the proposed approach is costate estimation using the RBF-Galerkin 

method. A set of conditions are provided for the equivalency of KKT multipliers of the 

NLP resulted from the RBF-Galerkin method and discretized form of the costates of the 

optimal control problem to eventually develop a costate mapping theorem for the RBF-

Galerkin method. 

 

4.1 RBF-Galerkin Method for Direct Trajectory Optimization 

A direct method based on RBF parameterization, arbitrary discretization, Galerkin 

projection, and nonlinear programming is proposed to solve the optimal control problem 

of Eqs. (3-1)—(3-4) numerically. RBF is a real-valued function whose value depends 

only on the distance from a fixed point (center) [18], 

 ( )( , )r r= -y c y c  (4-1) 

where r  is the RBF,  is the Euclidean norm, and c  is the RBF center. Any function 

satisfying Eq. (4-1) is called an RBF function.  

In the RBF-Galerkin method, global RBFs are used as the trial functions for 

approximating the optimal control problem. For brevity and without loss of generality, 

same type of RBFs, r , and same number of RBFs, N , are assumed to be used for the 

approximation of states ( ) nt Îx   and controls ( ) mt Îu   as 
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Where ( )R tx , ( )R tu  denote the RBF approximation of ( )tx , ( )tu , respectively. Also, 

( )ir t  is the RBF, and iα , iβ  are RBF weights for ( )R tx , ( )R tu , respectively. Taking 

derivative of Eq. (4-2) with respect to t  yields 

 ( )
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N

ii
i

N

t t r t t r t
==

» -= =ååx x α α     (4-4) 

Substituting Eq. (4-4) in Eq. (3-2), the defect constraints (residuals) ( )tψ  are 

defined as 

 ( )0

1

 ( ) .
2

, , ( ) ( )i i i i
i

i

N
ft t

t r t r t
=

-
= -åα β αψ f   (4-5) 

A Galerkin projection [79] is applied to defect constraints in which the defect 

constraints are set to be orthogonal to every member of the RBF basis functions, i.e. 

 
1

1

( ) ( ) d 0 1,2,...,j for j Nt r t t
-

= =ò ψ  (4-6) 

where ( )jr t  is the RBF. It implies that the defect ψ  converges to zero in the mean (in 

the limit N ¥ ). If { , }R Rx u  satisfies the boundary conditions of Eq. (3-3), and ψ  
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converges to zero in the mean, the approximated solution of Eq. (3-2), { , }R Rx u , 

converges to its exact solution, { , }x u , in the mean, i.e. 

 
2

lim { , } { , } 0.R R

N¥
- =x u x u  (4-7) 

In other words, by applying the Galerkin error projection, the defect constraints are 

minimized in 2L -norm sense. Now, substituting Eq. (4-5) in Eq. (4-6) and approximating 

the integral of Eq. (4-6) by a proper quadrature yields 
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r t r t r t
==
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-åå αf β α  0  (4-8) 

for 1, ...,j N= , where kw , 1, 2, ...,k N=  are quadrature weights corresponding to the 

type of quadrature points used for approximating the integral. 

A non-negative slack variable function ( )tp  is defined to convert the inequality 

path constraints of Eq. (3-4) to equality constraints, approximated using N global RBFs 

as: 

 ( )
11

( ) ( ) ( ) R
i

N

i
i i

N

i
it t r t t r t

==

= =» - ååp p κ κ  (4-9) 

where ( )R tp  is the RBF approximation of ( )tp , and iκ  denote RBF weights for the. 

( )R tp . The residual of path constraints, qR  is calculated as 

 ( )
1

 , , ( ( ).)q i i i i

N

i
i

r t r t
=

+= åR α β κq  (4-10) 

Similar to Eq. (4-6), a Galerkin projection is applied to the residual qR  to set it 

orthogonal to every member of the RBFs that can be shown in the discretized form as 
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for 1, ...,j N= , where kw  are the same quadrature weights as used in Eq. (4-8). Using 

the same numerical quadrature scheme for the approximation of running cost L , the 

optimal control problem of Eqs. (3-1)—(3-4) is transcribed into the following NLP 

problem: 

Determine 1 2( ... )T
N N n´=Α α α α , 1 2( ... )T

N N m´=Β β β β , 1 2( , ,..., )T
N N q´=Κ κ κ κ , 

0t , and ft  that minimize the cost  
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for 1, 2, ...,j N= . The proposed approach is called the RBF-Galerkin method for solving 

optimal control problems. Since RBF interpolation for global RBFs is always unique, 

regardless of the type and number of points, RBF-Galerkin method can use any arbitrary 

global RBF as trial functions for parameterization and any arbitrary set of points for 

discretization of the optimal control problem. This property makes the proposed method 

very flexible in terms of both interpolant function and discretization points, compared to 

most of the other direct methods. 
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4.2 Costate Estimation 

It will be shown that the KKT optimality conditions of the NLP problem of Eqs. (4-

12)—(4-13) are exactly equivalent to the discretized form of the first-order necessary 

conditions of the optimal control problem of Eqs. (3-1)—(3-4), if a set of conditions will 

be added to the KKT conditions. 

 

4.2.1 KKT Optimality Conditions 

Lagrangian or augmented cost of the NLP problem is written as 
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Where jξ
 , υ , jη  are KKT multipliers associated with the NLP constraints of (4-13). 

Differentiating aJ  with respect to 0, , , , , , ,m m m m m ft tα β ξ η υ κ    and setting them equal to 

zero give the KKT optimality conditions: To save space and make it easier to follow, 

shortened notation 1  ( 1)R Rº -x x ,  (1)R R
N ºx x , 1  ( 1)R Rº -u u , (1)R R

N ºu u , 

( ), , ( )k i i i kr tºf α βf , ( ), , ( )i i i kk r tº α βq q , and ( ), , ( )i ik i kL L r tº α β  are used 

throughout the Chapter.  
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Lemma 1. 
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Proof: Using integration by parts, it can be written 

 
1 1

1 1

( ) ( ) (1) (1) ( 1) ( 1) ( ) ( ) .m j m j m j m jd dr t r t t r r r r r t r t t
- -

= - - - -ò ò   (4-17)  

Approximating the integrals of Eq. (4-17) with a numerical quadrature where kw , 

1, 2, ...,k N=  are the quadrature weights and multiplying both sides of Eq. (4-17) with 

1

N
T
j

j=
å ξ  complete the proof. Now, applying Lemma 1 to Eq. (4-15) and rearranging the 

equations lead to  
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similarly, 
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for 1, 2,...,m N= . Eqs. (4-18)—(4-20) are KKT optimality conditions for the NLP 

problem. 
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4.2.2 First-Order Necessary Conditions of the Optimal Control Problem 

Assuming ( ) nt Îλ   is the costate, and ( ) qt Îμ   is the Lagrange multiplier 

associated with the path constraints, Lagrangian of the Hamiltonian (augmented 

Hamiltonian) of the optimal control problem of Eqs. (3-1)—(3-4) can be shown as 

 

 ( )( , , , ) ( , ) ( , ) ( , )T TH L= + + +x u μ λ x u λ f x u μ q x u p  (4-21) 

 

where H  is the augmented Hamiltonian, and p  is the slack variable function. Please 

note that the notation t  was removed from Eq. (4-21) for simplicity. The first-order 

necessary conditions of the optimal control problem are derived as 
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where gÎυ  is the Lagrange multiplier associated with the boundary conditions γ . 
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4.2.3 RBF-Galerkin Discretized Form of First-Order Necessary Conditions 

In this section, first-order necessary conditions of Eq. (4-22) are discretized using 

the RBF-Galerkin method. First, costates ( ) nt Îλ   and Lagrange multipliers ( ) qt Îμ   

are approximated using N global RBFs as 
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where ( )R tλ  and ( )R tμ  are RBF approximations of ( )tλ  and ( )tμ , respectively. Using 

Eqs. (4-2), (4-3), and (4-9) along with Eqs. (4-23) and (4-24), first-order necessary 

conditions are parameterized with global RBFs. Now, applying Galerkin projection to the 

residuals and approximating the Galerkin integral with a numerical quadrature discretize 

the necessary conditions of the optimal control problem as 
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4.2.4 Costate Mapping Theorem 

A set of conditions is required to be added to the KKT optimality conditions of 

Eqs. (4-18)—(4-20) to provide an exact equivalency between KKT conditions and 

discretized form of first-order necessary conditions of Eqs. (4-25)—(4-28). These 

conditions are 

 
11 1

1

( 1)

(1).

N
T T

j jR R
j

N
T T

j jR R
jN N

r

r

=

=

¶G ¶
+ =- -

¶ ¶

¶G ¶
+ =

¶ ¶

å

å

γ
υ ξ

x x

γ
υ ξ

x x




 (4-29) 

Also, comparing Eqs. (4-18)—(4-20) with Eqs. (4-25)—(4-28) implies that 
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Discrete conditions of Eqs. (4-29), (4-30) are applied to the costate boundaries 

(transversality conditions) to guarantee that first-order necessary conditions of the NLP 

(KKT conditions) are equivalent to discretized form of the first-order necessary 
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conditions of the optimal control problem. In other words, by adding Eqs. (4-29), (4-30) 

to the KKT conditions, the solution of the direct method would be the same as the 

solution of the indirect method for the optimal control problem of Eqs. (3-1)—(3-4). 

RBF-Galerkin Costate Mapping Theorem: There exists an exact equivalency 

between KKT multipliers of the NLP derived from the RBF-Galerkin method and 

Lagrange multipliers of the optimal control problem discretized by the RBF-Galerkin 

method. Lagrange multipliers (costates) of the optimal control problem can be estimated 

from KKT multipliers of the NLP at discretization points using the following equations: 
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, , , 1, 2,...,j j j j

f

j N
t t
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-

ξ ξ η η υ υ    (4-31) 

Proof: substitution of Eq. (4-31) at Eqs. (4-26), (4-27), and (4-28) proves that Eqs. 

(4-18)—(4-20) and Eqs. (4-25)—(4-28) are the same, and hence the equivalency 

condition holds. 

 

4.3 Numerical Examples 

In this section, two numerical examples are solved using the RBF-Galerkin method. 

The first example is a bang-bang optimal control problem [80] with an analytical 

solution, so the optimal trajectories found by the proposed method are evaluated against 

the exact solutions. Also, the costates estimated by the RBF-Galerkin costate mapping 

theorem are compared with the exact costates obtained from an analytical method. The 

second example is a UAV navigation problem in 2D space with nonlinear path 

constraints. Performance of the proposed method is compared against a Local polynomial 
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method (OPTRAGEN) [81] and a global polynomial approach (DIDO) [68] in terms of 

accuracy and computation time for the UAV navigation example.  

 

4.3.1 Bang-Bang Control 

A bang-bang optimal control problem with a quadratic cost [80] is considered here 

as to minimize the cost functional 

 ( )
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According to [80], the optimal control can be calculated from an analytical 

approach as 

 * 0.8 0 1.275
( )

0.8 1.275 5

t
u t

t

ì- £ £ïï=íï £ £ïî
 (4-34) 

and the corresponding value of the cost functional would be 5.660. 

It has been shown in [82] that a classic pseudospectral method would not be able to 

accurately find the optimal control for this example due to the 

nonsmoothness/discontinuity in the solution. For instance, the numerical solution for the 

control function obtained from a Chebyshev pseudospectral method [83] has shown 

undesired fluctuations at the boundaries, and the switching time estimated was not 

accurate enough even with the modest number of discretization points (i.e. 32N = , see 
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page 4, Figure 1 in [82] for details). It should be noted that increasing the number of 

points would not help to remedy this issue and only cause ill-conditioning of the 

discretized problem. 

The efficiency of the RBF-Galerkin method for solving this example is 

investigated. To evaluate the arbitrary discretization capability, a set of pseudorandom 

points along with the trapezoidal quadrature is chosen for discretization. 40 randomly 

distributed nodes are selected in the interval [0 5]  from which at least 5 nodes should be 

located between [1.2 1.3] . Increasing the density of points around the switching time

1.275t = , which is not possible in a pseudospectral method without using mesh 

refinement techniques, helps to capture the discontinuity of the control function and also 

can be used as a measure of accuracy of the proposed method for the points located 

around the discontinuity. IMQ RBFs are used for the parameterization, and with 

aforementioned pseudorandom points, the optimal control problem is transcribed into an 

NLP problem, which is then solved by SNOPT with default feasibility and optimality 

tolerances 6( 10 )-» . 

 Figure 4.1 shows states and control trajectories obtained from the RBF-Galerkin 

method for 40 random nodes along with their exact solutions. Also, costates estimated 

from the RBF-Galerkin costate mapping theorem are illustrated along with the exact 

costates in Figure 4.2. The accuracy of the RBF-Galerkin method is clearly demonstrated 

in graphs even for those nodes located near the control discontinuity ( 1.275)t = . The 

cost value calculated from the RBF-Galerkin method is 5.663 (error 0.003» ), and the 

switching time of the optimal control found as 1.279 (error 0.004» ). The maximum 
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absolute errors in states 1( )x t  and 2 ( )x t  (over all 40 random nodes) are approximately 

62.5 10-´  and 67.9 10-´ , respectively. 

 
Figure 4.1   States and control trajectories obtained from the RBF-Galerkin method for 40 random 

nodes along with their exact solutions 

 
Figure 4.2   Costates estimated from the RBF-Galerkin costate mapping theorem along with the 

exact costates for 40 random nodes 
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Also, the maximum absolute error of the optimal control ( )u t  is 0.63, which occurs 

during the switching time (maximum error in the optimal control is 62.3 10-´  without 

considering nodes located between [1.2 1.3] ). The maximum absolute errors for costates 

1
( )x tl  and 

2
( )x tl  (over 40 nodes) are 56.6 10-´  and 53.6 10-´ , respectively. This 

numerically verifies accuracy of the RBF-Galerkin costate mapping theorem as in Eq. (4-

31). Even higher accuracy would be obtained by increasing the number of nodes. For 

example, the maximum absoulte errors of  
1
( )x tl  and 

2
( )x tl  will be decreased to 

63.4 10-´  and 63.0 10-´  (close to the level of feasibility and optimality tolerances set in 

the NLP solver) by using 80 dicreatization nodes. 

 

4.3.2 UAV Navigation Problem 

The RBF-Galerkin method is applied to a UAV navigation problem with obstacle 

avoidance in a 2D space. Two UAVs set off from [5 , 10 ]m m  and [10 , 5 ]m m  to the final 

destination of [80 85 , 60 65 ]m m m m   in the time span of 20 seconds using the 

minimum kinetic energy and avoiding three circular obstacles in the path. The obstacles 

are located at [30 , 20 ]m m , [40 , 45 ]m m , and [65 , 45 ]m m , all with the radius of 10r m= . 

In addition, there would be other limitations that UAVs need to fly near each other within 

a distance of [5 , 8 ]m m , and their maximum horizontal and vertical speeds must not 

exceed 15 /m s . The optimal control problem is formulated as to minimize  
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2 2 2 2
1 1 2 2

0

( )J x y x y dt= + + +ò      (4-35) 

subject to linear constraints 
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and nonlinear constraints 
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where ( , )
i iob obx y  are the locations of the obstacles. To find the optimal trajectories, 1( )x t , 

1y ( )t , 2 ( )x t , 2y ( )t  each are parameterized with IMQ RBFs and equally-spaced nodes 

employed for the collocation points as well as the RBF centers. In addition, the integral 

cost of Eq. (4-35) is approximated with a trapezoidal quadrature using the equally-spaced 

nodes selected. The cost and computation time of the RBF-Galerkin method are shown in 

Table 4.1 along with those obtained from a Legendre pseudospectral method (DIDO) 

[68] and a B-spline local polynomial method (OPTRAGEN) [81] for N= [10, 20, 30]. 

Also, the optimal trajectories calculated by all three methods have been demonstrated in 

Figure 4.3. Although the amount of the cost for all three methods in Table 4.1 gets higher 

by increasing the number of nodes from 10 to 30, the calculated trajectories by all three 

methods become more accurate by increasing the number of nodes, as expected (see 

Figure 4.3).  
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Table 4.1  Comparison of cost and computation time of the RBF-Galerkin method 
with a Legendre pseudospectral method and a B-spline method for N=[10, 20, 30] 

Method N Cost Time (s) 
RBF-Galerkin Method 10 2179.7 3.22 
Legendre Pseudospectral (DIDO) 10 2254.3 23.23 
B-Spline Method (OPTRAGEN) 10 2159.2 5.75 
RBF-Galerkin Method 20 2268.3 4.98 
Legendre Pseudospectral (DIDO) 20 2302.7 55.39 
B-Spline Method (OPTRAGEN) 20 2299.4 8.73 
RBF-Galerkin Method 30 2245.6 9.16 
Legendre Pseudospectral (DIDO) 30 2356.4 546.09 
B-Spline Method (OPTRAGEN) 30 2269.9 10.18 

 

 

 

 

 

Figure 4.3   Comparison of optimal trajectories developed by RBF-Galerkin Method, Legendre 
Pseudospectral method, and B-spline approach for UAV navigation problem for N=[10, 20, 30] 
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Checking for path constraint violations reveals that solutions found for smaller 

number of nodes, N=[10, 20], have some errors in calculated trajectories, as seen in 

Figure 4.3, and so the calculated cost is less than what it should be for each method 

because of those violations. Comparison of cost values for N=[20, 30] discloses that the 

accuracy of the RBF-Galerkin method is higher than either of the other methods for this 

example. This is clearly verified by comparing the trajectories developed by the proposed 

method with those calculated by the other two methods in Figure 4.3. The computation 

time of the proposed method is also less than two other methods for the same number of 

nodes for this example, as shown in Table 4.1. For instance, the RBF-Galerkin method is 

about 10% faster than OPTRAGEN and 98.3% faster than DIDO for N=30. 
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CHAPTER V 

INDIVIDUALIZED DRUG DOSING USING RBF-GALERKIN 
METHOD: CASE OF ANEMIA MANAGEMENT IN CHRONIC KIDNEY 

DISEASE  
 

In this Chapter, anemia management is formulated as a constrained optimal control 

problem and successfully solved by the RBF-Galerkin method. Then, a multiple receding 

horizon control (MRHC) approach based on the RBF-Galerkin method is presented for 

individualized anemia management in Chronic Kidney Disease (CKD). As a common 

complication of CKD, anemia is associated with decreased quality of life (QoL) as well 

as increased risk of hospitalizations and even mortality among patients [84]. It has been 

strongly recommended by FDA regulations [85] and national guidelines [84] to 

administer the Erythropoietin (EPO) therapy -the universal treatment of anemia for CKD 

patients- in an individual-based fashion with more precise control on the hemoglobin 

(Hb) level. In accordance with those recommendations, the proposed solution is an 

individualized approach based on the RBF-Galerkin method aiming to provide an 

accurate, reliable solution to the anemia management problem. Simulation results are 

compared with a population-oriented clinical protocol as well as a state-of-the-art 

individual-based method for anemia management to investigate the efficacy of the 

proposed method. 
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5.1 Introduction 

Erythropoietin (EPO) is a glycoprotein hormone produced by kidney promoting the 

formation of red blood cells (RBCs) in bone marrow. Anemia, a condition resulted from 

lower than normal number of RBCs, is frequently developed in CKD because of EPO 

deficiency. Anemia can adversely affect the QoL and also increase the risk of 

cardiovascular disease, hospitalizations, and even mortality [84]. Discovery of exogenous 

recombinant human EPO in the late 1980s has revolutionized the treatment of renal 

anemia [86], which was previously only controlled by repeated blood transfusion – a 

procedure associated with several complications, including increased risk of infections, 

allergic reactions, and sensitization impeding kidney transplantation [87]-[89]. Since 

then, renal anemia has been effectively treated by the administration of exogenous EPO 

as well as other erythropoiesis stimulating agents (ESAs) [90]-[92]. The ESA dose 

adjustments are determined in such a way to promote patient’s hemoglobin (Hb) level 

and maintain it within recommended ranges, according to national guidelines [84]. Lower 

doses of ESAs are ineffective for the anemia management, whereas higher doses may 

cause higher-than-necessary Hb concentration increasing the risk of serious 

cardiovascular problems and blood clots [93], [94]. As a result, optimal control of the 

ESA dose would be of great importance during the whole treatment which justifies the 

use of advanced control techniques [95]-[101] for the anemia management problem. Most 

of these techniques [95]-[99] are population-based approaches considering a one-size-

fits-all model for the whole patient groups, and thereby may not achieve the desired 

outcomes because of the variability of dose-response profile among patients [102]. 

Variations of responses among patient groups make the ESA dose adjustment rather 
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challenging and impose the need for more precise individual-based control approaches 

for the anemia management problem [103]. Recent studies have shown that 

individualization of ESA dosing can stabilize the Hb concentration and hence reduce the 

risk of blood transfusion [85], [101]. In [100], a support vector regression approach along 

with a multilayer perception neural network was utilized to develop a personalized model 

for the anemia management problem. Despite their successful model in improving the 

QoL for CKD patients, their work was primarily focused on predicting the EPO dosage 

rather than the Hb level. In a clinical setting, the prediction of Hb level would be more 

useful and practical than the prediction of EPO drug dose, since the former has well-

established protocols and recommended guidelines [104]. A model predictive control 

(MPC) approach was designed and successfully applied to the anemia management 

problem as a population-oriented method in [97], [98] and later as an individualized 

approach [101]. While their recent work for individualized anemia management has 

shown promising results in declining Hb variability among CKD patients [101], the 

method is not sufficiently fast for achieving the desired Hb level, especially for poor 

responder patients. Also, as shown later in Section 5.5 , around 5% random error (±0.5 

g/dL), which is not unlikely in practice considering measurement errors as well as other 

factors that are not included in a patient model, can make the ESA dose recommended by 

the approach of [101] very fluctuating and quite unreliable. Moreover, the weekly dose of 

the ESA drug can be greatly improved using a more accurate optimal control solution.  

In this Chapter, an RBF-Galerkin optimization approach is proposed for the ESA 

drug dosing problem and a multiple receding horizon controller designed based on the 

proposed method for individualized anemia management. The method provides a highly 
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accurate numerical solution to constrained optimal control problems, so it is applied as a 

means to find the individualized weekly dose of the anemia drug for CKD patients. 

Performance of the proposed approach are compared in silico with a population-oriented 

anemia management protocol (AMP) [84] as well as an MPC-based individualized 

method for anemia management [101] for two case scenarios: Hb measurement without 

observational error and in presence of error/measurement noise. The outcome of this 

work is twofold: first, by finding the individualized optimum dosages necessary for 

achieving a desired Hb level, both the side effects of drug overdose and the risk of blood 

transfusion [84] are minimized. In addition, considering the high cost of medication, 

individualization of the ESA drug dose can reduce its usage, and hence result in potential 

saving for health care costs, which is another benefit of the current work.  

 

5.2 Anemia Management Problem 

5.2.1 Anemia Introduction and Definition 

Healthy kidneys produce EPO prompting bone morrow to make RBCs. As a 

consequence of kidney failure, patients with end stage renal disease (ESRD) develop 

anemia primarily because of reduced EPO production. Anemia is usually associated with 

extreme weakness, tiredness, dizziness, and inability to think clearly, so it may reduce the 

QoL for CKD patients significantly. The efficient treatment for renal anemia is the 

administration of exogenous EPO, commonly called EPO drug or ESA drug. Weekly 

dose of the ESA drug is currently determined based on the patient’s Hb level and its 

variation, which should be maintained within specified ranges recommended by national 

guidelines [84]. Dialysis facilities in North America often use their own nonvalidated 
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therapeutic approach, called anemia management protocols (AMP), for the treatment of 

renal anemia. A typical AMP is a rule-based algorithmic system that acts as a 

standardized protocol for anemia management developed based upon national guidelines 

[84] and FDA regulations [85]. However, the AMP rules are made for the treatment of 

population as a whole and would not consider dose-response profile for individual 

patients and therefore may not attain the desired outcome for each individual patient in 

practice [101], [102]. On the other hand, modern control techniques would allow more 

sophisticated individualized anemia management that eventually reduce the risk of blood 

transfusion, according to recent studies [85], [101]. Moreover, automatic control 

techniques provide more precise control on the Hb level, and so their performance 

exceeds that of AMPs [97], [98], [101], [105], [107].  

 

5.2.2 Individualized ESA Drug Dosing as an Optimal Control Problem  

Hb measurement and ESA drug dose for 56 ESRD patients were collected from the 

University of Louisville Kidney Disease Program. Patient’s data contain Hb 

measurement (weekly) and ESA drug dose (0-3 times given per week), each for 52 

weeks. Six patients had data for only 15 weeks because of either missing appointment or 

kidney transplantation, so they were eliminated in this study. First-order to third-order 

models were developed for each patient using the system identification toolbox in 

MATLAB. Since there were no meaningful change from the second to third order 

models, the second-order model was chosen for each patient, which is consistent with the 

other pharmacodynamic models previously developed for the erythropoietic process [95], 

[104]. To individualize the anemia management problem, a second-order dose-response 



73 
 

model depending on unknown parameters k and t  that include a wide range of patients 

(good, average, and poor responders) are considered. The transfer function is written as 

 2( ) ( ) / ( ) / ( 1)G s Y s U s k st= = +  (5.1) 

where ( )Y s  and ( )U s  are Hb level (output) and ESA dose (input), respectively. The 

parameter k  describes patient’s responsiveness to the medication and could vary in the 

range of 0.2–1 g/dL/1,000 U. High values of k imply the good response to the 

medication, while low values imply the poor response (insensitivity) to the ESA drug. 

The parameter t  is the time constant, related to the RBC lifespan, and assumed to vary in 

the range of 60–120 days, which is consistent with the published clinical data [108], 

[109]. The following assumptions are also being made: Baseline hemoglobin 0(Hb ) , the 

patient’s Hb level before starting the ESA treatment, is assumed to be in the range of 7–9 

g/dL. The desired hemoglobin T(Hb )  range is considered 10–12 g/dL, recommended by 

national guidelines [84]. The maximum permissible ESA dose is set to 20,000 U and the 

ESA dose variation limited to less than 50% of its steady-state value. Also, the Hb 

variation is limited to 0.05  g/dL to provide a more stabilized Hb level. Using the state 

space model for the transfer function of Eq. (5.1) and considering the aforementioned 

assumptions, the anemia management problem can be represented in the format of an 

optimal control problem as to minimize the performance index 

 ( ) ( ) ( )( )2 2
1

0 0

 ( ) ( ( ) ) ,  
f ft t

T essJ y t Hb u t u dt general form J L t u t dt= - + -  =ò ò x  (5.2) 

subject to state dynamics, 
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and boundary conditions, 
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where the outputs 1 2( ) [ ( ) ( )]Tt y t y t=y 2 0 1[ ( ) ( )] Tx t Hb x t= + , and ( )u t , ( )u t , 1( )y t , and 

2 ( )y t  denote ESA dose, ESA dose derivative, Hb level, and Hb level derivative, 

respectively. Also, 1( )x t  and 2 ( )x t  are states of the system, and essu  is the steady-state 

value of the ESA drug calculated from the Eq. (5.1) for each individual, i.e.

T 0(Hb Hb ) /essu k= - . To have a more flexible problem, a general form has also been 

provided for the ESA drug dosing optimal control problem that may even include 

nonlinear equations for state dynamics, path constraints and boundary conditions, if those 

equations need to get updated based on the physician’s assessment or updated patient 

model. 



75 
 

5.3 RBF-Galerkin Solution to Anemia Management 

To solve the ESA dosing problem with the RBF-Galerkin method, GA RBFs  with 

LGL nodes were used for 40N = . The simulation time was set to a year, 

( 365 )ft days= , and baseline Hb and Hb target were assumed to be 9 g/dL and 11 g/dL, 

respectively. Achieved Hb level and weekly dose of the ESA drug produced by the RBF-

Galerkin method for three types of patients, including good ( 1)k = , average ( 0.6)k = , 

and poor ( 0.2)k =  responders, are illustrated in Figure 5.1 and Figure 5.2, respectively. 

According to Figure 5.1, the RBF-Galerkin method is capable of achieving the Hb target 

in a reasonable time for all patient groups. For example, a good responder can hit the Hb 

target within 79 days of starting the treatment.  

 

 

Figure 5.1   Achieved hemoglobin level using the RBF-Galerkin method for three types of simulated 
patients: poor ( 0.2k = ), average ( 0.6k = ), and good ( 1k = ) responders 
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Figure 5.2   ESA drug (EPO) dose recommendations produced by the RBF-Galerkin method for 

three types of simulated patients: poor ( 0.2k = ), average ( 0.6k = ), and good ( 1k = ) responders 

 

This time frame would increase to 90 days for an average responder and about 106 

days for a poor responder patients. As seen in Figure 5.2, the weekly dose 

recommendations for a poor responder is the highest dose, and it decreases corresponding 

to patient’s response to the medication. The steady-state weekly doses of the ESA drug 

for good, average and poor responders are 2,000 U, 3,333 U, 10,000 U, and 3,500 U, 

respectively. Figure 5.3 and Figure 5.4 illustrate the achieved Hb level and ESA dose 

recommendations for an average responder with different red cell turnover t , 

respectively. As expected, by increasing the t , the time constant of the system is 

increased, and therefore, the patient’s dose-response profile gets slower. 
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Figure 5.3   Achieved hemoglobin concentration obtained from the RBF-Galerkin method for 
average responder patients with different red cell turnover, 9, 12, 15t=  

 

 

Figure 5.4   ESA drug (EPO) dose recommendations produced by the RBF-Galerkin method for 
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5.4 Control Approach  

After finding a solution to the ESA administration problem using the RBF-Galerkin 

method (open-loop control), a receding horizon control (RHC) approach is developed 

based on the proposed method for individualized anemia management (closed-loop 

control). RHC, sometimes called model predictive control (MPC), is an advanced control 

method that has been in use in various applications including chemical and oil industries 

since the 1980s [110]. RHC is an efficient approach to design an optimization-based 

controller for constrained multivariable control problems [111]. The RHC approach to 

anemia management is as follows: The optimal ESA dose sequence * * *
1 2( ... )n n n Nu u u+ + + , 

where n  is the current time instance, is computed by the RBF-Galerkin method from the 

current state to the desired state over a finite time horizon ft . However, only the first 

dose of the ESA sequence produced (i.e. *
1nu + ) is given to the patient, and the state is 

updated by measuring the patient’s current Hb level ( mHb ). The finite horizon 

optimization problem will be repeated using the updated state 1n+x , and the recent 

control *
1nu + , as the initial values for the optimal control problem. The resulting control 

approach is called the RBF-Galerkin-based RHC method as illustrated in Figure 5.5. 

 
Figure 5.5.   RHC controller designed based on the RBF-Galerkin method for anemia management 

HbmHb

Noise  

{ +HbT
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Multiple Receding Horizon Control (MRHC) Approach: If the patient model is 

known, the RHC controller shown in Figure 5.5 can properly update the ESA dose 

adjustments by measuring patient’s Hb level regularly. However, the individual-based 

model developed in Eq. (5.1) is indeed dependent on parameters k  and t , which are 

unknown for new patients. Therefore, an MRHC approach is proposed to find the weekly 

dose of the ESA for each individual patient. Considering the responsiveness of each 

patient to the ESA drug, there would exist three types of patient groups: poor, average, 

and good responders. MRHC uses three RHC controllers, one for each patient group, to 

provide a weighted linear combination of each controller output as the recommended 

ESA dose for each individual patient. The weight of each controller, lw , is inversely 

proportional to the absolute difference between the previous calculated dose of ESA, *
nu , 

and the steady-state value of the ESA for each patient group, l
essu , i.e., 

 
*

1
, 1, 2,3

1
l

l
ess n

for l
u u

w = =
+ -

 (5-6) 

and the control law (weekly dose of ESA drug, *
1nu + ), is calculated as the weighted mean 

of each controller output,  
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Where 1
l
nu + , 1, 2,3l =  , is the current output of each RHC controller. The MRHC control 

approach for individualized anemia management is illustrated in Figure 5.6. In this 

approach, each controller represents a different aspect of the dose-response profile, in 
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which RHC 1, RHC 2, and RHC 3 are controllers designed for poor, average, and good 

responder patients, respectively. In contrast to switching strategy that chooses a single 

controller output [112], the control action in the proposed approach uses a weighted mean 

of controller outputs (blending of outputs).  

 
Figure 5.6.   Multiple receding horizon control (MRHC) approach for anemia management 
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(desired or target) set to 11 g/dL (the midpoint for the Hb recommended range 10-12 

g/dL). In addition, it is assumed that the Hbm  (measured) is error free, so there would be 

no noise in the output. In dialysis facilities, Hb is usually measured weekly, but the ESA 

doses only be adjusted once in a month or every four weeks. To make the simulation 

results similar to the real case scenarios, the same regulations have been used here (i.e. 

dose adjustment of every four weeks and weekly measurement of Hb). Achieved Hb 

levels and ESA dose adjustments computed from MRHC, SAM, and AMP are shown in 

Figure 5.7 and Figure 5.8, respectively. Also, three different responders including good 

( 0.94)k = , average ( 0.5)k = , and poor ( 0.3)k =  responders are considered for the 

comparison. 

 

5.5.2 Hb Measurement with Observational Error 

 Similar to Part A, w ks65 eeft = , 0Hb 8 g/dL= , THb 11 g/dL= , and sampling 

rate of 7 days are considered for the simulation. Also, it is assumed that the Hb 

concentration is measured weekly and the ESA dose adjusted every four weeks. 

However, Hbm  is assumed to be contaminated with the measurement error. A white 

Gaussian noise with the maximum amplitude of 0.5 g/dL is added to the output (i.e., -0.5 

g/dL ≤ Hb error ≤ +0.5 g/dL), which is a realistic assumption for the Hb error measured 

weekly as part of a routine blood test. Achieved Hb level and ESA dose 

recommendations obtained from MRHC, SAM, and AMP in the presence of Hb 

measurement errors for good, average, and poor responders are illustrated in Figure 5.9 

and Figure 5.10, respectively.  
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a) 

 
b)  

 
c)  

Figure 5.7.   Achieved Hb level obtained from MRHC (proposed method), SAM, and AMP for a) 
good responder, b) average responder, and c) poor responder patients 
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a) 

 
b) 

 
c) 

Figure 5.8.   ESA drug (EPO) dose adjustments computed by MRHC (proposed method), SAM, and 
AMP for a) good responder, b) average responder , and c) poor responder patients 

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

T ime (weeks)

E
p
o
D
os
e
(1
0
0
0
U
)

Good Responder , k = 0.94

 

 
AMP
SAM
MRHC

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

T ime (weeks)

E
p
o
D
os
e
(1
0
0
0
U
)

Average Responder , k = 0.5

 

 
AMP
SAM
MRHC

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

T ime (weeks)

E
p
o
D
os
e
(1
0
0
0
U
)

Poor Responder , k = 0.3

 

 
AMP
SAM
MRHC



84 
 

 
a) 

 
b) 

 
c) 

Figure 5.9.   Achieved Hb level with Hb measurement error obtained from MRHC, SAM, and AMP 
for a) good responder, b) average responder, and c) poor responder patients 
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a) 

 
b) 

 
c) 

Figure 5.10.   ESA drug (EPO) dose adjustments in presence of Hb error computed by MRHC, SAM, 
and AMP for a) good responder, b) average responder, and c) poor responder patients 
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5.6 Discussions 

5.6.1 Hb Measurement without Observational Error 

According to Figure 5.7, while the achieved Hb level from the AMP is not that 

impressive, both MRHC and SAM approaches can successfully attain the Hb target of 11 

g/dL. There would also be a considerable difference between MRHC and SAM in terms 

of the time required to achieve the desired Hb level. While for good, average, and, poor 

responder patients, it took around 44, 51, and 56 weeks, respectively, to hit the Hb target 

by using the SAM, this timeframe would improve to 30, 33, and 40 weeks for the same 

patient groups using the MRHC. This faster response clearly demonstrates the higher 

efficiency of the proposed method for achieving the desired Hb level, as compared to 

SAM. In addition, the Hb levels obtained from SAM exhibits small variations for all 

patient groups, whereas those obtained from MRHC are more monotone and uniformly 

increasing to the desired level. For all three patient groups (good, average, and poor 

responders), the performance of AMP is not comparable with two individual-based 

methods in terms of precise control of Hb concentration. Hb levels achieved by AMP 

show wide undesirable fluctuations around the THb , especially for the initial weeks of 

treatment. Another drawback of AMP is that it would not be able to exactly achieve the 

desired Hb level (11 g/dL) and only maintain the Hb concentration within a range, 

compared to MRHC and SAM hitting the Hb target. 

Figure 5.8 illustrates ESA dose adjustments recommended by MRHC, SAM, and 

AMP. According to Figure 5.8, both initial and steady-state doses recommended by the 

AMP are quite inaccurate. In particular, those unnecessary high doses recommended for 

the initial weeks of treatment can be associated with the increased health care costs as 
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well as the higher risk of cardiovascular problems for CKD patients. In contrast, both 

MRHC and SAM have less aggressive dose recommendations throughout the treatment 

starting from the low dose and achieving the steady-state dose of the anemia drug for all 

three patient groups. For good and average responders, while ESA dose 

recommendations computed by SAM exhibit undesirable fluctuations around the steady-

state level, those produced by MRHC tend to be more consistent. For all three patient 

groups, doses recommended by MRHC achieve the steady-state level much faster than 

those generated by the other two methods. In addition, ESA doses produced by MRHC 

are more stable and uniform than those produced by either SAM or AMP, which is more 

desirable for the EPO therapy, starting from the lower doses and uniformly increasing to 

the steady-state level. 

 

5.6.2 Hb Measurement with Observational Error 

According to Figure 5.9.a, all three methods have quite acceptable Hb 

concentrations achieved for a good responder patient, among which MRHC provides the 

fastest response with the least fluctuations, and AMP produces the lowest response with 

the most oscillations. For an average responder, MRHC is significantly faster than the 

other two methods for attaining the Hb level fairly close to the target. Also, the Hb 

steady-state level achieved by the MRHC is more accurate than that of the either two 

methods for an average responder (see Figure 5.9.b). AMP and SAM seem to have 

similar performances for achieving the Hb target for an average responder, with the 

exception that AMP has unnecessary fluctuations for the initial weeks of treatment. For 

poor responders, MRHC still acts better than the other two methods for rejecting the 
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noise and achieving the desired Hb level within a reasonable time, according to Figure 

5.9.c. While the Hb concentration obtained from SAM cannot reach the steady-state level 

within the simulation time (15 months), AMP would be able to keep the Hb in range after 

around 25 weeks, for a poor responder (Figure 5.9.c). However, considering those 

unnecessary high Hb concentrations for the initial weeks, performance of the AMP is still 

less efficient than MRHC for the poor responder patients.  

Figure 5.10 demonstrates ESA dose adjustments recommended by MRHC, SAM, 

and AMP for different responders with the maximum Hb error of ±0.5 g/dL per 

measurement. As expected, initial doses recommended by AMP are unnecessarily high 

for all patient groups.  

For good responders (Figure 5.10.a), AMP acts slightly better than SAM in 

rejecting the noise and finding the appropriate weekly dose, but for average (Figure 

5.10.b) and poor responders (Figure 5.10.c), doses computed by both methods have 

undesirable fluctuations and need a relatively long time to achieve the steady-state level. 

On the other hand, ESA dose adjustments by the MRHC tend to be more stable and 

accurate in the presence of measurement errors and also reach the steady-state value 

notably faster than those generated by the other two methods. More interestingly, 

comparing ESA doses recommended by MRHC for good, average, and poor responders 

for the Hb measurement with error (Figure 5.10) and without error (Figure 5.8) reveals 

that weekly doses are exactly the same for similar patient groups. Therefore, ESA dose 

adjustments using the MRHC approach are quite robust for the anemia management 

problem. 
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5.7 Statistical Comparison 

In this section, 40 hypothetical CKD patients with different responsiveness to 

medication, k , and red cell turnover, t , are considered for the simulation. Also, three 

different methods including MRHC, SAM, and AMP are applied to control the Hb level 

of patients. It is assumed that all patients have the baseline Hb of 9 g/dL and the goal is to 

attain the target Hb of 11.5 g/dL. The simulation is divided into two parts. The first 12 

months are called the transient cycle (even though it usually takes less time for all 

methods to attain the Hb target, transient cycle is assumed 12 months to ensure the Hb 

steady-state level has been achieved), followed by the steady-state period for the next 6 

months. A random error of ±5% is added to the simulation to account for the 

measurement errors as well as factors that have not been included in the model such as 

infections or hospitalizations.  

Table 5.1 compares the mean values for average achieved Hb level (per patient), 

standard deviation of achieved Hb level (per patient), and absolute difference between the 

average achieved Hb level and Hb target (11.5 g/dL) obtained from MRHC, SAM, and 

AMP for the steady-state period of treatment. Among mean values of the average 

achieved Hb level, MRHC achieves the closest value to the target, while AMP results in 

the lowest mean, which is still in the range but far from the target. 

Table 5.1  Statistical comparison of means of MRHC, SAM, and AMP for anemia management 

 MRHC SAM AMP 

Average Achieved Hb Level (g/dL) 11.432±0.043 11.237±0.094 10.558±0.104 

SD for Achieved Hb Level (g/dL) 0.358±0.010 0.468±0.021 0.391±0.015 

Absolute diff. Achieved Hb & Target Hb (g/dL) 0.117±0.031 0.276±0.090 0.942±0.104 
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Comparison of mean values for the standard deviation of the Hb level reveals that 

MRHC and AMP have less variation of the achieved Hb level than SAM, which is 

expected considering the fluctuating output of SAM in presence of measurement error, 

especially for poor responders (see also Figure 5.9.c). Comparing the absolute difference 

between the achieved Hb level and Hb target, which is a measure of accuracy for 

methods, shows that the proposed method achieves the lowest value of 0.117 ± 0.031 

g/dL, and hence is very successful in achieving the desired Hb level compared to SAM 

and AMP. It simply means that by choosing the RBF-Galerkin-based MRHC approach 

among these three methods: 

1- The average Hb level achieved for each simulated patient is relatively close to 

11.5 g/dL (efficacy of proposed method). 

2- Standard deviation of the achieved Hb level for each simulated patient would be 

relatively close to zero, i.e. the lowest standard variation among three methods, 

(reliability of proposed method). 

 

The F-test from analysis of variance (ANOVA) is applied to test the hypothesis 

about the equality of mean values of average achieved Hb level from MRHC, SAM, and 

AMP. The ANOVA results in F-Value=112.94 and P-value=0.000, meaning that mean 

values are significantly different. Post-ANOVA pairwise comparison of means using the 

Tukey test with 99% confidence interval (CI) is demonstrated in Figure 5.11. Please note 

that if an interval does not contain zero, the corresponding means are significantly 

different. Figure 5.11 clearly indicates that the mean of the average achieved Hb level 

from each method is significantly different than that of the other two methods.  
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Figure 5.11.   Differences of means for the average achieved Hb level (Tukey Test with 99% CIs) 
 

It is also tested the hypothesis about the equality of mean values of the absolute 

difference between the average achieved Hb level and Hb target for MRHC, SAM, and 

AMP. ANOVA results reveal that mean values are notably different (F-Value=110.98 

and P-value=0.000). Also, Tukey method with 95% CIs indicates that there are 

considerable differences between the means of MRHC and AMP, also between the means 

of MRHC and SAM as well as means of SAM and AMP, for the absolute difference 

between the achieved Hb level and Hb target (see Figure 5.12). This statistical 

comparison verifies the efficiency of the proposed method for achieving the desired Hb 

level for the anemia management problem. 

 

Figure 5.12.   Differences of means for the absolute difference between the achieved Hb level and Hb 
target level (Tukey Test with 95% CIs) 
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CHAPTER VI 

CONCLUSION AND FUTURE WORK 
 

6.1 Conclusion 

In this dissertation, two direct transcription methods based on the RBF 

interpolation have been proposed for solving optimal control problems numerically: RBF 

Collocation Method and RBF-Galerkin Method. Also, a multiple receding horizon 

control (MRHC) approach based on the RBF-Galerkin method was proposed for solving 

an important drug dosing problem: individualized anemia management in chronic kidney 

disease. Key features and important results of each method along with the results of the 

individualized anemia management are summarized in the following. 

 

6.1.1 RBF Collocation Method 

The first method proposed for solving optimal control problems was the RBF 

collocation method, or simply the RBF method. The proposed approach satisfies defect 

constraints at discretized nodes by combining the RBF parameterization of states and 

controls with arbitrary discretization at collocation points to eventually transcribe the 

continuous-time optimal control problem into a discretized NLP problem. The resulted 

NLP can then be solved by efficient NLP solvers available. For this work, SNPOT, a 

sparse solver, was used for solving the NLP.  
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Performance of the RBF method was tested and verified through both fixed-final-

time and free-final-time numerical examples, including temperature control problem, 

brachistochrone example, Vanderpol example, and robot motion planning problem. For 

the temperature control problem and brachistochrone example, the exact solutions were 

available from analytical approaches, so the accuracy of the RBF method was confirmed 

by comparing the cost values of the proposed method with those obtained from exact 

solutions. In the Vanderpol oscillator example, the accuracy of the RBF method has been 

superior to a local polynomial method (NTG). In addition, the proposed method was 

more computationally efficient than a global polynomial method (DIDO) for the same 

accuracy. The RBF method was then applied to a robot motion planning problem with 

obstacle avoidance to evaluate the efficiency of the method for solving a trajectory 

optimization problem with nonlinear path constraints. The results were compared with 

those obtained from PROPT and DIDO, two MATLAB-based commercial off-the-shelf 

software packages using pseudospectral methods for trajectory optimization. The 

accuracy of the RBF method was higher than either of the other two methods for different 

number of optimization parameters. Also, the computation time of the proposed method 

was competitive with two other methods (much less than DIDO, but slightly higher than 

PROPT).  

 

6.1.2 RBF-Galerkin Method 

The second proposed method was the RBF-Galerkin method, in which residuals 

were handled differently. Similar to the RBF method, global RBFs have been used for 

parameterization and arbitrary nodes utilized for discretization. However, by applying the 
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Galerkin error projection to residuals (i.e., defect constraints as well as residuals of path 

constraints), they were set to be orthogonal to every member of the RBF basis functions. 

In fact, by applying the Galerkin error projection, residuals are minimized in 2L -norm 

sense (in the limit N ¥ , they converge to zero in the mean). It was also shown that 

there would be an exact equivalency between the KKT optimality conditions of the NLP 

resulted from the RBF-Galerkin method and discretized form of the first-order necessary 

conditions of the optimal control problem, if a set of transversality conditions were added 

to the KKT conditions. RBF-Galerkin Costate Mapping Theorem has been developed 

stating that KKT multipliers of the NLP would be exactly equivalent to the Lagrange 

multipliers of the optimal control problem at discretization points, if a set of conditions 

hold. It means that the solution of the direct transcription by the RBF-Galerkin method is 

the same as the solution of an indirect method for solving optimal control problems 

(verifying the optimality of the solution). 

Two numerical examples were solved by the RBF-Galerkin method. The first 

example was a bang-bang optimal control problem with an analytical solution. The 

optimal control for this example had a discontinuity point making it difficult to solve 

using the classic pseudospectral methods. The RBF-Galerkin solution with a set of 

arbitrary random points has been shown to be very accurate for this example, even for 

those points located near the control discontinuity. Also, the costates estimated by the 

RBF-Galerkin costate mapping theorem was accurate enough to numerically verify the 

theorem developed (costate maximum errors over all nodes 510-»  for N=40). The 

proposed method was then applied to a 2D UAV navigation problem with obstacle 

avoidance and the solution compared with those obtained from a Legendre 
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pseudospectral method and a B-spline approach. The RBF-Galerkin method was more 

accurate and also computationally more efficient than the other two methods for the UAV 

navigation problem. 

 

6.1.3 Individualized Anemia Management 

After those successful examples solved by the RBF-Galerkin method, the proposed 

approach was applied to solve an optimal control drug delivery problem. A multiple 

receding horizon control (MRHC) approach based on the RBF-Galerkin optimization 

method has been proposed for individualized drug dosing in the anemia management 

problem. Anemia management has been formulated as a constrained optimal control 

problem solved by the RBF-Galerkin method. Then a multiple receding horizon 

controller was built based upon the optimization algorithm to precisely control and 

achieve the desired Hb concentration for individual patients. Simulation results have been 

compared with those obtained from a population-oriented approach (AMP) as well as an 

individual-based method (SAM) for anemia management to verify the efficiency of the 

proposed method. In silico comparison between the proposed method and two other 

approaches has indicated that the performance of the RBF-Galerkin based MRHC has 

been superior to either of the other two methods for both precise control of the Hb level 

and accurate adjustments of the ESA dose. Hb steady-state level achieved by the MRHC 

approach in presence of the measurement error has been more accurate than that of the 

either two methods, especially for average and poor responder patients. Also, ESA dose 

recommendations by the proposed method were more consistent, uniform and accurate 
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than those provided by SAM and AMP, and also achieved the steady-state value notably 

faster than those generated by the other two methods. 

Statistical comparison between three different methods has also revealed  that mean 

of the average achieved Hb level from the MRHC approach has been significantly closer 

to the Hb target than that of the other two methods. Also, the results of Tukey test with 

95% CI indicated that the absolute difference between the achieved and target Hb for the 

proposed method was notably lower than those for SAM and AMP, confirming the 

efficacy of the proposed method for the anemia management problem. 

 

6.2 Future Work 

6.2.1 Tuning the Shape Parameter in RBF Based Methods 

Both RBF method and RBF-Galerkin approach use global RBFs for 

parameterization of states and controls. Global RBFs, including GA RBFS, MQ, and 

IMQ, contain a free shape parameter e  that plays an important role for the accuracy of an 

RBF interpolation. In the RBF and RBF-Galerkin methods proposed, the shape parameter 

is often tuned by trial and error or sometimes by using a simple “for” loop in the code. 

However, it would have been more convenient and more efficient to select this parameter 

by using a systematic approach. A few strategies were proposed in the literature for 

choosing the appropriate shape parameter, for instance, Leave One Out Cross Validation 

(LOOCV) algorithm [113] and its extensions [114] or Maximum Likelihood Estimator 

(MLE) [115]. These strategies try to minimize a predictor function (type of function is 

different in each approach) that mimics the RBF interpolation error. Finding a proper 
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strategy to automate fine-tuning of the shape parameter in the RBF-Galerkin method 

could be a possible extension of this work. 

 

6.2.2 Suggestions for the Anemia Management Problem 

A.  Combining System Identification Techniques with RBF-Galerkin based RHC  

The second-order model, dependent on unknown parameters k  and t , used for 

patients was developed based on the erythropoietic process and dose-response profile of 

each patient. The patient model could vary during the treatment, and therefore, system 

identification methods may be investigated as systematic tools for adjusting those 

parameters or even for developing a more accurate nonlinear model for each individual 

patient. Unlike a regular MPC that can only use a linear model for its design, the RHC 

controller proposed in this work can apply any linear as well as nonlinear models for the 

control purpose (nonlinear MPC). It’s because the RBF-Galerkin method can solve 

general optimal control problems with nonlinear dynamics. Applying the RHC controller 

proposed in this dissertation in combination with a more accurate nonlinear patient model 

could be interesting to investigate.  

 

B.  Optimal Control of Drug Administration for CKD Patients with Comorbidities 

Anemia is a common complication of CKD. Besides that, many CKD patients may 

suffer from other health problems or comorbidities, one or more health conditions or 

diseases existing alongside another disease. For example, diabetes and cardiovascular 

disease were reported as common comorbidities of CKD in surveys [116]. Those patients 

with comorbidities may need to follow different dosage recommendations as a result of 
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multiple health conditions. In addition, they may take multiple medicines for their 

treatment, which makes the EPO therapy for anemia management even more challenging. 

It could be a topic of future research to find the optimal dosages of the ESA drug for 

CKD patients with multiple health conditions or comorbidities. 
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